

Enhancing FEA crack propagation
simulations by employing
stress-state-dependent TSLs

M.M. Korving

Thesis for the degree of MSc in Marine Technology in the
specialization of Ship and Offshore Structures

Enhancing FEA crack propagation
simulations by employing

stress-state-dependent TSLs

By

M.M. Korving

Performed at

Femto Engineering

This thesis (MT.23/24.044.M) is classified as confidential in
accordance with the general conditions for projects performed by

the TUDelft.

To be defended publicly on Wednesday July 31, 2024

Company supervisors
Responsible supervisor: Ir. R. Vielvoije

Thesis exam committee
Chair/Responsible Professor: Dr. C.L. Walters
Staff M ember: M.A.A.M. Adly
Staff M ember: P rof.dr.ir. L.J. Sluys
Company Member: Ir. R. Vielvoije

Author Details
Study number: 5188369

Abstract
Multiple methods exist for simulating crack propagation in the finite element method
(FEM). Among these, the extended finite element method (XFEM) shows great po-
tential as it allows for the use of larger elements while maintaining accuracy and
practicality. Within XFEM, the employment of traction separation laws (TSLs) is
a promising approach to capture post-necking effects, which are typically predicted
poorly with larger elements. These TSLs are often assumed to be constant along the
crack length and are determined by fitting to experimental data.

However, it has been proven that necking and fracture both depend on the state
of stress, expressed as stress triaxiality. It is also known that the stress triaxiality
within the crack region varies as the crack progresses through a plate due to changing
boundary conditions and crack blunting. Consequently, the necking behaviour ahead
of the crack tip changes, necessitating multiple stress state-dependent TSLs along the
crack length to accurately capture this effect.

In this thesis, a subroutine is developed to enable the use of multiple TSLs along an
extending crack in Abaqus, based on the stress triaxiality of each element. Additionally,
the relationship between TSL parameters and stress triaxiality was determined by
minimizing the difference between simulations and experimental data of a large-scale
CCT experiment. With this relationship known, it is possible to account for the effect
of the changing stress state when determining the TSLs.

The study finds that stress triaxiality-dependent TSLs produce a significantly bet-
ter match with experimental results compared to a stress triaxiality invariant TSL.
This underscores the importance of addressing stress-state dependency in TSL de-
termination. The study also highlights that mesh size and material dependency on
TSLs must be addressed so that these TSLs can be applied universally across different
conditions.

i

Preface
This thesis, ”Enhancing FEA crack propagation simulations by employing stress-state-
dependent TSLs,” serves as my final project and concludes my studies at the TU Delft.
Within the Master Marine Technology, I got increasingly invested in structural prob-
lems and really liked courses that focussed on ultimate strength, material behaviour
and FEM. This thesis is a logical conclusion to this chapter, and I was able to develop
both my FEM and programming skills, as my understanding of failure and fracture.

Numerous persons have played a major role in this project, and I am very grateful
for their help. First of all, I want to thank Carey Walters, for the valuable insights and
feedback. Your courses ”Sterkteleer van Schepen” and ”Ultimate Strength of Ships”
made me enthusiastic about structures and inspired me to continue in this field. I
immediately noticed that you take the time to help your students, whether this is
during a course or as a graduation supervisor, and I really appreciated this.

Secondly, I am grateful to Mohammed Adly, who served as my daily supervisor at
the university. I value your engagement with my project and the informal atmosphere
of our meetings. You were very approachable, and I always left our meetings more
secure and with a better sense of direction.

Furthermore, I want to express my gratitude to Richard Vielvoije for being my
supervisor within Femto. I admire your willingness to contribute or troubleshoot, even
after working hours. Whether it is by interpreting doubtful FE results or giving sharp
feedback on reports and presentations, I knew I could always count on your help.

My gratitude extends to Vincent Bouwman from 4RealSim for troubleshooting the
use of XFEM and subroutines, to Bert Sluys for being on my graduation committee
and giving insights on my thesis, and to Tom Santegoeds for making this project pos-
sible within Femto.

Finally, I am grateful to my family, girlfriend, and friends for their support and for
providing the occasional distraction.

M.M. Korving
Delft, July 2024

iii

Contents

1 Literature review . 3
1.1 Background on ductile fracture 3
1.2 Numerical modelling of cracks . 7
1.3 Stress state . 17
1.4 Summary . 20
1.5 Research overview . 21

2 TSL implementation . 23
2.1 Implementation of a stress-state invariant TSL 23
2.2 Implementation of stress-state-dependent TSLs 31

3 TSL optimization . 37
3.1 Benchmark experiment . 37
3.2 Optimization study . 40

4 Results . 45
4.1 Optimization results . 45
4.2 Comparison to a single TSL . 49
4.3 Mesh sensitivity . 51
4.4 Unconstrained optimization . 53

5 Discussion and future outlook . 55
5.1 Discussion . 55
5.2 Conclusions . 56
5.3 Limitations . 57
5.4 Recommendations . 58

A Abaqus settings 67

B Subroutine code 77

C Matlab code 79

D Optimization code 97

v

Nomenclature

Abbreviations

CCT Central Crack Tension

CPS4R 4-node bilinear plane stress quadrilaterals with reduced integration
and enhanced hourglass control

CRKOPEN Crack Opening displacement

CRKPRESS Crack Pressure

CZM Cohesive Zone Model(ling)

FE Finite Element

FEA Finite Element Analysis

FEM Finite Element Method

GTN Gurson Tvergaard Needleman

HRR Hutchinson-Rice-Rosengren

MAE Mean Absolute Error

MMC Modified Mohr-Coulomb

NS Normal Strength

TSL Traction Separation Law

XFEM eXtended Finite Element Method

Symbols

σ̄ Stress of undamaged model

δ Crack opening displacement

δ0 Failure displacement

δ1 Displacement at damage initiation

δ2 Displacement at moment of shear localisation

vii

Γ0 Cohesive energy

ΓII Energy dissipated after the onset of shear localisation

ΓI Energy dissipated in the necking process

σ1 Normal stress in x-direction

σ2 Normal stress in y-direction

σ3 Normal stress in z-direction

σh Highest defined point at stress-strain diagram

σm Hydrostatic stress

σy Yield stress

σeq Von Mises equivalent stress

σy0 Cohesive stress

u Displacement

udis Discontinuous displacement

ureg Regular displacement

using Displacement resulting from stress singularity at crack tip

D Damage parameter

K TSL stiffness

n Number of data points

T Stress triaxiality

Yi Y-coordinate of experimental results

yi Y-coordinate of FE results

viii

Introduction
The maritime industry continually seeks optimal designs to minimize material use and
overall weight while still conforming to strict safety and strength criteria. Achieving
lighter and more efficient structures requires advanced assessment methods to accu-
rately predict the structural behaviour and capacity of these designs. The finite element
method (FEM) is such a method, and multiple types of failure can be simulated quite
accurately.

One critical condition that could affect the structural integrity of maritime struc-
tures is the formation and propagation of cracks in plates, particularly during extreme
events such as collisions, ship groundings and attacks. However, despite significant ad-
vancements, accurately modelling crack propagation in a practical way remains chal-
lenging. Traditional finite element techniques often necessitate the use of very small
elements (many times smaller than the plate thickness) to achieve accurate results,
which is computationally impractical for large-scale applications. The extended finite
element method (XFEM) presents a promising solution by allowing the use of larger
elements while retaining accuracy and practicality.

One essential aspect of simulating crack propagation in XFEM is the incorpora-
tion of traction separation laws (TSLs) which can help to capture post-necking effects.
TSLs represent the material behaviour after significant deformation, which is often in-
adequately predicted when larger elements are employed. Typically, TSLs are assumed
to be constant along the crack length and are derived from fitting to experimental data.
However, this approach overlooks the variations in the stress state within the crack re-
gion, particularly the stress triaxiality, which changes as the crack progresses through
the material.

This thesis addresses this effect and aims to determine the TSLs based on the local
state of stress that occurs within the crack region, thereby enhancing the accuracy and
practicality of XFEM for simulating crack propagation in large maritime structures. By
incorporating stress-state-dependent TSLs, the developed approach provides a more
physically accurate assessment method for predicting the structural behaviour and
capacity of these structures.

Motivation

The current research is of both engineering and social relevance. It contributes to
engineering by increasing the accuracy of FE fracture simulations with coarse meshes.
Employing larger elements in these simulations allows for a practical way of modelling
fracture, and computational time and effort (and thus costs) are saved. This research
thus improves the engineering field by reducing costs and enhancing practicality.

The social relevance of this research is that structures will be designed more effi-
ciently and safely. If accurate FE fracture simulations can be done on extreme events
such as ship collisions or grounding, lives can be saved when these events occur.

Outline

This thesis is structured as follows: first, a literature study is performed in chap-
ter 1, which leads to a research gap and research questions, described in section 1.5.

1

Subsequently, chapters 2 and 3 explain the two main parts of this research: the devel-
opment of a TSL-tool that incorporates stress-state dependent TSLs in Abaqus and
the optimization study, which aims to find the relationship between the TSL and stress
triaxiality. Finally, the results of the optimization study are presented in chapter 4,
and a future outlook is given in chapter 5.

2

Chapter 1

Literature review

1.1 Background on ductile fracture

This chapter gives a brief overview of the most important aspects of ductile fracture
and crack propagation to gain a broad understanding of the relevant theory treated
within this thesis. The focus will be on ductile fracture in metals and metallic alloys.
For completeness, both the microscopic and the macroscopic fracture behaviour are
described.

1.1.1 Microscopic fracture behaviour

A dominant failure mechanism in ductile metals is nucleation, growth, and coalescence
of microscopic voids [39][8]. When stress occurs in a metal, voids or cavities nucleate
at inclusions and second-phase particles which occur in the metal matrix due to the
manufacturing process. At these locations, high stress concentrations occur due to
external loading.

After nucleation, the voids grow in size resulting from the increasing applied strain.
Because the void itself acts as a discontinuity as well, stress concentrations will now
occur around the void, causing a further increase in the amount of stress. Due to this
phenomenon, the void can grow, and elongation can occur at a rate that is about two
times that of the surrounding material. The growth is stimulated by the movement of
dislocations in the crystal lattice of the metal. These dislocations move to allow for
the expansion of the voids, resulting in local plastic deformation in the lattice [39][8].

When significant void growth occurs, the process is terminated by void linking, or
coalescence. In this step, multiple voids connect and form a link that further weakens
the material, resulting in reduced stress-carrying capability. The exact manner in
which void coalescence occurs is highly dependent on the failure mode, microstructural
factors, and loading conditions.

Eventually, void coalescence leads to the formation of microcracks, which in turn
evolve into macroscopic cracks when the stress is increased further. After the initiation
phase, the macroscopic crack propagates through the material. This process is marked
by the tearing of atomic bonds and the dissipation of stored elastic energy.

The final stage is critical failure. The crack propagates until reaching a critical
length where after the material fails and total separation occurs [39][8].

3

In figure 1, the stages as highlighted above are shown on a force-displacement
curve of a round notched bar, obtained in an experiment executed by [9]. It can be
seen when the different failure stages occur in the macroscopic degradation of a metal
under tension. It is visible that after the specimen has attained maximum strength and
necking is initiated, damage accumulates gradually in the form of void nucleation and
growth. The picture marked by (c) shows the coalescence of the largest voids, resulting
in a macroscopic crack that causes the first significant degradation of stress-carrying
capacity. In the remaining descending part of the curve, the damage increases through
crack propagation at the inside of the specimen and eventual failure, denoted by (f).

Figure 1: Force displacement curve showing the different stages of microscopic fracture
behaviour: void nucleation, growth, and coalescence [9].

1.1.2 Macroscopic fracture behaviour

Figure 2 shows different steady-state conditions that are observed in an advancing
mode I crack in metal plates. These stages characterise the macroscopic fracture be-
haviour of metals.

In the fracture process, failure occurs in the form of plastic dissipation during
steady-state conditions. The first of these conditions is local neck initiation, which
occurs well ahead of the crack tip (figure 2 a). The onset of necking is regarded as the
moment at which damage initiates.

Subsequently, the neck will develop further (figure 2 b) until a small-scale local-
ization of shear stress occurs in the neck, called a shear band (figure 2 c). This shear
band significantly weakens the material and finally leads to failure just ahead of the
crack tip (figure 2 d), and separation occurs [36].

Figure 3 depicts a force-displacement diagram that was obtained by [36]. From
this figure, the steps depicted in figure 2 can be distinguished. It also becomes clear
that necking begins at the maximum load. After necking is initiated, relatively high
deformation is localized within the neck.

As the neck further develops, the load is gradually decreasing until shear localiza-
tion occurs. After this point, the load falls abruptly with relatively small additional
elongation. The small deformation in this last step is mostly limited to occur within

4

the shear band. With progressing shear in the shear band, damage increases, and
eventually failure occurs [36].

Figure 2: Fracture process of a crack subjected to mode I loading: (a) onset of necking
ahead of the crack tip, (b) developed neck closer to the tip, (c) shear localization, and
(d) failure at the crack tip [36].

Figure 3: Normalized force-elongation curve for steady state fracture, obtained by [36].
Here, σy, A0, and L are the yield stress, initial cross-sectional area, and initial length,
respectively.

1.1.3 Stress state

As mentioned earlier, a dominant factor in the fracture of ductile metals is the growth
and coalescence of microvoids. Various studies have proven that the growth of these
voids is influenced heavily by the state of stress in a material.

5

A suitable parameter to define the state of stress in a material is found to be the
triaxiality parameter T. T is defined as the ratio of hydrostatic stress, σm, to the Von
Mises equivalent stress, σeq [20] and is expressed as:

T =
−σm
σeq

=
1
3 (σ1 + σ2 + σ3)√

(σ1−σ2)
2+(σ2−σ3)

2+(σ3−σ1)
2

2

, (1)

where σ1, σ2 and σ3 are the normal stresses in x-, y- and z direction, respectively.
From eq.(1), it can be concluded that low triaxiality values correspond to a lower

degree of hydrostatic tensile stress and, thus, a higher degree of deviatoric stress. Devi-
atoric stress comes with higher levels of shear stress, and because the movement of line
defects, such as dislocations in the microstructure of the metal, is mainly controlled
by shear stress, plastic flow and, thereby, ductility is expected to be higher for low
values of triaxiality [52]. On the other hand, a higher value of stress triaxiality, in
turn, corresponds to less ductility.

This behaviour is also depicted in figure 4, where a typical fracture locus for steel
is given, showing the failure strain against the stress triaxiality. Globally, a decreasing
failure strain is observed for increasing levels of triaxiality. In the figure, primary
stress states are indicated as well, such as uniaxial compression (T=-1/3), pure shear
(T=0), uniaxial tension (T=1/3), plane strain tension (T=1/

√
3) and biaxial tension

(T=2/3).

Figure 4: Typical failure locus showing failure strain for different stress states [27].

Various experiments on the effect of stress triaxiality on ductile tearing and failure
have been executed. The results of these studies are generally in line with the afore-
mentioned trend. It was found that higher values of stress triaxiality result in fracture
initiation at lower plastic strains [28][20]. Also, void growth rates are increased when
the material is experiencing a moderate to high level of stress triaxiality [29][43][25][10],
leading to accelerated coalescence and formation of shear bands [38].

6

The effects described above emphasize the significant influence of stress triaxiality
on the damage behaviour. Section 1.3 elaborates on the effect of stress triaxiality
further.

1.2 Numerical modelling of cracks

The previous chapter explained the basic process of ductile fracture. This chapter
provides information about current options for modelling this fracture behaviour and
their limitations. A distinction is made between commonly used methods and methods
that allow for the use of bigger elements, which is in line with this thesis’s overhanging
goal.

1.2.1 Motivation for numerical models

Structural components that need to be evaluated for crack-like defects or failure are
commonly assessed by methods that rely on classical fracture mechanics. This field
of mechanics provides theoretical principles and analytical tools to understand and
predict the behaviour of cracks in materials under stress. Assessment methods based
on classical fracture mechanics have been incorporated into international standards and
codes (such as BS7910 and ISO 12135) and are regarded as a powerful and reliable
engineering tool [16]. However, there are also limitations to these methods. The
most important limitation is the fact that fracture mechanics applications describe the
constraints of a cracked body or specimen based on a single parameter. This single-
parameter description can only be accurate under a limited number of conditions. For
example, test standards are mainly focused on plane strain conditions and disregard
other stress states. For these other stress states, the description of the stress and strain
conditions near a crack tip is incomplete, and accuracy is lost [16].

The problem that arises is known as the transferability problem. Because the
variation of stress states in test pieces is limited, the fracture properties obtained by
methods based on classical fracture mechanics are limited as well. Therefore, these
methods are not always suited for the examination of structures, where a broader
range of boundary conditions and constraints lead to a high variation of stress states
[16].

A possible solution is the use of numerical methods, such as FE models. The
evident advantage of an FE model is that it can calculate the states of stress or strain
in a body more accurately. If the model can use this state of stress in determining
the damage parameters, the transferability problem will be solved, and an accurate
description of deformation and fracture behaviour can be given as output [49].

1.2.2 Common FE approaches

This section describes the element deletion method and damage models, which are the
most commonly used approaches for modelling cracks in FE software.

1.2.2.1 Element deletion
Element deletion in Finite Element Method (FEM) is a numerical technique used
to simulate the propagation of cracks in materials. In this method, elements are
progressively removed as the crack propagates. Elements are typically deleted when
they reach a critical threshold of stress, strain, or damage, as determined by damage

7

models (described in section 1.2.2.2). These damage models assess the material’s
condition under applied loads, predicting when and where failure occurs.

The element deletion method provides a realistic representation of how cracks de-
velop and propagate through a material, and it is a popular approach to modelling
crack propagation in the industry. However, the technique comes with challenges, such
as sensitivity to mesh size and quality, which can affect the accuracy of the results.
Capturing post-necking effects and obtaining an accurate description of the crack path
requires a very fine mesh, as elements must have an in-plane dimension much smaller
than the plate thickness. Numerical stability can also be an issue, as the sudden
removal of elements may lead to convergence problems in the FEM analysis. Imple-
menting effective damage models and deletion criteria requires careful consideration of
material properties and loading conditions.

1.2.2.2 Damage models
The element deletion method selectively deactivates elements when they reach a crit-
ical threshold of stress, strain, or damage. This threshold is determined by damage
models. Damage models are mathematical and computational frameworks that predict
the initiation and evolution of damage in materials under various loading conditions.
These models simulate how materials degrade over time, ultimately leading to fail-
ure. In this section, the distinction is made between two types of damage models:
phenomenological models and damage mechanics models.

1.2.2.2.1 Phenomenological models

Phenomenological damage models are empirical in nature, meaning that they are pri-
marily based on observed phenomena and experimental data rather than detailed
knowledge of the underlying microstructural mechanisms. They are widely used be-
cause they effectively capture observed material response while simplifying the un-
derlying physical mechanisms. Examples of damage criteria are the Modified Mohr-
Coulomb (MMC) fracture criterion [6], the Hosford-Coulomb (HC) criterion [31], the
Johnson-Cook (JC) criterion [24] and the shear criterion [22][1].

From these models, the MMC, HC, and JC models depend, amongst other factors,
on the level of stress triaxiality. This means that the stress state is accounted for in
determining damage. In section 1.1.3, it was concluded that this is indeed important,
as the stress state significantly influences damage.

1.2.2.2.2 Damage mechanics models

In contrast to phenomenological models, damage mechanics models incorporate a phys-
ically based description of the damage process. In the context of ductile fracture, this
means the nucleation and growth of voids in the material, with the goal of predicting
the initiation and propagation of fracture.

An example of a damage mechanics model is the constitutive GTN model. After
the discovery that ductile fracture was influenced so heavily by the effect of voids,
the need arose for a model that could incorporate this effect in the formulation of
damage. It was developed in 1977 by Gurson [19] and later modified by Needleman
and Tvergaard in 1984 [33]. The model describes the softening effect resulting from
the growth and coalescence of voids [40] and depends on the triaxiality of the stress
state as well as the physical details of the voids, such as initial void volume fraction
and critical void volume.

A drawback of the GTNmodel is that a significant amount of parameters are needed

8

to describe the process of nucleation, growth and coalescence of voids. Therefore, it is
not a popular approach to use for practical applications [7].

1.2.3 FE approaches that support bigger elements

The preceding sections describe the element deletion method and how it can model
crack propagation in FEM by combining it with a damage model. It was mentioned
that an important aspect of this method is that very fine meshes are required to obtain
reasonably accurate results.

This requirement is needed for multiple reasons. First of all, the element size and
shape influence the crack path. Secondly, bigger elements tend to average out stress
peaks that occur at the crack tip, which leads to an inaccurate description of the stress
field near a crack. Lastly, small elements are needed to capture the effect of necking.
An explanation of this last phenomenon is given by referring to figure 3. In this figure,
the force-elongation curve of a plate under uniaxial tension is given. When modelling
cracks in FEM, the obtained output must match this behaviour and the elements are
required to capture important details of the fracture process. One of these details is
the necking behaviour before the onset of significant material damage, as explained in
section 1.1.2.

To capture the necking effect with element deletion, the elements must have an
in-plane element size much smaller than the plate thickness. Elements with in-plane
dimensions that are larger than the plate thickness can accurately describe the mate-
rial behaviour prior to the onset of necking but are unfortunately unable to solve the
deformation in the neck and shear band [36].

Mesh refinements, as needed by the element deletion method, are possible for very
small sections of structures or test specimens but are very difficult to use when analyz-
ing larger structures or dynamic problems. The scaling issue that arises is an important
problem that needs to be overcome in order to analyse bigger structures. FE methods
that can handle bigger element sizes while remaining accurate are a solution to this
problem. In the following section, two of these methods, the cohesive zone model and
the extended finite element method, are described.

1.2.3.1 Cohesive zone model
An often-applied approach to using larger elements is incorporating a Cohesive Zone
Model (CZM). A CZM is a phenomenological concept where interface elements with
no initial thicknesses are placed at crack locations in between the normal continuum
elements. These interface elements, or cohesive elements, can open up in the same
way as a crack, following a specific constitutive relation called a traction separation
law (TSL). The surrounding continuum elements remain undamaged and capture the
material behaviour outside the crack process zone [53].

In the CZM approach, the TSL must provide a phenomenological approximation
of the failure process. This failure process consists of the gradual loss of load-carrying
capacity beyond the onset of necking which, as was concluded earlier, could not be cap-
tured by the large elements in their standard form [36][50]. The softening behaviour is
now described by a stress-displacement (or traction-separation) relationship instead of
a stress-strain relationship. The idea of cohesive zone modelling is presented in figure
5. In this figure, the curve for the TSL and the continuum elements correspond to the

9

example of the metal sheet described in section 1.1.

The cohesive zone model is a user-friendly model that has the advantage of allowing
for the use of larger elements while still being able to capture the effects of necking
and shear localisation. Other advantages are the numerical robustness and the need
for only a few parameters [49][16].

Figure 6 shows the TSL used in this example. The normalised traction (force per
original area) is shown on the vertical axis, and the normalised separation is shown on
the horizontal axis. As mentioned, the figure shows the behaviour from the onset of
necking until failure. Because the TSL takes care of the behaviour that can normally
only be simulated with very fine meshes, it is now possible to use larger elements.
However, one can imagine that the correctness of the parameters that describe this
TSL is of great importance for the accuracy of the final result. Therefore, a significant
amount of research has been put into the determination of correct TSL shapes and
values. A small overview of this is given in section 1.2.4.

Figure 5: Application of the cohesive zone model. The crack opening displacement is
controlled by a TSL, representing the damage after the onset of necking. The behaviour
of the plate prior to necking is captured by the continuum elements surrounding the
crack. The original figure is taken from [4].

10

Figure 6: Traction-separation curve that describes the failure process of the metal
sheet described in section 1.1. The total fracture energy is divided in fracture energy
associated with necking, ΓI , and fracture energy associated with shear localisation and
fracture, ΓII [36].

1.2.3.1.1 Limitations of CZM

As explained in the previous sections, the CZM approach is a suitable method to
model cracking behaviour in large elements and structures. There are, however, also
limitations.

A dominant limitation of the CZM method is the fact that the location of the crack
path must be known in advance. If information about the crack path is not available,
cohesive elements can be placed on every location in the material where it is suspected
that a crack could occur [49]. The crack path is now defined as an array of ’activated’
cohesive elements, whilst failure is not yet reached in the adjacent cohesive elements.
Even though this method could serve as a workaround, it has multiple shortcomings.
First, the amount of computational effort increases with the number of elements used.
Therefore, applying multiple cohesive elements in a large region that may or may not
be needed is not effective in this regard. Secondly, the crack path is still not completely
arbitrary as the shape and size of the elements are of influence here. A final remark is
that particular element orientations can cause heavy zigzag patterns in the crack path,
which can cause numerical problems as well [49].

This shortcoming stands in the way of practically employing the cohesive zone
method on real-life structures. A method that overcomes this issue is the extended
finite element method.

1.2.3.2 Extended finite element method
The extended finite element method (XFEM) is an extension of the commonly used
finite element method and is used for the simulation of complex geometries, disconti-
nuities, and singularities. Just like the CZM, it can be used with a TSL which gives
similar advantages concerning the use of larger elements. However, as described above,
XFEM solves the problems caused by the unknown crack path that are encountered
in CZM. In this section, the concept of XFEM is explained.

11

1.2.3.2.1 Basic concept

The working principle of XFEM is that discontinuities in an element, such as cracks, are
allowed by ’enriching’ the degrees of freedom of the nodes with updated displacement
functions. These updated displacement functions represent the kinematics resulting
from the discontinuity [58][1] and are given as

u(x) = ureg(x) + udis(x) + using(x). (2)

Here, ureg applies to all the nodes in the model and describes the regular displace-
ment, udis describes the discontinuous displacement at the location of the discontinuity
and using describes the displacement as a result of the stress singularity at the crack
tip. The mathematical partition of unity concept [5] ensures a smooth transition be-
tween the enrichment functions, which are only locally applied, and the standard finite
element basis functions that are applied over the entire domain [42].

During the process of numerical integration, both the standard functions and the
enrichment functions are considered. This way, at the location of the crack, an extra
accurate description of the displacement field is given, while at other locations, the
normal basic functions are considered.

1.2.3.2.2 Phantom node method

The technique mentioned above leads to the advantage that the crack does not have
to be located along an element, as is visible in figure 7. With the enriched nodes,
the discontinuities within an element can be captured. An often-used addition that
increases the applicability of XFEM even further is the phantom node method, as
shown in figure 8. Phantom nodes are placed on top of real nodes and are fully con-
strained to this node when the element is intact. When a crack is initiated in the
element and separation occurs, the phantom nodes are ’untied’ of the real nodes and
can move apart. The element now behaves as being cut into two parts, where each
part is bounded by two real nodes and two phantom nodes. The separation between
the two parts is now controlled by the TSL, in the same way as was the case for the
CZM. When the maximum displacement is reached, and failure occurs, the two parts
of the element can move independently from each other [1].

Due to the features mentioned here, the XFEM method is an attractive engineering
approach that is very practical. It exhibits less mesh dependency, and cracks can be
modelled without the use of special cohesive elements. For these reasons, the remainder
of this thesis is focused on using TSLs within the context of XFEM.

12

(a) (b)

Figure 7: Visualisation of a crack modelled with XFEM. (a) The crack does not have
to be aligned with the mesh. The encircled nodes are enriched. (b) XFEM crack
resulting from a stress concentration near a hole [30].

Figure 8: Working principle of the phantom node method [1]

1.2.4 Traction separation laws

As already described, traction separation laws define the constitutive response of the
crack region after the onset of necking by relating the traction (T) to the separation
(δ). By defining the material degradation resulting from fracture damage that the
elements cannot capture, it is possible to cover a wide range of materials, geometries
and fracture mechanisms. However, it should be noted that a single TSL that can be
used for all applications does not exist. This section aims to explain the nature of a
TSL, the different variations of shapes and how the parameters of a TSL are usually
obtained.

1.2.4.1 TSL models
In figure 6, a TSL was shown that applies to the example of the metal sheet described
in chapter 1.1. The area under the TSL is the total work per unit area that is required
to cause total separation after the onset of necking [38]. This entity is also expressed
as cohesive energy Γ0. From figure 6, it can be observed that the total cohesive energy
consists of the energy dissipated in the necking process (ΓI) and the energy dissipated
after the onset of shear localisation (ΓII). It can be seen that ΓI is much greater than
ΓII . This behaviour is observed in other tough ductile alloys as well [38].

Other important parameters are the failure displacement δ0 and the cohesive stress
σy0. In a TSL, δ0 corresponds to the point at which the traction reaches zero and crack

13

opening occurs. The cohesive stress is the maximum stress reached in a TSL [49].

In order to implement a TSL into a numerical solver, the curve as shown in figure 6
must be simplified, and a choice has to be made of what function or shape can best be
used. Figure 9 gives an overview of several shapes that were proposed in the literature.
The main considerations here were the effects that a specific shape would have on the
resulting fracture behaviour. However, Tvergaard and Hutchinson [55] concluded that
this effect is not significant.

Figure 9c shows a TSL that describes the damage evolution typically associated
with concrete. The TSL is approximated by a relatively simple linearly decreasing
function that represents linear softening. This shape is representative of brittle fracture
damage. Ductile materials often have a TSL shape as described by the remaining
models in figure 9. The functions can be of higher order, showing a smooth response
(figure 9a, 9b and 9e) or be described by a bilinear or trilinear shape (figure 9d and
9f).

Figure 9: Different shapes of TSLs used in literature: (a) Needleman [34] (b) Needle-
man [32] (c) Hillerborg [21] (d) Woelke [38] (e) Scheider [45] (f) Tvergaard and Hutchin-
son [55]. In this figure, the cohesive stress σy0 is written as T0. Original figure taken
from [14].

It also becomes clear from figure 9 that some TSLs have a finite initial slope before
reaching the cohesive stress, and others do not. Having a finite initial slope means
that small stresses already cause separation in the material, while for the TSLs with
an ’infinite’ slope, the separation starts at the moment the cohesive strength is reached
(as is the case for the TSLs in figure 9c and 9d). Separation that occurs before reaching
the cohesive strength reduces the overall stiffness of the material and thus affects the
macroscopic response [53]. It is, therefore, advised to use a TSL with no initial slope or
a very high initial stiffness. In CZM, a high initial slope can cause convergence issues
[16]; however, in XFEM, no initial slope is needed, and this convergence problem is
omitted.

As mentioned earlier, the shape of the TSL can be regarded as of secondary im-

14

portance [55]. In a study performed by Scheider and Brocks [48], it was found that
different TSL shapes can produce similar output with different cohesive parameters.
While it is unclear if this is generally true, it does indicate the relative insignificance
of the TSL shape. It must be noted here that the cohesive parameters do still strongly
depend on the chosen TSL shape [47]. It is for this reason recommended to first assume
a TSL shape and then determine the cohesive parameters based on that shape. The
most important factor when considering a TSL shape is that it roughly matches the
softening behaviour that is expected. In the current example, this would mean that it
matches the global features seen in figure 6.

When a TSL shape is known, the cohesive energy Γ0, failure displacement δ0, and
cohesive stress σy0 can be determined. These parameters are also known as cohesive
parameters. From these three parameters, only two are independent and needed to
fully define the TSL. In applications found in literature, often the cohesive energy and
cohesive stress are used [49][44].

1.2.4.2 Determination of cohesive parameters
In order to determine the cohesive parameters, it is important to note that these pa-
rameters are dependent on material properties [38][36], but also on mesh size and stress
state [50]. This means that there exists no universally applicable set of parameters
for all applications, but these parameters need to be determined based on the specific
application at hand.

In this section, different approaches for determining the cohesive parameters are
highlighted. As stated earlier, in literature, the focus is mostly on determining the
cohesive strength σy0 and cohesive energy Γ0. The focus of this section is, therefore,
also on these parameters.

The cohesive parameters can generally be determined by either direct procedures
or numerical fitting procedures. A final remark is that ductile fracture can occur in
different failure modes, and the cohesive parameters will be different for each mode.
To limit the scope of this work, this study only focuses on mode I tearing.

1.2.4.2.1 Direct procedures

One way of determining the cohesive strength σy0 is with the help of a tensile test.
When a notched specimen is studied in a tensile test, the ultimate stress before failure
can be regarded as the cohesive strength [49].

A direct method of obtaining the cohesive energy is to set Γ0 equal to the J-integral
Ji at crack initiation, obtained in a fracture mechanics test [49]. The process of ob-
taining Ji is described in the international standard ISO IS 12135 [56]. No further
effort is made to describe this process here.

Although direct methods are a convenient way of determining the cohesive pa-
rameters a priori, it is questionable whether the results are accurate enough to match
experiments. For this reason, it is common practice to use one of the fitting approaches
described below. Direct procedures are useful, however, to determine suitable starting
values for fitting.

1.2.4.2.2 Fitting to experimental data

A second approach for obtaining the cohesive parameters is by fitting these parameters
to test results in a numerical optimization procedure (so a posteriori) [49]. The com-
bination of σy0 and Γ0 is chosen such that the error between the simulations and test

15

results is minimized. To obtain accurate results, the benchmark experiments should be
performed on a test piece with similar constraints and state of stress as are expected
to occur in the structure that is to be assessed [48].

Different algorithms can be employed for this optimisation, such as a trial and error
approach, optimisation by error minimisation, and neural networks. More information
about these processes is given in [49]. This approach of fitting to experimental data is
more common than the direct procedures of obtaining σy0 and Γ0.

1.2.4.2.3 Fitting to numerical data

Lastly, the cohesive parameters could also be obtained by using a numerical method in
which the fracture process itself is modelled [36]. As ductile metals fail by void growth
and coalescence, the TSLs can be derived by micromechanical analysis or by using the
GTN method mentioned in section 1.2.2.2 [50]. In this approach, the micromechanical
model is used to capture the effect of void nucleation, growth, and coalescence to
eventually obtain the macroscopic response of the specimen. This macroscopic response
can then be used as a benchmark case from which the cohesive parameters can be fitted
[53]. Several publications [55][46][3][2][54] describe different variations of this approach.

Much research has been done on this topic, and it seems to be a good approach
to determining the cohesive parameters a priori without the need for experiments.
However, making a micromechanical FE model is not a straightforward task because
the constraint conditions of the specimen are not known in advance [50], and, as stated
before, the cohesive parameters largely depend on these constraint conditions. For this
reason, the most frequently applied way to determine the parameters is by fitting them
to experimental results.

1.2.4.3 Applications and research on TSLs
The working principle of modelling failure with the use of a TSL can be applied to
a broad range of structural integrity problems [49]. The method is already widely
used for modelling crack extensions and crack paths, but also for modelling failure
in interfaces such as tearing of welded joints and delamination of coatings and fibre-
reinforced materials.

An advantage of the method is that damage-free material, i.e. material without
a pre-existing crack, can be modelled as well. Yet, one of the most frequently used
applications of TSLs is the simulation of crack propagation, where the instability of a
component and the relation between applied load and cracked deformation are inves-
tigated.

Various studies have been done to enhance the capabilities of TSLs even further,
allowing them to be more widely applicable or to be more physically accurate [53]. Ex-
amples are studies to the modelling of fatigue [35][11], dynamic fracture behaviour and
rate dependency [59][57], temperature-dependent fracture [13] and fracture dependent
on the stress state [38]. The last named subject will be described in more detail in the
following chapter and the remainder of this thesis.

16

1.3 Stress state

In the preceding chapter, using a TSL in combination with XFEM was found to be a
suitable method of modelling cracks. A common way of modelling fracture with this
method is to apply a single TSL that does not depend on the state of stress in the
material [49][50].

However, both numerical and experimental studies have shown that the state of
stress in the crack region varies significantly along the length of the crack [39][15][26][18]
[17]. In section 1.1.3, it was mentioned that the state of stress, or stress triaxiality,
has a significant influence on the damage behaviour [49], and for this reason, multiple
damage models already account for the triaxiality in determining damage (as described
in section 1.2.2.2).

A resulting conclusion is that the TSLs must also be made stress-state-dependent,
as a stress invariant TSL is expected to be insufficient to account for the material
behaviour over the entire crack length [50][10]. In this chapter, the stress variations
within a crack are investigated, as well as the influence that this stress state has on a
TSL.

1.3.1 Influence of stress state on TSLs

Section 1.1.3 described the influence of stress triaxiality on the type of failure and
failure strain. It was found that a more ductile type of failure, paired with higher
failure strains, is observed for lower values of triaxiality. The reason for this is the
effect that the triaxiality has on void growth and the movement of line defects in the
microstructure of steels.

Because of this, the TSL is expected to change as well for different stress triaxiali-
ties. Figure 10 depicts the results of calculations done by [50]. The figure shows TSL
shapes for various triaxiality values of a unit cell under uniaxial straining, obtained by
using the GTN constitutive model (as described in section 1.2.4.2.3) [33]. It is visible
that the GTN model predicts a clear trend, namely an increase in cohesive strength
and a decrease in cohesive energy with increasing stress triaxiality.

These trends are also presented in figure 11. It is noted that in order to make use
of stress-state-dependent TSLs, the exact relationships between the cohesive param-
eters and triaxiality must be known. However, this is complicated, as the cohesive
parameters are not only dependent on the stress triaxiality but also on mesh size and
material (as mentioned in section 1.2.4.2).

17

Figure 10: Traction-separation curves of a unit cell of DxD, obeying the Gurson model
for varying stress triaxiality ratios [50]. Here, σ2/σ0 is the normalized applied stress,
and u2/D is the normalized displacement.

(a) (b)

Figure 11: Relationships between the cohesive strength (here σmax) and triaxiality (a)
and cohesive energy (here Γ) and triaxiality (b) [50].

1.3.2 Stress state over crack length

In the previous section, it was concluded that the cohesive parameters are influenced
heavily by the state of stress, expressed by the stress triaxiality. The current sec-
tion highlights that the stress state that occurs in the specimen can vary significantly
along the length of a crack. Here, it is noted that, as the current study is mainly
about the stress variations over the crack length of thin metal plates, the variations
in thickness directions are disregarded, and the main focus is on plane stress conditions.

Figure 12 illustrates the behaviour of the stress triaxiality as a function of the nor-
malised distance from the crack tip, r, for a plane stress case [39]. It becomes clear
that the triaxiality varies significantly over the crack length as a result of the changing
boundary conditions. High values of triaxiality prevail at locations around the ini-
tial crack tip or the crack process zone. When moving away from the crack tip, the
triaxiality value converts to a far-field value, also known as the HRR (Hutchinson-Rice-

18

Rosengren) solution. This trend is verified by results of FE simulations [15][26][18][17].

A result of the high level of stress triaxiality at the crack tip is the occurrence of
less ductile failure combined with higher maximum traction in these regions, as was
concluded in section 1.1.3. When moving away from the initial crack tip location, a
more ductile material behaviour and higher energy are expected. This again comes
with a slightly lower maximum traction [7].

Figure 12: Variation of triaxiality over the distance from the crack tip r, normalised
by opening displacement δ for a plane stress case [39].

1.3.3 Stress-state-dependent TSLs

The preceding sections explain that the stress state significantly influences the cohesive
parameters and that the stress state itself varies substantially over the length of a
ductile crack, showing peak values at the location of the crack tip and crack process
zone. The conclusion can thus be drawn that cohesive parameters that are regarded
as constants will not be able to fully capture the behaviour of a propagating crack,
and a model that can incorporate stress-state-dependent TSLs is needed to increase
accuracy and potentially match experiments.

A study by Woelke [38] already took a step in this direction. In this research,
an advancing crack was modelled by employing multiple TSLs along the crack length
rather than a constant one. This proves that multiple TSLs are needed to capture the
changing conditions in a crack, and experimental results can be matched. However, the
cohesive parameters of these TSLs were determined by fitting them to an experiment
[51], and no effort was made to make the TSLs stress-state-dependent. Therefore, the
need for stress-state-dependent TSLs remains.

19

1.4 Summary

In this literature review, it was found that the stress state is of great importance in
fracture behaviour. In classical fracture mechanics, varying stress states are the main
reason for the so-called ’transferability problem’, which means that standard tests are
not always able to predict the fracture behaviour of large structures. This issue can
be avoided by using numerical (FE) models.

An appropriate numerical model is the Extended Finite Element Method (XFEM),
which, combined with a TSL, could serve as a practical method of simulating crack
propagation in ductile metals. Because the TSL, which describes the failure mecha-
nism, can be tuned based on different conditions, it is now possible to model a larger
range of structures and load cases than classical fracture mechanics can.

Combining XFEM with a TSL also allows for the use of larger elements because
a TSL describes the failure behaviour that larger elements cannot capture. Other
methods, such as the element deletion method, require a very fine mesh, which detracts
from applicability and prevents its use on larger structures.

A weakness of the XFEM method is that even though a TSL can account for
specific constraints and boundary conditions in a structure, these conditions are often
taken as constant over the length of a crack. Common practice is to employ a single
TSL to describe failure, and stress variations along the length of a crack are ignored.

In reality, the stress state varies significantly over the crack length, and a model is
needed to account for these variations. The stress state influences a TSL, and thus,
multiple stress-state-dependent TSLs need to be used over a crack path to produce
physically feasible results. For this, the relationship between the cohesive parameters
and stress triaxiality must be known.

Woelke [38] used multiple TSLs along a crack path and proved that it is indeed
possible to match experiments by accounting for the changing conditions in a crack.
However, the cohesive parameters were chosen based on a ‘trial and error’ based opti-
mization using test results, and are thus not based on the stress state.

20

1.5 Research overview

This section presents the formulated research gap, objective, and research questions
that follow from the literature review.

1.5.1 Research gap

Following from the literature review, the research gap is defined as follows:

The currently available XFEM approach, which uses TSLs to account for the failure
process, is not able to account for the change of stress state along the length of a
ductile crack in plate structures.

1.5.2 Objective

The research goal is to incorporate stress-state-dependent TSLs within an XFEM crack
propagation simulation, thereby obtaining more accurate and physically feasible re-
sults.

1.5.3 Research questions

The main research question that follows from the research gap and objective is formu-
lated as follows:

Can the accuracy of crack propagation simulations in a commercial FEA
solver be improved by employing stress-state-dependent TSLs?

To answer the main research question, the following sub-questions are formulated:

1. How can a TSL be implemented in fracture simulations in XFEM?

2. How can a subroutine be defined in Abaqus that generates a TSL based on stress
triaxiality?

3. Can relationships be defined between the cohesive parameters and triaxiality that
result in a match with experimental data?

1.5.4 Scope

This research focuses on mode-I cracks occurring in a uniaxially-loaded thin plate. A
plane stress shell model is used with a focus on in-plane stress variations. Variations of
the stress state in thickness direction are not regarded. The simulations will be done
in the commercial FE package Abaqus with the XFEM feature.

1.5.5 Methodology and support

This project is under the joint supervision of Femto Engineering and TU Delft. Both
Femto Engineering and TU Delft can provide advice on how to interact with the
Abaqus software. TU Delft can also advise on current research and theory on TSLs.
Furthermore, the company 4RealSim can provide support on the use of subroutines.

21

Chapter 2

TSL implementation

The first stage of this study is developing a tool that is able to implement stress-
state-dependent TSLs in Abaqus. The main stages of this process are first imple-
menting a single, stress-state invariant TSL in Abaqus and thereafter making the TSL
triaxiality-dependent with the use of a subroutine. The following chapters describe the
development process of this ’TSL tool’.

2.1 Implementation of a stress-state invariant TSL

This section describes the process of implementing a TSL within Abaqus without
aiming for stress state dependency. The literature review revealed that modelling in
XFEM is preferred over other methods, as this allows for the use of relatively large
elements. These guidelines were followed when creating the FE model. All of the
simulations were done in the implicit solver in Abaqus 2023 (see also section 5.3).

2.1.1 Model description

To explore the possibilities within Abaqus, a test model of a precracked plate that
will be loaded in tension is set up, as shown in figure 13. The model setup is chosen
arbitrarily, with the mere goal of tuning and exploring the possibilities within Abaqus.
In part 3, an actual experiment is modelled and a different FE model is used.

The dimensions of the plate are 800x600x5 mm, and the precrack is 150 mm in
length with a diameter of 5 mm. Elements of the type CPS4R are used, which are 4-
node bilinear plane stress quadrilateral elements of reduced integration and enhanced
hourglass control. This element type was chosen because it was discovered that the
XFEM functionality in Abaqus only supports the use of three-dimensional solid and
two-dimensional planar elements. This restriction is also mentioned in section 5.3.
The enhanced hourglass control is recommended as, in some cases, hourglassing was
observed in the model.

The mesh size used is 20 mm. At the location of the crack opening, the mesh
gradually transitions from 5 mm at the initial precrack to 20 mm, and this transition
is 20 mm long.

The model is clamped at the bottom. At the top surface, movement in the x-
direction is constrained, and a displacement is applied in the upward Y-direction.

23

The material used in this setup has a yield strength of 350 MPa. The Young’s
modulus is 210 GPa.

Figure 13: Model setup

2.1.2 Modelling damage

In order to accurately model the behaviour of a material when failing, multiple damage
initiation criteria and damage evolution models can be defined within Abaqus. When
a damage initiation criterion is met, damage begins to occur in the material. Subse-
quently, the damage evolution model determines how this damage evolves and when
total failure will occur. It is thus the combination of the damage initiation criterion
and the damage evolution model that fully determines failure.

2.1.2.1 Damage initiation
Section 1.2.2.2 already gave a short overview of different damage initiation criteria that
exist. The damage initiation criteria that can be used in combination with XFEM in
Abaqus are maximum principal stress or strain damage (Maxps Damage and Maxpe
Damage). These initiation criteria base the point of damage initiation only on either
the maximum principal stress or maximum principal strain. In the current setup, it is
chosen to employ the Maxps criterion, as this corresponds to the maximum traction,
or cohesive stress σy0 of a TSL.

2.1.2.1.1 Local vs. nonlocal calculation of stress/strain

To accurately assess the crack initiation criterion and determine the direction of crack
propagation in XFEM, it is crucial to effectively evaluate the stress and strain fields
ahead of the crack tip location. Abaqus/Standard provides multiple methods for cal-
culating these fields. The distinction is made between local and nonlocal methods.

Local methods assess the stress and strain fields within the individual element
directly ahead of the crack tip. An example of this is the centroid method, which is

24

the default option in Abaqus. In this method, the stress and strain fields are calculated
at the centroid of the element, as illustrated in figure 14. Both the crack initiation
criterion and the crack propagation direction are evaluated based on the centroidal
stress/strain [1].

Figure 14: Centroid and crack tip locations that are used by local methods [1].

When the mesh is sufficiently refined, the centroid method proves to be both ac-
curate and effective. However, if the mesh around the crack tip is relatively large
compared to the stress/strain field gradients, the centroid method might not be suf-
ficient. In these cases, the crack tip method can be employed. In this method, the
stress/strain extrapolated to the crack tip can be used to verify whether the damage
initiation criterion is met and to determine the direction of crack propagation.

A third local option would be to combine the crack tip and centroidal calculations.
In this combined option, the stress/strain values extrapolated to the crack tip deter-
mine whether the damage initiation criterion is met, and the stress/strain values at
the element centroid are used to calculate the crack propagation direction [1].

The three local methods for assessing the stress and strain fields mentioned earlier
focus on the fields within a single element ahead of the crack tip. In some cases, how-
ever, a nonlocal approach is preferred. In the nonlocal method, the crack initiation is
based on the extrapolated value of elemental stress/strain to the crack tip location,
while the crack propagation direction is determined by averaging the stress of a group
of elements around the crack tip. For coarse or unstructured meshes, employing non-
local averaging of the stress and strain fields ahead of the crack tip can yield a more
precise evaluation of these fields, thereby improving the accuracy of the calculated
crack propagation directions.

Additionally, by default, a moving least-squared approximation by polynomials is
employed to further increase the accuracy of the crack propagation direction. Instead
of fitting a single polynomial to the entire data set of stress and strain data around the
crack tip, the moving least-squares approximation fits polynomials to small subsets of
the data points. The local polynomials are then used to approximate the values of
stress and strain at any point in the vicinity of the crack tip. This creates a smooth,
continuous approximation of the stress and strain fields.

Figure 15 shows the working principle of the nonlocal approach. The range of
elements that are used for nonlocal averaging can be controlled by specifying the
radius rc. The elements within this radius are included in the averaging [1].

25

Figure 15: Nonlocal averaging region [1].

Because the nonlocal method is more suitable for larger elements, and a more
accurate prediction of the crack propagation direction is made, nonlocal averaging is
used within this study. rc is set to be the default value of three times the characteristic
element length.

2.1.2.2 Damage evolution
As stated earlier, the damage evolution model defines how a material degrades when
damage has been initiated. It is assumed here that damage is characterized by the
progressive degradation of the material stiffness, eventually leading to material fail-
ure. It is recognized that a damage evolution law serves the exact same purpose as a
traction separation law and can thus be used to implement a TSL within Abaqus. For
this, the working principle of a damage evolution law is explained first.

Figure 16a shows the true stress-strain response of a specimen where failure has
occurred. From this figure, the initially linear elastic and subsequent plastic material
behaviour can be observed in the regions a-b and b-c, respectively. Point c in this
figure corresponds to the point where damage is initiated. Beyond this point there
is a marked reduction of load-carrying capacity until final rupture occurs in point d.
Section c-d can be viewed as the degraded response of the curve c-d’, which is the
curve that represents the undamaged material behaviour [1].

(a) (b)

Figure 16: True stress-strain response at the location of failure [1].

In Abaqus, the degree of damage is expressed as the damage parameter D. At the
point of damage initiation, D is equal to zero, and when failure occurs, D is equal to 1.

26

This means that the damaged stress tensor σ can be obtained by the scalar damage
equation:

σ = (1−D)σ, (3)

where σ is the undamaged stress tensor. Figure 16b shows the stress-strain curve
with the damage parameter D.

2.1.3 TSL implementation

In order to incorporate a TSL in Abaqus, damage initiation and evolution are used.
As mentioned previously, the initiation stress corresponds to the cohesive strength of
a TSL, and the damage evolution is used to obtain the corresponding TSL shape.
Damage evolution within Abaqus is expressed in terms of the damage parameter D, so
in order to implement the TSL, the TSL curve that relates traction to displacement
must be converted to a damage curve that relates damage to displacement. This is
done by rewriting equation 3 as follows [23]:

D =

0 for 0 ≤ δ ≤ δ1

1− σy0

σ for δ1 ≤ δ ≤ δ2
1− σy0

σ
δ0−δ
δ0−δ2

for δ2 ≤ δ ≤ δ0
1 for δ ≥ δ0

(4)

Here, δ1 corresponds to the displacement at damage initiation. δ2 and δ0 correspond
to the displacement at which shear banding begins and the displacement at total failure,
respectively. This is also shown in figure 17a. σy0 represents the damage initiation
stress. In Abaqus, the damage curve is inserted via a table with values for D as a
function of δ − δ1. This means the material behaviour before damage initiation is
disregarded, as shown in figure 17b.

(a) (b)

Figure 17: Typical stress-displacement plot of an element that undergoes fracture (a)
and the separate TSL (b).

From equation 4, it becomes clear that in order to calculate D, the stress without
damage, σ, must be calculated. It was found that in Abaqus, this value is calculated
(for 2D elements) by

σ = Kδ, (5)

27

where K, from now on indicated as the TSL stiffness, is denoted as K =
σy0

δ1
. It

turns out that this TSL stiffness is, therefore, of significant importance for the correct
calculation of the damage curve.

The TSL stiffness is implemented in Abaqus by creating 2 contact surfaces at
the location of the crack, as shown in figure 20 and described in appendix A. When
separation occurs, these contact surfaces are moved away from each other in the normal
direction, and a contact stiffness now defines σ. This contact stiffness is defined within
the contact properties section in Abaqus and coupled to the crack surfaces. Figure
18 shows a close-up of a crack where the contact surface is visible, as the element
boundary and contact surface do not fully overlap.

Figure 18: Contact surface within XFEM crack.

2.1.4 Resulting TSL

When the TSL parameters (σy0, δ2 and δ0) are known, the damage curve can be de-
termined with the use of equation 4.

Figure 19b shows the TSL obtained in Abaqus as a result of employing the damage
curve from figure 19a. The TSL curve is obtained by plotting the contact pressure
(CRKPRESS), which is the pressure between two contact surfaces within a single ele-
ment, to the crack opening displacement (CRKOPEN) between these contact surfaces
(see figure 20 and appendix A).

The figure also shows the reference TSL. It is evident that the generated TSL
matches the reference TSL quite closely. A small deviation exists in the obtained TSL,
in the form of a stress drop after the moment of initiation. After this drop, the stress
builds up again towards the wanted value of 700 MPa. Effort was made within this
thesis to find the reason for this effect, but this was unfortunately unsuccessful.

28

(a) (b)

Figure 19: Damage curve (a) and resulting TSL (b).

Figure 20: When a crack propagates through an element, two contact surfaces are
defined, and the CRKPRESS and CRKOPEN output values follow the TSL.

In figure 21, the elemental behaviour after the implementation of the TSL is shown.
In this figure, a clear distinction can be made between the linear and plastic material
behaviour and the behaviour of the element after damage has been initiated. Damage
initiates at a maximum principle stress of 700 MPa, as indicated by a red dot. After
this, the TSL behaviour is followed.

29

Figure 21: Stress-displacement output of an element on the crack path.

30

2.2 Implementation of stress-state-dependent TSLs

In the previous section, a single, stress-state invariant TSL was implemented in Abaqus.
The current section describes the process of making the TSL triaxiality-dependent.
First, the variance in triaxiality over the length of the crack is described, after which
a subroutine is employed to generate a TSL for each degree of triaxiality.

2.2.1 Triaxiality

As described in section 1.3.2, the degree of triaxiality changes along the crack length,
with higher values at the location of the initial crack tip and lower values when moving
away from this location. In this section, the behaviour of the stress triaxiality in the
Abaqus model is reviewed.

In figure 21, a stress-displacement curve was given for an arbitrary element that
undergoes fracture. Figure 22 shows the same curve along with the values of triaxi-
ality for that specific element, as was requested as elemental output (TRIAX) within
Abaqus. From this figure, it becomes evident that the triaxiality curve has a clear
peak, which occurs at the moment of damage initiation. After reaching this point,
the stress gets redistributed, and the triaxiality decreases. It also becomes clear that
after reaching δ2 (in the figure corresponding to a displacement of around 12 mm), the
triaxiality drops at roughly the same rate as the stress.

Figure 22: Triaxiality values for a single element that undergoes fracture and the max.
principal stress curve for that element.

In figure 23, the triaxiality curves for 6 elements (see figure 24) along the crack
length are shown. In this figure, the triaxiality peaks can clearly be distinguished and
are also marked by a red dot. For these elements, the same behaviour as depicted in
figure 22 is observed, i.e. the triaxiality peak of an element occurs at the moment of
damage initiation of that element.

31

It is evident from the figure that the stress triaxiality (at the moment of damage
initiation) indeed varies along the length of the crack. A peak value of 0.62 occurs
at the first element, which is located close to the initial crack tip location. The last
element, which is furthest away from the initial crack tip, experiences a triaxiality
value of 0.36 at damage initiation. When looking back at figure 4 in section 1.1.3, it
becomes clear that the triaxiality value of 0.62 falls in between the plane strain tension
(T=1/

√
3) stress state and the biaxial tension (T=2/3) stress state. The triaxiality

value of 0.36 almost coincides with the uniaxial tension (T=1/3) stress state.
It thus becomes clear that the behaviour as described in section 1.3.2, that is,

a higher value of stress triaxiality at the initial crack tip location and a decreasing
value when moving away from this location, is indeed observed in the FE model. The
different stress states that are observed (plane strain/ biaxial tension and uniaxial
tension) are due to the boundary conditions within the crack that change as the crack
progresses through the plate.

It can also be seen in figure 23 that after damage initiation, the stress triaxiality
drops until reaching a constant value of -0.33, corresponding to uniaxial compression.
The reason for this is remaining compressive stress in the x direction (σ1) after final
separation has occurred.

Figure 23: Triaxiality over the crack length. Each curve shows the triaxiality values
of an element, see also figure 24. For each element, the moment of damage initiation
is indicated by a red dot.

Figure 24: Selected elements along the crack path used in figure23.

32

2.2.2 USDFLD Subroutine

In order to vary the TSL based on the amount of triaxiality within an element, a US-
DFLD subroutine is employed. This section briefly describes the subroutine’s working
principle. The code is provided in appendix B.

The USDFLD subroutine in Abaqus allows users to make certain quantities of
interest dependent on a field variable. In section 2.1, it was highlighted that a TSL
is obtained within Abaqus by defining the damage initiation stress (maxps) and the
damage evolution law. In the current model, the USDFLD subroutine is used to
vary the damage initiation criterion and the damage evolution law based on this field
variable. This is done in 2 steps, which are also shown in figure 25:

1. For every element, the triaxiality value for each iteration is retrieved. The value
of interest is the triaxiality value that each element experiences at the moment of
damage initiation. As described above, this corresponds to the peak value of the
triaxiality. Therefore, in the subroutine, the maximum value of the triaxiality is
saved for every element.

2. Based on the maximum value of triaxiality, each element is assigned a field vari-
able.

It is chosen to define 100 field variables. The triaxiality is now related to the field
variable by a factor of 100. For example, an element with a triaxiality value of 0.55
gets assigned a field variable of 55.

When every element has an assigned field variable, the damage initiation criterion
and damage evolution law can be made field variable dependent within Abaqus. This
is done by providing a table. In the case of the damage initiation criterion, this table
consists of the max. principle stress value for every field variable. In the case of the
damage evolution law, the table consists of a damage table for every field variable.
These tables are generated by an additional Matlab script and implemented directly
into the .inp file of the Abaqus model (see section 2.2.3).

Figure 25: Working principle of the USDFLD subroutine.

2.2.3 TSL-tool

As previously mentioned, the USDFLD subroutine is employed to assign a field vari-
able to every element. However, assigning the TSLs to these elements is done by
providing damage initiation and damage evolution tables for every field variable. This

33

is accomplished by an additional Matlab script, provided in appendix C. The working
principle of this Matlab script is shown in figure 26.

The Matlab script’s input is the relationship between the TSL parameters and
triaxiality. Based on this relationship, the code calculates the damage curves and
creates the corresponding input tables for damage initiation and damage evolution for
every field variable. These tables are formatted correctly and written to the Abaqus
model’s input (.inp) file so that they are incorporated into the model automatically.
This way, the user needs to exert minimum effort.

The combination of the USDFLD subroutine and the additional MATLAB script
forms a tool that enables the use of stress-state-dependent TSLs within Abaqus. In
the remainder of this thesis, this tool is referred to as the ”TSL-tool”.

The results of the TSL-tool are discussed in section 2.2.5.

Figure 26: Working principle of the TSL-tool, consisting of a Matlab script and the
USDFLD subroutine.

2.2.4 TSL stiffness

A final hurdle that needs to be overcome in order to generate stress-state-dependent
TSLs is changing the TSL stiffness K. In section 2.1.3 it became clear that the TSL
stiffness is of significant importance for the implementation of the TSL in Abaqus.
It defines the quantity of the stress without damage, σ, which is needed to calculate
the damage curve. The TSL stiffness was implemented within Abaqus as the contact
stiffness between two crack surfaces.

It is evident that when the initiation stress σy0, and thereby δ1 of the TSL changes,
the TSL stiffness must change accordingly. When this is not the case, and the TSL
stiffness remains constant, changing the σy0 value will yield incorrect TSL shapes.

Unfortunately, it is not possible within Abaqus to change the contact stiffness value
per element with the USDFLD subroutine, as was the case for the other parameters of
the damage curve. For this reason, the expression for the damage curve must be made

34

independent of the TSL stiffness. The goal here is to change the previously defined
formulation of the damage curve so that it consists of a fixed value for the TLS stiffness
(that can be defined as a constant contact property within Abaqus) and a variable TSL
stiffness (that is used to properly calculate the different damage curves).

This is done by first recalling the original damage equation:

σ = (1−D)Kδ. (6)

Next, we can distinguish between the old damage curve (D1), which needs a variable
TSL stiffness (Kvariable) in order to vary the TSL, as defined in section 2.1, and a new
damage curve (D2), that works with a fixed TSL stiffness (Kfixed):

σ1 =(1−D1)Kvariableδ

σ2 =(1−D2)Kfixedδ.
(7)

Both expressions of D must lead to the same stress, which means that we can write:

(1−D1)Kvariableδ = (1−D2)Kfixedδ, (8)

which leads to

D2 =
Kvariable

Kfixed
(D1 − 1) + 1. (9)

Here, Kfixed is defined as contact stiffness in Abaqus and remains fixed, D1 is
calculated by equation 4, and Kvariable is given by

Kvariable =
σy0
δ1

. (10)

The revised damage curve definition, D2, accounts for the changing σy0 value and,
subsequently, the changing TSL stiffness, while the contact stiffness Kfixed can remain
constant. The calculation of D2 is incorporated in the Matlab script of the TSL-tool.

2.2.5 Results

With the TSL-tool, a TSL is generated based on triaxiality and implemented directly
within Abaqus. The result is shown in figure 27. Here, the TSLs corresponding to the
same 6 elements as shown in figure 24 are depicted.

It is noted that the current model assumes an arbitrary relationship between the
cohesive parameters and triaxiality, as the exact relationships are not yet known. These
relationships assume an increasing initiation stress and decreasing cohesive energy for
increasing triaxiality, as is expected based on findings in the literature, highlighted in
chapter 1.3.

From figure 27, it becomes clear that the TSLs conform to this predefined (arbi-
trary) relationship. Element 1, located at the initial crack tip, experiences the highest
triaxiality (0.62) and is assigned a TSL with the highest initiation stress and lowest
failure displacement. TSL 2 until TSL 6 correspond to elements that are further and
further away from this initial crack tip location and thus experience decreasing triaxi-
ality. For these elements, the initiation stress decreases, and the failure displacement
increases, meaning a more ductile type of failure for the locations that are the furthest
away from the initial crack tip.

35

The results presented in figure 27 show that the TSL-tool functions according to
plan: it is able to assign a varying TSL over the crack length based on the state of
stress of an element. However, it does become clear that an initial stress drop occurs
at the moment of initiation, just as was observed in figure 19b. This stress drop occurs
at the first TSL and becomes less pronounced for the subsequent TSLs. Unfortunately,
the cause of this stress drop was not found, and further effort is needed to obtain a
perfect trapezoidal TSL shape.

Figure 27: Generated TSLs based on the triaxiality variance in the FE model.

2.2.6 Further steps

As mentioned earlier, the most important input of the TSL-tool is the relationship
between the cohesive parameters and triaxiality. This relationship determines the TSL
for different stress states and is vitally important for matching experimental data. In
the study described above, an arbitrary relationship is taken to test whether or not
the TSL-tool works and can generate a TSL based on the stress state.

The next chapter describes the process of finding correct relationships between
triaxiality and the cohesive parameters. When these relationships are known, the
TSL-tool can be used to match experiments and increase the accuracy of the FE
model.

36

Chapter 3

TSL optimization

This chapter discusses the input optimization study. Within this study, an optimiza-
tion algorithm is used to find the relationship between the cohesive parameters and
triaxiality, resulting in a match between the FE model and experimental data.

Within this chapter, the benchmark experiment and the optimization study are
described in chapter 3.1 and 3.2. The results of the optimization study are given in
chapter 4.

3.1 Benchmark experiment

3.1.1 Experimental setup

The benchmark case for the current study is an experiment executed by Simonsen and
Törnqvist in 2004 [51]. This experiment consists of a Central Crack Tension (CCT)
test with a large plate of normal strength (NS) steel. Figure 28 shows the details of
the experimental setup.

Figure 28: Experimental setup for the CCT benchmark tests [51].

37

In this experiment, the load, displacement and crack length elongation are mea-
sured. The dimensions of the test plate are 806x500x10 mm. The initial crack has a
length of 100 mm and there was a hole at the initial crack tip with a diameter of 5
mm.

The edges of the specimens were clamped by 25-mm-thick plates, which were fixed
to the specimens by bolts. These thick plates extend 50mm from the bolts into the
specimen area.

The material of the plate is NS steel with a yield stress of 273 MPa and a tensile
strength of 372 MPa. The stress-strain diagram is illustrated in figure 29. The failed
specimen is shown in figure 30.

Figure 29: Stress–strain curve of the NS steel plate [51].

Figure 30: Test specimen after failure [51].

38

3.1.2 FE model

Figure 31 shows the FE model used to simulate the CCT experiment. The elements
that are used are the same as described in section 2.1, which are CPS4R elements: 4-
node bilinear plane stress quadrilaterals with reduced integration and enhanced hour-
glass control. The mesh size is 20 mm, and at the location of the crack tip, the mesh
gradually transitions from 5 mm at the initial precrack to 20 mm. For now, this mesh
size is chosen arbitrarily. The influence of the mesh size on the final results will be
investigated further in section 4.3.

Because of symmetry, only half of the plate is modelled, and symmetry constraints
are applied over the symmetry edge. Furthermore, the top and bottom edges are
assumed to be fully clamped because of the thick bolted plates attached to them in
the experiment setup. These thick clamps extend 50 mm into the specimen area.
Because of simplicity, only the portion of the specimen plate that is free from these
clamps is modelled. This means that the height of the plate is now 706 mm instead of
806 mm.

Figure 31: FE model of the CCT experiment

A final remark must be made concerning the location of the load application in
the experiment. From figure 28 it becomes evident that there is a horizontal distance
of 240 mm between the load application and the location of the plate. Because the
vertical beam at the far left of the setup (see figure 32) prevents movement in the y
direction, the plate itself only experiences a fraction of the total applied force. This
fraction equals 660/900 = 0.733.

In the FE model, the load is applied directly to the plate. Therefore, the FE
results are corrected with the load correction factor of 0.733 when generating the
force-displacement diagram.

39

Figure 32: Due to a cantilever effect, the plate experiences only a fraction of the total
applied force.

3.2 Optimization study

This chapter explains the optimization process and highlights the optimization parame-
ters, objective function and optimization algorithm. As stated before, this optimization
study aims to find relationships between the cohesive parameters and triaxiality that
produce output that matches experimental data. This is done by fitting these rela-
tionships to the force-displacement and crack extension-displacement curves obtained
in the above-mentioned experiment.

3.2.1 Parameters

As mentioned earlier, the exact shape of a TSL is defined by the initiation stress σy0,
the displacement at which softening is initiated δ2 and the failure displacement δ0, as
depicted in figure 17b. To reduce the number of parameters, it is assumed here that
a fixed relationship exists between δ2 and δ0. For this relationship, a factor of 1.1 is
assumed:

δ0 = 1.1 · δ2. (11)

This assumption is based on the fact that a realistic value for δ0 will not be much
larger than δ2. This is because, once a shear band has formed, a rapid decrease in load
carrying capacity is expected [36], resulting in the ΓII value being significantly lower
than ΓI [38], as highlighted in section 1.1.2 and 1.2.4.1. On the other hand, when δ0 is
smaller than 1.1·δ2, convergence issues might appear due to the steep decrease in stress.

The remaining cohesive parameters, δ2 and σy0, will be used in the optimization.
Here, a linear trend is assumed between each cohesive parameter and stress triaxiality.
This linear trend curve is formed between two points, which can shift in upward or
downward direction. It shall be obvious that moving these points in vertical direction

40

changes the slope of the linear curve and, thus, the entire cohesive parameter-triaxiality
relationship.

For this reason, the y-coordinates of these points are suitable optimization param-
eters, resulting in σy01 , σy02 , δ21 and δ22 . In figure 33, the parameters are shown. The
allowed movement of the optimization parameters in the vertical direction is indicated
with arrows.

The x-coordinates of the 4 points remain fixed during the optimization. In figure
33, it can be seen that the curves run from a triaxiality value of 0.35 to 0.6. This range
is in accordance with the observed triaxiality range from the FE simulations of this
load case, which is shown in figure 39.

It is noted that the assumption of the linear relationship between the TSL pa-
rameters and triaxiality may not be completely accurate. This assumption is made
to further reduce the number of optimization parameters to a minimum of 4. It is
highlighted that, within this thesis, no effort is made to refine these relationships by
adding more points.

(a) (b)

Figure 33: For both cohesive parameters, two points define a linear relationship be-
tween the cohesive parameter and triaxiality. The y-coordinates of these 4 points are
the optimization parameters.

3.2.2 Constraints

A few constraints apply to the optimization parameters. First of all, σy0 must be
bounded to prevent it from taking on values that are not feasible. Therefore, σy0
is bounded by the yield stress of the material and the highest defined point at the
stress-strain diagram σh:

σy ≤ σy01 ≤ σh

σy ≤ σy02 ≤ σh.
(12)

Secondly, δ2 is bound by a minimum value of 0.1 to prevent δ2 to become zero.
When δ2 is zero, δ0 will also be zero. This will not be possible, and convergence issues
will occur during the simulation. It must be noted that the value of 0.1 is chosen
arbitrarily, and it can be argued that this needs to be smaller. However, because the

41

optimization solutions for δ2 (described in section 4.1) are all much higher than 0.1, it
is assumed that the bound of 0.1 is sufficient and reducing it will not affect the results.

0.1 ≤ δ21

0.1 ≤ δ22
(13)

The final constraint relates to the findings of the literature study. It was mentioned
in section 1.3 that the initiation stress is expected to be an increasing function of
triaxiality, and the cohesive energy (here expressed as the failure displacement) is
expected to be a decreasing function of triaxiality. Two constraints are formed that
ensure this behaviour:

σy01 ≤ σy02

δ22 ≤ δ21
(14)

3.2.3 Objective function

The goal of the optimization is to find the input that results in a match with the
experiment. The experimental data used for this are the force-displacement curve and
the crack propagation-displacement curve, shown in figure 34.

(a) (b)

Figure 34: Objective curves for the optimization: force-displacement diagram (a) and
crack propagation-displacement diagram (b).

An error can be defined when comparing the curves obtained from the experiment
with those obtained by the FE simulation. This error is expressed as the mean absolute
error (MAE). The MAE is expressed as the sum of absolute errors divided by the
number of points along the curve, multiplied by 100 to obtain a percentage:

MAE =
n∑

i=1

|Yi − yi|
n

· 100%. (15)

Where Yi is a y-coordinate of the experimental result and yi is a y-coordinate of
the FE result. n stands for the total number of data points along the curve.

The objective function is formed by minimizing the total error, i.e. the sum of
the force-displacement error (MAE1) and the crack propagation-displacement error
(MAE2). The objective function is expressed as:

42

min
σy01 ,σy02 ,δ21 ,δ22

MAE1 +MAE2 (16)

Subjected to:

σy ≤ σy01 ≤ σh

σy ≤ σy02 ≤ σh

0.1 ≤ δ21

0.1 ≤ δ22

σy01 ≤ σy02

δ22 ≤ δ21

(17)

3.2.4 Algorithm

For this optimization study, the Nelder Mead algorithm is used. The Nelder–Mead
method is a nonlinear, numerical optimization method for finding the minimum or
maximum of an objective function in a multidimensional space. It is also a direct search
method, meaning that it seeks to find the minimum or maximum by directly exploring
the solution space without the need for derivative information. This is particularly
useful for problems such as the current one, where obtaining the derivatives can be
complex.

Additionally, the Nelder Mead method is a local method. This means that the
algorithm aims to find an optimum within range of the initial starting point, which
can be a local optimum instead of a global one. Local methods are regarded as more
efficient and will converge to an optimum faster. However, it is noted that when infor-
mation about the global minimum and the shape of the function is unknown, there is a
strong dependence on the initial starting point, as different starting points can lead to
different local optima. For this reason, different starting points are investigated within
this study, and multiple optima are found [41].

3.2.4.1 Working principle
In the Nelder Mead method, a simplex is formed, which is a geometric figure consisting
of n+1 points in an n-dimensional space. In the current problem, the simplex consists
of 4+1=5 points. The working principle is to compare the values of the objective
function at all the points in the simplex and gradually move in the direction that
produces the best results.

The simplex can move through the solution space by reflection, expansion, con-
traction and shrinking. These actions are illustrated in figures 35 and 36, where an
example simplex is shown in 2D space [41].

43

Figure 35: An example of a simplex in 2D space. The simplex consists of 2+1=3 points
and can reflect, expand, contract and shrink.

Figure 36: An example of a simplex in 2D space, reaching an optimum solution by
reflection, expansion, contraction, and shrinking [37].

44

Chapter 4

Results

This chapter presents the results of the optimization study. Multiple optimized cohe-
sive parameter-triaxiality relationships are proposed, and the obtained force-displacement
and crack propagation curves are compared with those of the experiment. Finally,
the increased accuracy gained by employing stress-state dependent TSLs instead of a
stress-state invariant TSL is investigated.

4.1 Optimization results

Figure 37 shows the result of the optimization study. Multiple starting points were
used, which resulted in four optimal solutions:

Solution 1 = [403.3, 410.7, 16.5, 4.7]

Solution 2 = [439.2, 455.0, 10.4, 3.4]

Solution 3 = [435.8, 437.7, 11.7, 3.7]

Solution 4 = [425.3, 427.1, 14.3, 3.9].

(18)

Each of these four solutions resulted in a minimisation of the objective function.
The difference in error values that were generated with these four solutions is negligible
(< 0.6% total error difference). This means that instead of one single solution, there
are multiple combinations for both σy0 and δ2 that provide a good solution. The lowest
error is achieved with solution 4.

When looking at figure 37, it is evident that the solutions for δ2 are clearly de-
creasing, from a range of 10-15 mm to around 5 mm, which corresponds to a decrease
of roughly 50-66%. However, the σy0 solutions seem to behave in a more constant
manner. The σy0 curves of solutions 3 and 4 are almost completely constant, with a
difference of around 2 MPa. The curves for solutions 1 and 2 show a slight increase,
but the difference here is only 1.7% and 3.6%, respectively.

It also becomes clear that within a solution, a relatively low σy0 value is paired
with a relatively high δ2 value, and vice versa. This behaviour makes sense, as these
variations cancel each other out concerning their addition to the total cohesive energy.

45

Figure 37: Found optimum curves of initiation stress σy0 vs. triaxiality (a) and δ2 vs
triaxiality (b).

Figure 38 shows a close-up of the cracked specimen along with the TSLs along the
crack length. The TSLs are derived by the relationships of solution 4. The triaxiality
values of the elements along the crack path are 0.58, 0.53, 0.52, 0.53, 0.51, 0.5, 0.48,
0.47 and 0.46, respectively, see also figure 39. It is noted that TSLs 2-5 show overlap,
as the triaxiality values for these elements are within close range of each other.

(a) (b)

Figure 38: Close-up of the cracked specimen (a) and the TSLs corresponding to the 9
highlighted nodes along the crack length (b).

46

Figure 39: Triaxiality values along the crack path, measured at the moment of failure
for each element.

The force-displacement curve resulting from solution 4 is depicted in figure 40. It
is noticeable that a fairly good match is obtained between the experiment and the FE
results, with a mean absolute error of 3.07%. It is evident that this error is mostly
due to the zigzag pattern of the FE curve, resulting from the relatively large elements
that break one at a time. The location of the maximum value of the FE curve is also
influenced by this zigzag pattern. It is visible that a peak occurs at a displacement of
24.3 mm instead of 16.4 mm at the experimental curve. The maximum attained force of
the FE curve is 964 kN, compared to 950 kN for the experimental curve. Additionally,
at a final displacement of 50.0 mm, the experimental curve reaches a force value of 250
kN. This compares well with the obtained final force of the FE curve, which is 271 kN.
The maximum error is 23.71% and occurs at a displacement of 48.3 mm.

47

Figure 40: Force-displacement curve of experiment and FE simulation obtained by
stress-state dependent TSLs, following the trends of solution 4.

Figure 41 shows the crack propagation curves. Also here, a good match is attained
between the experiment and the FE model, with a mean absolute error of 1.75%. The
maximum error is 7.87% and occurs at a predicted crack propagation of 20 mm.

Figure 41: Crack propagation curve of experiment and FE simulation obtained by
stress-state dependent TSLs, following the trends of solution 4.

48

4.2 Comparison to a single TSL

The results presented above show that employing a varying, stress-state dependent
TSL over the crack length leads to a good match between FE and experiments. This
section investigates the accuracy gained by employing a stress-state-dependent TSL
rather than a fixed, stress-state invariant one.

Below are the results of an optimization study with only two optimization param-
eters: σy0 and δ2. These parameters form a single TSL and do not vary with respect
to the triaxiality. This means that only a single TSL is employed over the entire crack
length.

The found optimum is:

Optimum 5 = [417.1, 7.1] (19)

Figure 42 shows the force-displacement diagram of this solution. It is evident that
a fair match is obtained with the experimental data.

Nonetheless, some small deviations exist. The FE curve shows a slight over-
prediction of the force in the 15-35 mm region compared to the experimental curve
and a slight under-prediction from 35 mm onwards. This leads to a higher maximum
predicted force, which is 981 kN at 21.2 mm, compared to the 950 kN at 16.4 mm
of the experimental curve. Additionally, the force at the final displacement of 50 mm
is 162 kN, which is significantly lower than the 250 kN observed in the experiments.
Table 4 shows an overview of the maximum force and the force at a displacement of
50 mm for the experiment and the two FE cases. This leads to a maximum error of
32.21%, occurring at a displacement of 45.6 mm, and a mean absolute error of 5.12%.

Figure 42: Force displacement curve of experiment and FE simulation obtained by
employing a single TSL over the crack length.

49

Table 1: Comparison of the peak force and force at 50 mm for the three cases.

Peak force Displacement at force peak Force at 50 mm

Experiment 950 kN 16.4 mm 250 kN
Stress-state-dependent TSLs 962 kN 24.3 mm 271 kN

Fixed TSL 981 kN 21.2 mm 162 kN

The deviations of the force-displacement diagram shown in figure 42 indicate a
slight mismatch in the predicted crack propagation behaviour. This mismatch is de-
picted more clearly in figure 43, which shows a more significant discrepancy between
the FE and the experimental results. It can be deduced from this figure that the crack
is initiated later in the FE model than in the experiment. Also, the predicted crack
propagation reaches its maximum value at a lower displacement, indicating a higher
overall crack rate. The maximum error is 26.76% and occurs at the first data point of
the FE curve at a crack propagation of 5 mm. The mean absolute error between these
curves is 7.48%.

Figure 43: Crack propagation curve of experiment and FE simulation obtained by
employing a single TSL over the crack length.

Figures 42 and 43 showcase the clear need for multiple stress-state-dependent TSLs
along the crack length. During the first half of the total crack length, the force is over-
predicted in the FE model because the crack propagation is under-predicted. The
opposite is true for the second half of the crack length. It is easy to imagine that
employing a TSL with an increasing δ2 value will fix this issue, as becomes visible
when looking at figures 40 and 41.

The gained accuracy of using a stress-state dependent TSL compared to a fixed
TSL is shown in table 2. The maximum error difference of 18.90% stands out from
this table, indicating that the crack propagation curve is highly improved when stress-
state-dependent TSLs are employed.

50

Table 2: Comparison of the mean absolute errors of stress-state dependent TSLs
vs a fixed, stress-state invariant TSL. MAE1 and max. error 1 refer to the force-
displacement curve, and MAE2 and max. error 2 refer to the crack propagation curve.

MAE1 Max. Error 1 MAE2 Max. Error 2

Stress-state dependent TSLs 3.07% 23.71% 1.75% 7.87%
Fixed TSL 5.12% 32.21% 7.48% 26.76%

Gained accuracy 2.05% 8.5% 5.73% 18.90%

4.3 Mesh sensitivity

In the previous section, it was highlighted that employing multiple, stress-state-dependent
TSLs indeed increases the accuracy of the FE crack propagation simulation. This is an
important finding, and the stress state can now be incorporated into the TSL definition.

However, in section 1.2.4.2, it was mentioned that besides the stress state, a TSL
is also dependent on the material and mesh size of the FE model. This section shortly
addresses the mesh size dependency that was observed in the current FE model.

Within the current FE model, a significant mesh dependency was found. This is
illustrated in figure 44, which shows the force-displacement diagram for different mesh
sizes obtained by solution 4. It is noticeable that a smaller mesh size results in an
underprediction of the force, whereas a bigger mesh size results in an overprediction.

Figure 44: Force-displacement diagram of solution 4 for different mesh sizes.

This phenomenon is expected. It is widely known that smaller elements show
higher stresses at the location of a stress concentration than large elements, which
is caused by stress averaging within the element. In our model, the stress that is
influenced the most by the element size is the stress concentration that occurs at the
crack tip. Therefore, a model with a smaller mesh will reach the crack initiation stress
earlier, meaning at a smaller displacement, than a model with larger elements. Table

51

3 illustrates this phenomenon. The table shows the stress concentration values that
occur in different models at a fixed applied displacement of 3.5 mm. A stress difference
of around 20 MPa can be observed between the 10 mm model and the 40 mm model.
This effect is believed to be the main contributor to the large mesh dependency of the
FE results.

Table 3: Max. principal stress value at an applied displacement of 3.5 mm for different
models.

Hot spot stress at 3.5 mm applied displacement

10 mm mesh 472.0 MPa
20 mm mesh 464.5 MPa
40 mm mesh 453.4 MPa

Another interesting factor is the extent to which the stress triaxiality values are
influenced by the mesh size. If the stress triaxiality shows a high mesh size dependency,
this would also significantly affect the results. Yet, this seems not to be the case, as
shown in figure 45. This figure plots the triaxiality values against the crack extension
for the different mesh sizes. It becomes clear that, apart from some small deviations,
no consequential triaxiality differences exist between the different mesh sizes.

Figure 45: Variation of triaxiality over the crack length. Here, each triaxiality value is
taken at the moment of damage initiation.

It is recognized that overcoming the dependency on the mesh size is an important
step to take in order to obtain a more robust definition of the TSLs. Nonetheless, this
thesis emphasises the stress state dependency of the TSLs, and no effort is made to
overcome the mesh sensitivity. A discussion about this topic can be found in chapter
5.1.

52

4.4 Unconstrained optimization

As described in section 3.2.2, two particular constraints are implemented in the opti-
mization:

σy01 ≤ σy02

δ22 ≤ δ21

These constraints enforce the TSL behaviour that was expected from the literature
review, namely the increase of the initiation stress σy0 and the decrease of δ2 with
increasing triaxiality. Nevertheless, the optimum solution illustrated in figure 37 shows
near-constant initiation stress functions, which can indicate that the optimum tends to
go towards a decreasing function for initiation stress instead of the expected increase.

For this reason, optimization runs are performed without these two constraints.
This means that the cohesive parameters can increase or decrease without restrictions.
The remaining constraints listed in section 3.2.2 are still enforced.

These ’unconstrained’ optimization runs result in the following solutions:

Solution 6 = [452.9, 345.9, 15.7, 6.8]

Solution 7 = [450.3, 416.9, 12.5, 4.3]

Solution 8 = [445.1, 358.1, 16.7, 5.7]

Solution 9 = [445.6, 429.6, 11.4, 4.0].

(20)

The errors between of these solutions are again fairly close together (< 1% total
error difference). The lowest error is achieved with solution 6. This error is shown in
table 4. It is noticeable that both MAE1 and MAE2 are lower for the unconstrained
optimization solution.

Figure 46 demonstrates that the four solutions can be grouped into two trend lines
showing similar behaviour: solutions 6 and 8 and solutions 7 and 9. It can be observed
that solutions 7 and 9 are roughly the same as solutions 1-4, which were obtained by
constrained optimization. The main difference here is the slight decrease of σyo instead
of the slight increase/constant trend found in solutions 1-4.

A more extensive contrast is found between solutions 1-4 and solutions 6 and 8
(which show the lowest error). Solutions 6 and 8 show a clear decrease in σyo, which
does not align with the initial assumptions that were made after the literature review.
This phenomenon is discussed further in section 5.1.

53

(a) (b)

Figure 46: Obtained optimum curves of initiation stress σy0 vs. triaxiality (a) and δ2
vs triaxiality (b) with unconstrained optimization.

Table 4: Comparison of the mean absolute errors of constrained vs. unconstrained
optimization.

MAE1 MAE2

Constrained optimization 3.07% 1.75%
Unconstrained optimization 2.67% 1.45%

54

Chapter 5

Discussion and future outlook

In this chapter, the work presented in this thesis is evaluated. Section 5.1 and 5.2
highlight the most important conclusions and points of interest from the results, and
sections 5.3 and 5.4 critically review the limitations of the proposed research and
present a future outlook.

5.1 Discussion

This study aimed to investigate whether FE simulations on crack initiation and crack
propagation could be improved by employing multiple stress-state-dependent TSLs
along the crack length. It is shown within this thesis that this is indeed possible. TSLs
that were based on stress triaxiality had a closer match with experiments than if a
triaxiality invariant TSL was used. However, this observation is subject to a few con-
ditions. A number of important findings are discussed more thoroughly in this section.

One of these conditions regards the parameters that affect the TSL. From the liter-
ature, it was found that an important parameter of influence is the stress state, as this
is well known to affect the onset of necking and ultimate fracture, which is inferred
to affect the TSL. If we strive towards a TSL definition that is universally applica-
ble, meaning that a TSL can be generated for a (near) infinite variety of conditions,
addressing the stress state dependency is an important step. This stress state depen-
dency is tackled within this thesis, and relationships between the cohesive parameters
and the stress triaxiality are obtained. However, it was proven in chapter 4.3 that
not only the stress state but also the mesh size influences a TSL. Additionally, it is
expected that the material model is also an important consideration, as the material
obviously influences the fracture behaviour and, thus, the TSLs. It is thus recognized
that, in order to be able to determine the TSLs in a truly universal manner, further
investigations are needed that focus on incorporating the dependencies on mesh size
and material as well.

Continuing this line of thought, it would be valuable to investigate whether the
dependence on mesh size is related to the specimen’s geometry (such as thickness or
width) or to the absolute value of the mesh size. If the latter holds true, it would be
feasible to scale the TSLs, allowing large-scale problems to be addressed using data

55

from small-scale tests. It can be argued that a priori prediction of TSLs will become
of less importance if laboratory tests could provide all necessary information for em-
pirical calibration on a larger scale. Therefore, further research into the influence of
geometry and the scalability of TSLs is needed.

Another interesting finding is highlighted in chapter 4.4. Here, it became clear that
a σy0 value that decreases with increasing stress triaxiality leads to an optimum solution
of the unconstrained optimization. This is interesting, as an increasing function of
σy0 was initially expected. However, upon further research and within the reviewed
literature, it was discovered that no strict rule seems to apply to the behaviour of σy0.

On one side, a study by Siegmund [50] suggests an increasing σy0 value for increas-
ing triaxiality, as the TSLs for higher triaxiality ranges show a higher stress peak. On
the other side, a study by Walters [12] shows failure loci that do not illustrate a clear
increasing or decreasing trend for σy0 (it is noted that σy0 physically corresponds to
the necking stress, and multiple necking stress curves are provided in this reference)
but rather a minimum in the triaxiality range of 0.33-0.6.

This means two things. First of all, a decreasing σy0 value could be physically pos-
sible, but it is encouraged to study its behaviour more closely in literature. Secondly,
if σy0 shows a minimum within the occurring triaxiality range, a linear σy0-triaxiality
relationship will not accurately capture this effect, and an extra point needs to be
added (see section 5.4).

5.2 Conclusions

This thesis proves that the accuracy of crack propagation simulations can be improved
by employing stress-state-dependent TSLs.

First, it is shown that a TSL can accurately be implemented within an XFEM
context to represent crack initiation and propagation in Abaqus. Contact surfaces can
be defined at the locations of the crack faces. The contact behaviour between these
surfaces is expressed through a damage evolution law, which, combined with a specified
damage initiation criterion, can be used to generate the desired TSL.

Secondly, it is demonstrated that a subroutine can be employed to make the TSL
stress-state dependent. The written subroutine can find each element’s triaxiality value
and assign a specific TSL to each element based on this entity. Important input is the
relationship between the cohesive parameters and the stress triaxiality.

These relationships are estimated by minimizing the differences between simula-
tions and large-scale CCT experiments. With the fitted relationships as input, employ-
ing stress-state-dependent TSLs in a coarse-meshed model leads to a good match with
experimental data. The force-displacement and crack propagation curves of an FE
model with a 20 mm mesh show a minimal error compared to the experimentally ob-
tained curves. This confirms the great potential of using stress-state-dependent TSLs
in fracture simulations instead of the commonly used simulation strategies that require
very fine meshes.

It is also proven that employing stress-state-dependent TSLs over the crack length
results in a more accurate description of the crack behaviour than using a stress-state
invariant TSL. When a stress-state invariant TSL is used, an inaccurate estimation of
the crack rate and moment of crack initiation is made, resulting in an 8.50% higher
maximum error of the force-displacement curve and an 18.90% higher error of the crack
propagation curve. This finding emphasizes the need for stress-state-dependent TSLs.

56

Finally, it is noted that not only triaxiality but also mesh size and material influence
the TSLs. For this reason, when aiming for a universally applicable TSL definition,
these factors must also be taken into account, and it does not suffice only to consider
the stress state.

5.3 Limitations

An important restriction that applies to the work presented above concerns the XFEM
functionality within Abaqus. It was discovered that XFEM works only for three-
dimensional solid and two-dimensional planar models, such as plane strain and plane
stress. These types of elements suffice when modelling simpler cases where stresses
perpendicular to the plate are negligible, such as the presented uniaxial tension load
case. However, three-dimensional shell elements are more suitable for more complex
geometries and loading conditions, as these elements can handle curvature and out-of-
plane effects such as bending and twisting. Additionally, these elements can provide
a more accurate description of the through-thickness stress distribution, which is es-
sential for failure analysis. For this reason, the presented work is not yet suitable for
applications in the industry, and a way must be found to expand the XFEM feature
to three-dimensional shell elements.

It is also noted that XFEM, in its current implementation in Abaqus, only works
with an implicit solver, which further limits the practicality of the proposed research.
Fracture simulations are often executed within a dynamic context, such as crash or
explosion simulations. These types of simulations are characterized by large strains,
strain rates and deformations occurring in short time periods. An explicit solver is
needed to capture these effects accurately. The restriction of using XFEM only in
combination with an implicit solver means that only static or quasi-static fracture
behaviour can be modelled.

Another limitation regards the boundary conditions for which this research is valid.
Within this thesis, only pure Mode I fracture is considered. This means that only cracks
that occur due to tensile stress normal to the crack plane can be simulated.

Further limitations follow from the assumptions made in this thesis. The first is the
assumption that plane stress elements can accurately represent the stress state within
the plate. Plane stress elements simplify the three-dimensional stress state to a two-
dimensional problem by assuming the out-of-plane stress to be zero. This assumption
holds for ’thin’ plates where the thickness is much smaller than the other dimensions.
In this thesis, an experiment was modelled in which this condition holds, and it is
expected that the plane stress assumption doesn’t influence the results significantly.
However, for plates with higher relative thickness values, the plane stress assumption
becomes less valid, and the use of plane strain elements must be considered.

Another assumption is made in section 3.2. Here, it was assumed that a fixed
relationship exists between δ0 and δ2 of 1.1. This assumption was based on the expec-
tation that once a shear band has formed, a rapid decrease in load-carrying capacity is
expected, and no significant variations exist in this decrease. However, this assumption
does pose a limitation on the shape of the TSLs, as the δ0 is now unable to vary freely.

Finally, the TSL-triaxiality relationships were assumed to be linear. This simpli-
fication results in fewer optimization parameters and a more manageable number of
solutions. The effect of allowing for more points along the curve, and thereby opti-
mizing for different shapes, is assumed to be small considering the good match with
the experiments already found in this thesis. However, it would be interesting to see

57

which TSL-triaxiality shape is found to be optimal and what the effect on the results
will be.

5.4 Recommendations

Multiple recommendations can be made regarding further research on this topic. The
first is to focus on expanding the XFEM feature so that it is compatible with explicit
shell elements. This will significantly increase the practicality of the proposed research,
as was also mentioned in section 5.3. Options for this were briefly explored, and it is
expected that a user-written element subroutine (VUEL) can be used to achieve this.
Details on this subroutine and further implementation remain to be determined.

Secondly, to find a universally applicable TSL definition, the mesh size and material
dependency of the TSLs must be addressed, as was mentioned in chapter 5.1. An
approach for this could be to repeat the optimization process described in this thesis
but for multiple mesh sizes and materials and look for trends of how the results are
influenced. Only when stress state, material and mesh size are considered can the TSLs
be employed in a wider variety of conditions. Also, to improve the universality of the
method, a study on the scalability of the TSLs and the influence on the specimen’s
geometry would be fruitful, as also discussed in section 5.1.

Furthermore, the mesh used in the current study consists of perfectly square el-
ements. It is recognized that a perfect mesh is not always attainable, and elements
will not always be perfectly square. If the findings of this thesis are implemented in a
practical context, it would be interesting to investigate the influence of an imperfect
mesh on the results.

Additionally, it is highlighted that the TSL shape that is obtained in Abaqus
does not completely match the trapezoidal TSL that is aimed for. In figures 19b, 27,
and 46b, it was shown that a stress drop occurs just after the moment of initiation.
After this drop, the stress rises and reaches the wanted plateau value. Effort is made
within this thesis to solve this issue, but it remains unclear what is happening exactly.
Subsequent investigations might look into the cause of the stress drop and try to obtain
a perfect trapezoidal TSL.

Another recommendation is to validate the presented results. This thesis covers
a single experiment because time and experimental data were limited. However, re-
peating the proposed optimization study for multiple different test cases will lead to
a more thorough understanding of the cohesive parameter-triaxiality relationships. It
would also be interesting to see whether a different load case (a CT test rather than
a CCT test, for example) will lead to similar cohesive parameter-triaxiality curves or
whether the TSLs are transferable from one load case to the other. It is noted here
that because of the mesh and material dependency mentioned above, the validation
test cases will need to have the same material and mesh size as the experiment that
was modelled in this study.

Another observation that was made within this thesis is that a decreasing σy0-
triaxiality curve produces an optimal match with experiments. This behaviour was
not expected initially, but this could well be physically feasible. Further research
can focus on the behaviour of σy0 for changing values of triaxiality to gain a more
broad understanding of this topic. Also, adding an extra point to the σy0-triaxiality
relationship might be needed, as discussed in section 5.1.

Finally, future work can focus on expanding the current research for mixed-mode

58

fracture behaviour, which will enable the analyses of a larger variety of loading condi-
tions.

59

Bibliography

[1] Abaqus User Manual. Dassault Systemes. 2023.

[2] R. G. Andersen, C. Tekoğlu, and K. L. Nielsen. “Cohesive traction–separation
relations for tearing of ductile plates with randomly distributed void nucleation
sites”. In: International Journal of Fracture 224 (2020).

[3] R.G. Andersen, C.L. Felter, and K.L. Nielsen. “Micro-mechanics based cohesive
zone modeling of full scale ductile plate tearing: From initiation to steady-state”.
In: International Journal of Solids and Structures 160 (2019).

[4] M. Anvari, I. Scheider, and C. Thaulow. “Simulation of dynamic ductile crack
growth using strain-rate and triaxiality-dependent cohesive elements”. In: Engi-
neering Fracture Mechanics 73 (2006), pp. 2210–2228.

[5] I Babuska and J.M. Melenk. “The partition of unity method”. In: Int. J. Nu-
mer.Methods Eng 40 (1997).

[6] Y. Bai and T. Wierzbicki. “Application of Extended Mohr-Coulomb Criterion to
Ductile Fracture”. In: International Journal of Fracture 161 (2010), pp. 1–20.

[7] Anuradha Banerjee and R. Manivasagam. “Triaxiality dependent cohesive zone
model”. In: Engineering Fracture Mechanics 76 (2009).

[8] A. Amine Benzerga and Jean-Baptiste Leblond. “Ductile Fracture by Void Growth
to Coalescence”. In: Advances in Applied Mechanics. Ed. by Hassan Aref and
Erik van der Giessen. Vol. 44. Elsevier, 2010, pp. 169–305. isbn: 0065-2156. doi:
https://doi.org/10.1016/S0065-2156(10)44003-X. url: https://
www.sciencedirect.com/science/article/pii/S006521561044003X.

[9] Ahmed Amine Benzerga. “Rupture ductile des tôles anisotropes”. PhD Thesis.
Ecole Des Mines de Paris, 2000. doi: 10.13140/RG.2.2.15133.74723.

[10] W. Brocks, D.-Z. Sun, and A. Hönig. “Verification of the transferability of mi-
cromechanical parameters by cell model calculations with visco-plastic materi-
als”. In: International Journal of Plasticity 11 (1995), pp. 971–989.

[11] Susana del Busto, Covadonga Betegón, and Emilio Mart́ınez-Pañeda. “A cohesive
zone framework for environmentally assisted fatigue”. In: Engineering Fracture
Mechanics 185 (2017), pp. 210–226. issn: 0013-7944. doi: https://doi.
org/10.1016/j.engfracmech.2017.05.021. url: https://www.
sciencedirect.com/science/article/pii/S001379441730098X.

[12] C.L.Walters. “Framework for adjusting for both stress triaxiality and mesh size
effect for failure of metals in shell structures”. In: International Journal of Crash-
worthiness 19 (2014), pp. 1–12.

61

https://doi.org/https://doi.org/10.1016/S0065-2156(10)44003-X
https://www.sciencedirect.com/science/article/pii/S006521561044003X
https://www.sciencedirect.com/science/article/pii/S006521561044003X
https://doi.org/10.13140/RG.2.2.15133.74723
https://doi.org/https://doi.org/10.1016/j.engfracmech.2017.05.021
https://doi.org/https://doi.org/10.1016/j.engfracmech.2017.05.021
https://www.sciencedirect.com/science/article/pii/S001379441730098X
https://www.sciencedirect.com/science/article/pii/S001379441730098X

[13] Sourayon Chanda and C. Q. Ru. “Cohesive zone model for temperature depen-
dent fracture analysis of pipeline steel”. In: 25th Canadian Congress of Applied
Mechanics. London, Ontario, Canada, June 2015.

[14] C. R. Chen et al. “Three-dimensional modeling of ductile crack growth: Cohe-
sive zone parameters and crack tip triaxiality”. In: Engineering Fracture Me-
chanics 72.13 (2005), pp. 2072–2094. issn: 0013-7944. doi: https://doi.
org/10.1016/j.engfracmech.2005.01.008. url: https://www.
sciencedirect.com/science/article/pii/S0013794405000627.

[15] C.R. Chen et al. “Three-dimensional modeling of ductile crack growth: Cohesive
zone parameters and crack tip triaxiality”. In: Engineering Fracture Mechanics
72 (2005), pp. 2072–2094.

[16] Alfred Cornec, Ingo Scheider, and Karl-Heinz Schwalbe. “On the practical ap-
plication of the cohesive model”. In: Engineering Fracture Mechanics 70 (2003),
pp. 1963–1987.

[17] Marcin Graba. “Characteristics of selected measures of stress triaxiality near the
crack tip for 145Cr6 steel - 3D issues for stationary cracks”. In: Open Engineering
10.1 (2020), pp. 571–585. doi: doi:10.1515/eng-2020-0042. url: https:
//doi.org/10.1515/eng-2020-0042.

[18] Marcin Graba. “On The Parameters of Geometric Constraints for Cracked Plates
under Tension – Three-Dimensional Problems”. In: International Journal of Ap-
plied Mechanics and Engineering 22 (2017). doi: 10.1515/ijame-2017-
0058.

[19] A. L. Gurson. “Continuum Theory of Ductile Rupture by Void Nucleation and
Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media”. In:
Journal of Engineering Materials and Technology 99.1 (1977), pp. 2–15. issn:
0094-4289. doi: 10.1115/1.3443401. url: https://doi.org/10.1115/
1.3443401.

[20] J. W. Hancock and A. C. Mackenzie. “On the mechanisms of ductile failure in
high-strength steels subjected to multi-axial stress-states”. In: Journal of the
Mechanics and Physics of Solids 24.2 (1976), pp. 147–160. issn: 0022-5096. doi:
https://doi.org/10.1016/0022-5096(76)90024-7. url: https://
www.sciencedirect.com/science/article/pii/0022509676900247.

[21] A. Hillerborg, M. Modéer, and P. E. Petersson. “Analysis of crack formation
and crack growth in concrete by means of fracture mechanics and finite ele-
ments”. In: Cement and Concrete Research 6.6 (1976), pp. 773–781. issn: 0008-
8846. doi: https://doi.org/10.1016/0008- 8846(76)90007- 7.
url: https://www.sciencedirect.com/science/article/pii/
0008884676900077.

[22] H. Hooputra et al. “A Comprehensive Failure Model for Crashworthiness Simu-
lation of Aluminium Extrusions”. In: International Journal of Crashworthiness
9 (2004), pp. 449–464.

[23] M. S. Islam and K. S. Alfredsson. “Peeling of metal foil from a compliant sub-
strate”. In: The Journal of Adhesion (2019), pp. 1–32.

[24] G. R. Johnson and W. H. Cook. “Fracture Characteristics of Three Metals Sub-
jected to Various Strains, Strain rates, Temperatures and Pressures”. In: Engi-
neering Fracture Mechanics 21 (1985), pp. 31–48.

62

https://doi.org/https://doi.org/10.1016/j.engfracmech.2005.01.008
https://doi.org/https://doi.org/10.1016/j.engfracmech.2005.01.008
https://www.sciencedirect.com/science/article/pii/S0013794405000627
https://www.sciencedirect.com/science/article/pii/S0013794405000627
https://doi.org/doi:10.1515/eng-2020-0042
https://doi.org/10.1515/eng-2020-0042
https://doi.org/10.1515/eng-2020-0042
https://doi.org/10.1515/ijame-2017-0058
https://doi.org/10.1515/ijame-2017-0058
https://doi.org/10.1115/1.3443401
https://doi.org/10.1115/1.3443401
https://doi.org/10.1115/1.3443401
https://doi.org/https://doi.org/10.1016/0022-5096(76)90024-7
https://www.sciencedirect.com/science/article/pii/0022509676900247
https://www.sciencedirect.com/science/article/pii/0022509676900247
https://doi.org/https://doi.org/10.1016/0008-8846(76)90007-7
https://www.sciencedirect.com/science/article/pii/0008884676900077
https://www.sciencedirect.com/science/article/pii/0008884676900077

[25] J. Koplik and A. Needleman. “Void growth and coalescence in porous plastic
solids”. In: Int. J. Solids Structures 24 (1988), pp. 835–853.

[26] H. Kordisch, E. Sommer, and W. Schmitt. “The influence of triaxiality on stable
crack growth”. In: Nuclear Engineering and Design 112 (1989), pp. 27–35. issn:
0029-5493. doi: https://doi.org/10.1016/0029-5493(89)90142-8.
url: https://www.sciencedirect.com/science/article/pii/
0029549389901428.

[27] Yanshan Lou et al. “New ductile fracture criterion for prediction of fracture
forming limit diagrams of sheet metals”. In: International Journal of Solids
and Structures 49.25 (2012), pp. 3605–3615. issn: 0020-7683. doi: https://
doi.org/10.1016/j.ijsolstr.2012.02.016. url: https://www.
sciencedirect.com/science/article/pii/S002076831200056X.

[28] A. C. Mackenzie, J. W. Hancock, and D. K. Brown. “On the influence of state
of stress on ductile failure initiation in high strength steels”. In: Engineering
Fracture Mechanics 9.1 (1977), pp. 167–188. issn: 0013-7944. doi: https://
doi.org/10.1016/0013- 7944(77)90062- 5. url: https://www.
sciencedirect.com/science/article/pii/0013794477900625.

[29] F. A. McClintock. “A criterion for ductile fracture by the growth of holes”. In:
J. Appl. Mech 35 (1968).

[30] Nicolas Moes, John Dolbow, and Ted Belytschko. “A finite element method for
crack growth without remeshing”. In: International Journal for Numerical Meth-
ods in Engineering 46 (1999).

[31] D. Mohr and S. J. Marcadet. “Micromechanically-Motivated Phenomenological
Hosford-Coulomb Model for Predicting Ductile Fracture Initiation at Low Stress
Triaxialities”. In: International Journal of Solids and Structures 67-68 (2015),
pp. 40–55.

[32] A. Needleman. “An analysis of decohesion along an imperfect interface”. In:
International Journal of Fracture 42.1 (1990), pp. 21–40. issn: 1573-2673. doi:
10.1007/BF00018611. url: https://doi.org/10.1007/BF00018611.

[33] A. Needleman and V. Tvergaard. “An analysis of ductile rupture in notched
bars”. In: Journal of the Mechanics and Physics of Solids 32.6 (1984), pp. 461–
490. issn: 0022-5096. doi: https://doi.org/10.1016/0022-5096(84)
90031-0. url: https://www.sciencedirect.com/science/article/
pii/0022509684900310.

[34] Alan Needleman. “A ContinuumModel for Void Nucleation by Inclusion Debond-
ing”. In: Journal of Applied Mechanics-transactions of The Asme - J APPL
MECH 54 (1987). doi: 10.1115/1.3173064.

[35] O. Nguyen et al. “A cohesive model of fatigue crack growth”. In: International
Journal of Fracture 110.4 (2001), pp. 351–369. issn: 1573-2673. doi: 10.1023/
A:1010839522926. url: https://doi.org/10.1023/A:1010839522926.

[36] K.L. Nielsen and J.W. Hutchinson. “Cohesive traction-separation laws for tearing
of ductile metal plates”. In: International Journal of Impact Engineering 48
(2011).

63

https://doi.org/https://doi.org/10.1016/0029-5493(89)90142-8
https://www.sciencedirect.com/science/article/pii/0029549389901428
https://www.sciencedirect.com/science/article/pii/0029549389901428
https://doi.org/https://doi.org/10.1016/j.ijsolstr.2012.02.016
https://doi.org/https://doi.org/10.1016/j.ijsolstr.2012.02.016
https://www.sciencedirect.com/science/article/pii/S002076831200056X
https://www.sciencedirect.com/science/article/pii/S002076831200056X
https://doi.org/https://doi.org/10.1016/0013-7944(77)90062-5
https://doi.org/https://doi.org/10.1016/0013-7944(77)90062-5
https://www.sciencedirect.com/science/article/pii/0013794477900625
https://www.sciencedirect.com/science/article/pii/0013794477900625
https://doi.org/10.1007/BF00018611
https://doi.org/10.1007/BF00018611
https://doi.org/https://doi.org/10.1016/0022-5096(84)90031-0
https://doi.org/https://doi.org/10.1016/0022-5096(84)90031-0
https://www.sciencedirect.com/science/article/pii/0022509684900310
https://www.sciencedirect.com/science/article/pii/0022509684900310
https://doi.org/10.1115/1.3173064
https://doi.org/10.1023/A:1010839522926
https://doi.org/10.1023/A:1010839522926
https://doi.org/10.1023/A:1010839522926

[37] Yoshihiko Ozaki, Masaki Yano, and Masaki Onishi. “Effective hyperparameter
optimization using Nelder-Mead method in deep learning”. In: IPSJ Transactions
on Computer Vision and Applications 9.1 (2017), p. 20. issn: 1882-6695. doi:
10.1186/s41074-017-0030-7. url: https://doi.org/10.1186/
s41074-017-0030-7.

[38] P.B.Woelke, M.D.Shields, and J.W.Hutchinson. “Cohesive zone modeling and
calibration for mode I tearing of large ductile plates”. In: Engineering Fracture
Mechanics 147 (2015).

[39] A. Pineau, A. A. Benzerga, and T. Pardoen. “Failure of metals I: Brittle and duc-
tile fracture”. In: Acta Materialia 107 (2016), pp. 424–483. issn: 1359-6454. doi:
https://doi.org/10.1016/j.actamat.2015.12.034. url: https://
www.sciencedirect.com/science/article/pii/S1359645415301403.

[40] Andre Pineau. “Modeling ductile to brittle fracture transition in steels - Mi-
cromechanical and physical challenges”. In: International Journal of Fracture
150 (2008), pp. 129–156. doi: 10.1007/s10704-008-9232-4.

[41] Singiresu S. Rao. Engineering Optimization. Vol. 5. John Wiley Sons Ltd, 220.

[42] Joris J.C. Remmers, Rene´ de Borst, and Alan Needleman. “The simulation of
dynamic crack propagation using the cohesive segments method”. In: Journal of
the Mechanics and Physics of Solids 56 (2008), pp. 70–92.

[43] J. R. Rice and D. M. Tracey. “On the ductile enlargement of voids in triaxial
stress fields”. In: J. Mech. Phys. Solid 17 (1969), pp. 201–217.

[44] I. Scheider and W. Brocks. “Cohesive elements for thin-walled structures”. In:
Computational Materials Science 37 (2006), pp. 101–109.

[45] I. Scheider and W. Brocks. “Simulation of cup–cone fracture using the cohesive
model”. In: Engineering Fracture Mechanics 70 (2003), pp. 1943–1961.

[46] Ingo Scheider. “Micromechanical based derivation of traction-separation laws
for cohesive model simulations”. In: Procedia Engineering 1.1 (2009), pp. 17–21.
issn: 1877-7058. doi: https://doi.org/10.1016/j.proeng.2009.06.
006. url: https://www.sciencedirect.com/science/article/pii/
S1877705809000071.

[47] Ingo Scheider and Wolfgang Brocks. “The Effect of the Traction Separation Law
on the Results of Cohesive Zone Crack Propagation Analyses”. In: Key Engi-
neering Materials 251 (2003), pp. 313–318. doi: 10.4028/www.scientific.
net/KEM.251-252.313.

[48] Ingo Scheider, F. Hachez, and Wolfgang Brocks. “Effect of Cohesive Law and Tri-
axiality Dependence of Cohesive Parameters in Ductile Tearing”. In: Fracture of
Nano and Engineering Materials and Structures - Proceedings of the 16th Euro-
pean Conference of Fracture (2006). issn: 978-1-4020-4971-2. doi: 10.1007/1-
4020-4972-2_478.

[49] Karl-Heinz Schwalbe, Ingo Scheider, and Alfred Cornec. Guidelines for applying
cohesive models to the damage behaviour of engineering materials and structures.
Springer, 2013, p. 89. isbn: 978-3-642-29493-8.

[50] T. Siegmund and W. Brocks. “Prediction of the work of separation and impli-
cations to modeling”. In: International Journal of Fracture 99 (1999), pp. 97–
116.

64

https://doi.org/10.1186/s41074-017-0030-7
https://doi.org/10.1186/s41074-017-0030-7
https://doi.org/10.1186/s41074-017-0030-7
https://doi.org/https://doi.org/10.1016/j.actamat.2015.12.034
https://www.sciencedirect.com/science/article/pii/S1359645415301403
https://www.sciencedirect.com/science/article/pii/S1359645415301403
https://doi.org/10.1007/s10704-008-9232-4
https://doi.org/https://doi.org/10.1016/j.proeng.2009.06.006
https://doi.org/https://doi.org/10.1016/j.proeng.2009.06.006
https://www.sciencedirect.com/science/article/pii/S1877705809000071
https://www.sciencedirect.com/science/article/pii/S1877705809000071
https://doi.org/10.4028/www.scientific.net/KEM.251-252.313
https://doi.org/10.4028/www.scientific.net/KEM.251-252.313
https://doi.org/10.1007/1-4020-4972-2_478
https://doi.org/10.1007/1-4020-4972-2_478

[51] Bo Cerup Simonsen and Rikard Törnqvist. “Experimental and numerical mod-
elling of ductile crack propagation in large-scale shell structures”. In: Marine
Structures 17 (2004).

[52] Wolé Soboyejo. Mechanical properties of engineered materials. Marcel Dekker,
Inc., 2003. isbn: 0-8247-8900-8.

[53] I.T. Tandogan. “Ductile fracture of metallic materials through micromechanics
based cohesive zone elements”. MSc Thesis. Middle East Technical University,
2020.

[54] I.T. Tandogan and T. Yalcinkaya. “Development and implementation of a mi-
cromechanically motivated cohesive zone model for ductile fracture”. In: Inter-
national Journal of Plasticity 158 (2022).

[55] V. Tvergaard and J. W. Hutchinson. “The relation between crack growth re-
sistance and fracture process parameters in elastic-plastic solids”. In: J. Mech.
Phys. Solids 40 (1992).

[56] Unified method of test for the determination of quasistatic fracture toughness.
en. Standard. Geneva, CH: International Organization for Standardization, 2021.
url: https://www.iso.org/standard/78208.html.

[57] Nunziante Valoroso, Gilles Debruyne, and Jerome Laverne. “A cohesive zone
model with rate-sensitivity for fast crack propagation”. In: Mechanics Research
Communications 58 (2014), pp. 82–87. doi: 10.1016/j.mechrescom.2013.
12.008.

[58] J. Wolf et al. “Numerical modeling of strain localization in engineering ductile
materials combining cohesive models and X-FEM”. In: International Journal of
Mechanics and Materials in Design 14.2 (2018), pp. 177–193. issn: 1573-8841.
doi: 10.1007/s10999-017-9370-9. url: https://doi.org/10.1007/
s10999-017-9370-9.

[59] Fenghua Zhou, Jean-François Molinari, and Tadashi Shioya. “A rate-dependent
cohesive model for simulating dynamic crack propagation in brittle materials”.
In: Engineering Fracture Mechanics 72.9 (2005), pp. 1383–1410. issn: 0013-7944.
doi: https://doi.org/10.1016/j.engfracmech.2004.10.011.
url: https://www.sciencedirect.com/science/article/pii/
S0013794404002371.

65

https://www.iso.org/standard/78208.html
https://doi.org/10.1016/j.mechrescom.2013.12.008
https://doi.org/10.1016/j.mechrescom.2013.12.008
https://doi.org/10.1007/s10999-017-9370-9
https://doi.org/10.1007/s10999-017-9370-9
https://doi.org/10.1007/s10999-017-9370-9
https://doi.org/https://doi.org/10.1016/j.engfracmech.2004.10.011
https://www.sciencedirect.com/science/article/pii/S0013794404002371
https://www.sciencedirect.com/science/article/pii/S0013794404002371

Appendix A

Abaqus settings

In this appendix, the most important settings and features that were used within this
thesis to obtain the results in Abaqus are presented. The goal of this appendix is to
allow the obtained results to be reproducible. Within this section, all the screenshots
are made within Abaqus Standard A/CAE 2023. Furthermore, references will be made
to the subroutine code and Matlab script. These can be found in appendix B and C.

Material

After the definition of a part in Abaqus, the material properties must be defined. The
Matlab script will fill in most of these properties, but it is nevertheless important to
define the proper fields within the material properties tab in the A/CAE. Figure A.1
shows a screenshot of the edit material window. Important settings are indicated.

First of all, the material name is important. This can be chosen freely by the user,
but it is important to know that this name also has to be inserted in the Matlab script.
If the name in the Matlab script does not match the material name as defined here,
the script will not work.

Secondly, multiple material behaviour fields must be created. These fields are
indicated in the figure. Apart from the elastic and plastic material behaviour, maxps
damage must be defined (via: ’Mechanical/ Damage for Traction Separation Laws/
Maxps Damage’). Also, User Defined Field (’General/User Defined Field’) and Depvar
(’General/Depvar’) must be defined. Within the Depvar settings, set the Number of
solution solution-dependent state variables on 1.

Within the Maxps Damage settings box, set the Position to Nonlocal, the Tolerance
to 0.3, and the number of field variables to 1. Also, under the ’Suboptions’ button,
the Damage Evolution and Damage Stabilisation Cohesive can be defined. Within the
Damage Evolution section, the Type is set on Displacement, the Softening on Tabular
and the number of field variables on 1. Within the Damage Stabilisation Cohesive
window, the Viscosity Coefficient is set to 1E-4, which is the default value.

It is again mentioned that the Matlab script implements part of the settings de-
scribed above in the .inp file. This is done for the position, tolerance and the tabular
values for the damage evolution/initiation for different field variables. The rest of the
settings must be defined within the A/CAE.

A final word about the tolerance: this entity describes the tolerance of the damage
criterion. If the tolerance is set too high the damage will not initiate at the wanted

67

initiation stress. If the tolerance is set too low, convergence issues might appear. It was
found within this thesis that a value of 0.3 works and produces good results. However,
changes can be made on this value.

Figure A.1: Edit material window

Step

Other useful settings are found within the Step Manager (figure A.2). A step is created
with the type Static, General. The Nlgeom option must be on, as this accounts for non-
linear material deformations, such as necking. For the Automatic stabilisation feature,
select ’Specify dissipated energy fraction’, with a value of 2E-4. Also, check the box:
’Use adaptive stabilisation with max. ratio of stabilisation to strain energy’ and set the
corresponding value to 0.05. This automatic stabilisation option introduces artificial
damping into the model to help stabilize the analysis. This resulted in a more stable
simulation and smoother results. Without the automatic stabilisation, the simulation
was unstable and convergence difficulties arose due to the highly nonlinear behaviour.

Within the incrementation tab, the Maximum number of increments is set to a
high value of 1E8. The increment size is set to 1E-05, 1E-10, and 1E-03 for the
initial, minimum, and maximum step size, respectively. The maximum step size is an
important entity here. If the maximum step size is set too high, convergence issues
may appear.

68

Figure A.2: Edit step windows

Next, adjustments must be made to the convergence controls within the step mod-
ule. It was found that convergence could not always be reached within the executed
simulations. This is resolved by increasing the convergence control on the displacement
correction Cα

n and time incrementation IA.
In Abaqus, the convergence control on the displacement correction Cα

n refers to
the criteria used to determine whether the solution for a nonlinear analysis step has
converged. During each iteration, the FE solver adjusts the displacement field to re-
duce the residual forces, which are the differences between the internal forces in the
model and the externally applied loads. These adjustments to the displacement field
are known as the displacement corrections. The convergence control on displacement
correction determines when the solution is converged. If the Cα

n is increased, the toler-
ances are tightened, meaning that to reach convergence, the displacement corrections
need to be smaller relative to the overall displacement in the model. This enforces a
more stable and accurate solution.

Secondly, the time incrementation parameter IA manages the size of time incre-
ments during the simulation based on the convergence behaviour. When IA is in-
creased, Abaqus adjust the time increments more aggressively, allowing for larger
increments when the solution converges well, reducing computational time. When
convergence issues are encountered, the time step is reduced less conservatively.

Within the A/CAE, Cα
n and IA are altered via the Step module/Other/General

Solution Controls/Edit (figure A.3). Within the current study, increasing Cα
n from the

default value of 0.01 to 1 and increasing IA from the default value of 1.0 to 10 lead to
good convergence behaviour throughout the simulations.

69

Figure A.3: Changing the convergence controls

Interaction

In order to create the XFEM crack, some steps have to be taken within the interaction
module.

First, the TSL stiffness must be defined as a contact property. For this, go to the
Interaction Property Manager (figure A.4). As Contact Property Options, choose ’Me-
chanical/ Normal Behaviour’. As a Constraint enforcement method, choose ’Penalty
(Standard)’. Finally, specify the stiffness value. Please note that this ’Penalty (Stan-
dard)’ value corresponds to the TSL stiffness value Kfixed, as discussed in section 2.2.4
and can be any value. Here, this value is set to 800.

70

Figure A.4: Edit Contact Property window

After this, the crack must be defined within the interaction module. To do this, go
to the ’Special’ tab/ Crack/Create (figure A.5). Choose XFEM as the crack type and
choose the part as the crack domain.

Figure A.5: Create XFEM crack

Within the Edit Crack window, it is important to link the specified contact property
(where the TSL stiffness was defined) to the XFEM crack. This is done at the ’Specify
contact property’ box, as shown in figure A.6.

71

Figure A.6: Edit Crack window

Next, an interaction must be defined. This is done within the interaction manager.
Create an interaction of the type ’XFEM crack growth’. Next, define the XFEM
crack as specified in the previous step and check the ’Allow crack growth in this step’
checkbox.

Mesh

CPS4R elements are used within this thesis. It is important to specify Enhanced
Hourglass Control within the Element Type window, as depicted in figure A.7. This is
because, in some cases, convergence could not be attained with the default hourglass
control option, as some elements are subjected to heavy shearing. Also, the Geometric
Order is Linear.

72

Figure A.7: Element type window

Jobs

Finally, the job is created within the Edit Job window (figure A.8). Make sure to insert
the path to the subroutine.

Figure A.8: Edit Job window

73

Matlab script

Some final settings are implemented directly to the .inp file of the Abaqus model by
the Matlab script. First, a command is added in the Assembly section of the .inp file
that generates the contact surfaces at the crack location. This command is shown in
figure A.9. Note that ’Crack-1’ is the name of the XFEM crack as defined earlier.

Figure A.9: The highlighted command lines generate contact surfaces at the location
of the XFEM crack.

Next, the damage initiation and evolution tables are generated in the Matlab script
(figure A.10). Please note that some material settings are listed at the top of these
tables (such as Position: Nonlocal and tolerance). When these settings need to be
changed, it is necessary to change them both in the Abaqus A/CAE as in the Matlab
script.

Figure A.10: Damage initiation and evolution tables, generated by the Matlab script.

These damage tables are saved in external .txt files. The ’Include’ command in the
.inp file includes these external files to the .inp file, as is shown in figure A.11.

74

Figure A.11: The highlighted lines include the damage initiation and evolution tables.

A final addition that is made to the .inp file is requesting the output of the contact
surfaces. Two of these contact outputs are CRKPRESS and CRKOPEN, which are
used to plot the TSL behaviour in the crack, as described in chapter 2.1.4.

Figure A.12: Request the contact output

75

Appendix B

Subroutine code

Below, the Fortran code of the subroutine is provided:

1

2

3

4 SUBROUTINE USDFLD(FIELD,STATEV,PNEWDT,DIRECT,T,CELENT,TIME,DTIME,
5 &CMNAME,ORNAME,NFIELD,NSTATV,NOEL,NPT,LAYER,KSPT,KSTEP,KINC,
6 &NDI,NSHR,COORD,JMAC,JMATYP,MATLAYO,LACCFLA)
7 C
8 INCLUDE ’ABA_PARAM.INC’
9 C

10 CHARACTER*80 CMNAME,ORNAME
11 CHARACTER*3 FLGRAY(15)
12 DIMENSION FIELD(NFIELD),STATEV(NSTATV),DIRECT(3,3),
13 &T(3,3),TIME(2)
14 DIMENSION ARRAY(15),JARRAY(15),JMAC(*),JMATYP(*),COORD(*)
15

16

17

18 C Catagorize the input
19 REAL :: numberofTSLS, maxobservedTRIAX, minobservedTRIAX, delta
20 INTEGER :: i
21

22

23 C STEP 1. Calculate TRIAX and SDEG
24 CALL GETVRM(’SINV’,ARRAY,JARRAY,FLGRAY,JRCD,JMAC,JMATYP,MATLAYO,
25 &LACCFLA)
26

27

28 TRIAX=-ARRAY(3)/ARRAY(1)
29

30

31 CALL GETVRM(’SDEG’,ARRAY,JARRAY,FLGRAY,JRCD,JMAC,JMATYP,MATLAYO,
32 &LACCFLA)
33

34 SDEG=ARRAY(1)
35

36

37 C STEP 2. Determine the maximum value of TRIAX up to this point in time
38 CALL GETVRM(’SDV’,ARRAY,JARRAY,FLGRAY,JRCD,JMAC,JMATYP,MATLAYO,
39 &LACCFLA)
40

41

42 TRIAXCURRENT = ARRAY(1)

77

43

44

45

46 C Save the maximum value
47 IF (SDEG==0) THEN
48 TRIAXMAX = MAX(TRIAX , TRIAXCURRENT)
49 ELSE
50 TRIAXMAX=TRIAXCURRENT
51 END IF
52

53

54

55 C STEP 3. Set the number of triaxiality levels
56 maxobservedTRIAX = 1
57 minobservedTRIAX= 0
58 numberofTSLS = 100
59

60

61 delta=(maxobservedTRIAX-minobservedTRIAX)/numberofTSLS
62

63

64 C STEP 4. Assign a field variable to the element
65 do i = 1,numberofTSLS
66 if (TRIAXMAX <= minobservedTRIAX+i*delta) THEN
67 FIELD(1) = i
68 exit
69 end if
70 end do
71

72

73 C STEP 5. Store the maximum triax as a solution dependent state
74 Cvariable
75

76 STATEV(1) = TRIAXMAX
77

78

79

80 C Return from subroutine
81 RETURN
82 END

78

Appendix C

Matlab code

Below, the Matlab code of the TSL-Tool is provided:

1

2

3 clc
4 clear
5

6

7 %% Input
8

9 E = 210000; % Youngs modulus
10 Y = 252; % Yield strength
11 Penalty_stiff = 800; % TSL stiffness defined in abaqus
12 % contact properties settings
13

14

15

16 %------Load data from optimization file
17 % Step 1: Load data from the source MATLAB file
18 load(’data.mat’);
19 % Step 2: Access the desired data
20

21 % Parameters in the format: [sigma_y01; sigma_y02; delta_21; delta_22]
22 params;
23

24 % X-parameters in the format: [min. triax; max.triax].
25 % This should be [0 1], and should not be changed.
26 params_x;
27 %-------------
28

29

30

31 % Base the TSL properties on TRIAX:
32

33 numberofTSLs= 100; % Number of different TSLs that are generated.
34 % If changed it should also be changed in the subroutine code.
35

36 for i=1:numberofTSLs
37 triax= i/numberofTSLs;
38 %stress_ini(i) =interp1(params_x, params(1:2), triax);
39 stress_ini(1:34)=params(1);
40 stress_ini(35:60)= linspace(params(1),params(2),26);
41 stress_ini(61:100)=params(2);
42

79

43 %d2(i)= interp1(params_x, params(3:4), triax);
44 d2(1:34)=params(3);
45 d2(35:60)= linspace(params(3),params(4),26);
46 d2(61:100)=params(4);
47 d3(i)= d2(i)*1.1;
48 end
49

50

51

52 % Write parameters to .txt file, so that you can monitor them during the
53 % optimization study
54 fileID = fopen(’parameters.txt’, ’a’);
55

56

57 % Write the value to the file
58 fprintf(fileID, ’----\n’);
59 fprintf(fileID, ’%f ’, params(1));
60 fprintf(fileID, ’%f ’, params(2));
61 fprintf(fileID, ’%f ’, params(3));
62 fprintf(fileID, ’%f\n’, params(4));
63 % Close the file
64 fclose(fileID);
65

66

67

68 % Manual option of setting the TSL-TRIAX relationship:
69 % numberofTSLs= 100;
70 % for i=1:numberofTSLs
71 % triax= i/numberofTSLs;
72 % %stress_ini(i) =Y*(-0.116*triaxˆ2+triax+1.6);
73 % stress_ini(i) =triax*1000+200;
74 % d2(i)= 0.6/triax*5;
75 % d3(i)= 0.6/triax*5+2;
76 % end
77

78

79

80 %% settings
81

82 % The maximum displacement for which you want to define your damage.
83 % Make sure this is large enough!
84 maxdisp = 300;
85

86 % Stepsize of the damage table
87 stepsize = 0.01;
88

89 % How much points do you want to add to the material model
90 % (adjust range for x axis of plot)
91 add2mat= 100;
92

93

94

95 %% Values that are automatically calculated
96

97 % Plasticity model and initiation point
98 PM =readtable(’PM.txt’); % Plasticity model
99

100 % Find initiation displacement from plasticity model
101 disp_ini = interp1(PM{:, 1}, PM{:, 2}, stress_ini, ’linear’) ;
102

80

103 % TSL strength and stiffness
104 TSL_s = stress_ini; % TSL strenght
105 TSL_stiff = TSL_s./disp_ini ; % TSL stiffness
106

107

108

109 %% DAMAGE MODEL
110 % Here the values of Damage and Displacement are determined.
111

112 % Displacement column
113 D_disp = 0:stepsize:maxdisp;
114

115

116 % Generate the Damage column
117 for j = 1:numel(stress_ini)
118 for i = 1:numel(D_disp)
119 if D_disp(i) <= disp_ini(j)
120 D(i,j) = 0;
121 elseif D_disp(i) <= d2(j)
122 D(i,j) = 1-TSL_s(j)/(TSL_s(j)/disp_ini(j)*(D_disp(i)));
123 elseif D_disp(i) >= d3(j)
124 D(i,j) = 1;
125 else
126 D(i,j)=1-TSL_s(j)/(TSL_s(j)/disp_ini(j)*(D_disp(i)))*...
127 ((d3(j)-(D_disp(i)))/(d3(j)-d2(j)));
128 end
129

130 end
131 end
132

133

134 % Now calculate the Damage corrected by the penalty stiffness
135

136 % Generate Damage column: D_c
137 for j = 1:numel(stress_ini)
138 for i = 1:numel(D_disp)
139 if (TSL_s(j)/ disp_ini(j)*(D(i,j)-1))/Penalty_stiff+1 >=0
140 D_c(i,j) = (TSL_s(j)/ disp_ini(j)*(D(i,j)-1))/Penalty_stiff+1;
141 else
142 D_c(i,j)=0;
143 end
144 if (TSL_s(j)/ disp_ini(j)*(D(i,j)-1))/Penalty_stiff+1 >=1
145 D_c(i,j) = 1;
146 end
147 end
148 end
149

150

151 D_disp_c = zeros(size(D_c)); % Initialize D_disp_c
152 nonzero_indices = zeros(1, numel(stress_ini));
153

154

155 for j = 1:numel(stress_ini)
156 nonzero_found = false; % Flag to check if nonzero value has been found
157 for i = 2:numel(D_disp)
158 D_disp_c(1,j) = 0;
159 if D_c(i,j) > 0
160 if ˜nonzero_found
161 nonzero_indices(j) = i; %Store index of first nonzero value
162 nonzero_found = true; % Set flag to true

81

163 D_disp(nonzero_indices(j));
164 end
165 if D_c(i-1,j) == 0
166 D_disp_c(i,j) = 0.0001;%+D_disp(nonzero_indices(j));
167 else
168 D_disp_c(i,j) = D_disp_c(i-1,j) + stepsize;
169 end
170 else
171 D_disp_c(i,j) = 0;
172 end
173 end
174 end
175

176

177

178 %% Account for zero’s in beginning of damage curve
179

180 % In the code above, the disp value of the first nonzero D_c indice was
181 % found. Below, we correct for this value and overwrite the D and D_c
182 % values.
183

184 % Generate the Damage column
185 for j = 1:numel(stress_ini)
186 for i = 1:numel(D_disp)
187 if D_disp(i) <= disp_ini(j)
188 D(i,j) = 0;
189 elseif D_disp(i) <= d2(j)
190 if nonzero_indices(j) > 0
191 D(i,j) = 1-TSL_s(j)/(TSL_s(j)/disp_ini(j)*(D_disp(i)...
192 +D_disp(nonzero_indices(j))));
193 else
194 D(i,j) = 1-TSL_s(j)/(TSL_s(j)/disp_ini(j)*(D_disp(i)));
195 end
196 elseif D_disp(i) >= d3(j)
197 D(i,j) = 1;
198 else
199 if nonzero_indices(j) > 0
200 D(i,j)=1-TSL_s(j)/(TSL_s(j)/disp_ini(j)*(D_disp(i)...
201 +D_disp(nonzero_indices(j))))*((d3(j)...
202 -(D_disp(i)))/(d3(j)-d2(j)));
203 else
204 D(i,j)=1-TSL_s(j)/(TSL_s(j)/disp_ini(j)*(D_disp(i)))...
205 *((d3(j)-(D_disp(i)))/(d3(j)-d2(j)));
206 end
207 end
208

209 end
210 end
211

212

213 % Now calculate the Damage corrected by the penalty stiffness
214

215 % Generate Damage column: D_c
216 for j = 1:numel(stress_ini)
217 for i = 1:numel(D_disp)
218 if (TSL_s(j)/ disp_ini(j)*(D(i,j)-1))/Penalty_stiff+1 >=0
219 D_c(i,j) = (TSL_s(j)/ disp_ini(j)*(D(i,j)-1))/Penalty_stiff+1;
220 else
221 D_c(i,j)=0;
222 end

82

223 if (TSL_s(j)/ disp_ini(j)*(D(i,j)-1))/Penalty_stiff+1 >=1
224 D_c(i,j) = 1;
225 end
226 end
227 end
228

229

230 D_disp_c = zeros(size(D_c)); % Initialize D_disp_c
231

232 % Initialize array to store indices of first nonzero values
233 nonzero_indices = zeros(1, numel(stress_ini));
234

235 for j = 1:numel(stress_ini)
236 nonzero_found = false; % Flag to check if nonzero value has been found
237 for i = 2:numel(D_disp)
238 D_disp_c(1,j) = 0;
239 if D_c(i,j) > 0
240 if ˜nonzero_found
241 nonzero_indices(j) = i; %Store index of first nonzero value
242 nonzero_found = true; % Set flag to true
243 end
244 if D_c(i-1,j) == 0
245 D_disp_c(i,j) = 0.0001;%+D_disp(nonzero_indices(j));
246 else
247 D_disp_c(i,j) = D_disp_c(i-1,j) + stepsize;
248 end
249 else
250 D_disp_c(i,j) = 0;
251 end
252 end
253 end
254

255

256

257 %% We now have all the data. Let’s store it in a way so that it can be
258 % copied directly into ABAQUS .inp file
259

260 % Damage table
261

262 % In this forloop we loop though all the TSL’s and create the damage table
263 % for each one. After this we put all the data in one big array that can
264 % be copied directly into ABAQUS
265

266 for i= 1:numel(disp_ini)
267 % Create an array with D_c values and corresponding D_disp_c values.
268 D_c2 = [D_c(:,i),D_disp_c(:,i)];
269

270 % Add a zero to each first row of the array
271 D_c3{i} = [0, 0; D_c2];
272

273

274 % Add additional columns to each array in D_c3.
275 % These columns are the field variables
276 fieldvar = repmat(i, size(D_c3{i}, 1), 1); % Create column with
277 % values equal to i
278 D_c3{i} = [D_c3{i}, fieldvar];
279

280

281

282 % Check how much zero’s the array consists of at the beginning

83

283 zero_rows{i} = find(D_c3{i}(:, 1) == 0);
284

285 % Make sure that there is only one row of zero’s
286 D_c4{i} = D_c3{i}(zero_rows{i}(end):end,:);
287

288

289 % Add a small displacement that corresponds to the first nonzero
290 % damage value (this is normally zero but ABAQUS requires the array
291 % to begin with (0,0) instead of (value,0).)
292 D_c4{i}(2,2)=0.0001;
293

294

295

296 % Nex step is to cut off the table when the damage has reached 1.
297

298 % Find the indices of all occurrences of 1
299 one_indices = find(D_c4{i}(:,1) == 1);
300

301 % Keep only the first occurrence of 1
302 one_indices(2:end) = [];
303

304 stored_one_indices{i} = one_indices;
305

306 % Update the array, removing all occurrences of 1 except the first one
307 D_c4{i}(stored_one_indices{i}+1:end,:) = [];
308

309 end
310

311

312

313 % End result: an array and a table with the Damage tabular data for
314 % multiple TSL’s. The array is written to a .txt file and can be copied to
315 % the ABAQUS .inp file. The table can directly be copied into ABAQUS CAE.
316

317 %Make the array of Damage vs. field var.
318 D_c_array=vertcat(D_c4{:});
319

320 % Open a file for writing
321 fileID = fopen(’Damage_table.inp’, ’w’);
322

323 % Write the header text
324 headerText = [’*Damage Evolution, type=DISPLACEMENT, ’ ...
325 ’dependencies=1, softening=TABULAR\n’];
326 fprintf(fileID, headerText);
327

328 % Define the format string for each row
329 formatSpec = ’ %f, %f, , %.0f.\n’;
330

331 % Write the array to file/command window with the specified format
332 fprintf(fileID, formatSpec, D_c_array’);
333

334 % Close the file
335 fclose(fileID);
336

337 % Make a table that can be used in the ABAQUS GUI:
338 D_c_tab= array2table(D_c_array, ’VariableNames’, ...
339 {’Damage’, ’Displacement’,’Field 1’});
340

341

342

84

343 % Same for the table with damage initiation data:
344

345 % Add additional column to the array of stress_ini. This column is the
346 % field variable
347 stress_iniT=stress_ini’;
348

349 % Make the array of initiation stress vs. field var.
350 for i = 1: numel(stress_ini)
351 stress_ini_array(i,:) = [stress_iniT(i), i];
352 end
353

354 % Open a file for writing
355 fileID = fopen(’Initiation_table.inp’, ’w’);
356

357 % Write the header text
358 headerText = [’*Damage Initiation, criterion=MAXPS, ’ ...
359 ’position=NONLOCAL, dependencies=1, tolerance=0.3\n’];
360 fprintf(fileID, headerText);
361

362 % Define the format string for each row
363 formatSpec = ’%.0f., ,%.0f.\n’;
364

365 % Write the array to file/command window with the specified format
366 fprintf(fileID, formatSpec, stress_ini_array’);
367

368 % Close the file
369 fclose(fileID);
370

371

372 % Make a table that can be used in the ABAQUS CAE:
373 stress_ini_tab= array2table(stress_ini_array, ’VariableNames’, ...
374 {’Max Principal Stress’, ’Field 1’});
375

376

377 %% Adjust the Abaqus model .inp file so that above and some settings are
378 % incorporated:
379

380 % Open the .inp file for reading
381 fileID = fopen(’job-optimization2.inp’, ’r’);
382 if fileID == -1
383 error(’Unable to open input file.’);
384 end
385

386 % Read the content of the file
387 fileContent = fread(fileID, ’*char’)’; % Read entire file as char
388

389 % Close the file
390 fclose(fileID);
391

392 % Define the specific text you want to locate
393 specificText1 = ’*Material, name=Steel’;
394 specificText2 = ’*Damage Stabilization’;
395 specificText3 = ’*Static,’;
396 specificText4 = ’*Contact Output’;
397

398

399 %---Write the INPUT commands to the inp file
400

401 % Find the position of the specific text 1 in the file content
402 startIndex1 = strfind(fileContent, specificText1);

85

403

404 if ˜isempty(startIndex1)
405 % Move the startIndex1 to the next line
406 startIndex1 = startIndex1 + regexp(fileContent(startIndex1:end), ...
407 ’\n’, ’once’);
408

409 % Define the end index for specific text 1
410 endIndex1 = strfind(fileContent(startIndex1:end), specificText2);
411 if isempty(endIndex1)
412 %nothing
413 else
414 % Adjust endIndex1 based on startIndex1
415 endIndex1 = endIndex1(1) + startIndex1 - 2; % Adjust for indexing
416 endIndex1 = endIndex1 + regexp(fileContent(endIndex1:end), ’\n’,

...
417 ’once’);
418 end
419

420 % Delete the block (including specific text 1 until specific text 2)
421 modifiedContent = [fileContent(1:startIndex1-1), ...
422 fileContent(endIndex1:end)];
423

424 % Define the new content to replace the deleted block for specific
425 % text 1
426 newContent1 = sprintf([’*INCLUDE, ’ ...
427 ’INPUT=Initiation_table.inp\n*INCLUDE, INPUT=Damage_table.inp\n’]);
428

429 % Insert the new content at the position of the deleted block for
430 % specific text 1
431 modifiedContent = [modifiedContent(1:startIndex1-1), newContent1, ...
432 modifiedContent(startIndex1:end)];
433

434

435

436

437

438 %---Define a contact surface
439

440 % Define the new lines to add for the second location
441 newLines = {’, interaction=IntProp-1’, [’*SURFACE, ’ ...
442 ’name=CrackSurface, type=XFEM’], ’CRACK-1’};
443

444 % Define the text to be replaced for the second location
445 textToReplace = ’, interaction=IntProp-1’;
446

447 % Check if only the 2nd and 3rd cells of the newLines array
448 % are present in the file content
449 if any(contains(fileContent, newLines{2})) || ...
450 any(contains(fileContent, newLines{3}))
451 % Do nothing
452 else
453 % Replace the text with the new lines for the second location
454 modifiedContent = strrep(modifiedContent, textToReplace, ...
455 sprintf(’%s\n%s\n%s’, newLines{:}));
456 end
457

458

459

460

461

86

462 %--- Replace ’*Static,’ with ’*Static**’ and add the Controls,
463 %parameter,field command.
464

465 % Find the position of the specific text in the file content
466 startIndex2 = strfind(modifiedContent, specificText3);
467

468 if ˜isempty(startIndex2)
469

470 % Find the index of the newline character immediately after
471 % startIndex1
472 newlineIndex = regexp(modifiedContent(startIndex2:end), ’\n’, ...
473 ’once’);
474 if isempty(newlineIndex)
475

476 return; % Exit if newline character not found
477 end
478

479 % Define the end index for specific text 1
480 endIndex2 = startIndex2 + newlineIndex;
481

482 % Find the index of the second newline character after
483 % startIndex2
484 secondNewlineIndex = regexp(modifiedContent(endIndex2:end), ...
485 ’\n’, ’once’);
486 if isempty(secondNewlineIndex)
487

488 return; % Exit if second newline character not found
489 end
490

491 % Update the end index to skip two lines
492 endIndex2 = endIndex2 + secondNewlineIndex;
493

494 % Delete the block
495 modifiedContent = [modifiedContent(1:startIndex2-1), ...
496 modifiedContent(endIndex2:end)];
497

498 % Define the new content to replace the deleted block for
499 % specific text 1
500 newContent2 = sprintf([’*Static\n1e-05, 1., 1e-10, ’ ...
501 ’0.001\n**\n*Controls, parameters=field\n,1.0\n ’]);
502

503 % Insert the new content at the position of the deleted block
504 % for specific text 1
505 modifiedContent = [modifiedContent(1:startIndex2-1), ...
506 newContent2, modifiedContent(startIndex2:end)];
507

508 else
509 %nothing
510 end
511

512

513 %---- Deactivate the controls,reset command
514 % Check if **Controls, reset exists in the file content
515 if ˜contains(modifiedContent, ’**Controls, reset’)
516 % Replace *Controls, reset with **Controls, reset
517 modifiedContent = strrep(modifiedContent, ’*Controls, reset’, ...
518 ’**Controls, reset’);
519 end
520

521

87

522

523

524 %---Add XFEM contact surface output to requested output
525

526 % Replace ’*Contact Output’ and the two lines below it
527 startIndex4 = strfind(modifiedContent, specificText4);
528 if ˜isempty(startIndex4)
529 % Find the index of the newline character immediately after
530 % startIndex4
531 newlineIndex4 = regexp(modifiedContent(startIndex4:end), ’\n’, ...
532 ’once’);
533 if isempty(newlineIndex4)
534

535 return; % Exit if newline character not found
536 end
537 % Define the end index for specific text 4
538 endIndex4 = startIndex4 + newlineIndex4;
539

540 % Skip two lines
541 for i = 1:1
542 endIndex4 = endIndex4 + ...
543 regexp(modifiedContent(endIndex4:end), ’\n’, ’once’);
544 end
545

546 % Delete the lines
547 modifiedContent = [modifiedContent(1:startIndex4-1), ...
548 modifiedContent(endIndex4+1:end)];
549

550 % Insert the new content
551 newContent4 = sprintf([’*Contact Output\nCDISP, CSDMG, ’ ...
552 ’CSTRESS, CRKDISP, CSDMG, CRKSTRESS\n*’]);
553 modifiedContent = [modifiedContent(1:startIndex4-1), ...
554 newContent4, modifiedContent(startIndex4:end)];
555

556 disp(’inp. file successfully modified’);
557 end
558 end
559

560

561

562 %---
563

564 % Overwrite the original file with the modified content
565 fileID = fopen(’job-optimization2.inp’, ’w’);
566 if fileID == -1
567 error(’Unable to open output file.’);
568 end
569

570 % Write the modified content back to the file
571 fwrite(fileID, modifiedContent, ’char’);
572

573 % Close the file
574 fclose(fileID);
575

576

577

578

579 %% Make pictures of Damage curves and TSL’s
580

581 % Go from plasticity model to material model (include the elastic part)

88

582 PM_array= table2array(PM);
583 MatModel= [0,0 ; PM_array];
584 MatModel(2,2)=Y/E;
585

586

587 % Add points to the disp column
588 valuesToAdd = MatModel(end) + (1:add2mat) * 0.1;
589 disp_mat = [MatModel(:,2); valuesToAdd’];
590

591

592 for j = 1:numel(stress_ini)
593 for i = 1:length(disp_mat)
594 if disp_mat(i) <= disp_ini(j)
595 Dm(i,j) = 0;
596 elseif disp_mat(i) <= d2(j)
597 Dm(i,j) = 1-TSL_s(j)/(TSL_stiff(j)*(disp_mat(i)));
598 elseif disp_mat(i) >= d3(j)
599 Dm(i,j) = 1;
600 else
601 Dm(i,j)=1-TSL_s(j)/(TSL_stiff(j)*(disp_mat(i)))*((d3(j)- ...
602 (disp_mat(i)))/(d3(j)-d2(j)));
603 end
604

605 if Dm(i,j) == 0
606 stress(i,j) = MatModel(i,1);
607 else
608 stress(i,j) = (1-Dm(i,j))*TSL_stiff(j)*disp_mat(i);
609 end
610 end
611 end
612

613

614

615 %% Run abaqus
616 try
617 % Define the paths to the Abaqus executable and input file
618 abaqusPath = ’C:\SIMULIA\Commands\abq2023.bat’;
619 lck_file = ’D:\Abq_temp\job-optimization2.lck’;
620 inputFile = ’job-optimization2’;
621 userSubroutine = ’subroutine4.for’;
622

623

624 % Construct the command to run Abaqus
625 command = sprintf(’%s job=%s user=%s’, abaqusPath, inputFile, ...
626 userSubroutine);
627

628 % Execute the command
629 status = system(command);
630

631 disp(’Short pause to check if licences are available...’);
632 pause(10)
633

634

635 if status ˜= 0
636 error(’Abaqus execution failed.’);
637 pause(10)
638 else
639 disp(’Abaqus execution successful.’);
640 end
641 catch ME

89

642 disp(’Error occurred:’);
643 disp(ME.message);
644 end
645

646

647

648 %% Once the simulation is finished, create a flag file
649 % Define ODB file name
650

651 odb_file = ’D:\Abq_temp\job-optimization2.odb’; % for Femto
652

653

654

655 % If there is a licence issue and the job is queued, this loop
656 % waits until there are licences again
657 while exist(lck_file, ’file’) == 2 && exist(odb_file, ’file’) ˜= 2
658 disp(’Waiting for licenses...’);
659 pause(40); % Wait before checking again
660 end
661

662

663

664 % Get initial size of the ODB file
665 initial_size = 0;
666 while initial_size == 0
667 % Get the size of the ODB file
668 initial_dir_info = dir(odb_file);
669 initial_size = initial_dir_info.bytes;
670 disp([’Initial size: ’, num2str(initial_size)]);
671 pause(15); % Wait for 10 seconds before checking again
672 end
673

674 % Wait until the size of the ODB file stops increasing
675 stable_time = 0;
676 while stable_time < 3*60*60 % Wait for a maximum of 3 hours
677 % Wait for 15 seconds before checking again
678 pause(15);
679

680 % Get the current size of the ODB file
681 current_dir_info = dir(odb_file);
682 current_size = current_dir_info.bytes;
683 disp([’Current size: ’, num2str(current_size)]);
684

685 % Check if the size remains the same for a certain duration
686 if current_size == initial_size
687 break;
688 else
689 stable_time = 0; % Reset the stable time if the size changes
690 initial_size = current_size; % Update initial size
691 end
692

693 % Check if stable time reached 3 hours
694 if stable_time >= 3*60*60
695 break; % Exit the loop if stable time reached
696 end
697 end
698

699

700 % Once the simulation is finished, create the flag file
701 fid = fopen(’simulation_complete.flag’, ’w’);

90

702 fclose(fid);
703 disp(’Simulation complete. Flag file created.’);
704

705

706 %% Plot FE and experimental curves and write the error to a file
707

708 system(’abaqus cae noGUI="python2.py"’);
709 pause(60)
710

711

712

713

714 %________________________________
715 % Calculate the crack propagation vs. displacement diagram:
716 % In order to plot this diagram, I used a trick. I know the position of
717 % the nodes along the crack length. I use this when calculating the crack
718 % propagation. For example, when a node that is 200 mm from the initial
719 % crack tip reaches a damage value of 1, the crack has propagated 200 mm.
720 % So, in the following code I plot for each node along the crack length the
721 % applied displacement to the damage value of that node. Then I look up
722 % at what displacement value each node reaches D=1 and save these values.
723

724 %---
725 node1 = readtable(’XYdata_node_558.txt’); % Read the FE output table
726 % for this node
727 % Convert the second column of the table to a numeric array
728 y_values_1 = node1{:, 2};
729 % Find the moment where D=1
730 index_1 = find(y_values_1 == 1, 1, ’first’);
731 % Get the corresponding displacement-value
732 corresponding_x_1 = node1{index_1, 1};
733

734 %---
735 node2 = readtable(’XYdata_node_562.txt’); % Read the FE output table
736 % for this node
737 % Convert the second column of the table to a numeric array
738 y_values_2 = node2{:, 2};
739 % Find the moment where D=1
740 index_2 = find(y_values_2 == 1, 1, ’first’);
741 % Get the corresponding displacement-value
742 corresponding_x_2 = node2{index_2, 1};
743

744 %---
745 node3 = readtable(’XYdata_node_566.txt’); % Read the FE output table
746 % for this node
747 % Convert the second column of the table to a numeric array
748 y_values_3 = node3{:, 2};
749 % Find the moment where D=1
750 index_3 = find(y_values_3 == 1, 1, ’first’);
751 % Get the corresponding displacement-value
752 corresponding_x_3 = node3{index_3, 1};
753

754 %---
755 node4 = readtable(’XYdata_node_570.txt’); % Read the FE output table
756 % for this node
757 % Convert the second column of the table to a numeric array
758 y_values_4 = node4{:, 2};
759 % Find the moment where D=1
760 index_4 = find(y_values_4 == 1, 1, ’first’);
761 % Get the corresponding displacement-value

91

762 corresponding_x_4 = node4{index_4, 1};
763

764 %---
765 node5 = readtable(’XYdata_node_574.txt’); % Read the FE output table
766 % for this node
767 % Convert the second column of the table to a numeric array
768 y_values_5 = node5{:, 2};
769 % Find the moment where D=1
770 index_5 = find(y_values_5 == 1, 1, ’first’);
771 % Get the corresponding displacement-value
772 corresponding_x_5 = node5{index_5, 1};
773

774 %---
775 node6 = readtable(’XYdata_node_578.txt’); % Read the FE output table
776 % for this node
777 % Convert the second column of the table to a numeric array
778 y_values_6 = node6{:, 2};
779 % Find the moment where D=1
780 index_6 = find(y_values_6 == 1, 1, ’first’);
781 % Get the corresponding displacement-value
782 corresponding_x_6 = node6{index_6, 1};
783

784 %---
785 node7 = readtable(’XYdata_node_582.txt’); % Read the FE output table
786 % for this node
787 % Convert the second column of the table to a numeric array
788 y_values_7 = node7{:, 2};
789 % Find the moment where D=1
790 index_7 = find(y_values_7 == 1, 1, ’first’);
791 % Get the corresponding displacement-value
792 corresponding_x_7 = node7{index_7, 1};
793

794 %---
795 node8 = readtable(’XYdata_node_586.txt’); % Read the FE output table
796 % for this node
797 % Convert the second column of the table to a numeric array
798 y_values_8 = node8{:, 2};
799 % Find the moment where D=1
800 index_8 = find(y_values_8 == 1, 1, ’first’);
801 % Get the corresponding displacement-value
802 corresponding_x_8 = node8{index_8, 1};
803

804 %---
805 node9 = readtable(’XYdata_node_590.txt’); % Read the FE output table
806 % for this node
807 % Convert the second column of the table to a numeric array
808 y_values_9 = node9{:, 2};
809 % Find the moment where D=1
810 index_9 = find(y_values_9 == 1, 1, ’first’);
811 % Get the corresponding displacement-value
812 corresponding_x_9 = node9{index_9, 1};
813

814 %---
815 node10 = readtable(’XYdata_node_594.txt’); % Read the FE output table
816 % for this node
817 % Convert the second column of the table to a numeric array
818 y_values_10 = node10{:, 2};
819 % Find the moment where D=1
820 index_10 = find(y_values_10 == 1, 1, ’first’);
821 % Get the corresponding displacement-value

92

822 corresponding_x_10 = node10{index_10, 1};
823

824 %---
825 node11 = readtable(’XYdata_node_595.txt’); % Read the FE output table
826 % for this node
827 % Convert the second column of the table to a numeric array
828 y_values_11 = node11{:, 2};
829 % Find the moment where D=1
830 index_11 = find(y_values_11 == 1, 1, ’first’);
831 % Get the corresponding displacement-value
832 corresponding_x_11 = node11{index_11, 1};
833

834

835

836

837

838 %---RESULT
839 % Calculated crack propagation- displacement curve by abaqus:
840 crackprop_y_predicted=[5 20 40 60 80 100 120 140 160 180];
841 crackprop_x_predicted=[corresponding_x_2 corresponding_x_3 ...
842 corresponding_x_4 corresponding_x_5 corresponding_x_6 ...
843 corresponding_x_7 corresponding_x_8 corresponding_x_9 ...
844 corresponding_x_10 corresponding_x_11];
845

846

847

848

849 % Load target curve data
850 targetData2 = table2array(readtable(’objectivecurve2.txt’));
851

852 % Extract x and y data from target curve
853 target_crackprop_x = targetData2(:, 1);
854 target_crackprop_y = targetData2(:, 2);
855 target_crackprop_x = interp1(target_crackprop_y, target_crackprop_x, ...
856 crackprop_y_predicted);
857 target_crackprop_x = target_crackprop_x(1:8);
858

859

860

861

862 if length(crackprop_x_predicted)> 8
863 crackprop_x_predicted = crackprop_x_predicted...
864 (1:length(target_crackprop_x));
865 end
866

867

868 % If the simulation is ended prematurely, an penalty will be added to the
869 % error.
870 penalty = 0;
871 if length(crackprop_x_predicted)< length(target_crackprop_x)
872 target_crackprop_x = target_crackprop_x...
873 (1:length(crackprop_x_predicted));
874 penalty = 20;
875 end
876

877

878 % You can also add a penalty to the error if you want a increasing or
879 % decreasing behaviour:
880 % if params(1)>params(2)
881 % penalty = 100;

93

882 % end
883 %
884 % if params(3)<params(4)
885 % penalty = 100;
886 % end
887

888

889 crackprop_y_predicted=crackprop_y_predicted...
890 (1:length(crackprop_x_predicted));
891

892

893

894

895 %___________________________________
896 % Calculated Force displacement curve by Abaqus:
897

898 XYdata = importdata(’XYdata.rpt’);
899

900 x_predicted = XYdata.data(:,1);
901 y_predicted = XYdata.data(:,2)*2*0.733;
902

903 % Load target curve data
904 targetData = table2array(readtable(’objectivecurve.txt’));
905

906 % Extract x and y data from target curve
907 target_x = targetData(:, 1);
908 target_y = targetData(:, 2)*1000;
909 target_y = interp1(target_x, target_y, x_predicted);
910

911 %__________
912

913

914

915

916 % Calculate error
917 error1 = (sum(abs(target_y - y_predicted)) / sum(target_y) * 100);
918 error2 = (sum(abs(target_crackprop_x - crackprop_x_predicted)) / ...
919 sum(target_crackprop_x) * 100);
920

921 error = error1 + error2 + penalty;
922

923

924

925

926 % Next, I want to write some useful data to .txt files, to monitor the
927 % behaviour of the error and parameters during the optimization process:
928

929

930 % Get minError value from .txt file
931 error_array = importdata(’minError.txt’);
932 error_xvalues = 1:numel(error_array);
933

934 %-----
935

936 % Open the text file in append mode (so existing contents are
937 % not overwritten)
938 fileID = fopen(’error.txt’, ’a’);
939

940 % Write the value to the file
941 fprintf(fileID, ’%.2f\n’, error);

94

942

943 % Close the file
944 fclose(fileID);
945

946

947 error_array2 = importdata(’error.txt’);
948 error_xvalues2 = 1:numel(error_array2);
949

950

951 %-----
952

953 % Open the text file in append mode (so existing contents are
954 % not overwritten)
955 fileID = fopen(’error_breakdown.txt’, ’a’);
956

957 % Check if the file was opened successfully
958 if fileID == -1
959 error(’Unable to open file for writing.’);
960 end
961

962 % Write the values to the file in the desired format
963 fprintf(fileID, [’error1= %.2f error2 (*3)= %.2f ’ ...
964 ’total error= %.2f\n’], error1, error2, error);
965

966 % Close the file
967 fclose(fileID);
968

969

970 %-----
971

972

973 % Write parameters to file
974 fileID = fopen(’parameters.txt’, ’a’);
975

976 % Check if the file was opened successfully
977 if fileID == -1
978 error(’Unable to open file for writing.’);
979 end
980

981 % Write the value to the file
982 fprintf(fileID, ’----\n’);
983 fprintf(fileID, ’produced error with the above input:\n’);
984 fprintf(fileID, ’%.2f\n’, error_array2(end));
985

986 % Close the file
987 fclose(fileID);
988

989 %% Plot the data
990

991

992 subplot(3,3,1);
993 plot(disp_mat, stress);
994 xlabel(’Separation [mm]’);
995 ylabel(’Traction [MPa]’);
996 title(’TSLs’);
997

998

999 subplot(3,3,2);
1000 plot(disp_mat, Dm);
1001 xlabel(’Displacement [mm]’);

95

1002 ylabel(’Damage [-]’);
1003 title(’Damage’);
1004

1005 subplot(3,3,3);
1006 plot(x_predicted,y_predicted, x_predicted, target_y);
1007 xlabel(’Displacement [mm]’);
1008 ylabel(’Force [N]’);
1009 title(’F-d curve’);
1010 xlim([0, 50]);
1011 legend (’FE’, ’Experiment’,’Location’,’best’);
1012

1013 subplot(3,3,4);
1014 plot(crackprop_x_predicted,crackprop_y_predicted,target_crackprop_x, ...
1015 crackprop_y_predicted);
1016 xlabel(’Displacement [mm]’);
1017 ylabel(’Crack Propagation [mm]’);
1018 title(’Crack propagation curve’);
1019 xlim([0, 60]);
1020 legend (’FE’, ’Experiment’,’Location’,’best’);
1021

1022

1023 %---- and the input data as well:
1024 params_x=[0.35 0.6];
1025 subplot(3,3,5);
1026 plot(params_x, params(1:2));
1027 xlabel(’TRIAX’);
1028 ylabel(’Initiation stress [MPa]’);
1029 title(’Initiation stress vs. TRIAX’);
1030

1031

1032 subplot(3,3,6);
1033 plot(params_x, params(3:4));
1034 xlabel(’TRIAX’);
1035 ylabel(’d2 [mm]’);
1036 title(’d2 vs. TRIAX’);
1037

1038

1039 % subplot(3,3,7);
1040 % plot(params_x, params(5:6));
1041 % xlabel(’TRIAX’);
1042 % ylabel(’d3 [mm]’);
1043 % title(’d3 vs. TRIAX’);
1044

1045

1046 subplot(3,3,8);
1047 plot(error_xvalues,error_array);
1048 xlabel(’Number of iterations’);
1049 ylabel(’Error [%]’);
1050 title(’Global min.error’);
1051

1052 subplot(3,3,9);
1053 plot(error_xvalues2,error_array2);
1054 xlabel(’Number of iterations’);
1055 ylabel(’Error [%]’);
1056 title(’Error per run’);
1057

1058 % Set the background color of the whole figure to white
1059 set(gcf, ’Color’, ’w’);

96

Appendix D

Optimization code

The optimization code is provided below. Two separate scripts were used: Python
code that extracts output data from Abaqus for each iteration and a Matlab script
with the Nelder Mead algorithm.

The Python code:

1 # Python script (python2.py) executed by Abaqus
2 try:
3 # Initialize Abaqus
4 from abaqus import *
5 from abaqusConstants import *
6 from caeModules import *
7 from driverUtils import executeOnCaeStartup
8 executeOnCaeStartup()
9

10 # Open CAE file
11 openMdb(pathName=’Optimization2_20.cae’)
12

13 # Open output database
14 o = session.openOdb(name=’job-optimization2.odb’)
15

16 # Create displacement data
17 odb = session.odbs[’job-optimization2.odb’]
18 xy_displacement = xyPlot.XYDataFromHistory(odb=odb, outputVariableName=

’Spatial displacement: U2 PI: rootAssembly Node 1 in NSET SET-42’,
steps=(’Step-1’,), suppressQuery=True, __linkedVpName__=’Viewport:
1’)

19

20 # Create reaction force data
21 xy_reaction_force = xyPlot.XYDataFromHistory(odb=odb,

outputVariableName=’Reaction force: RF2 PI: rootAssembly Node 1 in
NSET SET-42’, steps=(’Step-1’,), suppressQuery=True,
__linkedVpName__=’Viewport: 1’)

22

23 # Combine the displacement and reaction force data
24 combined_data = combine(xy_displacement, xy_reaction_force)
25

26 # Save the combined data to a report
27 session.xyReportOptions.setValues(layout=SEPARATE_TABLES)
28 session.writeXYReport(fileName=’XYdata.rpt’, appendMode=OFF, xyData=(

combined_data,))
29

30 # List of node labels to process

97

31 node_labels = [558, 562, 566, 570, 574, 578, 582, 586, 590, 594, 595]
Add your node labels here

32

33 # Loop through each node label to extract and save data to separate .
txt files

34 for node_label in node_labels:
35 field_output_name = ’CSDMG ASSEMBLY_CRACKSURFACE/

ASSEMBLY_CRACKSURFACE’
36 csdmgData = []
37

38 # Verify the field output exists
39 step = odb.steps[’Step-1’]
40 if field_output_name not in step.frames[0].fieldOutputs:
41 raise ValueError("Field output ’{}’ not found in the output

database".format(field_output_name))
42

43 for frame in step.frames:
44 field_output = frame.fieldOutputs[field_output_name]
45 node_found = False
46 for value in field_output.values:
47 if value.nodeLabel == node_label:
48 csdmgData.append((frame.frameValue, value.data))
49 node_found = True
50 break
51 if not node_found:
52 raise ValueError("Node label {} not found in frame {}".

format(node_label, frame.frameId))
53

54 # Convert csdmgData to XYData format
55 xyCsdmg = xyPlot.XYData(data=csdmgData, sourceDescription=’Field

output:CSDMG ASSEMBLY_CRACKSURFACE/ASSEMBLY_CRACKSURFACE’)
56

57 # Combine the displacement and reaction force data
58 combined_data_node = combine(xy_displacement, xyCsdmg)
59

60 # Write the combined data to a .txt file
61 with open(’XYdata_node_{}.txt’.format(node_label), ’w’) as file:
62 for xy in combined_data_node:
63 file.write(’{} {}\n’.format(xy[0], xy[1]))
64

65 del session.xyDataObjects[xyCsdmg.name]
66

67 except Exception as e:
68 # If an error occurs during simulation, create an error flag file
69 open(’abaqus_error.flag’, ’w’).close()
70 # Print the error message for debugging
71 import traceback
72 traceback.print_exc()
73 raise e

The Matlab code:

1 % clc
2 % clear
3

4 % Load target curve data
5 targetData = table2array(readtable(’objectivecurve.txt’));
6

98

7 % Extract x and y data from target curve
8 target_x = targetData(:, 1);
9 target_y = targetData(:, 2);

10

11 % Define initial guess and tolerance
12 num_points = 4; % Number of points to interpolate
13 x_predicted = linspace(min(target_x), max(target_x), num_points);
14 initialGuess = [415.267684 437.535569 15.267330 3.196011];
15

16 tol = 0.3; % Tolerance for convergence
17 alpha = 1; % Reflection coefficient: standard value = 1
18 gamma = 2; % Expansion coefficient: standard value = 2
19 rho = 0.5; % Contraction coefficient: standard value = 1/2
20 sigma = 0.5; % Shrink coefficient: standard value = 1/2
21 maxIterations = 1500000000;
22

23 % Define lower and upper bounds for each parameter
24 lb = [275 275 0.1 0.1]; % value for min stress must be higher than yield
25 ub = [455 455 40 40]; % value for max stress must be lower than UTS
26

27 % Run Nelder-Mead optimization
28 [optimalParams, minError] = nelderMead(@objective, initialGuess, tol, ...
29 alpha, gamma, rho, sigma, maxIterations, lb, ub);
30

31 % Display the optimal parameters and minimum error
32 disp(’Optimal parameters:’);
33 disp(optimalParams);
34 disp(’Minimum error:’);
35 disp(minError);
36

37 % Calculated Force displacement curve by abaqus:
38 XYdata = importdata(’XYdata.rpt’);
39

40 x_predicted = XYdata.data(:,1);
41 y_predicted = XYdata.data(:,2) * 2 * 0.733;
42

43 target_x = targetData(:, 1);
44 target_y = targetData(:, 2) * 1000;
45 target_y = interp1(target_x, target_y, x_predicted);
46

47 % Plot the target curve and the fitted curve
48 figure;
49 plot(x_predicted, target_y, ’bo’, x_predicted, y_predicted, ’r-’);
50 legend(’Target Data’, ’Optimized Curve’, ’Location’, ’best’);
51 xlabel(’x’);
52 ylabel(’y’);
53 title(’Curve Fitting using Nelder-Mead Optimization’);
54

55 % Define the objective function
56 function error = objective(params)
57 try
58 % Define lower and upper bounds for each parameter
59 lb = [275 275 0.1 0.1]; % value for min stress must be higher
60 % than yield
61 ub = [455 455 40 40]; % value for max stress must be lower than
62 % max. defined point at stress strain diagram
63

64 % Enforce constraints before saving parameters
65 params = enforceConstraints(params, lb, ub);
66

99

67 % Save input parameters to a MAT-file
68 num_points = 2;
69 params_x = [0 1];
70 save(’data.mat’, ’params’, ’params_x’);
71

72 run(’TSLtool.m’);
73

74 % Wait for the completion of the Abaqus simulation
75 while ˜exist(’simulation_complete.flag’, ’file’)
76 pause(1); % Wait for 1 second before checking again
77 end
78

79 % Calculated Force displacement curve by abaqus:
80 system(’abaqus cae noGUI="python2.py"’);
81 pause(60)
82

83 % After running Abaqus
84 if exist(’abaqus_success.flag’, ’file’)
85 % Abaqus ran successfully, proceed with reading the output
86 XYdata = importdata(’XYdata.rpt’);
87

88

89 % Calculated Force displacement curve by abaqus:
90 XYdata = importdata(’XYdata.rpt’);
91 x_predicted = XYdata.data(:,1);
92 y_predicted = XYdata.data(:,2) * 2 * 0.733;
93

94 % Load target curve data
95 targetData = table2array(readtable(’objectivecurve.txt’));
96 target_x = targetData(:, 1);
97 target_y = targetData(:, 2) * 1000;
98 target_y = interp1(target_x, target_y, x_predicted);
99

100

101

102 %________________________________
103 % Calculate the crack propagation vs. displacement diagram:
104 %---
105 node1 = readtable(’XYdata_node_558.txt’); % Read the table
106 % Convert the second column of the table to a numeric array
107 y_values_1 = node1{:, 2};
108 index_1 = find(y_values_1 == 1, 1, ’first’);
109 % Get the corresponding x-value
110 corresponding_x_1 = node1{index_1, 1};
111

112 %---
113

114 node2 = readtable(’XYdata_node_562.txt’); % Read the table
115 % Convert the second column of the table to a numeric array
116 y_values_2 = node2{:, 2};
117 index_2 = find(y_values_2 == 1, 1, ’first’);
118 % Get the corresponding x-value
119 corresponding_x_2 = node2{index_2, 1};
120

121 %---
122 node3 = readtable(’XYdata_node_566.txt’); % Read the table
123 % Convert the second column of the table to a numeric array
124 y_values_3 = node3{:, 2};
125 index_3 = find(y_values_3 == 1, 1, ’first’);
126 % Get the corresponding x-value

100

127 corresponding_x_3 = node3{index_3, 1};
128

129 %---
130 node4 = readtable(’XYdata_node_570.txt’); % Read the table
131 % Convert the second column of the table to a numeric array
132 y_values_4 = node4{:, 2};
133 index_4 = find(y_values_4 == 1, 1, ’first’);
134 % Get the corresponding x-value
135 corresponding_x_4 = node4{index_4, 1};
136

137 %---
138 node5 = readtable(’XYdata_node_574.txt’); % Read the table
139 % Convert the second column of the table to a numeric array
140 y_values_5 = node5{:, 2};
141 index_5 = find(y_values_5 == 1, 1, ’first’);
142 % Get the corresponding x-value
143 corresponding_x_5 = node5{index_5, 1};
144

145 %---
146 node6 = readtable(’XYdata_node_578.txt’); % Read the table
147 % Convert the second column of the table to a numeric array
148 y_values_6 = node6{:, 2};
149 index_6 = find(y_values_6 == 1, 1, ’first’);
150 % Get the corresponding x-value
151 corresponding_x_6 = node6{index_6, 1};
152

153 %---
154 node7 = readtable(’XYdata_node_582.txt’); % Read the table
155 % Convert the second column of the table to a numeric array
156 y_values_7 = node7{:, 2};
157 index_7 = find(y_values_7 == 1, 1, ’first’);
158 % Get the corresponding x-value
159 corresponding_x_7 = node7{index_7, 1};
160

161 %---
162 node8 = readtable(’XYdata_node_586.txt’); % Read the table
163 % Convert the second column of the table to a numeric array
164 y_values_8 = node8{:, 2};
165 index_8 = find(y_values_8 == 1, 1, ’first’);
166 % Get the corresponding x-value
167 corresponding_x_8 = node8{index_8, 1};
168

169 %---
170 node9 = readtable(’XYdata_node_590.txt’); % Read the table
171 % Convert the second column of the table to a numeric array
172 y_values_9 = node9{:, 2};
173 index_9 = find(y_values_9 == 1, 1, ’first’);
174 % Get the corresponding x-value
175 corresponding_x_9 = node9{index_9, 1};
176

177 %---
178 node10 = readtable(’XYdata_node_594.txt’); % Read the table
179 % Convert the second column of the table to a numeric array
180 y_values_10 = node10{:, 2};
181 index_10 = find(y_values_10 == 1, 1, ’first’);
182 % Get the corresponding x-value
183 corresponding_x_10 = node10{index_10, 1};
184

185 %---
186 node11 = readtable(’XYdata_node_595.txt’); % Read the table

101

187 % Convert the second column of the table to a numeric array
188 y_values_11 = node11{:, 2};
189 index_11 = find(y_values_11 == 1, 1, ’first’);
190 % Get the corresponding x-value
191 corresponding_x_11 = node11{index_11, 1};
192

193

194

195

196 %---
197 % Calculated crack propagation- displacement curve by abaqus:
198 crackprop_y_predicted=[5 20 40 60 80 100 120 140 160 180];
199 crackprop_x_predicted=[corresponding_x_2 corresponding_x_3 ...
200 corresponding_x_4 corresponding_x_5 corresponding_x_6 ...
201 corresponding_x_7 corresponding_x_8 corresponding_x_9 ...
202 corresponding_x_10 corresponding_x_11];
203

204

205

206

207 % Load target curve data
208 targetData2 = table2array(readtable(’objectivecurve2.txt’));
209

210 % Extract x and y data from target curve
211 target_crackprop_x = targetData2(:, 1);
212 target_crackprop_y = targetData2(:, 2);
213 target_crackprop_x = interp1(target_crackprop_y, ...
214 target_crackprop_x, crackprop_y_predicted);
215 target_crackprop_x = target_crackprop_x(1:8);
216

217

218 if length(crackprop_x_predicted)> 8
219 crackprop_x_predicted = crackprop_x_predicted...
220 (1:length(target_crackprop_x));
221 end
222

223 penalty = 0;
224 if length(crackprop_x_predicted)< length(target_crackprop_x)
225 target_crackprop_x = target_crackprop_x...
226 (1:length(crackprop_x_predicted));
227 penalty = 20;
228 end
229

230 % if params(1)>params(2)
231 % penalty = 100;
232 % end
233 %
234 % if params(3)<params(4)
235 % penalty = 100;
236 % end
237

238

239 crackprop_y_predicted=crackprop_y_predicted...
240 (1:length(crackprop_x_predicted));
241

242

243 % Calculate error
244 error1 = (sum(abs(target_y-y_predicted))/sum(target_y)*100);
245 error2 = (sum(abs(target_crackprop_x-crackprop_x_predicted))...
246 / sum(target_crackprop_x) * 100);

102

247

248 error = error1 + error2 + penalty;
249

250 else
251 % Abaqus encountered an error, set error value to a high value
252 error = 100;
253 end
254

255 catch
256 % If an error occurs in Matlab, set error to a high value
257 error = 100;
258 end
259 end
260

261

262 %%
263 function [optimalParams, minError] = nelderMead(objective, initialGuess,

...
264 tol, alpha, gamma, rho, sigma, maxIterations, lb, ub)
265 % Define initial simplex
266 n = length(initialGuess);
267 simplex = zeros(n+1, n);
268

269 % Adjust initial guess to stay within bounds
270 initialGuess = max(min(initialGuess, ub), lb);
271 simplex(1,:) = initialGuess;
272

273 for i = 1:n
274 % Perturb each dimension of the initial guess by 0.25 times
275 % its value
276 perturbation = 0.25 * initialGuess(i);
277 simplex(i+1,:) = initialGuess;
278 simplex(i+1,i) = simplex(i+1,i) + perturbation;
279 % Ensure points stay within bounds and satisfy constraints
280 simplex(i+1,:) = enforceConstraints(simplex(i+1,:), lb, ub);
281 end
282

283 % Evaluate objective function for initial simplex
284 f = zeros(n+1, 1);
285 for i = 1:n+1
286 f(i) = objective(simplex(i, :));
287 end
288

289 % Start iterations
290 for iter = 1:maxIterations
291 % Sort the simplex based on objective function values
292 [f, order] = sort(f);
293 simplex = simplex(order,:);
294

295 % Compute centroid of best vertices (excluding worst)
296 x_0 = mean(simplex(1:end-1,:), 1);
297

298 % Reflection
299 x_r = x_0 + alpha*(x_0 - simplex(end,:));
300 x_r = enforceConstraints(x_r, lb, ub); % Ensure reflection stays
301 % within bounds and constraints
302 f_r = objective(x_r);
303

304 if f_r < f(1)
305 % Expansion

103

306 x_e = x_0 + gamma*(x_r - x_0);
307 x_e = enforceConstraints(x_e, lb, ub); % Ensure expansion
308 % stays within bounds and constraints
309 f_e = objective(x_e);
310

311 if f_e < f_r
312 simplex(end,:) = x_e;
313 f(end) = f_e;
314 else
315 simplex(end,:) = x_r;
316 f(end) = f_r;
317 end
318 elseif f_r >= f(1) && f_r < f(end-1)
319 simplex(end,:) = x_r;
320 f(end) = f_r;
321 elseif f_r >= f(end-1) && f_r < f(end)
322 % Outside contraction
323 x_c = x_0 + rho*(x_r - x_0);
324 x_c = enforceConstraints(x_c, lb, ub); % Ensure contraction
325 % stays within bounds and constraints
326 f_c = objective(x_c);
327

328 if f_c <= f_r
329 simplex(end,:) = x_c;
330 f(end) = f_c;
331 else
332 % Shrink
333 best_vertex = simplex(1,:);
334 for i = 2:n+1
335 simplex(i,:) = best_vertex + sigma*(simplex(i,:) - ...
336 best_vertex);
337 % Ensure shrink stays within bounds and constraints
338 simplex(i,:) = enforceConstraints(simplex(i,:), lb,ub);
339 f(i) = objective(simplex(i,:));
340 end
341 end
342 else
343 % Inside contraction
344 x_c = x_0 - 0.5*(x_r - x_0);
345 % Ensure contraction stays within bounds and constraints
346 x_c = enforceConstraints(x_c, lb, ub);
347 f_c = objective(x_c);
348

349 if f_c < f(end)
350 simplex(end,:) = x_c;
351 f(end) = f_c;
352 else
353 % Shrink
354 best_vertex = simplex(1,:);
355 for i = 2:n+1
356 simplex(i,:) = best_vertex + sigma*(simplex(i,:)...
357 - best_vertex);
358 % Ensure shrink stays within bounds and constraints
359 simplex(i,:) = enforceConstraints(simplex(i,:), ...
360 lb, ub);
361 f(i) = objective(simplex(i,:));
362 end
363 end
364 end
365

104

366

367 %write error
368 minError = f(1);
369 % Open the text file in append mode (so existing contents are
370 % not overwritten)
371 fileID = fopen(’minError.txt’, ’a’);
372

373 % Check if the file was opened successfully
374 if fileID == -1
375 error(’Unable to open file for writing.’);
376 end
377

378 % Write the value to the file
379 fprintf(fileID, ’%.2f\n’, minError);
380

381 % Close the file
382 fclose(fileID);
383

384 %error_array = importdata(’minError.txt’);
385 %error_xvalues = 1:numel(error_array);
386

387

388 % Check convergence based on change in minimum error
389 if minError < 3
390 break; % Terminate optimization if change in minimum error is
391 % below tolerance
392 end
393

394 end
395

396 % Return optimal parameters and error
397 optimalParams = simplex(1,:);
398 minError = f(1);
399 end
400

401 function params = enforceConstraints(params, lb, ub)
402 % Ensure parameters stay within bounds
403 params = max(min(params, ub), lb);
404 % Ensure params(1) <= params(2)
405 % params(1) = min(params(1), params(2));
406 %
407 % % Ensure params(4) <= params(3)
408 % params(4) = min(params(3), params(4));
409 end

105

	2af7b8ba-5833-4859-91a2-ec0413ac14d5.pdf
	Literature review
	Background on ductile fracture
	Numerical modelling of cracks
	Stress state
	Summary
	Research overview

	TSL implementation
	Implementation of a stress-state invariant TSL
	Implementation of stress-state-dependent TSLs

	TSL optimization
	Benchmark experiment
	Optimization study

	Results
	Optimization results
	Comparison to a single TSL
	Mesh sensitivity
	Unconstrained optimization

	Discussion and future outlook
	Discussion
	Conclusions
	Limitations
	Recommendations

	Abaqus settings
	Subroutine code
	Matlab code
	Optimization code

