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Summary

In potentially hazardous industries, human and management influences are widely recognized as
more fundamental causes to accidents, than random technical failures. Often, engineering systems
have been drifting towards a high risk state for a long time, before an“unsafe act” triggered the
accident. For safety management the variable of interest is the human error probability (HEP)
and the goal of safety management systems (SMS) is to design management actions that keep the
HEP within acceptable bounds. However, models representing the intricate and dynamic relations
between the human and technical components of the system are in their early stages.

Common probabilistic risk analysis (PRA) tools for modeling risks associated with the techni-
cal components of the system are event trees (ETs) and fault trees (FTs). However, they have
restricted capacities to incorporate uncertainties and to account for common cause failures. For
this reason they are inappropriate to model human performance. Bayesian belief nets (BBNs)
seem to be a promising tool to integrate human and technical influences on safety in a single
model. They are a type of probabilistic graphical model consisting of nodes (variables) and arcs
(influences). Their main use is to make inferences about uncertain states when information is
limited and additionally ETs and FTs can be converted in BBNs so as to build a homogeneous
model. However, a main short coming is the generally poor reflection of dynamic relationships,
which makes it difficult to observe the implications of management actions on the future. Up to
now the applications of dynamic BBNs have been very limited and the advantages and disadvan-
tages of this methodology still have to be explored. This leads to the following research question:

How can dynamic nonparametric BBNs support the design of improved SMS by enabling a
monitoring of the effect of management actions on safety?

However, it is very difficult to realistically define and quantify human factors and their dy-
namic influences, because they are not measurable. In general so-called proxies have to be used:
operational definitions that capture a part of the human factor, which is considered to be im-
portant for a particular application. Since a real application requires a wide literature search
including accident reports and human reliability data bases as well as consultation with experts,
it is beyond the scope of this research. Therefore the adopted approach is to quantify a delimited
demonstration case with an experiment and to explore, on the basis of this case, the potential
of dynamic nonparametric BBNs to (1) realistically reflect human factors and (2) to design and
monitor management influences on them.

The demonstration model represents, in a strongly demarcated system, the qualitative and
quantitative relationship between the management action training and the human factor knowl-
edge over time. The experiment constitutes the system: Students play four rounds of the online
puzzling game 3Dlogic and the level they were assigned to complete is interpreted as training,
while a normalization of the required time to complete this level is interpreted as knowledge. This
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interpretation accentuates how difficult it is to measure these kind of factors and how case specific
operational definitions are.

Based on the data gathered from the experiment, the relationship between training and knowl-
edge has been modeled for four time steps. In principle the model could be extended to arbitrarily
many time steps, but the nodes and arcs of each step need to be quantified individually, which
sets practical limitations.

The software Uninet enables the analyst to easily quantify the model based on the raw data
in a mathematically sound way. However, several structures may be statistically valid and it is up
to the analyst to decide which nodes should be connected and in what direction the influence is.
The “best” of all (statistically) valid structures is the one suiting the interests and needs of the
user most. For the case treated in this thesis, there are few grounds for making such a choice.
Instead, it has been investigated what the consequences for the model output for two different
plausible structures.

BBNs can be used in two ways to design management actions (1) by using predictive reasoning
and (2) by using diagnostic reasoning. The fact that the model structure depicts cause - effect
relationships in an intuitive manner facilitates the design process. For the first approach, a hy-
pothetical management action is translated to the context of the experiment and implemented in
the model. This is done by conditioning on a certain variable, e.g. conditioning on high training.
The model is updated and the resulting distributions for all other variables are shown. Using this
approach the potential effect of a management action on a human factor can be explored. For
the second approach the desired value of the human factor is prescribed to the model and from
the updated distributions of the other variables it can be inferred what management actions are
necessary to achieve this value. For instance, when conditioning on “high knowledge” the distri-
butions of training shift to higher values as well as leading to the (for this demonstration case
obvious) conclusion that one should train individuals more to make them more knowledgeable.

The output of dynamic nonparametric BBNs is very suitable for the purpose of risk analysis.
The representation of variables in terms of probability distributions reflects the inherent variability
in human performance. It includes an indication of the mean and the variance, which immediately
shows the trend of the influence: does it increase or lower the value of the effect - variable and
how certain is that (roughly)? But moreover, the whole range of possible values is expressed,
which makes extreme values with very low probability visible. Especially in hazardous industries,
it is important that risk models represent events that almost never occur, because their conse-
quences may not be acceptable and/or affordable and need to be mitigated by all means. This
characteristic of BBNs enables the designing of management actions that are especially targeted
at preventing low-probability-high consequence events.

The contribution of the thesis is two-fold. On the one hand the results described above add
to the limited literature of human performance models in risk analysis. On the other hand, it is
described at length how a dynamic nonparametric BBNs can be quantified and validated from
data. To our knowledge, this has not yet been discussed in the literature and may also be of
interest to various other applications in research and the industry.
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Chapter 1

Introduction

The starting point of this research was that human factors have widely been cited as the funda-
mental causes for accidents in high hazard industries demonstrating the need for a wider reaching
risk analysis, which incorporates them in the risk models. Well known cases are e.g. the accident
of the chemical plant in Bhopal, India (1984) [Marais et al., 2006], the deepwater horizon blow-out
in the gulf of Mexico (2010) [National Commission on the BP Deepwater Horizon Oil Spill and
Offshore Drilling, 2011] or the Fukushima Daiichi nuclear disaster (2011) [Los Angeles Times,
2011],

Before describing the problem and objectives of the research in more detail, the following
section introduces the concepts of safety, risk and uncertainty and indicates the position of the
research within the field of safety science.

1.1 Safety, Risk and Uncertainty

Safety is the “condition of being protected from [hazards], harm or risk” [Oxford University Press,
2005]. Risk is a closely related concept. Throughout the literature the term is used in many
different ways, but (probably) all definitions include the two dimensions extent of consequence
and probability of occurrence. In the most basic version it is the product of the two.

Risk management is the process of keeping hazards under control, i.e. reducing or eliminating
the probability for events with unacceptable consequences. However, society’s perception of risk
generally does not agree with the basic definition above. Besides on consequence and probability
of a risk event, the willingness to accept certain risks seems to depend on additional, often non-
quantifiable aspects. Uncertainty, potential extent of damage, involuntariness or uncontrollability
have been identified as major factors. For example, the risk associated with a fatal accident
of a nuclear power plant is much smaller than the one associated with a fatal traffic accident.
Nonetheless, it is not necessarily more accepted by society, which leads to the conclusion that the
notion of risk is more complex. [Ale, 2009]

For (political) decision-making concerning potentially hazardous industries, such as nuclear or
oil and gas, it is important that all actors have the same understanding of the risks. However,
various actors, e.g. companies, governmental agencies, environmental organizations and residents,
are likely to have different interests and therefore have strong motives to question the information
presented by other parties. In particular they may not have the same opinion on what is acceptable
or not and including this rather intangible concept in the definition of risk makes it vulnerable
to contesting. The various actors are likely to question the estimated risk presented by the
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2 INTRODUCTION

opposing party for the activity under discussion, because it serves as a validation for the claim of
safety or to demonstrate the need for further safety improvement, which is often the controversial
subject. This is a classical dilemma of multi-actor decision making and a solution is to let the
parties negotiate on the “correct” knowledge [de Bruijn and ten Heuvelhof, 2008]. Consequently,
whether an activity is acceptable or not and what the role of risk and other factors is needs to be
discussed and agreed upon by the actors involved.

Risk analysts can contribute by providing objective and incontestable information regarding
risks, which are the extent of consequence and the probability of occurrence, and leave other
aspects open for debate. However, for complex technological system, the computation of conse-
quences and their associated probabilities is not trivial. The system’s behavior is usually deter-
mined by an intricate combination technical, scientific and inter-personal components and complex
mathematical models are required to reflect that, although it is not possible to accurately quantify
all the relevant elements and relationships [Enserink et al., 2010]. Admittedly, all models are
“false” and their predictive quality depends on how uncertainties about the elements as well as
the structure are treated.

The notion of uncertainty is tight-knit with the notion of risk. Uncertainty “is that what
disappears when we become certain” [Bedford and Cooke, 2001, p.19]. In a practical context,
certainty is achieved through observation or, said differently, by learning about the system. How-
ever, not all kinds of uncertainty can be observed; there is a distinction between aleatory and
epistemic uncertainties. Aleatory uncertainties refer to the natural variability of the system; they
cannot be learned. In contrast, epistemic uncertainties refer to lack of knowledge of the system.
A quantitative measure of uncertainty is probability. Having absolutely no clue about the outcome
of an event can be interpreted as a uniform distribution. Knowledge about the event is reflected
by shape and range of the distribution. [Bedford and Cooke, 2001]

Human factors, the topic of this thesis, include both types of uncertainty. At least for the
purpose of modeling human factors, the following categorization is useful1. Predicting the per-
formance of a random individual in a random situation is impossible. Indeed, a significant part of
human behavior is cryptic to bystanders: genetic endowments and previous experiences of life are
probably the main determinants. This is the aleatory uncertainty. However, we could learn about
certain preconditions of the individual that affect his/her performance, e.g. knowledge, stress level
or fatigue.

For models in the field of safety management the variable of interest is the probability of
human error and how it can be controlled brings us back to the research problem.

1.2 Research Problem

Risk management of hazardous industries quests for “no-accident-is-tolerable” strategies [Ras-
mussen, 1997]. In spite of all efforts, low probability high-consequence accidents, such as the
recent blowout in the Gulf of Mexico and the nuclear disaster in Fukushima, do not appear to
occur less frequently, while their consequences appear to increase. This indicates that current
approaches to risk management do not render the goal of zero accidents possible and improved
safety management systems (SMS), i.e. systems designed to manage risks [Ale, 2009] are of great
social relevance.

1cf. [Bedford and Cooke, 2001, section 2.6] for an example on how the same uncertainty may be classified
differently for different models with different goals.



1.2. RESEARCH PROBLEM 3

It is recognized that a complex combination of human and organizational factors are often
more fundamental causes of major accidents than random technical failures. Hence, there is a need
to integrate those factors with the technical aspects of risk models in order to achieve a wider-
reaching risk analysis and assessment (e.g. [Ale et al., 2012,Mohaghegh et al., 2009]). Moreover,
management actions have an influence on human and organizational factors contributing to fatal
accidents. However, it is extremely difficult to identify underlying failures in management, since
they may not be closely related in time and space to the event and a systematic model. To see the
broad picture, it is indispensable to monitor the effectiveness of management actions to improve
safety [Lin, 2011].

Popular probabilistic risk assessment (PRA) methods, such as event trees (ET) and fault trees
(FT), are very useful when modeling risks associated with technical systems, but have very limited
potential to model human and organizational factors [Mohaghegh et al., 2009]. Bayesian belief
nets (BBNs) seem to be a promising tool to integrate human and technical influences on safety
in a single model, because the variables are quantified with probability distributions which allows
to explicitly model uncertainties. A recent application is CATS [Ale et al., 2009a], a model for air
transport safety. However, this model is static and therefore not able to reflect certain important
influences. For instance, the effect of management actions to control risks and the personal risk
perception of an operator are inherently dependent on time. Management actions may only have
visible outcomes after a couple of months and the personal risk perception is generally higher
shortly after an accident.

A support tool that allows monitoring of management actions on safety and captures human
and organizational influences more realistically is still lacking, which leads to the following problem
statement:

As yet, the possibilities to model human and organizational factors as part of an integrated
risk model are limited, which makes it difficult to monitor the effect of specific management
actions on safety.

Recent mathematical developments theoretically allow for dynamic BBNs [Kurowicka and
Cooke, 2006]. Up to the present, applications of dynamic BBNs are not well-known and the
advantages as well as disadvantages of this methodology still have to be explored. Further,
guidelines or consideration for the validation process of such a model are needed. Besides these
rather mathematical issues, the knowledge gaps also include taxonomies of human factors. A
realistic set of human factors, including their dependences in possibly very different time frames,
as well feedback loops has not yet been established. The identification of the various factors from
different levels in the organization, external pressures on the company or individual career planning
on the safety culture is needed to establish such a list. Additionally, it is not clear if and to what
extent the model can be used to design management actions and to test the effect of management
actions.

Based on the problem statement and the identified knowledge gaps, the following research
objective is formulated:

To introduce the methodology of dynamic nonparametric BBNs as a useful tool to design
improved SMS through monitoring the effect of management actions on safety

The project aims to deliver a list of considerations for building and using a realistic model that
emphasizes human and organizational influences as well as the effect of management actions on
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safety. This list is based on the analysis on a review of previous models and of a demonstration
model that exemplifies how dynamic nonparametric Bayesian belief nets can be used to monitor
the effect of management actions on human performance. The following section describes the
research questions and the research approach.

1.3 Research Questions and Approach

From the above discussion and formulation of the research objective, the main research question is:

How can dynamic nonparametric BBNs support the design of improved SMS by enabling a
monitoring of the effect of management actions on safety?

To be able to answer this question, four sub-questions are determined and guide the research
process. They are stated below and the research methods as well as data requirements are
described for each of them.

1. Why is monitoring the effect of management actions relevant to improve safety of engineering
systems?

This sub-question is answered by means of desk research. As a first step, the impact of
human and organizational factors on system risk and how management actions can influence
them is analyzed.

2. How can human factors and management influences be incorporated in technical risk models?

Also this sub-question is answered through desk research. Two existing models are known
to emphasize the human and organizational influences on safety: a causal model for air
transport safety (CATS) and a socio-technical risk analysis (SoTeRiA). Both models are
reviewed, their main characteristics highlighted and their limitations pointed out. As a
second step, taxonomies of human factors are described and existing time dependences and
feedback loops between management actions and human factors are explored. Finally, it is
discussed why human factors are particularly difficult to operationalize and to model in a
quantitative way.

3. What is the added value of dynamic nonparametric BBNs when modeling human factors
and management actions?

As a first step, the literature is reviewed to explore the current state of the art of dynamic
nonparametric BBNs. Then, on the basis of an experiment with 24 university students, a
demonstration model is built consisting of one management action (training) and one human
factor (knowledge). This model is used to discuss the potential of dynamic nonparametric
Bayesian belief nets to realistically represent human factors.

4. How can management actions be developed with dynamic nonparametric BBNs?

This last sub-question is answered by analyzing the demonstration model and exploring its
output when implementing hypothetical management actions. Furthermore, the limitations
of the methodology are discussed and it is indicated what has to be taken into account
when extending the demonstration model to a realistic model. Finally, guidelines on how to
validate a realistic model are given. This is exemplified on the demonstration model.
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Reflecting on the method and the deliverables of this proposal, the following limitations should
be considered. This project aims to put forth a new scientific methodology to improve SMS by
facilitating monitoring of management actions. Hence, it suggests steps that could be taken to
design improved safety system, but it cannot give advice on immediate actions.

Finally, following the proposed considerations to build and use a management risk model based
on the introduced methodology may not be sufficient to construct a good realistic model. Elabo-
rate industry specific research and thorough verification and validation of the realistic model will
be necessary. Moreover, the development of successful management actions is not a guaranteed
result.

1.4 Structure of the Thesis

The reminder of this thesis is organized as follows. Chapter 2 carries out a review on human
error and its role for safety in high-hazard engineering systems. Chapter 3 provides the theoretical
background for the risk analysis methods that are mentioned and used in this project. Most im-
portantly, dynamic nonparametric Bayesian belief nets (BBNs) are introduced in this chapter. In
chapter 4, hitherto existing achievements in human factor modeling from other projects are de-
scribed. Challenges that arise when attempting to operationalize human factors and to find causal
relations between them are discussed in detail. Chapter 5 motivates the need for an experiment
to quantify a demonstration model. The data generated by the experiment are presented and
discussed. Then, chapter 6 engages in the building process of a dynamic nonparametric Bayesian
belief net and illustrates how the model can be used. Finally, conclusions are given in chapter 7.





Chapter 2

Human Error in Engineering
Systems

High-risk industries are complex socio-technical systems where humans have been identified as the
‘weakest link’ [Turner and Pidgeon, 1978]. Unsafe acts by individuals can be categorized broadly
as either errors or violations [Reason, 1990]. Both may occur in various tasks, such as regulation,
administration, management, design, installation, maintenance, inspection or operation. When
attempting to control high-hazard systems to err may be fatal. However, to err is human and, to
a certain extent, inevitable. Therefore, a sensible approach to control risks is not only targeted at
avoiding errors, but also at early error detection and consequence mitigation. The next sections
present a framework of aberrant behavior proposed by [Reason, 1990].

2.1 Classification of Human Error

2.1.1 Intended and Unintended Actions

There are many working definitions of human error. The classification of human error described
here is based on the definition by Reason, who links the notion of error to the notion of intention,
that is the intention to do something right: Human error is “a generic term to encompass all
those occasions in which a planned sequence of mental or physical activities fails to achieve its
intended outcome, and when these failures cannot be attributed to the intervention of some chance
agency” [Reason, 1990, p.9] . This definition includes two kinds of failures: (1) Slips or lapses
are failures to reach a predefined goal (e.g. a calculation error). They are unintended and occur
during the execution of a task. Usually the actual execution deviates from the intended execution,
if a largely automated task is to be performed in a very familiar setting while being distracted from
the job. For this reason slips and lapses are also termed as execution failures. (2) Mistakes, or
planning failures, arise from inadequate planning. In other words, they appear when an individual
correctly carries out an intended action, while this intended action is inappropriate to achieve the
desired outcomes. Mistakes originate from higher-level cognitive processes than execution failures.
More precisely, they are failures in the judgmental and inferential processes to select an objective
or the appropriate means to achieve it. Consequently, these kind of errors are much harder to
detect that execution failures. [Reason, 1990]

Contrary to errors, violations are deliberate actions that deviate from prescribed procedures,

7
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codes of practice, rules and the like, but generally do not have malevolent intentions 1. Of course
there are violations that have no prior intentions, so-called erroneous violations, and which can
be attributed to the class of unintentional errors. More important are so-called routine violations
and exceptional violations. Routine violations have two underlying causes. On one hand it is in
human nature to take paths of least effort. On the other hand production targets may be set
unrealistically high, so that they cannot be met while complying with all safety procedures at the
same time. As a result, safety procedures will be violated routinely, if they look rather trivial and
their transgression is rarely tracked and punished. Exceptional violations occur when the system is
in an exceptional state creating double binds making it inevitable for the operator to violate, even
though he has only good intentions, at least one procedure. In this case , the operator deems the
violation necessary to ensure safe operation or to perform damage control. [Reason, 1990]

The above classification rests upon the different ways the process to achieve a desired outcome
may fail. It indicates that errors are related to individual cognitive processes, more precisely to
information processing processes, whereas violations have a social context. The differentiation
between violations and the few error types is summarized in figure 2.1.

Figure 2.1: Classification of Unsafe Acts (source: [Reason, 1990])

2.1.2 Active and Latent Errors

A different way to distinguish errors is according to their appearance in the system: as active or
as latent errors. This distinction is helpful to understand how accidents arise as concurrence of
many human faults.

Active errors have immediate, visible consequences and are typically committed by front line
operators, e.g. control room operators. Latent errors, on the contrary, are primarily associated
with high-level decision makers and managers. They are dormant for a long time before an accident
sequence begins and only become evident when they coincide with other faults. Normally, large
scale accidents are released by active errors and or local triggering events (e.g. weather), but the
root causes have long been present. In other words, active errors are only the tip of the iceberg;
the latent errors are the underlying causes of man-made disasters. Latent errors may drive systems
in exceptional states and contribute to the incidence of active errors.

1Violations that intent to damage the system are sabotage. Sabotage did not play a role in large-scale accidents
and for this reason is not included in the classification.
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Accidents rarely evolve along predictable lines, even though they may begin in a conventional
way. If they would evolve along predictable lines, there would be no difficulty to prevent them.
Every accident is unique and absolutely novel. For this reason, the operator’s hitherto existing
experience cannot help him to cope with the out-of-tolerance system state and he is bound to
make (active) errors. This means that active errors, which eventually release an accident, are
“in large part the delayed effects of system design failures” [Reason, 1990, p.183]. Evidently,
many latent errors may be categorized as organizational errors [Stewart and Melchers, 1997], i.e.
failures arising primarily at the managerial and organizational level and combining adversely with
local triggering events as well as the active failures of individuals at the execution level [Reason,
1997].

In order to improve system safety it is thus more effective to neutralize latent errors, than active
errors: They are much longer “alive” and attackable than active errors, which furthermore may be
impossible to eliminate when significant latent errors are present. Where within the organization
latent errors arise and how they propagate is elucidated in the following section.

2.2 Error creation and propagation in organizations

There are two well-known, high-level conceptual models of error propagation in engineering sys-
tems. The first is put forward by Reason [Reason, 1990, Reason, 1995], the second by Ras-
mussen [Rasmussen, 1997]. While the models show considerably many similarities, there are a
few differences. Reason’s model focuses on organizational levels within the company, but also
incorporates possibly external factors with psychological influence on the individuals. Rasmussen’s
model has broader scope in the sense that it includes organizational levels up to regulators and
the government. Nevertheless, it only contains the organizational levels and no other elements.
The two models are not contradictory; if anything, they complement each other providing a wider
understanding of error propagation and its consequences. First, we describe the elements of both
models, then we discuss some dominant error propagation mechanisms.

2.2.1 Conceptual Framework of Error Propagation

Reason demonstrates how errors propagate through an organization using five basic ‘building
blocks’ which are present in any complex system. The building blocks are displayed as five
individual planes in figure 2.2a: decision makers, line management, preconditions, productive
activities and defenses. The decision makers set the company goals and choose the means to
reach them. They allocate (finite) resources, such as money, equipment, people or time in order
to maximize productivity as well as safety. On the next level are the line managers, who are
for example responsible for operations, training or maintenance and implement the strategies
formulated by the decision makers. The next plane constitutes preconditions, such as reliable
equipment, attitude, schedules, motivation or environmental conditions. The productive activities
are the interactions of the people at the front line with the technical components of the system
creating the product of the company. Finally, potentially hazardous industries have a number of
(automated) defenses to protect individuals and machines against any foreseeable damage.

Rasmussen claims that safety depends on the control of the work-processes on all levels of
the socio-technical system, as depicted in figure 2.2b. Half of the levels can be found again in
Reason’s model: The company level corresponds to the decision maker plane, the management
level resembles the line management plane, and the work level is the same as the productive activ-
ities. Additionally, Rasmussen considers the government as the top level, where society seeks to
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oversee safety through the legal system and by setting boundaries of acceptable human and soci-
etal conditions. On the next level authorities, industrial associations and workers’ unions interpret
the legislation and implement it in rules for specific groups of employees. On the company level,
these rules are once more interpreted and implemented, this time in the context of the company
and its goals. High level decision makers choose suitable risk control measures and allocate re-
sources. The management, on the subsequent level, has insight in local conditions and processes
and make the company’s objectives operational, including both its production goals as well as its
safety goals. As described above for Reason’s model, management is for example responsible for
operational procedures, training or maintenance. Furthermore, Rasmussen’s scheme includes the
level of the staff between the management and the work level. The staff contains the individu-
als who directly interact with the technical components of the system and perform the ‘actions’
on the work level. They execute the standard operating procedures keeping the working process
within the safe limits of operation. Moreover, they have to cope adequately with events that were
unthought of at higher levels and have not been included in procedures or rules [Lin, 2011]. The
work level describes all the actions or processes that directly involve the technical system.

2.2.2 High Level Decision Makers and Management

Some of the decisions high level decision makers and managers on various levels take proof to
be amiss later on. This is an unavoidable part of the management process, since it is human to
be mistaken. Identifying all kinds of random errors that may be committed on the management
level is, just as modeling them, hardly possible; the set of possible errors affecting safety may be
infinite. It is, however, worthwhile to consider the context in which decisions are made.

Managers on all levels have to unite two competing goals, safety and high productivity [Reason,
1990], while their performance of doing so is monitored. Commonly, key performance indicators
(KPI) are used to observe and guide management practices. KPIs are performance measures of
the system under control, and such, indirectly of the managers in charge. However, KPIs for safety
are mostly probabilistic making it hard to prove if management has met the required safety goal.
This is particularly true for large-scale disasters, whose probability is extremely low so that they
are high unlikely to occur during the period a manager is in charge [Ale et al., 2012]. For this
reason, managers may be more motivated to control short-term risks and direct efforts towards
productivity, as they are immediately visible in KPIs, but fail to mitigate the risk of rare disaster.
Being able to monitor all management actions that aim to control risks, can be a crucial incentive
for managers to mitigate low probability risks. Moreover, financial pressure inevitably creates a bias
in decision making in favor of time- and cost-savings at the cost of safety [National Commission
on the BP Deepwater Horizon Oil Spill and Offshore Drilling, 2011] and can, together with other
organizational factors, drive engineering systems systematically towards a high risk state where
almost any abnormal behavior could release an accident [Marais et al., 2006], [Rasmussen, 1997].

2.2.3 Lower level Management, Preconditions, Unsafe Acts and Defenses

The relations between lower level management, preconditions, unsafe acts and defenses are much
more direct and concrete than the influence of higher level management.

Failures in lower level management affect for example the quality of training or the suitabil-
ity of procedures and schedules or other preconditions for the staff. The impact of “bad” line
management on preconditions may have various consequences; there is a so-called many-to-many
mapping. Deficiencies in training can manifest themselves in undue time pressure, inappropriate
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perception of hazards, ignorance of the system, motivational difficulties etc. Likewise, undue
time pressure can be due to poor procedures, poor scheduling, deficiencies in skills, knowledge or
maintenance inadequacies).

However, unfavorable preconditions need not necessarily result from deficient line management.
They may be out of the company’s reach, but be brought from outside to the workspace, e.g.
being stressed, motivational issues, depression, harmful psychological effects or negative personal
life effects (separations, bereavements, etc.). Between preconditions and the actual human faults
exists a some-to-many mapping: one bad precondition may open the pathway for many unsafe
acts. In this way it can be regarded as a common cause for various failures.

Due to the some-to-many mapping between, remedial efforts upon preventing the recurrence
of unsafe acts are hardly of avail. Some may fall into recognizable classes, e.g. not wearing
safety glasses and can be subjected to targeted safety programs and trainings, but others may be
absolutely unforeseeable. It is more effective to improve the preconditions. Against foreseeable
unsafe acts a number of defenses are generally in place. A defense may simply be personal safety
equipment, e.g. safety glasses, or consist of many redundant automated safety systems, “defenses
in depth”.

2.2.4 Emergence of Accidents

It is widely acknowledged that large scale accidents result from a number of errors, which inde-
pendently would not have been sufficient to cause them. Rasmussen [Rasmussen, 1997] suggests
they are not caused by a number of independent failures and human errors, but by “a system-
atic migration of organizational behavior toward accident under the influence of pressure toward
cost-effectiveness in an aggressive, competitive environment” [Rasmussen, 1997, p.189].

Decisions made by several different actors in the organization are likely to be under the same
kind of competitive stress and are thus not independent of each other. Individuals in the company
make decisions at different times and in different parts of the organization, which together prepare
an accident. The trigger can be a single human act, especially because staff at the front end can
hardly overlook the total picture during their daily operational decision making and are incapable
to judge the state of the multiple defenses conditionally depending on decision taken by other
people in other departments. [Rasmussen, 1997]

2.3 The Detection of Human Errors

The efficacy of error detection is crucially dependent on the immediacy and validity of feedback
information. At low level (execution error), feedback is supplied directly, but at higher levels the
information is unavailable or at least open to many interpretations. According to [Reason, 1990]
there are only three detection modes for human errors: (1) Self-monitoring, (2) environmental
clues and (3) detection by other people. Self-monitoring is based on feedback control: The
deviations of output from an ideal state are fed back to the controlling agency of the brain,
which tries to minimize these discrepancies. This is most effective on the skill level. The most
obvious environmental clue is, if the environment blocks onward processes until the error has been
corrected. This is called a forcing function. Detection by other people is crucial for mistakes.
It appears to be the only way to detect mistakes. Mistakes are hardly detected by the people
failing, since there is no discrepancy between action and intention. A pair of fresh eyes is needed
to expose the inappropriateness of the plan.
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2.4 Chapter Conclusions

This chapter reviewed error classification, error propagation in organizations and the resulting
emergence of accidents. It has been established that various actors at different levels in the orga-
nization are likely to experience the same kind of managerial pressure towards cost-effectiveness.
Hence, their decisions and actions are not independent and may disable several defenses at once.
Managers may be more motivated to control short-term risks and direct efforts towards produc-
tivity, as their success becomes immediately visible, and ignore the risk of rare disaster. Since
it is “rare”, such an event is very unlikely to happen during their time in charge and also their
efforts are not visible and may not be rewarded. A model that monitors the effects of all kinds
of management actions on safety may make these efforts more visible and motivate managers to
more intensely control low-probability risks.

Less abstract, there is an influence from higher level management on the line management,
which in turn affects the preconditions for the staff directly interacting with the system. Because
of the some-to-many mapping of preconditions and unsafe acts by the staff, e.g. inappropriate
training can manifest itself in lack of knowledge, undue time pressure or ignorance of hazards, it
is more effective to attempt to manipulate preconditions instead of trying to prevent individual
unsafe acts. Additionally, resulting unsafe acts may even be completely unforeseeable.

Even though, “bad” preconditions surely influence human performance they need not manifest
themselves in human error; they affect the error probability. Because human error has only the
two outcomes “present” and “absent”, which are random, it is not an optimal concept for risk
modeling. Instead, the term human performance with an associated human error probability
(HEP) is used and preconditions are performance shaping factors which may modify the HEP.





Chapter 3

Methods in Risk Analysis

This chapters reviews the methods commonly used in risk analysis and risk modeling and provides
the theoretical background for the subsequent chapters. First, event and fault tree analyses
are discussed, which are the classical techniques in probabilistic risk analysis (PRA) of technical
components. Then, System Dynamics (SD) described and Bayesian belief nets are introduced. As
opposed to event and fault trees, these two approaches are not especially designed for risk analysis,
but are used to support decision making in various disciplines. Examples of their application in
risk modeling are given in chapter 4.

3.1 Event and Fault Tree Analysis

Event tree (ET) and Fault tree (FT) analysis are the basic tools to analyze and model technical
failure of a system. The first uses forward logic, whereas the latter is based on backward logic.
For this reason they are applied in different situations, or more commonly combined in one model.
This section is based on [Bedford and Cooke, 2001]. Alternative references are given if used.

Event Trees

Accidents can have a wide range of possible outcomes and consequences depending on the course
of events following an abnormal incident [Hanea, 2009]. In other words, an abnormal incident is
associated with a number of risk scenarios resulting from different chains of events. A tool to
identify the full range of risk scenarios are event trees1 (ET).

An event tree is a pictorial representation of the possible sequences of events arising from
an initiating event. An initiating event indicates a deviation from normal operation and poses a
hazard on the system. As stated before, event trees use forward logic. Starting with an initiating
event, they “propagate this event through the system [...] by considering all possible ways in which
it can effect the behavior of the (sub)system” [Bedford and Cooke, 2001, p.99]. This results in
a series of branches from the initial event. Each branch represents a possible chain of events
characterized by the occurrence or non-occurrence of various intermediary events and defines a
risk scenario (which is the end event). The intermediary events are called pivotal events and
represent the functioning or malfunctioning of a (sub)system.2 If all (sub)systems are functioning,

1Event trees (ET) are also called Event Sequence Diagrams (ESD). They are structurally similar to Decision
Trees.

2Generally, more than two outcomes are possible. They have to be distinct and mutually exclusive [Hanea, 2009].
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the system will return to its normal state.

Figure 3.1.shows an exemplary event tree for an explosion in a building. The occurrence
probability of one outcome is calculated by multiplying the frequencies3 following the paths leading
to that outcome. For example, a controlled fire with no alarm results, if a fire starts, the sprinkler
system functions properly and the fire alarm is not active. Its probability of occurrence (per year)
is 10−2 · 0.80 · 0.99 · 0.001 = 8.0 · 10−5.

Figure 3.1: Example of an Event Tree for an Explosion in a Building (source: [Kurowicka, 2011]
probably adapted from [Frantzich, 1998b])

Fault Trees

Fault tree analysis attempts to estimate the reliability of a system by analyzing how its failure
results from a combination of individual (independent) faults. Fault trees (FT) are a pictorial
representation of a system in boolean logic. As opposed to event trees, fault trees use a backward
logic. They relate the occurrence of a so-called top event to its root causes, which are the
occurrences or non-occurrences of basic events. The top event is described as a combination of
intermediate events through logic gates, which in turn are described further in terms of lower
level events until the basic events are reached. A tree structure results (figure 3.2). When the
top event is the system failure, the basic events are the system components. The boolean logic
requires that all events are binary, that is, true or false. This imposes restrictions when modeling
situations where more than two states are important. Most common gates are the AND gate (all
the causes have to be present to induce the event on the next higher level) and the OR gate (at
least one of the causes is present to induce the event on the next higher level) [Hanea, 2009]. An
example is the system power failure (figure 3.2). The power is usually provided by a generator.
If the generator fails then a backup system starts operating, it switches over to a battery. The
fault tree for this example is shown in 3.2. The system power fails if both generator and backup
system fail. The backup system fails, if either switch or battery fail or both.

3The terms probability and frequency are interchangeable. In the frequentist interpretation, the probability of
an event is defined as the limit of its relative frequency in a large number of trials.
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Figure 3.2: Example of a Fault Tree for System Power (source: [Frantzich, 1998a])

The probability of the top event can be computed by applying the laws of boolean algebra and
basic probabilities to the basic events. The probabilities of the basic events are established from
reliability data. For the example in figure 3.2, the probability of system failure can be computed
as follows:

P (system power failure)

= P (generator fails ∩ backup system fails)

= P (generator fails) · P (backup system fails)

= P (generator fails) · P (switch fails ∪ battery fails)

= P (generator fails) · (P (switch fails) + P (battery fails)− P (switch fails) · P (battery fails))

Limitations of Event and Fault Tree Analysis

Many uncertainties cannot be included in event and fault tree analysis [Hanea, 2009], the most
salient limitations are listed in this section. First, uncertainty in the model or the input data
cannot be taken into account using fault trees. If all components (AND gate) fail or at least
one component (OR gate) fails, the top event certainly fails. In reality, the occurrence of certain
events may only increase the probability of the occurrence of another event. Second, the failure
probability of a component is fixed. Uncertainty about this value cannot be incorporated in the
tree. Third, human behavior can only be factor into the trees on a global level, that is not
comprising a variation from person to person, and merely as the failure or success of performing
a specific predefined activity.

More generally, it is difficult to model common cause failures with logical trees [Frantzich,
1998b]. A common cause affects several components, which means that their respective failures
are not independent. In most analyses, the component failures are assumed to be independent to
render computation feasible, even though common cause failures can be very important contribu-
tors to system failure, because they can disable several redundant safety systems at once [Bedford
and Cooke, 2001].

These limitations imply that event and fault tree analyses are not sufficient tools to account
well for the influence of human performance on system reliability. Attempts to combine event and
fault trees with other techniques to overcome these problems is described in chapter 4.



18 METHODS IN RISK ANALYSIS

3.2 Bayesian Belief Nets

Bayesian belief nets (BBNs), also called Bayesian Belief Networks, Bayesian Networks or simply
Bayes Nets, are a type of probabilistic graphical model to represent a high-dimensional probability
distribution [Bedford and Cooke, 2001] They are a tool for making inferences about uncertain
states when the available information is limited. BBNs are used for a wide range of applications,
such as diagnosis in medical science as well as various engineering disciplines, prediction, risk
management, modeling of ecosystems, sensor fusion or monitoring and alerting [Norsys Software
Corp., nd].

3.2.1 Intuition and Introductory Example

Many relationships between variables of a system are not deterministic, but probabilistic. For
example, being a smoker increases the probability of having lung cancer, but it need not cause it.
Probabilistic reasoning may be counterintuitive and requires some calculations with probabilities.
For instance, if we assume that 0.05% of the population have lung cancer, 40% of the population
smokes and the smokers account for 85% of all lung cancer cases, what would be the probability
of having lung cancer when being a smoker? Applying Bayes rule yields

P (L|S) = P (S|L) · P (L)
P (S)

=
0.85 · 0.0005

0.4
≈ 0.001 = 0.1% (3.1)

where S denotes being a smoker and L having lung cancer. Such or similar problems can easily be
estimated using basic knowledge of probability theory, but assessing larger problems on the basis
of intuition is hardly possible.

Bayesian belief nets (BBNs) are a computational tool to reason probabilistically. A BBN
is a directed acyclic graph whose nodes represent random variables and whose arcs indicate a
probabilistic influence from the parent node to the child node. It reflects all the possible states of
the system in form of the joint probability4. The random variables can be discrete or continuous
and their relation rests upon conditional probabilities.

Asia, an exemplary BBN first used by [Lauritzen and Spiegelhalter, 1988], is displayed in figure
3.3. It demonstrates the influences of smoking and traveling to Asia on a patient’s lung conditions.
Each of the eight variables in Asia has two states, yes or no, corresponding to the conditions of
a patient, e.g. being a smoker or not.

The main use of BBNs is updating: Once new evidence on one or more variables is obtained, its
effect can be propagated through the network using Bayes theorem. Evidence can be propagated
both, forward and backward, which allows for predictive as well as diagnostic reasoning. Predictive
reasoning updates the probability for a child node, based on new evidence of a parent node. For
Asia the probability of having lung cancer can be recomputed, if it becomes known that the
patient is a smoker, as in equation 3.1. The other way around, diagnostic reasoning updates
the probability of a parent node, based on new evidence for a child node. The probability of
having lung cancer can be recomputed, if a patient has an abnormal X-ray. For a more extensive
introduction to BBNs the reader is referred to appendix A.

4The joint probability is the probability of events defined in terms of all random variables of the system. It entails
the probabilities of all possible combinations of the states of the variables.
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Figure 3.3: Nodes and arcs of Asia (source: [Lauritzen and Spiegelhalter, 1988])

3.2.2 Mathematical concepts of BBNs

The mathematical theory of discrete and nonparametric-continuous BBNs is summed up in this
section. [Kurowicka and Cooke, 2006] contains most of the concepts presented here. If not,
alternative references are given.

Bayesian Belief Nets are directed acyclic graphs. Figure 3.4 shows a simplistic BBN in which
X influences Y . The joint distribution is specified by the marginal5 distribution of X and the
conditional distribution of Y given X as

f(x, y) = f(x)f(y|x). (3.2)

Figure 3.4: A simplistic BBN

More generally, for n variables, the chain rule allows us to decompose the joint distribution
using only conditional probabilities:

f(x1, x2, ..., x3) = f(x1)

n∏
i=2

f(xi|x1...xi−1). (3.3)

This expression is usually not very compact, since it requires specifying values of an n-dimensional
function. Under conditional independence6 assumptions however, the expression can be simplified.
BBNs represent the joint probability more compactly by specifying a set of conditional indepen-
dence assumptions in the form of a directed acyclic graph as well as a set of probability functions.
The directed graph postulates that each variable is conditionally independent of all predecessors
given its parents. Figure 3.5 shows a BBN on 4 variables where X1, X2 and X3 are the parent set

5individual
6Consider three random variables X, Y and Z. We say that X and Y are conditionally independent given Z, if

we know the value taken by Z, then no information given about Y would change our uncertainty about X [Bedford
and Cooke, 2001]. This implies that P (X|Y,Z) = P (X|Z). Note that it does not imply that X and Y are
independent.
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pa(X4) for node X4. Node X4 is a child for each of the parents. The conditional independence
property allows us to simplify the conditional probability functions, so that we can write

f(xi|x1...xi−1) = f(xi|xpa(i)) (3.4)

for each i. If xi does not have predecessors it is called a source node and f(xi|xpa(i)) = f(xi)
[Hanea, 2008]. This yields

f(x1, x2, ..., x3) = f(x1)

n∏
i=2

f(xi|xpa(i)). (3.5)

Note that we only have to specify functions with dimension not greater than the maximal number
of parents of any node.

Figure 3.5: Parents and child of a BBN on 4 variables

Discrete BBNs

Discrete BBNs consist of discrete random variables. Each variable can be in one of a number of
different states. The states should be exclusive (it is not possible for more than state at once to
hold) and exhaustive (all possible states are specified) [Bedford and Cooke, 2001]. If we want to
model continuous factors, they have to be discretized. The joint distribution is specified by the
marginal distributions of the source nodes and the conditional distributions of all child nodes in
the form of a conditional probability table (CPT). These distributions can be obtained from data,
if available, or alternatively, from expert judgment.

If we consider the BBN from figure 3.5 to have discrete random variables the marginal dis-
tributions of X1, X2 and X3 and the conditional distribution of X4 given X1, X2 and X3 have
to be specified. Table 3.6 shows the CPT for variable X4 assuming each node can take k values,
denoted xji , i = 1, ..., 4, j = 1, ..., k. The resultant CPT contains k4 probability entries. For four
binary variables, e.g. with values yes and no, 16 values need to be specified. For four variables
with 10 states each 10000 values need to be found. This exponentially increasing assessment
burden is one of the weakest points of discrete BBNs. If a model contains random variables of
discrete nature, these have to be discretized. Considering the very high assessment burden, only a
very limited number of discrete values can be allowed or the model has to be simplified drastically
in order to make the quantification of the values feasible. A second serious shortcoming is the
maintainability of discrete BBNs. They are very inflexible with respect to changes in modeling.
For instance, if one parent node is added, all the previous quantification for the children of this
node have to be redone.
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Such disadvantages motivate the use of continuous BBNs for the management risk model.
A promising type of continuous BBN, the non-parametric continuous BBN, is described in the
following section.

As shown in the introductory example (appendix ??), the main use of BBNs is to update
distributions after observations. If some variables have been observed, we want to infer the
probability distributions of the other variables, which have not yet been observed. Updating is
based on Bayes Theorem and quite complex. An algorithm which allows fast updating for large
BBNs has been proposed by [Lauritzen and Spiegelhalter, 1988].

Commercially available software that does all the calculations are, e.g. Netica or Hugin.

Figure 3.6: Conditional Probability Table for X4 (source: [Hanea, 2008])

Non-parametric continuous BBNs

Shortcomings with regard to discretization, maintainability and flexibility give reasons to use non-
parametric continuous Bayesian belief nets (NPBBNs) to model management risk. They have
been introduced by [Kurowicka and Cooke, 2005] as an approach to continuous BBNs using
vines together with copulae. Suffice to say here that vines are a graphical model closely related
to BBNs [Hanea, 2008] and a copula is a joint distribution on the unit square with uniform
margins [Bedford and Cooke, 2001] that realizes rank correlations. A freely available software to
model NPBBNs is Uninet7.

In a NPBBN nodes are associated with continuous univariate random variables and arcs with
(conditional) rank correlations realized by a chosen copula. Based on the marginal distributions
and the rank correlations the joint distributions can be built [Bedford and Cooke, 2001]. The
rank correlation constitute the dependence structure of the system and need not be revised of
the marginal distributions of one node is changed. Furthermore, if a node is added or removed,
then the previously assessed (conditional) rank correlation need not be reassessed. This is a great
advantage compared to discrete BBNs. The joint probability distribution can be obtained by
sampling. A sampling algorithm using vines and copulae is described in [Kurowicka and Cooke,
2006]. It is a quite general, but comes at the price that these BBNs must be evaluated by Monte
Carlo simulation. A second disadvantage is that updating the BBN once new evidence has become
available, requires re-sampling of the whole structure.

3.2.3 Dynamic Bayesian Belief Nets

Systems that change over time can be modeled with dynamic Bayesian belief nets (DBBNs).
DBBNs can be regarded as a special case of BBNs [Mihajlovic and Petkovic, 2001]. DBBNs
consist of a sequence of static BBNs at different points or intervals in time, which are called time
slices. They are interconnected with inter-slice arcs representing temporal relations. Figure 3.7
illustrates the principle of various slices. The number of slices corresponds to the number of time

7available from http://www.lighttwist.net/wp/uninet
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steps. In theory, arbitrarily small and many time steps can modeled. As DBBNs are a special case
of BBNs, they can be discrete or non-parametric continuous.

Figure 3.7: The Time Slice Approach for DBBNs (source: [Mihajlovic and Petkovic, 2001])

The inter-slice arcs can be time-invariant or change over time. The same applies to the
structure of the time-slices. Usually both, arcs and slices, are assumed to be time-invariant, which
simplifies the modeling. An example of a DBBN with dynamic structure changes has been applied
to reservoir modeling [Gheorghe, 2010].

The Markov property can be used to simplify models that are time-invariant. For instance,
if the first oder Markov property (P (Xt+1|Xt, Xt−1) = P (Xt+1|Xt)) is used, the BBN can be
defined by unrolling two time-slices until we have T time-slices [Murphy, 2002] using

P (Z1:T ) =
T∏
t=1

N∏
i=1

P (Zi
t |Pa(Zi

t)). (3.6)

A model can of course contain Markov properties of different order, which represent different
time dependencies of different factors. Generally, the number of slices needed is order + 1.

3.3 System Dynamics

System dynamics (SD) is a methodology to facilitate learning in a highly dynamic and complex
environment by means of simulation models. A very famous SD model is “the limits to growth”,
which has been published by the Club of Rome in 1972 [Meadows et al., 1972]. The methodology
is motivated by systems thinking : the ability to see the world as a complex system in which every-
thing is interconnected. The interactions between various system components, most importantly
feedback structures, are often more influential than the components themselves. They create
the system dynamics. However, multiple feedback processes have an effect on system behavior
that cannot reliably be foreknown and may even be counterintuitive. SD models simulate sys-
tem behavior over time and, in this way, allow for speed-learning and testing in a “management
laboratory” [Forrester, 1961, p.vii]: Managers are able to develop a deeper understanding for the
system and to experience long-term (side-)effects of their decisions before taking real actions.

SD is grounded on control theory and applies its principles to socio-technical systems. It
represents a system in terms of stock and flow structures, feedback loops and time delays. This
representation results in a system of nonlinear differential equations which is solved numerically.

A simple example are eroding safety goals as shown in figure 3.8, which is a special case of
the archetype eroding goals introduced by [Senge, 1990] In this structure, a short-term solution is
found by sacrificing long-term goals. The safety gap stems from the difference between the actual
safety and the safety goal. Figure 3.8 illustrates that the ambition to reduce the gap has two
implications, which together have the negative effect on safety. On one hand, a large gap inspires
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efforts to improve safety, which leads (over time) to higher safety. On the other hand, the larger
gap, the larger is the pressure to adjust the goals to reduce the gap resulting in lower safety goals.
In combination this causes perpetually eroding safety goals and, consequently, decreasing safety.

To compute how the safety goal and the actual safety evolve over time, the causal loop diagram
can be transformed into a stock-flow-diagram and simulated.

Figure 3.8: Example of a conceptual SD model of Eroding Safety Goals (source: [Marais et al.,
2006]

3.4 Chapter Conclusions

This chapter considered methods used in risk modeling, in particular for models that include
human and organizational factors. Event and fault trees are the tools commonly used to model
failure of technical components. However, they have severe limitations to include uncertainty as
well as common cause failures and are alone not suitable to model human performance.

Bayesian belief nets (BBNs) are a type of probabilistic model. They are a very powerful
tool when dealing with uncertainties and when information is limited. Moreover, it is possible to
convert event and fault trees into BBNs. In principle there is no theoretical reason why Bayesian
belief nets should be restricted to static applications. However, not many dynamic applications
exist and is it not entirely clear yet how they can be quantified in an efficient way.

System dynamics is methodology to simulate the dynamic behavior of a system. It is a powerful
method represent complex systems and feedback loops. As it is based on differential equations,
it is a deterministic approach. If sufficient data to quantify the equations is not available, it can
have strong impact on the accuracy, and eventually on the explanatory and predictive power, of a
risk model.

The following chapter begins with a description of two models that have combined the tech-
niques and their respective advantages in an attempt to model human performance.





Chapter 4

Challenges of Human Factor
Modeling

The starting point of this project was to investigate which impact human and organizational
factors have on safety. As depicted in the causal diagram (figure 4.1) human factors (HF) are
the elements that influence the human error probability (HEP). It can be supposed that there is
an intricate system of causal relations that link the human factors with each other and to the
error probability. For example, stress affects fatigue and vice versa and both increase the error
probability. Management actions (MA) are means to influence human factors. It is relevant to
monitor their effects to assess whether they have been successful or not. Of interest could be for
instance, how much safety awareness can be increased within three month or at which point it
falls below an acceptable level if no actions are taken.

Figure 4.1: Generic scheme illustrating the relations between management actions (MA), external
influences, human factors (HF) and human error probability (HEP)

The precedent chapter explained how event and fault trees are used to analyze and model
technical failure of the system, but did not reveal how human performance can be linked to the
technical components. The first section of this chapter describes two projects, a socio-technical
risk analysis (SoTeRiA) and a causal model for air transport safety (CATS), that aim for a wider
risk analysis by integrating human and technical factors in one model.

25
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Figure 4.2: The hierarchical concept of CATS (source: [Lin, 2011])

4.1 Previous Attempts to Integrate Human Factors into Risk
Models

4.1.1 Causal Model for Air Transport Safety (CATS)

As a high-hazard, low-risk system the aviation industry has developed high level defense system
against any single failures, either human or technical [Amalberti, 2001]. The main threat are
organizational errors, i.e. failures arising primarily at the managerial and organizational level and
combining adversely with local triggering events as well as the active failures of individuals at
the execution level [Reason, 1997]. According to [Ale et al., 2006] these kind of failures and
interactions can be captured qualitatively by the causal model of air transport safety (CATS),
because it takes into account a wider range of accidents, incidents and near misses instead of
limiting the scope to catastrophic events and in particular crash analyses, which has been done
in previous studies and is not necessarily sufficient to identify systemic problems. Moreover, large
parts of the model have quantified and it can serve as a tool to analyze causal chains and quantify
risks in air traffic [Ale et al., 2009a, Ale et al., 2009b, Lin, 2011].

Scope

CATS is a risk model for the flight process from gate to gate [Lin, 2011]. The output is accident
probability per flight. It aims to explicitly model the first three levels of the socio-technical system
involved in risk management as proposed by Rasmussen (cf. figure 2.2b) for the aviation sector.
The hierarchical model of CATS is depicted in figure 4.2. Level 1 comprises the observable actions
that are executed by the flight crew and the aircraft. Level 2 describes the (hidden) internal
processes, the cognitive processes of humans and the internal functioning of hardware, leading
to the actions at level 1. Finally, level 3 is the safety management model, which controls the
individual factors and internal processes of level 2 in order to ensure that the actions at level 1
meet the objectives set by the management.

General Structure

In order to overcome major limitations of event trees (ETs) and fault trees (FTs), as described
in section 3.1 p. 17, CATS combines these methods with Bayesian belief networks (BBNs) to a
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homogeneous mathematical model [Ale et al., 2009b].

The basic model structure is shown in figure 4.3. As explained earlier, the pivotal events in
the ET split where a process can take different directions, faulty or not. In the combined model,
the probability that a certain path is followed is determined by a FT which feeds into the pivotal
event. The FTs comprise technical failures as well as human errors. The human errors, in turn,
are modeled in human performance models (HPMs), represented as BBNs, and are influenced by
management models.

Figure 4.3: Basic model structure (source: [Ale et al., 2009b])

Eventually, the ETs and FTs are converted into belief nets so that the whole structure is a
single integrated BBN. A major advantage of this step is that distributions of values rather than
point estimates, if appropriate. Further, it removes the artificial transfer points between ETs,
FTs and BBNs. It also allows for convenient and consistent handling of dependencies throughout
the model. Nevertheless, it is necessary to quantify the parts of the models separately before
integrating them into a BBN [Ale et al., 2009b].

Human Performance Models

Flight crew members, maintenance staff and air traffic controllers/managers play an essential
role at the execution level of risk-bearing activities in the gate to gate flight process. Hence,
there are three human performance models, one for each type of employees. The performance
shaping factors have been selected after a literature review, analyses of accidents and incidents,
and consultation with experts. Factors that are considered to have a significant influence on the
probability of human error and can be quantified are included in the model. Examples are training,
fatigue, experience or procedures. The HPM of the flight crew is depicted in figure 4.4 and the
definitions given in table 4.1.

Up to the present, the human factors are assumed to be independent, but the BBN method-
ology allows to introduce dependencies at a later stage, if deemed appropriate. The HPMs are
linked to several instances within CATS respecting the role of human error as common cause to
multiple events.
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Table 4.1: Operationalization of the performance shaping factors for the flight crew in CATS
(source: [Lin, 2011])
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Figure 4.4: Human performance model structure for the flight crew in CATS (source: [Ale et al.,
2009b])

Management Models

CATS uses the concept of safety barriers to formulate the link between technical, human and
organizational factors. Barriers block the paths between cause and consequence (figure 4.5). The
task of the management is to deliver criteria and resources in order to keep the safety barriers
intact. Causes for barrier failure are either due to humans and their behavior, technology or external
factors like weather and are modeled as base events of one of the fault trees. The criteria and
resources are categorized into eight so-called delivery systems: (1) Competence, (2) suitability,
(3) manpower planning and availability, (4) workload, (5) procedures, (6) communication and
coordination, (7) man-machine interface and (8) commitment to safety. For instance, competence
refers to “knowledge and skills learned through training and experience” and suitability covers both
physical as well as mental suitability including factors such as drugs and alcohol, fatigue or general
health [Lin, 2011].

The management system consisting of the eight delivery systems is a conceptual model that
helps to select PSFs and to design management actions. Selected PSFs that have an influence
on the human error probability are directly included in the HPMs. For the model of the crew
(figure 4.4), these are experience, workload, training, fatigue, intra-cockpit communication and
technology interface. In order to investigate the effect different management actions have on the
accident probability, the nodes can be conditioned. For instance, training, which is defined as “the
number of days since the last type recurrent training” (cf. table 4.1) can be modified in practice
and correspondingly in the model. The model is then updated and the influence of this action on
the accident probability can be seen.

4.1.2 Socio-Technical Risk Analysis (SoTeRiA)

SoTeRiA, standing for Socio-Technical Risk Analysis, is like CATS a model based on a mixed
logic approach. In [Mohaghegh et al., 2009], the authors put forth a methodology for selecting
appropriate modeling techniques and their integration in the form of a hybrid approach. The
motivation is akin to the CATS project: Since managerial and organizational failures are commonly
cited as the root causes of major accidents, there is a need to include these into risk modeling
frameworks. SoTeRiA is the proposed framework combining System Dynamics (SD), Bayesian
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Figure 4.5: Bow tie model illustrating the concept of safety barriers (source: [Lin, 2011])

belief nets (BBNs), event trees (ETs) and fault trees (FTs) are combined. An example on airline
maintenance systems intends to show the feasibility and value of this hybrid technique, in particular
to analyze the dynamic effects of organizational factors on system risk.

Scope and conceptual framework

The idea behind the conceptual framework (figure 4.6) is comparable to the hierarchical concept of
CATS (cf. figure 4.2 and 4.3). The model starts with the system risk, where the accident scenarios
are development and quantified, on the right side and is built moving leftwards illustrating how
organizational root causes propagate. Safety critical performances (SCPs) are comparable to level
1 in the CATS hierarchy, the work processes, and organizational structure & practices resembles
level 3, the safety management model. Additionally SoTeRiA includes psychological terms, such
organizational climate and group climate, in its general framework and some of them are matchable
with level 2, the (hidden) internal processes.

Unfortunately, the corresponding publications [Mohaghegh-Ahmadabadi, 2007, Mohaghegh
et al., 2009, Mohaghegh and Mosleh, 2009] do neither reveal the elements within the individ-
ual building blocks nor the relationships between them in detail. For this reason, the model
components are not directly comparable to the ones of CATS [Lin, 2011]. Nevertheless, general
overview of the different modules and what they contain is given in the following:

• The system risk model consists of ETs and FTs generating all possible risk scenarios from
basic elements.

• Safety critical performances (SCP) are human performances (of a group) that directly affect
the basic elements in the FTs, e.g. maintenance performance influencing hardware failure.
They are the input of the system risk model and the output of the unit process model.

• The unit process model serves to link different underlying processes with the safety critical
tasks of the SCP module. resources, procedures and individual performances are combined
group performances, which determine the action, i.e. the SCPs. It has three direct influ-
ences:
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(1) It depends on organizational safety practices, e.g. calibration and test activities affect
the resources or procedures may be altered.
(2) It is affected by the regulatory environment, which imposes external auditing on organi-
zational procedures.
(3) It is influenced by individual performance shaping factors (PSFs). Examples for PSFs
are an employee’s ability, knowledge or opportunity.

• The direct effect from the individual PSFs is also an indirect effect from the organizational
safety structure and practices. There are three influence paths from organizational practices
to individual PSFs:
(1) There is a direct path to PSF s. For instance, training directly affects employee’s knowl-
edge.
(2) There is an indirect influence to PSFs through the organizational safety climate and
the group safety climate.1 Both affect the psychological safety climate, which is part of
the PSFs. It reflects the employee’s believe in their managers’ commitment to safety and
his/her motivation for the activities in the unit process model.
(3) There is an indirect influence to PSFs through emerging processes. Emerging processes
include the social interaction process, leadership and supervision as well as the homogeneity
in the organization. They determine the “strength” of the shared climate.

• Organizational safety structures and practices on the other hand are influenced by safety
Culture2, which is part of the organizational culture and has influence on the managerial
decisions regarding safety. It is also affected by the regulatory environment, since it imposes
policies and rules on safety practices.

• Organizational culture is influenced by three higher level factors, industrial & business en-
vironment, social and political culture and climate and organizational vision, strategy and
goals. Moreover it is affected by three feedback effects:
(1) There is a direct feedback from the financial outcome, e.g. imposing financial stress.
(2) There is an indirect feedback from the financial outcome through the industrial & busi-
ness environment
(3) There is a direct effect from the system risk.

• The financial outcome also has a feedback effect on the system risk and individual PSFs,
e.g. collapse of morale in the face of possible bankruptcy.

• System risk has a feedback effect on the financial outcome. For instance, internal costs will
increase after an accident.

The second scheme in figure 4.7 clarifies the hybrid character of SoTeRiA. As stated above,
system risk module is built of event and fault trees. The unit process model is a BBN. The
two modules are connected by the SCPs. The bottom layers, i.e. individual PSFs and various
organizational factors, are implemented in a System Dynamics (SD) environment.

1“Climate is the perception of “what happens” in the organization and can be described as temporary attributes
of an organization.” [Mohaghegh et al., 2009] This is a very vague definition...

2“Culture is [...] stable, and is related to the employees’ ideologies, assumptions, and values” [Mohaghegh et al.,
2009]



32 CHALLENGES OF HUMAN FACTOR MODELING

Figure 4.6: Schematic Representation of SoTeRia #1: Overview (source: [Mohaghegh et al.,
2009])

Individual Performing Shaping Factors (PSFs) Module

The individual human performance model is limited to those factors which are predominantly
influenced by organizational factors. Motivation, ability and opportunity are deemed most relevant
and included in the model (cf. figure 4.7 framed module labeled as Individual-level PSFs).

• Motivation is affected by the so-called psychological safety climate, a measure for the in-
dividual’s perception of safety practices, which in turn is determined by an individual value
and the group safety climate.

• Ability refers to physical ability as well as to knowledge.

• Opportunity is defined as either temporal opportunity or the lack of it, e.g. due to time
pressure, or physical opportunity, e.g. sufficient light at the workplace.

These three human factors have affect the safety critical actions, which can manifest them-
selves as violations or as errors, a distinction introduced by Reason [Reason, 1990] (cf. chapter
2), and can be influenced by management modules.

For the final version of SoTeRiA, not all the factors are selected. Table 4.2 summarizes the
included factors together with their operationalization. The corresponding SD model “human
reliability” is included appendix B.

Management Models

The organizational structure & practices module resembles the safety management system of
CATS, in that it includes all organizational practices that influence resources, procedures and
human actions having a direct impact on safety critical performances. The organizational practices
are classified into four groups, as depicted in figure 4.8: human related activities, procedure related
activities and resource related activities, all of which are supported by common activities.
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Figure 4.7: Schematic Representation of SoTeRiA #2: hybrid character (source: [Mohaghegh
et al., 2009])
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Table 4.2: Selected Performance Shaping Factors for a Maintenance Technician in SoTeRiA

Variable Operational Definition

motivation morale
psychological climate -
individual value -

ability -
knowledge level of experience
physical ability -

opportunity -
time opportunity time pressure
physical opportunity -

Figure 4.8: Organizational safety practices in SoTeRiA. Y stands for a direct relation, N for no
relation and I for an indirect relation, e.g. through (source: [Mohaghegh et al., 2009])

Table 4.3 shows the human related activities designed to influence the individual human per-
formances. However, the relationships are left on this abstract level and the authors point to
future research [Mohaghegh et al., 2009]. Moreover, it is indicated that various other modules
within SoTeRiA have an impact on the PSFs.

The quantitative example published in [Mohaghegh-Ahmadabadi, 2007, Mohaghegh et al.,
2009] is a demonstration case and consists of a strongly simplified structure. All choices are made
for illustration purposes and not justified otherwise. For instance, management commitment
represents safety culture. Training and hiring are the only organizational safety practices that
have an influence on the commitment. The corresponding system dynamics model can be found
in appendix B.

4.1.3 Interim Conclusions

CATS is a realistic model that incorporated selected human factors and management actions
to quantify the accident probability of a flight. It combined all modeling methodologies into a
(static) nonparametric BBN, which allows for convenient and consistent handling of dependencies
throughout the model. Dynamic relationships however cannot be represented. Recent mathe-
matical developments (theoretically) allow for dynamic Bayesian belief nets. Therefore it is, in
principle, possible to extent the approach used for CATS and to include dynamic relationships.

SoTeRiA, on the other hand, can be regarded as a proof of concept. In a mixed logic approach,
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Table 4.3: Human related activities and their links to individual performance shaping factors
(source: [Mohaghegh-Ahmadabadi, 2007])

dynamics and feedback effects are incorporated through SD modules. However, no method is
proposed to quantify the equations that deal with human factors and there is no grounds for using
th SD methodology in this thesis.

4.2 Classification of Human Factors

The term performance shaping factor (PSF), which is equivalent to human factor (HF) or also
performance influencing factor (PIF), has been introduced as “any factor that influences human
performance” by [Swain and Guttmann, 1983]. They differentiated between internal and external
factors. Internal factors refer to the characteristics or state of an individual, such as knowledge,
experience, stress or fatigue. External factors are external to the individual, e.g. training, pro-
cedures or man-machine interface. Performance shaping factors are an integral part of many
human reliability analysis (HRA) techniques to describe the human-system interaction [Groth and
Mosleh, 2012]. Up to now, however, no standardized rules exist which govern the definition and
usage of PSFs. They often served as a “catch-all for explaining less-than adequate human per-
formance” [Lin, 2011, p. 46] mixing contextual and organizational factors. Consequently, the
factors are not interpreted consistently across different HRA studies. A first attempt to system-
atize existing definitions of PSF has been made by [Groth and Mosleh, 2012]. Table 4.4 shows
the proposed hierarchical set of PSFs, which organizes them in five categories: organization-based
factors, team-based-factors, person-based factors, situation/stressor-based factors and machine-
based factors.

This list of HFs is more comprehensive than the list used in CATS, a causal model for air
transport safety [Lin, 2011]. Moreover, for every HF in CATS an equivalent can be found in table
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Table 4.4: Human factor classification proposed by [Groth and Mosleh, 2012] for use in HRA data
collection and causal models

4.4. Nevertheless, we encounter difficulties when trying to “use” this classification in order to
build a causal model, especially when trying to quantify them as variables in a nonparametric
BBN.

4.3 Problems in Defining Relationships between Human Fac-
tors

Next to the classification in table 4.4 [Groth and Mosleh, 2012] propose definitions for all human
factors listed. However, problems arise when attempting to operationalize the factors based on
those definitions. Consider, for instance, the definition of the factor morale/motivation/attitude,
which is given by the authors as follows:

Morale, motivation and attitude (MMA) together refer to style, temperament, person-
ality and intrinsic human variability [...]. These characteristics manifest as willingness
to complete tasks, the amount of effort a person devotes to tasks, and the state of
mind of the worker. [...] Morale, motivation and attitude can be affected by exter-
nal factors such as organizational culture, teamwork, and resources, but each person
will internalize these factors differently leading to varying MMA even among team
members.

[...] Since it is extremely difficult to measure attitude, especially in retrospective analy-
sis it is necessary to include specific work practice behaviors as metrics of [morale/motivation/]attitude.
The behaviors identified during review of the data are problem solving style, informa-
tion use, prioritization, and compliance.
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From this definition it is clear that it is difficult to used the factor morale/motivation/attitude
as a variable in a causal model.3 On one hand it is extremely wide, which brings along the danger
of wrong causal statements when the causal arcs/arrows refer to different aspects of the factor.

For example, high morale/motivation/attitude could refer to someone enjoying his job and
being highly motivated to achieve a certain goal. Such a person may feel less stress than one that
does not feel joy while working, which leads to the causal diagram in figure 4.9a. Alternatively, high
morale/motivation/attitude could refer to a feeling of responsibility to complete a task well. In this
case, the more someone feels responsible the more stressed he/she is, as depicted in figure 4.9b.
The two interpretations lead to opposite causal relations of the same factors. The issue compli-
cates, if one considers both interpretations to be two individual aspects of the same factor that do
not overlap (someone enjoying his work may or may not feel responsibility just as someone feeling
responsible may or may not enjoy his work). What is the relation of morale/motivation/attitude
to stress then? There are no limits to one’s creativity in finding an endless number of aspects for
each factor. One could also imagine high morale/motivation/attitude includes the will to achieve
a certain goal as well as the ability to not get discouraged when confronted with hardships. How-
ever, an individual could be both at once: principally very eager to attain a certain goal, but also
disheartened from facing a seeming dead-end in his/her approach. This individual would somehow
have a high as well as a low morale/motivation/attitude at the same time and it is unclear how
this can be captured in one variable, let alone how to model causes and effects. Even when trying
to make qualitative diagrams as in figure 4.9 difficulties arise.

(a) Negative relation (b) Positive relation

Figure 4.9: Possible causal relations between morale/motivation/attitude and stress

Of course, this is strongly related to the lack of a metric for the factor, which makes it extremely
difficult to operationalize. Observable behaviors, such as problem solving style, have to be used
as proxies, even though they capture only a very limited part of the factor. This issue arises for
most if not all of the factors in table 4.4. Proxies have also been used in the CATS project,
e.g. training has been approximated as days since last training and intra-cockpit communication
has been quantified as number of flights in which pilot and first officer have a different mother
tongue [Lin, 2011]. Unfortunately, there are countless possible proxies for each human factor and
for each application different choices are made. The aspects of a factor that are deemed most
relevant for a particular application and/or are measurable serve as justification for the choices
made.

4.4 Chapter Conclusions

This chapter began by reviewing two models from the literature that attempt to incorporate human
and organizational factors: a causal model for air transport safety (CATS) and a socio-technical

3One might object that morale/motivation/attitude is obviously a broad definition, as it includes morale, mo-
tivation and attitude in one factor, but most of the listed factors have various facets. Another example is stress,
which can take the form of pressure, conflict, frustration or uncertainty.
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risk analysis (SoTeRiA). Both models combine various modeling techniques: event and fault tree
analysis, Bayesian belief networks and System Dynamics.

Whereas CATS is a static, highly specific, quantified model that incorporated a few selected
human factors and management influences, SoTeRiA is more of a proof of concept emphasizing
the need to include dynamics, in particular feedback, when modeling human and organizational
factors. Unfortunately, SoTeRiA does not propose any method to quantify the equations in the
System Dynamics modules that deal with human factors.

However, there is not yet a “recipe” how to realistically quantify human factors and their
dynamics. As a first step towards finding such a recipe, this chapter reviews how human factors
can be classified and discusses the problems that occur when defining relationships between them.
It was concluded that it is hardly possible to define causal relations without operationalizing
the HFs first. Nonetheless, it is very desirable to identify feedback loops and other nonlinear
structures. Intuition says they exists. For instance, stress in the form of frustration may decrease
the morale/motivation/attitude making any of the two diagrams in figure 4.9 a loop. Another
hypothetical example is the relation between workload and experience. High workload increases
experience and in turn high experience decreases the time needed to complete tasks and thus the
workload. Such and more complicated dynamic structures strongly shape the systems behavior
over time. They are a good starting point when attempting to design management actions, in
particular because they may cause surprising or even unpredictable behavior including negative
side-effects of well intended policies.

A meaningful set of human factors and their relations can only be created on the basis of a
specific example which justifies the choices made. That is, appropriate operationalizations and
influences of HFs can only be selected for a well demarcated system. Still, a real application
in high hazard industries requires a wide literature search including accident reports and human
reliability data bases as well as consultation with experts, which is beyond the scope of this thesis.

For that reason, this project settles for creating a demonstration model, which represents the
qualitative and quantitative relationship between training and knowledge over time. The intention
is to put forth dynamic Bayesian belief nets as a suitable method to realistically quantify human
factors and their dynamics.



Chapter 5

Demonstration Model Based on a
Gaming Experiment

The previous chapter argued for the need of a simple example case that can be used to meaningfully
operationalize and quantify human factors (HFs) as well as their mutual influences. For now it has
been chosen to consider only the two factors training and knowledge. According to [Groth and
Mosleh, 2012] training “refers to the knowledge and experience imparted” and knowledge (as well
as experience) is the accumulated information that has been converted from training. Note that
knowledge differs from training in that the information retained from the exact same training will
differ among the individuals. It follows that there is a positive causal influence from training to
knowledge. Moreover, knowledge is a stock variable implying that the current knowledge depends
on the previous knowledge just as the future one depends on the current one. This context is
represented as a causal diagram in figure 5.1. Training and knowledge at different time steps are
regarded as individual variables, similar to an unrolled dynamic Bayesian belief net.

Figure 5.1: Dynamic BBN showing the effect of training on knowledge over four time steps t1,
t2, t3 and t4, where T and K denote training and knowledge, respectively.

The next steps are (1) to find a demarcated system in which most notably the behavior
represented by this diagram occurs and (2) to gather data for quantification. The following
section describes why the chosen approach is to conduct an experiment, for which participants
play the online puzzling game 3Dlogic.

5.1 Motivation for the Online Puzzling Game 3Dlogic

In reality not only training has influence on knowledge, but also e.g. intellectual capacity, con-
centration or interest. A system having a justifiable boundary, which only includes the structure
depicted in figure 5.1, is gaming, in particular the online puzzling game 3Dlogic. As it is self-
explanatory, like most online games, the process of playing can be interpreted as training, whereas

39
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the knowledge that has been acquired can be determined from the time needed to complete a
certain number of levels. Thus, the measurement of the knowledge gained in the first round, is
carried out with the training of the second round. Detailed reasoning behind the operationalization
of these factors is given in section 5.2.

Before discussing the advantages of 3Dlogic for this experiment compared to other online
puzzling games, its rules are described briefly: The players have to rotate the magic cube (figure
5.2a) and connect the fields with the square inside of the same color. If all color pairs are linked
the cube is completed (figure 5.2b). Cells cannot be connected diagonally and black cells are
blocked [Mypuzzle.org, nd]. Figure 5.2c gives an idea of how the difficulty in the game increases
with higher levels.

(a) Level 2 at the beginning (b) Level 2 completed

(c) Level 16 completed

Figure 5.2: A few examples of 3Dlogic (source: [Mypuzzle.org, nd])

An important aspect of 3Dlogic is that the initial conditions in each level and the solution
paths are always the same; the game has no randomness. Playing a specific level for the first time
is equivalent to being trained and the gamer retains some information about the solution. The
second time the gamer plays that level he/she can apply this knowledge and possibly complete
the level faster than the first time. Moreover, he/she receives the same training a second time
and may retain more information, which enables him/her to pass the level even faster and so on.
This is for instance not the case when playing the famous game Tetris [Tetris Holding, 2011],
where the building blocks appear in a random order. Each time the gamer plays a particular level,
he/she needs to use a different approach, receives slightly different information and consequently
a slightly different training. First, this makes a repetition of the experiment under identical
conditions impossible, which is a crucial factor to guarantee reliability of the experiment’s results,
and second, it is difficult, to measure the amount of training the player has received. Further, the
gamer cannot make irreversible mistakes: if he/she accidentally makes a “wrong move”, e.g. by



5.2. OPERATIONALIZATION OF THE VARIABLES 41

clicking the wrong button, which is not necessary connected to his knowledge, but to his motor
skills, he/she is able to correct it. Finally, there are no time limits in the levels of 3Dlogic. These
last two points argue that this game is indeed a system, in which training and knowledge are the
variables of primary interest and that factors such as motor skills or stress due to time pressure are
minimized as far as possible. However, spatial sense and other cognitive factors inherent to the
participants cannot be eliminated and will influence the knowledge they acquire. This effect can
be reduced by selecting participants with relatively homogeneous educational background such as
graduate students. Under this condition, it can even be desired: crew members operating a high
hazard technology will have similar differences and it is realistic to include this diversity in a risk
model.

If the participants of the experiment play four rounds of 3Dlogic, data of their training and
knowledge at four consecutive time steps is obtained. Recall that a nonparametric dynamic BBN
encodes the joint probability of all variables by specifying their marginal distributions and the
(conditional) rank correlation of each arc, which are six and five, respectively, for the BBN in
figure 5.1. With the software Uninet these can be learned directly from the data gathered in the
experiment.

5.2 Operationalization of the Variables

The terms training and knowledge were defined in the introductory paragraph of this chapter on
page 39. In the following their operationalizations for the experiment are explained and motivated.

Training

In most games, and this applies to 3dlogic as well, the level defines the difficulty of the game
and indicates the progress of the player [Zichermann and Cunningham, 2011]. Each level has a
difficulty that needs to be overcome, or in other words, a trick has to be discovered in order to
complete the level. This implies that a player who has finished a level has been imparted this
trick, which is a piece of knowledge. According to the definition above he has received a specific
training. For this reasons the number of levels completed is taken as a measurement for training.

However, the difficulty of levels does not increase linearly. Most games have a curvilinear
relationship between difficulty and level as shown in 5.3. Consequently, training is measured in
intervals which are not equally spaced. This has to be taken into account when operationalizing
the variable knowledge.

In reality training can have various aspects, such as content, frequency or form of the training
and not all crew members undergo the same training. During official training session they may
receive the same quality and type of training, but they also receive personal feedback or advice
from their supervisors while working on their individual tasks (which also differ). This suggests
that training is random variable (which is what we want for the BBN anyways). As we have no
information about the distribution of training, we assume it to be uniform between level 5 and
level 10. Level 5 is chosen, because the first four levels are very easy as they introduce the player
to the principles of the game and take very little time to complete. Level 10 is chosen in order to
keep the duration of the experiment concise.
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Figure 5.3: An example showing that level progression is not linear or exponential (source: [Zicher-
mann and Cunningham, 2011])

Knowledge

A measure for the “amount” of knowledge a participant has, the time needed to complete a given
number of levels is relevant. The idea behind can be illustrated with help of three possible cases.

1. A participant knows the solution, because he received this information in previous training,
to a level and is thus able to complete it very fast. Actually, if participants really know the
solution (and do not even have to think about it for a moment), their times to completion
should be equal and fixed: There exists a minimum time to completion for each level.
One could argue that different possible solutions (if existent) could take different times to
complete, but in 3Dlogic the participants have to run their mouses over each square of the
cube once no matter which solution they apply. How exactly they choose the paths of color
will not make a significant difference in the time it takes to color the entire cube. Of course
different participants may have different skills using a mouse leading to minor differences.

2. A participant does not (fully) remember the solution. In this case he will take longer to
complete a level than in case 1. The time needed for completion will depend on how much
he is able to recall from previous training and how fast he learns while completing the level,
i.e. current training.

3. A participant does not know the solution yet. In this case he will take longest to complete a
level. His time to completion depends on his ability to convert information into knowledge
while completing the level, i.e. current training.

Since all participants complete different numbers of levels, the total time to completion cannot
be a measure for knowledge. Dividing the time to completion by the number of levels completed
is not an option, because the difficulty of levels does not increase linearly as explained earlier.
A possibility is to consider the minimum possible time to completion and normalize for each
participant:

Ki =
tn,min

ti,n
(5.1)

where Ki denotes the knowledge of the participant in round i, ti, n is the time he/she needed
to complete levels 1 to n in round i and tmin,n is the minimum possible time to complete levels
1 to n. In this way the knowledge of participants is comparable also if they play up to different
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levels. However, this definition is not global. It only indicates how “well” the participant know
level n, knowing even more levels is not reflected by the variable. If a participant has been trained
thoroughly on level 5 he might have knowledge 1, if he retains all the information taught to
him/her. However, if he/she is subjected to a higher level in the subsequent round, his knowledge,
according to this definition, may decrease again. In other words, the knowledge can not be viewed
independently of the training. It is not a stock variable that accumulates. This accumulation has
to be taken into account by considering all the trainings received. This is also discussed together
with the results in section 5.4. Still, this is only an initial effect. After many rounds, it is very
likely that most participants have played and memorized all levels.

5.3 The Experiment

5.3.1 Participants

Almost all participants are drawn from the Delft University of Technology student body, mainly
from the Faculty of Technology, Policy and Management, but also from the Faculty of Architecture
and the Faculty Electrical Engineering, Mathematics and Computer Science. This ensures a
relatively homogeneous educational background and comparable initial abilities to solve the puzzle.
Because technical staff in engineering companies have the same kind of homogeneity, this reflects
the real life situation. All master students and recent graduates who were interested in participating
in the experiment were selected for the study. In total 24 students participated, 11 female and 13
male. An anonymous list of the participants and their affiliation is given in Appendix C.

5.3.2 Materials and Procedure

At the beginning of the experiment, participants are informed of the topic of this thesis as well as
the purpose of the experiment. A short introduction before the experiment makes the students
familiar with the purpose of the experiment and in particular with the content of sections 5.1
and 5.2. Then, each student is given a handout (see Appendix C) and is assigned a university
computer. Groups of three students sit in one row, which facilitates the assistance and supervision
during the experiment. The hand out includes once more the instructions for the game, part one
of a questionnaire and procedure guidelines for the experiment. Part one of the questionnaire is
designed to identify the gender as well as the affiliation of the student, if he/she knows 3Dlogic
already and whether performing “well” during the experiment is important to him/her. Part two
is be handed out after the experiment and asks about the perceived difficulty of 3Dlogic, stress
or pressure while playing and performance compared to other students. In case some participants
seem to underperform, the questions about gender and evaluation of the experiment may give
insight. Participants indicating that performing well is important to them, may be threatened if
all other participants seem to be finishing faster than them, a factor which can undermine their
intellectual performance [Aronson et al., 1999]. There might also be a stereotype threat for women
of having less spatial abilities than men (e.g. [McGlone and Aronson, 2006]).

The general sequence of the experiment is as follows. The students play four rounds of the
online game 3Dlogic till the level they have been randomly assigned to for each round and stop
the required time to completion themselves, which enables a single experimenter to supervise
many students at the same time. The game is played on http://mypuzzle.org/3d-logic and the
online stopwatch from www.online-stopwatch.com is used. Each round consists of the following
two steps:
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1. From a bowl the participant draws one of the numbers between 5 and 10, which marks the
level he/she has to complete.

2. The participant plays 3Dlogic up to and including the assigned level, but not further, and
measures the required time. He/she leaves the game open and the stopwatch on pause for
the experimenter to verify the level and time measurement.

5.4 Results and Discussion

Table 5.1 shows the results of the experiment. The first column indicates the participant. The
second, third and fourth column contain the completed level, the required time and the knowledge
in the first round, the fifth, sixth and seventh column contain the completed level, the required
time and the knowledge in the second round etc. In the following T1 denotes the training received
in the first round, i.e. the level that has been completed, t1 denotes the needed time and K1 the
knowledge. Likewise defined are T2, t2, K2, and so on. Hence, for the first participant T1 = 10,
t1 = 268 and K1 = 0.3. The “knowledge” columns are calculated according to formula 5.1 with
the best times achieved by the experimenter (see also table 5.2), e.g. for the first participant
K1 = 81

268 = 0.30
In each round equally many participants have been randomly assigned to the same level. For

24 participants and 6 levels this means that each level is played by four participants. The last
row shows the average over all participants. Of course, the average level completed is 7.5 for
each round. The required time decreases from 299 seconds (4:59 minutes) to 149 seconds (2:29
minutes) in the second round to 131 seconds (2:11 minutes) in the third round and to 114 seconds
(1:54 minutes) in the last round. These results are also plotted in figure 5.4, where o denotes the
data points and x the average of each round. The knowledge advances from a group average of
0.26 to 0.56. The knowledge increase is largest from the first to the second round, then it increases
relatively little. It is remarkable that the standard deviation of the times decreases, whereas the
standard deviation of the knowledges increases with the rounds.

The results of th questionnaire are included in appendix C. Since no participant indicated to
feel extreme stress or pressure and also no one considered himself/herself much worse than the
other participants, it is assumed that these factors do not have significant impact on the results.
For this reason these aspects have not been further investigated for this thesis.
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Figure 5.4: Plot of levels against the required times in minutes
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Figure 5.5: Correlation matrix obtained from Uninet for the data from table 5.1. T refers to the
levels played and t, to the time needed

Looking at the correlation matrix in figure 5.5 for the data in table 5.1, we see that, in general,
the highest correlation is between the training and the required time of the same time step. This
leads to the expected conclusion that for each round, the level which has been assigned has the
greatest influence on the time that has been played. An exception is T1, which has a higher
correlation with t4. The high correlation between T1 and t4 might be sample specific and simply
“bad luck”, because the sample size is very small. The reason that the correlation between T1
and t1 is with 0.333 by more than factor 1.5 smaller than the correlations between the other
training-required time pairs, may be that their is a great influence of an initial knowledge, for
which no measurement has been taken. The correlation between the T and the t of the same
round is positive indicating that playing to a higher level takes more time than playing to a lower
level. The correlation between T of the current round and the t of future rounds is negative
indicating a tendency to complete faster in future rounds if the current level was high. This is
reasonable, because a higher level allows the participant to obtain a larger amount of information,
which he/she can use int he following rounds. We also observe that the two time vectors of
consecutive time-steps have rather small correlations and it is difficult to identify a pattern, which
is reasonable since the strongest influence on the time is a randomly assigned level. As discussed
earlier in section 5.2, a meaningful interpretation for knowledge can be found when normalizing
the required times according to equation 5.1.

Table 5.2 compares the best times achieved by the participants with the one of the experi-
menter. The best times of the experimenter are regarded as the shortest possible, when knowing
the initial set up of the color pairs in the magic cube and solution by heart. It has been measured
as follows: The experimenter starts the game, takes time to look at the cube until she has mem-
orized the solution. Then she starts the stopwatch, executes the solution and pauses it after the
game has transitioned to the next level. (The game takes almost 2 seconds to transition to the
following level.) Again, she takes time to investigate the cube and continues the stop watch for
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the execution and the transition time. Following this approach the experiment is at least equally
fast as the fastest participant. There two reasonable explanations for this fact: (1) it takes time
to recognize the cube (design-related) or (2) it takes more time to remember complex solutions.
Take for example level 7 (figure 5.6). Reason (1) refers to the fact that the participant recognizes
the cube, e.g. realizing that it is the cube for which one “had to go all the way around”, whereas
reason (2) refers to remembering how exactly this “going all the way around” looked like. This
effect is probably strong, because only few rounds are played and the participants hardly have a
change to learn the solutions by heart. However, it could also be plain “bad luck”, because the
sample size of 24 is very small. The fact that the solutions to level 5 and 6 are still rather obvious
and “motorically easy” could explain why this is not observed for level 5 and 6.

Figure 5.6: Solution to level 7 (source: [Free Web Archade, nd])

It can be observed that the time differences (of the experimenter as well as the participants)
between the various levels is not constant. This can be explained by the fact that the operations,
which have to be executed, for the levels are of differently complex (cf. figure 5.3). On one hand
the number of squares that have to be colored varies and other the other hand making few long
labyrinthine path takes more time than connecting many straight lines, because it requires more
caution.

Table 5.2: Best times achieved by the participants and by the experimenter

Level 5 6 7 8 9 10
Best time of the participants 35s 33s 67s 81s 90s 96s
Best time of the experimenter 29s 33s 45s 54s 66s 81s

Table 5.2 leaves us with to choices for tn,min in equation 5.1 to compute the knowledge. We
could use the best times of the experimenter, which can realistically be considered the absolute
minimum possible time. Or we could use the best times of the participants on the grounds that
it is the minimum possible time under the circumstances of the experiment, in particular the few
rounds that have been played. We choose the first, because of the risk that the small sample size
causes that some levels are never played by the fastest participants. Moreover, it reflects that the
participants are able to reach almost knowledge 1 (as in 100 % knowledge) about the lower levels
(e.g. participant 8 in round 4), whereas this was not possible for higher levels in the given time
frame of four rounds.

Nonetheless, knowledge based on participants’ best times is used as a comparison to give
some insight on the sensitivity of this choice for the normalization parameter. It is not possible
to execute an automated sensitivity analysis in Uninet, which computes the correlation matrices,
and a full blown sensitivity analysis is therefore beyond scope of this thesis.

The resulting empirical correlation matrices, one by normalizing with the experimenter’s times
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and one by normalizing with the participant’s times, are given in figure 5.7. T1 to T4 refer to
the training in the respective rounds, i.e. the assigned level and K1 to K4 refer to the knowledge
measured in each round. In contrast to the matrix in figure 5.5 the largest correlations are between
the various knowledge variables, which is expected, as modeling knowledge over time was the main
purpose of the experiment. A few entries differ notably in the two correlation matrices in figure
5.7b and 5.7a, but both show an akin prevalent structure. The following paragraphs discuss the
entries of the matrix in figure 5.7b, as this is the matrix used for the model in chapter 6.

• The correlations between the different knowledge vectors (K1, K2, K3, K4) differ in value
by up to 0.2. However, a pattern is not recognizable. There are all positive, which shows
that the knowledge has a tendency to increase over the rounds. (There may be, however,
participants whose knowledge “decreased”, e.g. participant 11. This may be because,
he/she simply did not understand the game or it could also happen, as for participant 1
whose knowledge varies with the difficulty of the levels he is assigned to.)

• The different training vectors are not uncorrelated, even though they have been designed
to be independent. From the first four rows of column one, we can see for example that
participants who had been assigned a high level in the first round T1, have been somewhat
likelier to be assigned a high level again, instead of again a low on, in the second round 2.
The converse is true for participants who had been assigned a low level in the first round.
This is similar for T1 and T3 , but with a slightly higher correlation, whereas the opposite
is true for T1 and T4. Still, none of the correlations between the training is alarmingly high
and they may be neglected for the model (see section 6.2).

• T1 is positively correlated with K1, K2, K3 and K4. For the correlation with K1, which
is clearly lower than with the other vectors, no explanation is found. The other correlations
may be consequences of the limitations of the knowledge definition: As stated above, it
includes only how well the participant knows all levels up to the assigned one. How well
he knows higher levels, is not reflected by this variable. As a consequence, the knowledge
variable is influenced by training from previous rounds. Consider two participants, one having
T1 = 5 and T2 = 7 and the other one having T1 = T2 = 7. If the first one completes
T1 in 60 seconds, and the second one in 94, then both have a knowledge of K1 = 0.48.
Then in T2, the second participant has an advantage, because he has done levels 6 and 7
before. Hence, the knowledge K2 depends on T1 as well. The positive correlation says,
that people that played up to a higher level in one round tend to show a higher knowledge
in the subsequent one.

The equivalent could be argued for the correlations between T2 and K3 as well as K4. It
could be that the negligibly small correlation between T3 and K4 is due to the fact that
most of the variance is already explained by T1, T2 and T4 itself.

• The correlations are negative between T2 and K2 (although negligible), T3 and K3 as well
as T4 and K4. This indicates a tendency of participants that are assigned low T values
to show relatively high K values of the same round. Two possible contributing factors are:
(1) The lower the level, the higher is the probability that the participant has played it in a
previous rounds and has the knowledge to solve it. (2) Finding a solution for the first time
takes longer the a higher level is, because the difficulty increases. The time depends on
his/her cognitive ability with respect to this specific problem type. (If all solutions had been
presented before the experiment these factors would not play a role. It was deemed unlikely,
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though, that participants are able to follow, let alone remember, solutions to problems they
did not experience yet by themselves and consequently decided against it.)

• Finally, the T variables have very low and, hence negligible, correlations with the K variables
of the previous rounds. (Exceptions are the correlation between T4 and K3 as well as
between T3 and K2 for which no explanation can be thought of.) Obvious reason is, that
future training cannot influence current knowledge. Neither does knowledge has an influence
on training (by design).

As a question remains to what extent the correlations between the T variables influences other
correlations. This is one of the reasons why the conclusions of the discussion above are limited.
However, in the following chapter it is shown that the order of magnitude of these correlation is
not significant with regard to the sample size (cf. section 6.2). A second reason are the couple of
entries which did not fit with the explanation. There are two possibilities. Either they are indeed
outliers due to the small sample or the correlations in figure 5.7b are much more random and too
much meaning has been read into them. The third reason is, that much of this reasoning cannot
be affirmed based on the matrix in figure 5.7a.

The correlations between the T variables are logically identical. Also the highest correlations
are between the K variables, without identifiable pattern. However, the correlations between the
T and the K variables differ notably: T1 and T2 are correlation with all K variables, whereas T4
is almost not correlated with any of the K4.

One could argue that the two normalization values used for the matrices differ substantially,
more than the 10% deviation one conventionally assumes in sensitivity analysis, but together with
the unexplained entries, the any reasoning has to be regarded with suspicion.



5.4. RESULTS AND DISCUSSION 51

(a) Using the best times of the particpants to compute knowledge

(b) Using the best times of the experimenter to compute knowledge

Figure 5.7: Correlation matrices obtained from Uninet for the two variables training (T ), which is
identical to the number of levels completed, and knowledge (K), which results from normalizing
the required times to completion.
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5.5 Chapter Conclusions

This chapter introduced an experiment to generate data for a knowledge and a training variable
in consecutive time steps. Participants played four rounds the online puzzling game 3Dlogic.
The level they were assigned to complete was interpreted as training. A normalization of the
required time to complete the level was interpreted as knowledge. More precisely, a “minimum
possible time for completing a particular level” has been divided by the time a participant needed
to complete that level so that the resulting knowledge is between 0 and 1. However, this definition
is not global. It only indicates how well a participant knows all the levels up to the completed
one. If he/she knows further levels, is not reflected. And the other way around, if he/she has
been trained to a higher level in the previous than in the current round, the knowledge variable
does not reflect how much information he/she retained from the higher levels. This is a limitation
of the operational definition of knowledge and causes a correlation between all previous rounds of
training and knowledge, a fact not been considered in figure 5.1 in the introduction of the chapter.

Furthermore, it has been investigated how sensitive the dependence structure between the
variables is, based on what is taken as a “minimum possible time for completing a particular
level”. There are a few values which change notably, but the main result is that the knowledge
variables are significantly higher correlation than training with knowledge. This indicates that
knowledge can be modified by training, but not too abruptly: previous knowledge is a more
determining factor. Moreover, the correlations between various variables have been discussed in
more detail and (partial) explanations have been provided. However, not all correlations seem
reasonable/realistic.

Interpreting the data has not been straight-forward and further limited due to the small sample
size of 24 participants. Nevertheless, choices have to be made in order to build a model. On
what grounds these choices can be made in order to obtain a model which is suitable to reflect
the dependences between the variables and user friendly is discussed in the next chapter. The
definition of knowledge is a relatively sensitive assumption, but has not been considered further
for the demonstration model. This should be taken into account when attempting to model for
more realistic applications. It also emphasizes the difficulty of defining human factor, which are
not directly measurable.



Chapter 6

Building and Using the BBN

Specifying the structure of a BBN is a statistical learning process. Statistical learning theory
provides a framework for gaining knowledge from a set of data and in particular for constructing
a model from this set [Bousquet et al., 2004]. Learning and validating the BBN are carried out
simultaneously, since the goal is of course to learn a valid model [Kurowicka, 2010].

This chapter follows [Hanea et al., 2010], who describe a method for mining ordinal multivariate
data using nonparametric Bayesian belief nets (BBNs). Alternative references are given when used.
Data mining is a computational process of extracting and analyzing information from large data
bases [Han and Kamber, 2006]. Even though the amount of data gathered in this research is
rather small the same techniques can be applied. However, this technique does not yield a unique
model structure. Various structures may be valid and the “best” model is determined based on
its potential value for the model user.

The structure of a BBN consists of arcs and nodes. As explained in section 3.2, directed arcs
represent a probabilistic influence from parent node to child node. As in the previous chapter we
denote the training of the first round with T1, of the second round with T2, etc. Analogously,
K1, K2, K3 and K4 denote the knowledge of each of the four rounds. These 8 variables are
the nodes of the BBN. In principle, two variables are connected with a directed arc, if (1) the
statistical correlation computed from the data is high and (2) the influence of one variable on the
other is meaningful. Not meaningful is, for instance, an influence from K2 to K1 because it is
reversed in time. Also arcs directed from knowledge to training contradict the meaning of the
variables. When choosing arcs based on their high correlation, it has to be taken into account
that the sample size in this research is rather small, which affects the significance of the computed
rank correlations.

The correlation matrices presented in the previous chapter (figure 5.7) show that, to some
extent, all variables are correlated with each other. A model connecting each variable to all
other variables, called a saturated graph, is most likely to fit the data. However, not all arcs are
meaningful; they may represent sample jitter. Small influences are often not beneficial as well,
because they distract from the factors which are most relevant to the model outcome. Based on
the correlation matrix from figure 5.7b, it is not immediately obvious which arcs to include or not.
For some entries, explanations have been found, but others do not seem logical (cf. section 5.4).
Considering that the order of magnitude of both kind of entries is similar, it is difficult to justify
why one or another correlation should be included in the model, or not. Especially because the
sample size is very small, the correlations computed from the data have to be contemplated with
caution.
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From a user point of view, it is desirable to include as few arcs as possible in the model,
because it enhances the transparency of the model. Unnecessary complexity is at the expense
of clear representation and has no benefits. More generally, less arcs mean less quantification
efforts. For the current research, this argument does not play a role yet, but it might do for
subsequent research when extending the model and switching from experimental data to other
sources. Especially when using expert judgment, many incoming arcs require the expert to make
intricate estimates. The challenges of eliciting (conditional) rank correlations from experts are
discussed in detail in [Morales et al., 2008].

Of course, statistical validity is a prerequisite for a useful model. Therefore, the first section
presents the necessary statistical considerations and definitions. Section 6.2 describes the learning
process taking both the magnitude of the rank correlation and meaningfulness of an arc between
two variables into account. Because two valid model structures are found, section 6.3 investigates
the effect of either choice on the model output. Also, some examples for model use are presented.

6.1 Statistical Considerations and Preliminaries

From a statistical point of view, it is crucial to validate the following two assumptions:

1. The joint normal copula adequately represents the multivariate data.

Nonparametric BBNs are graphical models, which build the joint distribution for the data
using the so-called joined normal copula (cf. section 3.2 page 21). This first step ensures
that the assumption of the normal copula is valid with regard to the present data. It also
implies that the saturated graph is a valid model.

2. The BBN with its conditional independence statements is an adequate model of the satu-
rated graph.

The saturated BBN corresponding to the data from the experiment contains 8 variables and
28 arcs and is depicted in figure 6.1a. But many of these influences are very small and may
reflect sample jitter. Especially because the sample size is very small, the relations have to
be contemplated with caution. Moreover, several arcs in figure 6.1a can by reason of the
causal flow of time not be true, e.g. the arc from T4 to K1. It is not meaningful either
to introduce an arc in the opposite direction, from K1 to T4. Further, the experiment has
been designed such that T1, T2, T3 and T4 are independent and identically distributed.
Again, the small sample size might be cause for the correlation found in the data.

In a plausible model “unrealistic” as well as noisy influences are eliminated. Consequently,
it has to be ensured that the resulting BBN with the introduced independence statements
(that are the deleted arcs) adequately represents the saturated graph in the statistical sense.

These two assumptions can be regarded as null hypotheses are can be validated with a two-
sided statistical test: H0= assumption is true and H1 = assumption is not true. To test these
hypotheses, the concept “assumption is true/not true” needs to be operationalized so that it
can be measured. A suitable measure in this case is the determinant of the rank correlation
matrix [Hanea, 2008], which attains the maximum value 1 if all variables are uncorrelated and the
minimum value 0 if the dependence between the variables is linear. Three different determinants
are needed in the validation process:

• Determinant of the empirical rank correlation matrix (DER)
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This determinant reflects the dependence structure of the data. It shows to what extend
the variables in the sample (not the population) are correlated with each other.

• Determinant of the rank correlation matrix resulting from a transformation of the univariate
distributions to standard normals, and then using Pearson’s transformation to obtain rank
correlations from the product moment correlations (DNR)

When using the joint-normal copula to build the joint distribution, the data are transformed.
This determinant reflects the dependence structure of the transformed data. Generally, it
differs from the DER, because the empirical copula need not be normal. If it is “similar”
to the DER, the first assumption is validated: The joint normal copula adequately reflects
the correlations of the original data.

• Determinant of the rank correlation matrix of the model, the final nonparametric BBN,
which uses the normal copula (DMR1)

If the model is the saturated graph (figure 6.1a) the DMR corresponds to the DNR, i.e.
DMR = DNR. However, when deleting arcs, the corresponding (conditional) correlations
are forced to be zero, which introduces conditional independences and, hence, changes the
dependence structure. A graph structure, which assumes all variables to be independent,
i.e. there are no arcs between the variables (figure 6.1b), has DMR = 1. The final model
is usually somewhere between this so-called skeletal structure and the saturated structure
and therefore its DMR is DNR ≤ DMR ≤ 1. If the DMR is “similar” to the DNR, the
second assumption is validated: The BBN with its conditional independence statements is
an adequate model of the saturated graph.

Testing whether the DNR is a suitable representative for the DER validates the normal copula
assumptions and is described in the following paragraph. Testing the suitability of the DMR is
part of the building process of the final BBN and is discussed subsequently. All three determinants
can be directly obtained from Uninet2.

For the eight variables, T1 to T4 and K1 to K4, DER = 0.0300 and DNR = 0.0483.
The normal rank correlation matrix is shown in figure 6.2. To check whether the data can be
adequately represented by the joint normal copula, we test the hypothesis that DER comes from
the sampling distribution of DNR. The sampling distribution of DNR based on 1000 simulations
can be calculated in Uninet. The resulting confidence interval is [0.0035, 0.0488]. DER falls
within this interval and the normal copula assumption cannot be rejected on the α = 5% level.
The Uninet output of the test is shown in figure 6.3. This test results also validates the saturated
graph, because it has DMR = DNR.

1In the literature this variable is referred to as DBBN , which is already reserved for dynamic BBN in this thesis.
Hence, the new abbreviation DMR is introduced

2available from http://www.lighttwist.net/wp/uninet
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(a) Saturated graph of the eight variables.

(b) Skeletal BBN

Figure 6.1: Saturated and skeletal BBN of the eight variables.
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Figure 6.2: Normal rank correlation matrix of the data vectors of the variables training and
knowledge

Figure 6.3: Results of the “Validate Normal Copula” function of Uninet
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6.2 Learning a Valid BBN Structure

Summarizing the previous sections, the final BBN structure will been “in between” a skeletal BBN
and a saturated BBN. Moreover, the arcs are chosen based on the correlation computed from the
data and/or their meaningfulness for the application. Intuitively, this yields two approaches to
learn the structure of a BBN: One either starts with the saturated graph and deletes individual
arcs or one starts with the independent graph and adds individual arcs until a “useful” and valid
structure is obtained. The choice to add or delete is based on either correlation or meaningfulness
and has to be motivated. Here, the small sample size has to be taken into account, since it affects
the significance of the computed rank correlations.

Table 6.1 shows for several α levels the minimum value of a rank correlation necessary for
significance (rc), if the sample size is N = 24. The values correspond to a one-tailed test of
the null hypotheses that the rank correlation is 0. For instance, for the α = 0.05 level only rank
correlations r ≥ 0.344 are significant considering the small sample size in this research. Looking
at the normal rank correlation matrix in figure 6.2, we see that only the correlations between the
knowledge variables are statistically significant on this level.

Table 6.1: Critical values of Spearman’s rank correlation for N = 24 samples [Ramsey, 1989]

α 0.25 0.10 0.05 0.025
rc 0.144 0.271 0.344 0.407

Independent from the chosen approach, the learned BBN is not unique. Different structures
may be suitable to represent the data. In order to investigate the effect of the structure on the
model use, we develop two structures and compare them with each other. First, we start from the
skeletal BBN in figure 6.1b trying to add as few arcs as reasonable and second, we start from the
saturated graph in figure 6.1a trying to delete only “unrealistic” arcs. As a result, the first BBN
will have fewer arcs than the second one.

6.2.1 Adding Few Arcs to the Skeletal BBN

We start by considering the variables independent, as depicted in figure 6.1b. The DNR falls
outside the 90% confidence interval of the DMR of this skeletal BBN and, hence, this model is
not valid for the data. The correlation matrix for the skeletal BBN and the results of the statistical
test are included in appendix D.1.

According to [Hanea et al., 2010], arcs are added between the variables that have the largest
rank correlations (in the normal rank correlation matrix). As soon as the DNR is within the
90% confidence interval of the DMR, the procedure of adding arcs is usually stopped. Still
additional/different arcs can be added to the model, if it is more realistic and interesting for the
user.

The normal rank correlation matrix is presented in figure 6.2. Its values deviate slightly from
the empirical rank correlation matrix in figure 5.7b. The arcs with the highest (and significant)
correlations are between the various knowledge variables. We add one arc from K1 to K2, one
from K2 to K3 and one from K3 to K4. These arcs are according to the data not the largest,
but these influences are most intuitive and have been expected (cf. figure 5.1). According to the
argumentation from section 5.1, the knowledge at t+1 results from the training at t (or possibly
t − 1 and t − 2). For this reason, arcs from T1 to K2, T2 to K3 and T3 and K4 are added,
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even though they are not necessarily significant. Figure 6.4 shows the structure, which is valid as
shown in appendix D.2.

Figure 6.4: BBN with arcs between the consecutive knowledge variables and from the training
variables to the knowledge of the next round. The conditional rank correlations are labeled on
the arcs.

6.2.2 Removing Few Arcs from the Saturated BBN

Another possibility is to remove those arcs from the saturated BBN that are very small (close to
zero) and/or seem unrealistic and caused by outliers in the data set such that the value of the
DNR stays inside the confidence interval of the DMR.

We first remove all arcs that are inconsistent with the causal flow of time from the saturated
BBN and the arcs between the four training variables, because the trainings were designed to be
independent and identically distributed, namely uniform on [5,10]. Not all of these arcs had small
correlations. The arcs from T4 to K3 with value 0.19 and the arc from T1 to T4 with value
−0.28 have the largest ones, but according to table 6.1 they are not significant. Keeping them
contradicts the meaning of the variables and would yield invalid model (not from a statistical
perspective, but from a user perspective). As long as the structure remains (statistically) valid,
it is of course legitimate to remove them. The resulting model is depicted in figure 6.5a and the
validation is shown in appendix D.3.

6.2.3 The “Best” Model?

Finding the most suitable model is not straight forward. Besides the two structures introduced
in the previous sections it is possible to learn structures that are “in between”: having additional
arcs to the BBN in figure 6.4, but not yet all the arcs displayed in figure 6.5a. On the grounds
of the present data it is difficult to justify which extra arcs should be included. The normal
rank correlation matrix (figure 6.2) does not indicate any trends. For instance, rT1,K2 = 0.342
rT1,K3 = 0.200 and rT1,K4 = 0.291 are all more or less of the same order of magnitude, but there
is no apparent reason for the fluctuation. Moreover, they are not significant due to the small
sample size.

One could argue, for example, that since rT1,K4 = −0.282 and is set zero on the basis of the
assumed independence between trainings, all rank correlations |r| < 0.282 should be set to zero
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(a) BBN displaying all plausible arcs

(b) Table with the dependence info of node K4. Other nodes are analogue.

Figure 6.5: BBN displaying all plausible arcs. For the sake of clarity the arcs are not labeled in
the graph, but an example for node K4 is given in the table

as well in order to be consistent. However, then T1 has only influence on K2 and K4, but not on
K3. T2 would only have an arc to K4 and T3 and T4 would be independent of all other variables.
Such a structure is not realistic and is on the basis of a sample size N = 24 not defensible.

Since, as yet, there is no indication which of the two presented structures, or possibly an “in
between” structure, is most suitable, the reminder of this chapter investigates what the conse-
quences on the model outcome are, if one or the other choice is made.

6.3 Comparing the Outcomes of Two Valid Model Structures

Figure 6.6 shows (again) the two models, this time with the nodes as histograms. Unfortunately,
there is no feature in Uninet for choosing the number of bins that are displayed in the histograms.
This makes it also impossible to display K1 to K4 with the same ranges to emphasize how the
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(a) Model structure 1: Few arcs

(b) Model structure 2: Many arcs

Figure 6.6: The two structures with the nodes as histograms. To see the histograms better, the
nodes have been moved close together at he cost that the arcs are not that visible anymore.

knowledge evolves over time.

The distribution of all 4 training variables is identical. The mean is µ = 7.5 and the standard
deviation is σ = 1.71. It is usual that this value slightly deviates from the one in table 5.1, because
the distribution are re-sampled in Uninet. The empirical probability mass function of K1 has mean
µ = 0.26 and standard deviation σ = 0.14. Both, mean and standard deviation, increase over
the rounds. Generally, participants improve their knowledge, but the differences between them
become larger.

At this point, the two models are identical, because the distributions are directly taken from
the data. Only the dependence structure differs. As soon as some variables are conditioned, the
model can be updated and the resulting distributions may differ. Since the model is data mined,
it is only possibly to condition on a value that is within the range of the original data after having
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been transformed to standard normal. For example, it is impossible to condition on K1 = 1,
because the range of K1 is only between approximately 0.06 and 0.59.

In the following K1model1 denotes the node K1 of the model structure with few arcs and
K1model2 the one of the model structure with many arcs. The same applies to the other variables.

6.3.1 Conditioning on High Training

A natural management action to increase the knowledge of technical staff members, is to object
them to more intense training. In terms of the game, it means to let the participants play to
higher levels each round. Figure 6.7 demonstrates the effect on the knowledge. It shows how the
knowledge distributions change (according to each of the two models), if a participant played up
to and including level 10 in all four rounds. Both BBNs in figure 6.7a and 6.7b exhibit similar
results, but the predicted knowledge values from the structure with few arcs are slightly higher.

(a) Model structure 1: Few arcs

(b) Model structure 2: Many arcs

Figure 6.7: Updated distributions when conditioning on T1 = T2 = T3 = T4 = 10
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The conditional distributions are shown in black and the original ones in gray. There is no
difference in node K1model1 and a small tendency towards higher values in K1model2. The mean
of K2model1 is about 12%, the one of K3model1 about 15% and the one of K4model1 about 19%
higher than with uniform training. On the contrary the mean of K2model2 is only about 8%, the
one of K3model2 about 0.4% higher and the one of K4model2 about 18% higher than before. The
value of K3model2 is strange, both from a logical viewpoint (Why would the relative increase in
knowledge fluctuate like this?) and in comparison to the other model (Why do the K3 nodes
differ, if nodes K2 and K4 show comparable outputs?).

Moreover, for both models the increase in variances is slightly less than before, which indicates
that part of the variation in knowledge can be explained by the different training opportunities the
participants had. The other part can be regarded as aleatory uncertainty; it is a natural variability
within the system.

Despite the fact that the trend is an increase in knowledge, the range of knowledge values
does not change in any of the models: there is a probability of having very little knowledge even
after constant high training, as can be seen from the black bar in node K4 (the leftest bar).
This kind of information is crucial for risk management. Hypothetically, consider this results as
an outcome of a realistic model of training staff who operate in a high risk environment. Despite
more training, there is a possibility that one of the staff members has insufficient knowledge to
cope with a critical situation and, hence, there is a possibility of an accident with disastrous
consequences.

6.3.2 Conditioning on High Initial Knowledge

Knowing that high training does not eliminate the possibility of having one employee whose
knowledge is insufficient, another hypothetical management action could be to only promote and
train those employees who have already proven to be knowledgeable, e.g. having K1 > 0.5 in
terms of the experiment. Because it is rather complicated to condition on more than one value in
Uninet, we settle for conditioning on K1 = 0.5. The results are shown in figure 6.8a. and 6.8b.

The effect on the training variables in very minor for both models. In model 1 the effect
on K2model1 is strongest, which can be seen from the gray and black histograms. The mean of
K2model1 is µ = 0.679 and the standard deviation is extremely small σmodel1 = 0.0864. Almost
the entire lower half of knowledge values receives probability zero. However, the effect diminishes
towards K4model1, which has with µ = 0.638 a slightly lower mean than when conditioning on
high training and the variance σ = 0.192 is comparable. Also, the lowest knowledge value receives
a small probability.

In model 2 the effect is very strong on all knowledge variables. K2model2 seems identical to
K2model1. However, afterwards the model predicts an almost constant increase in knowledge,
whereas the increase in knowledge diminishes for model 1, as demonstrated in table 6.2. The
variances are close to zero for K2model2 and K3model2, but is suddenly quite high for K4model2

(σ = 0.164). A big difference to model 1 is that the lower values of all knowledge variable receive
probability zero.

The conclusions that can be drawn differ for the two models. Model 2 predicts that a suf-
ficiently high initial training guarantees that high values of knowledge are reached in the fourth
round. However, model 1 does not confirm this results. A conclusion from its results of the two
management actions could be to have more intense trainings and also frequent testing sessions to
ensure sufficient knowledge.
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Table 6.2: Comparison of the increase in knowledge predicted by the two models

K2−K1 K3−K2 K4−K3

model 1 0.097 0.015 0.026
model 2 0.097 0.071 0.072

(a) Model structure 1: Few arcs

(b) Model structure 2: Many arcs

Figure 6.8: Updated distributions when conditioning on K1 = 0.5

Nevertheless, this simple case of only 24 students playing 3Dlogic for only four rounds is not
suitable to test the effect of these kind of management actions in a meaningful way.
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6.3.3 Conditioning on Low Initial Knowledge

In contrast to the previous section, one can also condition on low initial knowledge. The lowest
possible value is K1 = 0.05001. The results are shown in figures 6.9a and 6.9b.

In both models this condition hardly affects any of the training variables. Based on model 1
the effect of this conditioning is strongest on K2model1 . The mean of K2model1 is µ = 0.306,
which is ca. 30% lower than without conditioning, and the standard deviation is σ = 0.151,
which is roughly the same. The highest knowledge values receives probability zero. However, the
effect diminishes towards K4model1, whose mean µ = 0.502 is just 11% lower than usual and the
variance σ = 0.199 is again comparable. In the case of low initial knowledge, the probability of
reaching high knowledge in the fourth rounds is about half compared to the original one. Similar
to the previous section the effect on K2model2 is very similar to the one on K2model1. In contrast,
the knowledge of the subsequent rounds is predicted to be notably less than in model 1.

In conclusion, it can be inferred that a participant with low initial knowledge could according
to model 1 reach high values in round 4, while he/she would not be able to reach them according
to model 2.

6.3.4 Conditioning on Maximal Knowledge in the Last Round

Another way to use the model is to reason diagnostically, instead of predictively as done in sections
6.3.1, 6.3.2 and 6.3.3. Conditioning on K4 = 1 alone implies that a participant has knowledge 1
in the fourth round, but that it is unknown which trainings or previous knowledges he/she had.
Figures 6.10a and 6.10b show the updated distributions.

This condition has a strong impact on all other knowledge distributions. Also, it is likely that
the participant has received a higher training than the average.

Model 1 indicates that, it is not impossible that he/she obtained low trainings. Most striking
is that the slope of the participant’s learning curve did not decrease systematically as before. From
K1 to K2 his/her knowledge increased on average by 0.24, from K2 to K3 by 0.15 and from K3
to K4 by 0.24. A possibly surprising result is that he/she could have had initial knowledge of any
value of the given range (approximately [0.06,0.59]) and that the mean of K1 is with µ = 0.38
not extremely high.

On the contrary, model 2 claims that the participant did certainly not have low trainings or
low knowledge in any of the previous rounds. (T3model2 is an exception.)
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(a) Model structure 1: Few arcs

(b) Model structure 2: Many arcs

Figure 6.9: Updated distributions when conditioning on K1 = 0.05001, which is the minimum
value possible
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(a) Model structure 1: Few arcs

(b) Model structure 2: Many arcs

Figure 6.10: Updated distributions when conditioning on K4 = 1
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6.4 Chapter Conclusions

At the beginning of this chapter, the process of building a dynamic nonparametric BBN, which
adequately reflects the data from the experiment, was discussed. To this end knowledge and
training of each round were regarded as individual variables of the model. It was found that several
statistically valid structures exist that have a different number of arcs between the variables. In
order to investigate the consequences of using one or another structure on the model outcome, a
rather minimalistic structure and a structure with all plausible arcs have been compared.

Two hypothetical management actions have been translated to the context of playing 3Dlogic
and implemented to illustrate how the impact on the knowledge evolution over four rounds can
be predicted with the dynamic BBN. First, the training has been increased in all rounds (BBN
conditioned on T1 = T2 = T3 = T4 = 10) and, second, the a specific initial knowledge has been
required (BBN conditioned on K1 = 0.5). In both models the updated distributions are skewed
to the right, i.e. higher knowledge, but the range of values did not change. Even though with
a low probability, there is the possibility of very low knowledge in the fourth round. In general,
this kind of insight is very important in risk modeling, because low probability events may have
devastating consequences and their risk needs to be mitigated. Then, the initial knowledge has
been conditioned once as high (K1 = 0.5) and once as low (K1 = 0.05001). Finally, an example
was given on how to reason diagnostically with a dynamic BBN. Similarly, if a participant had low
initial knowledge, the updated distributions were skewed to the left.

For the last three cases the differences between the models were larger. In general, model 1
predicted a wider range of possible values for the updated histograms of all other variables than
model 2. In other words the output of model 1 has more uncertainty. One could argue therefore,
that model 1 is the better choice considering the very small sample size. Moreover, it has the
advantage of having a more transparent structure. Nonetheless, the purpose of this chapter was
to illustrate the consequences the choice for one or the other structure on the model output. It
has to be kept in mind that only demonstration case has been studied and that many of the
correlations were not found to be significant. Giving a recommendation on the “best” structure
is difficult, but also not useful in the current stage of research.

In section 3.2.3 the principle of time slicing and “unrolling” them up to arbitrary times T
had been described. However, neither the correlations nor the distributions have been found to
be time-invariant. From the present data it is not possible to infer the states of knowledge and
training in future rounds.

A perspective on how this demonstration case could be extended to a more applicable model
and on how to use dynamic BBNs to model human and organizational factors for risk analysis is
given in the following chapter.



Chapter 7

Conclusions

This thesis started by pointing out that despite of all efforts, low probability high-consequence
accidents, such as the recent blowout in the Gulf of Mexico and the nuclear disaster in Fukushima,
do not appear to occur less frequently, while their consequences appear to increase. The goal
of zero accidents has not been achieved with current approaches in risk management. Hence,
improved safety management systems (SMS) are of great social relevance.

Since dynamic human factors and management actions are recognized as the more fundamen-
tal causes to accidents in high hazard industries than random combinations of technical failures,
it is essential to integrate them in a single model with the technical components of the system.
Bayesian belief nets (BBNs) seem a promising methodology. But only recent mathematical de-
velopments allow for dynamic relationships in BBNs and applications of dynamic BBNs are not
well-known as yet. Accordingly, the aim of this project was to introduce dynamic BBNs as a
tool to monitor the effect of management actions on safety and, thus, to support the design of
improved safety management models. The main research question was:

How can dynamic nonparametric BBNs support the design of improved SMS by enabling a
monitoring of the effect of management actions on safety?

This concluding chapter is dedicated to illustrate to what extent the produced outcomes are
congruent with the research objectives stated in the introduction. Section 7.1 therefore provides
answers to the research questions and highlights the deliverables of the thesis. It also describes
the limitations and reflects on how the chosen approach affects the results of the research. Then,
section 7.2 discusses the relevance for the scientific community and indicates potential directions
for future work in the field.

7.1 Main Findings and Limitations

The main research question has been broken down in four sub-questions, which guided the research
process. The main findings for each sub-question are summarized below.

1. Why is monitoring the effect of management actions relevant to improve safety of
engineering systems?

A distinction of active and latent errors helps to understand how accidents arise as a concur-
rence of various human faults and management deficiencies. Active errors have immediate,
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visible consequences and are typically committed by front line operators, e.g. control room
operators. Latent errors, on the contrary, are primarily associated with high-level decision
makers and managers. They are dormant for a long time before an accident sequence begins
and only become evident when they coincide with other faults. Often, disasters are released
by active errors or external triggering events, but the latent root causes have long been
present.

Unfavorable preconditions for the technical staff (also called human factors or performance
shaping factors), such as insufficient knowledge of the system, time pressure or concentra-
tion, are typical latent causes for accidents. Between preconditions and active human faults
there is a so-called few-to-many mapping, i.e. a bad precondition may open the pathway for
many unsafe actions. In other words, bad preconditions increase the probability of human
error. Naturally, it is more effective to safeguard good preconditions than trying to prevent
the occurrence of unsafe acts directly. This is a first reason to monitor how management
decisions influence the preconditions and, thus, the system’s safety.

A second reason is that managers often seem to be more motivated to control short-term
risks and direct efforts towards productivity, because their success becomes immediately
visible, and ignore the risk of rare disaster. Some risk events are so rare that they are
unlikely to happen during the manager’s time in charge, whether he attempts to mitigate
them or not. His efforts may not visible and may not be rewarded. A model that monitors
the effects of all kinds of management actions on safety may make these efforts more visible
and motivate managers to more intensely control low-probability risks.

2. How can human factors and management influences be incorporated in technical
risk models?

Event tree (ET) and fault tree (FT) analyses are the commonly used tools to model failures
of technical components. However, they have severe limitations to include uncertainty as
well as common cause failures. Moreover, dynamic relationships cannot be represented.
Because human factors may influence the probability of human error at several points in the
system, but it need not cause a fault, these tools alone are not suitable to model them.

Two models known from the literature, a causal model for air transport safety (CATS)
and a socio-technical risk analysis (SoTeRiA), attempt to incorporate human factors using
a mixed logic approach. CATS combines ETs and FTs with nonparametric BBNs to a
homogeneous mathematical model. It is a static, highly specific, quantified model that
incorporated a few selected human factors and management influences in order to determine
the accident probability of a flight. SoTeRiA, on the other hand, is rather a proof of
concept emphasizing the need to include dynamics, in particular feedback, when modeling
human and organizational factors. It consists individual of ET and FT modules, BBN
modules and System Dynamic (SD) modules. However, no method is proposed to quantify
the deterministic equations of the SD modules that deal with human factors. For this
reason there are no grounds for using this methodology in this research and the decision
to investigate the potential of dynamic BBNs for human factor modeling in risk analysis is
substantiated.

A problem arising when modeling human performance is the lack of metric for human factors,
which makes it difficult to operationalize the factors. Proxies have to be used, although they
capture only very limited part of the factor. Of course, there are countless possible proxies of
a factors and for each application different choices have to be made. Therefore a realistic set
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of time dependencies and feedback loops between management actions and human factors
can only be made on the basis of a specific example justifying the operationalizations chosen.

3. What is the added value of dynamic nonparametric BBNs when modeling human
factors and management actions?

Nonparametric Bayesian belief nets (BBNs) are a type of probabilistic graphical model con-
sisting of nodes (variables) and arcs (influences). They represent the probability distributions
of the variables and can realistically reflect inherent variabilities in a system. Considering
that the differences in human performance among individuals are due to many factors, e.g.
genetics or the situation in private life, which we have neither influence on nor can learn
about thoroughly, it is essential to reflect these uncertainties in a safety management model.

Because a specific example is needed to explore the benefits of nonparametric BBNs, it has
been chosen to consider the human factor knowledge and the management action training
in the limited context of students playing an online game. The data has been gathered with
a simple experiment. The levels the participants completed were interpreted as training,
whereas the knowledge was inferred from the required time. The model can then easily
be quantified using the “new data mining model” option in the software Uninet. However,
the model could also be quantified if data were not readily available, e.g. through expert
judgment. A mixed approach is of course also possible. This flexibility with regard to the
type of data is another major advantage of nonparametric BBNs.

Moreover, BBNs are able to depict relationships in an intuitive manner. Cause-effect rela-
tionships are represented through the directionality of the arcs. In particular, the causal flow
of time is indicated with arcs from the left to the right.

In this research the relationship between training and knowledge has been modeled for four
consecutive time steps. In principle the model could be extended to arbitrarily many time
steps, but the nodes and arcs of each time step need to be quantified individually. It remains
questionable, if the principle of un-rolling, i.e. modeling two time steps and then duplicating
the structure up to the desired number of time steps, can be applied. The example case
gives no indication that the nodes and arcs are time-invariant so that they can be duplicated.
Hence, due to the required quantification efforts, it is at the current stage of research only
feasible to model a considerably small number of time steps with nonparametric BBNs.

4. How can management actions be developed with dynamic nonparametric BBNs?

The main use of BBNs is updating the distributions of the variables once new evidence on
one or more variables is obtained. Because evidence can be propagated forwards (in the
direction of the arcs) and backwards (in the opposite direction of the arcs), one can reason
predictively as well as diagnostically. On one hand, the effect of certain management actions
on a human factor in the future can be investigated. For instance, the participant’s level
of knowledge, if subjected to high trainings, can be predicted. Or, another hypothetical
management action could be to only promote and train those participants who have already
proven to be knowledgeable. By conditioning on high knowledge in the first time step, the
effect on the future levels of knowledge can be predicted. On the other hand, by conditioning
on high knowledge in the last time step, it is also possible ot investigate which trainings
have to be given in order to achieve this desired level of knowledge.

The output of the updated nonparametric BBN in Uninet includes mean and variance of
the variables, which immediately shows the trend of the influence: does it increase or lower
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the value of the variable and how uncertain is that (roughly)? Additionally, the histograms
of the variables are given, which enables to model user to see the whole range of possible
values for it. Especially, extreme values with very low probabilities are visible. This allows
to design management actions, which explicitly aim to prevent these extreme values. In
the same manner it could give an incentive to managers to make efforts of mitigating
low-probability-high-consequence events, since it makes these efforts visible and possible to
acknowledge.

From the answers to the research questions above can be concluded that dynamic nonpara-
metric BBNs have great potential to represent human and organizational factors in a realistic
manner. They can be a useful tool to design improved SMS through monitoring the effect of
management actions on safety. But of course the methodologies has some limitations as well.
These limitations, especially the latter three, have to be kept in mind when building a realistic
model.

• Due to constrains in time, resources and scope of the research, the demonstration case is
very limited. First, the sample size was very small and correlations smaller than |r| ≤= 0.344
are not significant on the α = 5% level. Second, the predictive quality of the models has
not been investigated. Improvements are left for further research.

• In a realistic case the nature of the data may not be suitable for this methodology. However,
this is rather unlikely, because the assumption that the data can be joint by the joint-normal
copula is not very restrictive.

• It is only feasible to model a small number of time steps, because the nodes and influences
have to be quantified for each time step individually.

• In this research, it has only be conditioned on point values. However, it would be more
realistic to condition on a rage of values, because there is usually a minimum acceptable level
or a maximum acceptable level of a factor. How to achieve this has not been investigated
as part of this project.

• Because of the nature of human factors, strict assumptions have to be made in order to
operationalize them. The definitions of the variables are proxies which capture a very limited
part of reality. Naturally, these proxies have strong impact on the model output and have
to be chosen very carefully keeping the purpose of the modeling project in mind. For this
reason, the model can only make predictions and diagnoses for the system it has been
designed for and can by no means be transferred to another context.

• Many different model structures may be statistically valid and the methodology gives no
indication which one is the “best”. The final choice has to be made by the analyst based
on other factors, foremost the meaning of the variables, consistency with the causal flow
of time as well as the research goal and special interests of the model user. This step has
not been done in this research, because the example is too restricted to provide meaningful
arguments for the choice. Instead, two model structures have been compared to demonstrate
the impact different choices have on the output.
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7.2 Contributions and Suggestions for Future Work

The contributions of this thesis are mainly scientific and are two-fold. On one hand it adds to the
limited literature on risk models, which explicitly incorporate human performance, by proposing a
new approach to model and monitor the influence of management actions on human performance
in a dynamic context. The demonstration case illustrates how dynamic nonparametric BBNs can
reflect inherent variabilities in the factors, which is essential in human performance modeling. The
natural differences among individuals can hardly be predicted and this uncertainty needs to be
represented by the model. On the other hand it is relevant to the new field of dynamic BBNs. To
our knowledge, the quantification of a dynamic nonparametric BBN from data has not yet been
discussed in the literature. In this thesis the steps of building and validating a model are described
in detail using a demonstration case, but they could be applied to various applications, also in
other fields than risk analysis and to applications in the industry.

As indicated in the discussion on the limitations in the previous section, specific recommen-
dations for follow up research address three points. First, in order to improve the statistical
significance of the results the experiment needs to be repeated with an increased sample size.
According to [Ramsey, 1989] 100 samples are needed to ensure that all correlations r ≥ 0.165
are significant. In order for lower correlation values to be significant even more samples are re-
quired, but a concrete number for the sample size cannot easily be found in the literature and
may need to be computed. Since the (conditional) correlations in the demonstration models have
either r ≥ 0.165 or are very close, it seems sufficient to include around 100 samples to secure
significance for all arcs. Second, it could be researched how to condition on a range of values, i.e.
a critical value and higher or lower, for the factors. Third, the quality of the model predictions
could be investigated so as to better assess the value of dynamic nonparametric BBNs for human
factor modeling. This can be done by having a second group of participants play the game under
specific conditions and compare the results with the output of the model, which has the same
conditions implemented. It is expected that such an experiment helps to judge which one of the
two model structures is more useful for predictions or, possibly, that a third structure not treated
in this thesis may be most suitable.

More generally, for realistic applications extensive case-specific research has to be made to
determine the set of human factors, which will be included in the model, and on how to oper-
ationalize them. It should further be investigated how they can be quantified: whether data is
available or can be made available e.g. through experiments, or whether expert judgment has
to be employed. Because this topic could be researched endlessly and a generally valid answer
can probably not be found in the near future, the scope of the research has to be set for each
application individually.
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Appendix A

Introductory Example for BBNs

This section illustrates the basic concepts of BBNs using a (fictitious) example called Asia, which
has been introduced by [Lauritzen and Spiegelhalter, 1988].

A BBN reflects all the possible states of (some part of) the world in form of the joint probability
of the variables in the model. It is a directed acyclic graph whose nodes represent random variables
and whose arcs indicate a probabilistic influence. Asia is a BBN with eight binary variables as
displayed in figure A.1. The net indicates the influences of smoking and travel to Asia on the lung
conditions of a patient. Each variable has two states: yes or no. The variables correspond to the
conditions of a patient, e.g. being a smoker or not.

In general, a joint probability distribution embodies all the possible combinations of the states
of the variables in a system. A system with N binary random variables has 2N possible combina-
tions, for which one probability value has to be stored for each. For the model Asia that would be
28 = 256 entries. Hence, the computational effort for a reasonably simple model is quite large.

Figure A.1: Nodes and arcs of Asia (source: [Norsys Software Corp., nd])

BBNs are a tool to significantly lower the efforts by reducing the number of necessary param-
eters (probability entries) [Norsys Software Corp., nd]. The arcs point from the so-called parent
node to the child node indicating a causal relationship. For instance, visit to asia is the parent of
tuberculosis or, phrased differently, tuberculosis is the child of visit to asia, which means that a
visit to asia has an influence on the probability of having tuberculosis. Similarly, smoking increases
the risk for lung cancer and bronchitis while a trip to asia increases the risk of getting tubercu-
losis. Both tuberculosis and lung cancer may cause an abnormal X-ray, but bronchitis does not.
”Acyclic” means that the arcs may from loops, but no cycle.

Depending on the number of arcs, the required number of parameters may be exponentially
less [Murphy, 2002]. Because nodes are probabilistically related through dependence assumptions,
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only the possible combinations between parent and child nodes have to be stored and used.
Asia is a simplified version of a model which could help to diagnose patients arriving at a

clinic for lung diseases. The following description of this model gives an intuitive description of
how BBNs are used. It is based on [Norsys Software Corp., nd]. The following facts about the
patients reporting to the chest clinic are assumed to be known. (They could be derived easily
from experience when running a chest clinic):

• 1% has recently been to Asia and 50% smokes

• 1% has tuberculosis, 5% have lung cancer and 45% have bronchitis

• 11% have an abnormal X-ray result and 44% experience dyspnea

These probabilities describe a new patient1 arriving at the clinic. Hence, no specific knowledge
for him is available yet. For this reason they are called prior distributions. Figure A.2a displays
the BBN that is specified according to these numbers.

When acquiring new knowledge about the patient, e.g. by questioning the patient or from
medical examination, the probabilities in the net are adapted and a more accurate estimate of the
likelihood for an illness is obtained. Updating is based on Bayes rule

P (A|B) =
P (B|A) · P (A)

P (B)
(A.1)

which can be extended to more dimensions. The probabilities after updating are called posterior
distributions. An example for acquiring and using new information of one particular patient is given
in the following paragraphs.

• A patient who reports dyspnea has an increased probability for all three diseases (figure
A.2b). This is intuitive, because all three diseases have dyspena as a symptom and observing
the symptom increases the belief in the presence of the illness.

• A recent visit to asia increases the probability for tuberculosis, but decreases the risk for
lung cancer and more significantly for bronchitis (figure A.2c). This is due to the fact that
the diseases are competing causes for the symptom dyspnea: If the probability for one cause
increases, the probability for the other causes must decrease. This phenomenon is called
“explaining away”.

• Smoking increases the probability for bronchitis and lunc cancer further (figure A.2d)

• Finally a normal X-ray indicates a bronchitis with 92% (figure A.2e), whereas an abnormal
X-ray indicates relatively high chances for tuberculosis and lung cancer (figure A.2f). In
practice this would probably require more specific medical tests, whereas a patient could
simply be diagnosed with bronchitis when having a normal X-ray result.

Asia is a typical diagnostic net. It shows that BBNs are very adaptable to the amount of
knowledge that is available. In other words: complete knowledge is not required when working
with BBNs. If the knowledge is limited, a preliminary model can be build and expanded as

1Note that they are not valid for a general population, but only for the patients of the chest clinic. Keeping
this assumption regarding the sample population in mind is important in order to draw valid conclusions from the
network.
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(a) Prior distributions (b) Patient suffers dyspnea

(c) Patient has recently been to asia (d) Patient is smoker

(e) Patient has a normal X-ray (f) Patient has an abnormal X-ray

Figure A.2: Prior and posterior distributions for Asia (source: [Norsys Software Corp., nd])

new information is acquired. With new information on one or more variables, the probability
distributions of the other variables are updated.

A simple example of a static BBN with discrete random variables has been discussed in this
section. Nevertheless, BBNs can be dynamic and have continuous random variables.



Appendix B

Selected SD modules from SoTeRiA

Figure B.1: Human reliability module in a System Dynamics environment (source: [Mohaghegh
et al., 2009])
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Figure B.2: Management commitment module in a System Dynamics environment (source: [Mo-
haghegh et al., 2009])



Appendix C

Participants and Questionnaires

The following pages include a table with all participants and their affiliations as well as the hand
out and questionnaire that have been handed out before and after the experiment.
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The	  Experiment:	  
	  
-‐	  Determining	  the	  distribution	  of	  knowledge	  transferred	  through	  training	   	  
	  

	  
	  

3Dlogic	  Instructions:	  
	  

Rotate	   the	   magic	   cube	   with	   your	   mouse	   and	   connect	  
fields	  with	  the	  same	  color.	  You	  have	  completed	  a	  cube,	  if	  
all	   color	   pairs	   are	   linked.	   You	   cannot	   connect	   cells	  
diagonally	  and	  black	  cells	  are	  blocked.	  You	  can	  clear	  the	  
complete	  cube	  and	  undo	  the	  last	  step	  with	  the	  buttons	  on	  
the	  bottom.	  Have	  fun!	  
	  

General	  Remarks:	  
	  

-‐ Please	  do	  not	  communicate	  with	  the	  other	  participants	  during	  the	  
experiment.	  

-‐ The	  levels	  are	  not	  equally	  difficult.	  Especially	  in	  the	  first	  round	  the	  times	  you	  
need	  for	  each	  level	  may	  vary	  significantly.	  

-‐ If	  the	  students	  around	  you	  seem	  to	  be	  finishing	  much	  faster	  than	  it	  is	  
probably	  because	  you	  have	  to	  play	  up	  to	  a	  higher	  level.	  

	  
	  
	  
	  
	  

training	  	  	  	  	  	  	  	  	  	  	  	  

?	  

knowledge	  
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Questionnaire	  (part	  1):	  
	  

1. What	  is	  your	  gender?	  

	  

2. In	  which	  study	  program	  are	  you	  (or	  have	  you	  been)	  enrolled?	  

___________________________________________________________________	  

3. Do	  you	  know	  the	  game	  3Dlogic?	  

	  

	  

4. How	  important	  is	  performing	  “well”	  at	  this	  game	  to	  you?	  

Extremely	  important	   	  
	   	  

Very	  important	   	  
	   	  
Moderately	  important	   	  
	   	  
Slightly	  important	   	  
	   	  
Not	  at	  all	  important	  	   	  

	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  

Female	   	   	  	  	  Male	   	  

Yes	   	   	  	  	  No	   	  
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Procedure	  of	  the	  Experiment	  
	  
Round	  1:	  

1. In	  two	  separate	  windows	  open	  www.online-‐stopwatch.com	  and	  
http://mypuzzle.org/3d-‐logic.	  

2. Arrange	  the	  two	  windows	  next	  to	  each	  other.	  
3. Click	  on	  “stopwatch”.	  As	  a	  trial	  run	  start	  the	  stopwatch	  and	  pause	  it	  after	  10	  

seconds.	  	  
4. Draw	  a	  number	  between	  5	  and	  10	  from	  the	  bowl	  and	  note	  it	  down	  as	  level	  in	  

the	  table	  below.	  	  
5. Start	  the	  stopwatch,	  directly	  start	  playing	  3Dlogic	  until	  you	  have	  completed	  

your	  assigned	  level	  and	  pause	  the	  stopwatch.	  
6. Please	  do	  not	  continue	  playing	  and	  wait	  until	  the	  experimenter	  has	  written	  

down	  your	  results.	  
7. Clear	  stopwatch	  

	  
Rounds	  2-‐4:	  
Repeat	  steps	  4	  to	  7	  of	  the	  first	  round,	  that	  is:	  

4. Draw	  a	  number	  between	  5	  and	  10	  from	  the	  bowl	  and	  note	  it	  down	  as	  level	  in	  
the	  table	  below.	  	  

5. Start	  the	  stopwatch,	  directly	  start	  playing	  3Dlogic	  until	  you	  have	  completed	  
your	  assigned	  level	  and	  pause	  the	  stopwatch.	  

6. Please	  do	  not	  continue	  playing	  and	  wait	  until	   the	  experimenter	  has	  written	  
down	  your	  results.	  

7. Clear	  stopwatch	  and	  press	  exit	  of	  3Dlogic.	  

	  
	  

Results	  
	  

Round	   Level	   Time	  
1	   	   	  
2	   	   	  
3	   	   	  
4	   	   	  
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Questionnaire	  (part	  2)	  
	  

4. How	  difficult	  did	  you	  find	  3Dlogic?	  

	  

	  

5. Did	  you	  feel	  stress/pressure	  during	  the	  experiment?	  

Extremely	  	   	  
	   	  

Very	  much	   	  
	   	  
Moderately	  	   	  
	   	  
Slightly	  	   	  
	   	  
Not	  at	  all	  	   	  

	  

6. How	  do	  you	  think	  you	  performed	  compared	  to	  other	  participants?	  

Much	  better	   	  
	   	  

Somewhat	  better	   	  
	   	  
About	  the	  same	   	  
	   	  
Somewhat	  worse	   	  
	   	  
Much	  worse	  	   	  

	  
	  

Extremely	  difficult	   	  
	   	  

Very	  difficult	   	  
	   	  
Moderately	  difficult	   	  
	   	  
Slightly	  difficult	   	  
	   	  
Not	  at	  all	  difficult	  	   	  
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Appendix D

Validating the BBN Structure

This appendix relates to section 6.2. It contains the results of several statistical tests to validate
the model structure.

D.1 Results for the Skeletal BBN

This appendix refers the skeletal BBN in figure 6.1b. It provides the correlation matrix and the
output of the statistical test.

Figure D.1: Correlation matrix for the skeletal BBN
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Figure D.2: Results of the “validate model” function of Uninet for the skeletal BBN

D.2 Results for the BBN with few arcs

This appendix refers the BBN structure with few arcs in figure 6.4. It provides the correlation
matrix and the output of the statistical test.

Figure D.3: Correlation matrix of the BBN with few arcs
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Figure D.4: Results of the “Validate Model” function of Uninet for the BBN with few arcs

D.3 Results for the BBN with many arcs

This appendix refers the BBN structure with many arcs in figure 6.5a. It provides the correlation
matrix and the output of the statistical test.

Figure D.5: Correlation matrix of the BBN with many arcs
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Figure D.6: Results of the “Validate Model” function of Uninet for the BBN with many arcs
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