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summary

Maneuvering or Stability and Control (S&C) characteristics of an aircraft constitute the most challeng-
ing and expensive phase of its design process. The S&C design phase extends into the development
process, sometimes leading to unexpected aerodynamic issues. Thus, identifying aerodynamic issues
and their consequences, e.g. transonic buffet, in the early stages of development, is crucial. Recent ad-
vancements in Computational Fluid Dynamics (CFD) have expanded its utilization. However, despite
improvements in CFD, the comprehensive representation of dynamic effects for all possible maneuvers
is still unfeasible due to the high computational expense.

Reduced Order Models (ROMs) have been combined with CFD data to predict an aircraft’s dynamics
in all possible maneuvers. ROMs enable the efficient utilization of high-fidelity CFD data, providing
valuable insights into flight dynamic effects [75]. This thesis project took place at the Netherlands
Aerospace Center (NLR). The NLR in cooperation with TUDelft, has developed a ROM method for
predicting unsteady aerodynamic loads of air vehicles. The current ROM approach combines the Proper
Orthogonal Decomposition (POD) of pressure distribution with a Long Short-Term Memory (LSTM)
type Neural Network (NN). So far, the POD-LSTM ROM method predicts the pressure distribution
well in the incompressible flow regime [10, 12]. However, the increased number of spatial POD modes
required to accurately represent the shock discontinuities in a pressure distribution poses challenges to
POD-LSTM ROM. This leads to high computational costs, rendering the application of the POD-LSTM
ROM in transonic flows impractical. Therefore, this thesis aims to set the foundation for expanding
the POD-LSTM ROM for predicting the pressure distribution over sections of the DLR-F22 model in
transonic conditions.

This research introduced a novel approach to address the increased number of spatial POD modes
needed to approximate shock discontinuities in transonic flows. The enriched Proper Orthogonal De-
composition (ePOD) method introduces an enrichment basis into the standard truncated POD basis.
The enrichment basis explicitly accounts for pressure discontinuities caused by shock waves, allowing
the standard basis to focus on representing the remaining pressure distribution. The results confirm
that the ePOD reduces the DoF required to approximate pressure distribution in transonic flows.

An LSTM neural network was utilized to forecast the time-dependent coefficients and parameters
of the enriched reduced-order basis in unseen flow conditions. The results also showed that the ePOD
reduced the complexity of the time-variant parameters of the reduced-order basis compared to the
standard POD with the same number of degrees of freedom (DoF), facilitating more efficient training
of the neural network.
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Introduction and Objective

1.1. Background and Project Motivation

Stability and Control (S&C) characteristics are fundamental for the design and analysis of aircraft per-
formance [75]. The S&C design phase is often related to unexpected aerodynamic issues, such as buffet
in transonic maneuvering conditions, which often are not recognized until very late in the design pro-
cess, sometimes even during flight tests, when corrections are costly or not possible [13]. Therefore, it is
critical to identify those undesirable phenomena as early as possible in the design process of an aircraft
[40]. These characteristics are determined by the aerodynamic loads acting on an aircraft, which often
are evaluated using Computational Fluid Dynamics (CFD) methods. Although running steady-state
Reynolds-averaged Navier-Stokes (RANS) simulations are feasible for the whole flight envelope, they
are not applicable to regions where flow separation occurs, nor can they capture transient effects, such
as those occurring during maneuvers, which are critical for highly agile aircraft. Therefore, determin-
ing aerodynamic performance for full-scaled aircraft configurations requires solving the time-accurate
unsteady RANS (uRANS) equations, Detached Eddy Simulations (DES), or Hybrid RANS approaches.
However, these methods are computationally expensive and demand substantial energy resources. For
instance, performing S&C analysis over an aircraft flight envelope requires aerodynamic data for tens of
thousands of different states to encompass all angles of attack, sideslip angles, aircraft speeds, control
surface deflections, etc. [24]. Consequently, performing multiple CFD calculations to predict dynamics
for all possible states is unfeasible. As a result, predicting precisely the aircraft’s aerodynamic perfor-
mance over a wide range of operating conditions becomes challenging. This often leads to discrepancies
between the anticipated and actual aircraft performance. Data-driven Reduced-Order Models (ROMs)
can efficiently utilize the expensive high-fidelity CFD data to produce high-quality regression estimates
for points between states determined by CFD, thus offering valuable insights into an aircraft’s flight
envelope. In many applications, such as aeroelastic modeling or fatigue prediction, utilization of ROMs
can reduce computational costs while providing highly accurate predictions for aircraft’s performance
and S&C characteristics.

Over the years, various ROM approaches have been explored for predicting aerodynamic loads in
steady and unsteady flow cases. These models can be broadly categorized into physics-based and data-
driven ROMs [22]. The latter category is very often applied in unsteady aerodynamics and can be
roughly subdivided into the next categories: models using indicial response functions [27, 63, 78, 21],
models utilizing Volterra theory [26, 3], single or multi-fidelity surrogate models [42, 25, 41], and last
but not least, ROMs with integrated Neural Networks (NNs) and deep learning [31, 60, 80, 20, 19, 55].
In the age of data, ROMs based on Machine learning (ML) are becoming increasingly relevant.

In task group AVT-351 on Enhanced Computational Performance, Stability, and Control Prediction
for NATO Military Vehicles, researchers from different universities, research institutes, and industries
in Europe and North America work together on developing and evaluating several approaches to con-
structing surrogate ROMs. The Netherlands Aerospace Centre (NLR), as a member of NATO/STO
research task group AVT-351, is investigating the usage of ROMs based on mode decomposition and
Machine Learning that can accurately and quickly predict force and moment coefficients as well as the
surface pressure distribution of an aircraft. The current approach uses a Long Short-Term Memory
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(LSTM) type Neural Network in combination with the Proper Orthogonal Decomposition (POD) of
the surface pressure distribution. Specifically, recent investigations have included different regression
techniques, clustering, and domain decomposition to improve the performance of the POD-LSTM sur-
rogate model [10, 12]. The combination of modal analysis and Recurrent Neural Networks (RNNs)
has shown promising performance in predicting unsteady aerodynamic forces in the incompressible flow
regime. Recent results have indicated that, compared with subsonic flow, transonic flow requires more
spatial POD modes for accurate flow field approximation [46], rendering applying the current approach
in the compressible regime challenging. The previous studies conducted by Bourier [10] and Catalani
[12] set the framework for the project direction. The project aims to investigate the current ROM’s
applicability in the transonic flow regime by enhancing the construction of the reduced-order basis.

1.2. Problem Description

ROMs are employed to predict integral force and moment coefficients, along with their derivatives. Al-
though accuracy requirements for load prediction are relaxed [73], many applications, including aeroelas-
ticity and fatigue prediction, require detailed pressure distribution information [75]. The most critical
concerning aeroelastic phenomena often occurs in transonic flow conditions [7]. In the transonic range,
various flow phenomena can initiate and produce severe aeroelastic issues such as flutter, limit cycle
oscillation, or buffet [33]. Consequently, the accurate development of control laws requires numerous
test points, especially in transonic flight conditions featuring complex flow phenomena. For example,
approximately 500,000 test points are necessary for a compressed CFD-based development program of
a tactical fighter aircraft design [73]. Thus, the problem dimensions for one state practically equal the
number of grid points on the surface of the airfoil/wing, which typically ranges from 10* to 10°. When
considering all possible states, the problem’s dimensions increase dramatically.

Previous studies conducted by Bourier [10] and Catalani [12] at the Royal NLR have focused on de-
veloping ROMs for predicting unsteady pressure fields over the Unmanned Combat Air Vehicle (UCAV)
configuration at subsonic speed and moving in the vertical plane, i.e. side slip and roll were neglected.
In this ROM, the POD was combined with LSTM NNs to predict surface pressure distributions. An
POD-LSTM ROM efficiently derives the reduced coordinates by using the truncated basis derived by
the POD with the LTSM NN predictions of the time coefficients of the reduced-order basis in unseen
flow conditions. This approach reduces the computational burden associated with training and predic-
tion in complex neural network architectures, such as Autoencoders and Decoders. The outcome of
the studies previously conducted at NLR [10, 12] has demonstrated the potential of the POD-LSTM
method.

The previous POD-LSTM ROM effectively predicted integral loads’ coefficients and pressure fields in
the incompressible flow regime (M, < 0.2). However, as the Mach number increases, flow phenomena
become more complex, and as a consequence, the projection error of a modal analysis rises. The
projection error, defined as the difference between the reduced-order basis and the Full-Order Model
(FOM), is the critical indicator of reduced-order basis efficiency. In the case of transonic flows, more
spatial POD modes are needed to encapsulate compressibility effects like shock waves and shock-induced
separation. Thus, the dimension of the reduced coordinates required for the accurate approximation of
the FOM increases.

This research aims to create a surrogate ROM capable of predicting pressure distribution over a
specified aircraft configuration in the transonic flow regime. Similarly to previous studies, the modelling
is confined to maneuvers in a vertical plane, accommodating variations in angle of attack and pitch rate.
The resulting ROM enables fast predictions of aerodynamic forces across a wide range of conditions
and can be integrated with structural analysis tools to investigate the aircraft’s aeroelastic behavior.

The goal of this thesis is to develop a ROM capable of predicting the complex pressure distributions
of the DLR-F22 model in transonic flows. The DLR-F22 model is a generic research wind tunnel model
featuring a triple delta wing fighter-type aircraft configuration. The geometry of the DLR-F22 model
is presented in detail in the relevant Section 5.3. Furthermore, Figure 1.1 highlights the complexity of
flow phenomena over the DLR-F22 model.
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(b)

Figure 1.1: Upper surface pressure distribution (a) and vortex structure visualized with the Q-criterion (b), for Kestrel
with the SARC model, and M = 0.85, a = 20° [82].

Figure 1.1a illustrates the pressure distribution over the upper surface of DLR-F22 model, while
Figure 1.1b visualizes vortex interactions utilizing the Q-criterion. These images reveal the various flow
phenomena, including shocks, vortical structures, and vortex interactions. The primary vortical systems
identified include the forebody vortex, strake vortex, wing vortex, and wingtip vortex. Furthermore, one
can observe interactions between the strake and forebody vortices and among the vortical structures at
the leading edge of the main wing. Moreover, the primary shock wave systems can be identified based
on Figure 1.1. The first shock wave emerges shortly downstream of the intersection of the forebody and
the strake, followed by a second, stronger shock at the middle of the main wing.

The United States Air Force Academy (USAFA) produced the data utilized for ROM development
by solving the unsteady, three-dimensional, compressible RANS equations on hybrid unstructured grids
[58], for the DLR-F22 model under two motion types: Pseudorandom Binary Sequence (PRBS) signal
and Schroeder maneuver. The output data of the simulation was the high-fidelity pressure distribution
at six spanwise sections on the upper surface of the DLR-F22 model. Therefore, given the available
dataset, the proposed surrogate ROM was developed to predict the pressure distribution at chordwise
sections of the upper surface of the DLR-F22 model. Figure 1.2 illustrates the extraction process of the
high-fidelity pressure distribution data for Section 1 of the DLR-F22 model under a PRBS signal, as
performed by USAFA.
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Figure 1.2: Pressure distribution extraction from Section 1 of DLR-F22, PRBS signal [24].

This research considers methods for enhancing the reduced-order basis of the POD-LSTM ROM to
address shock discontinuities present in pressure distributions of transonic flows. A new approach was
developed to address the increased number of spatial POD modes required to represent pressure discon-
tinuities in transonic flows. This method is referred to as enriched Proper Orthogonal Decomposition
(ePOD).

1.3. Research Objective and Questions
1.3.1. Research Objective

The objective of the research can be summarized in the following paragraph:

The research objective is to construct a Machine Learning based Reduced-Order Model (ML-ROM)
based on the ePOD method capable of efficiently predicting the pressure distribution at the chordwise
sections of the DLR-F22 model, with a specific emphasis on the transonic flow regime. Furthermore, we
construct and train a Long Short-Term Memory (LSTM) neural network for predicting the temporal
evolution of the enriched reduced-order basis.

1.3.2. Research Questions
To achieve the above objective, the following research questions were addressed:

1. How does the ePOD enriched reduced-order basis approximate the pressure distribution in tran-
sonic flows compared to the POD basis with the same number of degrees of freedom?

(a) Does the ePOD result in a more accurate reduced-order basis than the POD?
(b) Can the enriched reduced-order basis efficiently approximating the shock discontinuities in
transonic flow pressure distributions?

2. How should the enrichment basis be integrated into the reduced-order basis for the DLR-F22
model to accurately represent flow discontinuities?

(a) Should the enrichment mode be local or global in space?

3. How does the proposed ePOD-LSTM ROM perform when predicting the pressure distribution on
a section of the DLR-F22 model compared to an POD-LSTM?
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(a) Does the ePOD-LSTM ROM predict discontinuities in the pressure distribution over sections
of the DLR-F22 model more accurately than POD-LSTM?

(b) How does the enriched basis of ePOD-LSTM ROM affect the training of LSTM NN compared
to POD-LSTM?

1.4. Report Outline

The outline of this report is as follows. In Chapter 1, the problem that the thesis project aims to solve
is introduced. Chapter 2 provides an overview of various data-driven Reduced-Order Models (ROMs)
developed over the years, with a focus on the compressible flow regime and the current ROM used
by NLR. Additionally, this section introduces the Proper Orthogonal Decomposition (POD) method
and the Long Short-Term Memory (LSTM) neural network. The test cases used to develop, test, and
validate the proposed approach, as well as the architecture of the ePOD-LSTM Reduced-Order Model,
are presented in Chapter 3. In Chapter 4 , the proposed enriched Proper Orthogonal Decomposition
(ePOD) method is described and evaluated. In Chapter 5, the LSTM network trained to predict the
temporal dynamics of the enriched reduced basis in unseen conditions is discussed, along with the
limitations and challenges of the regression approach. Furthermore, the results of the ePOD-LSTM
ROM are compared with those of the POD-LSTM ROM. Finally, the conclusions of the report are
summarized in Chapter 6, along with recommendations for future work.



Literature Review

2.1. Reduced-Order Models

Reduce Order Models (ROMs) are employed to reduce the number of degrees of freedom (DoF) in high-
dimensional CFD datasets, allowing efficient analysis of a system’s dynamics [44]. In other words, ROMs
reduce the system’s dimensions to a minimum, which still allowing for the accurate representation of flow
dynamics. Consequently, this facilitates a rapid approximation of an aircraft’s performance and S&C.
The ROMs objective involves identifying a latent low-dimensional space that sufficiently encapsulates
Full-Order Model’s (FOM) dynamics [62]. Even in chaotic turbulent flows, a certain degree of order
persists [8], so reduced-order model that approximate the FOM can be derived. This particular part of
a ROM is often called the ‘offline stage’ Conversely, the ‘online stage’ of a ROM involves computing
flow dynamics for unknown conditions, predicting the system’s behavior in unforeseen states. ROMs
fall into two primary categories: ‘intrusive’ or physics-based models and ‘non-intrusive’ or data-driven
models [49]. An ‘intrusive’ ROM employs the physical representation of the system’s dynamics, usually
expressing the governing equations using fewer DOF. In contrast, a ‘non-intrusive’ ROM exclusively uses
high-fidelity data (e.g. CFD results) for reproducing the system’s dynamics, disregarding the governing
equations of the system [2]. Hence, these ROMs are referred to as purely data-driven methods.

2.1.1. Data-Driven ROM's based on Neural Networks

Machine learning (ML) stands out as a promising technology, particularly in the development of reduced-
order models (ROMs) in the field of fluid dynamics. Typically, ROMs are utilized to predict integral
aerodynamic forces, momentum coefficients, and their derivatives [75]. However, when aeroelasticity
becomes relevant or fatigue analysis is required, a detailed pressure distribution is necessary.

The degrees of freedom of the pressure distribution equals the number of grid points on the surface
of the airfoil/wing, dramatically increasing the training cost of Neural Networks (NNs). To address the
issue of the high dimensionality of the problem, one can use Auto-Encoders/Decoders (AE) NN [29, 35,
77) or apply PODs combined with NNs for approximating the pressure distribution [10, 12, 84].

Auto-Encoder/Decoder

Integrating machine learning into ROMs involves learning and optimizing a reduced coordinate system
to represent the system’s dynamics. Deep Learning (DL) can be used to reduce the dimensions of
the problem, similar to POD. In particular, a Neural Network (NN) Auto-Encoder/Decoder (AE) can
be employed for establishing reduced coordinates. The AE features an input and output matching
the dimensions of the high-dimensional fluid state, with a bottleneck that compresses it into a low-
dimensional latent space. The part of the NN that decreases the coordinates of the high-fidelity data
is called the ‘Encoder’. Conversely, the part of the NN that maps it back to an approximation high-
dimensional state is the ‘Decoder’ of the AE.

If the encoder and decoder each consist of only one layer, with all nodes employing identity activation
functions, the optimal solution for this neural network (NN) will be closely related to POD [4]. However,
this simplistic linear AE can be extended to a deep nonlinear AE with multiple layers for encoding and
decoding, incorporating nonlinear activation functions. This transformation allows the deep AE to
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acquire nonlinear manifold coordinates, potentially enhancing compression within the latent layer. An
example of this generalized AE is illustrated in Figure 2.1:

Input Hidden Hidden Iiateut ; }ilddeu
Layer Layer 1 Layer L ayer : ayer

L+1 : L+2

o .

Figure 2.1: A generalized Auto-Encoder/Decoder neural network [35].

Furthermore, Lee and Carlberg [45] recently demonstrated that deep convolutional AE can sig-
nificantly enhance the performance of classical ROM techniques, such as POD. This concept involves
projecting dynamical systems onto nonlinear manifolds through minimum-residual formulations at both
time-continuous and time-discrete levels. The first results in manifold Galerkin projection, while the
latter corresponds to manifold least-squares Petrov—Galerkin (LSPG) projection. In addition, they sug-
gest a practical method for computing the nonlinear manifold, utilizing a specific convolutional AE
for dynamical systems. When the manifold Galerkin and manifold LSPG ROMs use this particular
decoder, they are referred to as Deep Galerkin and Deep LSPG ROMs. It is essential to note that
the main drawback of this approach is the costly training process. Training a deep convolutional AE
is considerably more computationally expensive than POD-based approaches, as described by Lee and
Carlberg [45]. Moreover, it introduces significantly more hyperparameters, specifically related to the
AE, compared to classical methods.

Zahn [84] utilized a hybrid deep learning ROM to forecast wing buffet pressure distributions on a
civil aircraft configuration. This model combines a Convolutional Variational Neural Network AE (CNN-
VAR-AE) with a Long Short-Term Memory (LSTM) neural network. The CNN-VAR-AE reduces the
DoF of the high-dimensional flow field data, deriving the latent space. The LSTM neural network is
employed to predict the temporal evolution of the latent space of pressure distributions. Figure 2.2
shows the schematic representation of this hybrid ROM.
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Figure 2.2: Hybrid DL-ROM as proposed by Zahn [84].

The effective performance capabilities of the proposed ROM method in predicting non-linear flow
fields were validated by the provided experimental data, as Zahn noted [84]. Their objective was to
utilize this ROM method for reconstructing buffet pressure distributions under various flow conditions,
including variations in Mach and Reynolds numbers. The resulting ROM utilizes a CNN-VAR-AE
for deriving the reduced coordinates. Prediction quality was improved by adjusting the pre-processing
routine and incorporating techniques such as Proper Orthogonal Decomposition [84].

POD combined with NNs

A promising approach involves combining Proper Orthogonal Decomposition (POD) with Neural Net-
works (NNs) to predict surface pressure distribution [10, 12, 20, 55]. When pressure distribution is
required, the dimensionality of the problem increases significantly. Training an end-to-end ML-based
ROM demands a large amount of high-fidelity training data to accurately forecast pressure distribution.
Consequently, training an Auto-Encoder/Decoder becomes computationally inefficient.

Instead of employing an end-to-end ML model, the proposed method splits the encoding and de-
coding components. Firstly, the POD, or a similar dimensionality reduction technique, calculates a
reduced-order basis approximating the FOM. Secondly, a neural network learns the temporal dynamics
of the reduced-order basis. Recurrent Neural Networks (RNNs) are frequently employed when dealing
with time-dependent problems, as described in the relevant chapter section 2.3.

The architecture of the POD-NN method was well described by Mohan and Gaitonde [55], who
developed a ROM using POD combined with a Long Short-Term Memory (LSTM) neural network.
The POD-LSTM ROM proposed by Mohan and Gaitonde [55] follows a similar structure to the ROM
approach developed in NLR. The primary steps of the POD-LSTM ROM are outlined below:

e Selection of the Training Datasets: The initial step in developing the POD-LSTM method is
the selection and organization of data. As outlined in [80], this process involves extracting two-
dimensional planes from the three-dimensional high-fidelity data to serve as training datasets.
Furthermore, select a subset of these planes as the test dataset. The performance of the POD-
LSTM ROM is evaluated by predicting the test dataset’s behavior after learning the dynamics
from the training datasets.

e Extraction of POD spatial modes and time coefficients: Extract the dominant spatial POD modes
and their corresponding time coefficients for the training and test datasets. Detailed information
about spatial modes and time coefficients is available in the subsequent paragraphs. The time
coeflicients of the test dataset will validate the LSTM neural network prediction.

e Training the LSTM neural network: Train the LSTM/BiLSTM neural network to predict the
time coefficients for the truncated spatial POD modes from the previous step. During validation,
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use a short history of the test dataset time coefficients as input to predict the time coefficients
of the next few time instants. Compare the LSTM network’s predictions with the actual time

coefficients from the test dataset. Repeat this process for all chosen spatial POD modes.

e Reconstruction of predicted flow field: Finally, use spatial POD modes and the predicted temporal

coeflicients to reconstruct the predicted flow field.

Figure 2.3 illustrates the main stages of the POD-LSTM ROM proposed by Mohan and Gaitonde

[55].
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Figure 2.3: The ML-based ROM, which combines POD with LTSM NN [55].

NLR uses a ROM approach with a similar structure to the POD-LSTM ROM proposed by Mohan
This POD-LSTM method was first introduced by Bourier [10]. Bourier [10] de-
veloped a POD-LSTM ROM that employs a reduced-order basis constructed from high-fidelity CFD
samples and a LSTM neural network to predict the temporal dynamics of this basis in unseen con-
ditions. The POD-LSTM ROM was employed to predict the surface pressure coefficient distribution
of the MULDICON UCAV configuration. The performance of the POD-LSTM model was evaluated
in terms of accuracy, computational training (training cost), and prediction time (online cost). The

and Gaitonde [55].

structure of the POD-LSTM ROM proposed by Bourier [10] is illustrated in the Figure 2.4:
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Figure 2.4: The proposed POD-LSTM ROM by Bourier [10].

In order to assess the performance of the POD-LSTM two primary measurement errors were in-
troduced by Bourier [10]. The first was the time-averaged projection error of the surface pressure
coefficient for the training samples, evaluated in terms of Mean Squared Error (MSE) in comparison to
the Full-Order Model. The second was the time-averaged neural network error of the surface pressure
distribution for the training samples, assessed in terms of MSE in comparison to the actual reduced-
order basis, refer to [10] for details. In the POD-LSTM ROM, the projection and neural network errors
was evaluated separately. This distinction allows for the easy identification of error sources within the
model and facilitates conclusions about the performance of both the offline and online phases. The
main conclusions drawn from Bourier [10] regarding the offline and online stages are as follows.
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Figure 2.5: Time-averaged projection error, of pressure distribution, normal force, and pitching moment coefficients vs
the number of spatial POD modes [10].

The time-averaged projection error of the pressure distribution, normal force, and pitching moment
coeflicient are represented in Figure 2.5. The POD of the pressure distribution results in the highest
projection error. The primary limitation of the reduced-order basis was that the high projection errors
only cover a small region near the leading edge, specifically near the wingtip. This observation explains
why the MSE value remained almost constant after the first 50 modes, as shown in Figure 2.5. Although
these errors could significantly affect the pitching moment coefficient, the impact was minimal due to
the limited affected region. Consequently, the restriction on using the reduced-order basis was negligible
under the subsonic conditions for the MULDICON UCAV configuration.

Furthermore, the effect of weighted POD was also investigated. The study demonstrated that spatial
POD modes with a linearly weighted relationship along the span, particularly emphasizing the tip region,
resulted in lower projection errors for both the surface pressure coefficient and the pitching moment
coefficient, while maintaining the same number of degrees of freedom as the standard POD. Overall,
the projection error of the reduced-order basis was minimal, indicating that the limitations of the POD
method were negligible within the subsonic flow regime.

The construction and training of the LSTM neural network have demonstrated that the number of
LSTM units in the model is the most significant hyperparameter influencing both the computational
cost and the accuracy of the ROM. The LSTM units correspond to the number of LSTM memory cells.
For more details, refer to Figure 2.3.2. The relationship between the training cost and the number of
units is shown in Figure 2.6.

Computational training time for varying number of LSTM units Training operation count estimate for varying number of LSTM units
106 T T T T T T T T 1 T
X B = IE1LEY = 1E2 . % BV = IE-L g = IE2
10° ° 0 o B =IELE E
— - — -
ﬁ ® P = 2 108 Fe FPi 2 VN _3E3 E
E 104 B [ ] ¥ 28 =5E3 ] £ ® é("- :IE*-,&L#‘ =5E-’
= oL 4
2 . @ £ 10 ° :
5 S L ] g » ° [ ]
2 10 . 5 5 @ x
£ = 10° F - . 3
5] * 2 g .
s : ? & . E ° x
107 = g ~ oL x ]
x x x * 10 x x
101 | I | 1 | 104 I | 1 I 1
50 100 150 200 250 50 100 150 200 250
Number of LSTM units [-] Number of LSTM units [-]

Figure 2.6: Training cost of LSTM neural network versus the number of memory cells [10].

Based on Figure 2.6, it was derived that when the model’s parameters are optimized, the training
cost was reduced to an average of 4 minutes to achieve sufficient accuracy. The advantage of replacing
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the encoder component of an Autoencoder (AE) with a POD-based reduced-order technique becomes
evident when comparing computational costs. Papp’s thesis [60], previously conducted at NLR, de-
veloped a ROM using deep Convolutional Neural Networks (CNNs). In this study, the primary deep
encoding-decoding CNN predicted pressure distribution over the MULDICON UCAV configuration.
The corresponding training cost was on the order of several hours (12h 24m for the primary Neural
Network, for details refer to [60]). This discrepancy arises because the POD-based approach does not
need to train a complex AE to derive the low-dimensional latent space. Furthermore, in addition to the
higher training cost, complex Neural Networks, such as the deep convolutional neural networks used
by Papp [60], exhibit unexpected behaviors such as overfitting. In other words, the more parameters a
neural network needs to predict, the more sensitive it is to the effects of overfitting.

In [10], the POD-LSTM predictions were compared to the high-fidelity CFD results to evaluate
the online stage. Bourier [10] concluded that the normal and axial force coefficients were adequately
approximated by the suggested model for all angles of attack. However, the pitching moment coefficient
showed inaccurate predictions due to an incorrect surface pressure approximation near the wingtip
region. Therefore, the prediction of integrated forces and moments was decoupled from the pressure
distribution. Specifically, the signals of forces and moments served as the input/output of the ROM,
along with time coefficients, potentially in a separate ROM.

Moreover, it was derived that models with a higher projection error, i.e., reduced-order bases with
fewer spatial modes, showed better accuracy in predicting the pitching moment coefficient. Although
one might expect that a reduced-order basis with a lower projection error would produce more accurate
predictions for the surface pressure coefficient, this was not the case for the steady-state result, as
illustrated in Figure 2.7.

In models with lower projection errors (i.e., more spatial modes), the neural network needed to
predict a larger number of time coefficients. As a result, the accuracy of the time coefficients for the
initial spatial modes decreased compared to models with fewer POD modes. Furthermore, a system
with many degrees of freedom required a more complex neural network for forecasting its temporal
evolution. Consequently, it required more intense training compared to a model with fewer spatial
modes. Additionally, the frequency of the time coefficients increased with the order of the POD modes,
making it challenging to predict the range of frequencies when the order of spatial modes is high.
Bourier’s observations [10] are significant, as they highlighted a decrease in the accuracy of POD-LSTM
predictions when more spatial modes were required for an accurate approximation of the pressure
distribution. This limitation becomes particularly relevant in the transonic regime, where an increased
number of spatial modes is necessary to approximate flow discontinuities effectively.
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Figure 2.7: Absolute prediction error of the POD-LSTM ROM for upper surface pressure under different model
settings, for o = 20° [10].

The pitching moment coefficient showed the highest prediction errors in all cases for unsteady simu-
lations. This was attributed to inaccuracies in predicting the surface pressure coefficient near the wing
tip region. Therefore, enhancing the reduced-order basis for the surface pressure coefficient requires
additional training samples in this specific region.

In summary, the POD-LSTM ROM proposed by Bourier [10] showed promising results for predicting
surface pressure coefficients and integral aerodynamic load coefficients. Specifically, the normal and
axial force coeflicients of the UCAV MULDICON configuration exhibited promise in both steady and
unsteady simulations. However, a limitation of this model is its incapability to accurately predict the
surface pressure coefficient near the wing tip region, resulting in high errors in the pitching moment
coeflicient.

Catalani [12], in his thesis, improved the previously developed POD-LSTM ROM. The investiga-
tions involved various regression techniques, including Artificial Neural Networks (ANN) and Gaussian
Process Regression. The study conducted by Catalani [12] aimed to address issues raised in Bourier’s
investigations. The research objective was to enhance and extend the performance of the POD-LSTM
ROM for predicting integral loads and pressure fields of the UCAV MULDICON aircraft design. Specif-
ically, the focus was on Local Modal Decomposition approaches to improve the prediction of reduced
dynamics. The primary limitations of Bourier’s method arose from using a global POD basis, where
projecting full-order dynamics into lower-dimensional linear subspace resulted in high prediction errors,
particularly when considering a limited number of modes. To overcome this limitation, Catalani [12]
employed three techniques: Global (scaled) POD, Domain Decomposition POD (DD-POD), and Clus-
ter POD (CPOD). Scaling the pressure field snapshots was introduced to derive a reduced-order basis
that more efficiently captured complex flow structures. This method enhanced the ROM’s performance
in critical regions, such as the wingtip, where large projection errors were previously observed by Papp
[60] and Bourier [10]. Domain Decomposition (DD) was utilized to isolate regions containing complex
flow phenomena like the wingtip vortex [50]. Cluster POD (CPOD) further refined the process by
generating local reduced-order bases in the parameter space, grouping solutions with similar patterns
into the same set of modes, and constructing local ROMs for each cluster [34].
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The projection error of the pressure distribution was a key metric used to evaluate the offline
performance of the ROM. Lower projection errors within a fixed-dimensional latent space indicated
more efficient information compression. Figure 2.8 shows the time-averaged Mean Squared Error (MSE)
of the projection for random instances of pitching motion.
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Figure 2.8: Time-averaged projection error as a function of the number of modes for harmonic pitching [12].

As observed in Figure 2.8, CPOD performed better at low-pitch angles, whereas DD-POD achieved
the lowest projection error at higher pitch angles. The performance of the ROM was also influenced
by the LSTM’s ability to predict the reduced-order temporal dynamics. The total error served as
an indicator of overall ROM performance. A limited number of spatial POD modes was considered
to compare the reconstructed pressure field using the various ROMs. The total Mean Squared Error
(MSE) for the three different ROMs under pitch harmonic motion is illustrated in Figure 2.9.
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Figure 2.9: Total error as a function of the timestep during harmonic pitching [12].

The following remarks were derived based on Figure 2.9. The CPOD performed better than the
DD-POD and the Global POD for most time instances, reducing the total error of the POD-LSTM
ROM by one order of magnitude in the range of a between 0° and 5°. The DD-POD error appeared
less than the Global POD for almost all timesteps. The offline phase of the ROMs represented the most
computationally demanding part of the models’ construction. This phase involved determining the
reduced-order basis and training the LSTM neural network to predict the low-order temporal dynamics.
Although the cost of determining the reduced-order basis was low, the computational cost of training
the neural network was relatively high. An overview of the offline and online computational costs for
various ROMs is given in Table 2.1.

Table 2.1: Offline and online cost of the various LSTM-based ROMs, using 5 spatial modes [12].

ROM Offline Cost [s] Online Cost [s]
Global POD 2111 )
Cluster POD 2344 7

DD POD 4939 6

The Global POD method utilized a single set of input-output pairs, necessitating only one training
session for the neural network (NN). In contrast, local POD methods required training the NN on a
more localized basis. Specifically, the DD-POD approach required training two neural networks: one
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for predicting the temporal evolution of the latent space in each domain. Similarly, the CPOD method
required four LSTM neural networks.

In summary, the results indicated that Local ROMs enhanced the efficiency of the global latent
space representation by producing sets of spatial modes with more localized information content. The
proposed Cluster POD-based ROM, in particular, was developed through a systematic procedure that
automatically detected parameter space partitions based on an a posteriori error indicator. The pro-
posed ROM showed significant potential in terms of accuracy and computational efficiency. However,
it is important to note that these findings were limited to the incompressible flow regime and did not
address the increased number of spatial modes needed for approximating flow fields with discontinuities.

2.1.2. Discussion

Over the years, numerous approaches have been developed for constructing ROMs for predicting un-
steady aerodynamics in the compressible flow regime. Intrusive methods exhibit several disadvantages
and have limited applicability in full-scale problems. For example, ROMs based on the Galerkin Pro-
jection method exhibit good predictive ability and are less constrained in application. However, the
computation of POD coefficients, which are crucial for predicting the flow field, requires solving a re-
duced system of equations derived from projecting the Navier—Stokes equations onto a reduced space.
Consequently, this approach becomes computationally expensive, particularly when only the surface
pressure distribution is needed. Additionally, the Unsteady Residual requires a large set of spatial
POD modes, making it computationally costly. Frequency Domain methods, while capable of converg-
ing to time-accurate pressure distributions, require an increasing number of Fourier modes, resulting in
higher computational time.

Non-intrusive methods such as Indicial Response Functions and Volterra Theory can accurately
reproduce the complete pressure distribution around an airfoil or aircraft. However, employing these
methods becomes computationally unfeasible due to the resulting dimensions of the problem, which arise
from the large number of simulations required when sampling indicial responses and impulse functions
for nonlinear ROMs.

Machine Learning is increasingly employed to develop ROMs in fluid dynamics. In the class of
non-intrusive ML-ROMs, two main approaches exist. The first approach involves constructing an end-
to-end ML-based ROM using an Autoencoder/Decoder neural network. However, the training of the
AE is computationally expensive. Training a deep convolutional Autoencoder/Decoder is considerably
more computationally expensive than computing the left singular vectors of a snapshot matrix. To deal
with that issue, ROMs combining modal analysis with neural networks have been explored. One of the
most promising approaches involves the combination of POD with an LSTM neural network. Bourier
[10] and Catalani [12] laid the foundation for the current method used at NLR. The POD-LSTM ROM
has demonstrated strong performance in predicting aerodynamic loads. However, there is a notable
distinction between computing pressure distributions for flight dynamics, where load coefficients are the
primary concern, and for applications like fatigue analysis or aeroelasticity modeling, where accurate
pressure distribution is required. For instance, in the transonic regime, accurately identifying the precise
location of the shock is essential for fatigue analysis.

The current POD-LSTM approach struggles to approximate flow discontinuities caused by shock
waves. Catalani [12] employs various local ROMs to enhance the global POD basis. Although his
approach shows promise, its applicability in compressible aerodynamics remains questionable. In the
transonic flow regime, the projection error increases when using a truncated number of POD modes
for pressure distribution. Consequently, more spatial modes are needed to capture the dynamics of
transonic flow in the latent space. The results indicate that, unlike subsonic flow, transonic flow features
significant high-frequency spatial POD modes characterized by low energy [46]. Therefore, accurately
reconstructing shock waves requires a greater number of POD modes.

As a result, the proposed ML-based ROMs need to learn more temporal coefficients ag(t) of the
dominant modes for the training datasets, as illustrated in Figure 2.3. Thus, the training cost of the
neural network in the transonic flow regime increases. Furthermore, predicting the range of frequencies
for the time coefficients becomes challenging as the order of spatial modes increases, as noted by Bourier
[10]. Hence, the accuracy of POD-LSTM ROM predictions and time efficiency decreases because more
spatial POD modes are required to approximate complex flow phenomena. The proposed ePOD-LSTM
approach seeks to address this issue by introducing an ‘enrichment’ basis to the standard POD reduced-
order basis. The enrichment basis explicitly accounts for the pressure discontinuities caused by a shock
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wave. As a result, the previously proposed POD-LSTM ROM can be applied without the computational
burden of training neural networks or the reduced accuracy for an augmented number of spatial POD
modes. Therefore, the objective was to establish an accurate ROM with minimal complexity. Utilizing
the POD helps us avoid training costs and potentially unpredictable behaviors associated with a com-
plex AE. Employing an enrichment basis reduces the degrees of freedom of the latent space, thereby
decreasing the training data requirements and enhancing online efficiency.

The POD order reduction technique and LSTM neural network remain the fundamental components
of the proposed ROM. Hence, their representation is crucial for understanding the structure of the
proposed ROM.

2.2. Proper Orthogonal Decomposition

The Proper Orthogonal Decomposition (POD) is a modal decomposition method used for the dimen-
sional reduction of high-fidelity data. By decomposing a large dataset into orthonormal modes, one
can extract the minimum number of POD modes that represent all the important characteristics of the
given dataset. This technique is also known as Principal Component Analysis and the Karhunen-Loeéve
decomposition in other scientific fields. It was first introduced to the field of fluid dynamics by Lumley
[61]. Later, Sirovich [72] introduced the method of snapshots, enabling efficient application in the field
of CFD. The POD method produces a set of modes that efficiently represent the significant character-
istics and patterns of the flow field, allowing the construction of a ROM [76, 65, 48, 38]. A general
description of how the POD is applied on a fluid dynamics follows, based on the notation of [81] and
[76]:

Firstly, a set of snapshots of the flow field (e.g. velocity, pressure), including the spatial and temporal
values is required. For the purposes of this review, a snapshot of the velocity field U = (u, v, w) is utilized.
The position vector is denoted as X = (z,y, z) while the time is ¢. The POD is typically applied to the
fluctuations of the velocity, and thus the temporal mean U is subtracted from the snapshots, as follows
in Equation (2.1):

U'(X,t) =U(X,t) - U(X) (2.1)
The matrix U(X,t) has dimensions n x m, where n represents the number of spatial discrete points,
and m denotes the number of time instances. It’s important to note that the matrix can exist in both
2D and 3D configurations. However, for the sake of simplicity, readers are encouraged to consider it as
two-dimensional.

The primary objective of Proper Orthogonal Decomposition (POD) is to break down the flow prop-
erties into a collection of spatial modes ¢y and corresponding time coefficients a(t), as illustrated in
Equation (2.2).

U'(X,t) =Y ar(t)gr(X) (22)
k=1

The classical Proper Orthogonal Decomposition (POD) technique looks for the optimal set of basis
functions that accurately represent high-fidelity flowfield data. The optimality, in this context, is
defined by minimizing the error in the energy norm during the re-interpolation of the data. In other
words, looking for the ¢ functions that can efficiently reconstruct the high-fidelity data with the least
number of modes. This is accomplished by determining the eigenvectors and eigenvalues of the following
problem.

Cor = Me9r (2.3)

The eigenvalues are arranged in decreasing order as Ay > ... > \,, ensuring that the spatial modes
follow the order of importance in capturing the kinetic energy of the flowfield. The C' is the covariance
matrix of U'(X,t) and computed by the following equation:

U/TU/

nxn
p— eR (2.4)
While solving the eigenvalue problem in Equation 2.3 is straightforward, challenges arise when dealing
with large datasets. The problem of Equation 2.3 is solved by utilizing the eigenvalue decomposition
of the matrix C' € R™*™, where n represents the number of spatial discrete points or the number of
degrees of freedom of the dataset. The eigenvalue decomposition of the matrix C' becomes computa-
tionally expensive due to large grids usually employed in high-fidelity CFD simulations. Sirovich [71]
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introduced the method of snapshots, which allows the application of the POD to datasets with large
spatial dimensions. Mathematically, there is no difference between the temporal variable ¢t and the
spatial variable x, and thus Equation 2.2 is symmetric in ¢t and z. Utilizing the same snapshot matrix
U, the eigenvalue decomposition is applied to the following temporal correlation matrix:

1Trr/
CS:U U,
m—1

e Rmxm (2.5)

Therefore, a decomposition in deterministic temporal modes with random spatial coefficients instead
of spatial modes and time coefficients is performed. Usually, the number of snapshots m is less than
the number of spatial discrete points n. Hence, the resulting eigenvalue problem has less computational
cost than the direct POD, while it returns the same set of eigenvectors and values. Unfortunately, this
is not the case in the pressure distribution over the sections of DLR-F22, where the size of the snapshots
m is almost equal to the spatial discrete points n. These methods are closely related to the Singular
Value Decomposition (SVD) of the snapshot matrix U [81]. In matrix form, the snapshot matrix U can
be decomposed directly using the SVD as follows:

U=L%RT (2.6)

where L is an orthogonal matrix with dimension m x m, ¥ is an rectangular diagonal matrix with
dimensions m x n and R is an n x n orthogonal matrix. The non-zero diagonal elements of ¥ are
typically a set r positive numbers arranged in decreasing order, i.e. o1 > g9 > ... > 0, > 0. These are
the singular values of U. SVD diagonalizes any rectangular matrix, whereas eigenvalue decomposition
only works for square matrices. Therefore, both POD approaches are equivalent to the SVD of the
matrix U/+/m — 1 the spatial modes of the direct POD are given by its right singular vectors R, the
temporal modes of the snapshot POD are given by the left singular vectors L. The eigenvalues of both
methods are the squares of the singular values of SVD. For more details regarding the SVD, refer to
Taira et al. [76].

The optimum basis to express the high-fidelity data can be easily derived by solving the eigenvalue
problem Equation (2.3) utilizing the Equation (2.4) or by performing the SVD of matrix U/v/m — 1.
The eigenvectors of Equation (2.3) or the right singular vectors R are the spatial modes, ¢y, of the
POD and are sorted column-wise in a matrix of size n x n. The spatial POD modes are orthonormal,

so the next equation is valid:
. 1 for kl = kQ
// X ¢k1¢k2dX o {0, for kl 75 ]{32 (27)

This property is very important as it is ensures that each temporal coefficient a(t) corresponds to the
spatial mode ¢i. The temporal coefficients can be simply computed as the following inner product:

ar = <U/7 ¢k> (28)

The matrix containing temporal coefficients has dimensions of n x m.
The number of modes required to represent fluctuations in the flowfield data can be calculated using
the eigenvalues of the problem. Generally, the modes are truncated based on the next equation:

22:1 Ak ~1

(2.9)
ZZ:1 Ak
Then, the reconstruction of flow properties based on the important spatial modes is as follows:
First, use Equation (2.2), modified for r spatial modes:
ks
U = ardf (2.10)
k=1

By substituting Equation (2.1) into Equation (2.10), we derive the reconstructed flow property:

U=> argf +U (2.11)
k=1
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A comprehensive explanation of why Proper Orthogonal Decomposition (POD) requires additional
modes in the case of transonic flow was provided by Li and Zhang [46]. They conducted a POD analysis
of the flow field over NACA 0012 for transonic flow (M = 0.8). The first three POD modes of the pres-
sure field are illustrated in Figure 2.10, and the surface pressure distribution at a random time instance
is shown in Figure 2.11. The spatial POD modes showed smooth changes throughout the flowfield,
except where the shock wave occurs. As illustrated in Figure 2.10, a ribbon pattern emerged at the
location of the shocks, with increasing order of POD modes. As the order of the spatial mode increased,
the amplitude of the modes decreased, and the frequency increased. Despite the small amplitude of
these modes, they remained dynamically relevant. Given the necessity of accurately reconstructing the
shock, these high-order spatial POD modes become essential. The shock was reconstructed through
the linear superposition of the modes, making it challenging to offset the high-order modes at different
amplitudes and frequencies. Consequently, an oscillation phenomenon occurs before and after the shock,
commonly known as Gibbs’ phenomenon, as visible in Figure 2.11.
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Figure 2.11: Comparison between CFD and POD of surface pressure distribution, and occurrence of Gibbs’
phenomenon.[46]

The POD forms a reduced eigenvalue problem based on the snapshot matrix, resulting in a lower-
dimensional optimal set of flow modes and corresponding eigenvalues that describe the energy content
of each flow mode [61]. POD modes optimally represent the data in the Ly sense, minimizing the Lo
norm between the reconstructed and original data. Specifically, the eigenvalues corresponding to the
kinetic energy captured by the spatial POD modes are arranged in decreasing order from the largest
to the smallest [76]. Consequently, the spatial POD modes are organized in terms of importance for
capturing the kinetic energy of the flow field. In cases involving shock discontinuities, certain low-energy
modes significantly influence the dynamics [65]. Therefore, the assumption that low-energy modes are
insignificant is no longer valid.

2.3. Machine learning

Machine learning is a subfield within the broad class of artificial intelligence (AI), specifically focused on
the development of algorithms capable of learning from data without relying on detailed mathematical
or physical models [68]. Numerous groundbreaking advances in machine learning (ML) have arisen from
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the utilization of deep learning (DL), which relies on neural networks (NNs) featuring multiple hidden
layers between input and output. A crucial factor contributing to the remarkable success of DL is its
ability to learn hierarchically, as described by Vinuesa and Brunton [79]. Specifically, the initial layers
of a deep learning neural network (DL NN) learn simple relationships within the data. As we progress
to the deeper layers, these relationships are combined to understand more complex relationships. This
hierarchical learning approach proves effective in modeling various physical problems that show complex
hierarchical behavior, making DL and ML valuable tools in these fields. Machine learning is experiencing
increased popularity within the field of Fluid Dynamics, with research particularly concentrated on three
key aspects [79]: accelerating Direct Numerical Simulations (DNS) [6], enhancing turbulence modeling
[17], and constructing Reduced Order Models (ROMs). The discussion will focus on the latter category,
depicting some of the most commonly utilized NNs to model the low-order dynamics resulting from the
modal reduction of a high-dimensional dynamical system, as elaborated in Section 2.1.

2.3.1. Artificial Neural Networks

Artificial Neural Networks (ANNSs) constitute a category of machine learning models inspired by the
biological Neural Networks present in the human brain. Neural Networks (NNs) stand out as one of
the most significant architectures in deep learning [11]. Operating as fundamental nonlinear function
approximators, NNs have gained considerable attention in recent years, with numerous studies investi-
gating their efficiency. Hornik’s universal approximation theorem [39], declares that any function can
be approximated by a sufficiently large and deep network.

An ANN includes numerous individual units, often referred to as artificial neurons or perceptrons
[64], connected with coefficients (weights) and create the form of the neural structure. Each neuron
receives an input, processes it through an activation function, and produces an output. An illustration
of neuron or perceptron is following in Figure 2.12:

n
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Figure 2.12: Illustration of a perceptron [54].

Multiple neurons or perceptrons can be organized into various structures. The regression ability of
these structures enhances insight into the problem and the nature of the data. One commonly used
structure is the feedforward network, which includes several layers of neurons. The weighted output
from one layer serves as the input for the next one. NN designs typically feature an input layer for data
reception and an output layer for generating predictions. Deep feedforward networks, or Multi-Layer
Perceptrons (MLPs), stand out as ideal deep learning models [30]. Nonlinear optimization techniques,
such as backpropagation [66], are employed to determine network weights and minimize the error be-
tween predictions and labeled training data. Deep neural networks (DNNs) incorporate multiple layers
and diverse nonlinear activation functions. When these activation functions are expressed through con-
volutional kernels, another class of networks is derived, called Convolutional Neural Networks (CNNs).
CNNs have shown remarkable performance in image and pattern recognition [59]. In the case of these
simple NNs, no feedback loop connects the outputs of the model back to itself. When feedforward NNs
are developed to incorporate feedback loops, they are termed Recurrent Neural Networks.

2.3.2. Recurrent Neural Networks

As previously discussed, Recurrent Neural Networks (RNNs) [67] enhance feedforward neural networks
by incorporating the output of adjacent time steps, introducing a temporal dimension to the model
[47]. The network’s edges that connect neighboring time steps are named recurrent edges. RNNs
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operate on sequences of data (e.g., video frames, time series), and their weights are determined through
backpropagation through time [11]. An illustration of an RNN is provided in Figure 2.13:
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Figure 2.13: Recurrent Neural Network (RNN) for time series predictions. Abbreviations: h;—1 is the previous cell’s
output, h¢ is the current cell’s output, and z; is the input vector [11].

On the other hand, the effectiveness of RNNs has been hindered by the exploding gradients during
training. The renewed interest in RNNs results from the development of Long Short-Term Memory
(LSTM) [36], or Gated Recurrent Units (GRUs) [14] algorithms. These algorithms utilize cell and
gating mechanisms to store and forget information about past inputs. Hence, alleviating the issues
with gradients and improving the transmission of long-term information, which is a common challenge
for classic RNNs. RNNs demonstrate significant potential in predicting unsteady flow fields due to the
introduction of the time concept. Consequently, they are of particular interest to fluid mechanics [11].

Long Short-Term Memory

Long Short-Term Memory (LSTM) network was introduced by Hochreiter and Schmidhuber [36] to
address the issues of vanishing or exploding derivatives and short transmission of information in standard
RNNs. The LSTM architecture replaces the hidden layer of a standard RNN with a memory ‘cell” Each
memory cell contains a node with a self-connected recurrent edge of fixed weight, creating paths through
time where gradients can flow without vanishing or exploding [47, 30]. A significant improvement is to
make the weight on this self-loop depend on the context instead of being fixed, as proposed by Gers et
al., [23]. The structure of the LSTM network is illustrated in Figure 2.14:
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Figure 2.14: The Long-Short Term Memory (LSTM) neural network. Abbreviations: ¢;—1 is previous cell memory, ct
is current cell memory, hy—1 is the previous cell’s output, h¢ is the current cell’s output, and z; is the input vector [11].
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Figure 2.15: The Long-Short Term Memory (LSTM) ‘cell’, as illustrated in [30].
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Based on Figure 2.15, the elements of the LSTM network are explained, following the notation of
[47, 30, 11]: The LSTM cell has the same input (z;) and output (h:) vectors, as an standard RNN, as
one can derive be comparing Figure 2.13 and Figure 2.14. But, it has more parameters and a system
of gate units that controls the flow of information. The most important component is the state unit sy,
which has a linear self-loop. The state unit is given by Equation (2.12):

St = it ® gt + ft @ St—1 (212)

The i is the input node, which uses the activation function on a combination of the current input
vector (z;) and the previous hidden layer h;—;. The input node is given by Equation (2.13)

it = J(Uixt + Wiht,1 + bl) (213)

Where o is the sigmoid function. U; and W; are the input weights and the recurrent weights for the
input node correspondingly. The b; denotes the biases for the input node.

The g; represents the external input gate, acting as a sigmoidal unit. Similar to the input node,
it applies the sigmoid activation function in combination with the current input vector (z;) and the
previous hidden layer h;_;. The term ‘gate’ is due to its property of allowing or blocking information
flow. When its value is zero, it cuts off the values from other nodes. Conversely, when its value is 1, all
the information passes through the gate. The input gate is given by the Equation (2.14):

gt = 0(Ugzy + Wyhi—1 + by) (2.14)

Where, Uy, W, by are respectively the input weights, recurrent weights, and biases of the input gate.
To continue with, the self-loop weight is controlled by a forget gate unit f;, which sets this weight
to a value between 0 and 1 via a sigmoid unit. The forget gate is described by Equation (2.15):

ft = O'(Ufl’t + tht—l + bf) (215)

Once again, Uy, Wy, by are respectively the input weights, recurrent weights and biases of the forget
gate.

The output A of the LSTM cell is given by Equation (2.16):

ht = tanh(st) ® qt (216)
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The output Hy can controlled (shut off) by the output gate ¢;, which also uses a sigmoid unit for gating:

qr = U(qut + thtfl + bq) (217)

Where Uy, Wy, by are respectively the input weights, recurrent weights and biases of the output gate.

Moreover, some parameters are not learned during the training process but are instead set by the
user. These parameters are commonly referred to as hyperparameters. The key hyperparameters for
the LSTM neural network include the number of hidden layers, the number of LSTM units in each
layer, the learning rate, the batch size, the dropout rate, the number of epochs, and many others. The
main hyperparameters are defined as follows:

e Number of hidden layers: The number of consecutive recurrent layers in the NN architecture.
e Number of LSTM units: The number of LSTM memory cells in each layer.

e Learning rate: This denotes the step size for the gradient descent optimization during backprop-
agation.

o Batch size: It represents the number of training examples utilized in a single iteration.
e Dropout rate: Is the percentage of nodes omitted during the training of a layer in each iteration.

e Number of epochs: Defines the number of times the entire dataset needs to be processed by the
neural network.

As discussed previously, there are more hyperparameters to consider for the LSTM NN. For instance,
the number of spatial POD modes and the required accuracy for the surface pressure distribution are
hyperparameters for the NN. Each of these hyperparameters affects the NN differently, and selecting
the correct values can significantly improve the NN’s performance, influencing its training complexity.
Catalani [12] and Bourier [10] conducted fine-tuning optimization to find the optimal set of hyperparam-
eters for the LSTM NN, focusing on enhancing training efficiency for predicting the temporal evolution
of the latent space. Given that a goal of this research is to reduce the number of degrees of freedom
of the reduced-order basis, the hyperparameters that have been previously defined for the LSTM NN
used at NLR will be adopted for the ePOD-LSTM approach. In the ePOD-LSTM reduced-order model
(ROM), the LSTM network is used to predict the temporal evolution of the enriched reduced-order ba-
sis along various sections of the DLR-F22 model. This involves forecasting the time coefficients of the
spatial modes as well as the time-dependent parameters of the enrichment modes. Hence, the number of
dominant shock discontinuities represented by the enrichment basis was an additional hyperparameter.



Test Cases and ROM Architecture

Training data from high-fidelity simulations (computational or experimental) are utilized to enable non-
intrusive Reduced-Order Models (NIROMs) to learn the system’s dynamics. This constitutes the most
computationally expensive phase in constructing a ROM, rendering it unfeasible when a vast amount of
data is necessary for model training. In Stability and Control (S&C) applications, an efficient training
maneuver is required to cover the regressor space of state variables [40], facilitating the construction of
ROMs. McDaniel et al. [53] propose an approach to combine the high-fidelity results and the ROMs,
as outlined below:

o Computational training maneuvers that represent relevant flow physics are solved using CFD
simulations, resulting in a high-fidelity dataset.

e An ROM is constructed for the aircraft based on a training subset of high-fidelity data obtained
from the CFD simulations.

e The ROM is validated by comparing its results with a testing subset of high-fidelity CFD data.
e Predictions for all flight test points are generated using the validated ROM.

Generating training data that effectively represents the desired complex flow phenomena is particularly
crucial when neural networks are part of the ROM. This is mainly due to the fact that, in general, the
size of a training dataset required to train a neural network is not known a priori, and issues related to
overfitting or underfitting may arise [30].

Previous studies conducted at NLR [10, 12] have demonstrated that the training data generated by
the Schroeder maneuver [69] adequately captures the relevant flow physics and was utilized to develop
the POD-LSTM ROM for subsonic cases. However, this does not guarantee that the same approach
will be effective for transonic data, where different physical phenomena emerge. Investigating this issue
further, however, was beyond the scope of this study. Additionally, the Schroeder maneuver is one of
the two motions employed by the United States Air Force Academy (USAFA) [24] to generate high-
fidelity data for the DLR-~F22 aircraft configuration, which serves as the demonstrator for the proposed
methodology.

Before introducing the DLR-F22 model and the maneuvers used to derive the training dataset, we
first outline the NACA 0012 test case, along with the corresponding flight conditions and motions. The
inviscid flow around the NACA 0012 airfoil in the transonic regime (M = 0.85) was selected as a use
case to develop and test the proposed enriched Proper Orthogonal Decomposition (ePOD) method.
The motivation for choosing this particular case lies in the fact that a symmetric airfoil in unsteady
transonic flows can produce distinct and well-defined shock discontinuities in the pressure distribution,
as observed in Figure 3.2.

3.1. NACA 0012

The symmetric four-digit airfoil, NACA 0012 [1], was selected for testing and developing the ePOD
method. The unsteady inviscid flow in the transonic regime (My = 0.85, matching the free-stream
velocity of the DLR-F22 model) was chosen to generate high-fidelity pressure distributions. Euler

23
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equation-based flow simulations around the NACA 0012 were performed using the in-house CFD solver
of NLR, ENSOLV [43]. ENSOLV is an advanced CFD code with which three-dimensional steady or
time-dependent, incompressible, or compressible flows around complex aerodynamic configurations can
be computed. These configurations can be either fixed or moving relative to an inertial reference frame
and can be either rigid or flexible, or consist of multiple bodies moving relative to one another.

An O-type grid was employed to solve inviscid flow around the NACA 0012 airfoil. The O-type
mesh, consisting of 33 thousand cells, is illustrated in Figure 3.1.
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Figure 3.1: The O-grid around the NACA 0012 airfoil for Euler equation-based flow simulations.

The unsteady flow around the NACA 0012 airfoil under harmonic rigid motion was simulated. The
parameters used for the time-accurate simulation and harmonic motion are listed in Table 3.1:

Table 3.1: Parameters of the time-accurate unsteady inviscid flow around the NACA 0012 airfoil.

Mach number 0.85
Time integration scheme 27d order implicit backward
Number of periods 2
Number of time steps per reference period 16
Reduced frequency (of rigid motion and flow) 0.152
Amplitude of rigid motion 10°
Phase lag of rigid rotation 0°

In addition to the parameters of Table 3.1, the rotation center of the rigid motion was set to be
identical to the aerodynamic center of NACA 0012, which was located one-quarter of the airfoil chord
length back from the leading edge. The pressure distribution on the suction side of the NACA 0012
airfoil at a characteristic time step, where a strong shock discontinuities appeared is visible in the
following graph:
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—1.00 A

—0.75

—0.50 4

—0.25

0.00 1

Gy

0.25 4

0.75 4

1.00

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

x/c

Figure 3.2: Pressure distribution on the upper surface of NACA 0012 Airfoil at the second timestep.

3.2. DLR-F22 Model

The DLR-F22 model configuration was utilized to evaluate the proposed Machine Learning based
Reduced-Order Model for predicting more complex pressure distributions in transonic flows. The main
design parameters are listed in Table 3.2, and the geometry of the DLR-F22 model is illustrated in
Figure 3.3.

Table 3.2: Design parameters of the DLR-F22 model [75].

Model geometry DLR-F22
Span width 0.5 [m]
Mean aerodynamic chord ~ 0.22716 [m]
Projected wing area 0.112120 [m?]
Moment reference point, x  0.13929 [m]

[, x, WP
Figure 3.3: DLR F22 model configuration [75].

Figure 3.4a illustrates the hybrid computational grid for the half model, consisting of approximately
forty million nodes. Quadrilaterals were used to resolve the boundary layer, while tetrahedra extended
from the boundary layer edge to the far-field. To better capture vortices, a refined region was specified
above the model, as shown in the figure. All first off-body grid nodes satisfy y* < 1.0, ensuring sublayer
resolution. The far-field boundary was positioned at a distance equal to one hundred times the chord
length.

Additionally, tap points were defined at six spanwise sections on the upper surface of the DLR-F22
model, as depicted in Figure 3.8b. The exact spanwise positions of these tap points are as follows:

y = {0.05,0.09,0.136,0.18,0.22,0.28} [m] (3.1)
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These points were fixed on the surface of the DLR-F22 model and move with the mesh. The output
data include the tap coordinates and pressure coefficient values at every 200th-timestep for the six
spanwise sections 1 to 6, where section 6 is located near the wingtip. The simulation runs for 20,000
timesteps over a duration of 4 seconds. For further details on the derivation of the pressure distribution
dataset, please refer to [52]. Consequently, the available dataset for constructing the ePOD-LSTM
ROM consists of the pressure distribution along these six spanwise sections on the upper surface of the
DLR-F22 model, covering two training maneuvers: the PRBS signal and the Schroeder maneuver.
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Figure 3.4: (a) Near field of the computational grid of the DLR-F22 model, and (b) six spanwise sections [24].

All simulations were performed by USAFA using the CREATETM—AV/Kestrel CFD flow solver
KCFD [52]. KCFD solver uses a second-order accurate cell-centered finite-volume discretization and
solves the unsteady, three-dimensional, compressible RANS equations on hybrid unstructured grids [58]
using the Method of Lines (MOL) to separate temporal and spatial integration schemes from each
other. More details regarding the solver are described by McDaniel et al., [52]. Additionally, the
Spalart—Allmaras with rotational/curvature correction (SARC) turbulence model introduced by [70]
was chosen. For further details, please refer to Ghoreyshi et al., [24].

For the scope of this thesis, we considered motion in the vertical plane, specifically pitch and plunge
motions, while neglecting the side slip and roll. Therefore, the unsteady simulations of the DLR-F22
model were focused on in-plane motions without side-slip. A prescribed-body motion was used to vary
input parameters (angle of attack o and pitch rate ¢ ) under given freestream conditions. The flow
conditions for the two motion types of the DLR-F22 model are listed in Table 3.3:

Table 3.3: Flow conditions for the two motions of DLR-F22 model.

Motion Type « [deg] ¢ [deg/s] My [-] P [Pa] T [K] Rey[-]

PRBS )
: 0°—20° -1000—1000  0.85 49881 266.5 ~ 3 x 10
Signal
hroed
Schroeder o oo 1000-1000  0.85 49881 2665 ~ 3 x 108
Maneuver

3.2.1. Pseudorandom Binary Sequence (PRBS) Signal

The first input signal includes a pseudorandom binary sequence (PRBS) motion. During that maneuver,
the angle of attack and pitch rate vary in a periodic and deterministic manner, displaying characteristics
similar to white noise [24]. Typical PRBS signals involve sudden variations between two distinct values
(e.g., minimum and maximum angles of attack). However, the signal used in this thesis was modified
so that the step changes depend on time.

An example of a PRBS signal is shown inFigure 3.5. The maximum possible period for a maximum
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Figure 3.5: PRBS signal characteristics [5].

length sequence, N, is:
N=2"-1 (3.2)

where m represents the order of the PRBS signal. In Figure 3.5, A denotes the shifting time, i.e. the
duration of the shortest impulse, and a represents the amplitude of the PRBS signal. These parameters
must be carefully selected, as they influence the reduced frequency, and thus the unsteadiness of the
flow. The power spectral density of the PRBS signal shows that all frequencies up to ‘*’"T‘“‘)‘ = 7 are
excited, as discussed by Bénydsz [5] . The highest excited radial frequency wmax is related to the shorter

time constant, Ti,in, by the following equation:

3

Wmax =
T .
min

(3.3)

therefore A = % Thnin. For more details regarding the PRBS refer to [5]. For the scope of this study,
the PRBS signal had a duration of 4 seconds with a mean angle of attack of 10°. The amplitude, a,
increases linearly from 0 to 10° for the first half of motion and then linearly falls to 0 for the second
half of the signal. The number of shifts was set to 40. The PRBS signal was designed for the DLR-F22
model at a constant Mach number: M., = 0.85, with pressure data on the upper surface recorded at
six spanwise sections every two hundred time steps. In the case under consideration, the input signal
in the angle of attack-pitch rate sample space suggests that the derivatives of these parameters might
significantly influence the instantaneous pressure distribution. Therefore, it is essential to include these
parameters in the input data for training the neural network. Hence, the input parameters of the
designed PRBS signal are shown in Figure 3.6.

Figure 3.6a illustrates the variations in the angle of attack over time. The model is configured with
a wind vector at a = 10°, with the pitch angle initially set to zero [24]. In this way, the pitch rate and
the time rate of changes in the angle of attack are the same. Figure 3.6b shows the angle of attack
(a[°]) versus pitch rate (¢[°/s]). It is important to note that the maximum frequency of the signal, and
consequently the pitch rate, was constrained to achieve a maximum reduced frequency of 0.01, ensuring
quasi-steady aerodynamic behavior. Figure 3.6b demonstrates that the PRBS signal provides good
coverage of the a — ¢ input space. Figure 3.6d depicts the coverage of the @ — & space by the PRBS
signal, where ¢ is given in units of [°/s?]. This figure shows a wide range of variations in ¢, though most
points are located at the center of the plot. Finally, Figure 3.6¢c and Figure 3.6e display the variations
of o and ¢ with their respective first-time derivatives.
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Figure 3.6: PRBS signal coverage space.

3.2.2. Schroeder Maneuver

As discussed previously, the second motion type for the DLR-F22 model was based on the Schroeder
sweep input design method, where reference signals consist of oscillations with varying amplitudes and
frequencies. The POD-LSTM ROM, which relies on the Schroeder maneuver for deriving the pressure
distribution datasets, demonstrated better accuracy compared to models based on the chirp and spiral
maneuvers [40, 10, 60, 12]. Therefore, the Schroeder maneuver was the primary maneuver considered
for deriving the training datasets for the neural network.

In the following section, the Schroeder maneuver is represented. Specifically, an extension of the
Schroeder sweep, introduced by Morelli [57], is employed to design multiple orthogonal input signals
with optimized Relative Peak Factors (RPFs). The motion variables, namely the angle of attack and
pitch angle, which describe the aircraft’s motion, are represented as a phase-shifted set of sinusoids, as
shown in Equation 3.4:

a 27kt
uj = Z Ay, cos — + ok (3.4)
k=1

where u; represents the motion variable (« or ¢), Ay is the amplitude of the maneuver, T' is the time



3.2. DLR-F22 Model 29

length of the maneuver, N is the total number of available frequencies, and ¢ denotes the phase angles.
By utilizing the parameters N, Ay, and T, one can directly control the coverage of the regressor space
through the Schroeder maneuver. Furthermore, the phase shift angles ¢, are selected to minimize the
Regressor Performance Factor (RPF), which is defined by Equation 3.5:

max(u;) — min(u,)
2v/2RMS(u;)

where RMS(u;) is the root mean square of the vector u;. The Relative Peak Factor (RPF) serves as
a metric for assessing the efficiency of an input in parameter estimation. Ideally, a low RPF is preferred,
as it indicates that the input signals can extract valuable information from the system response with a
comparatively low amplitude perturbation. The primary advantage of this technique is that the only a
priori information required for its application is the expected frequency range of the dynamics modes.
This technique results in multiple sinusoidal inputs that are orthogonal in both time and frequency
domains while minimizing the Relative Peak Factor. These characteristics make the extension of the
Schroeder sweep proposed by Morelli [57] a good training maneuver.

Similarly to the PRBS signal, the Schroeder maneuver had a duration of 4 seconds with a mean
angle of attack of 10°, while the amplitude of the motion, Ay, was varied from 0 to 10°. The Schroeder
maneuver was designed for the DLR-F22 model at a constant Mach number: M., = 0.85, with pressure
data on the upper surface recorded at six sections every two hundred time steps, resulting to 1000
pressure distribution snapshots. Once again, the model was configured with a wind vector at o = 10°
angle of attack,and the pitch angle initially set to zero. The input parameters for the Schroeder maneuver
are illustrated in Figure 3.7. Figure 3.7b shows the angle of attack (a[°]) versus pitch rate (¢[°/s]),
demonstrating that the Schroeder maneuver provides good coverage of the a—¢q input space. Figure 3.7d
depicts the coverage of the a — é& space. Finally, Figure 3.7c and Figure 3.7e illustrate the variations of
« and ¢ along with their first derivatives.

(3.5)
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Figure 3.7: Schroeder maneuver coverage space.

Thus, the two types of motion used to derive the available dataset for constructing the ePOD-LSTM
ROM were the PRBS signal and the Schroeder maneuver. Pressure distributions on the upper side of the
DLR-F22 model at time steps where strong shock discontinuities appeared, are illustrated in Figure 3.8
to highlight the typical distributions that the proposed ROM should predict.
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(a) PRBS Signal, t=1.96s, =19.75° (b) Schroeder Maneuver, t=1.28 s, a=5.99°

Figure 3.8: Typical pressure distribution on the upper surface of the DLR-F22 Model, Section 1.

The main challenge in predicting such pressure distributions using a reduced-order basis is related
to accurately capturing the strong shock waves. As discussed, the proposed ePOD-LSTM ROM intro-
duces an enrichment basis particularly designed to approximate these pressure discontinuities, e.g. the
shock waves appear in Figure 3.8. The remainder of the pressure distribution, excluding the shocks, is
approximated using a standard basis. Furthermore, Figure 3.8 confirms that the previously presented
NACA 0012 test case serves as a strong foundation for the initial development of the ePOD.

3.3. The ePOD-LSTM ROM

The overall structure of the enriched Proper Orthogonal Decomposition Long Short-Term Memory
(ePOD-LSTM) Reduced-Order Model (ROM) is outlined in this paragraph.

Developing a ePOD-LSTM ROM consists of first deriving the enriched reduced-order basis from the
Full-Order Model (FOM) and then constructing and training the LSTM neural network. As detailed
in Chapter 4, the reduced-order basis contains the standard spatial modes ¢y and their associated time
coefficients ag(t), along with the enrichment modes ¢, and its time-dependent parameters p(t).

After obtaining the enriched reduced-order basis, the time coefficients ay(t) and enrichment param-
eters p(t) of the training, validation, and testing of neural network was extracted. In addition to these
values, the input signal included the angle of attack « and pitch rate gq. The sample space o — ¢ sug-
gested that the derivatives of these parameters might significantly influenced the instantaneous pressure
distribution. Consequently, the time-varying input vector consisted of the angle of attack a, along with
its first and second-time derivatives @ and d, respectively, as well as the pitch rate ¢, and its first-time
derivative ¢. The next step was the preparation of the time coefficients ay(t) and parameters p(t) and
the input vector for all the datasets. The dataset was divided into training, validation, and testing sub-
sets for the LSTM neural network. During the training phase, the LSTM network learned the patterns
of the training data subset by adjusting its weights and biases to minimize the L2 norm between the
reconstructed pressure distribution and FOM. The pressure distribution was reconstructed based on the
enriched reduced-order basis and the forecast for its time-dependent parameters. Chapter 5 provides
details regarding the training phase of the LSTM neural network.

In the verification stage, of ePOD-LSTM ROM, the trained LSTM neural network was employed
to predict the temporal evolution of the enriched reduced-order basis for new, unseen datasets. The
model forecasts the normalized time coefficients a,ICV N(t), corresponding to the standard spatial modes
ér, and parameters p™V¥ (t), associated with the enrichment modes ¢., of the enriched reduced-order
basis. The pressure distribution was reconstructed utilizing the enriched reduced-order basis (refer to
Equation 4.2) and the predicted de-normalized coefficients and parameters.

A visual representation of the ePOD-LSTM workflow is provided in 3.9.
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Figure 3.9: Schematic representation of the ePOD-LSTM Reduced-Order Model.



Enriched Proper Orthogonal
Decomposition

The enriched Proper Orthogonal Decomposition (ePOD) was applied to the fluctuation of the pressure
distribution, similar to POD as discussed in Section 2.2. The time-averaged pressure distribution,
denoted as C_'p7 was defined separately to enable the model to focus on predicting fluctuations. In
other words, the pressure distribution snapshots were decomposed into pressure fluctuations C} and
the temporal mean C’_p as follows:

Cp(,t) = Cy(z,t) + Cyp(z) (4.1)

The proposed enriched Proper Orthogonal Decomposition (ePOD) method introduced an enrich-
ment basis specifically designed to explicitly account for shock discontinuities within the latent space.
This approach effectively isolates the shock regions, allowing the standard truncated basis to focus on
representing the remaining pressure distribution. To implement ePOD, we integrated the enrichment
basis into the reduced-order basis as follows:

Enrichement Basis

Cp = Y ax)¢r(@)” + ) e, (@, p(1) + Cp (4.2)
k=1 s=1

Standard Basis

Where r is the number of truncated spatial modes, ¢ (x) are the spatial modes with corresponding time
coefficients ay(t), ¢ is the number of shock discontinuities, and ¢.(x,p(t)) are the enrichment modes,
with time-variant parameters p(¢). Once the enrichment basis was defined, the remaining pressure
distribution was interpreted using a standard truncated basis, similar to POD. The first step in defining
the enrichment basis involved identifying the locations of pressure discontinuities. Therefore, a list of
these pressure discontinuities was constructed, referred to as the ‘map of discontinuities.

4.1. Map of Discontinuities

The map of discontinuities identified the spatial and temporal locations of pressure discontinuities,
which served as the foundation for defining the enrichment domain. Essentially, it highlighted the
regions within the dataset where the enrichment basis was active. For this project, two methods for
determining the locations of discontinuities were considered: physics-based sensors and error-based
sensors. The following sections will provide a detailed description of these approaches. It is important
to note that before constructing this map, the data was pre-processed, facilitating the application of
the shock sensors. Specifically, linear interpolation was applied to achieve an evenly spaced pressure
distribution along the x-direction at each time step, and the coordinates were normalized along the x-
axis. Furthermore, the raw data was pre-processed using a low-pass filter to smooth out high-frequency
noise in the dataset, preventing it from affecting the shock sensor’s efficiency. The Whittaker smoother,

33
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proposed by Eilers [18], was employed with a first-order smoothing penalty of A = 10?. The smoothing
was particularly relevant in cases where significant small-scale pressure fluctuations occur, which can
impact sensor performance. The smoothed pressure fluctuation Cj; is visible in Figure 4.1, for DLR-F22
model.

Pressure Distribution, t=0.400 |s]

0.0 0.2 0.4 0.6 0.8 1.0

x/c

Figure 4.1: Impact of whittaker smoother on pressure fluctuations.

4.1.1. Physics-Based Sensors
Physics-based sensors were employed to determine the shock discontinuities locations. For every time
instant of the Full-Order Model snapshots, the gradient of pressure fluctuations was evaluated locally
in space. For this purpose, the gradient of the pressure fluctuations was computed using a backward-
difference approximation, as follows:

80;(1‘,, t) _ C’;(x“t) — C;(l‘i_l,t)

81 Ty — Tij—1

(4.3)

Once the approximation of the gradient of the pressure fluctuations was derived, it was then assessed
based on a user-defined criterion. Specifically, the gradient was evaluated and flagged if it exceeded a
specified threshold, as indicated in Equation 4.4:

oCy(xi,t)
ox

The threshold in Equation 4.4 was a default value that can be adjusted according to the specific dataset.
In this thesis, a default threshold value of 1 was used. A schematic representation of the physics-based
sensor’s operation is shown in Figure 4.2.

>=1 (4.4)
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Figure 4.2: Flowchart of the physics-based sensor.

Once the sensor identified all flagged locations, the points were clustered based on their distances.
Each cluster represented a pressure discontinuity at a specific time instance. The distance limit for
cluster separation was determined by the pressure distribution’s resolution. In the analyzed cases,
points were assigned to different clusters if they were more than 10% of the chord length apart. For
each cluster or shock, three characteristic points were defined as illustrated in Figure 4.3. The primary
point was the shock center x4, which was identified as the point of maximum pressure gradient for each

cluster: o )
*(xi,t
P (2]
Ty = arg max(——_— 4.5
s g v X( 8I ) ( )
The second point was the maximum pressure location, while the third one was the shock foot, which
was defined as the point with the largest second derivative of pressure fluctuations, as discussed in [44].

These locations were defined by the following equations:

ro: = arg max(Cy(z;,t)) (4.6)

p,max
x

( 8202; ((L‘i, t)
xX = arg max\————5—
foot g . X Ox2

(4.7)
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Figure 4.3: Application of the detection method, representative of a typical pressure distribution across a shock wave.

These three points provided essential information regarding the shock strength and location, which
was valuable for defining the enrichment basis.

4.1.2. Error-Based Sensors

Error-based sensors were also tested as an alternative to physics-informed ones. These sensors were
based on measuring the squared distance between the reduced-order basis and the true pressure dis-
tribution. The key observation was that this distance, derived using the standard Proper Orthogonal
Decomposition (POD), tended to be larger at locations with pressure discontinuities. As noted earlier,
higher frequencies were necessary to accurately represent discontinuities in the shock region, result-
ing in significant discrepancies between the truncated basis and the Full-Order Model (FOM). This
observation led to the following procedure for deriving the enrichment domain:

First, the standard POD was performed, and the pressure distribution was reconstructed using the
truncated basis with a specified number of spatial POD modes. Ten truncated spatial modes used in
the cases under consideration. Next, the projection error of POD was calculated. This error was defined
as the difference between the FOM and its projection on the reduced-order basis, quantified using the
Mean-Squared Error (MSE). The projection error for the standard POD is given by Equation 4.8.

N r
ppop = 3= D110 (1) — S an(t)n () (48)
T i=1 k=1

where N, is the number of chordwise locations, C} is the high-fidelity pressure coefficient fluctuations
and 7 is the number of truncated spatial modes. The error was evaluated globally in space and locally
in time. If the integrated projection error at every time instant exceeds a specified limit, the current
time instant was flagged for enrichment. This limit was empirical and depends on the use case and
desired accuracy of the reduced coordinates. For the tested cases, a desired accuracy of maximum
projection error 1 - 1072 was selected, thus this limit was defined correspondingly. For flagged time
instants, the squared distance between the reduced-order basis and FOM was evaluated locally in space,
by the following equation:

d(w,t) = |Cp(@,t) = Y ax(t)or(z)" (4.9)
k=1

Furthermore, the maximum value of the distance in the current time instant was identified, and the
local distance in space and time was evaluated based on the following optimality criterion:

d(xz,t) > %maux(d(ac7 t)) (4.10)

When the value of the local error exceeds one-third of the maximum value, it was marked as a point
within the enrichment domain. This criterion is similar to the optimality criterion of hp adaptive
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methods as defined by Demkowicz et al. [15]. The operation of the error-based sensor is represented in
the following flowchart.

FOM snapshots

POD

Projection error (€, POD)

c i inste yes - no . .
Fiag t,un.ekmst,aill, N €p,POD = Limit Stop/No enrichment
or enrichmen AN e

Pointwise evaluation

|

Is the optimality

criterion satified? Skip

Marked as a point in
the enrichment domain

Figure 4.4: Flowchart of the error-based sensor.

Similar to the physics-based sensors, the flagged locations were clustered based on point distances,
with each cluster representing a pressure discontinuity at the current time instance. The same distance
threshold between clusters, as used for the physics-based sensors, was applied here. After the clusters
were derived, the procedure follows the same steps outlined in Section 4.1.1. The performance of the
two sensors was similar for the test datasets considered in this report, therefore the physics based sensor
was selected.

4.2. Enrichment Domain

After the sensor detected the centers of shock discontinuities, the next step was to define the enrichment
domain. The enrichment domain refers to the localized region in space and time where the enrichment
basis was active. To establish this domain, a user-specified value must be provided, which determines
the size of the region surrounding the shock center, xg, that will be included within the enrichment
domain. Typically, this parameter ranges from 10% to 20% of the airfoil or wing chord. For the NACA
0012 airfoil and DLR-F22 model, a value of 20% of the chord was selected. Figure 4.5, illustrates
examples of the enrichment domain (represented by black dashed lines).
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Figure 4.5: Illustration of the enrichment domain definition.

Although using the shock foot xg,o and maximum pressure Tos locations for determining the
enrichment domain might seem beneficial, it introduced additional parameters into the enrichment basis,
thereby increasing the number of time-variant parameters. Hence, the neural network would need to
predict more parameters, thus increasing the training cost. Therefore, the shock center was selected as
the only time-variable parameter required to define the enrichment domain.

4.3. Enrichment Function
4.3.1. Step Function

Our initial tests employed a sharp enrichment function to represent the shock, as illustrated in Figure 4.6.
The enrichment function was fitted to the Full-Order Model (FOM) using non-linear least squares,
similar to Section 4.4. This function was based on modification of the Soboleva hyperbolic tangent [74]
and was defined as follows:

wlea(zfxs) + w26b(m713)

e(,p(t)) = (4.11)

Where, the parameters p(t) of this enrichment function are the constants {a(t), b(t), w1 (t), wa(t), ws(t), wa(t)}
and x4(t) are the locations of the shock center.

w3ea(37—37s) — w4eb($—$s)

Pressure Fluctuations, Time Step=16 Pressure Fluctuations, t=0.040 [s]
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(a) NACA 0012 (b) Section 1 of the DLR-F22 Model, Schroeder maneuver

Figure 4.6: Step function in relation to the pressure fluctuations.

The global nature of the step function and the constraints on its parameters presented several
challenges for the enrichment basis. These challenges will be discussed in detail in the consequence
paragraphs.

4.3.2. Local Sawtooth Function
To improve the regression of specific discontinuities, the enrichment modes were localized within enrich-
ment domains. In practice, the enrichment modes were set to zero outside their respective domains.
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Additionally, zero boundary conditions were applied at the boundaries of the enrichment domains to
ensure a smooth transition between the enrichment domain and the surrounding pressure distribution.
The local sawtooth enrichment function, representing the enrichment mode, was either of first or higher
order.

Piecewise Linear Sawtooth Enrichment
A piecewise linear function was one of the two local sawtooth enrichment functions proposed as enrich-
ment modes. The first-order sawtooth enrichment function was defined as follows:

%, for © <3
de(z,p(t)) = % —b|— %ﬁ“, for 1 <2 <o (4.12)
1_;2 + 15 for x > xq

Where, p(t) are the time-dependent parameters of this enrichment function. The parameters p(t) of the
enrichment basis ware the amplitudes and locations of two interior control points: {a(t),b(t), x1(t), z2(t)}.
The piecewise linear sawtooth enrichment was fitted to the pressure fluctuations in the enrichment do-
main, as described in a subsequent section. The piecewise linear sawtooth enrichment for Section 1 of
DLR-F22 model under the Schroeder maneuver is illustrated in Figure 4.7:

Pressure Fluctuations in the Enrichment Domain, t=3.720 [s]
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Figure 4.7: Piecewise linear enrichment function, Section 1 of the DLR-F22 Model, Schroeder maneuver.

B-Spline Sawtooth Enrichment

In many applications, particularly when viscosity is considered, pressure discontinuities are not as steep
as in inviscid flows. Therefore, a higher-order continuous enrichment mode may be more appropriate.
To address this, a cubic B-spline sawtooth enrichment was introduced into the method to serve as the
enrichment mode in such cases. To start with, the spline function was defined based on the following
B-spline basis:

n—1
S(x) =Y eiBi(x) (4.13)
=0

Where B; 1+ are B-spline basis functions of degree k£ = 3 and knots t. The B-Spline basis elements were
defined via the Cox-de Boor recursion formula [9], as follows:

1 ift; <o <t
Bi’o(l‘):{ I, = i+1

0 otherwise, (4.14)

x—t; t; k+1 — T
Bip(r) = ——Bip1(z) + —_Z B ()
tivk — i titk+1 — tit1

In this section, the x and y coordinates of the control points were utilized in order to define the
coeflicients and basis of B-spline. In practice, we used a cubic B-spline interpolation with specified
boundary conditions, the knots (¢) and coefficients (c¢) were determined by the data points, the degree,
and the boundary conditions. The control points were four, and giving by the following equation:

P = [(20,%0), (x1,y1), (22,92), (x3,¥3)] (4.15)
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Zero boundary conditions were imposed on the enrichment domain boundaries, thus the first and last
control points were not real unknowns to the problem and equal (z¢,y0) = (0,0) and (z3,ys) = (1,0).
Thus, the control points in the problem were defined as follows:

P = [(an)v(33173!1)’(%2,@2)7(1’0)] (416)

The values in the knot vector define where and how the B-spline basis functions were applied.
Dirichlet and Neumann boundary conditions were imposed, meaning the y-values of the data points
and the first derivative at the boundaries of the enrichment domains were set to zero. To impose these
boundary conditions, we selected the first k£ knots equal to zy and the last k£ knots equal to x3. In other
words, the knot vector had repeated knots at the ends to enforce the boundary conditions. Thus, the
knot vector was defined as follows :

4 internal knots

—
t=1(0,0,0, 0,21,22,1 ,1,1,1) (4.17)
N—~— SN~
3 knots 3 knots

In Equation 4.17, the first three knots were 0 (equal to z), indicating boundary conditions at the start,
and the last three knots were 1 (equal to x3), indicating boundary conditions at the end. The internal
knots were non-uniform and were chosen based on the distribution of the control points.

Cubic B-spline basis functions B; 3(x) were defined recursively using the Cox-de Boor recursion
formula Equation 4.14. B-spline basis functions were constructed using the knot vector Equation 4.17
and were a piecewise cubic polynomial defined over four consecutive knot intervals, Equation 4.14.

The convention was that for ¢ knots there were t — k — 1 coefficients. The coefficients were the values
that the B-spline uses to interpolate the curve. These coeflicients were closely related to the y-values
of the control points. However, when boundary conditions were applied, the actual coefficients used by
the spline might differ slightly to meet these conditions. The coefficients were computed to ensure that
the spline passes through the given data points while satisfying the boundary conditions. For each data
point (z;,y;), the next equation is true:

n—1
yi =Y ciBix()) (4.18)
1=0

This results in a linear system Ac = yA , where A is the design matrix of basis function values
evaluated at the data points x;, c is the vector of coeflicients c¢;, and y is the vector containing y;
values. The system was solved for ¢ using linear algebra methods. The solution was implemented using
the scipy.interpolate.make_interp_spline !, which performs lower-upper (LU) decomposition and
uses the factored matrices to solve for c.

Once the spline was defined, it was used to shape the enrichment function within the enrichment
domain. The number of points evaluated was equal to the number of pressure fluctuation points within
this domain. The values for the control points (z1, 1), (z2,y2) were obtained through non-linear least
squares fitting of the spline to the pressure fluctuations in the enrichment domain, as described in a
subsequent section. The B-spline local sawtooth function for Section 1 of DLR-F22 model under the
Schroeder maneuver is illustrated in Figure 4.8:

Pressure Fluctuations in the Enrichment Domain, t=3.720 [s]

o

s
—== B-Spline

0.05

0.00

0.05

0.10

0.15

0.20

.58 0.60 062 0.64 0.66 068 070 0.72
x/c

Figure 4.8: B-Spline enrichment function, Section 1 of the DLR-F22 Model, Schroeder maneuver.

Ihttps://docs.scipy.org/doc/scipy/reference/generated/scipy. interpolate.make_interp_spline.html.
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4.3.3. Step vs Local Sawtooth Function

The local sawtooth function was preferred over the step function for the following reasons: First of
all, the step function was global in space, while the idea behind the sawtooth enrichment was only to
smooth out the pressure discontinuities within the enrichment domain without affecting the pressure
distribution outside. This distinction is visible in Figure 4.9 and Figure 4.10. The step function’s
global impact makes the pressure distribution highly sensitive to enrichment parameters. Even minor
errors in shock parameter prediction can significantly affect the overall pressure distribution, leading to
substantial errors.

In simulations that account for viscosity, the pressure discontinuities appear less sharp. Consequently,
the step function must have high-order smoothness properties to approximate the pressure step in these
cases. Therefore, step function resulted in a much wider range of possible enrichment parameter values
compared to the sawtooth enrichment function. Local sawtooth function parameters were confined to
smaller ranges, such as control point locations between 0 and 1 and amplitudes within the minimum
and maximum pressure range (typically between -2 and 2). In contrast, step function parameters can
reach values of several hundred, as demonstrated in [28]. Thus, the extended parameter bounds of the
step function hinder the fitting to the shock, leading to increased computational time.

Pressure Fluctuations, Time Step=16 Pressure Fluctuations, Time Step=16

7
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— itial G} 0.0 4 — itial ¢}
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(a) Step Function (b) Local sawtooth Function

Figure 4.9: Effect of the two different enrichment bases on pressure fluctuations, for NACA 0012.
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Figure 4.10: Effect of the two different enrichment bases on pressure fluctuations in Section 1 of the DLR-F22 Model,
Schroeder maneuver.

4.4. Fitting Enrichment Function on Sections

The primary motivation for selecting the local sawtooth function over the step functions was to control
the dataset locally within the enrichment domain. Therefore, the enrichment mode must be zero outside
the enrichment domain and at the domain boundaries. The following process was employed to satisfy
this requirement. First, the target function t(x,t) was defined as the straight line connecting the two
pressure points at the boundaries of the enrichment domain, see Figure 4.12. Linear interpolation
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between these two points was applied to derive the target function as follows:

C’;(xR,t) - C’;(xL,t)

IR — 2L

t(l‘i,t) :O;(.IL,lf)—‘y- (.’L‘i —J)L) for i=1,2,....m (419)
where z; is the chordwise location of pressure value C;(xi,t), m is the number of data points in the
enrichment domain, and x; and xgr denote the left and right boundaries of the enrichment domain,
respectively.

The target dataset was subtracted from the Full-Order Model (FOM) within the enrichment domain,
resulting in the test data T'(z,t). The test data are given by Equation 4.20.

T(wi,t) = Cp(z4,t) — t(zy,t), for i=1,2,..,m (4.20)
As a result, a test dataset within the enrichment domain that satisfies the requirement of zero boundary
conditions has been obtained. Consequently, the test function exhibited a distribution similar to the
pressure fluctuations within the enrichment domain, but it reached zero values at the boundaries of this
domain, as shown in Figure 4.12. The enrichment function was then fitted to the test data, to derive
the optimum parameters of the enrichment basis at the current timestep. This approach ensures that
the enrichment basis smooths out the shock while leaving the dataset outside the enrichment domain
unaffected.

Non-linear least squares were employed to determine the optimal parameters that minimize the
discrepancy between the enrichment model and the test dataset. Specifically, non-linear least squares
were used to fit the enrichment model, ¢.(z,p(t)), to the test data, T(x,t), within the enrichment
domain. In non-linear least squares fitting, the objective is to minimize the sum of the squares of
the residuals, 7;(p), which are the differences between the test data point T'(x;,t) and the enrichment
predictions, similar to the description of Heath [32].

ri(p) = T(wi,t) — ge(wi, p) (4.21)

where p(t) is the enrichment parameters vector that minimizes the following sum:

min S(p) = er(p) = Z (T(:,t) — de(ai,p))?, where L<p<U (4.22)
b i=1 i=1
n;in S(p) = %TT(p)’/‘(p), where L<p<U (4.23)

where r(p) is a vector containing the n residual functions [37] and L,U are the vectors containing the
lower and upper bounds of the enrichment parameters p(t) correspondingly.
The gradient vector and Hessian matrix of S are given by:

VS(p) = J"(p)r(p) (4.24)
and .
Hs(p) = J"(p)J(p) + Z ri(p)H,, (p) (4.25)

where J(p) is the Jacobian matrix of r(p), and H,,(p) denotes the Hessian matrix of the component
function r;(p).

The parameters for the enrichment mode, as described in Equation 4.12 or Equation 4.13, were
constrained by the problem’s limitations. The normalization of chordwise coordinates confines the
chordwise location of the control points to a range between 0 and 1. Additionally, the amplitude of
the control points (i.e., the y-values) was constrained by the fluctuations in the pressure coefficient,
which typically range from -2 to 2. Consequently, these limitation confines the optimal parameters to
a narrow range. To solve the non-linear least squares problem expressed by Equation 4.23, the Trust
Region Reflective (TRF) algorithm was selected. TRF works by iteratively improving the parameter
estimates p within a region around the current estimate, called the “trust region.” [83]. At each iteration,
the algorithm defines a region around the current estimate p; where it “trusts” the model’s linear
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approximation to be accurate. The size of this region is controlled by the trust region radius Ay [83].
This was illustrated nicely by Hofer et al. [37], as follows:

e (b)

—— Function fix)  ----- Trust Region A
——- Model m(py) —» Update Vector pg

Figure 4.11: Visualization of the trust region method algorithm [37].

For non-linear functions numerical methods must be used to solve the minimization problem of
Equation 4.23 [37]. These methods generally involve iterative steps in which the parameter vector p is
updated with a parameter update vector pg. The non-linear function S(p + px) was approximated by
a quadratic model within the trust region:

1
mi(pr) = S(p) + VS(p) pr + 510531% (4.26)

where my(pr) = S(p+px), is the step from the current parameter estimate, and B is an approximation
of the Hessian matrix Equation 4.25, given by:

B=J"(p)J(p) (4.27)
The step pr was generated by finding an approximate solution of the subproblem:

min my(pg), subject to ||Dpgl|ly < Ag, where L<p+p, <U (4.28)
Pk

where D is a positive diagonal matrix. This subproblem was solved by an exact method very similar to
the one described by More in [56].

The solution Equation 4.23 was implemented utilizing the optimization scipy.optimize.curve_fit
TRF algorithm effectively solves the non-linear least squares problem by iteratively refining the
enrichment parameter predictions within a trust region. The algorithm handles enrichment parameter
bounds through reflection. This characteristic makes TRF particularly suited for non-linear problems
with constraints. Furthermore, the TRF algorithm is robust because it is less sensitive to the initial
parameter guess and more efficient, as it can often converge quickly due to the small radius of the
problem. The fitted enrichment modes to the test data T'(x,t) within the enrichment domain, are
illustrated in Figure 4.12 for DLR-F22 model:

2

2https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html.
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Enrichment Domain, t=0.036 [s], count=1 Enrichment Domain, t=0.036 [s], count=1
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(a) Piecewise linear sawtooth enrichment (b) B-spline sawtooth enrichment
Figure 4.12: Enrichment function fitting for Section 1 of the DLR-F22 model, Schroeder maneuver.
The computational cost of the optimization process was minimal compared to the overall ePOD-
LSTM training cost, as shown in Table 4.1. For the DLR-F22 model, a piecewise linear sawtooth

enrichment function was selected, significantly reducing the computational cost relative to the B-Spline
sawtooth enrichment function, while producing comparable results, as demonstrated in Figure 4.12.

Table 4.1: Computational cost of the fitting procedure in Section 1.

Test Case Sawtooth Enrichment .
Computational cost [s]
DLR-F22 Function
Schroeder Maneuver Piecewise Linear 26
Schroeder Maneuver B-Spline 142
PRBS Signal Piecewise Linear 29
PRBS Signal B-spline 156

4.5. Evaluation of ePOD

This paragraph evaluates the performance of the enriched Proper Orthogonal Decomposition (ePOD)
compared to standard POD. The projection error served as the key performance indicator of the ePOD.
The projection error, expressed in terms of Mean-Squared Error (MSE), was the error between the
projection on the enriched reduced-order basis and the FOM. The projection for the ePOD is given by
Equation 4.29

N r i
€p = Ni S CH@t) = art)gr(@) =D de, (z, p(t))|[? (4.29)
T =1 k=1 s=1

As outlined in Equation Equation 4.29, the projection error was evaluated globally in space and locally
in time. The proposed ePOD was developed to improve the representation of shock discontinuities in
the pressure distribution. Therefore, an alternative assessment of the ePOD method’s effectiveness,
compared to standard POD, was the local projection error within the enrichment domain. The latter
is of more interest in applications where the quality of the shock representation is important.

4.5.1. NACA 0012

In this section of the report, the results of the proposed methodology for the inviscid flow around
the NACA 0012 airfoil are presented. The results of the ePOD were compared with those of the
standard POD using the same number of spatial modes and degrees of freedom (DoF). The selection
of the number of DoF was based on achieving a maximum time-averaged projection error of 1-1073.
Specifically, the performance of ePOD was evaluated, using 5 spatial modes and 1 enrichment mode
(4 DoF per enrichment mode), was compared to that of standard POD. Thus, in the latter case, both
methods have nine degrees of freedom.
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10-3 Projection Error of POD and ePOD 10-2 Projection Error of POD and ePOD

== POD, 5 DoF
—8— POD, 9 DoF
—— cPOD, 9 DoF

== POD, 5 DoF
—&— POD, 9 DoF .
—— cPOD, 9 DoF

Mean Squared Error

(a) Projection error (b) Projection error in the enrichment domain

Figure 4.13: Projection error for NACA 0012.

The time-averaged projection error of ePOD was 8.09 - 10=%, 11.37% higher than that of standard
POD with the same DoF. However, in the enrichment domain, ePOD demonstrated a significant ad-
vantage, with an time-averaged local projection error of 1.57-1073. This represents a 32.32% reduction
compared to standard POD with the same DoF, which resulted in an time-averaged projection error of
2.32-1072 . Moreover, ePOD’s projection error was substantially lower by 81.65% than standard POD
with five spatial modes. Within the enrichment domain, the local error for ePOD was 91.37% lower.

Although the standard POD method, using the same number of DoF, exhibited a comparable order
of projection error to the ePOD, it consistently failed to approximate shock discontinuities. In some
instances, the global projection error was slightly lower due to the following reasons. First, the increased
number of spatial modes employed by the standard POD method, more effectively approximated small
pressure fluctuations outside the enrichment domain. Additionally, in certain time instances, the shock
discontinuity observed at the trailing edge, see Figure 4.14, posed challenges for the proposed method.
Figure 4.14 illustrates the pressure distribution at the timestep where the largest discrepancy in pro-
jection error between the ePOD and POD methods was observed. Consequently, while the standard
POD with an increased number of truncated modes achieved a similar order of global projection error
in certain cases, it remained incapable of approximating shock discontinuities in the majority of time
instances, as illustrated in Figure 4.15.

Pressure Distribution, Time Step=8
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Figure 4.14: Comparison of full-order and reduced-order pressure coefficients for NACA 0012 airfoil at the eighth
timestep, using POD and ePOD methods.

The reconstructed pressure distribution was plotted alongside the Full-Order Model (FOM) results
and the standard POD, as shown in the following Figure 4.15:
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Figure 4.15: Comparison of full-order and reduced-order pressure coefficients for NACA 0012, utilizing POD and
ePOD methods.

The following tables summarize the time-averaged projection errors for the NACA 0012 airfoil:

Table 4.2: Summary of time-averaged projection error for NACA 0012.

Test Case Order Re-duction Degrees Projection Error Pr:ojection Error.
Technique of Freedom (Enrichment Domain)
1\1)/3532/& POD 5 4.41-1073 1.82-1072
1\33102A POD 9 7.17-1074 2.32-1073
1\33?21& ePOD 9 8.09 - 104 1.57-1073

The ePOD time-averaged projection error was significantly lower within the enrichment domain.
This observation shows the effectiveness of the proposed approach in accurately approximating shock
discontinuities. While both methods exhibit similar global error orders, ePOD outperforms standard
POD in regions where shock waves appear.

45.2. DLR-F22 Model

As previously discussed, the initial phase of the proposed ROM involved constructing an enriched
reduced-order basis using the enriched Proper Orthogonal Decomposition (ePOD) order reduction tech-
nique. To demonstrate the benefits of this approach over the standard method in modeling transonic
flows in real-life problems, we evaluated the projection error for the sections of the DLR-F22 model. The
dimensions for the enriched and standard reduced-order basis was selected such that the time-average
projection error remained below 1-1073. Specifically, we compared the projection error of the ePOD
to the corresponding error of the standard POD method, using an equal number of spatial modes and
DoF. In detail, the ePOD case utilized ten spatial modes and two enrichment modes (8 DoF). For the
standard method, ten and eighteen spatial modes were utilized. Designed to address pressure disconti-
nuities within the enrichment domain, the proposed approach performed remarkably well in this region.
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To illustrate its performance, we also assessed the local projection error evaluated within the enrichment
domain.

%10-3 Projection Error of POD and ePOD 10-2 Projection Error of POD and ePOD
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Figure 4.16: Projection error in Section 1 of the DLR-F22 model.
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Figure 4.17: Projection error in the enrichment domain, Section 1 of the DLR-F22 model.

The projection error for the ePOD method was consistently lower than that of the standard POD
with the same DoF for the PRBS signal. For Section 1, the time-averaged projection error of the ePOD
was 2.25 - 1074, whereas for the standard POD with the same number of DoF was 7% higher, with a
time-averaged value of 2.42 - 107%. The time-averaged local projection error in the enrichment domain
for the ePOD was 4.28-107%, and significantly higher by 40.22% for standard POD with the same DoF.

Furthermore, in the case of the Schroeder maneuver in Section 1, the global projection error of
the ePOD was generally lower than that of the standard POD with the same number of DoF. On
average, for ePOD it was 2.78 - 10™* and increased by 17.75% for POD reaching a time-averaged value
of 3.38-10~*. The time-averaged projection error in the enrichment of standard POD was significantly
higher by 58.64% relative to the ePOD with the same DoF.

The ePOD outperforms the standard method with the same degrees of freedom, except for three
specific instances in time. Further investigation into these time steps revealed that the fitting error was
significant in these cases, caused by high oscillations following the shock discontinuity, which resulted
in underfitting of the previously described fitting methodology, as observed in Figure 4.18:
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Figure 4.18: Comparison between the ePOD and POD methods, for the Schroeder maneuver in Section 1 at t=0.428
[s]-

As it is observed in Figure 4.18, the enrichment mode (purple line) was not fitted correctly to the
test function due to the oscillations in the pressure fluctuations (blue line) between 0.65-0.85 of the
enrichment domain.

Furthermore, the projection error was computed by averaging the distance between the reduced-
order basis and the FOM at each time step. Consequently, minor pressure fluctuations within the
dataset contribute to this error. The standard POD had an increased number of spatial modes, better
capturing these small pressure fluctuations in regions of the dataset outside the enrichment domain,
where no strong shock occurs. Therefore, the projection error order might be comparable in some cases,
but the standard POD completely ignored the shock discontinuities in most scenarios. This phenomenon
can be observed by comparing the global and local projection error, as well as the pressure distributions
for selected time instances in Figure A.5 and Figure 4.19. It becomes evident that the proposed method
excels in the shock discontinuity region, outperforming the standard method. Therefore, enabling more
efficient use of the ROM for predicting pressure distributions in the transonic flow regime.
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Figure 4.19: Reconstruction of the pressure distribution in Section 1 using ePOD and POD methods, Schroeder

Single Enrichment Mode

0.0 4
0.2 4
0.4 4

0.6 4

—0.6 1
—0.4 4
—0.2 4
&
0.0 4
0.2 4

0.4+

Pressure Distribution, t=1.360 [s]

G
rad \,
d

— FOM

—-= POD, 10 modes
POD. 18 modes

=== cPOD, 10 modes

0.0 0.2 0.4 0.6 0.8 1.0

(b) t=1.36 s, =3.64°

Pressure Distribution, t=3.960 [s]

— FOM

—-= POD, 10 DoF
POD, 18 DoF

=== cPOD, 18 DoF

~J

x/e

(d) t=3.96 s, a=4.39°

The ePOD method incorporates the number of shock discontinuities as an input parameter, derived from
observations in the dataset. Each shock was represented by an enrichment mode, making the number
of shocks a tunable parameter for model optimization. The value of this parameter was determined by
analyzing the dataset and identifying the dominant shock systems. A closer examination revealed, in the
case of the Schroeder maneuver, one dominant shock system. To investigate the impact of the secondary
enrichment mode on the enriched latent space, an enriched reduced-order basis was constructed using
only one enrichment mode. The dominant shock was determined by identifying the shock discontinuity

with the highest gradient.
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Figure 4.20: Comparison of the projection error between ePOD with 10 spatial and 1 enrichment mode and POD with
14 and 18 truncated modes.

Introducing a secondary enrichment mode increased the dimensionality of the enriched reduced-order
basis without significantly reducing the projection error. For instance, in the case of the PRBS signal,
the ePOD method with one enrichment mode resulted in a 13.79% higher projection error compared to
the ePOD method with two enrichment modes. However, the single enrichment mode basis significantly
reduced the number of degrees of freedom by almost 30% (four fewer enrichment parameters). This
observation was important as it decreased the dimensions of the enriched reduced-order basis, and thus
reduced the number of parameters the neural network predicted. Consequently, the computational
cost of the ePOD-LSTM ROM was reduced, as discussed in Chapter 5, while maintaining satisfactory
accuracy.

In the single shock configuration, for PRBS signal in Section 1, ePOD’s time-averaged global pro-
jection error was 26.27% lower than POD with the same DoF. Within the enrichment domain, this
percentage increased to 59.91%, underscoring the method’s performance in shock discontinuity region.
Also, for Schroeder maneuver, ePOD exhibited a 35.27% lower time-averaged global projection error and
72.82% less time-averaged local error than POD with an equal number of DoF. Furthermore, the ePOD
with a single shock experienced a 57.27% lower time-averaged projection error than the standard POD
with almost 30% more DoF. This result confirmed that ePOD outperforms standard POD, resulting
in significantly lower projection errors in regions where shock waves appear even with less DoF. Thus,
ePOD effectively integrating shock discontinuities into the reduced-order basis. These conclusions were
supported by the reconstructed pressure distribution for the ePOD method with one shock, as shown
in Figure 4.21.
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Figure 4.21: Reconstruction of the pressure distribution in Section 1 using the ePOD method with one enrichment
mode, Schroeder maneuver.

Discussion
The following tables summarize the time-averaged projection errors for all the cases of DLR-F22 model
examined.

Table 4.3: Summary of Time-Averaged Projection Error for Section 1 of DLR-F22 model.

Test Case Section Order Reduction Degrees Proiection Error Projection Error
DLR-F22 “¢° Technique of Freedom ojectio © (Enrichment Domain)
P.RBS 1 POD 14 3.54-1074 1.13-1073
Signal
P.RBS 1 POD 18 2.42-1074 7.16-1074
Signal
P.RBS 1 ePOD 14 2.61-1074 4.53-1074
Signal
P.RBS 1 ePOD 18 2.25-107% 4.28 1074
Signal
Schroeder 1 POD 14 5161074 1741073
Maneuver
Schroeder 1 POD 18 3.38-1074 1.03-1073
Maneuver
Schroeder 1 ePOD 14 3.34-104 4731074
Maneuver
Schroeder 1 ePOD 18 2.78- 104 4.26-1074
Maneuver

Table 4.3 presents the time-averaged projection error for all the test cases in Section 1 of the DLR-
F22 model. The proposed ePOD approach consistently outperformed the standard POD with the same
or even a reduced number of DoF. Table 4.4 represents the results for the time-average projection error
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in Section 2. Results appeared to be similar to Section 1. The ePOD outperformed the POD, even with
the same or fewer degrees of freedom in the enrichment domain. In this section, less strong pressure
discontinuities were observed. As a result, the global time-averaged projection error for the standard
POD was slightly lower than that ePOD with 18 DoF. This observation underscores the significance
of the number of enrichment modes. Consequently, careful selection of parameters for the ePOD is
crucial, as multiple enrichment modes can increase the method’s complexity without corresponding
improvements in the accuracy of the reduced-order basis.

Table 4.4: Summary of time-averaged projection error for Section 2 of DLR-F22 model.

Test Case Section Order Reduction Degrees Proiection Error Projection Error
DLR-F22 >¢° Technique of Freedom ojectio © (Enrichment Domain)
P.RBS 2 POD 14 4.38.1074 1.43-1073
Signal
PRBS 2 POD 18 2.64-1074 7.73-1074
Signal
P.RBS 2 ePOD 14 3.83-1074 5.74-1074
Signal
P.RBS 2 ePOD 18 3.33-10~* 4.94.10~4
Signal
Schroeder 2 POD 14 5.84-1074 1.85-1073
Maneuver
Schroeder 2 POD 18 3.79- 104 1.31-1073
Maneuver
Schroeder 2 ePOD 14 4.82-10~4 6.25- 104
Maneuver
Schroeder 2 ePOD 18 4.14-1074 5.69- 104
Maneuver

In conclusion, ePOD offers a significant advantage over standard POD for constructing the reduced-
order basis in transonic flows. The ePOD method effectively captured shock discontinuities and reduced
the DoF, enabling more efficient representations of pressure distribution in transonic flows.



Machine Learning

5.1. Long Short-Term Memory Neural Network

Recurrent Neural Networks (RNNs) [67] improved feed-forward neural networks by incorporating the
output of adjacent time steps, introducing a temporal dimension to the model [47]. The connections
between neighboring time steps, known as recurrent edges, enable RNNs to process sequential data
(e.g., time series, temporal coefficients). The network’s weights are updated using backpropagation
through time [11]. The Long Short-Term Memory (LSTM) network was developed to address challenges
faced by standard RNNs, such as vanishing or exploding gradients and the limited ability to transmit
information over long sequences. Previous studies conducted at NLR by Catalani [12] and Bourier
[10] have demonstrated that LSTM neural networks outperform other ANN and regression models in
terms of accuracy when predicting time coefficients of spatial POD modes. Bourier [10] conducted a
sensitivity analysis to determine the optimal hyperparameters for the baseline model. The outcomes of
this analysis, combined with the findings from Catalani’s study [12], were used to define the optimal
hyperparameters for LSTM network. The LSTM network trained to predict the temporal evolution of
the enriched reduced-order basis across different sections of the DLR-F22 model. For further details
on the derivation of these hyperparameter values, please refer to the respective thesis reports. The key
hyperparameters for the LSTM network are presented in Table 5.1.

The main difference between the previous neural networks parameters and the current ones was found
in the loss function. The custom loss function was a modification of the function proposed by Catalani
in [12], were the enrichment basis was integrated. Specifically, the loss function used in training the
LSTM neural network was the Mean-Square Error (MSE) between the projected and predicted pressure
distributions. The predicted time coefficients {af ¥ };:1 were multiplied by the spatial POD modes,

and the predicted parameters {p" }i:1 were introduced to the enrichment modes of Equation 4.12.
Consequently, the predicted pressure distribution was reconstructed according to Equation 4.2. It was

Table 5.1: LSTM neural network hyperparameters.

Hyperparameter Value
Number of LSTM layers 2
Number of LSTM units 64
Number of dense layers 1
Number of dense units 128

Number of time-steps 10

Batch size 32

Drop-out rate 0.2
Model optimization method ADAM
Model loss function Custom

53
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then compared to the ePOD expansion of the true targets {a;} _, and {p} as shown in Equation 5.1
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A weighted version of the loss function was employed, where 5 was a weight to incorporate a parentage
of the predicted time coefficients in the loss.

Considering the dataset structure and the limited overlap between the available maneuvers, we
implemented the following training strategy: The Schroeder maneuver, selected for training, was parti-
tioned into three subsets: training, validation, and testing. Specifically, the first 700 points were used
for training, the next 250 points for validation, and the final 50 points for testing. Once the enriched
reduced-order basis was obtained, values of ay(t) and p(t) were organized based in the three subsets.
These must be matched to suitable input vector values. For the case under consideration, the time-
variant input vector was defined to include the angle of attack «, the first and second time derivatives
of «, the pitch rate ¢, and the first time derivative of ¢. This input vector and the ay(t) and p(t) values
form the corresponding subset were used for the training of the LSTM network.

5.2. Model Construction and Training
5.2.1. Time-Dependent Coefficients

The neural network predicted the time coefficients of the spatial modes and the enrichment parameters.
Insight into these time-dependent values was crucial to understanding the complexity of the standard
POD compared to the proposed ePOD methodology. Consequently, the time coefficients of the truncated
spatial modes of POD and ePOD and the enrichment parameters were plotted as a function of time.

)

0 20 40 60 80 100 0 20 40 60 80 100

0 20 10 60 50 100 0 20 10 60 80 100
Time Step Time Step

(c) Time coefficient ag of the eighth spatial mode (d) Time coefficient a1 of the tenth spatial mode

Figure 5.1: Comparison of the time coefficients for the spatial modes between POD and ePOD methods over the final
100 timesteps of Schroeder maneuver in Section 1.
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The time coefficients of the initial modes exhibited similar evolution over time. However, as the
mode order increases, the deviation between the time coefficients of the POD and ePOD methods also
increases. In other words, the complexity of time coefficients related to the POD increases with the
order of the mode. To support this argument, Figure 5.2 illustrates the time coefficients of additional
high-order spatial modes from the truncated POD basis with 18 spatial modes.
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Figure 5.2: Time coefficients of four additional spatial modes of standard POD, over the last 100 timesteps of
Schroeder maneuver in Section 1.

The time coefficients of Figure 5.2 for standard POD were compared to the enrichment parameters
for the dominant shock discontinuity in the ePOD approach, which are represented in Figure 5.3.
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Figure 5.3: Enrichment parameters of the primary shock discontinuity, over the last 100 timesteps of Schroeder
maneuver in Section 1.

To further analyze the relation between these parameters, the Fast Fourier Transform (FFT) was
performed. Representing time-related values in the frequency domain revealed important trends in their
complexity. There was no correspondence between the order of the POD modes and the parameters
of the enrichment modes. Hence, the time coefficients of the additional high-order spatial modes were
compared to all the enrichment parameters of the dominant shock discontinuity in Section 1 of the

DLR-F22 model under the Schroeder maneuver.
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Figure 5.4: Comparison of the frequency content of time coefficients of high-order spatial POD modes and the
corresponding enrichment parameters, for the last 100 timesteps of Schroeder maneuver in Section 1.

The FFT analysis of the time-dependent parameters revealed that, high-order spatial modes pri-
marily contained frequencies with large magnitudes, which were irregularly spread across the frequency
range. Conversely, the enrichment parameters were more evenly distributed across frequencies and
characterized by lower magnitudes. Furthermore, the enrichment parameters were nearly periodic over
time, as shown in Figure 5.3. Based on these two observations, we can conclude that the enrichment
parameters were less complex, and likely easier to regress. These observations, were verified during the
training stage of the neural network.

5.2.2. Training Stage

Figure 5.5 presents the weighted training and validation loss for the Schroeder maneuver in Section 1.
The weighted version of the loss function was used, where 95% was the contribution of the prediction
error between the predicted and actual reduced-order basis, and 5% from the mean square distance
between the predicted and actual time coefficients. The ePOD-LSTM ROM with 18 DoF fitted the
training data with sufficient accuracy, as evidenced by the reduction in training loss as the number of
epochs increases. The training loss reduced to approximately 9-10~% after 1000 epochs and continued to
decreasing, eventually reaching a minimum of about 4 - 10~%. Moreover, the neural network performed
with sufficient accuracy on the validation data. The validation loss reached a plateau of approximately
4-1073 after the first 500 epochs.
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Figure 5.5: Training and validation loss.

The normalized time coefficients and enrichment parameters are shown in Figure 5.7. The training
and validation datasets were normalized based on features minimum and maximum values.
ization enhanced the training efficiency, stability, and performance of the neural network. The time
coeflicients of the first and last spatial modes and the parameters of the dominant shock discontinuity,
predicted by the network were plotted against the actual validation data. By comparing the first and
last time coefficients, it was verified that as the order of spatial modes increases, the complexity of its
time coefficients increases. Consequently, it becomes more challenging for the neural network to fit
these highly oscillating coefficients.
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Figure 5.6: Validation performance of LSTM neural network in Section 1.
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Figure 5.7: Validation performance of LSTM neural network in Section 1.

To demonstrate the advantages of the proposed approach over the standard method, a corresponding
ROM was employed using the standard reduced-order basis with eighteen spatial modes. The POD-
LSTM ROM was constructed using the same LSTM neural network, with identical hyperparameters
and the same datasets for training, validation, and testing. The time coefficients for the higher-order
spatial modes, as predicted by the neural network during training and validation, are represented in
Figure 5.8.
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Figure 5.8: Time coefficients of four high-order spatial modes of standard POD.

Figure 5.8 verifies that as the order of the spatial modes increases, modeling their temporal evolution
becomes more challenging. In other words, the higher the mode order, the more difficult for the
neural network to fit its time coefficient. For example, the neural network failed to accurately fit the
validation dataset for the time coefficient associated with the eighteenth spatial mode. Incorporating
more high-order spatial modes in the reduced-order basis increases the model’s complexity. Conversely,
the enrichment parameters were less complex and, as expected, better suited for regression. As a result,
the proposed ePOD order reduction technique mitigates the complexity of time-dependent features of
the reduced-order basis, thereby improving the efficiency of the regression process.

Training cost

The POD-LSTM ROMs with the same number of degrees of freedom as the ePOD-LSTM with single
and double shock configurations were derived. The training costs for the four ROMs constructed for
Section 1 utilizing the same hyperparameters are presented in the following table.

Table 5.2: Total training cost of the LSTM, using various reduced-order bases in Section 1.

Reduced-Order Model Degrees of Freedom Training cost [s]

POD-LSTM 14 1028
POD-LSTM 18 1069
ePOD-LSTM 14 914
ePOD-LSTM 18 1003

The reduced complexity of enrichment parameters compared to the time coefficients of extra spatial
modes resulted in lower training costs. As shown in Table 5.2, the ePOD-LSTM model with fourteen
degrees of freedom or one shock achieved the minimum training cost. This was 114 seconds faster
than the POD-LSTM ROM with the same number of DoF and 155 seconds faster than the POD-
LSTM ROM with four additional DoF. Furthermore, it was 89 seconds faster than ePOD-LSTM ROM
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with two enrichment modes. Interestingly, the ePOD-LSTM ROM with eighteen degrees of freedom
required less training time than the POD-LSTM ROM with four fewer parameters, attributed to the
lower complexity of its parameters. As expected, the POD-LSTM ROM with eighteen truncated spatial
modes resulted in the highest computational cost.

5.3. Testing Stage

In this paragraph, the results from the testing stage of the Reduced-Order Models (ROMs) that was
constructed are presented and analyzed. The predicted pressure distribution for the LSTM neural
network was compared with both the actual reduced-order basis and the full-order pressure distributions.
Three different types of errors were assessed for the testing dataset. The first error evaluated was the
projection error defined by Equation 4.29 between the enriched reduced-order basis and the FOM. The
second was the neural network time coefficients error, defined as the instantaneous error between the
actual and the predicted enriched reduced-order basis. The neural network time coefficients error eny
is given by Equation 5.3.

ENN = 77— N, ZHZ% )b (@ +Z¢es , p( ))_ZakNN(t Zd)es YO (53)
i=1 k=1 k=1

Specifically, the predicted time coefficients alV for the testing dataset were multiplied by the spatial
modes ¢y, and the predicted parameters p™ were introduced to the enrichment mode ¢. of Equa-
tion 4.12. Thus, the predicted reduced-order basis was derived.

The total error of the ROM, or the distance between the FOM and the predicted enriched reduced-
order basis by the neural network, was expressed in terms of Mean Squared Error (MSE) for the testing

dataset. N
A —
GT:N*ZIICP—Z%NN@ Z% N2 (5.4)
T i=1 k=1

These three different metrics of the performance of the neural network for the ePOD-LSTM ROM with
18 DoF are illustrated in Figure 5.9.
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Figure 5.9: Mean squared error analysis of the predicted pressure distribution.

The projection error represents the highest level of accuracy that the neural network can achieve in
this ROM architecture. An optimally constructed and perfectly trained neural network would ideally
approach this level of accuracy. For the test dataset, the time-averaged projection error was 1.81-1074
in Section 1 and 2.04 - 10~% in Section 2. Regarding the total error, the time-averaged values were
1.39 - 1073 for Section 1 and 2.69 - 103 for Section 2. The time-averaged network time coefficient error
was 1.31 - 1072 in Section 1 and 2.59 - 1072 in Section 2. The main contribution to the total error was
the neural network time coeflicient error, which was nearly identical to the total error. Therefore, if an
optimal neural network were available, the total error would likely be on the order of 10~4. This finding
was significant because it highlighted the advantage of decomposing the different sources of errors in
the ePOD-LSTM ROM. By evaluating each component individually and assessing its error contribution,
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this approach offers an advantage compared to ROMs, e.g. Autoencoder/Decoder, where the different
sources of error are aggregated into a total error.

Figure 5.10 displays the predicted and projected enriched reduced-order basis, as well as the full-
order pressure distribution, for Section 1 at selected time steps. These plots demonstrate that, despite
using a limited training dataset, the ePOD-LSTM model accurately predicts the pressure distribution
for the test dataset, even in challenging discontinuity locations.

Pressure Distribution, t=3.844 [s] Pressure Distribution, t=3.900 [s]
~1.04 — FOM —1.01 — FOM
—— ¢POD, 18 DoF —— ¢POD, 18 DoF
0sd —— Prediction Yy —— Prediction
—0.6 4 —0.6
~ 04 = 04
—0.2 4
—0.2 4 0.2
0.0 4
0.0 4
0 200 100 600 800 1000 0 200 400 600 800 1000
x/c x/c
(a) t=3.844 s, @=5.75° (b) t=3.900 s, a=5.21°
Pressure Distribution, t=3.936 [s] Pressure Distribution, t=3.952 [s]
14 — FOM — FOM
ePOD, 18 DoF —1.0 1 ePOD, 18 DoF
-1.2 1 —— Prediction —— Prediction

0 200 400 600 800 1000 0 200 400 600 800 1000
x/c x/c

(c) t=3.936 s, a=13.16° (d) t=3.952 s, @=6.83°

Figure 5.10: Predicted pressure distribution for Section 1 using the ePOD-LSTM ROM.

5.3.1. Comparison of ePOD-LSTM and POD-LTSM ROMs

The projection, total, and network time coefficient errors of the POD-LSTM and ePOD-LSTM models
with the same DoF were compared. On average, the ePOD-LSTM exhibited lower projection errors
than the standard POD-LSTM ROM. For time instances without strong pressure discontinuities, the
error levels were comparable. The time-averaged projection error for the standard POD was 17.72%
higher than the ePOD-LSTM with 18 DoF. The total error of the ePOD-LSTM ROM with 18 DoF was
lower than that of the standard POD-LSTM for most time steps. The time-averaged total error was
1.39 - 1073, a 24.04% reduction compared to the POD-LSTM using the same number of DoF. In the
POD-LSTM model, regions with high projection errors significantly contributed to the overall error. In
contrast, the network time coefficient error was the primary source of error in the ePOD-LSTM ROM.
The time-averaged network time coefficient error for the ePOD-LSTM was 18.63% less than the POD-
LSTM with an equal number of DoF. This observation supports the hypothesis that predicting the time
coefficients of high-order spatial modes was more challenging than fitting the enrichment parameters.
Consequently, the enriched reduced-order basis offers the extra advantage of reducing the neural network
time coefficient error, compared to a standard basis with the same number of DoF.
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Figure 5.11: Comparison of ROMs using a standard reduced-order basis versus an enriched reduced-order basis with
18 DoF.

5.3.2. Influence of Enrichment Mode on ePOD-LSTM ROM Performance

An ePOD-LSTM model was constructed using a single enrichment mode in the reduced-order basis.
The hyperparameters, training, validation, and testing datasets were identical to those used for the
model with two enrichment modes. The projection error for the test data had a similar magnitude for
both ePOD-LSTM ROMs, consistently remaining lower than 7-10~%. The temporal mean value of the
projection error was 1.93 - 10~% for the ePOD-LSTM ROM with 14 DoF. Therefore, the time-averaged
projection error was increased only by 6% after the removal of the secondary enrichment mode. Hence,
the second shock discontinuity had a minor contribution to the projection error for the testing data while
significantly increasing the number of DoF by almost 30% more. The decreased number of parameters
that needed to be predicted by the neural network reduced the network’s time coefficient error. As a
result, the total error was lower for the ePOD-LSTM ROM with a single enrichment mode. Hence, the
ePOD-LSTM ROM with one enrichment mode performed better in predicting the testing dataset.
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Figure 5.12: Performance comparison of ePOD-LSTM ROMs: single vs. double enrichment mode configurations

In conclusion, an augmented number of parameters increased the dimensions and the complexity of
the reduced-order basis, hindering the neural network training, and validation, and eventually led to
higher neural network error. Hence, one should always consider the trade-off between the accuracy that
additional degrees of freedom add to the reduced-order basis representation and the complexity they
add, for the neural network or other regression methods.

5.3.3. Discussion

Figure 5.13 represents a typical time instance of the predicted pressure distribution. The POD-LSTM
models failed to capture the shock due to the high projection error in this region and the complexity
of the time coefficients associated with the high-order modes. In the case of ePOD-LSTM ROM with
18 DoF, a high total error was observed in the first part of the pressure distribution. Attempting to fit
the parameters of the secondary shock, while its contribution was minor, increased the complexity of
the network and resulted in higher total error. On the other hand, the reduced number of enrichment
basis parameters in the case of one shock facilitates the fitting of the neural network, leading to the
best prediction results.
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Figure 5.13: Predicted pressure distribution for Section 1, obtained using POD-LSTM and ePOD-LSTM ROMs.
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The following tables summarize the time-averaged errors for all the Reduced-Order Models (ROMs)
that were constructed, trained, and tested during the thesis project.

Table 5.3: Summary of time-averaged errors for various ROMs.

ROM Section Degrees Projection Error Network Time Total Error
of Freedom Coefficients Error
POD-LSTM 1 14 2.41-1074 1.01-1073 1.25-1073
POD-LSTM 1 18 2.20-1074 1.61-1073 1.83-1073
POD-LSTM 2 18 2.99-1074 3.70-1073 4.00-1073
ePOD-LSTM 1 14 1.93-1074 9.75-1074 1.17-1073
ePOD-LSTM 1 18 1.81-1074 1.31-1073 1.39-1073
ePOD-LSTM 2 18 2.04-1074 2.59-1073 2.69-10"3

The enriched reduced-order basis enhances the ability of the LSTM neural network to predict the

reduced-order pressure distribution in the transonic flow regime. Therefore, by substituting the high-
order spatial modes with the enrichment basis, we efficiently approximated the shock discontinuities
into the latent space while reducing the complexity of the features the neural network must fit.

Network time coefficient error was the primary contributor to the total error for ePOD-LSTM ROMs.
The ePOD-LSTM ROMs with double and single enrichment modes in Section 1 exhibited 18.63% and
39.44% lower time-averaged network time coefficient errors, respectively, than POD-LSTM with 18 DoF.
Comparing ROMs with one and two enrichment modes revealed that additional DoF increased model
complexity, offsetting the gains in accuracy provided by a more detailed reduced-order basis.

Overall, the ePOD-LSTM ROM with single shock outperformed the other ROMs, reducing total
error by 15.83% compared to the double shock configuration. Furthermore, it reduced the total error by
6.5% and 36.06% compared to POD-LSTM with 14 and 18 DoF correspondingly. Therefore, carefully
balancing the accuracy of the enriched reduced-order basis with its complexity is crucial.

Furthermore, the POD-LSTM ROM in Section 1 with 14 DoF resulted in a slightly lower total
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error than the ePOD-LSTM ROM with 18 DoF. The increased dimensions of the enriched reduced-
order basis resulted in higher network time coefficient error counterbalancing its increased accuracy.
Therefore, as the number of parameters increased, the regression performance of the LSTM network
declined. This observation highlights the need for an enriched reduced-order basis for approximating
the pressure distribution in transonic flows with the minimum number of DoF.



Conclusion and Recommendations

6.1. Conclusion

This research project introduced a novel approach to address the increased number of spatial POD modes
needed for accurate approximation of pressure distribution in transonic flows. The proposed enriched
Proper Orthogonal Decomposition (ePOD) method introduces an enrichment basis into the standard
formulation of the POD, which effectively approximates shock discontinuities, significantly reducing
the degrees of freedom (DoF) and complexity of the reduced-order basis for pressure distribution. The
ePOD method decreases the projection error, defined as the discrepancy between the reconstructed
pressure distribution based on the enriched reduced-order basis and the Full-Order Model (FOM),
compared to the standard POD with the same or even a reduced number of DoF. Furthermore, the
ePOD method reduces the complexity of the time-variant parameters of the reduced-order basis. Thus,
the computational cost of the ePOD-LSTM ROM was less in contrast to the POD-LSTM ROM with
the same DoF.

Introducing enrichment basis with local linear sawtooth enrichment modes into the latent space
for the NACA 0012 airfoil and the sections of the DLR-F22 model efficiently reduces the number
of DoF required to accurately approximate pressure distribution in transonic flows compared to the
standard POD. The results demonstrate that ePOD outperforms the standard POD method, leading
to significantly lower projection error, particularly in regions with pressure discontinuities caused by
shock waves. The time-averaged projection error in the enrichment domain was reduced by up to 73%
compared to standard POD, for the same number of DoF. Furthermore, the time-averaged projection
error of ePOD was reduced by over 50% in the enrichment domain, even when compared to standard
POD with nearly one-third more DoF. The comparison between ePOD with single and double shock
configurations for the DLR-F22 model suggests that, in some cases, was better to model only strong
discontinuities. The additional enrichment mode increased the dimensionality of the enriched reduced-
order basis without significantly improving its accuracy. Therefore, the trade-off between the improved
accuracy and complexity or dimensionality of the reduced-order basis should be considered. The ePOD
approach also reduces the complexity of the time-dependent parameters of the reduced-order basis that
need to be predicted by the neural network, by reducing the high-frequency content of the time signals
relative to their POD counterparts.

An Long Short-Term Memory (LSTM) neural network was constructed and trained to predict time-
dependent coefficients and parameters of the enriched reduced-order basis in unseen flow conditions.
Due to the reduced complexity of the ePOD’s time-variant parameters, the training cost of the ePOD-
LSTM ROM was reduced by up to 13% relative to the POD-LSTM model with the same DoF, using
identical hyperparameters.

Finally, the performance of the ePOD-LSTM ROM was compared to the POD-LSTM ROM. Addi-
tionally, ePOD-LSTM ROMs for single and double shock configurations were compared to each other.
The ePOD-LSTM ROM outperformed the POD-LSTM ROM in predicting pressure distribution for
unseen conditions. The results also demonstrated that increasing the number of parameters predicted
by the neural network can negatively impact the model’s accuracy. Specifically, predicting the time
coeflicients of extra spatial modes was generally more challenging than enrichment parameters, result-
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ing in higher neural network time coefficient errors. The time-averaged total error of the ePOD-LSTM
ROM was reduced by almost 25% compared to the POD-LSTM ROM with the same DoF. Moreover,
the ePOD-LSTM ROM with one shock wave resulted in a total error with a time-averaged, which was
almost 16% less than the double shock configuration, and 36% less than the POD-LSTM ROM with
almost one-third more DoF. The neural network time coefficient error followed similar trends for the
ROMs under consideration.

High-fidelity CFD solvers result in a high computational cost for encompassing all different states
of an aircraft. The POD-LSTM ROM developed by the Netherlands Aerospace Centre (NLR) does
well reducing the cost of pressure distribution predictions in subsonic cases. However, in the transonic
regime, flow complexity increases due to shock phenomena, hindering the application of the POD-
LSTM ROM. This thesis shows that ePOD-LSTM efficiently decreases the dimensions of enriched
reduced-order basis and the complexity of its time-dependent parameters. Therefore, ePOD-LSTM
ROM can substantially reduce computational cost and complexity in predicting pressure distribution
for airfoil/wing applications in transonic flows.

6.2. Recommendations For Future Work

The developed ePOD-LSTM ROM is however limited to predicting the pressure distribution over airfoil
or wing sections. The novel approach of the study in combination with the limited data availability did
not allow for an extension of the ePOD method to three dimensions within the time frame of this thesis.
However, expanding the current two-dimensional ePOD method to three dimensions will be crucial for
developing a surrogate model capable of predicting surface pressure over the entire wing. Introducing
enrichment bases in multiple sections of the wing may lead to an increased number of degrees of
freedom for the ePOD approach, potentially diminishing its efficiency compared to the standard POD
for approximating surface pressure. To extend the ePOD method over the entire wing surface several
recommendations can be considered.

The first recommendation concerns reducing the number of two-dimensional enrichment bases re-
quired to represent the effects of three-dimensional flow discontinuities on the wing surface. This can be
achieved by identifying an optimal set of sections across the wing surface that accurately approximate
complex three-dimensional flow phenomena The approach may include determining optimal chordwise
coordinates and orientations of these sections. By interpolating their enrichment modes, it is possible
to derive the minimum required number of enrichment bases.

The second recommendation suggests extending the ePOD approach across the wing surface by iden-
tifying three-dimensional enrichment modes that explicitly account for pressure discontinuities across
the wing. Although this approach can be effective for linear flow discontinuities, deriving basis func-
tions capable of describing complex non-linear discontinuities in the wing’s surface pressure distribution
remains challenging.

The final recommendation involves clustering the dataset based on the presence of pressure discon-
tinuities caused by shock waves. Specifically, it suggests decomposing the data into clusters according
to the expanding enrichment domains over the wing surface. Each cluster would be assigned a reduced-
order basis, similar to the cluster POD method [34].

In parallel with the expansion of the enrichment basis to 3D, also more efficient neural network
architectures could be considered in order to improve the prediction performance. In the current model,
a RNN LSTM neural network has been demonstrated to be the most efficient [12]. However, the
RNN’s architecture imposes a limitation where only the last time steps are considered for predicting
the time-dependent coefficients. In transonic flows, time steps containing shocks may be more significant
than those without. Therefore, assigning greater importance to time instances related to shocks could
potentially enhance the surrogate model’s performance. A more advanced neural network architecture,
such as transformer models [16], incorporates attention mechanisms, which allow the model to weigh the
importance of different parts of the input sequence. This could be particularly beneficial in transonic
flows, where specific time steps may have a more significant impact on the overall prediction.
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Additional Results

A.l. Time-Dependent parameters of NACA 0012

To gain a deep understanding of the parameters that the neural network needs to predict, the time
coefficients of the truncated spatial modes are plotted as a function of time in Figure A.1.

(a) Time coefficient a; of the first spatial mode

~1.04 — POD
— ¢POD

0 5 10 15 20 25 30 0 5 10 15 20 25 30

(c) Time coefficient ag of the third spatial mode (d) Time coefficient a4 of the fourth spatial mode

Figure A.1: Comparison of time coefficients for the first four spatial modes between POD and ePOD methods.

The time coefficients for the initial spatial modes were similar for both the POD and ePOD methods.
However, as the mode order increases, the absolute deviation between the time coefficients of the POD
and ePOD methods also increases.

Figure A.2 shows the last four modes of the truncated POD basis with 9 spatial modes. These time
coefficients for the four additional POD modes were compared to the enrichment parameters of the
ePOD approach, which are represented in Figure A.3.
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Figure A.2: Time coefficients of the last four spatial modes of standard POD method.
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Figure A.3: Time-dependent enrichment parameters of the ePOD method for the NACA 0012.

To facilitate a comparison of these parameters, the Fast Fourier Transform (FFT) was applied to
represent these time-related values in the frequency domain. The time coefficients of the four extra
spatial modes of the standard POD was compared with all the enrichment parameters, as follows in
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Figure A.4:
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Figure A.4: Comparison of the frequency content of time coefficients for the four additional POD modes and the
corresponding enrichment parameters.

The time coefficients of the extra high-order spatial modes in the standard POD primarily con-
tained high frequencies with large amplitudes. In contrast, the enrichment parameters were more
evenly distributed across lower frequencies and exhibited, on average, lower amplitudes. Consequently,
the frequency content of the time coefficients for the four additional spatial POD modes was charac-
terized by higher frequencies and larger amplitudes relative to the enrichment parameters, as shown
in Figure A.4. Additionally, the enrichment parameters had nearly periodic behavior over time, as
observed in Figure A.3. Therefore, the enrichment parameters appeared less complex time signals than
the time coeflicients of the high-order spatial POD modes, making them more suitable for regression.
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A.2.1. Reconstructed Pressure Distribution in Section 1, PRBS Signal
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Figure A.5: Reconstruction of the pressure distribution in Section 1 using ePOD and POD methods, PRBS signal.

A.2.2. Evaluation of ePOD in Section 2
The projection error for the Section 2 of the DLR-F22 Model is represented in the following graphs:
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Figure A.6: Projection error in Section 2 of the DLR-F22 model.
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Figure A.7: Projection error in the enrichment domain, Section 2 of the DLR-F22 model.

The ePOD outperforms the standard method with the same number of degrees of freedom. The
projection error remains consistently lower than that of the standard POD with an equivalent number
of DoF across all time steps in the PRBS signal and Schroeder maneuver. For further details regarding
the time-average projection error, refer to Table 4.4. The reconstructed pressure distributions over
various timesteps for the Section 2 under the PRBS signal and Schroeder maneuver are illustrated in

Figure A.8 and Figure A.9.
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Figure A.8: Reconstruction of the pressure distribution in Section 2 using ePOD and POD methods, PRBS signal.
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Figure A.9: Reconstruction of the pressure distribution in Section 2 using ePOD and POD methods, Schroeder
maneuver.

Figure A.10 shows the predicted and projected enriched reduced-order basis, as well as the full-order
pressure distribution, for Section 2 at various time steps. These plots demonstrated that the ePOD-
LSTM model accurately predicts the pressure distribution for the test dataset, even in challenging
discontinuity locations.
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Figure A.10: Predicted pressure distribution for Section 2 using the ePOD-LSTM ROM.
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