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SUMMARY

It is shown in this Report that a theoretical calculation of the
variance, or the r.m.s. value of an aircraft's normal acceleration
due to atmospheric turbulence characterized_by the Dryden or von
Karman power spectral densities is not possible if the time delay,
characterizing the gust penetration effect, is éﬁproximated by the
linear time-derivative description enabling the use of the gust
derivatives CZd s Cmd etc. (truncated Taylor series approximation

of the turbulent fielg).

Such a calculation is shown to be possible if a first order Padé
approximation is used to describe the penetration effect. The results
thus obtained for an example aircraft are in very good agreement with
those obtained By,a pure time delay description.

In the case of other motion variables, where the linear time derivative
approximation is theoretically possible, the results of the Padé
approximation are also in better agreement with those obtained by a

pure time delay.

Neglecting the penetration effect (point approximation of the aircraft
in the turbulent field) is shown to cause gross errors, especially in
the variance of the normal acceleration at points some distance -away
from the aircraft's c.g., a quantity affecting ﬁassenger and crew

comfort.

Monte Carlo simulations using analogue computers and incorporating the
time-derivative approximation of the gust penetration effect are shown
to yield values of the variance of the normal acceleration that may

be grossly in error depending; in a rather unexpected way, on the band-

width of the electronic white noise generators used.
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_ 4.1. Normal acceleration at-the aircraft's c.g.
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LIST OF SYMBOLS

[A]

[8]

system matrix

aircraft's normal acceleration

wing span

forcing matrix

aerodynamic mean chord

aircraft's centre of gravity

pitching moment coefficient




coefficient of aerodynamic force along the aircraft's X-axis

L
{pVZS ol

= Cy in the steady flight condition

nl

V]
5 &

v

coefficient of aerodynamic force along the aircraft's Z-axis

gpvzs

= C, in the steady flight condition




(1]

H{w)

dimensionless differential operator

<o

a
*de?

~aircraft moment of inertia about the Y-axis

‘unit matrix

acceleration due to gravity
élfitude

transfer functioﬁ

- /T

dimensionless ‘radius of gyration, re1a£ed to vaby

. "9 Iy
LA KY =3

pSc

horizontal tail arm

integral scale of turbulence

=

= 2 aircraft mass

stability and gust derivatives in abbreviated notation,
see Appendix 1

aerodynamic moment about the aircraft's Y-axis




c.g.

Re { }

)

<¥

a
= —é-normal acceleration factor at the aircraft's c.g.

complex (Laplace) variable

pitching velocity about the aircraft's Y-axis
real-part of a complex variable or function
wing area

horizontal tail area

time

change in v along the aircraft's X-axis

<le

velocity of the aircraft's c.g. relative to the earth,

assuming no steady wind velocity

verticai gust velocity

aircraft weight

distance along the aircraft's X-axis to a certain datum point

state vector, vector of motion variables

stability-and gust derivatives in abbreviated notation, see
Appendix 1
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o (w)

aerodynamic force along the aircraft's X-axis

forcing function vector

stability- and .gust derivatives in abbreviated notation,
see Appendix 2

aerodynamic force along the aircraft's Z-axis

angle of attack, dimensionless change of v along the aircraft's

Z-axis
w
= 1%, gust angle of attack
flight path angle, angle between V and the horizontal plane
downwash angle
angle of pitch
m . .
= —— relative aircraft mass

pSc

air density

- variance of x

covariance of X, and X,

time constant

power spectral density function (power spectum)



w angular™frequency

Subscripts and superscripts

c.g. centre of gravity
g . gust, atmospheric turbulence
h horizontal tail
u output
w wing
w

8

vertical turbulence

o

g
* conjugate of a complex variable or- function
T

‘transpose of a vector or matrix

inverted matrix

Frame of reference-

All aerodynamic forces and moments and stability derivatives are defined
relative to a frame of reference havihg its origin 0 at the aircraft's
centre of gravity c.g. The X-axis lies in the plane of symmetry, parallel
to the velocity &ector V in the steady flight condition, and is taken
positive in the forward direction. The Y-axis is perpendicﬁlar.to the
plane of symmetry‘and'is taken positive to starboard. The Z-axis is

perpendicular to the X-0-Y-plane and positive downwards.



1. INTRODUCTION

The problem of calculating the response of an aeroplane to atmospheric

turbulence can, similar to a concept given in Ref. 1, be separated into

several distinct elements.- A

1) The statistical description of the turbulent field (the input),

2) The calculation of the aerodynamic forces and moments acting on an
aircraft due to the turbulent field in terms of transfer functions,

3) The calculation of the ‘transfer functions relating the aircraft
motion variables to the gust-induced forces and moments,

4) The combination of the transfer functions and the input to obtain

the output.

This concept is diagramatically shown in Fig. 1. Under the assumption
that atmospheric turbulence is a stationary gaussian stochastic process
and that aircraft perturbations due to atmospheric turbulence can be
-described by linear differential equations, ensemble propertiesbsuch as
the variance or the r.m.s. value of motion variables can be calculated

by a number of well established methods.

In practical calculations atmospheric turbulence is usually characterized
by either of the wellknown power spectral densities (or power spectra)
due to Dryden or von Karman (see Ref. 2). The transfer functions relating
the aircraft's output to the gust forces and moments may, under the
assumption of linearity, conveniently be obtained using.linear system"

theory.

Restricting the discussion in this Report to symmetric aircraft motions
-due to vertical turbulence velocities only, a first assumption commonly
made is that the gust velocities are uniformly distributed over the

wing span.

In the majority of the publications on calculations of aircraft response
to turbulence it appears that the aforementioned assumptions are, al-
though sometimes tacitly, ffequently made. See for instance Refs. 3,

4 and 18.



As to the aerodynamic transfer functions, relating forces and moments
and the vertical gust velocity, a further assumption is often made i.e.
that the growth of the lift and pitching moment of an aircraft wing due
to a gust is instantaneous rather than occurring over a certain time

as characterized by the so called Kﬁssner function (see Ref. 5). If
this effeét is ignored, the pertaining éerodynamic transfer functions

become identical with the derivatives.czw~ and me of the wing.
. o o

An example where a Kiussner function is explicitly used for modelling

the 1ift growth, can be.found in Ref. 3.

Another phenomenon leading to an aerodynamic transfer function is the

"gust penetration effect'. This effect can roughly be

so called
described as caused by different parts of the aircraft (especially the
wing and the tail) being hit by the same gust at different instants in
time.

By assuming the gust velocities to be uniformly distributed along the
length of the aircraft as well as along the wing span, this effect is
ignored and the "point approximation" of the aircraft in the turbulent

field as discussed in Ref. 6 1s obtained.

However,‘the gust penetration effect is shown in this Report to have a
considerable influence on the normal acceleration. It can in principle
very conveniently be modelled in a number of ways, as will be discussed
in Chapter 3 of this Report. As a consequence it should be included in

calculations of aircraft response to turbulence.

For aircraft of a conventional wing-tail lay-out with modest wing sweep,
the gust penetration effect is usually considered to be mainly caused
by the horizontal tail only, allowing the effect to be %escribed by a

1, being the

pure time-delay characterized by the time interval T = 1?, h

horizontal tail arm.

One way to describe the pure time-delay is by a linear time-derivative



approximation (Ref. 7), yielding the wéll known gust derivatiQes CZd s
Cmg » etc., see for instance Ref. 8. The mathematical description thus
obtained is similar to the one introduced by Etkin (Refs. | and 6), The
turbulent gust field is then approximated locally by a Taylor series

truncated after the linear terms, see also Chapter 3 of this Report.

When using this approximation some difficulties may be met when calcul-
ating the variance or the r.m.s. value of an aircraft's normal acceleration
due to turbulence. It appears that if the Dryden (or von Karman) turbulence
spectra are used, a calculation of the variance of the normal acceleration
is in a strict sense not possible. This will be briefly explained in the

second Chapter.

Chapter 3 deals in'more detail with the gust penetration effect. The

effect will be modelled in three ways i.e.:

1) by a pure time-delay, ‘

2) by a first order Padé approximation of the pﬁre time-delay,

3) by the first order time-derivative approximation (truncated Taylor
series representation gf the turbulent field).

The first two methods will be presented in such a way that the well-

known gust derivatives Czd and Cmd of the third method may still be

used, introducing only one new parameter, the tail arm lh' It will be

shown that the difficulty mentioned in calculating the.normal

acceleration r.m.s. can be circumvented by using either of the first

two descriptions.

The power spectral densities and the variances of the normal acceleration
at the centre of gravity and at other points along the aircraft's X-axis,
thus calculated will be compared in Chapter 4 for an example aircraft

assuming constant speed.

Further numerical examples are given in Chapter 5 for two more example
aircraft.



2. THE AIRCRAFT'S NORMAL ACCELERATION DUE TO ATMOSPHERIC TURBULENCE

The aircraft's vertical velocity with respect to an inertial frame of

reference is:
hzV Y=V (6 -

The normal acceleration a, at the centre of gravity (c.g.) is in -hori-

zontai flight and neglecting the influence of variations in V on a,:

a_=h=Vy=V(8-a

z
The normal acceleration factor nC g = % is then:
n ‘=.Y_2_ .é_z—é (l)
c.g. - \V v '

In Appendix 1 the differential equations governing the aircraft's motions
due to vertical atmospheric turbulence are given. These are in the case
of the first-order time derivative approximation of the penetration effec

see Chapter 3 of this Report, in vector matrix notation:

]
<jol

- (A1 X+ 0Bl F ()
where x iS the aircraft‘s state vector:

—\T
o 6 3&)

LA
]
TN
(=]

and y_ the vector of the gust forcing functions, in this case:



. . . . . c . S = c .
The dimensionless time derivative g"7-13 an element of x . v—ln eq. (2)

and thus a linear function of the motion variables (the elements of %)

and the forcing functions (input signals) ug and Dcag (see Appendix 1):
2:= z .G+z .o+z,.0+z . L+z .a +;' .Da Oi
vV o ] Og g " e

In Ref. 9 it is demonstrated that due to the approximative description
of the atmospheric turbulence by the Dryden spectrum (or, for that .
matter, by the von Karman spectrum) the use'of these spectra yield an
infinite val?g of the variance of Dcag. A;cording to eq. (3) the
variance of %;, and as a consequence of nc.g. (see eq. (1)), as well,
will be infinite. '

In this case only an approximate calculation of Oﬁc g.will be possible,

setting 24 = 0, which is equivalent to setting Czd = 0, see Appendix 1.
g

g

When studying passenger or crew comfort it is important to know the
variance of n at arbitrary points in the aircraft as the level of
normal accelerations along the aircraft's longitudinal axis may vary
considerably, see for instance Refs. 3 and 4. Here a similar problem
arises. Due to the effect of the angular acceleration ¢, the normal
acceleration factor n_at a distance x - X, o aft of the cenﬁre of

gravity is:

vE (e _ac X TXe.g g2l
h T Peg. Th eox 0= (b g0 “
N gc \
222 ¢ .
Again %57 is an element of Xy and thus a linear function of the

elements of X and the forcing functions ag and Dcag:

2 -
8¢ _ ac .
5 mu.u+ma.a+me.e+mq.V+mag.ag+mag.Doc (5)
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Comparing eqs. (5) and (4) it will be clear that Oﬁx will also become
infinite as chag is infinite. Neglec;ing both 26 and_mag will, of
course, result in a finite value of Ony but will, as will be shown in

. . . . 2
this Report, yield too gross an approximation of onx.

It is important to note that the variance of the normal écceleration
will only become infinite in the case of theoretical calculations i.e.
‘either by the integration of the power spectral demsity in the frequency-
domain or by a time-domain method such as the one described in Ref. 10

(impulse response method).

In the case of a Monte Carlo analogue-simulation where turbulence
signals are generated by filtefing white noise, the computed variance
of the normal acceleration will always be finite due to the limited
bandwidth of.electronic white noise generators. The result will, however
be dependent on the bandwidth of the white noise generator used, as

will be explained in Chapter 4.

As to the case of digitally computed time propagation of the variance
of n, a similar phenomenon occurs, due to the effect of discretization;

i.e. a limited bandwidth white noise signal is generated, see Ref. 1l.

Since in real processes the value of the variance of Dcag, i.e. tﬁe
variance of the accelerations of the air particles in the turbulent
atmosphere, cannot be infinite, a possible solution, mentioned in Ref.
12, would be to alter the power spectra and the corresponding auto-
covarlance functions of atmospherlc turbulence such, that a finite value

of o% Og is obtained.

Rather than adapting the shape of the power spectra and choosing a
finite numerical value of Ogcag’ the diffifulties can be circumvented
by a number of different mathematical descriptions of the gust penetratio

effect, still retaining the unaltered power spectra.



In the next Chapters it is shown that a calculation of the normal acceler-
ation variance is.possible either.by describing the pénetration effect by
a pure time-delay or by a first order Padé approximation of the pure time
_ delay. The first mathematical description allows a computation in the
frequency-domain only, while the latter enmables a computation in the
frequency-domain as well as in the time-domain by methods as described

in Refs. 10 and 11.

O S IR RS T M
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3. THE GUST PENETRATION EFFECT

3.1. Some remarks on lift and pitching moment growth

The growth of forces and moments due to entering - or penetrating -
a discrete gust ag bears some similarity with the time-delay effect

caused by a change in angle of attack of the aircraft in still air.

The latter effect was first described Ey Cowley and Glauert and
approximated by a pure time-delay T = 1;, Ref. 13. Jones and Fehlner
(Ref. 14) theoretically showed this approximation to hold for aircraft
motions below a certain frequency and moreover recognized that this
concept could be extended to the effect of forces and moments caused by
vertical gusts:. The time lag appeared to be somewhaf greater than
indicated by the tail length 1h’ thus accounting for the lift growth

as characterized by the Kiussner function mentioned in the introductiom.
G . R

Although many rather more refined methods of calculating the 1lift and
pitching moment growth of wings and wing-tail combinations have been
introduced since (see Refs. 15, 16 and 17), either the 1lift or the
pitching moment growth due to entering a gust, or both, are very often
neglected in practical calculations. For example in Ref. 18 no lift

or pitching moment growth is taken into account; in Ref. 3 a Kissner
function is used to model the wing lift and pitching moment growth,

but the penetration effect due to the horizontal tail is ignored. In
Ref. 4, concerning the same aeroplane as Ref. 3, the penetration effect

is modelled by a pure time-delay.

In Ref. 8 a concept similar to the one described by Etkin (Refs. 1 and
6), i.e. that of a Taylor series truncated after the linear terms, is
used. Moreover it is shown in Ref. 8 that if the normal force and

pitching moment due to vertical turbulence aredescribed by:




Cm = Cmag oy Cmdg + Do,

<
g'v
of attack ag, the gust derivatives Czdg and Cmdg are:

where Dcag is the dimensionless time-derivative & of the gust angle

Czs, = C2 = Czq (6)
Cag,, = Cng, ~ Cug | o

The gust derivatives as defined by eqs. (6) and (7) are conveniently
obtained if the stability derivatives with respect to & and 3§-are

known. They will be used in this Report.

In the following the gust penetration effect is assumed to be caused
by the horizontal tail only and Czd and Cmd are considered to

. . . g.
consist merely of contributions due to the tail.

Strictly speaking, the calculations and conclusions drawn in this
Report are only valid for aircraft of a conventional wing-tail layout
with modest wing-sweep. The effective time delay T can, however, be
considered as a lumped parameter, taking into account all lift and
pitching moment growth effects, possibly. also including the Kussner—
effect. In this way the time-delay concept could also be used to
effectively model the 1ift and moment growth of, for example a tailless

aeroplane with wing sweep.

Before describing the penetration effect by a pure time-delay and by
the two approximations (first order Padé and linear time derivative
approximations) a remark should be made concerning the stability of a

system containing one or more time-delays.
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To compute the variance of output signals of a system by frequency-domain
techniques, the systemlshould be stable. In Ref. 19 it is remarked firstl:
that assessing the stability of a system incorporating one or more time-
delays, can be a difficult and complicated matter. This is being dealt -

with in Ref. 20.

Secondly it is shown in Ref. 19 that a system incorporating one or more
of the usual approximations of the time-delay may be stable whereas its

original counterpart having the pure time-delays is unstable.

It should be noted that the remarks made are only relevant if the time-
delays are incorporated in the system itself. For an aircraft this
would be the case where the time-delay effect in still air (caused by

a change of angle of attack of the aircraft itself) is described by

a pure time-delay.

If this effect is described by the usual stability derivatives CZd and
Cmd as in the gomputations of this Report, the system as such does not
contain any time-delay. In fact there are two input signals, i.e. to
the wing énd to the tail, separated by a time-delay T, as will be

described in more detail below.

3.2, Description by a pure time-delay

In order to express the forces and moments due to vertical turbulence
using the conventional gust derivatives such as Cz_ , Cmy » Cz and
_ ag’ Tog’ Tdg
Cmd ,» the change in angle of attack ah(t) due to a gust ag(t) at the
8 . . . .
aircraft's c.g. is considered as the sum of an instantaneous change in

ahgle of attack of the horizontal tail

' de
o (8 (‘] - _d'a)

and a change Aah(t) caused by the penetration effect:
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3y () = o (0 (1 . gg) + do (6) | )

Thus the total change ng in normal force due to vertical turbulence

is:

V.\2 S : :
Czg = Oz ag(t) + K <7h) _sh : {Ofg(t) (1 'g_§)+A°‘h(t)}

n

V.\2 S
h h
Czag . dg(t) + C;ha (—v—) < A(!.h(t) ) ¢))

where:

g~y - (B 2 (- 8)
o C ‘\v/) 5 T 3
g Wy, hy, A S do.

A similar expression holds for the pitching moment Cmg due to vertical

turbulence:

V2 S.1 .
_ h h'h
Cmg = Cmag . ag(t) + czha <_‘V> . _'S . E . Aa.h(t) (]0)

The obvious advantage of this way of expressing ng and Cmg is that

in eqs. (9) and (10) the gust derivatives Cza and Cp, are identical
g

with Cza and Cma respectively, see Ref. 8. 8

In order to derive an expression for Aah(t) the change in angle of
attack of the horizontal tail due to a gust ag(t) at the aircraft's

c.g. is again considere?. As a result of the downwash, expressed by
%g and of the time T = 1; elapéed before the effect of the gust reaches

the horizontal tail, its change in angle of attack can be written as:
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ah(t) = ag (t-1) .- %%-ag (t-1) = (1 - %g) ag (t =-1) (1)

From eqs. (8) and (i11) it follows:

de

Aah(t) = (1 - 3&) {ag (t - 1) - ag(t)}

Using the transfer function H(w) of a pure time-delay, relating input

and output signalsin the frequency domain:

H(w) = e 39T

the transfer function relating Ac, (w) and o (w) becomes:
v o, (W, g

(- %) GEENE (2)

ag(w) da

3.3. First order Padé approximation

The transfer function of a pure time-delay is often approximated

by (see Ref. 19):

-jwt _ 1 - jwt/2
Hw) = e = T+ jﬁlz

Replacing e T i eq. (12) by H(w) according to the above approximation

yields:

Aoy (w) S ' .
_Eh___ = (1 - %g) (l___lﬂiig - 1) = - (1 - SE) L —JuT (13)

ag(w) 1+ jut/2 da I+ jwt/2
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" 3.4. Linear time-derivative approximation (Truncated Taylor series)
Here the variable ag(t - T) is approximated by the first two linear

terms of a Taylor series:

= — _d e - Y
ah(t) = (l da) {ag(t) Tag(t)}
Hence:

de

Aah(t) = - (I - 3&) ng(t)

b (w)
The transfer function EE%BT_ turns out to be that of a pure differentiator,
g
- _de) .
multiplied by (l da) T:
w = - (] - d_€.> JWT (]4)
o, (@) da) * :

Next the change of the normal force due to vertical turbulence

according to eq. (9) is again considered and a new variable ah' is
introduced:
, c 1
Clh (t) = - 1—— . —d—é- . A(lh(t) (15)
h ] ==
da
1h

It can be seen from eqs. (15) and (14), that, as T = ah' becomes

in the case of the linear time-derivative approximation:

= Dcag(t)

<o

o' (6) = & ()
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The introduction of ah' allows the change in normal force to be written,

using the gust derivative CZd (see Ref. 8), as:
g

Vh)Z Shlh

de
ng(t) Czag.ag(t) - (l - aa-) Czha (7

ah'(t)

S.c

. ‘ :
Czag.ag(t) + Czdg'ah (t)
where:

ch ='CZd - Cz

g q

Similarly, the change in pitching moment becomes:
= ca (t) + Cp, . o '(t
Cmg Cmug g() cmag ah()
where:
. = Cp. - Cm
Cmmg Cma q

Summarizing, the transfer functions relating ah'(w) and ag(w) for the
pure time-delay, the first order Padé approximation and the linear

time-derivative approximation are respectively:

" (w) = : :
Ho, () = ——Zh(w) = - fl:—- ) (e wt 1) | (16)
g h
ah‘(w) ¢ jwt :
Hoz(w) = _ag(w) = 1— CTF Jwt/2 (17)
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Ho3(w) = _ -_88 T jut - ' (18)
g

Using the above definitions of Hol(w), HOZ(w) and Ho3(w) the airéréft
as perturbed by vertical turbulence may be represented by the block "
diagram of Fig. 2, where Hl(w)'and Hz(w) are the aircraftfs transfer
functions relating an output signal Xo» for instance the normal acceler-

ation, and the input signals ag and ah' respectively.

It is evident that Hol(w) and Hoz(w) according to eqs. (16) and (17) will
permit a computation of o, in the frequency domain as the variable

Dcag, the one with an infinite variance, completely disappears from

the aircraft's differential equations. For a computation in the time-
domain according to the method described in Ref. 4 only the Padé

approximation can be used.
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4. POWER SPECTRAL DENSITIES OF THE NORMAL ACCELERATION, THE ANGLE OF
ATTACK AND THE PITCHING VELOCITY

4.1. Normal acceleration at the aircraft's c.g.

In order to compare the three different ways of describing the
penetration effect as presented in the third Chapter, the resulting
power spectra of the normal acceleration factor caused by vertical
turbulence have been calculated for an example aircraft under the
assumption of constant épeed. Particulars of the aircraft, a current
subsonic four-engined jet transport in the appfoach configuration,
are given in Table 5 at the end of this Report, together with the
intensity and scale length of the vertical turbulence. ‘

The intensity and scale length are those at a height of 265 m in a
neutral atmosphere, according to the atmospheric model by Pritchard
(see Ref. 2) for a reported wind speed of 0,5 m/sec (1 knot apérox.)
at 9,15 m altitude (30 ft), the terrain factér bein Rp = 1,1.

Referring to the block-diagram of Fig. 2, the resulting transfer
function, denoted by the subscript r, and related to the entire

system in the dashed lines of Fig. 2 is:
(H““g)r (w) = H (w) + H (w) . Hy(w)

Hence the power spectrum of n can be written as:

2
q)nn(w) |(Hnag)r (UJ)I . q’agag(w)

n

{a @]+ 5,w]® . (1 w]® + 5w - 5w . 1 w

+ Hl*(m) . Hzﬂw) . Ho(w)} . ¢agag(w) (19)
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where ® denotes the complex conjugéte. In Appendix 2 the transfer .
functions H](w) and Hz(w) are given.

Fig. 3 shows the Dryden power spectrum of ag, Fig. 4 the moQuli squared
of the tranfer functions Hnag(w) resulting from Ho(w) according to egs.
(16), (17) and (18).

The periodic nature of the modulus squared of the pure time-delay is

caused by, see eq. (16):

- \2
IHol(w)|2 =2 (%—) . (1 = cos wr)
' h

Fig. 5 gives the calculated power spectra of n. It can be seen from

Figs. 4 and 5 that the Padé description is in good agreement with the
pure time-delay whereas the first—order time derivative approximation,
briefly to be called Dcag—approximation, deviates markedly for high
frequences. Fig. 5 clearly shows that the power spectrum of n for the
Dcag-approximation tends to the gorizontal for.high frequencies.
Consquently a calculation of ol by integrating ®nn(w) would yield

an infinite value. This is not the case when Czq, 1is set to zero, as

can be seen from Figs. 4 and 5. Also shown in Figs. 4 and 5 are the
modulus squared and the power spectrum for the case wherée the penetration

effect is neglected (Cng = Cmdg = 0).
In order to evaluate the different approximations, the power spectra

of Fig. 5 have been numerically integrated to obtain the variance of n

according to:
w
2 e
o S I ¢ (w) . dw (20)
0

The upper boundary w, was chosen at a sufficiently large value (we =

100 rad/se¢) to ensure a reascnableestimate of Onz to be obtained. The
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results of this calculation are given in Table 1 below. For comparison
i ine i . .t ro i.e.

the computed variance obtained by setting Czag and Cmag o zero e

by neglecting the penetration effect altogether, is also presented in

the Table.

Table 1. Variance of normal acceleration (gz)
V =const. V =const.
V = var.
Cz. # 0 Cz. =0
Cg Cg
: -4 -4
Time lag 1.95 x 10 2.13 x 10 -

z ’ -4 -4 -4
Padé approx. 1.96 x 10 2.13 x 10 1.97 x 10
Do, approx. 2,96 x 104 |2.26 x 107 -
(me = 100 rad/sec)

No pen. effect 1.67 x 10_4 - -

From this Table, several conclusions may be drawn. Firstly it appears
that a first order Padé filter yields, for this caﬁagory of calculations,
a very good approximation of the pure time-delay. Secondly it can be
seen that setting Czd to zero yields an error of up to 157 approximately
Finally it can be concluded that neglecting the penetration effect is

hardly permissable.

In order to extrapolate these conclusions to the case of unrestricted
aircraft motions (variable speed), a calculation of onz for the un-
restricted aircraft, using the Padé approximation, was performed by
the method described in Ref. 1]. The result, included in Table ! under
the heading "V = var." affirms the well know fact that the aircraft's

normal acceleration due to vertical turbulence can very accurately be
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approximated by assuﬁing constant speed.

In the introduction it was stated that in the case of an analogue -
Monte Carlo simulation the variance of n will, also in the case of
the Dcag—apprbximation, always be finite due to the 1imited bandwidth
of electronic white noise generators. As can be seen from Fig. 5, the
result of such a simulation would, in a rather unexpected way, be de-
pendent on the cut-off frequency of the noise generator, as the

error in the computed'variance would increase with increasing cut-off

frequency.

In Table | the result is given of a digital integration up to a
frequency of we'= 100 rad/sec (16 Hz'approximately) for the Dcag-
approximation. The result can be considered as representative of a
Monte Carlo simulation using a white noise filter with a cut-off fre-
quency of about 16 Hz. The result is in error as much as 50% and would

be more so in the case of higher cut-off frequencies.

4.2. Normal acceleration in arbitrary points of the aircraft

According to eq. (4) the normal acceleration in a point x - X, g aft
of the aircraft's c.g. is:

= -y qc .
n_=n . g - N 21

A computation of the variance of n can be performed by considering.nx
as the sum in the right had part of (21), see the block-diagram of Fig.

6. The power spectral density of nx'is then:

Onyn, (W) = {IHI(w)|2 + |Hn(w)|2 + Hp(w) . HH’(w)' +

+ B R @) B @) 00, @) @2
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where:

Hi(w) = (Hnag)r(w) = H (w) + H (W) . Hyw)

\' x - xc. .
HII(w) = - e - . (Hdag)r (w) =
v B Xc. . )
== —B {Hs(w)-+ flo(w) . H, (W)}

c

The transfer functions H3(w) and Hé(w) are given in Appendix 2. The
variance ng can again be computed by integrating the power spectrum

according to eq. (22) in the frequency domain:

=)
oﬁx = J P oo, @) - dw (23)
0

As the variance 0y2 of a linear function y(x,z) = ax + bz is given by:

l¢] 2 = az.o 2 + b2.o 2 + 2ab.o
z X2

the variance of n_ can be written as, see eq. (21):

2 2 'V2 x - x 2 -2 v X7 %
o = on ,+—(—i BN PRI\ A L1 - LR (24)
Ny c.g. 2 - q g - ng
A g c c

v

3&, it follows from eqs. (23) and (24) that:

2, . do . .
where 0.” is the variance of 4 and CJn‘.1 is the covariance of n, g and

J'{Hl(w)’. HIIx(w) + HI!(w) - H (W)} ¢agag .dw =
0
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2v X
=2, —CB g, ‘ (25)

and

]
N
1<
N’
N
TN
"
!
kg
[¢]
A .
N
Q
N

2 ,
[H () ]" . %gag(w) . dw (26)

o—— 8

x = : . ' L
As H3(w) . HII (w) and HI (w) . HII(w) are cgmplex conjugate functions

it is easily shown that:

H W) . B @) . Bagrg (W) = = % . ——EL&’— L O @) (27a)
and
W) - B @) . %0 W) = - % . x———;‘:—i L o). (27b)
Moreover, of course:
2 A AT A Y '

where ¢ﬁ§(w) denotes the power spectrum of %;.

In order to gain some insight into the contributions of Géz and CJm.l to
d%x (see eq. (24)), the power spectrum of Sg-and the cross spectrum of
n and 4 have been calculated for the example aeroplane, again assuming

C.8, v
constant speed.

Figures 7 and 8 show the moduli squared of the transfer functions Hﬁag(w)
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and the power—-spectra of 9§3 according to the several descriptions.

Again the Padé approximation is in rather good agreement with the
dc
v
approximation tends to the horizontal for frequencies higher than 1

pure time-lag, while the spectrﬁm of resulting from the Dcag
rad/sec. Neglecting the penetration effect (Cmd =Czg = 0) causes a
spectrum too high at low frequencies and to low at hig§ frequencies.
Table 2 gives the result of the digital integration of the power
spectra, together with the result of the digital calculation mentioned

before for the unrestricted aircraft (V = var.).

Table 2. Variance of g&-(fadz sec_z)
V =const. V =var.

. . ‘ -8

Time lag 6.14 x 10
P -8 -8

Padé approx. 5.97 x 10 5.70 x 10
Deorg approx. 71.45 x1078
(we = 100 rad/sec)
No pen. effect 0.858 x10°°

.. . . . 2 .
Some insight into the next contribution to Ony according to eq. (24),
i.e. the contribution of an can be gained by observing the cross spectr
’

¢nq(w), the real part of which is plotted in Fig. 9. The imaginary part i

. . . . 2
not shown as it does not yield a contribution to On, -

Integrating the real part of ®né(m) for the Dcag approximation from
w=0 to w = ® would result in an infinite covariance onﬁ' The results
of the numerical integration are summarized in Table 3, together with

the result for the case of variable speed (V = var.).
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Table 3. Covariance of n and 3; (g rad sec_l)
| .
V = const. V = var.

Time lag -0.59 x 10-.6 -
Padé approx. -0.59 x 10-6 -0.56 x 10_6
Dcag approx. -8.35 x 10—6 _

(we = 100 rad/sec)
‘No pen. effect -1.12 x 10_‘6 -

In Tables 2 and 3 again the result for the.Dcag—approximation is given
for an upper boundary of integration of w, = 100 rad/sec. It will be
evident that the remarks in the foregoing paragraph on the results of
a Monte Carlo simulation.gan also be made for the variance of ﬂE’ the

\Y
variance of n_, as will be shown in the next chapter.

covariance -of n, g and 4 and finally, df-course, for the resulting

4.3. The angle of attack and the pitching velocity

In the foregoing it was shown that a Padé approximation yielded
results in good agreement with those obtained by a pure time delay
description in the case of a calculation of the variance of the normal

acceleration.

Now the question arises

a) whether this will also be so in the case of cher motion variables
where the Dcag approximation is theoretically possible and

b) how the results of the Dcag approximation will compare with those

of the time delay and the Padé description.

AL 8 e bl dee i
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Therefore the power spectra of the two relevant motion variables in the
case of constant speed, see Appendix 1, i.e. the angle of attack o and
the dimensionless pitching velocity S"%-have been calculated and infe*
grated numerically to obtain the vafiance;cé and O;E.

A
The power spectra of a and %g ére shown in Figs. 10Aand 11 respectively.
It is evident that for both motion Qariables the Padé approximation is
in good agreement with the time delay. For the angle of attack the Dcag
spectrum is very close to the power spectrum resulting from time delay
and Padé description. However, the power spectrum for 3$-in the case of
the Ddxg description is higher for all frequencies (Fig.'ll) and a

larger variance is found as can be seen from Table 4.

Table 4. Variance of angle of attack a and pitching velocity %;
2 2 2 2
9 (rad™) . 03§ (rad™)
v

. -6 | -8
Time lag 8.11 x 10 0.663 x 10

P : -6 -8
Padé approx. 8.12 x 10 0.636 x 10

D -6 -8
cag approx. 8.48 x 10 . 0.919 x 10

It can be seen from Table 4 that the r.m.s. value of Sg;as obtained

by the Dcag approximation is in error approximately 20% if compared

with the time delay result.
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. X = X
5. THE VARIANCE OF THE NORMAL ACCELERATION AS A FUNCTION OF c-8-,

SOME NUMERICAL EXAMPLES

c

One example of the power—spectrum of n, has been calculated and is
shown in Fig. 12. The location of z—:35£43¢-= 3 roughly corresponds
with that of the horizontal tail.

Using the results given in Tables !, 2 and 3 the variance of n_as a
function of the location along the aircraft's X-axis has been calculated
by using eq. (24).

The results of the pure time delay and those of the Padé approximation
only differ slightiy and only the Padé and Dcag resultslhave been plotted
in Fig.13, together with the results obtained by neglecting the

penetration effect.

As can be observed from Tables 1, 2 and 3, the Pad& curves in Fig. 13
for constant and variable fligﬁt speed are so close as to coincide and
it can be concluded that the assumption of constant speed is also valid
for the computation of the normal acceleration at arbitrary points in

the aircraft.

Neglecting the penetration effect would underestimate the variance of
‘nx, especial}z at the most forward locations. Due to the overestimated
variance of Sé-by the Dcag-approximation (see Table 2) the computed
normal acceleration variance in points at some distance from the c.g.

is too large.

Finally the variance of n, has been calculated, under the assumption
of constant speed, for two more example aircraft, again for the case

of vertical turbulence only.

Particulars of the aircraft are given in Table 6 at the end of this
Report, the results are given in Fig. l4.
Aircraft type A is the one used throughout.in this Report. Type B is a

four-engined, type A a twin engined propeller transport, both in cruising
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flight. Especially in type «, the variance of n is strongly dependent
on the location in the aircraft, while apparently the covariance of n, g
and %& is very small; this covariance is larger in the case of aircraft

B.

Obviously the relatively large moment of inertia of type A, which is
of a rear-engined configuration, prevents the aeroplane from acquiring

high pitching accelerations.

The marked tendency of the curves in Fig. 14 to have a positive slope
is due to a negative value of an (see eq. (24)). This can roughly be
explained by the fact that a stable aeroplane has a tendency to pitch
down (negative pitéhing moment) when hit by an upward gust which causes

a positive normal acceleration, and vice versa.

L 0 LR |l Sl
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6. CONCLUSIONS

It was shown that a theoretical calculation of the variance if the air-

craft's normal acceleration due to atmosperhic turbulence is not
possible if the linear time derivative approximation of the gust
penetration effect is used in donjunction with the Dryden or von

Karman turbulence power spectral densities.

Neglecting the derivative Czdg allows an approximate calculation of
the normal acceleration at the aircraft's c.g. to be made. Neglecting
the penetration effect altogether (point approximation of the turbu-
lént field) may cause large errors in the normal acceleration,
especially at points at some distance from the aircraft's c.g., when
compared with results obtained by a pure time-delay description of

the penetration effect.

It was shown that a first order Padé description yields results in

very good agreement with those obtained by a pure time-delay.

In the case of the linear time derivative approximation of the gust
penetration effect, the results of a calculation of the normal
acceleration variance, which was theoretically shown to be infinite
in this case, would, obtained by an analogue Monte Carlo simulation,
misleadingly, be finite. This is due to the limited bandwidth of elec—
tronic noise generators.

The variance thué calculated may be much too lérge, and more so for

higher cut-off frequences of the white noise generator.
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Table 5. Data of example aircraft and vertical turbulence.

Aircraft type A: four-engined, subsonic jet transport, approach con-

figuration.

W = 96160 kg vV = 71,24 m/sec

s = 260,68 m’ . = 49,315

< = 6,10m K,® = 2,354

b = 42,67 m h =265 m

Xe.g. = 0236 c.

Cx, == 0,0507 €z, == 1,163

Cx, =- 0,370 Cz, = - 2,326 Ch, =0

Cx, = 0,655 Czq = = 5,04 Cqy = - 0,72
Chq = = 05395 Cmg = = 1,218
Gz == 4,65 Cmg = - 8,622

Cg, = 0,655 2y, = = 5,04 Cmy = = 0,72

g g
dez =0 Cng = 4,255 Cmdg = 7,40

Vertical turbulence

Dryden power spectral density:-

2 L\2
Og L 1+3<7g)
by o (w) = —2 . &

gg m v L \2,2
{re (o))

Lg = 150 m, Oag‘= 0,00396 rad (0wg = 0,282 m/sec)

(Pritchard atmospheric.model, see Ref. 2, h = 265 m,.Vw9 15 = 0,5 m/sec,
. ’

RT = 1,1, neutral atmosphere.)
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Table 6. Data of example aircraft B and C.

Aircraft type B: four-engined propeller transport, cruise configuration.

W= 59020 kg V= 145  m/sec
S = 153,5 m2 M, = 144
¢ = 4,47 m KYZ = 1.473
b= 37,49 m h = 6900 m
Czo = - 0,60
Cyy = - 6,225 Cm, == 0,975
Czq = = 1,420 Cng == 5,450
Czy = - 3,820 Cag = = 18,450
Zag =~ 6,225 Cn, == 0,975
Cog, = 2,400 Cmdz = 13,030

. Aircraft type C: twin-engined propeller transport, cruise configuration.

W = 16200 kg V = 125,5 m/sec
S = 70 m2 u, = 137,5
T=  2,58m RS = 0,272
b= 29,0 m h = 6100 m
Czd' = - 0,45
Cz, == 5,90 Cm, =~ 0,80
Czg == 1,59 Cog == 6,50
Czg == 7,36 Cmg = = 16,50
Czag = = 5,9 Cmag = - 0,80
Cng = 5,77 Cmg_ = 10,0
g



41

APPENDIX 1. DIFFERENTIAL EQUATIONS FOR AN AIRCRAFT PERTURBED BY ATMOSPHERIC
TURBULENCE '

The linearized differential equations for the symmetrical motions due

to turbulence are, if Ge = 0:

Cxy~2H.D, Cxq z, 0 d
Cz, Cza—(ZuC—Czd)Dc -Cx, 2uC+CZ o
0 0 —DC' 1 e
2 gé
Cay, Cmg*Cmg Do 0 Cmq 2u Ky D v
L J L .
o 9 - -3
Cx Cx c Cx. 4
ug TR S s
2y cz.g CZag 24, LR
- . (A1-1)
10 0 0 0 ay
Cm,, Cmy, Cmg, Cog, Do, |
g g g g SJ
4 L

The desired form of the system equation:

§=[A]§+[B].§g

can be obtained by eliminating the term Cmd - D.a in eq. éAl-l). This
is done by multiplying the Z-equation of eq. (A-1) by Eﬁ"?gEZ"

c .
summing the result and the M-equation and finally deviding o

the X-equation by 2u , the Z-equation by 2u_ - Cz, and the M-equation
c , c 28




by 2uc . KYZ. The result is, in abbreviated notation

).

D

. -

<ol
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GF
B
<|'°|

(A1-2)

have the following meaning:
+ CZ . _C—Tila—
cz, _ oy * 2y - W gy
2u = Cz. u 2

c o 2uc KY

Il
8

+Cz. .
Cz,, Cug * ©2q - T Czg
B ——— . m =
ZuC CZd [+ 2uc KYZ
_C :
-Cx, Xo * 2u_ - Czg,
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2u, + Czq
u, + Cz C“‘q+2uc-Czd'Cmd
2z = ) _— m = ]
1 Ye Zg, ! AT KY

Cmd

: + C2y 5T
Cxy Czy | Cmug ug 2u_ - Czg
*ug T 7 fug T -Czy  ™g 20 KY2
. C
| o+ C S
Cxﬁ Czﬁg g ug Zuc - Czd
Xﬁg i 2uc Zﬁgv= Zuc -Czd mﬁg ) 2p KYZ
.
¢ c : Cmy  * C2g, 3 CliloLc
N Xag , _ 20, ny = g v g uc Zd.
= . . =
8 2uc & zu_c Czc'x g 2uc KY'Z
Cxs Czs Cmg, * C2zg_ 3 C:_nac
Xag oL My g 8 M~ “z4
Xd = X za = - nld = - -
g 2u, g 21 -Czg g 2u_ l%z .

Under the assumption of constant speed (3 = 0), the X-equation in (Al1-2)
disappeafs. If the steady flight conditiom, feiative to which berturbatiohs
are considered, is a horizontal or nearly horizontal flight,‘CXo may be
=m, = 0. If the variable 6 is further

] ] ]
neglected as a separate motion variable, the differential equations now

set to zero, which means z

become, if only vertical turbulence is considered:

Q.
N
N
e
N
[*3
N
jo
Q

<inli
1
+

(A1-3)

<I'g|
=]
B
<rg|
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By multiplying eq. (Al1-3) by %, the system equation:

%= [A] % + [B] . §g ' , (A1-4)

is obtained, where:

o z i .
- a fql fog gl
X = - I[A]= 'gg[B]= 'g
< ‘m m
v o q Tag  Tog
and
o
_ g
yg
D a
csg

It will be evident from Chapter 3 that Dcag may be replaced by ah' in
the case of a pure time-delay or a first order Padé description of the

penetration effect.
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APPENDIX 2. TRANSFER FUNCTIONS FOR THE NORMAL ACCELERATION DUE TO
VERTICAL TURBULENCE UNDER THE ASSUMPTION OF CONSTANT
SPEED

The matrix [H(P)] of the transfer function relating a(P) and 3—(P) to
a (P) and D a (P) or ah(P), where P is the complex Laplace variable,
is obtalned from eq. (A1-4) by (see Ref. 6):

1) ' (A2-1)

(H(®P)] = [R(P)]
where:

[R] = P[1] - [A]

and [I] is the unit matrix. In this way the following transfer functions

can be derived:

oy . a(P)
g
L fw
Haag (P = o ®)
(A2-2)
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The normal acceleration factor at the aircraft's c.g. is:

[\%

<|’g|
<|§}
S——

n ﬁ(e_a_)x_( -
c.g. - V' A -
C gc

o

The transfer functions relating %;(P) to ag(P) and ah'(P) are easily

obtained by:

e
. v (P) T
Hdozg(P) = a;-(PT =v - P . ng(P)

(A2-3)

T®
o' ® = 5y =7 ¢ P - Hoy' )

ah'(P)

Referring to the block-diagram of Fig. 2, the resulting transfer function

relating the normal acceleration to the input signal of the entire system

in the dashed lines, is:

HLW) = (Hng), (®) = B (B) + H (B) . Hy(P)

where:
c &c
-2 (2 £
gc g g
1 e
PR B £
gc - h . h )
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The tranfer functions HI(P) and HZ(P) can bé derived using eqs. (A2-1),
(A2-2) and (A2-3). The result is:

bn2 P2 + bn] P+ bno
HI(P) = 5 -
P +a P+ a
1 [o)
12 L}
bn2P+bn P + bp
. 1 o
H, () = —=
P"+a P+ a
1 o
where:
\'
a =-—=.(z_ +m)
1 p o q
=V -
a, =z (za mq m, 2 )
c
b = - V2 b4
n - Q.
2 ge g
2
- v v
ba, == - (2q, - m_ - my z_ + > . mg)
b e q g 9 g
2
by =-—(z , my -m, 25 ) =0
o ge o “g o “Og
2
\
bn'="-T.Zd
2 go g
2
v \'4
bp,' = — (z¢4 m - mg z + = . mg)
I o 8 @ %8 a4 g g



48

v
| I « - .
bn, — (za mag oy zag)

.In a similar way, the resulting transfer function relating the angular

. c . .
. acceleration g;-and the gust angle of attack is obtained:

H () = (H;wg) (P) = Hy(P) + H_(P) . H,(P)

r

The transfer functions H3(P) and HA(P) are:

‘bql P+ bqo
HB(P) =P, 5
P +a P+ a
1 o
bq,' P +bg. '
q q
H,(B) = P . 21 0
P " +a P+ a
1 o
where:
v
a, =-—=(z_ +m)
1 p a q
a = v . (zm -m_ z)
o - a q a “q
c .
v
b = -—
q = . my
1 p g

o
o
)
I
I
o<
”~~
N
Q
]
1
=}
Q
Q
()
A4
u
(=)
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o
fon
I
ol
&

ol

(z, mg, - m, 24g)

Replacing the complex variable P in the transfer function H(P) by the

imaginary variable jw finally yieldé the transfer functions H(w).
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Fig. 1. The calculation of aircraft response to atmospheric
turbulence.
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Fig. 2. Block-diagram of the aircraft perturbed by the input
signals ag and uh'.
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Fig. 13. Calculated variance of the normal acceleration as a function
of the location along the X-axis of the example aircraft.
owg = 0,282 m/sec, Lg = 150 m.
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‘Fis. 14. Calculated variance of the normal acceleration as a function of
the location along the X-axis of three different -aircraft
types (Padé approx.). Oy = 1 m/sec; type A: L_ = 150 m, types
B and C: L = 300 m. & 8
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