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Abstract

In highly complex sources of data for pattern recognition, like audio, it is
hard to obtain a set of information that is both extensively annotated and
includes the wide variety of interfering noises that real life applications would
encounter. In order to address these issues, information sharing techniques
were devised, known as multi-task learning. These forms of learning algo-
rithms learn multiple tasks at the same time, sharing numerical updates of
their parameters. By doing this, a whole new amount of opportunities are
opened up to mix and match tasks and datasets and the amount of applica-
tions of this are growing.

However, while more and more promising results have been achieved using
multi-task set-ups, there is an added amount of developmental complexity
by having to deal with multiple datasets and tasks. This complexity grows
significantly the more differences there are in the combinations. Furthermore,
research requires experimentation and comparison of different set-ups, which
is quickly complicated by the combinations, compared to single task set-ups.
In order to promote research in this field, these developmental roadblocks
must be cleared up. So far however, no framework seems to aid in the
development of multi-dataset, let alone multi-task set-ups.

This work addresses the technical difficulties in implementing, evaluat-
ing and experimenting with multi-task set-ups. By devising the multi-task
set-up as a pipeline going from the raw datasets to trained and evaluated
models with interchangeable parts, a framework is built that brings the de-
velopment closer to single dataset, single task learning set-ups. The idea is
for developers to only have to focus on implementing single pipeline parts,
with the freedom to assemble and re-assemble them without having to worry
about the combinatorial problems. This starts by investigating the current
literature, where the fields in audio recognition and multi-task learning are
analysed, specifically for how and what they research and consecutively how
these areas came together. Frameworks for the development of deep learning
are also examined, determining which lessons to take in tackling this issue
and finding the current state of affairs. This study provides the basis for the
developmental software framework, CombinaTorch, built on top of PyTorch,
that allows free assembly of multi-task pipelines. The framework is subse-
quently used to implement several set-ups described in the literature, where



their comparative reduction in amount of work is assessed. In order to val-
idate the expressiveness of the framework, another delve into the literature
is made, discussing several scenarios and their implementation viability with
the framework.
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Chapter 1

Introduction

With the huge expansion of machine learning research and applications over
the last years, comes a matching hunger for new data to drive the research
forward. Seemingly on a yearly basis, datasets are enlarged or created which
allow new recognition systems to function. Furthermore, new ways are con-
tinuously devised to combine information, be it from different datasets or
from different tasks. Some machine learning goals are simply inherently too
niche to build the extensive dataset for, which it would get in an ideal world.
Researchers often have to get creative when it comes to utilising the infor-
mation they have in order to build the systems that have the performances
they need in a real life context.

Audio recognition is a field where researchers especially have to get cre-
ative. Tasks like speech detection for example have to deal with an incredible
amount of variation in terms of voices, genders, accents, background noise
and language. Building datasets that can firmly cover these potential real
world variations are nearly impossible. On top of that is it very hard to get
an extensive, strongly labelled dataset for audio, even more so if the annota-
tions are for certain sections in time only.

For this reason, Multi-Task learning has very recently gained more and
more attention as a way to enlarge the information available for performing
a task. This has the potential to build further reaching recognition systems
by combining recognition systems performing smaller, focused tasks which
share their information. The objectives for using this techniques have grown
quickly beyond simple performance improvement.

6



However, implementing combinations of tasks and datasets can quickly
scale in developmental complexity, as each one can have its own structure
and getting the combined data to fit in a processable form for the systems
often lead to complex solutions. On top of that, research is spurred by experi-
mentation through varying parameters and subsystems later in the structure,
which can in turn require developers to make changes back in the individual
source structures. Problems should only be dealt with once. The process
that a developer creates of extracting data from a dataset, applying various
transformations, using it to train a recognition system and then evaluating
that system is what will be referred to as the Deep Learning Pipeline and
if that process involves the combination of multiple sets of data the Multi
Task Pipeline.

Building pipelines that draw together different sets of information can
quickly become clutered with rigid functions and classes as it requires an
immense amount of foresight to anticipate required functionalities. That
goes even more in case the system being implemented is not set in stone be-
forehand and requires iterative design decisions based on intermediate eval-
uations. Research and development implementations usually is not simply
about executing pre-made plans, which requires that their implementations
are open for these changes and additions. Considering the growing amount
of datasets, being able to quickly add them to built pipelines would be a big
step in facilitating future work to be performed.

This work tries to offer the tools necessary to efficiently implement com-
binatory multi-task pipelines, with attention to the variation of intermediate
parts.

1.1 Example: General purpose multi-task clas-

sifier

As an illustrating use case, imagine a scenario where a general purpose clas-
sifier has to be built using a multi-task network. It has to be able to output
multiple annotations from an audio fragment at once. The developer has to
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decide which smaller tasks to use, combine multiple task specific datasets,
figure out the best features to represent the audio, pre-process the data and
of course develop a functioning neural network. General purpose classifiers
could contain various annotation goals like:

� Speech Activity Detection (SAD): Automatic detection of the presence
of speech in an audio frame along with the exact moments it happens.

� Acoustic Event Detection (AED): Detection, Identification and local-
ization of specific sound events happening within an audio fragment.

� Acoustic Scene Classification (ASC): Recognition of tye type of envi-
ronment the audio fragment takes place in.

Differences between tasks reveal its presence through these examples.
AED and ASC for example are different in that ASC is a task dealing with
analysing the background noise patterns of audio while AED needs to pin-
point the beginning and end of its subject. Combining these sorts of dif-
ferences of tasks certainly have been used to improve the performance of
one task [29], but in this example the goal would be to achieve good per-
formance on all tasks involved. If that is the goal, researching a functioning
general purpose classifier would likely involve comparison to single task mod-
els performances and different levels of combination. The Multi-Task Set-up
might also be brought in as a way to compress computational requirements
of having multiple single task models in place, which can be looked at and
compared. In some cases one could also define all tasks as one single task
and compare how it fares to the multi-task options.

In essence if the goal is this open ended in terms of approaches as well as
potential trade-offs, one would have to be able to create, test and compare
the different task combinations as well as swap out and find the best working
parameters for a number of the intermediate parts of the pipeline. Using py-
torch, there certainly is support for creating models with numerous outputs,
but the framework in terms of data encapsulation and manipulation is rather
focused on single datasets. While there are structures which make it possible
to combine different datasets, but creating batches of inputs and targets -
especially ones where the sizes can vary - require either a lot of foresight or
a lot of added development time. This would go even more for anticipating

8



the variations which were mentioned. A lot of decisions in the pipeline for
things like pre-processing and transforming the data would possibly have to
be made for all tasks involved.

Investigating the effectiveness of various multi-task set-ups quickly thus
introduces a lot of cumbersome development overhead, which hampers the
time available to actually develop the best conceivable systems. A lot of
time from designing a system to the implementation would just go to waste
dealing with the combinatorial aspects and making solutions applicable for
multiple datasets and tasks at the same time. A lot of these issues can be
anticipated and solved before a developer even starts. This work envisions
to do exactly that, philosophising that a developer should only be worried
about one part of the pipeline at a time, without having to worry that any
other breaks down the line. This way, developers can develop and optimize
pipelines as a whole. Adding datasets, tasks, manipulations as well as run-
ning and testing their work through singular lines could not only clear a lot
of the road blocks for pure multi-task learning but grant opportunities for
expanding datasets, easily offer common research functionalities and ready
to go multi aspect evaluation of developed systems for any pytorch imple-
mentation.

1.2 Multi-Task Research

Multi-task learning (MTL) is a machine learning paradigm where multiple
different tasks are learned at the same time, exploiting underlying task re-
lationships, to arrive at a shared representation. While the principle goal
was to improve generalization accuracy of a machine learning system [11],
over the years multitask learning has found other uses, including speed of
learning, improved intelligibility of learned models [11], classification fairness
[45] and as a means to compress multiple parallel models [22]. This led to
the paradigm finding its usage in multiple fields, including audio recognition.

The field of audio recognition is varied and ever expanding, due to a grow-
ing number of large public and non-publicly available datasets (e.g. AudioSet
[21]) each with their own variations like sources, lengths and subjects. The
tasks in the field can roughly be divided into three categories: Speech recog-
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nition tasks, Environmental Sound recognition tasks and Music recognition
tasks, along with tasks that combine multiple domains [18]. These domains
inherently have a different structure from each other, which requires differ-
ent processing and classification schemes. Speech for example, is inherently
built up out of elementary phonemes that are internally dependent, the tasks
linked to which have to deal with the exact differentiation and characteri-
zation of these, to varying degrees. Environmental sounds in contrast, do
not have such substructures and cover a larger range of frequencies. Music
then has its own stationary patterns like melody and rhythm [8]. A general
purpose audio classification system, dealing with real life audio, would have
to deal with the presence of each of these types of audio though, regardless
if its task is only in one of the domains.

Usually, in order to achieve high performance, it is necessary to construct
a focused detector, which targets a few classes per task. Only focusing on
one set of targets with a fitting dataset however, ignores the wealth of infor-
mation available in other task-specific datasets, as well as failing to leverage
the fact that they might be calculating the same features, especially in the
lower levels of the architecture [62]. This does not only entail a possible waste
of information (and thus performance) but also entails a waste of computa-
tional resources, as each task might not require its own dedicated model to
achieve the same level of performance. Originally conventional methods like
Gaussian Mixture Models (GMM) and State Vector Machines (SVM) were
the main focus, but due to the impressive results in visual tasks deep learning
architectures have seen a lot of attention. The emergence of deep learning
MTL set-ups is still fairly recent in audio recognition. While it has seen both
successful [64] applications and less successful [57] when combining different
tasks, very little is known about the exact circumstances when MTL works
in audio recognition.

1.3 Developing Deep Learning Multi-Task Set-

ups

The process of developing multi-task set-ups depends on the context, use
and goals of the system, but there are a number of steps that will almost
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certainly be present. In this section the intention is to outline the develop-
mental steps with their correlated issues which will factor in how shortcuts
can be made to improve the process. In essence, the job that needs to be
done in both multi task as well as single task situations, is the construction
of a pipeline going from raw datasets to fully trained and evaluated models.
It is not very likely that this pipeline will be constructed statically. In stead,
the final, best performing methodology will likely result from a process of
constructing, replacing and tweaking parts in the pipeline until reaching the
most satisfactory result.

This work splits the pipeline up in three distinct phases. One is the Data
Reading phase, where the data is extracted from datasets to forms which are
processable by the models. The next is the Data Loading phase, where these
formed inputs are further refined, combined and loaded to serve as input for
the models to predict as well as update in the training phase. The last is
then the actual Training and Evaluating phase, where the models get updated
and various metrics are calculated measuring the performance of the process.

PyTorch offers abstract classes which can consequently be inserted in its
data loader functions, but extending these in a way to work with different
forms of datasets can be quite the hassle. On top of that does it lack any
dataset wide transformation functionalities, requiring the developer to imple-
ment those as well. While this is an annoying but manageable lacking aspect
for single task problems, it becomes loathsome when trying to implement it
for multiple datasets. Especially when the methodology is not set in stone
beforehand and will be subject to potential, uncertain changes can this lead
to a lot more debugging.

This framework therefore offers to standardize the dataset form and with
it bring a whole catalogue of functionalities, while taking care of the combina-
torial issues. Through this, what used to be blocks of code for functionalities
which possibly had to be adapted for individual datasets, get reduced to
singular lines that add or replace new parts on the pipeline. Where the de-
veloper often had to go back and rework multiple parts to implement a new
variation, they can be replaced at runtime.

For every one of the described phases though, the specific issues that pop
up need to be identified. The following is a summarizing overview of the
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identified hurdles:
Data Reading

� Developing valid input for loading and training for different datasets
takes time and is error prone, while a lot of the processes are repetitive.

� While developing and testing different set ups, intermediate parts (e.g.
the feature extraction method, file reading method, resampling method)
as well as additional parts (e.g. resampling) often have to be varied
and replaced, which might be a complex and time consuming process
depending on the amount of rewrites and datasets required.

� Developing read/write functionalities per dataset is time consuming
and potentially chaotic if done differently every time. Add to that the
possibility of testing different set-ups for the same dataset which would
require good file management.

� Loading in multiple datasets might be too memory intensive for a lot
of systems

� Large datasets are already freely available [20] [21] [53] online and in
some instances [48] one does not have actual access to the audio files
themselves, but representations of them.

� Running the code on a different system requires good datamanagement
and changeable path locations

� While some datasets have predefined train/test sets, others do not,
which would require different handling of both cases which might be
time consuming and error prone

� Some Datasets can have multiple tasks on the same inputs

Data Loading

� Each training procedure needs a train and test set, which for some
datasets need to be created using k-fold validation set-ups and for some
don’t. When quickly trying to execute multiple set-ups this requires a
lot of repetitive work. It’s also error prone, as creating train/test sets
the wrong way can cause data leaking and thus weaken the evaluation.
(e.g. if the normalization is wrongfully calculated (-¿ the mean and
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stdev) on both the train and test set, the system will use information
it shouldn’t have and will perform unforeseenly worse on unseen data).

� Additional features like transforming or filtering the data again take
up development time to specify for each separate dataset as well as can
be a gruesome process to apply after the data is read into matrices.

� Manipulations are often dependent on the dataset and when a new
dataset needs to be formed and manipulated after previous ones hap-
pened, the performed alterations need to be rewinded.

Training

� Combining datasets from tasks can be done in numerous ways, which
can impact performance on training. A batch can be composed of
inputs and targets from tasks in all sorts of orders and compositions,
which should be open for the developer to define.

� In multi-task training, loss calculation is done by combining separate
losses from tasks which can be done in numerous ways and might be
interesting to explore

� In general for multi-task research, lots of parameters and parts should
be varied

� There are three types of task output structures in classification: bi-
nary, multi-class and multi-label outputs which each have to be handled
uniquely while still being able to be combined

� Calculating, storing and visualizing results in an efficient way for com-
parison is crucial and can take up valuable development/debugging
time

� Interrupted learning - the process of interrupting an ongoing training
loop and restarting it later - requires good data management and saving
of parameters to be loaded up again later, which is both error prone
and time consuming

Extra issues to be solved
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� Figuring out the pipeline for multi-task deep learning set ups can be
difficult, considering there are numerous types of and variations in
multi-task learning schemes and not a lot of documentation on how
to approach these

� Multi-task set-ups are most likely going to be compared to single task
set-ups, meaning the code should already take this in account or handle
the two cases separately

1.4 Challenges

Providing a solution for the previous issues come with their own set of hurdles
that a framework will face. This framework needs to possess enough expres-
siveness so that developers have the freedom to implement the pipelines they
would be able to implement using PyTorch alone. This requires flexibility
in the structures and extensibility so that new modifications and features do
not require the developer to explicitly having to redo a lot of the work. The
problem that providing a unifying way to handle multiple tasks and dataset
pose are their dealing with their heterogenity and scaling the executed func-
tions to all at once.

This framework offers the tools to assemble a multi task pipeline in a set-
ting which anticipate how researchers will use it. The problem it addresses
are as follows: 1) Involving multiple datasets and tasks for constructing a
trained deep learning model leads to a large amount of added complexity
for dealing with the differences and applying the same functions to multiple
sources 2) No framework which aids in multi-task learning is available at all
despite that added complexity 3) Aside from the construction itself, devel-
opment also involves varying and evaluating different intermediary parts.

1.5 Contributions

This thesis contributes in the following ways:

� A new developmental framework built on top of PyTorch which specifi-
cally aids to extract data from multiple datasets, apply manipulations,
combine their data and use it to train and evaluate (multi-task) deep
learning models.
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� A comparison of how much the framework cuts in terms of coding work
compared to implementations without, along with a discussion on what
the compression looks like

� A review of the literature and discussion on the methodologies found in
the literature and how the framework’s expressiveness is able to cover
its needs.

� Multiple implemented use cases from which the framework was able to
derive its generalizations.

� A literature review on approaches and state of multi-task deep learning
in audio recognition.

1.6 Outline

The thesis is structured as follows. First there is an investigation of the lit-
erature related to the frameworks domain and objectives. This delves deeper
into the fields within audio recognition and multi-task learning as well as how
the two come together and for which purposes. Also development frameworks
are analysed through the literature, in an attempt to find similar work and
knowledge on their development. Next, the exact problem the framework
tries to solve is pinned down, including the imagined usage contexts and
what specifications the system must adhere to. Following that is a descrip-
tion of the design of the framework. The high level approaches as well as how
the generalization derivations were made. After that is a description of the
exact implementation, considering its classes and set-up. Also present here
is a deeper dive in the extendibility of the system, how and to what degree
it is open for a developer to overwrite the framework’s functions. There-
after comes the evaluation. Lastly, concluding remarks are made, along with
future directions the framework can take.
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Chapter 2

Related Work

2.1 Audio Recognition

Audio contains a rich amount of information. As one of the more impor-
tant senses, audio provides humans with perceptual information about their
environment and its occupants. Machines can analyse audio in the same
way, in search of performing numerous functions humans do simultaneously.
These tasks include for example deriving semantic information like recogniz-
ing speech [25], contextual information like recognizing the scene [5] or entity
identification like recognizing a piece of music [28]. Audio classification is im-
portant for the field of pattern recognition, finding an ever expanding amount
of applications.

Audio data and its relating tasks have been grouped and divided using
numerous definitions, which change the focus and structure of the systems
built. For one, the sound data can be classified according to domain groups.
[18] does this by subdividing them into human voice sounds, artificial sounds
and natural sounds. Human voice includes speech, coughs and singing. Ar-
tificial sounds refer to human activity based sounds like traffic, aircraft and
music. Natural sounds then include animals, weather and nature sounds.
However within the same document, they utilise another distinction between
sound data namely music, speech and environmental sounds. The point is
that applications have been developed which target different definitions of
sound collections that are targeted. Grouping music together in the same
domain with other human activity noise makes sense for applications that
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only need to identify a sound in an audio fragment as music as in [49], but
not when the exact music piece needs to be identified in the presence of back-
ground noise [28].

Audio recognition tasks thus refer to the automated annotating of au-
dio data for various sounds and/or sound groups present within. A typical
pipeline for audio recognition tasks goes as follows:

1. Microphone records raw audio and stores it as a sampled time series.

2. Preprocessing is applied to accentuate certain properties in the audio
signals, the choice of which is often dependant on the eventual appli-
cation and what the system needs to be able to differentiate within the
signals [22].

3. These time series then are divided into either overlapping or non-
overlapping frames, for which each frame a feature gets calculated.
The features of all the frames are then stored as a collection which
represents a single data input instance. This is also called the feature
matrix. A comprehensive overview of features are given in [41]

4. The feature matrices are transformed in context of the other matrices,
augmenting the extracted feature representations or scaling the values
to the same specified value range.

5. The collections of data instances then form inputs for classification or
regression problems. A number of instances are used for training a
neural network which learns a representation of the data that it can
optimally use for deriving the correct labels.

There are two distinctions in audio based learning tasks: instance-level
and frame-level tasks. The difference between these is if the task needs to
produce labels for the whole audio fragment or for events present within an
audio fragment. The latter is a complexer task than the former. Instance
level tasks include Acoustic Scene Recognition, Audio Tagging, Speaker Iden-
tification and Emotion Recognition. Frame level tasks include Acoustic Event
Detection and Automatic Speech Recognition. When speaking about frame
level learning, the task involves temporal localization of the individual labels.
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For that reason the task is usually defined as a classification task for each
mini segment, but detecting the presence of an event and determining when
it is present can also be formulated as determining its start and stop times.
Intuitively, this thus means that these sort of tasks can be split into two
separate ones, even without defining it as a multi-task classification network.

Labels in instance based recognition work pretty straight forward. The
data contains audio clips for which one or multiple labels are linked, depend-
ing if multiple classes can be present at once. A system thus takes a whole
sound clip, extracts its features and outputs the corresponding labels the clip
is an instance of. Labels in frame based recognition are different. As stated,
clips are subdivided in frames and the output of the system is a series of
labels, one for each frame which corresponds to a specific time step.

2.2 Multi-task Learning

Multi-task Learning is a learning paradigm that performs inductive trans-
fer by sharing representational knowledge from multiple related tasks. The
principle goal of Multitask Learning is stated as being the improvement of
generalization performance [11]. To explain the meaning of this description
and objective, the explanation of the paradigm will be given incrementally.

To begin, the term task must be defined, in order to understand what
will be combined. A task is a collection of data instances and corresponding
target labels, combined with a function mapping those instances to targets.
Target labels can be represented as one-hot vectors for classification or con-
tinuous valued vectors for regression purposes [40]. Learning a task infers
learning the parameters for the mapping function to optimally link the in-
stances to the known true labels. Usually, mapping functions are learned
by only utilising the task’s data and targets, which is also referred to as
learning a representation. Large problems are broken into small independent
subproblems that are learned this way separately in parallel and recombined
afterwards. This is counterproductive as in real world problems, informa-
tion from different task representations can not be used by the other tasks
[11]. The result might be that the representation is overfitted to the utilised
data, which falters when applied in the real world due to factors that weren’t
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present in the data the representation is trained on. It is often found that
task systems’ performances degrade significantly when there is a discrepancy
between the training conditions and testing conditions [38].

The response to these shortcomings is multi-task learning, which learns
a shared representation on multiple tasks at the same time to a degree. The
mapping function’s parameters are optimized for multiple objectives at once.
Only one model is produced for which there are task specific parameters and
shared task parameters. The specific parameters are updated using the error
signals from a single task, while the shared ones are updated using the signals
from all tasks [40]. Multi-task models following this definition, can be built
in a huge amount of ways, with the main concern being what parameters are
shared which relates to what level of abstraction two tasks need to share in
order to build a better representation for both. There are also two forms of
sharing parameters: hard-sharing and soft-sharing. In the former, the shared
model parameters for all tasks are the exact same. In soft-sharing settings,
parameters are shared more loosely, with parameter updates happening only
for one task, but the distance between the different tasks’ parameters being
regularized for their distance. This forces the parameters to be similar [56].
This work mainly focuses on the hard parameter sharing setting.

For deep learning neural networks, like convolutional neural networks
and recurrent neural networks, this parameter sharing set-up takes the form
of sharing layers. The output of each layer is treated as a shared feature
representation for the subsequent ones [71]. This can be taken as a direct
transformation from the input or combine hidden representation from multi-
ple tasks to form more powerful hidden representations when different data
sources require different sources.

To illustrate what this looks like, the simplest model structure, the multi-
head model, is given as an example in figure 2.1. This demonstrates the
situation where shared layers build a robust internal hidden representation
utilising knowledge from multiple tasks in a feed-forward deep neural net.
Combining dataset representations to a shared layer can be used to extend
a single task’s data sources. Multiple output heads can be defined for one
dataset for a representation optimized for multiple purposes. The illustration
performs both. Learning wise this achieves inductive transfer of knowledge
and provides an inductive bias. Bias makes the model prefer some hypothe-
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Figure 2.1: Example multi-head neural network model

ses over others [11]. Defining extra targets can provide more control over
the working of the model. Traditionally additional tasks are added in order
to improve robustness, but recently more applications are investigated for
additional improvements, like fairness [45], compression [22] and expanding
limited strong labelled data with weaker data [34].

2.3 Multi-task Deep Learning Audio Tasks

Audio recognition tasks have only recently seen the adoption of multi-task
frameworks, but for a quickly expanding set of reasons. This section maps
out the key applications where, why and how deep learning systems where
created to address problems. Single task focused systems were the way to
go as instinctively it made sense that the best performances would be ob-
tained by focusing on improving solely on building a system addressing that
problem. Two factors however changed this notion. For one, systems in real
life contexts often have to perform multiple related tasks at once [72] . For
another, sharing information between related tasks have been shown to im-
prove performances as it averages noise patterns and creates a more robust
representation of the original data for the final classifier(s) [68]. Here, it will
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be demonstrated how these factors influenced the recent evolution towards
trying to build systems that optimise for multiple objectives at once. An
overview of the used papers is given in tables 2.1, 2.2 and 2.3

Non-Parallel Multiple Tasks. What will be done first is demonstrate
the context where multiple tasks need to be performed, but were not opti-
mized at the same time in a multi-task setting. For painting a clearer picture
of contexts where multiple tasks have to be learned for the same data, this
work will first delve into the context where this has been addressed without
a multi-task framework. In Ziaei et al. [72], a lifelogging system is designed
which tries to annotate the naturalistic audio from a sensor device with dif-
ferent types of labels to create a contextual summary of a person’s day. This
takes an audio stream and performs speech activity detection, the results of
which then in turn uses for its other tasks. It estimates the amount of speak-
ers in an audio segment; uses that estimate to then recognize the speakers
and determine the primary and secondary speakers. At the same time it
also performs the task of ”environmental sniffing” or detecting the current
environment of the device. This example is given to illustrate the need and
the types of tasks that would be learned at the same time in a context. Task
information is shared here, but segmentally in stead of parallel. The thing is
however that this does not share information to improve the representation,
which ignores potentially useful information. This also requires every task
to be performed individually, a set-up which might not always be allowed in
terms of time and resource constraints.

To clarify how this singular focus forms the basis for problems in natu-
ralistic audio contexts, the work done by [49] is addressed. Here, the context
of an audio device is being detected in a short time frame of seconds, by rec-
ognizing events that are tied together in wat they call contexts. First of all
is the obvious need in this case for fast detection. Second point lies in their
results. They find that including the detection of speech events significantly
reduces the performance of the general classifier’s performance. Speech au-
dio is different in structure from other background audio events and likely
requires its own model for reliable detection.

With the first example being one of tasks connected segmentially and
the second being unified in the same classifier, the stage is set for explor-
ing the compromise between the two: separated, yet parallel task inference.
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While Multi-Task settings had demonstrated their use in visual tasks [35],
the adoption in audio tasks was (similar to the trajectory of deep learning
algorithms) a bit slower to develop. The first domain that showed its poten-
tial were speech recognition tasks.

Multi-Task Speech Recognition Tasks. For Automatic Speech Recog-
nition, multi-task learning has been around for a while. These tasks accept
windows of audio features as input and return posterior probability distribu-
tions over phonetic targets [40]. The targets can range from whole words to
phonetic parts and even simply characters. The multi-task model itself either
serves as an end-to-end recognition model or performs a modeling function
in a hybrid model.

[38] proposed an architecture where noisy speech audio is fed into a Re-
current Neural Network that has a number of shared layers with three output
heads. One for the prediction of words, one for enhancing speech and one
for gender detection. With adding these auxiliary tasks on the same dataset,
they succesfully managed to improve the original task’s - Speech recognition
- performance. Their reasoning for utilising multi-task learning was that per-
formance degrades dramatically for when there is a mismatch between train
and testing conditions. Multi-Task learning added robustness to classifica-
tion performance.

A lot of the work done in multi-task speech recognition focuses on this
sort of improvement of the original signal’s representation through adding
additional optimization goals. [59] focus on the improvement of phoneme
recognition by adding the prediction of the phone labels, state contexts and
phone contexts - context here being predicting the label in the previous and
next time frame.

General purpose audio The techniques that were found for Speech
Recognition purposes eventually found their way for general purpose audio
tasks. There are a few trends within acoustic multi-task definitions that
will be discussed here, which will be important bases for the system to cover.
The trends deal with how the additional task was utilised in the same model.
Four of these trends are addressed in this section: Auxiliary tasks on the same
dataset, combining tasks from different datasets, splitting a task and finally
multi-task learning for non-performance related issues.
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Auxiliary tasks on the same dataset. The first strain of set-ups con-
cern audio tasks that receive an additional task on the same dataset. This
is usually with the aim to improve the original task’s performance. These in
turn come in two forms: supervised tasks [31] [70] [6] [19] [66] [61] [37] [46]
and self-supervised tasks [34] [16] [47] [38].

Often, the auxiliary task is not important and only serves to help the neu-
ral network create a representation of the data that is formed for its qualities
the additional tasks require. With a supervised task as an auxiliary task,
this takes a more semantic form. The task is semantically related. In [70],
the multi-task set-up results are explored for combining speaker identifica-
tion and accent recognition in one case and emotion recognition in speech
and emotion recognition in song in another. In both these instances, the
semantic connections for the targets are clear. [6] does this concept slightly
different and learns basically the same task but at different abstraction lev-
els, in order to improve learn leveraging hierarchical relation structures. The
set-up for [19] contains detecting speech activity along with predicting the
next audio segment, using layers of LSTM. Here layers are shared at differ-
ent levels, with a generative adversarial network that learns the loss function.

For the other scenario where the set-up adds a self-supervised task, this
usually comes in the form of transforming the input signal according to differ-
ent qualities, which will be transferred to the task at hand. [34] investigates
the effect of adding next-step prediction, noise reduction and upsampling
of an audio signal as an auxiliary task to audio tagging, speaker identifica-
tion and keyword detection tasks. Each possible subgroup of auxiliary tasks
are tried. With this it successfully tries to get more efficiency out of its la-
belled data. [16] recreates the Time Frequency representation of audio as
its auxiliary task to event detection. This aims to reduce the noise of the
internal representation used for classification which makes it function better
as a classifier based on noisy recordings (like in real life contexts). It also
utilises Multiple Instance Learning, which is a learning mechanism where
instances get put into positive and negative bags. Positive bags do not only
contain instances that are positive for that label - at least one for sure -, but
negative bags do. [38], which has been discussed before, is a hybrid of these
two forms. One of its auxiliary task is gender detection (first scenario) and
the other is speech enhancement (second scenario).
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For the system to be created this signifies a lot of different possibilities
in terms of possible targets, beyond simple labels as well as a possibly inex-
haustible range for models and training requirements. Any abstraction made
in this regard must be fully adaptable. Tasks should also freely be addable
or retractable in order to investigate its combinations to the main task. Fur-
thermore, grouping instances should be possible, as seen in the example for
Multiple Instance Learning.

Different datasets, different tasks. Another utilisation of multi-task
set-ups is to bring together two different tasks with - usually - two different
datasets. The idea is to bring two tasks together that could prove to be
beneficial for each other as successfully performing their combined task is
directly beneficial for the task at hand. The improvement is either aimed for
one task like in the previous case, or it is to benefit the performance of both
tasks at once.

One of the clearest and more popular examples of this set-up is in set-
ups that combine the Acoustic Event Detection (AED) task - which detects
which sound events are present at each time frame - and the Acoustic Scene
Recognition (ASR) - which detects in which background scene a sound sam-
ple takes place in [64] [69] [29] [30] [32]. The idea is that information on
detecting specific scenes will help in detecting events, either by learning the
noise pattern related to that scene or because certain events are inherently
linked to certain scenes. [64] does exactly this, building a simple multi-head
model that shares three layers before venturing off in task specific networks.
The labels which improved in this context are investigated, finding that labels
which are only connected to each other but not other labels in the parallel
task improve significantly in accurate detection. [69] performs this but with
a sole focus on improving AED. [29] builds on this but reforms the ASR to
output soft labels (percentages in stead of deterministic labels). For training
there is a separate independent network for ASR that teaches the ASR task
in the multi-head model in what is a called a teacher-student learning frame-
work. Finally [30] and [32] adopt a model, where the different task results
are directly combined afterwards to only output better labels for one task.

Other examples are limited and underdeveloped. The work done by [57]
might give a hint for the reason. They tried to bring together speech recog-
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nition with environmental sound detection, yet have to end up limiting the
shared layers in both tasks, mainly finding that combined features improve
the set-up slightly. These two tasks might have been too unrelated for the
multi-task set-up to offer improvement, but very little investigation into this
aspect was performed. The final example is found in the work by [26] and
[27]. This is interesting as it finds a way to improve its intended task (AED)
with weaker labeled data. It combines its model at different layers with split-
ting branches, adding an optional side branch for stronger labeled data that
improves overal performance if available. This potential for extending origi-
nal datasets with weaker datasets but with likely more instances is immense,
which was proven by winning first place in the 2019 DCASE Task 4 competi-
tion. This shows how the multi-task framework has been gaining momentum
over recent years, with the capacity to improve available task information,
whether it is by simply providing more contextual information or finding a
way to provide more valuable training data.

Same task split. Present in the last example [26] is the idea of using
a multi-task framework to split a complex task in two separate tasks and
combining the results for a single improved prediction. This mostly happens
for AED tasks, by redefining this task as two tasks: determining the event
type and determining the time . This either happens through splitting the
task into a classification task for the type and a sound activity detection
task that simply outputs whether any sound event is present in a time frame
[42] [47]. The other way it has been performed was by adding a regression
task for the time offset of events to add more exact information on when
the time exactly starts. These always involve some sort of result fusion after
(probabilistic) prediction output.

In [51] and [52] also resembles this model, but is only a multi-task frame-
work right at the end, as it optimizes for different criteria. One is the detec-
tion error, one is the distance error of events and the final is the confidence
in the first two predictions. This does not completely defines the task as
different ones, simply optimizes for different criteria, but still requires fusion
after the fact.

The final interesting case is that in [44]. This splits up ASR into multi-
ple tasks, which are all still ASR but in different recording conditions. The
labels are split up into three groups: Indoor scenes, sparse outdoor scenes
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and crowded outdoor scenes, each group being defined as its own task.

In essence tasks on datasets can be reconstructed in an infinite amount of
ways. The system should offer this level of control over datasets and tasks.
With the idea in [26], it should also take in account parallel models that
influence the training of the multi-task framework that was built.

Multi-Task Learning For Other Reasons. Finally, there are the
cases where the multi-task set-up is used for reasons that do not relate to
performance improvements of any kind. This idea is still limited, but illus-
trates how much further the multi-task framework’s applicability goes. These
investigate the capabilities of combining datasets and tasks that are unre-
lated and possibly require combining a large amount of heterogeous tasks to
be combined together, compared to the previous trends.

In [22], a multi-task framework is used as a means to compress deep learn-
ing models that have to perform different tasks. Even in the instances where
independent models are technically more optimal, it might be preferable to
combine their network layers. This is useful if the model has to be deployed
on computationally constrained devices. Multiple independent models can
require too high resource costs, so the argument is that using a multi-task
framework that does not sacrifice too much in terms of performance com-
presses the amount of complexity for execution of the same tasks.

For the same reasons, the work in [62] is performed, but offers more adap-
tation to the different tasks. Both of these examples bring together numerous
tasks and datasets. These require a lot of work on combining dataset differ-
ences for execution in the same network. Also take in account that there is a
process to arrive at these models, in which design and parameter differences
have to be varied (often for each dataset in the same way), evaluated and
compared with the variations before.

What is taken away from each of these trends, is that there are numerous
opportunities in acoustic multi-task learning. An huge amounts of variations
and possibilities still have to be explored. Facilitating free experimentation
with the differences in tasks and the way to combine these would be crucial
for promoting further research in these fields. A platform could be built that
can dynamically handle these cases while offering abstractions that quickly
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deal with physical problems that can arise from these cases.

Summarizing the take aways from observing these trends goes as follows.
In the first case, datasets can have multiple tasks defined on them. Ex-
tra tasks come in different forms themselves, even as aggregated forms from
other tasks (multiple instance learning). In the second case, different tasks
and different datasets get combined. This of course necessitates dealing with
dataset differences while the different ones can be seen as one big dataset or
not. Models outside the multi-head model can also be brought in to affect
training. The performance effect on the datasets and the output labels also
needs options to be evaluated closely. The third case clarifies that developers
need a lot of control over both tasks and datasets. The final case demon-
strates that multi-task networks are implemented for more than performance
improvements and a possibly huge amount of datasets and tasks can be com-
bined together. Handling of these are as likely to be different for each case
as they are to be the same for all.

2.4 Development Frameworks

Frameworks offer designs and pieces of code that are reusable and function-
ally allow the creation of different applications within its domain. These
code structures are generic, intended to reduce the cost of development. The
flexibility of frameworks are hard to design compared to specific applications
as a lot of possibilities and abstractions have to be planned for beforehand.
Framework design is its own subject that has a lengthy research history al-
ready.

[58] and [55] are early works discussing the characteristics of framework
development. The main element that has to be designed for is variability.
Software patterns have to be put in to place that are organized in two parts
[7]: hot-spots and the core. Hot-spots are places in a system where imple-
menting applications have their own specific adaptation in place. The core
is common to all applications derived from the framework.

Hot-spots come in two forms: black box and white box. Black box hot-
spots have their variations predefined and implementations can only pick
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Figure 2.2: Black box hot-spot (left) and White box hot-spot (right)

one. White box hot-spots require a developer’s own implementation by pro-
gramming a class or subsystem. These are illustrated in figure 2.2.

Variability itself comes with a few characteristics [58].

� The common responsibility which overcouples different alternatives.

� different alternatives that realize the common responsibility

� The variability type that depends on the subjects structure.

� The multiplicity of alternatives and the structure of alternatives

� The point in time where the alternative is picked and implemented
(fixed or at run-time)

UML design of a framework has to visualize the flexibility and points of
variability clearly. This means that some extensions are necessary compared
to the usual standards for normal applications. This is a subject which has
been researched in a number of papers [9] [7]. The main takeaway is that the
points of extension should be clear for developers immediately. Designing of
a framework requires abstraction from specific implementations and how this
happened in this work will be expanded upon in section 4.1.
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No prior work is found on offering a framework for multi-task deep learn-
ing, let alone for audio purposes. Closely related is [14], a tool released by
the time behind the yearly dcase [13] competition for audio recognition tasks.
This is a standalone library which offers tools for processing audio and meta-
data files. The designs are mostly based around offering containers which
come with functionalities for processing audio and metadata. However, this
adds a lot of extra layers to the data which is a problem for verifying dif-
ferent datasets are processed in the same way. This also separates target
handling from the inputs, which forms a problem for operations that rely
on their connection (e.g. filtering). Training functionalities are present but
need to fit in the predefined mold and do not allow multiple different datasets
(without having to redefine them as exactly the same dataset). Finally, this
requires that data is stored in similar ways to their own datasets which is
not always the case. All these elements contribute to the overlying problem
for multi-task set-ups that deals with collections of datasets, for which this
implementation the handling of data is too individualistic.

Deep learning development libraries like [17] [63] and [12] are often based
on larger libraries like PyTorch [50] and TensorFlow [4]. [43] offers a great
overview of a large number of frameworks and deep learning libraries. Their
views on aiding development of deep learning usually boils down to optimisa-
tion and avoiding problems in specific specialised fields. Looking at [17] the
framework presented numerous modules for efficiently executing advanced
deep learning models, while also optimising data loading and providing in-
termediary caching functionalities for fast execution. Furthermore, they add
a dataset module which not only optimises storage and retrieval but facil-
itates management through indexing operations. There even is a wholistic
workflow module where the task execution is optimized and defined by a sim-
ple insertion of an input dataset, an output dataset and a model. However -
ignoring how these singular dataset definitions are a roadblock for multi-task
work - this approach lacks the exploratory nature of research and develop-
ment, where parameters and steps often are replaced in order to find the
most fitting system.

[12] demonstrates how a lot of smaller libraries work, where the devel-
opment improvement is focused on a particular field, in this case genomic
sequences. This does however demonstrate some of the same characteristics
this work is interested in when defining developmental speed up. Know-
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ing the types of inputs it will receive, it greatly facilitates the process of
adding new datasets to existing architectures created with the system. Also
included are immediate visualizations, while minimizing the entire process
in two modules: model creation and command line interface for executing
prototypical use cases. This work argues that this comes closer to envision-
ing its usefulness in research settings, due to its openness and anticipation
of bringing in new data, as well as providing ready to go functionalities for
the research process like visualization.

[63] offers the tools to improve the research cycle, but focuses its func-
tionalities on creating models using improved definitions which does seem
to provide for a more wholistic view of designing and implementing deep
learning pipelines (as opposed to the usual approach where model definition
and the eventual training run are separate). Again this is done to open
up optimisation possibilities. Also returning is the lack of variability with-
out having to dismantle the whole implementation and of course the lack of
multi-task support. At this point it is good to talk what makes the multi-task
paradigm ”break” this framework. The issue in this instance is due to the
fact that multi task learning requires updates which are based on multiple
losses. When calculating the loss functions, some instances in a batch might
or might not be part of an a particular task and only the related loss to that
task must be calculated and used in the update of the model. While a re-
sponse to this might be to separate training of the model per task, this limits
performance of multi-task pipelines which benefit greatly from the case when
the model is trained for multiple tasks at the same time [23].

What is gathered from these deep learning frameworks is that there is
simply a gap of support for multi-task pipelines. On top of that is there a
lack of variability within the envisioned pipelines, often due to their focus on
performance. While in no way is this a slight against these works, it does ar-
guably signify that even if multi-task support would be provided, the added
amount of unnecessary double work it would require to transmit functions to
each branch every time a change is required introduces dreadful, error-prone
implementation work. A lot of these frameworks are great in case it is sim-
ply about implementation of a design, but this is not likely to be the case.
On the other hand, there are some great ideas present in these works, like
the caching from [17], a wholistic view of the pipeline which compresses the
entire pipeline to a single definition phase that opens up opportunities for
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optimisation in [63] and the research based command line tools from [12].

One framework that this work did take inspiration from however was
[15], a development framework for evolutionary learning. This is a white-box
framework that has a lot of parallel necessities in functionalities while also
having to take in account the amount of possibilities that still need to be
allowed by extension.

Finally, this work is an extension of PyTorch [50], an imperative stile deep
learning library. Building on their groundworks, this work offers abstractions
to their deep learning modeling and training functionalities to better the de-
velopment of multi-task networks alongside it. A number of their design
principles are kept in place like the pythonic style, the focus on researchers
and pragmatic performance.
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Table 2.1: Tried Combinations
Title Tasks Classifier

Lu et al. [38] Automatic Speech Recognition; Speech En-
hancement; Gender Detection

RNN

Seltzer and
Droppo [59]

Phone Label Recognition; State context recog-
nition; Phone context recognition

DNN-HMM

Panchapagesan
et al. [46]

Keyword Spotting; Large Vocabulary Con-
tinuous Speech Recognition Senones Targets
Recognition

DNN

Sakti et al. [57] Automatic Speech Recognition; Acoustic
Event Detection

DNN

Georgiev [22]
Georgiev et al.
[23]

Speaker Identification; Emotion Detection;
Stress Detection; Acoustic Scene Classifica-
tion

DNN

Kim et al. [31] Emotion Detection; Auxiliary tasks: Arousal
Level; Valence Level; Gender Detection

CNN

Nwe et al. [44] Acoustic Scene Classification (Grouped scenes
as different tasks)

CNN

Phan et al. [51] Detection error; distance error; optimization
confidence

DNN

Sun et al. [61] Keyword Spotting; Large Vocabulary Con-
tinuous Speech Recognition Phone Targets
Recognition

DNN-HMM

Kremer et al.
[33]

Word Error Rate and Character-Level Auto-
matic Speech Recognition

CNN

Morfi and
Stowell [42]

Audio Tagging; Event Activity Detection DNN

Lee et al. [34] Main Tasks: Audio Tagging; Speaker Identi-
fication; Speech Command Recognition (Key-
word Spotting); Auxiliary Tasks: Next-Step
prediction; Noise Reduction; Upsampling

DNN

López-Espejo
et al. [37]

Keyword Spotting; Own-voice/External
Speaker Detection

DNN

Meyer [40] Speech/Noise detection; Language Identifica-
tion

CNN + LSTM
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Table 2.2: Tried Combinations (Continued)

Title Tasks Classifier

Pankajakshan
et al. [47]

Sound Activity Detection (Event Activity De-
tection); Sound Event Detection (Audio Tag-
ging)

CRNN

Phan et al. [52] Detection error; distance error; optimization
confidence

CNN

Tonami et al.
[64]

Acoustic Event Detection; Acoustic Scene
Classification

CRNN for
AED, CNN for
ASC

Xia et al. [68] Acoustic Event Type Detection (Audio Tag-
ging); Predict frame position information
(Event Activity Detection)

CNN

Xu et al. [69] Acoustic Event Detection; Acoustic Scene
Classification

Zeng et al. [70]
(1)

Emotion Detection; Music/Speech Classifica-
tion

DNN

Zeng et al. [70]
(2)

Accent Recognition; Speaker Identification DNN

Abrol and
Sharma [6]

Fine and Coarse Labels Acoustic Scene Clas-
sification

DNN

Deshmukh
et al. [16]

Acoustic Event Detection; Reconstruct Time
Frequency Representation of Audio

CNN

Fernando et al.
[19]

Acoustic Event Type Detection (Audio Tag-
ging); Predict Frame Position Information
(Event Activity Detection)

LSTM

Huang et al.
[26]

Audio Tagging; Temporal Detection (Event
Activity Detection)

CNN PT/PS
model

Huang et al.
[27]

Audio Tagging; Event Boundary Detection
(Event Activity Detection)

CNN

Imoto et al.
[29]

Acoustic Event Detection; Acoustic Scene
Recognition

CNN

Jung et al. [30] Acoustic Scene Recognition; Audio Tagging DNN
Komatsu et al.
[32]

Acoustic Event Detection; Acoustic Scene
Recognition

CNN
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Table 2.3: Tried Combinations (Continued)

Title Tasks Classifier

Tagliasacchi
et al. [62]

Keyword Spotting; Speaker Identification;
Language Identification; Music/Speech Clas-
sification; Bird Audio Detection; Urban
Acoustic Scene Classification; Music Instru-
ment Pitch Detection; Music Instrument De-
tection

CNN

Wu et al. [66] Keyword Spotting; Domain Prediction CNN + LSTM
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Chapter 3

Problem Statement

As introduced, the thesis presents a framework to aid in the development of
multi-task pipelines. Specifically, the problematic combinatorial aspects are
targeted as well as offering a workflow for the pipeline construction which
would allow new datasets, tasks and handling of these to be defined utilis-
ing less code and cutting execution time where possible. In this section this
goal will be codified in exact terms, first explaining the considered eventual
contexts in terms of use cases and stake holders, whereafter the general prin-
ciples and goals for the design is outlined and the finally the non-functional
and functional requirements are pinned down.

3.1 Use Cases

This section will examine some hypothetical use cases to serve as a basis for
drawing up requirements for the framework. Each case examines a situa-
tion where a multi-task pipeline - from the raw datasets to the trained and
evaluated models - needs to be created.

3.1.1 Developing General Purpose Classifiers

A lifelogging system that tracks and annotates its user’s day through audio
can be really useful for purposes like memory augmentation [citation needed]
or safety [citation needed]. Imagine for example an on-person security system
that can detect the environment its in as well as automatically alert when
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a noisy threat is present. In order to provide multiple, robust annotations
for a piece of audio which provide possibilities for comprehensively browsing
through the events in a day or statistical analysis, one has to build a classi-
fication system capable of this. While the usual approach for this is to build
separate classifiers per task. A big implication of this, is that the raw audio is
sent to a server, able to house and execute the classifiers, but this can cause
several issues in this case. For one, there is the privacy and security issue of
continuously recording audio and sending it to a remote system. One has no
assurance that this data is safe and not being misused for other purposes.
Another one is that this centralization of data possibly causes issues for scal-
ability both in terms of time and devices. Lastly, it requires sending a lot
of data continuously which might be subject to network outages and traffic
bottlenecks. A different approach to sending all that data to the server is per-
forming the classification on the device and only sending the resulting output.

It is however rather unlikely that the device which records the lifelogging
audio is able to fit and execute multiple trained neural network models at
the same time. This is where the multi-task set-up comes in, which shares its
network layers over multiple tasks and thus reduces the resources required
for general purpose classification. Not only that, but multi-task classifica-
tion has proven that it can achieve more robust representations of audio data
which can be of serious benefit for the noisy, continuous real life data.

Developing such a system thus inquires a trained singular model which
can perform multiple varied tasks reliably. It is unlikely that one dataset can
be found suitable to train all tasks, but each task is likely to have at least
one dataset. The trained model needs to be evaluated on real life audio using
the same preprocessing as the training data.

3.1.2 Researching Multi-Task Set-ups

The Multi-Task learning paradigm has successfully been implemented to
improve accuracy and robustness [citation needed]. Research into utilis-
ing multi-task learning can have great benefits for developing optimal audio
recognition systems. For example, there is a yearly competition for develop-
ing audio classification systems with numerous objectives, called DCASE [ci-
tation needed]. Multi-task systems have seen more success [citation needed]
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here recently, both for tasks that have multiple objectives [citation needed]
as well as for improving performance in singular tasks [citation needed].

In order for a researcher to find and compare working solutions to the
posed challenge, they need to be able to vary multiple elements in the deep
learning pipeline easily as well as compare their results to the baseline easily.
However, compared to singular tasks, changing elements - e.g. the feature
extraction method, data transformations, loss calculation - for multiple tasks
can lead to repetitive and error prone code modifications. Multi-task set-ups
also bring more elements in the process, as the data from different tasks can
require different handling, have to be combined and the shared system has
to be updated. This makes researching multi-task set-ups more time con-
suming, which puts a strain on new developments in the field.

3.1.3 New Datasets

New datasets continuously become available, with different purposes in mind
and different sources. These might suddenly make it possible to develop dif-
ferent kind of systems, but also improve existing ones, even if the data is of
comparatively lower quality for the task at hand. Research has been done
proving that weakly labeled data can be used to improve the performance
of a system trained on strongly labeled data [citation needed]. Access to a
new dataset opens up all sorts of opportunities for new goals or improving
old systems.

Take for example the case where a dataset from google was extended with
more fine grained labels in order to develop a recognition system that needed
mere seconds for inference [citation needed, park]. In this case, older classi-
fiers need to be tested for performance. Another thing is that this dataset
was a subset of the larger dataset, with more fine grained annotations, but its
parent set still contains valuable information for training the system. While
this is essentially the same task set-up, the developer would still likely have
to spend time making adjustments to how the original dataset is handled,
the training loop functions and/or the results are calculated. A system which
would take the combination of tasks in account beforehand and only require
the correct handling of the new dataset would go a long way on cutting de-
velopment time. This goes as well for being able to bring in older classifiers
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in a modular way and testing the difference in performance without any ad-
justments. The need is not only for the ability to develop working systems
statically, but open the development up for additions, which do not require
reworking the rest of the pipeline.

3.2 Stakeholders

The developmental framework needs to take in account different stakeholders
that are concerned with building and training a multi-task Neural Network.
These have different objectives which leads to different necessities the frame-
work has to provide.

3.2.1 Researchers

Researchers are the people that, in this intended use of the word, would
use the framework to figure out cause and effect relationships concerning
multi-task neural networks. What this means in practice is that these people
need to be able to vary the changeable variables in the system and evaluate
the results. This framework should make this easier to vary one parameter
modularly and provide quick and easy ways to visualize the results. Another
thing is that the framework should provide opportunity for reproducibility
of results.

3.2.2 Developers

Developers are the group of people that need to be able to build solutions for
a given task as quick and easy as possible, but with opportunity to extend
the framework in the places that likely can change. This necessitates that
often used features - which take up needless time to develop - in a deep
learning pipeline are already available and easy to use. This group likely
models a system like this with the intension of deploying or executing on a
different device, while their working device might be resource constrained.
This both means that the framework needs to take usual resource bottlenecks
in account as well as facilitate transitioning the execution environment to a
different system.
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3.2.3 Newcomers

The final group is the crowd for whom the framework and possibly the multi-
task learning paradigm are new. For them, the framework structure needs to
be comprehensible as well as offer some developmental railings to help them
avoid problems. The framework should have a clear workflow and provide
enough guiding for implementing new pipelines correctly through providing
type checks and examples. While this framework’s intended purpose is not
to educate the user on how multi-task learning works, it should provide
assistance to lessen or track potential issues.

3.3 Design Principles

Previous work done by [55] informally describes the requirement for frame-
works being ”simple enough to be learned, yet must provide enough features
that it can be used quickly and hooks for the features that are likely to
change”. The goal of this platform is to facilitate research and development
of deep learning multi-task algorithms for audio recognition purposes. This
frameworks is built on top of the PyTorch library that already offers compre-
hensible and easy to use tools for developing deep learning models. However,
this extension looks to alleviate the pain points the multi-task paradigm
brings with it: extracting multiple datasets and tasks and combining them
to train and test a single model.

The truth of the matter is that performing research requires changing
a lot of variables in the process of deep learning and reporting on the out-
comes. For multi-task learning however, the work required for implementing
the changes can quickly scale with the amount of datasets, the amount of
tasks and the amount of elements that need to be varied. Not only does
the extra amount of input cause a lot of unnecessary double work, but each
difference in the individual tasks and datasets can cause problems further
down the line when combining. Thus the main idea is to offer a pipeline
pattern where each individual step can be filled in and tinkered with, with-
out having to worry about previous or next parts in the pipeline breaking.
For this purpose, it builds on the groundworks from Pytorch to provide the
deep learning tools, while focusing on standardizing input data, anticipated
handling of possible variations and offer often used features in acoustic deep
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learning.

As a basis for developing the framework, following the example set in a
different framework [15], a number of hypotheses were made about the usage
of the system. These are as follows:

Hypothesis 1. The user will need to vary parts of the pipeline. These
parts should be easily interchangeable and cause little to no problems in the
rest of the system when changed. Furthermore, the framework should be ready
for quick iteration on top of previous results, as well as the need to compare
these iterations.

Hypothesis 2. Every dataset is different, while every model needs simi-
lar inputs. No assumptions should be made about the structure of the datasets,
but the user should be able to store the data in a structure that is guaranteed
to be valid. The structure should be robust enough to deal with variations in
the dataset, without having to alter its behaviour. The user knows best how to
navigate the dataset’s structure in order to extract the necessary information.

Hypothesis 3. Speed of developing pipelines is more important than
speed of execution of the result. Clarity and simplicity are important for de-
signing the framework. This tool is meant to help developers create the best
model. The creation can be reimplemented in another language for optimal
resource efficiency.

Hypothesis 4. Not every possible feature can be covered beforehand. If
the user is in need of a different functionality in a certain part, they should
be able to implement their own solution and plug it in easily.

Hypothesis 5. Optimal resource usage is not required, but the system
should be executable. Concatenating multiple datasets means more space is
required and more time will be needed to execute. The framework should
assume the entire concatenated dataset possibly can not fit in memory and
device failures can happen while executing, which should not automatically
require a restart of the entire process.
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3.4 Non-functional Requirements

From the observations made in the previous sections, a number of non-
functional requirements have been drawn up. These requirements are goals
for the design of the software framework. The requirements are as follows:

� Modular: The framework aims to provide a helpful tool to build
deep learning multi-task pipelines, for which the individual parts of
the pipeline are likely to be tinkered with in order to develop opti-
mal solutions. The different components should be modifiable and be
interchangeable independently from the rest of the components. A de-
veloper should only have to worry about one part of the pipeline at a
time, without having to worry about disruptions further down.

� Extendible: The framework should provide open hooks for features
and functionalities that likely require change.

� Fast prototyping: Developers using the framework should be met
with an environment that provides them with the tools necessary to
develop their own multi task pipelines fast.

� Cutting Double Work: Anticipate that multi-task models will be
designed through iterated variations and that the system can be run
with largely the same variables without having to recalculate the same
things as before.

� Flexible: The framework should be able to dynamically handle possi-
ble differences in input and desired pipeline functionalities.

3.5 Functional Requirements

The framework is a tool for building Deep Learning Multi-task pipelines,
which this work distributes in three steps. The first step is the data reading.
In this step, the raw datasets are read, features extracted from the instances
and the results stored in objects which will serve as the input for the rest
of the system. Then, the data loading happens, in which the multiple sepa-
rate objects are prepared for the specific training set-up, combined and then
served to train and evaluate the model. In the last step, training, the model
is created, the data instances go through the model, the loss for each task
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gets calculated and combined which is used to optimize the model and the
optimized model gets evaluated.

Further note should be made of the difference between datasets and tasks.
A dataset can have multiple tasks and a task can have multiple datasets. A
task is in essence the learning objective for the input and comes in differ-
ent forms for the target labels. A data instance can belong to only one of
two classes (binary tasks), only one of multiple classes (multi-class tasks),
multiple classes at once (multi-label tasks) or have a continuous value for
a class (regression tasks). The dataset is the collection of data instances
that can be linked to the targets. The framework must deal with the fact
that there can be multiple datasets and multiple tasks in a many to many
relationship and that each can require different handling. These functional
requirements were drawn up based on the analysis performed in the previ-
ous section 2, along with considerations made to facilitate common actions
performed during research.

The functional requirements will be grouped along the steps in the pipeline,
keeping the non-functional requirements in mind and determining what is
necessary to allow multiple different datasets and tasks.

3.5.1 Data Reading

The functional requirements for reading the data to standardized objects are
as follows:

� Standardizing input: The developer must be able to read the data from
the datasets to standardized objects which will always be valid and
function in the rest of the process, so that they only need to worry about
extracting the data. These objects must be versatile enough to deal
with any dataset and be able to be combined with other standardized
inputs. Methods must be available for aid in the creation of valid
objects.

� Handling dataset differences: Datasets can come in various structures
and storage forms. The developer must have the power to navigate the
dataset structure and extract the data to the required form on their
own, but the system must have the capability of dealing with different
ways the data is stringed together. Datasets can have predefined train
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and test sets, which have to be combinable with datasets that have to
be split later. The system thus must get these two cases in a unified
form to achieve modularity where other parts handling the standard-
ized objects don’t have to differentiate between the two cases once the
standardized object is made. Same goes for datasets that have pre-split
audio segments. These belong together and should not be separated
later on.

� Scalable preprocessing: It is often the case that input data must enter
the system as if they are the same input. This means having the same
preproccesing as well as sample rate for audio. To cut on useless double
work, the system must provide with easy possibility to replicate the
same preprocessing for each dataset.

� File storage abstraction: Saving, reading and checking files require
repetitive work for multiple datsets, especially if it’s the case that
datasets must be extracted multiple times to vary for research, which
requires saving to different files. The system can take workload this off
the developer’s hands for the standardized objects as well as further
files that need to be written and read.

� Quick Reading: In order to vary quickly and not have to either extract
the entire dataset each time or have to enter the location of the desired
stored dataset, the framework must provide a function that reads the
correct file automatically when the data is read.

� Create multiple input objects from the same dataset: It is possible
that inputs can be created from the same dataset, but require different
processing or require different subsets of the information.

� Tasks and datasets are a many to many relationship: Dataset objects
can have multiple tasks and the same tasks can be present in multiple
dataset objects.

3.5.2 Data Loading

Combining and loading the data for training has the following functional
requirements:
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� Combining datasets: The framework must provide a way to combine
different datasets in standardized objects that the training function can
take instances from and derive predictions for the multiple tasks.

� Not requiring the combined datasets in memory: Computer memory on
numerous devices is likely not large enough to hold multiple datasets at
the same time. In this case, the framework must provide away around
this in order to make multi-task learning possible, without having to
treat the standardized object differently.

� Train and test set generation: Train and test sets most likely have to
be created from the original dataset. The framework must provide an
easy way to generate these for the combined datasets for datasets that
both have and don’t have predefined sets.

� Transforming data: Scaling and windowing functions for the input ma-
trices must be available so the developer should only have to deal with
the specifics of what methods to use for these and the parameters.

� Filtering data: Research in deep learning often deals with adjusting
the distribution of instances with certain labels in a dataset, for which
the framework should be able to provide a filtering method.

� Reusing data: Data is likely to be reused and reiterated over with dif-
ferent transformations and such applied. The system must be prepared
for this and only store the base extracted feature matrices without any
of the subsequent adjustments.

� Batching multiple tasks: Batches of input are done matrices that ap-
pend inputs from different datasets and targets from different tasks
together. These inputs and targets must have the same shape in order
to be able to fit together in a matrix. The framework must provide
for this instance automatic functions that make this possible, for the
task targets. For inputs however, they either have to be cut or padded
to the same shape, so the developer must have the tools available to
achieve this.

� Replicability: An important part in research is the ability to replicate
the results. Any randomness based operations the system adds must
come with pseudo random number generators that make it possible to
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receive the same output every time.This goes for example for example
for creating the same train/test splits in a k-fold cross validation set-
up. Another case is when the data is scaled based on metrics from the
training data. When a new dataset is then brought in to test a trained
model, this data should be scaled using the same metrics.

� Scalable Manipulation: Manipulations executed on the feature matrices
from one dataset must easily be able to be performed on all the datasets.

3.5.3 Training

Training and evaluation based on the batches of input data deal with pre-
dicting results from the model and using those predictions to calculate the
error margin, optimizing the model parameters and outputting metrics. The
training part of the pipeline has these functional requirements:

� Predicting multiple tasks: The framework must be able to predict the
targets of multiple tasks for each data instance.

� Task specific output handling: The developer must have the ability
to define the handling of the prediction output for each task. This
should be easily integrated and extendible for the desired handling.
This includes the loss calculation but also any other task-specific metric
calculations.

� Loss calculation specifiable: The user should be able to define how the
loss is calculated and utilise it to update the model variables.

� Loss combination specifiable: The way the different losses are then
combined to one single loss by which to update the system should be
definable by the developer.

� Metric calculation, storage and visualization: Metrics are different eval-
uation criteria based on the predicted output labels compared to the
true output labels. Calculating and inspecting these are a crucial of
research, so the framework must provide an easy way of doing so in
which it is also possible to compare the results to previous ones. Fur-
thermore, the developer must also be able to extend these with their
own implementation and additions.
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� Interrupted Learning: Sometimes a training run can fail or be stopped
in the middle of its execution. This is more likely when the running
time is longer due to the increase in inputs from combining multiple
datasets. To deal with this the framework must provide a feature called
interrupted learning, in which a training run can restart where it left
last time around.

� Separate evaluation: To follow the line of modularity, the system must
not assume that training and evaluation will always happen together,
but a developer can use the system to simply evaluate a model or a
previous training run. Therefore it must be able to evaluate models
and historical runs without much hassle.

� Direct comparison of different runs: Grant the ability to visually com-
pare the results of different train/test runs which relate to different
variables, design choices, ...

� Variable training paradigms: Offer the ability to train the model pa-
rameters using a desired training paradigm set by the user.
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Chapter 4

System Design

4.1 Framework Design

Development frameworks have been defined by Roberts et al. [55] as ”reusable
designs of all or part of a software system described by a set of abstract
classes and the way instances of those classes collaborate”. The bread and
butter of framework design is developing abstractions that cut usual required
work, while identifying the points where an implementing application likely
requires to change. These variable points in an application domain are called
hot-spots [58]. In the context of a framework, these are the points where the
software allows to plug in application specific classes or subsystems. These
hot-spots come in two forms: white-box and black-box hot-spots. White-box
hot-spots require programming the plugged in blocks of code, while black-
box hot-spots give the option to select from pre-implemented solutions.

Expanding existing ground work for deep learning systems with abstrac-
tions for developing and researching multi-task learning set-ups, means that
the focus will be on providing abstractions cutting effort of combining datasets
and tasks, but also that providing exhaustive possibilities are nearly impos-
sible. Therefore, the design will only offer white-box solutions, but with
a number of pre-made implementations addressing commonly available fea-
tures in deep learning.

The nature of variability in the envisioned use is not static for a developed
application. Researching multi-task set-ups requires implementing and exe-
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Figure 4.1: Class Diagram

cuting multiple variations and comparing their results. The hot-spots thus
have to be variable at run-time while ensuring the validity of the pipeline
and differentiability of the different instantiations. Furthermore, in the in-
terest of fast development, every variation in dataset handling must both be
able to be implemented for one specific dataset or implemented for all at once.

With these characteristics of variations in the framework in mind, the de-
sign UML is drawn up following the design principles from Bouassida et al.
[9]. The definitions of white-box and black-box hot-spots differ slightly, in
that they do not go for all descendants here. In stead black-box hot-spots
cover classes with predefined code that can change their functionality based
on allowed input variables for the class, yet should not be modified in code.
The reason for this change is that in the original definitions complete class
hierarchies where either white-box or black-box hot-spots where the classes
and all of its inheritants either contained default code -and the desired im-
plementation should be chosen from available options- or it did not. This is
too rigid as it only allows extra extensions in a class if there is no default code.

In figure 4.1 is the framework’s extended UML class diagram. The expla-
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nation of the extra annotations goes as follows:

1. Classes with a grey box in the top indicate that these classes compose a
white-box hot-spot. These classes require an extending implementation
from the developer that can expand the original methods defined in the
class.

2. Classes with a black box in the top indicate that these classes are black-
box hot-spots. These have default code present in their implementation
and should not be modified.

3. Grey circles in front of methods signify functions that change from one
implementation to another. These are abstract methods that express
variation points.

4. Generalization relationships marked incomplete have base implemen-
tations that already have pre-made inheritants, but can be extended
with extra classes.

5. Highlighted borders signify that a class belongs to the program’s core.
The core are the ’frozen’ parts of the system, which will remain un-
changed in implementing applications made with the framework.

Going into the model overview, without going into the details and inner
workings, a structural explanation will be given. First thing to note is the
central class TaskDatset, which is the encompassing object that standardizes
the data and ensures its validity as input for the rest of the system. This is
connected to possibly multiple Task objects which keeps task related infor-
mation, separated from the dataset itself. Datasets can have multiple tasks
and the same tasks can be found in multiple datasets. It also has an Extrac-
tionMethod object which decouples all data transformation implementations.

On top of the TaskDatasets are two classes where it functions as a com-
ponent in a composition structure. These are the HoldTaskDataset - which
adds training set splitting and managing functionalities - and the Concat-
TaskDataset - which adds the possibility to combine other datasets.

Alongside these, two creating classes can be found: the DataReader and
the TrainingSetCreator. The DataReader has a grey square as it should
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Figure 4.2: The framework’s pattern diagram

be extended for every dataset implemented. This transitions a raw dataset
to a standardized object. The TrainingSetCreator then take the different
standardized objects, transforms and combines them into valid input for the
training and evaluation functionalities.

This leads to the final section of the model, which is centered around the
Training class. This in turn requires 4 classes to function: The ConcatTask-
Dataset for its input data, torch’s nn Module for the Multi-Task model, a
Results object for calculating and storing results and a TrainingUtils object
for decoupling some of its methods and allowing their variation. While Task
objects are contained in the TaskDataset, there is still a line drawn from the
Training class, as these objects contain data that can change Task dependent
functionalities in the Training class.

To further clarify the roles played by the classes in the network, a pattern
diagram following the example in Bouassida et al. [9]. Two patterns - the
composite patterns the ConcatTaskDataset and the HoldTaskDataset creates
with the TaskDataset - are already mentioned above. The Task and the Ex-
tractionMethod classes are also obvious strategy patterns as they decouple
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implementations from the original classes. The ExtractionMethod accumu-
lates a few data transformations, which can be matched together through its
implementing Decorator pattern.

How these classes function and why these methodologies were chosen will
be explained further in the section, but two classes should be still highlighted
in the overview. One is the TaskDataset which also has a builder role. This
includes adding partmental creator functionalities, which are used here to
ensure that a TaskDataset is correctly implemented as well as facilitating
the process of building such complex object. The other is the Pipeline pat-
tern of the TrainingSetCreator. This creates a sequence of operations that
lead from the raw datasets to combined inputs for a specific training set-up.
The Pipeline pattern is what allows every step up to training to be scalable,
modularly variable and correctly executed.

One guiding design rule for this framework was that no class should as-
sume anything about the underlying implementation of another. This is to
ensure modularity in the system. Given that the framework is a white-box
implementation, most developmental speed-up is made by letting the de-
veloper only focus on one class per responsibility and giving the ability to
execute the same parallel operations as if they were performed on one ob-
ject. The overall design envisions the whole pipeline from datasets to trained
models, but these can be picked apart according to the developer’s needs. A
TaskDataset will always be valid input for training and evaluation, no matter
if it came from a DataReader. A Results object can always write data to
and read data from files, no matter if it happens in training.

4.2 Assumptions

Before resuming to the detailed explanations of the operation designs, a small
summary of the design assumptions made is given:

� The device is unlikely to hold many datasets in memory at once, yet
for systems that can, this might still be desirable for the speed-up it
can provide.

51



� The model creation is central and developers should be able to build
pytorch models unrestrained.

� The training and evaluation loops should not required modification, as
they are static for all (gradient descent based) applications, but they
should take variable functionalities.

� Hot spots for variation will likely have to be varied at each point within
the runtime itself

� Preprocessing will have to be both easily made the same for multiple
datasets as have an individual process for each one

� Introducing more execution time for creating and preparing the data
for training and evaluation in the name of flexibility and added features
is more acceptable than it is for executing the actual training and eval-
uation. Training and execution take significantly longer and can grow
exponentially based on the dataset size and amount of epochs, while
data preparation only has to be performed once before each run.

� As soon as the implementation is made, the developer wants to walk
away until the results are in. The developer must both be able to de-
fine the pipeline as the variations they want to investigate beforehand,
while the system must offer checkpoints to restart in case a malfunction
happened during execution.

� Mistakes will be made.

4.3 Key Decisions

Starting off, in order to give a clearer understanding of the ideas behind the
design, a summary is made of the key design decisions and their reasoning
behind this. From these ideas, the rest of the framework is filled out and
constructed. In essence, the goal of what is supposed to be built - the pipeline
- can be found illustrated in figure 5.1. To achieve this, the key structural
options that were taken are as follows:

1. Datasets and the way they are stored have an infinite amount of vari-
ations all of which can’t be anticipated. The situation is to make sure
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that a developer is not limited by the systems finite amount of data
structure assumptions, while still ensuring that they create an object
which will have no issue in the rest of the system, as well as offer devel-
opmental time cutting tools in the extraction process. As a response,
the framework in this stage was designed with an abstract DataReader
class which the developer has to extend for their particular dataset,
that gradually fills a TaskDataset which is the standardized object to
encapsulate the data. The DataReader contains abstract functions that
the developer has to implement, for which it has a predefined execution
order. Ensuring validity happens through builder methods which verify
the correctness of the input and the calling of the validation function
in the DataReader that checks that the final object is correct.

2. For reasons of modularity, the choice was made to have all dataset
manipulations be defined in the TaskDataset class itself and not some
external class. This way, no external class has to make assumptions on
the exact structure of the inputs and targets which makes it more fea-
sible to create an extension to if required. These manipulations often
work in relation with the ExtractionMethod object, which is a class
that is responsible for the modification of singular feature matrix in-
stances. This thus makes the functions on the TaskDataset responsible
for navigating the structure and the ExtractionMethod responsible for
changing the content of the structure.

3. The pipeline up until the initiation of training and/or evaluation is as-
sembled through using the TrainingSetCreator. This consists of adding
DataReaders, ExtractionMethod objects, filtering definitions, etc in a
builder like pattern, which is consequently executed by calling its exe-
cution function. In other words the developer can add elements as they
desire and consequently assemble the process the way they want after
the fact. Adding elements to the TrainingSetCreator can be scaled to
all involved datasets (if desired) this way and also be replaced after the
fact without having to redefine the entire pipeline.

4. Tasks and datasets are two different things and so tasks have become
their own objects which can be present in multiple TaskDatasets. These
objects contain all general task related data (e.g. the exact label names)
as well as methods for handling their related outputs. The situation
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when tasks are present in multiple datasets is streamlined in the Con-
catTaskDataset, where their related target labels are placed at the same
positions.

5. The training and evaluation mechanisms are pretty singular functions,
with some internal behaviour that can be redefined as it redirects them
to an external object. This definition is pretty rigid as a way to reli-
ably separate the complicated numerous combinatory possibilities into
individual task handlings. Another thing is that, while performance
was not a main objective in this work, it was to be avoided to intro-
duce possibly too many extra redirections and overhead by completely
disassembling its functionalities for the sake of flexibility.

6. Building on the previous point, as discussed in [55], more classes intro-
duce more complexity, and so it was avoided to introduce too many spe-
cialized case handlings, unless when they were made extendible through
a hot-spot. This explains more why instances like the training mecha-
nism are structured the way they are - since they are essentially func-
tions and object oriented definitions would assumably do more harm
then good - as well as why manipulations are defined on the Task-
Dataset objects themselves and not through an external class.

4.4 Creating standardized objects

One of the most important aspects of this framework is the addition of stan-
dardized objects to encapsulate the input. These allow for easy manipulation
and combination of different datasets. The objective is that once created,
the developer should not have to worry about them further down the pipeline.

The standardized object is called the TaskDataset. This contains the
feature matrices extracted from the audio files in the dataset, their target
labels which form the ground truths and their corresponding task informa-
tion. Creating these objects from the raw datasets is a complex task which
requires the navigation of their storage structure, that is specific for each
dataset. Developers should thus be responsible for getting the correct data
out of the dataset but should get proper assurance the object was created
correctly.
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The design choice was thus made to create an abstract factory the de-
veloper has to extend, loaded with the necessary tools to insert the data
correctly. In order to provide the necessary assurances the object is created
correctly as well as facilitate the process, the TaskDataset is loaded with
builder functions. Through these the TaskDataset can be filled step-by-step.
This further achieves two things. One, because the functions are in the
TaskDataset itself, no outside classes have to make any assumptions about
internal data structure or workings of the TaskDataset. This ensures modu-
larity and extendibility of the TaskDataset and will be a constraint held for
the rest of the design. Two, because datasets can be too large to be loaded
in the system’s working memory, this way each instance can be inserted one
by one in the data object.

Back to the abstract factory - the DataReader - where the abstract meth-
ods are called in a predefined pattern, so the developer only has to extend
the required methods and adhere to their required responsibilities. To aid
with extraction and processing the sound files from different datasets in the
same way, this class also has a processing function for the numerical time
series representing the audio. Included here are abilities like resample audio
to the same rate and converting multi-channel audio to a single channel. The
developer themselves can choose to use this or not. Along with creating the
standardized object, the factory also includes quick saving and reading of
the created object for the specific method of extraction. This makes it more
feasible to quickly reload the dataset without having to redo the extraction.

The structure for storing data in the TaskDataset itself then is as follows.
Since in audio every instance likely has a different size due to varying audio
lengths, the collection of input matrices are stored as tensors in a Python
list. Each target then is stored as a list of integers. Usually they are encoded
as binary strings with a 1 in each column number that an instance has a
corresponding label for. The target labels in the order which relates to the
column numbers and the rest of the task information is recorded in a Task
object which is stored in the TaskDataset as well.
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4.4.1 Variations

The default assumption is that a dataset has a single list of unrelated inputs
with a target label for each instance. This section will explain how variations
on this can also be contained in the TaskDataset. First variation are datasets
which have separated predefined training and test sets. These will have to
be combined with datasets that have to be split afterwards. Both training
and test dataset have to receive the same preprocessing, so to enforce this
their objects have to be somehow linked. This is done through making the a
composite object that is a TaskDataset which contains a test TaskDataset.
The test data can then be stored in this test object inside the composite
object, while sharing the same preprocessing functions as well as appropri-
ately handling called functions on it to allow it to be treated uniformly to a
dataset without presplit data.

Next variation are datasets that have target data for multiple tasks.
While one task with according targets is required, the rest can be added in
a list of tuples of task objects and a list of targets same as for the ’main’ task.

The last one are datasets that have ”groupings”. What is meant here are
datasets consisting of audio files that are already split, with each part having
their own ground truth, but cannot be divided later (e.g. parts of the same
split going to the training set and the test set). For this instance, the same
formality is used as in sklearn’s splitting functions and a grouping list can
be stored where the index corresponding to each instance belonging together
contains the same number.

The objective is to treat the resulting TaskDataset uniformly regardless
of variation. The strategy for handling each of these cases will be discussed
in the appropriate sections later.

4.5 Manipulating datasets

As mentioned before the created standardized objects are also responsible
for providing easy manipulation abilities for datasets. The choice was made
to include dataset changing handles on the object itself, which can be called
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by other classes, without having them know the underlying representation
of the object itself. These handles fall into two categories: functions that
transform data instances and functions that change the collection itself.

The functions that transform instances are the most likely to change, as
these have to be tweaked based on their effect on performance of the result-
ing recognition system. What we understand under these are data scaling
methods, windowing functions, but also feature extraction as this transforms
the original time series representation to one fit for the required learning
task. The data scaling and other possibly required preparation functions
will depend on the feature extraction method used. For example, a feature
extraction method which outputs a time dependent representation will re-
quire a windowing function that cuts the feature matrices to the same shape
in order to fit them in the same batches, while one that outputs matrices of
the same shape will not. To adress this along with the likelihood of change,
the instance transformation functions are encapsulated in an object called
the Extraction Method.

This is an abstract template that developers have to extend in order to
define their required implementation. Parameters for these implementations
can be given on the fly as input to instantiate these objects. The whole object
is then stored in return as input in the TaskDataset which will then use it
when the call is made to transform the data. The extraction method object
has a decorator inheritant, with a number of premade classes that already
implement numerous transformation functions, as can be seen in figure 4.1.

The extracion method object accumulates a number of transformations
that depend on which extraction method is used. These can be categorized
as feature extractors, scalers, preparation fitters and preparation executors.
Feature extractors create a feature matrix tensor from a given time series
representing an audio file. Scalers include calculating metrics for scaling and
then using those to execute the scaling of the data. Preparation fitters and
executors are separated. Executors mainly concise of framing and segment-
ing operations which transform the data in matrices of the same size. Fitters
calculate the parameters for these operations, but these operations can al-
ways be executed with parameters given by the user.

The Extraction Method object has another hidden function which lies
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in its name variable. The TaskDataset uses this object’s name to store its
extracted feature matrices to files. This happens in the interest of being able
to quickly reiterate and compare different variations. The extraction method
itself also gets stored, to allow for recreating the input at a different time
than the original extraction and transformations were done.

Functions that change the collection itself then are ones that filter and
split the data. For these ones it does not matter what is contained in the
actual instances, but simply how the collection is composed. Filtering the
data instances - based on their associated labels - is present to offer the
ability of adjusting the label distribution. This happens through taking a
(pseudo)random sample of data instances with the associated label of the
defined size the developer wants the (maximum) amount of labels to be. The
rest then gets filtered out of the current dataset object.

Splitting the dataset then in a train and test set requires a more so-
phisticated strategy. Because both require that the same transformations
are performed, with some additional constraints (see further), it is opted
for creating a composite object which both is a TaskDataset and contains a
TaskDataset that is the test set. Splitting the dataset into a train and test
set is performed then by filling this test set with data split from the original,
while both share the same object - with the same parameters - for perform-
ing transformations. As mentioned before, there are datasets which have test
sets defined beforehand. The difference between these two situations is thus
that the developer fills this test dataset beforehand. At the point where a
dataset has a filled test set, both of these situations thus become the same
again for the rest of the process.

Creating training and test sets themselves do not simply happen at ran-
dom either. The default case is that these get a stratified collection, meaning
that the resulting folds will try to stick as close to the original label distribu-
tion as possible. Mentioning folds gives away that the splitting is not simply
meant for one time use. The splitting into train and test sets actually con-
tains three operations. First is splitting the data into k equally sized folds
based on their indices. Second takes indices and transforms them into a
train and test TaskDataset, while returning previous data to the original set.
Third simply handles the difference between predefined sets and sets where
the splits still needs to happen, calling the previous functions in the latter
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Figure 4.3: Sequence diagram illustrating how the TrainingSetCreator ex-
tracts the data from datasets to training and test sets

case.

4.6 Combining Datasets

When the datasets are created and prepared for training, they need to be
combined as a single dataset, but from which the instances can be processed
differently per task in training and evaluation. The solution for this is another
composite object called the ConcatTaskDataset. Built on the groundwork
from PyTorch’s ConcatDataset, this class contains a list of TaskDatasets
and builds a front for the data loading in training making it seem like one
big dataset. Alongside this, the class contains methods for differentiating
the different tasks afterwards. At instantiation every individual dataset gets
loaded with information to combine the target vectors into one. More de-
tailed information on the exact problems that need to be addressed and how
it achieves this are given in section 5.4.
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To illustrate the execution flow of creating the input for training and
evaluation a sequence diagram is given in figure 4.3. In the above sections
the designs are detailed for the individual handling of the datasets. This di-
agram illustrates how the TrainingSetCreator brings the operations together
by functioning the handles present on the above classes. As mentioned in
4.1, this class is a pipeline pattern where dataset and manipulations can be
optionally added and scaled to individual or all TaskDatasets at the same
time.

Not only does this add modularly replaceable sections in the handling of
data, the TaskDataset objects are reset every time a new pipeline piece gets
added. This allows modifying the creation of a TaskDataset while keeping
the ones that do not need to be altered. Imagine the situation where multiple
TaskDatasets are created and combined, when the developer wants to alter
the creation of one of them. In stead of having to recreate all the objects,
only one of them is reset and remade.

4.7 Creating Model

This framework is aimed at providing a facilitating extension to PyTorch
for training and testing multi-head hard parameter sharing models. Model
creation thus puts as little requirements on designing the actual models as
possible. The rest of the system builds on Pytorch’s classes as to ensure that
the input would be valid for any PyTorch module. The only presumption
the system has to make is that the output is a tuple with each entry being
the predicted results for each task in the order of the task list from the input
dataset. While no class was made that ensures the developer does this cor-
rectly - with the model creation being central, the developer should have the
freedom to create whatever they want, adjusting the functionalities around
it if necessary - there are two base multi-head networks, a CNN and a DNN,
available which has variable layers based on the input. These also already
include adaptations based on the type of task. In this area the mantra is
that the developer knows best.
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4.8 Training and Evaluating Model

When the model is designed and the input dataset is created, they will be
inserted into the method which trains and/or evaluates a model. These two
are similar, with the only exception that the training function updates the
model parameters every loop. Training (and evaluating) a model happens
through a method which should remain static, but can vary its functionalities
based on input. The reason for this is that the framework can only ensure
the validity of the created pipeline if it controls how inputs are received and
outputs are processed. In other words if it knows what it is going to do with
the received data.

The handling of objects and data which the rest of the system does not
rely on however, can be overwritten in numerous ways, depending on the
required change. These are all discussed in section 5.6. Every batch statis-
tics are calculated from comparing the model’s results to the ground truths.
This happens through an adapter class that takes the predicted results and
is responsible for writing them to the correct files. This class, the Results
object, is wired to write results already to TensorBoard. This library pro-
vides easy visualization for deep learning metrics. This happens live, both in
the training and evaluation loop, so that developer can follow the progress
and intervene during the loop if necessary. The developer can easily extend
this class and define their own desired metric calculations, as the results only
receive the ground truths, predictions and the loss.

Alongside metric calculation and storage, the Results object also provides
checkpointing function for the model’s parameters. This makes it possible to
retrieve a model’s previous states. The Results object thus acts as a unique
adapter for each training run, managing and distributing files resulting from
training and evaluation. Because of this design choice, it is possible to con-
tinue or restart previous runs by instantiating the same Results object and
giving it to the ”blind” training and evaluation functions.

Especially the evaluation function dynamically uses this, as it can either
take a model object or load up the model from each epoch if none was given.
This simple aspect allows a developer to use the system as a testing frame-
work for trained created models if they need to.
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Changing non-metric related functions - like early stopping - can be done
by another extra object which can be given as input, namely the Train-
ing Utils object. This simply contains functions, for which the developer can
write an extending object and give as input.

4.9 Comparing the steps

In order to truly grasp what the design is offering in terms of developmental
aid, a comparison is made to development without the framework. Consid-
ering that there is a lack of a comparative framework for building multi-task
pipelines as well as to get working examples of multi-task implementations,
three demonstrating implementations are taken [3] [1] [2]. These are tuto-
rials on multi-task implementations in PyTorch which give a good sense on
how research oriented implementations -which focus on simply getting the re-
sults and not developing a good maintainable system- are made. While these
sorts of implementations will mainly be illustrative for implementations by
more inexperienced developers, they are a good demonstration for the sorts
of problems that arise by the lack of a framework which can be present to
smaller degrees even in implementations by more experienced people.

A comparison of the involved steps is drawn up:
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Development steps without the framework

1. Implement an extension to the PyTorch Dataset

� Either build a new extending class for each dataset or build a
dataset structure which can be reutilized for all involved datasets

� Define the data encapsulating structures (e.g. list of tensors for
the input feature matrices)

� Define the getter function, including what it returns which will be
used later when iterating over the data, as well as which outputs
will be batched together

� Define the length function

2. Iterate over the raw dataset and extract the inputs and targets to the
PyTorch Dataset extension(s)

3. Implementation and execution of the input transformations

� Either the transformation parameters are set in stone or they have
to be calculated from the dataset

4. Implementation and execution of the input filtering functions

5. Creation of training and test set

6. Definition and implementation of the training and evaluation loops

� Multi-task loss calculation means separate calculations and sub-
sequent combining of them

7. Output evaluation metric calculation and storage

8. Model creation

9. Execution of the training and evaluation mechanisms with the desired
parameters

10. Implement and execute the visualization of the output evaluation met-
rics
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Development steps with the framework

1. Extend the DataReader

(a) Implement the data gathering/indexing function

(b) Implement the input insertion

(c) Implement the insertion of the targets AND the task

2. Assemble the pipeline through the TrainingSetCreator:

(a) Assemble and add the ExtractionMethod

(b) Add parameters for filtering/sampling the data

(c) Add normalization call

(d) Add transformation call

3. Execute the pipeline

� Either return complete prepared datasets

� Or a generation function for k-fold train/test generation

4. Model creation

5. Instantiate Result object

6. Insert data, model and Result object into train and evaluation mecha-
nisms

7. Investigate and compare the results in TensorBoard

First, the easiest comparison to make is in terms of which steps exactly
are being taken care of. Starting from the top, an extension has to be made
in both cases for extracting the input. The difference is that without the
framework there has to be an extension to the PyTorch dataset as well as
subsequently iterating over and extracting workable data, while the frame-
work only requires the iteration and then gradually the valid object can be
built. Then, the dataset manipulations like transformations and sampling
always have to be defined, implemented and executed. Compare that to
the frameworks methodology using the ExtractionMethod class which can
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be assembled with premade function definitions how the developer wants
and transformation executions become simple 1 line calls. Sampling is also
readily available with parameters that define its functioning. Train and test
set creation get reduced to a simple line call cutting its need to define. Im-
plementation and evaluation loops no longer need to be defined, nor do the
metric calculation and visualisation, both cases being reduced to simple 1
line calls to function. The model creation is still present and as much work-
load for both cases.

While it is easy to point out how much the framework cuts in code com-
pared to implementations which were only made for a single function, its
inclusion is mainly meant to demonstrate how even these single function
implementations can still be performed faster and clearer through the frame-
work. However, there are two more subtle developmental problems which
are targeted in this design. What these implementations do is performing
pre-designed methodologies, which does not actually reflect how development
works, meaning there is a hidden undercurrent of steps that can not be seen
by laying the implementation steps side by side like this.

The two extra aspects that are examined are modifications and expan-
sions. In order to understand the modifications work load - how they arise in a
development process, how a multi-task, multi-dataset setting can exacerbate
the problem - consider why modifications are required and how these rigid
systems would force them to be handled. Modifications are often required in
order to get the implementation even working. In case the transformation
function needs to change in [3] and [1], because an error is given (e.g. the
input matrix is resized to an incompatible size) the developer has to replace
the code in multiple places and again execute the whole extraction process
as well. If then there is still a fault which doesn’t raise an error, but leads
to invalid results, this has to be redone again. After that if there is no more
error, but the results aren’t optimal wherefor the transformation is varied to
be optimized, the same thing happens multiple times and everything keeps
getting recalculated from the raw datasets. Consider then that this has to
be done for 1) multiple datasets 2) multiple elements (e.g. the extraction
method) 3) multiple locations of their calls. Simply put, modification is an
inseparable part of implementation as well as the whole development cycle
and if it isn’t anticipated, the high, error-prone, repetitive workload ensues.
The framework reduces these type of calls to singular, extendible places as to
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avoid having to keep track of where to make modifications. An example of
this is the HoldTaskDataset structure which automatically handles the cor-
rect redirection of the functionalities to the training set and test set where
needed. Furthermore, when the interest lies in modifying and keeping track
of the best results, using the framework offers the feature of replacing a part
at runtime through the pipeline structure in the TrainingSetCreator.

The other aspect are expansions. One of the ideas of introducing this
framework is to stimulate research, which in this regard means avoiding is-
sues for experimentation. Extra steps, datasets, parameters and/or functions
are insertable while the other parts of the pipeline are designed for flexibility.
Looking at [3] for example, each input is linked to a set amount of different
task labels. This means that the training module only works for that specific
dataset, perhaps combined with others as long as they have the exact same
structure. This framework is there to open the doors for unspecified amount
of combinations of tasks and datasets. Not only experimentation is possible
through this, but the gradual building of more complex pipeline structures
for performance optimization as well. The key here in design is the flexibility
of its structures and the extensibility to define new ways of handling the
objects. Another important aspect is in its metric calculations and visual-
izations. The Results object offers both the option to have no limit on what
a developer can add in terms of visualizations, but also includes the power
to load old models and expand their visualizations.

To reiterate, the referred examples are not particularly well written imple-
mentations, but do offer the opportunity to clearly indicate how the frame-
work can simplify the process of implementing a multi-task system as well as
quickly open it up to new opportunities. Aside from time saving shortcuts
to implement one solution to a multi-task classification problem, the system
also thinks about shortcuts in the optimization process as well as the exper-
imentation process.

4.10 Three Implementations

With the base strategies in the pipeline designed, it might seem complex
without a clear reason why its abstractions were built. This section will give
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insight to how the framework was developed alongside giving clear examples
of how the previous designs are instantiated. This is not meant to be taken in
a way where the design followed from separate rudimentary implementations
of this problem, but how the design was incrementally refined to serve more
problems.

The designing process for a framework is broken down by Roberts et al.
[55] as follows. Frameworks are reusable software patterns that facilitate
the development of applications. Determining the correct abstractions must
come from concrete examples, as it is nearly impossible to have to foresight
to address the required functionalities from simply the domain. A number of
abstractions do not become apparent until the framework has been reused.
Generalizable solutions can only come from actually building the applica-
tions.

What Roberts et al. [55] propose as a simple step by step plan is to build
three applications in the same problem domain which differ from each other
each time. While the more applications get developed lead to a more gener-
alizable framework, there has to be a cut off point as too many applications
can make it impossible to actually finish the work. That being said, a frame-
work is likely to continue to evolve after the three applications are made.
What follows now is an explanation of the three applications that shaped
the design of the framework, ending with conclusions drawn from them and
further extensions.

Choice

First however, the choice of projects must be decided. Each of them
will be acoustic multi-task classifiers with different requirements for the sys-
tem. The focus for this platform is research and iteratively designing the
best performing multi-task system. Therefore, the first two implementations
are following two research papers. This choice also adds an opportunity to
evaluate the system by comparing to the reported results. Generalizing for
multi-task purposes means that the choices must cover enough datasets, tasks
and data processing features. Implementing existing research can be helpful
here for discovering possible set-ups, one must take in account that this is
completed work. The process of discovery and improvement of systems is not
usually covered in the resulting paper. Therefore, the last implementation
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actually went into trying to develop new functioning set-up for multi-task
research .

Low-resource Multi-task Audio Sensing for Mobile
and Embedded Devices via Shared Deep Neural Net-
work Representations

In the work done by Georgiev et al. [23], a Deep Neural Network is devel-
oped which tries to create a general purpose audio task model that addresses
computational limitations of mobile, embedded and IOT devices. The ap-
proach is to bring 4 separate audio tasks together in one deep learning frame-
work, for which they try out different configurations. Every task is tested
combined in a multi-head network as well as separated after which they eval-
uate the effect on performance for each of them. The model that combined
each in a single multi-head model was not significantly worse than the best
performing one, making the multi-task set-up a viable way to reduce resource
requirements.

The chosen tasks here were Speaker Identification, Emotion Recognition,
Stress Detection and Acoustic Scene Recognition. These are three back-
ground identification tasks, meaning they don’t actually require to know
what happens in an audio fragment and can take a longer time frame for la-
beling. To rebuild the actual set-up this work utilised the ASVSpoof database
[67] for the Speaker Identification task, the Ravdess database [36] for emo-
tional speech recognition task and the DCASE 2017 Acoustic Scene dataset
[39]. The stress detection dataset was a subset of the Ravdess dataset with
different audio lengths.

For extracting features they utilised both MFCC [54] and their own cre-
ated summary of filter banks. This summary consists of creating different
statistical aggregation metrics (e.g. the mean, the standard deviation, the
median, ...) per coefficient from extracted log filter banks [60]. This creates a
representation from an audio sample independent of time and requiring less
space.

For design purposes, the multi-task pipeline is examined. The system
is built for low quality audio with a sample rate of 8 kHZ. From the audio
MFCC or the logbank summaries are extracted. Each task has a different
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Figure 4.4: The Multi-Task pipeline and Model used in Georgiev et al. [23]

dataset but all the inputs require the same extraction. The resulting matri-
ces are then normalized using the mean and the standard deviation from the
numerical data. This is then used as input for training the model, which is
done using gradient descent. The data is fed to the training module in strat-
ified batches. In this context, it means that a batch contains samples from
every dataset, with the amount of samples from every dataset matching inter-
nal size ratios of the datasets. The summary of this can be found in figure 4.4

A few lessons have been made from recreating this exact set-up.

� Every audio sample should be able to be resampled which will likely
happen at all the datasets at once

� Feature extraction as well as any other preprocessing will have to be
easily replicable for every dataset at once

� Features can be time related or not. If the dataset has varying time
lengths then the resulting feature matrices will be of varying lengths.

69



These can not be batched together for data loading. The solution for
this is to include an operation that can transform feature matrices to
the same size in a windowing function.

� Depending on the desired batching method, it is possible that data
instances from all datasets and tasks have to go in the same batch.
This does not only require that input instances have to have the same
size, but also that target vectors can go in a unified matrix structure.

� Normalization using the mean and the standard deviation happens dif-
ferently for these two feature extraction methods. In MFCC, the mean
and standard deviation is calculated per one dimension in the feature
matrix: the coefficients. This makes sense as the second dimension
are time steps, so the numerical distribution will be from the same
domain. However for the statistical summary matrices, every value in
the second dimension is a different metric. Mean and standard devia-
tion calculation must happen in this instance per cell basis. In essence
for the system, this means that both these scaling methods need to
be covered, but also that normalization (and possibly any other trans-
formation operation like windowing) depend on the extraction method
used.

� The DCASE dataset has a predefined train and test set. The other two
do not. The system has to be able to store both of these instances in
the same standardized object as well as combine them easily and take
them in account when generating test sets for the other case.

In figures 4.5 and 4.6 two object models depicting instantiations of the
set-up. In the first image is the situation where the TrainingSetCreator ex-
ecuted the TaskDataset generation method in each DataReader class. This
illustrates how a Dataset which has a predefined test set is combined with
the others which do not, while all of them have the same transformations in
the ExtractionMethod object. The ExtractionMethod object then is com-
posed of a LogbankSummaryExtraction, a PerCellScaling, a FramePrepara-
tion and a MedianWindowSizePreparationFitter object, accumulated in the
LogbankSummaryExtractionMethod. A step-by-step explanation goes as fol-
lows:
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Figure 4.5: Object model instantiating the set-up from Georgiev et al. [23]
after the TaskDatasets are created
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Figure 4.6: Object model instantiating the set-up from Georgiev et al. [23]
after the train and test sets are created along with the input objects for the
Training
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The LogbankSummaryMethod extracts summaries of logbank filters as
explained in the paper. PerCellScaling standardizes the data by calculating
the mean and standard deviation of every separate cell aggregated from every
feature matrix in the dataset. These are then used to achieve a per cell data
distribution with a mean of 0 and a deviation of 1. FramePreparation cuts
the matrices to frames of the same window size. This size is then decided
by calculating the median matrix size in the dataset in the MedianWindow-
SizePreparationFitter.

In the next object model, it is demonstrated then what the situation is
after the other datasets have their testDatasets split off and how these are
accumulated in their concatenated train and test sets. These, along with a
Results object and Multi-Task model form the input for training.

A Multi-task Learning Approach Based on Convolu-
tional Neural Network for Acoustic Scene Classification

In this paper, by Xu et al. [69], an Acoustic Event Detection (AED) task
and a Acoustic Scene Classification (ASC) task are put together in the same
multi task framework. Here a Convolutional Neural Network is used for clas-
sification with AED being an auxiliary task for improving the ASR task.
The training data for the ASC task comes from the DCASE 2017 acoustic
scene dataset while for the AED task it comes from the DCASE 2017 sound
event dataset. The evaluation data comes from their respective predefined
evaluation datasets. The evaluation metric is not simply accuracy which was
the case in the previous work but Unweighted Average Recall.

Again, a number of lessons have been made from recreating this set-up:

� This work has two predefined test sets, yet only one is used for eval-
uation as the focus is only one of the two tasks. Developers need to
simply be able to control what goes in the training set and the test set
separately, so training and evaluation can happen independently. On
the same note, the framework should not only be made for combined
datasets but be as receptive for single datasets.

� ASC and AED function differently. ASC is a task where one singular
label is predicted for a whole sound file. AED detects whether or
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not a sound event is present at every time frame within a sound file.
Multiple sound events - and thus multiple labels - can be given to a
single feature matrix. These are respectively called multi-class tasks
and multi-label tasks and the system thus needs the ability to combine
both. They (often) require different loss calculation methods (in this
case categorical cross entropy and binary cross entropy respectively),
which thus should be decided in the system depending on the type of
task. Following that the developer only should focus on one part of the
pipeline at a time, the developer should be able to define the handling
of the task when the task is defined (in other words in the Task object).

� Alongside handling the model output depending on the task definition,
the model output head for each task itself should be adaptable on its
definition. Multi-class tasks need only one output, which in this case
is achieved by a SoftMax layer. Multi-label tasks need multiple output
labels which happens here through a sigmoid layer defining the activa-
tion value for each label. The dynamic output of models is important
when different task combinations are made for the same system.

� There are numerous ways to evaluate the output of the system. Stan-
dard evaluation metrics should automatically be readily available, but
the developer needs to be able to define their own required implemen-
tations easily.

� The DCASE audio files are not mono audio files but stereo. This means
that there are two time series in parallel for which individual feature
matrices have to be made and appended. It’s also possibly desired that
the audio files are converted to mono files.

Reporting the interaction between tasks

In an effort to create a research like use case setting, which pushes some
of the boundaries of the system as well as require the framework to be able to
implement a more exploratory experimentation methodology, an exemplary
experiment was devised and created. In this work, numerous datasets are
extracted and combined in a multi-task model in order to investigate their
resulting effect on each other and whether they are consistent when varying
parts of the pipeline. The chosen datasets and tasks where Speaker Identifi-
cation from the ASVspoof dataset [67], Sound Context Recognition from the
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Ambient acoustic context dataset [49], Acoustic Scene Classification from the
DCASE 2017 Acoustic Scene Task dataset and Acoustic Event Classification
from the DCASE 2017 Acoustic Event Task dataset [39], Audio tagging from
the FreeSound FSDKaggle 2018 dataset [20], Speech Emotion Recognition
and Stress detection from the Ravdess dataset [36] and Keyword Detection
from the Speech Commands dataset [65].

With this set-up the goal is not to be able to recreate an existing work,
but to efficiently implement an exploratory experiment with varying parts.
The idea is to run the pipeline for each singular dataset, two-by-two, three-
by-three and then all combined in a singular function. What is of interest is
whether patterns emerge when two tasks are learned together that are con-
sistent. For this the patterns are thus noted from investigating the difference
between single task and dual tasks. These patterns are then tracked when:
a third task is added, all tasks are combined, a different extraction method
is used and a different model is used. The extracted features chosen were
the MelSpectrogram and the MFCC features. The two models were the ones
from the previous two implementations which were a DNN and a CNN.

This requires from the framework that:

� All the datasets can be extracted to TaskDatasets

� The extraction method can be efficiëntly switched out

� The model can be efficiëntly changed and instantiated with a different
amount of heads

� A large number of different results can be clearly compared in multiple
aspects

Earlier it was mentioned that the assumption was that a developer wants
to walk away until the results are in. Therefore, the whole process and its
variations are implemented in automated loops which weren’t to be touched
after initialization.

The resulting lessons are as follows:

� The SpeechCommands dataset is an online dataset that can be accessed
through a generator function from a library, but does not actually pro-
vide the sound files. Pre-processing and input insertion should not
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assume sound files are available. The generator function also means
that before iteration, the raw dataset can’t be accessed through index-
ing and its size can’t be known (unless metadata is available). The
framework should be able to build the taskdataset in this iterator-style
setting with its builder functions.

� When switching out the extraction method the whole dataset has to
be recalculated and the quick reading functionalities have to be able to
differentiate between the used extraction methods.

� The model has to be able to switch as well adapt the number and type
of heads depending on the current combination. This shows that there
are unvarying parameters (like in this instance the amount of layers)
and varying parameters (like the amount of heads).

� The audio clip sizes vary significantly between datasets. The developer
must be able to exactly control how they want to handle this. Trans-
formations and their calculation functions therefore must be able to be
executed both as if the combined datasets were one and for each one
separate. To illustrate this: a developer can either choose to reform
all feature matrices from all datasets to a singular size, but that might
mean that too much information is lost for the more extreme matrix
sizes.

� Building on the previous point, one of the reasons that a developer
might want to make their feature matrices of equal sizes is so that they
can be batched together. Another possibility is that they want to keep
their sizes intact internally for each dataset. Loading the data in the
first case is covered by the standard PyTorch DataLoader behaviour
as it can make random batches from each dataset it likes. However
the second case where each batch is from a specific dataset is not, but
should standardly be present as a way to ensure that different dataset
combinations are possible out of the box.

� Observations in previous works like Tonami et al. [64] note that de-
tection of events from AED combined with ASC did not improve if
they were present in multiple scenes. Individual label detection perfor-
mances must be able to be observed separately.
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� When trying to find working parameters as well as debug, a smaller
validation set should be form-able, so that the whole dataset doesn’t
have to be involved.

� As not to waste unnecessary time in these sort of huge iterations of
combinations, the dataset must be able to switch between a streaming
context for larger (combined) datasets and loading the data in memory
for smaller (combined) datasets.
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Chapter 5

Implementation

In this chapter, the implementation details are described for how building a
multi-task learning pipeline is implemented.

5.1 Technology

The implementation is built in python and relies on PyTorch [50] for deep
learning modeling and training. PyTorch is one of the biggest and most
accessible frameworks for developing neural networks. This framework is
designed to utilise its objects as to minimize an extra learning curve, as well
as lighten any developmental work that it still requires. For visualization,
the framework utilises TensorBoard [24], an interactive visualization library
which offers the ability to inspect the model and its capacity for performance
with desired metrics. This was chosen for its interactivity and options for
comparing different runs using multiple different visualization methodologies
side-by-side.

5.2 High Level Description

To illustrate what the resulting pipelines built with the application consist
of, a simplified example is given in figure 5.1. Using the model designed in
the previous chapter, a sequence of steps can be created resulting in a trained
and evaluated multi-task model.
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Figure 5.1: Simplified Pipeline Overview

The pipeline can be split up into three parts: Data Standardization, Data
Loading and Training. In the first section, Data Standardization, labeled
audio datasets are transformed into standardized objects.

5.3 Data Standardization

The first part of the pipeline is responsible for reading the audio data from
datasets, extracting their features and storing it along their targets in valid
objects. This also includes abstractions for reading and writing of files that
store these objects for later use. As every dataset has their own structure
and storage method, the implementation for every data reader has to be
specified by the developer. The structure therefore is built around following
the pattern layed out in the DataReader class and extending its functions
with dataset specific ones. The pattern goes as follows.

5.3.1 Structure

First, a DataReader object is instantiated with an ExtractionMethod
object and relevant parameters. The ExtractionMethod is the tool used
to transform individual data instances. Since specific data transformations
can often depend on the specific extraction method used, it is opted to group
multiple transformation functions this way. The DataReader is a class which
has to be extended and its abstract functions implemented. At initialization,
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the preliminaries of the extraction are put into place, like the data storage
paths and possible additional parameters controlling what data will be put
into TaskDatasets. The creation of the standardized object only happens as
soon as the return taskDataset is called, which takes parameters for control-
ling the behaviour of the extraction (e.g. the extraction method object and
the preprocess parameters). This will then initiate a sequence of function
calls which gradually build the valid TaskDatasets.

First of all, an empty TaskDataset object is created with the given Ex-
tractionMethod object. This is then subsequently filled with data through
the following functions. When the features still have to be extracted, the
datareader will first read the structure (e.g. list of locations, list of read
signals, tensorflow dataset, ...) in memory, through the load files function.
Then, the inputs are calculated in the developer’s extension of the calcu-
late input function. This function is used in connection with either the Task-
Datasets add input method or extract and add input method, depending on
whether it is necessary to utilize the ExtractionMethod’s feature extraction
function. The idea is that using the ExtractionMethod object, the list
of inputs is created by iterating over the structure, getting the read audio
form and extracting the desired features per audio instance in a PyTorch
tensor object. The targets and the additional task data is made in the cal-
culate taskDataset function. The targets are a list of labels which are likely
to be encoded in one-hot encoding and require as many instances as there
are inputs. The task data is encapsulated in the Task object where its class
indicates the type and its data include the list of output label names, the
order of which is important in one-hot encoding.

When the TaskDataset object is correctly created, which is validated
in calling the validate function on the TaskDataset, the next step is then
to write the extracted features to files in the write files method. While this
method can be extended if it is desired to write additional files, it is not
necessary as the TaskDataset object already has its own file management
functionalities. Because the created TaskDatasetobject also received the
ExtractionMethod object, it handles its files depending on the specified
extraction method, thus nullifying any need for further adaptations to be
made if the developer wants to extract different features for the same dataset.
If everything is written once already, the DataReader is able to detect this
using its check files method and will automatically read in the TaskDataset
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instead using the read files method. The whole process is depicted in figure
5.2

Aside from the mentioned functions which are directly called in the se-
quence, there are two other functions that require implementation. One is for
appointing the path to where the extracted TaskDatasets have to be written
and/or read as well as an additional path in case there is a predefined test
set. The other is for returning the task name, which is used for file manage-
ment as well, as it is feasible that a DataReader must output different tasks.

Having given the general overview of how to go from audio data to stan-
dardized objects through the framework, it’s also important to note what it
is designed to be invariant to. More specifically, the TaskDataset object
has a number of functionalities which do not require any additional handling
when utilized. The biggest one is the so called index mode, which automat-
ically distributes the data over files that are read when needed. This only
requires to be activated at the initialization of the TaskDataset, after which
the necessary functionalities will be switched out for index based ones.

Further factors the data structure can automatically deal with are datasets
which have predefined train and test sets. This is possible through the hold
- train - test set-up which allows for the train and test set to be defined
and linked through the holding TaskDataset. If this is not the case, then
the data is directly inserted in the holding TaskDataset and the splits can
be made later. Separate Train and Test TaskDatasets can have their own
storage locations, which the file management automatically handles as if it’s
the unseparated case.

The last one are multiple tasks for the same dataset, which can simply be
inserted without any limit into the same TaskDataset, after which the getter
functions will automatically take all targets for all tasks at the specified index.

5.3.2 DataReader

The DataReader class is meant as a parent class to be extended by specific
implementations for each dataset. As previously mentioned, it has a number
of abstract functions which require to be extended. Besides those, it also con-
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Figure 5.2: Data Reading Flow

tains an automatic parser for ExtractionMethod objects from text, in case
the input is directly read from files e.g. json. Alongside that, it also con-
tains a function to read in wav files at a specific location, using the Librosa
library, a signal splitting function time split signal and a separate prepro-
cessing function preprocess signal. These offer methods that will be available
in every implementing DataReader class, which is interesting for scaling the
same preprocessing functions and parameters over multiple datasets.

In figure 5.3, the complete described execution sequence of the return taskDataset
method is shared.
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Figure 5.3: Code which calls the abstract methods that need to be imple-
mented in the DataReader
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5.3.3 ExtractionMethod

If the DataReader is the workbench to transform audio datasets to Task-
Datasets, then the ExtractionMethod class is the hammer. The func-
tionality of this class is instance based and groups together a number of
transformations. The main one of course being feature extraction. This
class works similarly to the DataReader class as it has a number of abstract
methods to be extended if one wants to make their own implementation.
However, a number of them are already available, like the MFCC, the Mel-
spectrogram and the LogbankSummary features. At instantiation, this class
should receive extraction parameters and preparation parameters. The ex-
traction parameters should be a dictionary with parameters which can fit
in the utilised extraction method. Since these are stored in the object, the
same object can easily be reused on different datasets for consistency and
easy scalability.

The other functionalities that were referred to, to possibly be dependent
on the extraction method used are data transformations. One is the normal-
ization of data. This requires scalers to be fit on the data to then transform
each instance according to the scalers (typically infers calculating the mean
and the variance of the whole dataset and then scaling these so that the
mean of all instances is 0 and the variance is 1). Aside from scaling the
data, the ExtractionMethod object also includes a function for other trans-
formations. A typical use for this is cutting the matrices into same sized
frames, as audio data can have varying lengths. This function is already
included, along with a slight alternative, where the input matrices are not
cut but windowed, meaning one input matrix result in multiple windows of
the same size with overlap, so no data is lost. Standard methods for fitting,
scaling, inverse scaling entire 2D inputs and 2D inputs per row are also al-
ready available and are implemented using the sklearn preprocessing toolbox.

Owing to its decorator pattern, an ExtractionMethod object can be as-
sembled in any desired way as seen in figure 5.4. There are 6 functions that
contained here: extracting features, calculating scaling parameters, scaling a
feature matrix, inversing the scaling, calculating the preparation parameters
and executing the preparation. Functions can be left empty if they are not re-
quired as is the case for the NeutralExtractionMethod implementation. From
there, an extraction method extending the BaseExtractionMethod class can

84



Figure 5.4: Example of a composed ExtractionMethod object

be created for each function and inserted into an other that has other func-
tions defined. There are also a number of implementations readily available
as can be seen in figure 4.1.

The ExtractionMethod object is purely contained and used within the
TaskDataset object which not only uses it for extraction and transforma-
tion, but also as a way to store its related extracted feature matrices.

5.3.4 TaskDataset

The TaskDataset structure is how the framework manages to standardize
inputs and targets in one valid object for training. It extends PyTorch’s
Dataset class to allow for integration with its DataLoader objects. This class
is responsible for containing the data with functionalities for getting data,
storage and transformation. The entire TaskDataset structure is designed to
be customizable, but invariant when handling from the outside. There are 3
parts to this that have their own strategies: File management, structure of
data and the index mode.

First the file management will be detailed. The idea is simple: the save
function writes the Taskdataset to files and the load function reads the files
to a valid TaskDataset object. Using the joblib library, which allows files
to easily be written and read in a parallelised manner, the inputs are stored
separately from the targets and the other information. In order to create in-
puts that used different extraction methods easily, the storage takes includes
the name of the stored ExtractionMethod.
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Next is structure of the data. The input features are stored as PyTorch
tensors in a python list. The targets are stored as lists of numbers. These
two lists should have the same length. One data instance thus has a feature
tensor at index i in the inputs list and a target list at index i in the targets
list, where the number is 1 if the instance has the label at that position. The
named labels and their order are stored in the Task object, which is also
stored in the TaskDataset object. The Task object holds all information
related to the Task as well as functionalities which depend on the type of
task used. If more than one task should be available for the same dataset
- without having to put multiple copies of the same data in the combined
dataset - then these can be inserted and stored in the list of extra tasks,
which consist of tuples of Task and list of targets pairs. The indexes in
these lists of targets should still refer to the same data instance as the other
indexes.

Now, the index mode is discussed. The index mode basically writes the
feature matrices to individual files which are loaded when the getter func-
tion is called. This prevents that the whole dataset has to be loaded into
memory. A TaskDataset object should not be handled differently from the
outside when it is running in index mode or not. This is achieved by switch-
ing out the getter method for feature matrices, the save function and the
load function to one specified for index mode. The list of input tensors is
switched out for a list of integers that represent the indexes of the inputs.
An input feature matrix is loaded and saved with this index in its file name.
All other information is kept as usual.

Now, to explain how the object is invariant when handling from the
outside. File management, the storage structure and the index mode can
completely change in behaviour internally, as long as its output structure is
respected, there won’t be any problem in the rest of the pipeline. This is
because no assumption is made about any of these states from outside at
any point. For example, if the TaskDataset is functioning in the index mode,
there would not be any difference compared to when it is not that outside
classes have to take in account. This way, the developer does not have to
worry in this regard about creating their own implementations of the Task-
Dataset.
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Lastly, the case is examined where a dataset has a predefined train and
test set, possibly stored at different locations. As seen in figure 4.1, a dataset
is not simply stored as a TaskDataset, but can be stored as a hold-test
structure. Every HoldTaskDataset has a TaskDataset which serves as its
test set, for which it is the administrating object. Separated Test datasets
can be made through the HoldTaskDataset. The HoldTaskDataset then holds
the training data, while its TaskDataset the test data. The same philosophy
applies as for the regular TaskDatasets where all function handles are on the
object is made and no assumption about the state of the HoldTaskDataset. In
this instance, this manifests itself through the case when predefined train and
test sets are available. These can be stored using the builder methods from
the TaskDataset and still stored separately by defining different base paths
for each.

So, back to how it is invariant. The way to return the test data is to call
the generate train test set function. The thing about this is that it will au-
tomatically detect if a test set is already available and if not, it will generate
one. The parameters for this of course can be defined and the functionality
essentially falls apart into: generation of the indexes for train and testing,
returning the test set to the complete set, removing the test set from the com-
plete set and translating indexes of train and test set into the actual objects.
When a test set is created, its indexes are stored. That way, when the data
needs to return to the entire dataset, the original positions are maintained.
Another improvement this structure compared to separate train and test sets
is that manipulations from the TaskDataset only have to be called on one
object, where they will be redirected correctly. This makes the rest of the
pipeline able to handle TaskDatasets and HoldTaskDatasets interchangeably.

Getting a data instance - i.e. the feature matrix and targets - requires
more than just plucking the corresponding elements from the list. While the
data loading is discussed later, getting an item at an index from a Task-
Dataset infers getting three things: the feature matrix as input, the target
list as correct output and the task group. Getting the feature matrix is a
simple indexing operation, after which the scaling transformation is applied.
This transformation is applied every time in the get function, as the same
data likely has to be rescaled multiple times - e.g. in a five fold cross valida-
tion training set-up - so there is no need to revert the transformation every
time.
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Figure 5.5: Example extension of adding inputs in the DataReader

Getting the target data has to take in account more factors though. First
of all, it is required for creating batches that all returned items have the same
shape, meaning that every returned input and target list must have the same
dimensions. Correctly shaping the input matrices can be done using the pre-
pare inputs functionalities beforehand, but the targets are different.

Finally, inserting the data has been mentioned multiple times to happen
through builder methods. Examples of their use can be seen in figure 5.5
and 5.6. Inputs can be added on individual bases but targets have to be in-
serted in one chunk. This happens in order to verify the length. Inputs have
this per instance insertion method as it is very feasibly that the complete
list of extracted features cannot be contained in memory, while targets are
usually not that big in terms of memory. Adding tasks and targets also can
be done repeatedly and the framework will automatically place them into
the extra tasks list.

5.4 Data Loading

After the DataReaders created their individual HoldTaskDatasets, the
data should be prepared for training, split in train and test sets, concate-
nated into 1 dataset and loaded in batches. This section will detail how the
system turns the TaskDatasets into train and test sets and then loads them
in batches for training.
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Figure 5.6: Example extension of adding targets in the DataReader

5.4.1 Combining TaskDatasets

In order to combine multiple datasets into a structure which combines them
all as one, while still preserving necessary task information and functions,
PyTorch has a class called ConcatDataset which does exactly that. Con-
catDatasets can be used as inputs for PyTorch’s DataLoader classes, which
creates batched inputs for training. This class is extended in the framework’s
ConcatTaskDataset. Intuitively, this class accumulates TaskDatasets,
but also provides necessary functionalities for combining different datasets.

The aim is now to create a ConcatTaskDataset for training and test-
ing, from the individual TaskDatasets and have its data be valid for loading
and training in a multi-task manner. There are a few hurdles to this, as the
framework should take in account a few different possible scenarios. Gen-
erating batched inputs requires that every input in the batch has the same
shape. Specifically each feature matrix and each target matrix within a batch
must have the same dimensions.

Getting an item from a TaskDataset, means getting a feature matrix
and a target matrix at the specified index. When loading data batches, a
number of feature matrices and target matrices are concatenated in their
respective batch matrices. This function has to take in account the scenario
when multiple tasks are present within the same batch. In order to be able
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to quickly look up to which dataset an item belongs to, a dataset identifier
is also returned. This dataset identifier is set on initialization in the Con-
catTaskDataset per task, as it is simply the order id a TaskDataset has
in the ConcatTaskDataset. After a batch of feature matrices and targets
are made, the system can thus quickly identify which line belongs to which
task, which is useful for updating different loss functions later.

Another addition is required in the ConcatTaskDataset for this sce-
nario as well, namely padding of the targets. Because targets have to have
the same dimensions to be loaded in the same batch matrix, they have to
pad their vectors with zeros for to achieve the same vector size across all
tasks in the ConcatTaskDataset. These tasks also include the extra tasks
possibly present. Afterwards, the system has to be able to point out which
indexes in the padded vector belong to which task, which is done through
a function that generates a matrix of booleans per task, pointing out which
columns are theirs.

This is the structure how TaskDatasets are combined, but before that,
they have to be split into train and test sets and have their data processed
for training. Now that the end goal is clarified, the road leading up to it is
detailed.

5.4.2 Assembling the pipeline

In order to effectively orchestrate the path from the DataReaders to the de-
sired combined datasets, the TraingSetCreator is introduced. Through this
class, the developer can add and replace pipeline steps like the Extraction-
Method object, signal preprocessing parameters, sampling parameters and
transformation calls. The first part of the pipeline is always the DataReader
object of course. Each different pipeline part are kept in their own dictionary
where the keys are the same as those from the DataReader dictionary. The
pipeline parts are essentially calls to or parameters for either the function
handles on the (Hold)TaskDataset or the DataReader functions (e.g. prepro-
cessing). Each pipe part can only have one entry or it will be overwritten.
Insertion of pipeline parts can also be defined for a specific DataReader ob-
ject or they will be applied to all. There is one exception of pipeline part
that will be overwritten and those are the transformation calls. Essentially,
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the developer inserts string names of functions on the (Hold)TaskDataset,
which then get executed in the order they were given. What also can be
defined is whether additions to the pipeline that go for all DataReaders have
to be copied or remain the same. The latter results in the system sharing its
objects which for instance with ExtractionMethod objects mean that the pa-
rameters for scaling the data are calculated on the combined datasets while
in the former this then happens per dataset.

When the elements of the pipeline are added, the developer can either
call create taskdatasets or generate training splits. The difference is that in
the first case, the results are TaskDatasets of the complete data, while in
the second case, a generator object is returned that submits train and test
datasets using a cross validator. In either case, the pipeline parts are ex-
ecuted in a specific order that ensures correctness. In both function calls,
the complete TaskDatasets are created and stored. When new pipeline parts
or replacement parts are inserted, these TaskDatasets are flushed away and
have to be recalculated.

Finally when executing the pipeline, a subset of DataReaders can also be
indicated, only for which the pipeline will operate. In figure 5.7 it is shown
how the pipeline parts get fetched when executing the pipelines. Only the
DataReaders in the class list are executed. In figure 5.8 then, it shows how
the creation of the pipeline looks through the code.

5.4.3 Preparing Inputs to same size

While the system can automatically make the target vectors the same size,
for all the datasets, the developer should be in charge on how this happens
for input feature matrices. Audio data can come in largely varying lengths
and feature extraction methods who’s output dimensions depend on the time
domain, will have to either cut or pad their input matrices to the same size as
the rest of the batch. The TaskDataset class has a function that transforms
the feature matrices like this, which in turn calls the prepare input method
from its ExtractionMethod object for each matrix. Because of this reliance
on the used feature extraction method, the preparation is also in this class.

The framework provides two preparation methods out of the box. The
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Figure 5.7: Code for the creation of the TaskDatasets in the TrainingSetCre-
ator

Figure 5.8: Code example of creating a pipeline through the TrainingSetCre-
ator
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first simply cuts the matrix down or pads the matrix to the desired feature
length. It only requires the desired window length as input. This also can
be used alongside a window size calculation, which takes the median window
length of all the feature matrices. The second one transforms each instance
to possibly multiple windows of the desired length, with a given hop length.
This way, no information is lost, but it can greatly increase the amount of
data. If the developer wants to write their own function for this, they can
just extend the ExtractionMethod class and insert that into the Task-
Dataset. The preparation is called at the mark of the function call in the
TrainingSetCreator. The preparation parameters are stored beforehand
in the ExtractionMethod object.

5.4.4 Scaling Inputs

In order to produce successful results in deep learning, the numerical inputs
often need to be scaled. This happens because input variables may have
different scales, which in turn can make training unstable. Scaling normally
happens based on statistics calculated from the dataset, which are then used
to change the distribution of the data. One example is Standardization, for
which the data’s mean and variance are taken and the data transformed so
that the new mean and variance are 0 and 1 respectively.

The statistics have to be calculated on only the training set - otherwise
this would result in data leakage which would give a skewed result for eval-
uation - and then used to scale both the training and test set. Therefore,
calculating the statistics are only a function in the TrainTaskDataset class.
Because of the Hold-Train-Test structure, every set shares the same Extrac-
tionMethod object, so when the statistics are saved in the TrainTaskDataset,
they can be used in the TestTaskDataset as well.

The default scaling uses sklearn’s StandardScaler, which performs stan-
dardization. Already included are two ways of performing scaling. One is
where each matrix is scaled per feature. This is the normal case if the feature
extraction depends on the time domain. The statistics are taken from all the
rows per column for every data sample and the scaling is applied for every
column. The other one scales per feature and row, for situations where each
row is another feature. The statistics are thus taken and applied per cell of
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each feature matrix.

When the feature statistics are calculated, which happens in the Train-
ingSetCreator, the transformation only happens at the getter level of the
TaskDataset. This way, the transformed data is not stored every time and
shouldn’t be reversed every new train/test set gets generated. It also allows
the system to run in index mode in largely the same way as normal mode.

5.4.5 Filtering Inputs

In order to examine the effect of the distribution of data samples with specific
labels, the framework adds an easy way to filter/limit the amount of sam-
ples per label. The TaskDataset class includes a sample labels function, for
which a dictionary can be inserted where the key is the label and the value
its maximum amount of samples. This operation does remove samples from
the TaskDataset object, so in case the filtering needs to change, the object
has to be reread from memory. This filtering happens before the train/test
sets are created in the TrainingSetCreator.

5.4.6 Loading Data

When everything is prepared and the cumulative train and test sets are cre-
ated, the datasets can finally be loaded for training. The train and test gen-
eration, including every preparation step leading up to it can simply be done
by executing the generate training splits function in the TrainingSetCreator.
At that point, the train and test set can be inserted into the training and
evaluation functions, which will be detailed later.

However, what is still explained here, is the data loader and what it
returns, as this is important for how everything before it functions. The
training uses PyTorch’s DataLoader which takes a PyTorch Dataset and
PyTorch BatchSampler. The BatchSampler is intuitively used for creating
batches of input items and defining how they are assembled. The standard
BatchSampler does this randomly, meaning every batch can have an item
from any dataset. The framework also provides an extra BatchSampler, that
keeps every batch from the same TaskDataset, but switches from which one
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randomly. The BatchSampler does its operations based on indexes from the
dataset, which the dataloader then uses to call the getitem function from
the Dataset. As mentioned before, each matrix in a batch must have the
same dimension. Ergo in the first sampler, all the datasets must have fea-
ture matrices with equal dimensions, while in the second, the matrices only
have to have the same dimensions within the same dataset. In other words,
the dataset preparations depend on which BatchSampler will be utilized for
training.

In TaskDatasets, this function returns three things: the feature matrix
at the specified index, the (cummulative) target vector at the specified index
and an identifier for which dataset the item belongs to. The difference be-
tween index mode and without, is solely how it returns the feature matrix.
When iterating over the DataLoader, these will thus be returned in 3 sepa-
rate matrices of the specified batch size.

5.5 Training

When the train and test sets are created, it is time for the training loop.
Training and evaluation are designed to not require any modification, as
they include hooks for multiple possible extensions. At this point, the only
inputs that are necessary for training are the PyTorch model, a Results
object, the training set and any additional training parameters. This sim-
plicity yet extendibility for training tries to allow developers to easily change
variables anywhere in the process, as quickly as possible, without having to
adjust other parts of the pipeline. There are four components to this stage:
Model creation, results handling, training updating and evaluation.

5.5.1 Model Creation

Model creation does not have any additional functionalities and simply re-
quires PyTorch Modules. It is up to the developer to create models using
PyTorch that can handle their Multi-task requirements. This also allows
external models to be plugged into the framework and easily tested. The
standard assumption the system does make in training however is that the
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Figure 5.9: Complete example of the pipeline definition and execution

different classification results are returned in tuples.

In order to provide a helpful basis, the framework already has two sim-
ple, adjustable models available: A DNN and a CNN. Both consist of an
adjustable number of shared layers, with an adjustable number of nodes that
branch into different output layers per task that have an activation func-
tion, depending on the type of task. Multi-class tasks have a log softmax
activation function, while multi-label tasks get a sigmoid activation function.

The way it is brought all together can be seen in figure 5.9.
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5.5.2 Results Handling

To evaluate the system’s performance efficiently as well as creating an ab-
straction layer for reading/writing intermediate results, the framework uti-
lizes the Results class. This object is responsible for storing and recalling
calculated data during training and evaluation. Furthermore, it also provides
an easy way to visualize data through TensorBoard.

The results object has to be created beforehand with a unique name for
the training run. This gets used for the file locations, as well as identifiers
to compare runs in TensorBoard. Developers can create their own Results
object or use the create results method in the Training class, which han-
dles the unique name creation. After it is created, the training function and
evaluation function require this object and automatically write their results
after every batch and after every epoch. After every batch, the overall loss
gets saved as well as the true labels, the predicted labels and the loss of
each individual task. After every epoch, this information is used to calculate
the learning curve, the evaluation metrics and the confusion matrix. Each
of these then both gets written to files using the Joblib library, as well as
visualized using the TensorBoard Library. Developers can see the metrics
develop during training, which can also help them anticipate problems in
their models.

The evaluation metrics are calculated using the sklearn’s metrics library.
These return the precision, recall, f1-score and support metrics for all indi-
vidual labels as well as for different aggregation forms. For multi-class and
binary class tasks, these aggregation forms are macro average and weighted
average, along with the aggregate score for accuracy. For multi-label tasks,
these are micro average, macro average and weighted average aggregations.
These reports get written in full to files for every epoch. The visualization
of evolutions of these numbers can be seen and downloaded through Tensor-
Board’s UI.

Also the confusion matrix in every epoch gets calculated and written to
TensorBoard, so one can follow the evolution of how samples are classified.
Same goes for the learning curve or the loss curve which is calculated from
the overall combined loss of all tasks.
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Not only do the metrics get written every epoch through the Results ob-
ject, a copy of the model that is being trained its parameters get written
as well. This thus creates a checkpoint for the model at every epoch that
can be used later. Every writing function of the previously mentioned data
comes with a straight forward loading function as well. Every path and name
used is set during initialization. Therefore, one would only need to initialize
a Results object in the same way as it was done previously, in order to
load up all written data related, using the same additional information (e.g.
epoch number, the task, ...) that was used to write. The Results object
can easily be recreated through a static method in the class called the cre-
ate model loader which takes the run name and any custom paths that are
needed to recreate the same results object. This simplifies the data loading
process when a developer would need it, but in combination with saving the
model parameters also allows for something more.

Being able to easily load every model state in training, means that each
of these states can be reintroduced into the training or evaluation function.
This allows for what is called interrupted training, meaning the training loop
can simply continue from a certain epoch’s model state if the loop was some-
how stopped. To facilitate this, both the training and evaluation functions
include a start epoch parameter, from which the loops can then continue
until the end. The evaluation function goes even further and includes an
automatic model parameter function if the inserted model is blank. This
way, evaluation of the different states can happen at any time, as long as the
Results object it received is correctly initialised. If the object was created
using the default settings before, this only requires the correct name of the
run.

5.5.3 Training Updating

Training a Neural Network happens by multiple times iterating through the
data, each time inserting a batch of feature matrices, predicting their labels,
calculating a loss function from the predictions and the correct labels and
then updating the model’s parameters based on the loss function using a -
usually gradient descent based - optimizer. In a multi-task setting, this can
get trickier as one has to calculate each task’s loss separately, possibly with
different loss functions, based on only the inputs from that task’s dataset
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and then combine the losses to a single result, with which to update the
model. A platform that is able to handle all sorts of task and set-up vari-
ations has to thus dynamically deal with various scenarios as well as open
the opportunity for the developer to customize for possible other variations.
The training function run gradient descent is designed to not require any
code adaptations, meaning most of its functionalities have a default way of
working which can be overwritten. Each step of the training loop will be
explained and discussed what scenarios it can take on.

Initializing
From the start, the developer can submit their own optimizer, data loader,

device and TrainingUtils. The optimizer just needs to be one of the Py-
Torch optim objects, or extends it, with the default being the ADAM opti-
mizer. The data loader also should either come from or extend PyTorch’s
DataLoader. This is by default the standard PyTorch DataLoader, but with
the previously mentioned MultiTaskSampler, which alternates for each
batch between tasks. The device is also an element from the PyTorch li-
brary, which is responsible for defining where the deep learning calculations
are made. By default this gets set to the system’s GPU if available, else the
CPU.

The TrainingUtils object is a collection of different functions which a
developer possibly wants to alter in the training loop. This includes the
combine loss function - responsible for defining how the losses from different
tasks are added - and the method for defining early stopping. By extending
this class, a developer can define their own definitions for these functions
without problem.

After this, the training starts looping over the epochs wherein it loops
over all the data in the dataloader.

Prediction
Inside an epoch, the training loop goes over every batch of data in the

DataLoader - which holds the ConcatTaskDataset from earlier. Every
batch includes a batch of feature matrices, a batch of correct target labels
and a list of identifiers to which dataset each sample in a batch belongs.
The input feature matrices are then sent to the specified device and inserted
into the PyTorch model to acquire predictions. While this can be adjusted
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if the corresponding functions are changed in the TrainingUtils object, the
system’s only requirement from the PyTorch model is that the prediction for
each task is a separate tensor, combined in a tuple. This part requires no
further adjustments for the multi-task setting.

Loss Calculation
After the prediction is made, the loss has to be calculated for each task

and combined. The list of identifiers from the data loader is there to take in
account the scenario where multiple tasks from different datasets are present
within the same batch. A list of booleans is created for each task that indi-
cates for each sample in the batch whether it belongs to that task. A similar
list, indicating which target columns belong to which task, is received from
the ConcatTaskDataset. To reiterate, every target vector has a column
for every label in its own dataset, as well as zero padding for all the labels in
the other datasets, which allows samples from different tasks to be present
in the same batch. In order to calculate the loss for each task, the matrix of
predicted labels and the matrix of ground truth labels, are filtered so that
only the samples and columns for the task at hand remain, when its loss is
calculated. When only one task is present per batch, this doesn’t do anything
and nothing is filtered out. When multiple tasks are present in one batch,
but only one dataset, then no samples are filtered out, but the other target
columns still are for calculating the loss.

After the unnecessary data is filtered, the predictions and ground truths
can go through the loss calculation. The loss calculation functions again rely
on PyTorch loss modules. These are different for different types of tasks, and
the loss function, as well as the handling of the predictions and ground truths
matrices are defined within the Task object. For example, CrossEntropyLoss
cannot be used for Multi-Label classification tasks, as it requires a singular
class as its target. Therefore, the system calls on a function to translate
the ground truths beforehand, which in the case where CrossEntropyLoss is
used for a Multi-Class classification task, would mean that the ground truths,
which are encoded as binary sequences, first are converted to the class num-
ber to then be put through the loss function. The loss function itself is also
stored in the Task object and can thus be easily be replaced by a different
function through implementing one’s own Task class extension and giving it
to the TaskDataset. Also the final class choice of the prediction can be ad-
justed in the Task object, but this is only used for statistics, as the PyTorch
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loss functions can perform their own decision functions for predicted chances.

Model Updating
Combining the different losses then normally happens through a simple

summation of all the losses. As mentioned before, this can easily be changed
in the TrainingUtils object. This cumulative loss is then used to update
the model’s gradients and the model is updated using the optimizer per-
forming gradient descent. All individual losses and the combined loss are
saved through the Results object, and the next batch is loaded. After the
batches, the training metrics are then calculated and saved, as well as the
model’s current parameters.

At the end of each epoch then, the system will call the TrainingUtils’
early stop function to assess whether it should quit training early or not.
After training stops, everything is written to files and the function returns
the trained model and the results object.

5.5.4 Evaluation

Finally, the evaluation is examined. The evaluation loop is in large parts
the same as the training loop, just without updating the model’s parame-
ters. The same functionalities to deal with different multi-task scenarios are
present in the evaluation function, so the same inputs can be used for both.
The system thus loads a batch of data, predicts the labels, calculates a loss
function and then writes the evaluation metrics to files. The same Results
object should be used in training as well as testing. The metrics and their
files are automatically differentiated into train and test results, but both can
then be viewed and distinguished in the TensorBoard UI.

One notable thing about the evaluation function however is when it is
used. This is open for two different cases: one where the evaluation happens
during training and one where it happens after. If the developer wants this
to happen during training, then all they need to do is include the test set
in the training function as a variable. The training loop then automatically
pushes the current model into the evaluation function for one epoch, with all
the same variables as in training. This then just iterates through the whole
test set once and writes the resulting metrics to files.
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To allow for separate evaluation - e.g. if the developer wants to test a
previously trained model - the evaluation function solely needs a Results
object with the same data as during training and an indication that it is a
blank model. When this happens, the evaluation loop automatically uses the
Results object’s function to load in a model’s parameters from file, which
it does for each epoch.

5.6 Extendibility

In this section, there will be a deeper look at where the framework is open
for customization and how the developer is meant to implement this. The
framework aims to simplify development, but provide hooks for features that
likely need to be modified. In this line of thinking, the framework has different
categories to extend the base functionalities depending on the likeliness of
change. Each will be examined based on their structure, what is required to
introduce the extension and what it should take in account.

5.6.1 Classes that are meant to be extended

In this category are the classes that are basically abstract, for which the
developer should build their own extension, unless it is already covered by
the provided implementations. These contain the functionalities most likely
to change depending on the specific case, but provide the required method
definitions along with some basic functions to help the developer along. If
the developer extends the abstract functions and follows its required output,
the rest of the pipeline will not require any further adaptation.

The first one is the DataReader class. The structure and use of this
class has already been discussed in section 5.3.2. In terms of extendibility,
the parent DataReader class includes a basic structure for returning a Task-
Dataset, calling on a few abstract functions which should be implemented in
the child class. These methods include output type hints, which if followed
always lead to correct execution of the creation of a TaskDataset from the
Reader, but Python cannot enforce these, so the developer should be aware
of this. Aside from the abstract methods, the return taskDataset method
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also calls on functions that do already have implementations to respectively
check, read and write files to disk. These implementations simply call on the
ones defined in the TaskDataset class and only deal with the file handling
of TaskDataset objects. If a developer wants to check, read or write files
other than that, they should write their own implementations for these as
well. One example scenario would be to write read-in audio files to one file,
so that the code doesn’t have to read in all individual files every time a new
feature set is needed from the same data.

Next is the ExtractionMethod class. As explained in 5.3.3, this is an
object used in the DataReader, TaskDataset and the TrainingSetCre-
ator classes to transform individual data instances. In effect, this has three
forms of transformation: feature extraction, feature scaling and preparation.
The methods for all of these have to be overwritten in a child class, but
there are a few predefined methods for them already available in the parent
class. Also available are a few implementing child classes which the developer
can use or take as an example. Even if no scaling or further preparation of
the data is necessary, the methods for these will still be called in the Train-
ingSetCreator, so the developer should either not utilise this class or return
the same objects in that case. Aside from the methods, it is important that
each implementing class gives itself a unique name, for file storing purposes.

Following that is the Task class. This class, explained in sections 5.3.4
and 5.5.3, has two methods decision making and translate labels that a child
class has to implement. Respectively, these are responsible for deciding how
labels get assigned from probability based inputs and translating binary se-
quences to class numbers. These are used for loss calculation and metric
calculation, which have to change depending on the classification type. It
is not really expected that this class is overwritten if the developer is deal-
ing with Multi-Class or Multi-Label type classification tasks as they already
contain implementations. This object also holds the loss function for the
task at hand, but is given at instantiation, making extending this class only
necessary if the decision making and translation functions need to change.

Finally there is the TrainingUtils class. This class, discussed in section
5.5.3, is a collection of different functionalities used in the training function
run gradient descent. This class is extended if the developer needs a differ-
ent way to combine losses or criteria for early stopping, without having to
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adjust the code in the training and evaluation functions. The early stopping
receives the current epoch and more importantly the Results object, from
which it can take any previously written data in the training run.

5.6.2 Classes that can be extended

This category contains the classes that are open for extension, in case some
functionality is required that is not covered in the implementation or needs
to be performed differently. In this section will be explained which classes
fall in this category and how they can be subclassed so that the rest of the
system does not need further adjustments. These classes are objects that are
handled in the rest of the system.

TaskDataset objects are itself extensions of the PyTorch Dataset class.
The HoldTaskDataset, TrainTaskDataset and TestTaskDataset classes
inherit from this class. Extending these classes is pretty straight forward and
their functionalities are called in three different classes. In the DataReader,
initialization of this class is called. In the TrainingSetCreator, the trans-
formation functions from the base class are called and the train/test splitting
functions from the HoldTaskDataset are called. For the dataloader, the
getter and len methods are used. In the training and evaluation function
then, only the Task object stored in the TaskDataset is utilised. So, in or-
der to change any functionality related to these, one either has to follow the
original output structure or simply take note of how it is used in the corre-
sponding classes and of course its internal use. An example for something
the developer would want to modify by extending the class is to change the
input and target data structures. The only class the external code should
change is the initialization in the user implemented DataReader, as they are
responsible for correct initialization anyway, but otherwise any data manip-
ulation is handled inside the class internally. No external class makes any
assumptions about the internal nature of the TaskDataset, except for the
return types of its functions.

The ConcatTaskDataset functions like this as well, but is only used in
the ConcatTrainingSetCreator and the training and evaluation function
for two simple getter methods. One is to return the list of all Task objects in
the concatenated dataset and the other for returning the target flags matrix,
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or the indicators per task which columns belongs to it.

Result objects can be extended as well. This class is only used in the
training and evaluation functions. Its use happens through adding predicted
outputs and ground truths along with the losses for each individual task as
well as the combined total, every batch in the epoch. At the end of the epoch
then, the add epoch metrics function is called, where the metrics of the epoch
are calculated and the internal writing function for each metric type as well
as the model parameters are called. Extending this class can thus be done
for each individual write/load function. Another option is thus to extend the
batch and/or epoch functions in order to change what metrics are calculated
and written, without having to change anything about the training or evalua-
tion function. The Results object is also used in the Training Utils class to
calculate the stopping criteria. Any additional functions can thus be added
and called for this function by extending both this and the Training Utils
class as mentioned before.

5.6.3 Classes that should be extended from outside li-
braries

These are classes where the system relies on the original PyTorch implemen-
tation. These extensions should simply follow the original implementation’s
functions, that can be found in the PyTorch documentation. These are the
PyTorch Module, the classifier used in the training and evaluation function,
which should be extended anyway for every new implementation. Also the
PyTorch DataLoader - which handles the creation of batches - and the Py-
Torch DataSampler - which handles how batches are sampled from the wider
set. All of these are only used in the training and evaluation functions, for
which they are optional inputs with default values.

5.6.4 Classes that should not be extended

Finally there are the classes that are not open for extension. In actuality,
they can be extended of course, but the system is not designed for it and
changing their code likely requires extensive rewrites in depending classes.
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In stead, these are designed so that their internal functionalities can be mod-
ified based on input as much as possible.

The first instance is the TrainingSetCreator and the ConcatTrain-
ingSetCreator. The ConcatTrainingSetCreator just creates TrainingSetCre-
ators for each dataset and forms the concatenated train and test sets from
their outputs. The TrainingSetCreator then is nothing more but an abstrac-
tion that calls the data manipulation functions in the TaskDataset objects.
Every one of its operations thus only depends on the implementation inside
the TaskDataset object that it handles, the rest is just organized calling
of these functions, in order to create valid train and test sets. Aside from
the data manipulation functions though, the preparing calculations for those
manipulations are called here as well. Any code the developer thus makes to
modify the behaviour of this class would need to take this in account, but
the framework keeps the scenario in mind that these are not desired at all,
so it won’t make any assumptions for the implementation of its children.

The next instance is the Training class, which of course contains the train-
ing function run gradient descent and the evaluation function evaluate. The
framework is designed so that these functions do not have to change at all,
by standardizing all data structures beforehand and making functionalities
modular and changeable by input. The extension of the classes described
above mostly change the behaviour in this class. Here, a short overview will
be given of how each functionality in these functions can be changed from
the default behaviour.

� The DataLoader and its Sampler are PyTorch implementations can be
given as input

� The device on which the deep learning is performed - the cpu or the gpu
- is a PyTorch implementation and defaulted to the gpu if available, or
can be defined as input

� The optimizer responsible for updating the model’s parameters is a
PyTorch implementation and can be given as input

� The TrainingUtils object can be given as input. This object’s func-
tions are called for combining the losses from different tasks and early

106



stopping criteria. These functions can be changed by creating an object
extending the TrainingUtils class.

� The PyTorch Model responsible for predicting the labels of an input
can be given as input

� The data structure of the inputs and targets can be changed in the
TaskDataset’s getter function

� The way a target vector from a task is translated to serve as input
for the loss function relies on the translate labels function of the Task
object in the TaskDataset

� The loss function of a task is given as input in initialization of the Task
object in the TaskDataset

� The decision function, translating class probabilities outputted by the
PyTorch Model to actual classes, relies on the decision making function
of the Task object in the TaskDataset

� The Results can be given as input, which receives and stores the out-
puts, ground truths and losses every batch then calculates and writes
the metrics based on these results every epoch. This also stores the
model parameters.
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Chapter 6

Evaluation

6.1 Demonstrate Implementations

Table 6.1: Implementations LOC comparisons

Title Total LOC Data Reading
LOC

Data Loading
LOC

Training LOC

Park et al. [49]
Without

177 75 24 + 2 25 + 10

Park et al. [49]
With

101 1+10+78 = 89 8 3

Georgiev et al.
[23] Without

211 105 46 32+30

Georgiev et al.
[23] With

159 4 +46
+52+40=142

11 3

Xu et al. [69]
Without

50 35 43

Xu et al. [69]
With

92 2 + 46 + 33 8 3

Own Experi-
ments

364 8 + 52 + 78 +
46 + 33 + 49 +
40 + 33 = 339

15 8

As a way of demonstrating the way the framework offers the tools for
rapid prototyping as well as reusability and extensibility, a number of imple-
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mentation tasks have been made. For evaluating these aspects, the number
of lines of code (LOC) for each implementation is shown, compared to im-
plementations that have been made using pytorch, without the framework.
The implementations that were chosen were multi-task set-ups described in
published works, along with an implementation which is set-up to variate and
analyse a number of different elements in the multi-task pipeline. Since this
framework has a focus to be utilised in research, it is important to demon-
strate that its results align with those reported in published results as well.
The framework implementations shouldn’t differ significantly from the re-
ported results, even if they deviate due to numerous small implementation
details that would unavoidably differ from the original work.

The results of the implementations with their LOC are given in table 6.1.
For each implementation, things like imports, empty lines and debugging
logic are ignored. Another thing that is not counted are the LOC for the
actual models, as they are solely part of the PyTorch framework and their
implementation would be the same without the extending framework. Each
implementation without the framework covers the basic training and test-
ing of models, which imply the three stages of the multitask deep learning
pipeline mentioned earlier, namely Data Reading, Data Loading and Train-
ing. Each stage is mentioned separately in terms of LOC, to demonstrate
the amount of work cutting that happens. Aside from training and eval-
uating models, metric calculation and visualization is handled in the same
way as the framework does itself, which means calculation through sklearns
metrics toolbox and visualization through TensorBoard. However, additional
visualizations that are present in the framework, like those of the confusion
matrices and the loss, as well as the additional storing and checkpointing that
happens are not covered in those implementations. Solely the work required
to replicate the original work is implemented. LOC in Data Reading are
split up for each experiment that uses the framework, with the first element
being the calling of the DataReader class and the subsequent elements be-
ing the separate implementations. What was included for each section goes
as follows. Data Reading covers iterating over the dataset and extracting
the data to a form which functions as a readable collection that can later
be in turn iterated over and fed to the model. Data Loading is taking that
extracted data, applying the necessary transformations so that the Training
stage can simply receive and process the instances. Training then includes
creating and training the model with unaltered data from the previous stage.
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First thing which can be noted from looking at the results is the fact that
Data Reading consistently comes out higher than without the framework.
The reason for this is that the DataReaders do not really offer a lot of ab-
stractions for simplifying reading datasets into usable forms for input and
training of models. What they mainly do offer are quick extra quality of life
features like quick reading, as well as functionalities that allow variations,
which in turn can significantly reduce later work. This reduction does not
only go for reusing the Data Reading structures, but is shown apparent in
the significant decrease for the data loading and training sections. The extra
lines of code required for the Data Reading almost exclusively come in the
form of the function definitions and outputs, with the exception of having
to add getter functions for the task name and the storage location that the
quick reading functionalities use.

Park et al. [49] The first implementation [49] targets a paper which does
not actually describe a multi-task framework, but a single task one. The LOC
comparisons are given in table 6.1. The feature extraction - vectors outputted
by the VGGish autoencoder - was not present yet in the framework, so had
to be defined as an ExtractionMethod object following the framework. This
only takes three more lines, which are function definitions. To explain the
sum of LOC: the first 1 is how much LOC is required to call the complete
data reading functionalities in the eventual experiment. The 10 LOC is for
implementing the ExtractionMethod object, which was not covered yet by
the base framework. Last LOC are for the actual implementation of extract-
ing the data from datasets, which come close to the original required amount
of LOC.

Park et al. [49] describes its results for two cases. In one, it has a label
of leftovers which it limits to 500 instances, as to not be disproportionately
present in training. In the other, it additionally removes the label ’speech’
from its instances. These fall under the Data Loading section of the process,
which is a feature covered by the framework. The data has to be split into
a train and test set, which is also covered in the framework. These two ele-
ments explain how even single task set-ups can get significant reductions in
required lines in its Data Loading process as seen in the table.

Explaining the reduction for training is pretty simple, as the training loop
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- loading batches of data and updating the model - is covered in one function
in the framework, which also covers visualization of the results. A training
loop becomes as simple as creating the model, creating the Results object
and inserting the necessary information in the training loop.

Georgiev et al. [23] In the next implementation from Georgiev et al.
[23], 4 tasks are taken from 3 datasets, but a different clip length has to be
taken for the two tasks that come from the same dataset. Essentially, two
different datasets must be extracted from the same dataset, with one being a
subset of the other. The change in clip length can be added on the fly, using
the DataReader’s time split signal function, but otherwise, the same applies
as before, with the framework offering little in the way of line cutting abstrac-
tions. What can be noted in the other sections, it that they don’t really re-
quire more LOC even with the increase in datasets. The data loading section
only requires more lines than the previous, due to the fact that the data must
be scaled and every possible combination of the datasets must be created and
compared. These results demonstrate the power of the TrainingSetCreator
and the training functions, which easily scales operations in terms of added
datasets and tasks. Training implementation becomes more complex from
the previous case, due to the padding required to combine multiple targets of
different lengths in the same batch. The correct task losses must be updated
according to the instances that where given in. Additionally, the DCASE
Dataset already has a test set defined which must be connected with the
other datasets that require splitting. Normalization of the data must also be
done after the train/test splits are made, as they shouldn’t be normalized
using test data which is not seen. All these complicating factors are handled
by the framework automatically, where the TrainingSetCreator handles the
correct execution order of defined transformations, reducing their call to sin-
gular lines.

Xu et al. [69] Following that is the case of Xu et al. [69]. This connects
a multi-label and multi-class task, which require different ways of handling
of the model output for loss and metric calculation. In the table, the LOC
in the Data Reading table are split up according to the dataset that they
are handling. The 46 lines are from the same DCASE dataset used in the
previous implementation. These can effectively be reused in the scenario
that the previous implementation was already made, with the differences
in extraction be achieved through given inputs, adding no additional LOC
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whatsoever. In that scenario, jumping from the previous scenario would be
impeded by the fact that the extraction method - melspectrogram features
- does not automatically result in same size feature matrices, which infers
that some sort of framing or windowing mechanism is required. On top of
that foresight was required to reutilize the previous implementation’s code
to allow for a different extraction technique. For the framework, this is as
simple as giving in a different ExtractionMethod object - decorated with the
desired preparation functions - and calling the preparation operation on the
TrainingSetCreator. Again, it can be seen that the training LOC stays con-
sistent and the Data Loading doesn’t necessitate further additions compared
to previous cases. This also demonstrates the reusability of the code once it
is implemented.

Variation Experiment In this work, the different combinations of a
large set of datasets and tasks are tested, variating models and extraction
methods. The experiment recreates a scenario that research might face, re-
quiring large combinations, extensive variations and heterogenic task types.
The aim here is not to provide new insights into the multi-task set-up or
the results, but to evaluate the model’s ability for combination and variation
demonstrated by how the coding requirements scale compared to the previ-
ous cases. Each of the previous cases’ datasets and tasks are included in this
experiment. In essence this would also provide with a concept for how new
research can easily be built of previous work. This is the same experiment
described in section 4.10

In total 7 datasets were used in creating this set-up, with 8 tasks. The
dataset linked to two tasks is the same used earlier for [23]. The tasks con-
tain both multi-class and multi-label tasks. Each combination is tested for 2
extraction methods and 2 models. For each run, the feature matrices should
be framed in the same size, based on the average feature matrix size and
the data normalized. As can be seen in table 6.1, this is the first time the
required Training LOC makes a significant jump in the Training stage, sim-
ply due to the fact that it varies models. The models are loaded for the
first time through the MultiTaskModel factory which mainly functions as a
way to concentrate static and dynamic model parameters for creation and
isn’t absolutely necessary. Otherwise, the training is performed using the
same three lines as before: model creation, results creation and training loop
instantiation. The Data Loading stage also takes a jump, but is in no way
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Figure 6.1: Data Loading in the variation experiments

113



related to the high and diverse amount of datasets, simply the variation of
elements in the pipeline. There are operations performed in the pipeline:
resampling, conversion to mono, calculating and framing the feature matri-
ces, normalizing the data. The Data loading code can be found in figure 6.1,
which makes it apparent that the extra lines outside the transformation calls
are simply due to iterating over the required variations. The actual amount
of LOC relating to direct data loading operations is 8.

This example makes it clear that all the work concerning datasets comes
beforehand in the Data Reading stage, with little extra effort on the devel-
oper’s side, while the combinatorial aspects are handled by the framework
in the background. Nothing has to be explicitly reloaded or recalculated, as
seen when adding the ExtractionMethod, by the developer as variations will
be handled by the framework and necessary data recalculated when required.
The framework thus reduces research variations to singular line changes.

To build on the last point of reducing work for research variations, es-
pecially in future work, it should be noted that given that the previous im-
plementations would have been made as was the case in this scenario, only
two extra datasets were added: FSD Kaggle 2018 [20] and the Speech Com-
mands dataset [65]. Given that, the Data Reading would be reduced to 8
+ 83 LOC in this implementation. DataReader objects are merely paths for
extracting the data, while the specifics of how can be given later. Vanilla
implementations would either require large code changes if e.g. other extrac-
tion methods or signal preprocessing functions were required or have to take
these in account beforehand and likely end up with similar structures.

What these efforts demonstrate is that the LOC only directly scale with
added required operations and do not spill over in other stages. To clarify the
last part, figures 6.2 illustrate how without the framework, train and test set
generation - which falls under the data loading stage - scales directly depend-
ing on the amount of datasets used. Compare that to figure 6.3, where it can
be seen that train and test generation is actually reduced to one simple line
before the three Training stage lines in the end. This also demonstrates how
the framework grants flexibility in which datasets to actually load and split
with the key list input, which grants further work reduction as in practice it
is possible that not all datasets are required which were planned beforehand.
In the first case, that would imply multiple lines of code change, while in the
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Figure 6.2: Train and Test set creation without framework for the [23] im-
plementation
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Figure 6.3: Complete implementation of [23] with the framework
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second, simply one line for the key list.

What should again be noted, is that the implementations without the
framework did not include a lot of the extra features that are performed au-
tomatically, the main one being quick reading and writing of the data. To
reiterate, this means that when the Data Reading stage is done, it is written
to files on the disk, so that future runs would not unnecessarily have to reex-
tract feature matrices. Including these would raise the LOC required for the
vanilla implementations a lot and would either have specific implementations
per dataset or end up constructing similar functions to the framework. These
LOC comparisons are for the bare required necessities only.

6.2 Literature Evaluation

In line with the goal to provide a tool that can spur development of multi-task
research, this section will examine the papers identified in tables 2.1, 2.2, 2.3
in order to evaluate the expressiveness of the framework as well as its limita-
tions. Specifically, the examination will be made in terms of changes that are
required to achieve some of the necessary features. The feature analysis of
the framework is performed by analysing the papers as problem contexts for
identifying model problems [10]. The goal is to identify possible limitations
to the architecture and possible future extensions that are required.

To do this, an examination of specific techniques that are present in the
literature is made and discussed to what degree and facility they can be
implemented by the system. Mainly techniques that haven’t been clearly
been addressed in previous sections, but have presence in the literature are
brought up here. From this, conclusions are drawn towards what future de-
velopment can focus on to provide a more complete framework for multi-task
development and what the limitations are of the (current) design.

Input Techniques. The first set of techniques are related to input re-
quirements. The framework’s data structure for encapsulating inputs is a list
of tensors that are, by index, related to one or multiple targets. Each input
can either be added directly as a tensor or as a signal from which the feature
matrix is extracted on input using the TaskDataset’s ExtractionMethod ob-
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ject. In any case, once the data is encapsulated within the TaskDataset, it
is always a feature matrix which is ready to serve as input for the training
function. There are (limited) functionalities available for transforming audio
signals before extraction through the DataReader’s process signal function.

While most research utilize mono channel audio signals [59] [46] [31],
there are instances where multi-channel signals are used, even as much as
four [44]. The framework’s extraction methodology already takes this situa-
tion into account, creating parallel feature matrices and concatenating them
into a singular input instance. In some instances though, stereo input signals
are transformed to mono channel signals in order to reduce the feature matrix
size. This situation is already covered as well as part of the process signal
function, where a multi-channel signal is averaged to a single channel at the
command of an input boolean, meaning it can varied at runtime.

However, this brings up the way signal processing is handled in the
framework. Its limitations become apparent when more signal transforma-
tions need to be performed. For example the data augmentations described
in [37] would be a problem in the current setting. In this scenario, multiple
randomized signal transformations are applied to a single fragment, before
MFCC features are extracted. In order to scale this operation for multiple
datasets, the developer has two options. One is to create an extension to the
DataReader class which are in turn extended by each of their DataReaders
for the individual datasets. The other is to store the signal as a tensor and
encapsulate the data augmentation techniques in the preparation function of
the ExtractionMethod class. Sadly, there are complicating factors which do
not make the described augmentation method possible, as additional noise
segments from random files in their dataset as well as the augmentation be-
ing recalculated every epoch for 30% of the dataset.

This case thus highlights two problems in the signal preprocessing ap-
proach: it is messy to create extra pre-processing functionalities and it is
impossible or very complicated to vary steps in creation of the input between
epochs. At first sight, creating a standardized approach for addressing this
specific situation would be complicated due to the reliance on an additional
dataset for noise fragments. The TaskDataset structures are not designed
with access to the original dataset in mind, nor do they currently offer any
storage of additional information.
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Moving on to examining what singular input instances actually are. In
pretty much all the research, an input instance is a single feature matrix,
which is the result of an extraction methodology applied to an audio signal.
However, two works challenge this form.

The first one is [19], where the input for a single audio fragment
comes in three forms: The time series, the MFCC features and the MFCC
deltas. These three representations are combined into a single LSTM encoder
which results in the actual input embedding. This embedding is then used
along with a random noise vector as an input for a Generative Adverserial
Network (GAN). However this network is trained (encoder LSTM trained
separately or together with the rest of the Multi-Task network), there is no
issue as tensors can be created which are concatenated from matrices with
different dimensions. The one caveat however is that, in order to batch mul-
tiple instances, the individual tensor dimensions must be equal, but this is al-
ways the case anyway, which is why windowing transformations are standard
available. The current implementations however only take two dimensional
matrices in account. If every instance does have variable shapes, a custom
DataLoader must be created, which would be the case anyway without the
framework. No extra complications are introduced due to the option to input
the DataLoader in the training and evaluation functions.

A more difficult situation however is found in [32], where target labels
from one task are served as input for the additional task. Targets are
not given as input for the model in training, which means that these should
be included as part of the input matrix. The issues that this causes however
are minimal, as it means that target vectors have to be stored twice, which
wastes space.

These cases impose less severe issues, but do require forms of extraction
and forming the classifier in a way which would inhibit easy addition of new
datasets. Besides, the models would also have to include steps to split up
these concatenated tensors, which possibly introduce too many undesired
calculations. More flexibility to deal with these situations could be provided
by allowing multiple input instances per fragment, similar to how multiple
targets are possible per instance.
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Target Techniques. The next category includes techniques related to
how the targets are formed. Targets are assumed to be vectors and are
stored as lists of integers. In the current setting, targets are labels which are
numeric, either discrete, representing categories or continuous for regression
tasks. In short, the targets are made for supervised labeled learning tasks.

Of course this makes the current framework not optimised to store any
other target structure. A first example of this comes in [38]. In this
work, speech enhancement is implemented as an additional task to improve
the automatic speech recognition task. Speech enhancement requires clean
speech signals as targets on which a loss function is calculated to measure
the discrepancy between noisy and clean signals. Creating an extension to
the TaskDataset to allow targets other than labels doesn’t sound too com-
plicated. The issue comes when combining multiple taskdatasets.

In order to allow for batching operations, which combines instances of tar-
gets in a singular matrix. However, in order to allow an unspecified amount of
tasks - coming from tasks which may or may not be present within the Task-
Dataset at hand - target labels are combined within a single target vector,
with dummy padding for the targets that are not present. When targets
become multidimensional, this structure consequently falls short. This sig-
nals a requirement more sophisticated ways to encapsulate multiple instances
for input matrices and targets, but has to pay attention not to introduce un-
necessary computational complexity for the simpler cases.

Mentioned above is the fact that the system is currently based around
supervised, labeled learning tasks. Self-supervised tasks like in [34] are
not that much of a problem. As these tasks are based on loss functions which
calculate on internal parameters or outputs (e.g. distance metrics), these can
be either added in the form of a task object with dummy labels or directly
extended in the Training Util’s loss calculation function. Tasks have to have
target labels, which do add small unnecessary extra memory usage. The loss
functions themselves can be formed as normal PyTorch loss functions, which
means no extra work load is introduced. An extra option is to include it in
the model itself.

Adaptation mechanisms like the gating mechanism in [62] are in the
same vein as self-supervised tasks. In [62], an internal gating mechanism
for prediction outputs is created, which adapts based on a cost function of
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utilising more channels. This cost function is combined with the normal loss
calculation and the model is optimized through the regular back propagation
method used. Each task has its own cost function calculated, but also can
either be implemented within the model itself or added as an extra task with
dummy labels.

The final case is that presented in [66]. The work presents a multi-task
model, with two parallel models that in one model uses the output of an
internal layer from the parallel classifier. The catch is that the parallel clas-
sifier is pre-trained, so its output would not be required to be utilised in
updating the multi-task model, nor would its layers be updated. The frame-
work would not even require any extension for this case, as the training set
can simply not contain the extra task, but the testing set would. The model
creation is entirely modularly separated from the rest of the framework, so
different subsections and combinations of the dataset can be used for the
model training and evaluation. As long as it arrives in the form of a Task-
Dataset, the model will be fed (batched) instances.

Loss Functions. In this part, methodologies concerning loss functions
are examined. The current methodology places one loss function per task.
These are calculated for each task in each batch separately, after which they
are combined. The combined loss is used for the backpropagation update of
the network. Both the separate loss calculations and combination of those
losses are part of the functions in the Training Utils object. Remember that
earlier it was stated the training and evaluation loops were designed not to
be touched, but the functions included in the Training Utils object do offer
modification options which can be varied at runtime, by instantiating a dif-
ferent Training Utils object.

With the current systems in place, the target structure from earlier is
assumed and the different tasks’ outputs are taken by breaking up the target
vectors. Any amount of different supervised is thus not a problem, with the
instances of the batch they apply to also being taken care of. The combina-
tion simply sums up the losses. The separate calculations and combination
of those losses are two separate functions, so a small adaptation like [49] of
introducing weights can simply be added in that extension. Loss func-
tions, contained in the Task objects, are given at instantiation and can be
varied at runtime.
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This structure of doing things, does however require the implementations
of those functions to work with what was received in the training loop. Nei-
ther receive the input feature matrices. This can be limiting to teacher
student training models like in [29]. This methodology is similar to the
parallel models in [66], except that the parallel model is only used in the
training phase as a way to train one of the task heads. The loss is not calcu-
lated on predefined ground truth labels but labels outputted in the parallel
pre-trained model. This is only a problem however if the parallel model’s
outputs have to be calculated at runtime for some reason however, in stead
of pre-predicting the instances and storing them as normal targets in a Task-
Dataset.

Finally, it has been mentioned often, but the training loop is only targeted
at gradient descent based training, following PyTorch’s methodology for
performing these. However, forms of training that can not be written this
way would require their own training implementation. This also limits some
forms of NN to utilize the current training loop. In [22] for example, a RBM
network is additionally created which requires greedy layer wise pre-training,
which would not be possible through the framework.

[22] also shows the last technique which would not be possible in the
current state, which is mini-batch SGD. There is a reason the training
loop function is called run gradient descent as it does implement a standard
gradient descent loop. In many ways this also illustrates why the choice was
made to require the developer to make their own implementation of the train-
ing loop. The loop consists of the standard gradient descent training loop
which elements can be individually interchanged. Other training procedures
could be and possibly bloated to create standardized solutions for, while the
developer can still utilize the same building blocks that offer its variability
qualities.

Conclusions
After examining the literature, some conclusions can be drawn regarding

what the framework lacks or can be improved in. In general, the main limit-
ing factors regarding the optimal implementation of research methodologies
can be found in the data structures for encapsulating the inputs and targets
and the rigid structure of the training mechanism.
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The signal pre-processing, which happens in the DataReader classes, by
utilizing their shared preprocessing function could use a more scalable, ex-
tendible format. Currently either a new extension to the DataReader class
has to be made. Furthermore, the addition of allowing multiple feature ma-
trices for one data instance should be considered. These input related issues
do not prohibit any implementation to be made but do require circuitous
solutions due to the framework.

In the target structures are more severe issues for implementing certain
techniques. Allowing other target forms from labels are crucial for certain
tasks even within supervised learning problems. This in turn would also re-
quire the way the system combines targets for batching to change from the
padding that currently. Less severe is that tasks with loss functions should
become possible without targets which would allow for more straight forward
multi-task implementations which optimize for non label based loss functions
as well, but there are workarounds as discussed.

In the sense of the training function, the rigid structure which requires
the developers own implementation if changes are required that can not be
achieved by extending the Training Utils class. Adding small elements like
mini-batching requires rewriting the training algorithm completely. Also does
the training mechanism only function for gradient descent based training.

6.3 Fulfilment of the Requirements

This section contains a point by point discussion of the designated functional
and non-functional requirements

6.3.1 Non-functional Requirements

� Modular: The framework is largely modular as a central design point.
The framework presents developers with the loose tools to design and
implement a multi-task pipeline at different levels. The DataReader
gives a loose structure to extract a dataset’s inputs, targets and addi-
tional task information. The DataReader’s open design merely gives
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a common structure and tools to create a TaskDataset, as well as im-
plement the quick reading mechanism, yet has no obligation to output
a TaskDataset object. The TaskDataset and related structures offer
a unified way to encapsulate the extracted dataset. The training and
evaluation loop offer the ability to load batches of inputs and targets
from a PyTorch Dataset, utilise them to predict the outcome using
the neural network. To compose the pipeline, the TrainingSetCreator
structure is in place, which creates the path from the raw datasets to
the processed and transformed inputs for the training and evaluation
mechanisms. The TaskDataset’s use in the taining mechanisms and the
TrainingSetCreator is not a full on dependency but does require specific
requirements for an alternative to be met. For the Training and Evalu-
ation mechanism, this is nothing more than the fact that an input and
target batch are outputted in tuple form when getting an individual
instance. If so, then it doesn’t matter what type of Pytorch’s Dataset
is given as its input. The TrainingSetCreator however does utilise the
added functions of the TaskDataset and the HoldTaskDataset. While
this does add a dependency on the TaskDataset structure, the different
phases - Data Reading, Data Loading and Training - are still completely
independent from each other. Whithin each of those phases, there are
numerous different elements that have been shown to be easily variable
either at implementation level or at runtime, depending of the necessity.

� Extendible: The design’s extensibility is discussed in its own imple-
mentation section 5.6. The framework builds atop of PyTorch’s basics
for the static data structures, which mimics its own extensibility. Every
implementing class has constraints which would ensure its applicability
in the rest of the system in case a developer needs to develop an ex-
tending implementation. The non-static datastructures, which refer to
functions like the training loop and the TrainingSetCreator, make sure
to keep its dependencies on a function basis, meaning that every func-
tion deals with one type of data structure and thus only those functions
need to be extended.

The Framework’s extensibility is mostly open due to its modularity. As
the few requirements for the usage of objects in other classes are met,
every functionality and more can be changed or added. Mainly the
training and evaluation functions are defined pretty rigidly in the sense
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that they have to be completely reimplemented in certain cases. Other-
wise, the extraction methods, the data transformations, the tasks, the
loss functions and many more described above can be extended and
introduced, without having to touch any other part of the framework.
Section 6.2 offers insight to the limits of the extensibility compared
to the requirements that were posed in the literature. Especially the
transformations of Datasets are completely open for extensibility even
with the TrainingSetCreator, as they are called through their naming
convention.

� Fast prototyping: The speed of prototyping is achieved in two ways
in the framework. The first is presented in section 6.1, where it shows
how a lot of papers’ described methodologies can be shortened through
usage of the system’s functions. The second lies in the system’s Train-
ingSetCreator structure, which automatically will form defined dataset
pipelines and recalculate them if new parts are introduced. When fine
tuning a new system, the developer can thus change variables and
functionalities while the TrainingSetCreator will now what parts to
recalculate on the fly. This way, both set implementations as well as
iteratively designed and fine-tuned implementations of networks have
reduced work loads.

� Cutting Double Work: In section 6.1 as well as the previous item,
it is discussed how the framework handles pipelines to avoid double
recalculations, with section 6.2 discussing it limits. However, finding
the right meta-parameters and optimizing the process steps get cut
through the TrainingSetCreator’s management of pipeline parts. Fur-
thermore, the quick reading functionality standardly offered through
the DataReader prevents unnecessary recalculation of features which
can take up a lot of computational resources.

� Flexible: The flexibility as well as its limits have been thoroughly
discussed in secion 6.2 and the previous chapters. To summarize, the
framework optimizes for numerous supervised learning cases, but still
has some blind spots, especially for non-supervised training set-ups.
When the data is encapsulated as a TaskDataset, the training and
evaluation loops will have no trouble processing regardless of what it
encapsulates.
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6.3.2 Funtional Requirements

Data Reading

� Standardizing Input - The TaskDataset object is developed for assuring
that the data is valid throughout the rest of the process. Its extension of
PyTorch’s Dataset class ensures that it can be utilised by the PyTorch
framework. The builder pattern allows the TaskDataset to be built
incrementally and valid along the way, with each step including various
validity checks. The exception where the TaskDataset can’t check for
validity is in terms of the input feature matrix size. The matrix sizes
might not be compatible with the developed PyTorch Model. The
responsibility for this is up to the developer.

� Handling dataset differences - The DataReader class is an abstract
class that the developer must extend to deal with the peculiarities of
navigating each dataset structure to extract the correct information.
This corresponds to it being a white box hot-spot. Predefined train/test
splits can be stored through the HoldTaskDataset structure and pre-
split audio segments can be kept together by defining the grouping.

� Scalable preprocessing - Preprocessing audio signals and preprocessing
feature matrices happen in different places, as TaskDatasets should only
contain valid input instances at any point. Preprocessing signals can
utilise an (optional) function from the DataReader class with parame-
ters that are received when the TaskDataset is extracted. Reusing the
method can thus hand developers easy replicability of the signal prepro-
cessing. These can be further scaled by using the TrainingSetCreator.
In this class, any preprocessing or transformation can be added ’on the
fly’. This means that if a functionality (e.g. resampling) is added, any
previous

� File storage abstraction: There are handles on the TaskDataset which
can be called to store, load or check the TaskDataset to or from files,
which are specific for the currently used extraction method and task.

� Quick Reading: The DataReader automatically checks if there is a
stored TaskDataset available for the given extraction method and task
and loads it if so.
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� Create multiple input objects from the same dataset: The framework
is open ended in how the TaskDataset object is extracted from the
data and allows extra parameters for the DataReader to be given at
initialization. TaskDatasets are stored using the ExtractionMethod
object’s name and the (main) Task’s name, so for every new variation
of these will be automatically linked to different files.

� Tasks and datasets are a many to many relationship: Tasks can be
present in multiple datasets. The tasks need to have the same name,
output labels and classification type in order to be seen as the same.
When combined in the ConcatTaskDataset, the target vectors will au-
tomatically be placed in the same positions, which will make them
be seen as the same task in the training function. Datasets can have
multiple tasks to an unlimited degree in its list of extra tasks, which al-
ways combines them with a list of targets of the same amount of input
instances.

Data Loading

� Combining datasets: The ConcatTaskDataset can hold and present
multiple datasets as a single bigger dataset, while helper functions allow
multiple data instances to be batched. Furthermore, a data loader
is provided which can randomly load batches from alternating tasks,
which would forego the need to have a unified matrix size across tasks.
The loss calculation present in the training and evaluation functions
automatically pick apart the prediction outputs and only use the correct
data for the related task’s loss function.

� Not requiring the combined datasets in memory: Index mode imple-
mented which forms a streaming context for the data to be stored and
read from disk. The index mode can be automatically given as a pa-
rameter for initializing a TaskDataset, which makes it very easy to
switch to. The more datasets are added, the more likely this scenario
is, so a runtime switch between holding the data in memory or reading
it from disk can both permit implementations to be executed and cut
complicated redevelopment work.

� Train and test set generation: The HoldTaskDataset is responsible for
all train and test set generation functionalities added to a regular Task-
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Dataset. TaskDataset functions can be called which will automatically
be called accordingly on the Test set as well. The TrainingSetCre-
ator can also be called which operates the training set generation and
functions called to refine the TaskDataset in the correct order. Fur-
thermore, there is support for k-fold validation in both these classes as
well. Every new fold generated also rewinds normalizations which were
based on training set metrics.

� Transforming data: There are two functions present in the TaskDataset
for transforming the data, one for scaling the input instances and one
for further transformations like cutting the matrices into same sized
frames. Both of these operations are implemented on an instance basis
in the ExtractionMethod object given to the TaskDataset. The func-
tions on the TaskDataset themselves simply call these to transform
every individual input matrix. The TrainingSetCreator can dynami-
cally add new transformations through the add transformation func-
tion, which operates based on names, making it open to extended
implementations of the TaskDataset that have more functions. Also
available is multiple TaskDatasets sharing the same ExtractionMeth-
ods, which would let them share the same metric calculations and thus
perform the same transformations as if they were one unified dataset.
The TrainingSetCreator can do this automatically at the command of
one boolean at input. This is also the reason that the transforma-
tion and their calculation functions work instance based in stead of the
whole dataset at once.

� Filtering data: Data can be filtered through the sample labels function
present on the TaskDataset. The developer can even use this to change
the task itself by removing all instances with a specified label and
remove its mention in the Task object automatically.

� Reusing data: The TrainingSetCreator is the class which manages the
multi-dataset pipeline. Here, the DataReaders are given as input, while
steps in the pipeline (e.g. pre-processing, filtering, transformation,...)
can be dynamically added to one specific or all datasets. Only when
the dataset creation function is called, do the actual TaskDatasets get
created and stored. However, if any step is replaced after creation, the
TrainingSetCreator will only reload or recalculate the affected dataset.
To minimize unnecessary data usage, which exact present TaskDatasets
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get created can be determined by the developer, while all other unnec-
essary TaskDatasets get removed from memory.

� Batching multiple tasks: Multiple tasks can be combined in multiple
datasets. As mentioned before tasks and datasets are many-to-many
relationships and the tricky issue is to fit a variable amount of tasks,
connected target labels and the fact that tasks can be present in mul-
tiple TaskDatasets in batches which could include instances from any
dataset. Therefore the padding system was developed which also has
its limitations concerning targets that are not labels as identified in
section 6.2.

� Replicability: Extraction method objects are stored, including their
calculations in order to recreate the extraction and the subsequent
transformations. Beyond that, the system’s randomness based func-
tions like filtering make sure to include optional keys for pseudo ran-
dom number generation to replicate the same pipelines as previous
runs. The training mechanism also stores the model’s state at every
epoch, through the Results object. Recreating a Results object with
the same name, pointing at the same folder location gives automated
access for reloading old checkpoints and written metrics. Even more is
the fact that the evaluation function further automates this system by
including the opportunity to insert a blank model, which in coopera-
tion with the Results object would load and evaluate these old models
for all or a subset of the epochs.

� Scalable Manipulation: In the TrainingSetCreator, manipulations can
be added for one specified dataset or all at once. These manipulations
do not only include the TaskDataset’s methods, but also pre-processing
parameters and ExtractionMethod objects, which can be replaced at
runtime.

Training

� Predicting multiple tasks: Each dataset can have multiple tasks linked
to their targets. There are automatic filters for the output to isolate
the task specific predictions.

� Task specific output handling: Handling of the task functions, like
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loss calculation and decision making of the eventual classes from the
probabilities are stored in the Task objects

� Loss calculation specifiable: The calculation of the Loss of each task
is definable in the Task object. However, currently, losses are always
tied to tasks, which have target labels. This is not always the case, as
in the research [62] [66], losses have also been calculated based on cost
functions from internal model parameters. Since these loss functions
are not linked to datasets, but to the models themselves, for which the
framework does not offer modules which can be used in the training
function for specific handling, it is up to the developer to implement
these in the Training Utils object.

� Loss combination specifiable: Implemented in the Training Utils object

� Metric calculation, storage and visualization: Gives predictions, true
labels and losses to the Results object which calculates the metrics,
stores them and writes them to tensorboard where they can easily be
compared to other results

� Interrupted Learning: Implemented by recreating the Results object
and starting the training loop from the given epoch.

� Separate evaluation: The evaluation function is separate from the train-
ing loop. Training parameters for transformations and such can be
reloaded from the stored extraction method object as well as the model
parameters at every epoch in the training function.

� Direct comparison of different runs: Every run has a unique name and
TensorBoard has the ability to place the results from different files
side-by-side

� Variable training paradigms: In this state, the only training paradigm
available is Gradient Descent. Implementing a different paradigm re-
quires foregoing the current training loop implementation.
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Chapter 7

Conclusion

The increasing number of audio tasks, datasets, methodologies and reasons
to combine these, continuously opens up new ideas researchers can investi-
gate. Promoting new developments in multi-task and multi-dataset research
requires as much road blocks to be cleared as possible. This work focuses
on clearing the combinatorial issues as well as offer features that can target
multiple datasets at once. A literature survey was performed from which
an analysis of the concerning fields were made as well as looked for similar
frameworks. No frameworks were found to deal with multi-task issues, nor
the problematic aspects of multi-dataset problems. From the analysis of the
fields, key conclusions were made as to what structural qualities the frame-
work needed to have.

After the requirements were outlined, three in depth implementations
were made of different problems that required alternating approaches. Star-
ing from these, generalized solutions were made which would cut develop-
ment time in the future significantly as well as offering the ability to freely
vary different elements and parameters. Comparisons were made by making
implementations that do not utilise the framework, which show significant
reduction in the data loading and training phases for LOC. The literature
was then examined on a per case basis, to investigate what mechanisms
could not be implemented through the system or required a degree of work
around. However, for supervised, labeled deep learning tasks of different
kinds, which were the most popular in the examined papers, the framework
already demonstrates the ability to reduce a lot of leg work.
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7.1 Future Work

As mentioned in [55], frameworks in essence can rarely be considered finished
and will likely continue to evolve over time. In this section, some prominent
challenges for future expansion are laid out.

7.1.1 More pre-made implementations

In order to be interesting for researchers to use the system, it is important
that a lot of the existing extraction methods, transformations and other deep
learning features are already available, which would cut a lot of precious
development time. The current implementation’s features are mostly the
ones used in the implemented problems. Future work should round these
features out more.

7.1.2 Additional Support for Data Reading and Model
creation

The DataReader and model creation were intentionally left open ended. For
the DataReader, it was already addressed in section 6.2 that the framework
could use a more scalable way of implementing and expanding pre-processing
of signals which in its current state is offered through an optional function.
Additionally more tools can also be provided to cut the work necessary to
implement Data Reading structures which was demonstrated by the slightly
higher LOC requirement in section 6.1.

Model creation was also left to remain purely in PyTorch, in order to
refrain from imposing unwanted limits on the developer for designing these.
However, builder tools could still be provided in order to help create dynam-
ically adapting models for the uncertain number and types of tasks that can
be inserted.

7.1.3 Debugging tools and statistics

Building on the last point, additional tools could be provided for debugging
parts of the pipeline. As features get scaled to multiple datasets, it can occur
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that one dataset’s inputs get rendered unusable through execution of trans-
formations. The problem gets bigger due to the higher number of datasets
that can be added. Health checks of the pipeline, which would include ver-
ification of the input dimension feasibility through the models themselves,
would also be of help. In case some sequence of pipeline parts causes the
input to be unusable further up the pipeline, it is best that this is found
before the whole dataset is extracted. A more extensive logging methodol-
ogy could also be of use in retracing the steps and exact issues that created
implementations face.

Statistics are already present in evaluation, but could also be of use in
the Datasets themselves. This would go hand in hand with debugging as
easy evaluation of the matrix sizes, label distributions etc. would prevent
mistakes to be made without being noticed. The success of deep learning
often depends on the makeup of the dataset, including its balancing in terms
of labels.

7.1.4 Expanding Task Types

Another point that was made in 6.2, which was that the framework is mainly
optimised for supervised labelled tasks, while other target structures might
be more difficult to implement. Not only for targets is there limitation in the
design, but the training and evaluation loop are rigid in their implementations
and can quickly require the developer to reimplement them all together (e.g.
when a mini-batching procedure is needed). These need to be addressed in
the future, to allow for more multi-task implementations to be built using
the framework.

7.1.5 Optimizing implementation

The system mainly focuses on cutting development time and offering tools
that allow iterative research of multi-task systems. The mantra was mainly
to enable more than to perfect. What hasn’t been looked at in detail is
optimizing the developed pipelines in computational resources and execution
time. Especially in the TrainingSetCreator, there is a great opportunity to
optimize the calculations, after the pipeline is defined. Parallelization is an
option when multiple datasets are present. Also in terms of optimal storage
structure there are potentially better solutions to be found.
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7.1.6 Evolving beyond audio data

The framework is built around audio data, but in theory can easily be ex-
panded to other kinds of data like images. The main thing holding it back
currently is how the transformations and extraction methods are all audio
based, along with the DataReader’s offered tools. Expanding the mediums
would however also possibly lead to a wider range of input structures to be
necessary which have to be investigated on a case-by-case basis. Still, a lot of
the groundwork is already there and the shift would mainly require building
more extensions to existing classes and creating divides for tools for audio
and other forms of input.
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