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1
Introduction

Airlines run tight optimized schedules in order to make profit in a competitive market where margins

are thin. Due to the highly optimized nature of the airlines’ operations, disruptive events can pose a

significant problem every day. Many factors can lead to disruptions. Bad weather conditions, aircraft

technical problems, airport congestion or airline delays are some of these causes. For a large portion,

these disruption are uncertain in when they will occur and how severe their impact will be in the short

and long term. The potential impact of these disruptions is vast however. For example, according to ?,

airline disruptions cost an estimated 60 billion annually worldwide, which is around 8% of worldwide airline

revenue. Not only do airlines incur significant extra costs by having to compensate crew, passengers or

even airports, they can also experience customer dissatisfaction which can have an influence on future

revenue streams.

In disruption management, the recovery of the airlines’ resources (i.e. aircraft, crew, passengers) during

and after disruptive events is referred to as the Airline Recovery Problem (ARP). The goal of this research

is to address the ARP by developing a novel solution method that anticipates potential future disruptions

using a model-based Reinforcement Learning (RL) algorithm. Disruption management is currently done by

airlines in a reactive manner, where airline operators only act after disruptive events have occurred. This

sparks the belief that proactive methods (i.e. methods where there is acted in advance of future disruptions

with a high probability of occurring, without knowing if these disruption will actually happen) yield better

performance for airline recovery. That is, a proactive approach would result in less flight cancellations and

delays then current reactive methods. Reinforcement Learning exploits patterns in data in such a way that

future scenarios can be anticipated, paving the way for a shift from reactive disruption management to

proactive disruption management for airlines. This MSc Thesis is conducted in collaboration with Boeing

Digital Aviation Solutions (DAS).

The structure of this report is as follows: Part I contains the scientific paper of the complete research, Part

II contains the Literature Review & Research Definition.
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Abstract

Disruptive events pose a significant challenge to airlines’ everyday operations due to the highly optimized nature of their schedules. Unforeseen
events force airlines to rapidly reschedule and adjust their operations. Current disruption management methods rely mostly on reactive and static
models that fail to capture the dynamic and probabilistic nature of airline recovery. This study presents a model-based reinforcement Reinforce-
ment Learning (RL) method for aircraft recovery under disruption uncertainty that anticipates future potential disruptions. The Aircraft Recovery
Problem (ARP) is formulated as a Markov Decision Process (MDP) and a framework is proposed in which an Approximate Dynamic Program-
ming (ADP) algorithm that relies on Value Function Approximation (VFA) determines optimal recovery actions considering the immediate and
future impact of each action. The uncertain disruptions are modelled as aircraft unavailabilities with a fixed probability of realizing. The aim of
the model is to keep flight delays and cancellations at a minimum while exploiting stochastic information on potential aircraft unavailabilities.
The model is tested on multiple scenarios with different objectives and levels of disruptions and is benchmarked against an exact optimization
algorithm. Results indicate that a proactive approach outperforms reactive models, particularly in high-disruption scenarios with high aircraft uti-
lization. The comparison with the exact benchmark shows that the RL method can achieve sub-optimal solutions with considerably less corrective
actions. This framework offers a decision support tool that allows airline operators to find more resilient solutions in uncertain environments by
incorporating probabilistic predictions on disruptions in the decision-making process.

Keywords: Airline Disruption Management, Aircraft Recovery, Reinforcement Learning, Anticipatory Disruption Management

1. Introduction

The aviation industry is highly competitive and airlines
run tight optimized schedules sustain profitability from thin
margins. Disruptive events pose a constant threat to airlines’
operations, and – if not managed properly – have detrimental
effects on the airlines’ operational costs and revenue. It is
estimated that airline disruptions cost an estimated 60 billion
annually worldwide, representing around 8% of worldwide
airline revenue (Gershkoff, 2016). Not only do airlines incur
significant extra costs with irregular operations and extra
compensation for crew, passengers or even airports. Customer
dissatisfaction potentially may have a negative effect on future
revenue streams as well (Zhao et al., 2023).

Bad weather conditions, aircraft technical problems, airport
congestion or airline delays are some common causes for
disruptions in airline operations. These disruption are mostly
uncertain in terms of when and whether they occur and
the severity of short- and long term impact on operations.
Although many events that trigger disruptions are highly
unpredictable in nature, some of them come with a certain
quasi-predictability, which can help airlines anticipate potential
disruptions. Information on Weather forecasts, Prognostics and
Health Monitoring (PHM) for airline equipment, and predic-
tions on airport congestion can help airlines identify potential
disturbances and mitigate risks to their operations, and more
effectively recover their resources and flight schedules in the
face of disruptions.

Current practice for airlines is that they manage disruptions in
their schedule reactively (Kohl et al., 2007). Once a disruptions
has occurred, operators will assess the impact of the disruption
and decide what actions needs to be taken to mitigate negative
effects of these disruptions. These actions are referred to
as recovery actions and usually involve swapping airline
resources (aircraft & crew), retiming departures/arrivals or
canceling flights (Su et al., 2021). Since a reactive approach
limits AOCC operators in making recovery decisions at an
earlier stage, it also limits the number of options they have
for achieving effective recovery solutions. By leveraging the
ability to navigate disruptive events before they occur, airlines
can adopt more effective recovery strategies that can help
reduce last minute cancellations and potentially result in better
short- and long-term recovery solutions in terms of costs and
resiliency of their operations (Lee et al., 2020; Zang et al.,
2024).

Existing works on disruption management predominantly rely
on exact mathematical formulations or heuristics-based opti-
mization frameworks defined in a reactive setting. Although
in recent works an increase in number of functionalities that
resemble real-world operations incorporated in the proposed
frameworks was seen (Hassan et al., 2021), these methods still
lack the dynamic and uncertainty related aspects of disruption
management. They often lack flexibility to adapt to changing
circumstances (Wang et al., 2019) and their reactive and static
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approaches do not mimic the disruption management process
close enough (Hassan, 2019), leading to underestimations of
recovery costs (Vos et al., 2015). Additionally, the shift to
more extensive recovery framework brings new computational
challenges with it, where the requirement of finding solutions
within 120 seconds still remains for AOCC operators. These
challenges stimulate us to search for different methods that
are better able to handle the issues on flexibility, inherent
problem characteristics, uncertainties and computation times.
Reinforcement Learning (RL) is a field in machine learning
that enables adaptive optimization in dynamic environments.
Unlike traditional optimization methods, RL models are able to
learn recovery strategies through interaction with the system,
continuously improving their decisions based on feedback
from past actions. This approach allows for greater flexibility
in responding to disruptions as they occur, rather than relying
on pre-defined rules or static models. Moreover, RL can
incorporate stochastic elements of real-world operations,
making it better suited for handling uncertainties inherent in
disruption management. Given these advantages, RL has the
potential to bridge the gap between the challenges currently
seen in disruption management research.

This research aims to address Airline Disruption Management
(ADM) under uncertain conditions by developing a solution
framework for the Aircraft Recovery Problem (ARP) that
anticipates potential future disruptions. To achieve this, a
model-based Reinforcement Learning framework is proposed
in which the ARP is modelled as a sequential decision making
process. Considering the dynamic and uncertain properties of
ADM – and considering the inherent ability of RL models to
capture these dynamic and uncertain problem characteristics
– we are motivated to explore proactive aircraft recovery
strategies using RL. A flexible proactive recovery framework
that relies on (uncertain) information about potential future
disruptions is constructed, and its performance in terms of
recovery costs as well as solution robustness is evaluated
and compared to other recovery strategies. Furthermore, the
explainability of the proactive recovery model is assessed to
gain additional insights in the models behavior, particularly
in how the model decides which actions lead to good future
outcomes.

The structure of this paper is as follows: In Section 2, a
review of the (published) literature regarding the airline recov-
ery is done and the state-of-the-art is discussed. In Section 3,
the problem and its underlying assumptions are formulated,
and the modelling framework is presented in detail. Section
4 contains an outline of the methodology and the algorithmic
strategy used to solve to problem. Section 5 presents the
experimental setup, discussing the choices made regarding the
data and the scenarios in which the model is used. In Section
6, the hypothesis are stated and discussed. The results from
the model training and the testing experiments are presented
in Section 7 and are evaluated further in Section 8. Section
9 discuss the research’s limitations and recommendations for
future work, and a concluding statement in given in Section 10

2. Literature Review

This section provides a review of publications stemming
from literature on ADM. Section 2.1 dissects the literature on
ADM, with a focus on aircraft recovery. In Section 2.2, the re-
search gaps identified from the review are stated and the main
research question is defined.

2.1. Airline Disruption Management

Airline Disruption Management is a widely studied topic
in research with an increase in attention in recent years.
In practice, Airline Disruption Management is a sequential
process where different resources are recovered (i.e. their
planning is adjusted to work around the disruption) in order
of importance. Usually, aircraft are recovered first, followed
by crew and passengers. Research in ADM can generally be
grouped into these distinct categories, although during recent
years integrated models – optimizing for all resources simulta-
neously – have gotten increasing attention. Integrated recovery
models are computationally harder, but they allow more
optimal solutions (Petersen et al., 2012). Recent advancements
in computational power and efficient solution methods has
made the use of integrated methods more attractive. However,
Airline Operation Control Center (AOCC) operators require
solutions within minutes (Vink et al., 2020), which remains
the cause for a gap between theoretical models and practical
applicability, making ADM problems exceptionally hard. For a
more encompassing review on ADM including works on crew
and passenger recovery, the reader is referred to Hassan et al.
(2021).

Generally speaking, the scope of publications on aircraft
recovery covers combinations of having one or more disrup-
tions types (e.g. airport closures (Eggenberg et al., 2010; Wu
et al., 2017c; Lee et al., 2020, 2022), aircraft unavailabilities
(Hu et al., 2017; Wu et al., 2017a; Zhao et al., 2023), flight
delays/cancellations (Vos et al., 2015; Huang et al., 2022))
and one or more recovery options (e.g. tail swaps, delays,
flight cancellation, maintenance swaps (Eggenberg et al., 2010;
Liang et al., 2018), reserve aircraft (Le and Wu, 2013), ferry
flights (Wang et al., 2019)). Many different objectives metrics
are identified ranging from straightforward measures such as
flight delays and cancellations to more specific measures such
as deviation from schedule (Thengvall et al., 2000; Hu et al.,
2017). See Table 1 for an overview of some ARP works in
terms of their scope, objectives and methods.

The first works to tackle the ARP came from Teodorovic and
Guberinic (1984), who developed a method that minimizes
total passenger delays by delaying flights or swapping tail-
numbers. Teodorovic and Stojkovic (1990) expanded this
method by incorporating airport curfews and flight cancella-
tions. In the following decades, more extensive models were
proposed that included flexible multi-objective (Thengvall
et al., 2000), multi-fleet scenarios (Clarke, 1998; Thengvall
et al., 2001, 2003) , and new network representations (Ar-
guello, 1998; Bard et al., 2001). However, the complexity of
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the problem restricts the practical applicability of theoretical
models, especially models focused on integrated recovery
of more than one resource. As research on aircraft recovery
advanced, more advanced solution methods were developed
based on meta- and hybrid-heuristics aimed at solving larger
more complex problems in a sufficiently short time. This
allowed for more extensive models to be investigated that
reflected real-life operations more closely, more with aspects
included in the objectives and scope such as maintenance
requirements (Hu et al., 2017; Huang et al., 2022), cruise
speed control (Marla et al., 2017; Yetimoğlu and Aktürk,
2021), passenger preferences and rebooking options (Maher,
2015; Marla et al., 2017; Cadarso and Vaze, 2022), and
even multi-priority flights (Zhong et al., 2024). Models that
integrated these operational aspects have better practical
applicability, since these models are more in line with real
airline operations, and often improved solution qualities of
earlier works by including these new aspects in the frameworks.

Given the need to reduce computational processing times,
alternative solution methods to exact or heuristics mathemat-
ical programs were developed, picking up on the dynamic
nature of the problem by solving the problem iteratively as
it progresses through time (Vos et al., 2015; Santos et al.,
2017; Vink et al., 2020). These methods showed that not
incorporating dynamic nature of the problem in frameworks
led to significant underestimation of recovery costs as much as
24% to 80% (Vos et al., 2015). Wang et al. (2019) showed that
mathematical programs lacked the ability to adapt to real world
constraints without increasing the computational complexity
disproportionately, by proposing a simulation based approach
to the ARP. Methods that relied on the selection of a subset of
the problem to incorporate in the solution were also proven
useful to limit the computational complexity to a fraction of
the whole problem (Vink et al., 2020) while reducing run
times by a factor of 10 but retaining the quality of the solution
within 3.1% compared to an exact approach, and improving the
solution quality when compared to heuristic methods (Rashedi
et al., 2024). Machine Learning proved a useful tool in these
subset selection frameworks (Hassan, 2019; Eikelenboom,

2022; Rashedi et al., 2024). The interest in the employment of
ML in ADM frameworks became more evident as new solution
methods were developed based on Reinforcement Learning.
Hondet et al. (2018) and Lee et al. (2022) solved the ARP
directly via Q-learning agents, while, in an extensive recovery
framework, Ding et al. (2023) proposed a hybrid approach
where a Deep Reinforcement Learning (DRL) agent guides a
Variable Neighborhood Search (VNS) procedure that solved
large instances near optimally in a matter of seconds.

Anticipatory frameworks —Although some attention has
gone to addressing the dynamic nature of airline recovery, only
a handful of works in literature touch the subject of using prob-
abilistic inputs for their recovery frameworks. Lee et al. (2020)
addressed the dynamic and uncertain nature of disruptions
by proposing an reactive-proactive model that incorporates
partial and probabilistic forecasts based on a queuing model
to represent airport congestion. They classified delays into
three categories: systemic, contingent and propagated. Where
systemic delays are due to congestion, contingent delays are
due to unforeseen events, and propagated delays are due to
downstream effects in the schedule. They found that using
these partial predictions yields better results compared to a
a myopic baseline, ultimately reducing expected disruption
costs without creating additional risk in airline recovery, a
promising insight for adaptation of proactive approached to
aircraft recovery.

Zang et al. (2024) also included predictions on disruption
probabilities, reduced airport capacity in particular, in a recov-
ery framework that dynamically reschedules the disruptions.
Based on delay probabilities, they formulate expected costs
associated with recovery decisions, which they use in their
objective function. Following a case-study with a Chinese
airline, results indicate that their method effectively reduces
airline delays and operating costs in actual operations.

Other papers do not address anticipatory disruption manage-
ment directly, but propose methods that can be used in combi-
nation with anticipatory models (Zhao et al., 2023; Ogunsina

Table 1: Overview of publications covering Aircraft Recovery.

Paper Disruptions Recovery Actions Characteristics Objectives MethodAU AC RAC DL CL SW DL CL MSW MDL Maint. Curfews Proactive

Eggenberg et al. (2010) ✓ ✓ ✓ ✓ ✓ ✓ min. RC CG
Vos et al. (2015) ✓ ✓ ✓ ✓ min. RC Aircraft Selection Algorithm
Hondet et al. (2018) ✓ ✓ min. DC RL
Hu et al. (2017) ✓ ✓ ✓ ✓ ✓ min. SD, min. max. delay, min # swaps ϵ-constraint NSH
Wu et al. (2017a) ✓ ✓ ✓ ✓ min. RC DFPI-IP
Wu et al. (2017b) ✓ ✓ ✓ ✓ min. RC, min. SD DFPI-IP
Wu et al. (2017c) ✓ ✓ ✓ ✓ min. delay DFPI-IP
Liang et al. (2018) ✓ ✓ ✓ ✓ ✓ ✓ min. RC CG
Hassan (2019) ✓ ✓ ✓ ✓ ✓ ✓ min. RC ML-selection
Lee et al. (2020) ✓ ✓ ✓ ✓ ✓ min. RC DP
Lee et al. (2022) ✓ ✓ ✓ min. delay, min. # delays, min. # delays ¿ 30 minutes RL
Huang et al. (2022) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ min. RC ICD-CG
Rhodes-Leader et al. (2022) ✓ ✓ ✓ ✓ ✓ ✓ min. SD, min. DC Simulation
Zhao et al. (2023) ✓ ✓ ✓ ✓ ✓ ✓ min. SD, min. RC RH
Zang et al. (2024) ✓ ✓ ✓ ✓ ✓ ✓ ✓ min. RC DDB Heuristic
Rashedi et al. (2024) ✓ ✓ ✓ ✓ ✓ min. RC ML subset selection

*AU: Aircraft Unavailability, AC: Airport Closure, RAC: Reduced Airport Capacity, DL: Flight Delays, CL: Flight Cancellations, SW: Aircraft Swap, MSW: Maintenance Swap, MDL: Maintenance Delay, DC: Delay Costs, RC: Recovery Costs, SD: Schedule
Deviation, CG: Column Generation, RL: Reinforcement Learning, NSH: Neghbourhood Search Heuristic, DFPI-IP: Distributed Fixed Point Iterative-Integer Program, ML: Machine Learning, DP: Dynamic Programming, ICD-CG: Iterative Cost Driven-Copy
Generation algorithm, RH: Rolling Horizon, DDB: Decision-Decomposition-Based Heuristic
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et al., 2019, 2021, 2022). Zhao et al. (2023) addressed two un-
certainties regarding disruptions: disruption duration, and time
that the disruption duration becomes known. Their aim was to
develop different recovery strategies as a function of the (un-
known) disruption length, such that the recovery scheme could
be easily modified with the arrival of new information. Al-
though this is not strictly a proactive approach, a comprehen-
sive scenario analysis indicated which aircraft or flights are
likely to be affected when certain disruptions occur. Ogun-
sina et al. (2019) focused on discovering patterns in historical
flight- and disruption data such that it can be leveraged for use
in anticipatory mechanisms. In particular, the adoption of Hid-
den Markov Models (HMM’s) for learning temporal patterns
from historical data. Ogunsina et al. (2022), extends Ogunsina
et al. (2019) by implementing an Uncertainty Transfer Func-
tion Model (UTFM) for managing disruptions in airline opera-
tions. The UTFM is based on the models described in Ogunsina
et al. (2019) and are implemented and assessed with real-world
data in this paper. In Ogunsina et al. (2021), they focused on
exploratory data analysis for scheduling and operations. They
highlight ML methods to analyze the data and reveal important
features to predict disruptions. These works highlight the inter-
ests in probabilistic models that could be used in conjunction
with anticipatory recovery models.

2.2. Research gaps and research question

Following the literature review, several research gaps can be
identified. First, although some studies exists that contain antic-
ipatory frameworks, no model exists yet that is based on aircraft
unavailabilities as disruptions source. Also, no works in ADM
(with the exception of (Lee et al., 2020) and Lee et al. (2022))
solve the ARP directly via learning-based/MDP-defined mod-
els. Also, dynamic disruption management has gotten little at-
tention recent ADM works. Vos et al. (2015) addressed the is-
sue by proposing a model that recovers the schedule by building
forth on previously found solutions as (new) disruptions hap-
pen, but no papers yet have used this dynamic solving based on
real-time information on future potential disruptions. Lastly, a
significantly overlooked in ADM literature is robustness and
explainability (in case of ML based frameworks). This study
aims to tackle this gap by assessing these metrics, looking at
how and why solutions are formed and what they mean for air-
line operators. With these research gaps defined, this research
aims to contribute to existing literature by:

(1) Proposing a proactive aircraft recovery model that consid-
ers potential future disruptions.

(2) Assessing the robustness of solutions following a proactive
strategy.

(3) Assessing the explainability of Machine Learning methods
in an ADM context.

This is done by answering the following research question:

Can a proactive Reinforcement Learning ARP model
lead to more effective and quicker aircraft recovery
than existing reactive methods?

To answer this question, the efficiency and effectiveness of the
recovery solutions is evaluated in terms of total delays and can-
cellation as primary metrics, but also the type and number of
recovery actions involved in the solutions plays part in the ef-
ficiency of the model. The time to recovery and computation
times play an important role in disruption management, and will
therefore also be part of the assessment.

3. Problem Statement & Modelling Framework

This section outlines the ARP and its modelling framework
as an Markov Decision Process (MDP). First, the basic assump-
tions underlying the model are discussed in Section 3.1, after
which a mathematical formulation for the sets and parameters
is given in Section 3.2. Section 3.3 provides a definition of the
the MDP that lays the foundation for the model used in this
paper.

3.1. Assumptions

This paper considers the following assumptions:
(1) Hub & Spoke model with aircraft rotations, each flight rep-

resents a rotation in the form of Hub-spoke-hub;
(2) Turnaround times are included in the flight times, thus no

extra time is needed between flights;
(3) A homogeneous fleet is used throughout the operations;
(4) No differentiation is made between flights in terms of

costs/importance;
(5) Disruption characteristics and probabilities are known.

These assumptions are made to limit the complexity of the
model. Although the resulting model does not reflect realistic
airline operations, the assumptions allow for a proof of concept
of the proactive RL-based method, which will be discussed fur-
ther in this section.

3.2. Mathematical formulation

This subsection outlines the mathematical formulation for
the the MDP. In Tables 2 and 3, the sets and parameters are
defined, respectively.

Table 2: Set notations and their definitions.
Symbol Definition
F set of flights scheduled for fleet K .
K set of aircraft in the fleet.
Kp set of aircraft in the fleet that are prone to unavailabilities.
Fk set of flights scheduled to be operated with aircraft k.
Fkp set of flights scheduled to be operated with aircraft k that are prone to

disruptions.
Uk set of unavailabilities that are known for aircraft k.
F u

k set of flights that are conflicted by unavailability u for aircraft k.

Note in this ARP, ”disruptions” are triggered by aircraft un-
availabilities. Therefore, the word unavailability is used inter-
changeably with disruption throughout this paper.

4



B.F.W. Vos
MSc Thesis Aerospace Engineering,

Delft University of Technology

Table 3: Parameters and their definitions.
Symbol Definition
δ

f ′

f k 1, if swapping flight f to aircraft k leads to a cancellation of flight f ′; 0,
otherwise

δ
f ′

f 1, if canceling flight f leads to a cancellation of flight f ′; 0, otherwise

δ
f ′

0 1, if doing nothing leads to a cancellation of flight f ′; 0, otherwise
δ

cur f
f 1, if flight f violates the curfew; 0, otherwise

cs cost of swapping flight f to aircraft k
d f k minimum time of delays to allow swapping flight f to aircraft k
cc cost of canceling a flight
cd cost per minute of delays
ccur f cost of violating the curfew
ADT f actual Departure Time of flight f
AAT f actual Arrival Time of flight f
d f duration of flight f
S T ARTu start time of unavailability u
ENDu end time of unavailability u
T0,T start time, end time of the recovery window

In this table, recovery costs are split up into different compo-
nents. Note that the costs δ f ′

f k, δ f ′

f and δ f ′

0 are all costs of flight
cancellations, only following a different action. This can oc-
cur as the model can only perform one recovery action per
time step, resulting in situations where the model might recover
flight f with an certain recovery action, which inadvertently
leads to cancellation of flight f ′, since this flight also needed a
recovery action at that time step, something that is not longer
possible. Also, the costs cs, cc, cd, ccur f are costs that follow
directly from individual actions and these costs can vary, de-
pending on the preferences of the airline. The actions will be
explained further in Section 3.3.3.

3.3. Markov Decision Process
Since airline disruptions happen dynamically and in uncer-

tain environments, modelling them as a Markov Decision Pro-
cess can be particularly fitting. In an MDP, a sequential deci-
sion process is modelled mathematically, where the outcomes
are partially controllable and partially uncertain. Decisions are
made sequentially to move from one state to another while ob-
taining rewards that reflect the quality of the action given the
current state and future states. The goal is to derive a policy that
maximizes the accumulated rewards. By modelling the ARP
as MDP, the inherent dynamics and uncertainties are aimed to
be captured. The remainder of this section outlines an MDP
framework for the ARP at hand.

3.3.1. States
The state of the system comprises of two parts; The aircraft

state vector and the aircraft unavailability state vector:

S t = (Kt,Ut) (1)

Where Kt symbolizes the aircraft state vector, and Ut symbol-
izes the unavailability state vector. For each aircraft k and un-
availability u, their state attributes are:

k =
(
Conflicts
Flights

)
=

(
F u

k
Fk

)

u =

 Tail #
Start time
End time

 =
 ku

S T ARTu

ENDu



Here, conflicts are disrupted flights: the conflict attribute F u
k is

defined as the set of flights scheduled to be operated with the
aircraft k, which cannot depart in the current state of the system
due to the unavailability u:

ENDu ≤ ADT f < S T ARTu (2)

Where ENDu, ADT f , and S T ARTu are the end time of unavail-
ability u, departure time of flight f , and start time of unavail-
ability u, respectively. The flights attribute Fk is the set of all
currently scheduled flights to be operated with aircraft k. Note
that in this framework, hub - spoke - hub rotations are used for
the sake of simplicity, and when a reference to ”flights” is done,
this is in reality such a rotation. For the remainder of this paper,
the ”rotations” will therefore be called ”flights”.

3.3.2. Uncertainties
The uncertain factors in this framework are the unavailabil-

ity of aircraft. Triggers for such an unavailability can range
from various sources, such as unexpected aircraft maintenance
or unavailability due to aircraft delays. The unavailabilities are
modelled with fixed probabilities that indicate whether an un-
availability realizes or not. The start times of the unavailabil-
ities are assumed to be known. Furthermore, all unavailabili-
ties have a fixed duration, meaning it is also assumed that the
time when each unavailability ends is known. The potential un-
availabilities then realize based on a Bernoulli random variable
X ∼ Bernoulli(p). Here p is the individual probability of the
unavailability being realized.

3.3.3. Actions
To recover the disrupted schedule, the model must be able

to perform recovery actions. In this work, the model is able
to perform one action at every time step of the MDP. As
mentioned earlier, in this work, three recovery options are
considered: tail swaps, flight cancellations, and flight delays.
Notably, delays are not explicitly defined in the MDP as recov-
ery actions however, but rather follow as a logic consequence
of tail swaps. That is, when a flight is assigned to a new tail that
has another flight with time overlap with the newly assigned
flight, the model delays one of the overlapping flights such
that no more flights overlap while keeping the total delay at a
minimum (and also considering propagated delays by delay-
ing as many flights as needed in a sequential/recursive manner).

At each time step, the model can either 1) do nothing, 2) swap
a flight to a new tail or 3) cancel a flight. If necessary, the swap
thus results in one or more flights being delayed to ensure a
valid reassignment. See Figure 1 for a visualization of such an
action. Here, Flight 1 is disrupted due to unavailability of AC1,
and is swapped to AC2. To accommodate this swap, Flight 2
needs to be delayed, which results in the propagation of delay
to Flight 3. In this fashion, the model can ”swap a flight to
the same aircraft” in case a flight delay without reassignment
poses a good action e.g. when a flight is scheduled to depart
close before the end of an aircraft unavailability. This is a swap
action by definition of the MDP, but it appears as a delay in the
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environment.

For a fleet of |K| aircraft and |F| flights the actions space spans
all combinations of tail number-flight assignments for swaps,
plus all flights for cancellations, plus 1 for doing nothing. For
example, with a fleet of K aircraft with F flights, the action
space |X| has a size of |F | × (|K| + 1) + 1.

Figure 1: Visualization of a flight re-assignment

3.3.4. State Transitions
At each time step t, the transition function for applying deci-

sion x to aircraft state vector K is deterministic:

Kt+1 = KM(Kt, xt) (3)

Where Kt is the aircraft state at t and xt is the action performed
at t. The transition function of the complete state is probabilistic
however, where Ut+1 includes the realization of the potential
unavailabilities at t + 1, drawn from a stochastic process:

S t+1 = S M(S t, xt,Ut+1) (4)

The function S M(·) describe the system dynamics following de-
cisions and new information applied to the state, where the M
denotes the ”model” for the system dynamics.

3.3.5. Rewards
The main goal of airline recovery is to modify the disrupted

schedule in such a way that reaches a certain objective (which
can be specific to the airline, but usually involves minimizing
operational costs, delays, cancellations etc. with the goal of
minimizing long term cost and revenue loss). It is not straight-
forward to quantify all negative effects of disruption into mon-
etary terms, or any other single unit for that matter. With RL
however, the need to quantify the disruption impacts into one
single metric is requisite, since RL models receive rewards
without distinguishing units or types of reward. For this pur-
pose, delays, cancellations, curfew violations and swaps are
quantified into one ”cost” which is used fed back to the model.
In the context of this study, the rewards are negative and are
accumulated as the costs of recovery. In a best case scenario,
no flights are disrupted and the accumulated reward or costs is
0. For every solution the sum of the rewards is always lower or
equal to 0. Throughout this paper, the notation C is used to in-
dicate the negative rewards. The rewards have two components,

one where the reward is a direct effect of a decision (cdecision),
and another where a penalty is given when there are still re-
maining conflicting flights at the end of the recovery window
(cnot recovered):

C = cdecision + cnot recovered (5)

Recovery decisions are defined by the variable x f ,k where f and
k denote the flight and aircraft it involves, respectively. For a
swap action, x f ,k swaps flight f to aircraft k. For a cancellation,
x f ,k cancels flight f and k = 0. For a do nothing action, f = 0
and k = 0. The reward for a decision x f ,k is defined mathemat-
ically as in (6). The costs parameters cs, cc, cd, ccur f , auxiliary
variables δ and parameter d f k are defined as in Table 3.

cx f ,k =



cc ·

1 + ∑
f ′ ∈F \{ f }

δ
f ′

f

 , (cancel)

cs + cdd f k + cc
∑

f ′ ∈F
δ

f ′

f k + ccur f
∑
f∈F
δ

cur f
f , (swap)

cc ·
∑

f ′ ∈F
δ

f ′

0 , (nothing)

(6)

This reward structure can be easily modified to reflect the indi-
vidual preferences of the airlines. Two types of reward struc-
tures are proposed in this work. In the first, no distinction is
made into the quantification of costs for the time between the
decision and when the decision takes its effect. That is, a flight
that gets canceled 10 minutes prior to departure will result in
the same cost as one canceled 8 hours prior to departure. For
this reward structure:

cdecision = cx f ,k (7)

In the second type of reward structure, the costs are incurred in a
similar fashion. The key difference is thus that costs are higher
for decisions made closer in time to when they take effect, and
lower for decisions made farther in time to when they take ef-
fect. This structure reflects the undesired effects of last minute
changes to the schedule, both for passengers and the airline. To
model this, the costs are multiplied with a cost factor between
1 and β based on the relative time left to the departure time of
the flight that is changed with action x f (i.e. swapped/delayed,
or canceled) via:

cdecision = cx f ,k · (β −
t

ADT f − T0
) (8)

Where cx f ,k follows from Equation (6), t is the current time,
t0 the start of the recovery window, and ADT f the departure
time of the flight that is changed. Regarding cnot recovered: this
remains unchanged, as this a penalty that is only awarded at
the absolute end of the recovery horizon.

4. Methodology

An Approximate Dynamic Programming (ADP) method
is proposed to solve the aircraft recovery problem. ADP
lies under the umbrella of RL as it is based on the Bellman
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optimality equation (explained later in this section). However,
the way they are adopted and their vocabularies differ across
communities. In Operations Research (OR) problems the focus
is on approximation techniques for large scale problems and the
ADP adoption is more widely used, while in computer science
and artificial intelligence, RL frameworks are the standard that
often do not require a model of the environment (Powell, 2011).

Where exact optimization methods lack the ability of handling
uncertain and dynamic problem characteristics, ADP is proven
well able to handle these characteristics whilst producing qual-
ity solutions for industrial scale problems (Powell, 2011). In
this section, the ADP framework is outlined in detail. Section
4.1 discusses the main working principles of the algorithm and
the way it is used in the context of this ADM problem. Section
4.2 details the way the ADP method generalizes to different
problem instances. In Section 4.3, the choices regarding the
specific algorithm parameters and architecture are outlined and
discussed.

4.1. ADP algorithm with VFA
At the core of all RL frameworks lie the Bellman optimality

equations, that states that an optimal policy π for a stochastic
optimization problem can be found by solving (where γt is a
discount factor for the value of Ct(S t, Xπt (S t)):

max
π

Eπ
 T∑

t=0

γtCt(S t, Xπt (S t))

 .
This can be done by recursively solving:

Vt(S t) = max
xt

(Ct(S t, xt) + γE[Vt+1(S t+1) | S t]) (9)

Where Ct(S t, xt) is the immediate contribution of applying
decision xt to S t, and E[Vt+1(S t+1) | S t] is the expected down-
stream value of the state S t+1 given that the system is in state S t

(note that the term contribution, costs or (negative) reward are
used interchangeably). Unfortunately, solving these optimality
equations becomes intractable for virtually every real-life
problem as one would face the curses of dimensionality (Bell-
man, 1966). These curses represent the intractability of the
problem for growing state spaces, outcome spaces, and action
spaces. In this aircraft recovery problem, while the outcome
space is fairly constraint (does a disruption happen or not?),
the action space grows exponentially with a growing fleet. The
state space is near-continuous as it contains the flight times
of the schedule. Although this can be discretized to some ex-
tent, the state space still remains far too large to visit every state.

Approximate Dynamic Programming (ADP) is a class of solu-
tion methods that instead of using backward recursion to solve
Equation (9), steps forward in time. This eliminates the need
to enumerate all states seen in classical dynamic programming.
However, it does not immediately solve the curse of dimen-
sionality. Two problems arise that need a resolution: A mech-
anism is needed to simulate what might happen in the future,
and a mechanism is needed to be able to choose the best action

at any given t, i.e. having a way to determine the future im-
pact of current decisions (the expected value of the next state
E[Vt+1(S t+1) | S t]). The first requirement can be achieved via
Monte Carlo sampling of stochastic information, reducing the
need to calculate all the outcomes that stem from this infor-
mation (more on this later). The second requirement can be
achieved via Value Function Approximation (VFA), in which
the idea is to iteratively solve the problem over again, and eval-
uate decisions in each iteration n to improve their quality for
the next iteration (Heinold, 2024), and thereby approximating
the value function of the states that are visited. Using these
approximations for estimating the value of states that are not
seen during the iterations, reduces the need to visit every state
to learn about the value of that state. This iterative solving of
the problem works as follows: In each iteration n, the value es-
timate of a state V

n
t (S n

t ) in updated via exponential smoothing
with stepsize or learning rate α over it’s estimate of the previ-
ous iteration V

n−1
t (S n

t ) via:

V
n
t (S n

t ) = (1 − αn−1)V
n−1
t (S n

t ) + αn−1v̂n
t , (10)

in which: v̂n
t = max

xt∈Xt

(
Ct(S n

t , xt) + V
n−1
t (S M(S n

t , xt))
)

(11)

Since the state contains uncertain information, the step to ap-
proximate the expected value of a state directly is difficult. For-
tunately, an elegant construct to overcome this exists that relies
on the post-decision state. This construct splits the state transi-
tion function S t+1 = S M(S t, xt,Ut+1) up into two steps:

S x
t = S M,x(S t, xt), (12)

S t+1 = S M(S x
t ,Ut+1). (13)

In Equation (12), the post-decision state transition S x
t is the

state right after applying x and is deterministic. In Equation
(13), the stochastic information is added to the post-decision
state to reach the next pre-decision state S t+1. The value of S t+1
is also the value of the decision that leads to S t+1 (at least from
a decision making perspective). And since S t+1 is the result
of a random variable. The value of the post-decision state S x

t
represents the value of the decision that leads to S t+1, which
could be determined deterministically. The values can now be
updated via:

V
n
t−1(S x,n

t−1) = (1 − αn−1)V
n−1
t−1 (S x,n

t−1) + αn−1v̂n
t , (14)

In which: v̂n
t = max

xt∈Xt

(
Ct(S n

t , xt) + V
n−1
t (S x,n

t )
)
. (15)

Using these approximations to estimate the value of states that
are not seen during the iterations, reduces the need to visit every
state to learn about the value of that state and thus the curses of
the state and outcome space are tackled. However, the need to
evaluate all possible decisions still exists in this framework. In
Algorithm 1, the main algorithm for this methods is outlined.
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Algorithm 1 An ADP algorithm based on the post-decision
state values and exogenous information

1: Choose an initial approximation V
0
t , ∀t ∈ T = {0, 1, . . . ,T }.

2: Set the initial state to S 1
0.

3: for n = 1, . . . , I do
4: Obtain a sample path un.
5: for t = 0, 1, . . . ,T do
6: v̂n

t = max
xt∈Xt

(
Ct(S n

t , xt) + V
n−1
t (S M,x(S n

t , xt))
)

7: Let xn
t be the value of xt that solves the maximiza-

tion problem.
8: Update the value function using:

V
n−1
t (S x,n

t−1) = (1 − αn−1)V
n−1
t (S x,n

t−1) + αn−1v̂n
t .

9: Compute the subsequent post-decision state:

S x,n
t = S M

x (S n
t , x

n
t )

10: Compute the next pre-decision state by adding
stochastic information Ut+1(un):

S n
t+1 = S M(S x,n

t ,Ut+1(un)).

11: Increment t. If t < T : go to step 6
12: end for
13: Increment n. If n < N: go to step 4
14: end for
15: return the value function: {V

N
t (S N

t ) | ∀t ∈ T }.

4.2. Generalization across the state space

Since the state space is theoretically continuous and therefore
practically infinitely large, enumerating all states is not possi-
ble. The value function is only learned at the hand of a rela-
tively low number of states, compared to the full state space. A
method is required to estimate the value of states that are never
visited before, i.e. approximate the full value function based
on some samples of the value function learned during the iter-
ations. Operators in AOCC’s require fast solutions when faced
with flight disruptions. To ensure practical usability, the pro-
posed model should be able to produce solution to unseen prob-
lems fast, without having time to repeatedly solve the problem
and learn a good solution through value iteration. In Section
4.2.1, the method to approximate the value function from pre-
vious experience is detailed. In Section 4.2.2, the exact way
this is done is discussed and the choices regarding the function
approximation method used in this work are explained.

4.2.1. Function Approximation
In general, value functions can be approximated via aggrega-

tion structures, parametric models and non-parametric models.
Where aggregations structures rely on combinations of value
estimates of states in different levels of state representations
(each level has a lower/higher level of detail in the state), to
lower the state space size and define the value of this smaller
state space. This averts the requirement of having to exploit a

special structure in the problem. On the other hand, a disad-
vantage at the same time is that one can not take advantage of a
special structure in the state if it were present. This advantage
can be exploited with the use of parametric and non-parametric
models, where the state is mapped to a set of features f ∈ F
using a basis function ϕ f (S ). In a regression form, the value of
state S is then estimated by:

V(S |θ) =
∑
f∈F

θ fϕ f (S ) (16)

Where the model is linear, but the basis functions can have non-
linear characteristics. Finding a basis function might be easy in
case the value function is assumed to be linear in, for example,
the aircraft state, and contributions to the value of a state come
from individual aircraft. In the problem presented in this pa-
per, it is assumed that the value of a state is captured by more
complex relations. The difficulty is then to formulate the basis
functions ϕ f (S ) in such a way that captures the relationships
between features to allow the linear model to produce good
enough approximations. This is not straightforward, however.
A different approach would be to use a non-parametric model
that is able to capture complex relationships between features
and their contribution to the values. In this model, the features
are designed to explain the value of a state as good as possible.
However, the model should still be able to approximate values
of states without the relationships between features being spec-
ified by the basis functions. In this work, the value functions
will therefore be approximated using a non-parametric model.

4.2.2. Feature Generation
In order to obtain good function approximations using a

non-parametric model, it is desirable to define the state in terms
of features that explain the value of the state sufficiently well.
Intrinsic understanding of the characteristics of the problem
is needed (Van Heeswijk et al., 2015). However, finding the
features that explain the value of a state is not straightforward.
In fact, one of the motivations for using RL/ADP frameworks
in this aircraft recovery problem is that it could allow operators
to find solutions that may not seem satisfactory but represent
a good or near-optimal ”value”. Either way, a set of features
is still needed that captures the state of the system in such a
way that the non-parametric model can approximate values
of unseen states. To succeed in this, at least a rough idea of
some features that may present a good value. In some works
in literature (Beirigo et al., 2022), (Simão et al., 2009), this
is done by representing the value of a state as the sum of the
marginal value of the single resources that make up the state
space. Here, for example, an estimate of the marginal value of
a single resource can be the dual variable in a Mixed Integer
Programming model (MIP) associated with that resource. In
this work, no linear relationship between the actions of single
resources (aircraft) and the value of a state is assumed, but
other features that can provide an estimate of the value of the
state can potentially be identified by looking into the problem
closely.
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It becomes evident that the ease with which flights can be
recovered depends on the properties of the best candidate
aircraft for tail swaps. If the best candidate aircraft has little
to no overlapping flight assignments with the disrupted flights,
little to no delays are necessary to recover these flights. If
there is substantial overlap, the number of subsequent flights
of the candidate aircraft can be an indication of how much this
delay might be propagated. Using this logic, a measure to esti-
mate the cost of recovery (read: value) of a state can be derived.

To derive such a measure, one would have to account for
how easily all disrupted flights can be recovered. To achieve
this, the total overlap of all (potentially) disrupted flights of
an aircraft with the best candidate replacement aircraft is
calculated. In this scenario, all disrupted flights from one
aircraft are thus swapped to other aircraft. To add to this,
the number of subsequent flights is multiplied by the overlap
to define an upper bound for delay propagation. In case of
multiple unavailable aircraft, the best combinations of overlap
multiplied with subsequent flights of candidates are calculated
to arrive at an estimate of the ease of recovery for that state.

The following equations describe the calculations of the overlap
of (potentially) disrupted flights with the flights of other candi-
date aircraft in the fleet. Equations (17) and (18) calculate the
start and end of an overlap o between flights f and f ′. Equation
(19) calculates the length of the flight overlap o f

′

f . By summing

o f
′

f over all flights of prone aircraft kp and k, respectively, the to-
tal flight overlap between the two aircraft is determined. In case
the candidate aircraft kp is the prone aircraft itself, the overlap
is determined as the longest time between a (potentially) dis-
rupted flight departure time and the end of the unavailability as
in equation (21).

o f
′

f ,start = max
(
ADT f , ADT f ′

)
(17)

o f
′

f ,end = max
(
AAT f , AAT f ′

)
(18)

o f
′

f =

max
(
o f
′

f ,end − o f
′

f ,start

)
, if o f

′

f ,start < o f
′

f ,end

0, otherwise
(19)

okp ,k =
∑

f∈Fkp

∑
f ′ ∈Fk

o f
′

f (20)

okp ,kp =

min
f∈Fkp

(
ENDu − ADT f

)
0, otherwise

(21)

Now we have a small optimization problem where we want to
minimize the total overlap in the state oS for the combinations
of candidate aircraft with binary decision variable xkp,k ∈ {0, 1}
indicating 1 if an candidate aircraft k has been found to replace
the flights of prone aircraft kp, 0 otherwise:

min(oS ) = min
∑

kp∈Kp

∑
k∈K

okp ,k xkp ,k, (22)

s.t.
∑
k∈K

xkp ,k = 1, ∀kp ∈ Kp, (23)∑
kp∈Kp

xkp ,k ≤ 1, ∀k ∈ K , (24)

xkp ,k ∈ {0, 1}, ∀kp ∈ Kp,∀k ∈ K . (25)

This metric min(oS ) is an important one that will be present in
many of the state features, and it will play a role in the design
of the VFA algorithm as well, as will be explained in Section
4.3. In a similar fashion, the number of subsequent flights for
candidate aircraft k since the first disrupted flight of kp plays a
role, and is defined by:

nkp ,k = |F
kp

k | (26)

Where F kp

k is the set of flights f ∈ Fk for which AAT f ≥

ADT f ′,disruped when ADT f ,disruped is the first disrupted flight of
kp. The combination of the number of subsequent flights for
each potentially unavailable aircraft is then given by:

min(nS ) = min
∑

kp∈Kp

∑
k∈K

nkp ,k xkp ,k (27)

Now, a new interaction metric of finding the minimum of nkp,k

and okp,k assignments can be found by minimizing equation (28)
under the same constraints and will be denoted by int 1:

int 1 = min
∑

kp∈Kp

∑
k∈K

(
nkp ,k · okp ,k

)
xkp ,k (28)

To include the stochastic nature of the disruptions into these
metrics, these metrics are also calculated with weights repre-
senting the probabilities of disruptions. Note that the goal of
these metrics is not to calculate the exact value of being a state,
but rather provide a lower bound for the expected recovery
costs.

Looking at the state representation, more features can be iden-
tified that might have something to do with the value of the
state. The aim is to map the systems’ state to as many use-
ful states as possible, as we can later remove the ones that are
useless by means of feature selection for our model. In Ta-
ble 4, the features are listed with a brief description of how
they are derived. To summarize and clarify their definitions: t
is the current time step in that state, p unavail 1, p unavail 2,
p all, p none are the probabilities that the the first, second, all,
and none aircraft become unavailable. min overlap is the mini-
mum overlap of disrupted flights with candidate aircraft flights,
min n flights is the minimum number of subsequent flights for
the candidate aircraft. min util is the minimum utilization from
all candidate aircraft. int 1, int 2, int 3, int 4 are combinato-
rial metrics that combine the minimum overlap and subsequent
flights from candidate aircraft, some in combination with the
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expected number of conflicts or probabilities of single aircraft
unavailabilities. n potential conflicts is the number of flight at
risk of being disrupted by an unavailability, exp n conflicts is
the expected number of flights that will be disrupted given the
probabilities of the disruptions. total remaining conflicts is the
number of future disrupted flights that are already known with
certainty, and recovered is a binary for whether the schedule is
recovered or not. Note that the set of features are mostly fea-
tures that are unique to the whole systems’ state, and not fea-
tures for individual aircraft or flights. This allows the model to
generalize the value approximations to problems with different
characteristics in terms of number of flights and fleet size.

Table 4: State features identified as predictors of the state value.
Feature Definition
t current time step
p unavail 1 pu,1
p unavail 2 pu,2

.

.

.
.
.
.

p unavail K pu,K

p all Π
Kp
k pu,k

p none Π
Kp
k (1 − pu,k)

min overlap min(oS ), (refer to Equation (22))
min n flights min(nS ), (refer to Equation(27))
min util minimum utilization from all candidate aircraft
int 1 interaction, min(okp ,k * nkp ,k) (refer to Equation (28))
int 2 interaction, min

(
okp ,k · E[n conflicts]kp

)
)

int 3 interaction, min
(
okp ,k * nkp ,k * pku

)
int 4 interaction, min

(
okp ,k * nkp ,k · E[n conflicts]kp

)
n potential conflicts # of potential conflicts
exp n conflicts expected number of conflicts.
n disruptions occurred # of unavailabilities that have realized.
total remaining conflicts # remaining future conflicts.
recovered binary if schedule recovered or not.

4.3. Algorithmic choices

This subsection discusses the algorithmic choices for train-
ing the algorithm and testing the model to new instances. The
choices in parameter values of the ADP algorithm and rewards
are outlined in Section 4.3.1 and the choices for the testing ar-
chitecture and function approximation method are discussed in
Section 4.3.2. Additionally, an overview of the training and
testing architecture is given in Figure 2.

4.3.1. Training
Parameters —Determining the optimal parameters for an ADP
algorithm is not trivial and depends largely on the problem char-
acteristics. One particularly important parameter in value itera-
tion frameworks is the stepsize. The stepsize (or learning rate)
can have a great impact on the convergence behavior. Since the
estimates of values in Algorithm 1 are observed samples from
an expectation, the values are updated via a smoothing formula
(Equation (14)) to account for the noise in the estimates. How-
ever, updating with a small stepsize smooths the learning curve
too much and leads to slowed down convergence. In this trade-
off, there is no silver bullet for determining the best stepsize
strategy, as its effectiveness is highly dependent on the specific
problem. There are some rules of thumb to derive a good step-
size rule for a given problem, however. One good strategy to
strike balance between the elimination of noise in the value es-
timates and the rate to convergence, is a harmonic stepsize rule:

α =
a

a + n − 1
(29)

Here, a is predefined constant that is derived from observing
the convergence behavior with trial and error, and n is the
current iteration.

Similarly, the discount factor γ was determined at 1, since
discounting the values of future states was observed to slow
down the convergence without improving the value to which
the states converged. Regarding the rewards, there is no
consensus on how to quantify disruption effects into one
costs metric. Therefore, sensitivity to changes in the reward
structure should be investigated, and airlines should implement
individual preferences to optimize for different rewards with
care. In this work, costs of delays, swaps, and cancellation
are quantified into one unit of costs, where a minute of delay
is equal to one unit of costs (cd). A cancellation is equal to
300 units of costs (cc) – meaning that airlines prefer to cancel
a flight when they expect delays of over 300 minutes – and
small costs for performance tail swaps of 5 units of costs
(cs) is implemented to reflect unwanted effects of too many
(unnecessary) swaps.

Exploration vs. Exploitation —A common challenge in all
RL frameworks is the Exploration-Exploitation trade-off. Par-
ticularly for ADP, the initial values significantly influence the
convergence behavior. Poor initial values steer the model into
the direction of the states it has visited before (of which it now
has more optimistic estimates than the poor initial value). Dis-
proportionately optimistic values on the other hand, would en-
courage full exploration since the visited states are likely be-
lieved to be worse than unvisited states with optimistic esti-
mates. Considering the fact that the aim of this work is to
tackle the dynamics and uncertainties in disruption manage-
ment —rather than finding the optimal solution under all condi-
tions —the intent is to find a balance between exploration and
exploitation that yields sufficiently good solutions and allows
for reasonable convergence rates simultaneously. For this pur-
pose, the initial values are designed to slightly overestimate the
true value. This slight overestimation leads to a certain degree
of exploration without having detrimental effects on the rate
of convergence. The formula for the initial values is given by
Equation (30) and follows the same principles used during fea-
ture generation:

V0(S t) = min
∑

kp∈Kp

∑
k∈K

(
nkp ,k · okp ,k · pku

)
xkp ,k, (30)

S.t. to constraints (23), (24), (25). In Equation 30, the vari-
ables okp,k and nkp,k are defined as in Equation 28. pku is the
probability of unavailability u of aircraft k happening.
For training, M generated flight schedules are used as input to
the model. For each schedule m, the samples of value function
is learned throughout the iterations. At the last iteration n = N,
the state features are stored with their corresponding values. In
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Table 5: Parameters of the ADP algorithm.

a γ cs cc cd ccurf cnot recovered β2 β3

200 1 5 300 1 150 10.000 1.5 2

total training will be performed on 200 schedules per scenario.

4.3.2. Testing
The proactive recovery model is tested to new problem

instances generated from the same process as the training data
to verify the performance. By means of a Random Forest
Regression model, the value of unseen states can be estimated
based on the features that the state maps to, and the future
values of states can be evaluated in the decision making process.

Model selection —Under the assumption that the value func-
tion is non-linear in the aircraft state space and feature space,
a Random Forest Regression (RFR) is chosen to approximate
value functions during testing. RFR is an ensemble method
that makes use of decision trees to combine predictions from
different (bootstrapped) subsets of the data into one. A single
tree consists of splits based on the features of the subset
used of the data for that tree, where each split minimizes the
prediction error. Each tree then predicts the value of new data
point based on the splits it constructed during training. For a
regression task, the prediction of al trees are then averaged to
derive the final prediction. Due to the random nature of the
construction of the decision trees and the averaging of multiple
predictions, this method is well able to capture interaction
effects and non-linearity, while having the ability to avoid
overfitting (Fife and D’Onofrio, 2022). Also, RFR has a low
computational cost, high predictive accuracy, flexibility, and
interpretability (He et al., 2018), without requiring extensive
data pre-processing.

Model optimization —To enhance the performance of Ran-
dom Forest, the hyperparameters can be tuned. Random
Forests’ performance is dependent on a set of parameters
that dictate to what extend certain parts of the algorithm are
executed. A Random Forest has 6 different parameters, and
finding the best combination for the given training data can
be computationally hard. Seeing that an exhaustive search is
too time consuming for the benefit it brings, we make use of
Bayesian optimization, which aims to optimize the parameter
by building a surrogate model for the evaluation metric using
prior knowledge of the Gaussian Process (GP), and refines this
until an optimum is reached. This method is widely used and
shown to be effective in terms of accuracy and computational
efficiency (Stuke et al., 2021). The optimized values for the
hyperparameters based on the training data are shown in Table
E.14 in Appendix E.

Model evaluation —performance of the RFR is evaluated by
means of the relative Mean Absolute Error (rMAE) and the
coefficient of determination (R2), which gives insights in the

average error in the predictions relative to the mean of the
target variable (the value of states) and how well the model fits
the data, respectively. To avoid overfitting, the robustness of
these metrics is compared via k-fold cross validation.

Feature importance —Also, to gain insight in the explainabil-
ity of the model and the way the Random Forest constructs pre-
dictions, an SHapley Additive exPlanations (SHAP) analysis is
done that explains the Random Forest outputs. This method
composes a model f (x) into a additive model (Janssen et al.,
2022):

f (x) = ϕ0 +

M∑
i=1

ϕxi

Where ϕxi represents the direct effect of of feature i on the pre-
diction. To approximate the value of S x

t , a function Φ(·) maps
the state to a set of features. These features are passed to the RF
model optimized with parametersΘ to produce value prediction
ŷ:

ŷ = RF
(
Φ(S x

t ) | Θ
)

(31)

These predictions are then used to evaluate the downstream
value of decisions at every time step. The uncertain arrival
of disruption information is again drawn from the process de-
scribed in Section 5.1. The algorithm is displayed in Algorithm
2. In Figure 2, the complete testing and training architecture is
displayed schematically. The figure shows that the process is
divided into a training and testing phase, where the value func-
tion is learned during training on many different flight sched-
ules. From the value function, new unseen disruption scenario’s
can be solved by via approximations based on the learned value
function, which comprises the testing phase.

Algorithm 2 Testing algorithm

1: Set the initial state to S 0.
2: Obtain a sample ω.
3: for t = 0, 1, . . . ,T do
4: v̂t = max

xt∈Xt

(
Ct(S t, xt) + V t(S M,x(S t, xt))

)
5: Let xt be the value of x that solves 4, where:

V t(S M,x(S t, xt)) = RF
(
Φ(S x

t ) | Θ
)

6: Compute the subsequent post-decision state:

S x
t = S M

x (S t, xt)

7: Compute the next pre-decision state by adding stochas-
tic information Wt+1(ωn):

S t+1 = S M(S x
t ,Wt+1(ω)).

8: Increment t. If t < T : go to step 4
9: end for

10: return Sequence of decisions, Objective value
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Figure 2: Schematic depiction of training and testing architecture

5. Experimental setup

With the modelling framework in place and the solution
method clear, an experimental setup is designed with the goal
of providing insights in the performance, behavior and robust-
ness of proactive recovery strategies in comparison to conven-
tional/baseline strategies. This section contains the outline of
this experimental setup, explaining the data used for training
and testing (Section 5.1) and the configurations in which the
ADP framework is tested (i.e. the different policies and scenar-
ios that will be compared (Section 5.2)).

5.1. Data
Data is synthesized based on the formats of the ROADEF

Challenge 2009 1. Test and training instances are generated via
a identical synthesis process using the same parameters such
as recovery window times, fleet size, total number of flights
in the fleet. For each instance, flights are first randomly as-
signed to an aircraft. Then, the flight duration and departure
time is sampled from uniform distributions d f ∼ U(60, 180)
and ADT f ∼ U(tavailable,Tend) respectively. Here, tavailable de-
notes the earliest available time this flight can depart based on
previously assigned flights. Flight durations, departure times
and arrival times are then rounded to the nearest quarter hour
to discretize the state space to some extend. The maximum
number of flights per aircraft is limited to 6. The recovery
window starts at 08:00 AM and ends at 18:00 PM. As dis-
cussed in Section 3, the potential disruptions realize based on
X ∼ Bernoulli(p). For every train and test instance, the poten-
tial disruptions are generated with a start time that is sampled
from S T ARTu ∼ U(T0+1,T −2) and have a fixed duration of 6
hours. The rate at which unavailabilities realize is based on their
probability of occurring, which is again uniformly distributed

1https://roadef.org/challenge/2009/en/instances.
php)

pu ∼ U(0.5, 0.9). The characteristics of the flight schedule,
flights and unavailabilities are displayed in Table 6.

Table 6: Characteristics of synthesized flight schedules

min. max. mean
Flight length (min.) 60 180 -
Unavailability length (min.) 360 360 360
# Flights 0 6 4

5.2. Scenarios and policies
To gain an understanding of the performance of a proactive

recovery policy in comparison to conventional policies, and its
behavior when subject to changes in the environment, different
scenarios are sketched on which the proactive policy is tested.
The performance and behavior of the proactive model in these
scenarios is compared to different policies. Six configurations
of the problem are designed in which two factors are varied:
(1) The number of potential unavailabilities.
(2) The structure of the accumulated rewards. (Based on a

penalty factor for last-minute decisions)
The number of potential unavailabilities will vary from one po-
tential disrupted aircraft to two potential disrupted aircraft. The
reward structures vary as discussed in Section 3.3.5, with each
a different β value that determines the penalty factor that last
minute actions get. (Table 8). For each configuration, the re-
sults are compared to two benchmark policies. The first is
a reactive policy. This policy reflects the current practice in
AOCC’s where only reactive measures are taken after disrup-
tions have occurred. This policy tries to recover the schedule in
the same manner as a proactive policy, but has no information
on potential disruptions and only ”sees” disruptions that have
happened. The second policy is a myopic policy, this policy re-
flects a lower bound of the quality of the solution and acts just
like a reactive policy, but has no information about the value
of future states and is therefore optimizing only for immediate
rewards. By combining the different configurations and poli-
cies, a set of scenarios will be compared, which are denoted
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as in Table 7. In the table, the names for these different sce-
narios are displayed in matrix form where each combination of
reward structure, policy, and disruption scenario is named. Fur-
thermore, the scaling characteristics of the models are assessed
by testing on larger problem instances. To add to this, the re-
sults of the reactive policy is compared to an exact solution, to
provide insights in the quality of the VFA method by assessing
the optimality gap between the exact solution and RL solution.
This exact MILP if formulated in Appendix B.

Table 7: Different policies across rewards and unavailabilities.

Unavailabilities Single Multiple
Reward Structure 1 2 3 1 2 3
Proactive P1

S P2
S P3

S P1
M P2

M P3
M

Reactive R1
S R2

S R3
S R1

M R2
M R3

M
Myopic M1

S M2
S M3

S M1
M M2

M M3
M

Table 8: Parameters for different reward structures – a higher β means a higher
penalty factor for last minute decisions, as defined in the reward function in
Equation 8.

Reward structure 1 2 3
β (eq. (8)) − 1.5 2

For every configuration of policy and reward structure, 1000
test instances are solved, this could be more but due to the wide
range of scenarios and the expectation that 1000 test instances
is enough to expose the differences between the scenarios and
models. Each test instance is solved once for every possible out-
come of the uncertainties (so for two potential disruptions, the
instance is solved for a scenario where no disruptions realize,
both disruptions realize, and one of the two disruptions realize).
The obtained results for each outcome are then weighted with
the probability of that outcome.

6. Hypotheses

With the methodology described in this Section, the aim is to
gain insights in properties of the proactive approach with rein-
forcement learning. Several hypotheses have been outlined to
support the analysis:
(1) A proactive approach leads to lower recovery costs than a

reactive recovery approach.
(2) The advantage of a proactive approach over a reactive ap-

proach in terms of objective metrics increases as more air-
craft are subject to potential disruptions.

(3) The advantage of a proactive approach decreases as the
slack of the schedule increases

(4) A proactive approach allows for quicker recovery than a
reactive one.

Hypothesis (1) is the main hypothesis of this work and is meant
to check if a proactive recovery solution can outperform a reac-
tive approach when faced with potential future disruptions. Hy-
pothesis (2) focuses more specifically on the behavior of proac-
tive models in when used in schedules with different levels of
disruptions; when the schedule is more disrupted, performing

proactive actions could provide more options for a better recov-
ery solution and should thus yield a better advantage when com-
pared to a reactive approach. Similarly, hypothesis (3) checks if
this advantage is correlated with the schedule slack beforehand.
A high slack and low utilization of the fleet is expected to have
a negative effect on the advantage of proactive models, as a re-
active approach might have equally good recovery options in
a low slack schedule as a proactive approach. Hypothesis (4)
is there to validate whether proactive recovery leads to quicker
recovery than a reactive one, meaning that a solution is reached
in fewer discrete time steps with the proactive model than with
the reactive one. These Hypothesis are validated in Section 8.
Furthermore, additional hypotheses can be made regarding
the computational scalability of the model, different reward
structures, and the performance of an RL model compared to
the exact solution: since in this work the curse of the action
space must still be handled, it is expected that the proposed
ADP algorithm does not scale well with a growing fleet. This
also holds for the exact model, but it is expected that the RL
model scales worse than the exact model since this relies on
a exhaustive search of the action space at every time step.
Regarding the different reward structures, it can be expected
that a proactive model gets a better advantage over the reactive
model when rewards are subject to last-minute penalties, which
would follow logically from the hypothesis that a proactive
model reaches solutions quicker (which implies it makes
decisions at an earlier stage). The convergence of the reward
structures that include last-minute penalties is expected to be
slower than for rewards without time penalties, since the state
value updates for ”bad” last minute actions have to propagate
backwards through the time steps in order for the model to
know, at an early stage, that making a decision at a later stage
results in a bad reward.

Another interesting effect of the different reward structures
would be how the delays and cancellations are effected. The
total reward gets a penalty factor for last-minute decisions,
which may lead to the model choosing actions that result in
more delays, but less negative reward since these decisions
are made well ahead in time. This raises another question for
airlines, in whether they prefer less last minute changes with
more delays, or less delays but more last minute changes.

Additionally, the reactive RL model is expected to perform sub-
optimal compared to an exact solution. Although expected, the
optimality gap should not be too large, and the RL model must
be able to find sufficiently good (for example a gap of less then
25%) solutions in most of the test scenarios.

7. Results

This section contains the computational results following the
experiments, showcasing the results for the training algorithm,
function approximation, and testing results. The models perfor-
mance during testing is assessed by comparing their obtained
rewards and the resulting delays and number of cancellations.
The results of the reactive RL model are benchmarked against
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an exact (optimal) solution. Moreover, the actions of the proac-
tive model are discussed based on an example solution. Addi-
tionally, the robustness of the models is assessed and discussed,
and the actions of the RL model are explained.

7.1. Convergence

Although there exist stopping criteria rules, they are not al-
ways reliable and implementable when dealing with stochastic
information (Powell, 2011). With computational power being
a limiting factor on the complete training set and having a re-
liable stopping rule not being a guarantee, trial and error with
a limited amount of training schedules is done to determine the
sufficient amount of iterations needed for convergence of the
full set. Figure 3 shows the average objective values and ex-
pected value of the initial state for each scenario. Each scenario
is indicated by ”S” for single disruption and ”M” for two dis-
ruptions, and a number indicating the reward structure. These
are the average values at each iteration for all 200 training in-
stances. Figure 3c shows the absolute values for the average
objectives per iteration. It can be seen that with a reward struc-
ture that includes higher penalties for last-minute decisions, the
convergence is noticeably slower (M2, M3), but only for multi-
ple disruption scenarios. This could be attributed to the fact that
the benefit of making earlier decisions is not reflected in the im-
mediate rewards, as it seems to the model that making no deci-
sion is still better than making a decision (with costs associated)
that affects a flight far in the future. Only at a later stage in the
time horizon, where the decision is ”more costly”, the model
recognizes that making the decision one step earlier would re-
sult in better rewards. The point where the decision recognizes

the benefit of making earlier decisions thus has to propagate
back through the time steps during the iterations, which results
in significantly slower convergence. It is remarkable that this
effect is less evident in single disruption scenarios (S1, S2, S3).
Although this could have to do with the simplicity of the single
disruption scenarios and the magnitude of additional benefit of
making earlier decisions (which make the effect less apparent
in the plot:

7.2. Function approximation
To determine the sizes of the training set that will be used for

approximating the value function, the size of the smallest train-
ing set for all scenarios is chosen. Due to computational limits,
only 200 training instances are used in case of the most compu-
tational heavy scenario. For most scenarios, training was done
on more than 200 instances. However, the size of the training
set influences the computational efficiency of the value approx-
imation during testing and thus the computation times of the
solutions during testing. For that reason, and to keep a fair
comparison between the scenarios, the training set size is de-
termined at 200 for all scenarios.

7.3. Objectives

This subsection displays the results in terms of model
performance w.r.t. the given objectives. The total rewards are
displayed, as well as the number of cancellations and the total
flight delay in each scenario, for each policy. In Figure 4, the
results for these combinations of policies and scenarios are
compared. It (logically) becomes clear that multiple disruptions
results on higher costs, more delays, and more cancellations.

(a) Average normalized value of V(S 0) per iteration. (b) Average normalized objective value obtained per iteration.

(c) Average objective value obtained per iteration for different scenarios

Figure 3: Convergence behavior for the different scenarios on a normalized scale.

14



B.F.W. Vos
MSc Thesis Aerospace Engineering,

Delft University of Technology

The difference between reactive and proactive policies are not
immediately evident, although the myopic is noticeably worse
in almost all cases. Different reward structures 1, 2 and 3 have
– by definition – a large impact on the reward. The impact
the different reward structures have on the delay and number
of cancellation in the single (S) disruption scenario, is not
evident. However, it is remarkable that for multi-disruption
(M) scenarios, reward structure 2 (M2) seems to lead to more
delays, but less cancelations, than M1 and M3. Another
thing that stands out is the fact that for cancellations, the
different reward structures in multi-disruption scenarios (M1,
M2, M3) seems to influence the advantage of the proactive
model versus the reactive one, meaning that with more time
penalties, the proactive model manages to find solutions with
less cancellations compared to the reactive model and myopic
model.

Figure 4: Results for objective metrics across all scenario/policy combinations.

In Figure 5, the performance for R1
S and R1

M is compared to
that of the exact model. While the optimality gap in single
disruption scenarios is large, VFA method achieves good
performance in multiple disruption scenarios with a optimality
gap of 19.6%. From 100 test instances, the exact method found
a solution within the time limit of 100 seconds for 99 instances
on the single disruption scenario, and 86 instances for the

multiple disruption scenario.

Figure 5: Performance of the reactive policy compared to exact solutions.
(Optimality gaps for S 1 and M1: 61.0% and 19.6% resp.) – The results are
only compared for R1

S and R1
M , as the goal of the comparison is to briefly pro-

vide insights on the differences between an RL and exact methods, not to per-
form a comprehensive analysis such as the comparison of proactive and reac-
tive.

A key difference in the exact solution and the RL solutions, is
the number of actions they take. The RL model performs a lim-
ited number of actions, and chooses the actions that yield the
most benefit for the recovery solution. The exact model how-
ever, takes as many actions as necessary to arrive at the optimal
solution. In many cases, the RL model can achieve a good solu-
tion with only a few actions. This happens largely in scenarios
where the recovery solution is more straightforward. Once a
”good” solution becomes less straightforward, the performance
gap between exact and RL becomes bigger. In Figures B.13,
B.14 and B.15 in the Appendix Appendix B, an example is
given of a disrupted schedule where the solution for both a re-
active RL solution, and exact solution is shown. As can be
seen, the schedule is heavily disrupted with four flights being in
conflict. In this example, the RL model reached a solution by
performing 7 actions with an objective of -805, while the ex-
act model did 17 actions and found a solution with an objective
value of -591. This is a good example of a scenario where the
RL model does not manage to find a ”good” solution with only
a few actions. It also showcases the ability of the exact method
to find good solutions, but at the costs of severe changes to the
schedule.

7.4. Proactive actions

The behavior of the proactive model is important for air-
lines, since they must decide whether a proactive solution will
be implemented or not. In particular, the actions the proactive
model does before any disruptions have realized. The proactive
manages to effectively solves for disruptions by swapping flight
around to keep delays to a minimum. By taking some proactive
measures (actions), the model creates straightforward recovery
options in case a disruption would realize. In Figure 6, a step-
wise simulation of a proactive recovery solution is displayed
where this happens. Two potential disruptions for aircraft 1 and
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aircraft 2 are known with probabilities p = 0.64 and p = 0.76,
respectively. Flight 11 gets swapped to aircraft 6 even if there
are no potential disruptions for this flight and no other disrup-
tions have yet occurred. However, the model recognizes that
aircraft 4 is a good candidate aircraft for the potentially dis-
rupted flights 7 and 17 of aircraft 1. With no delays, flight 11
can be swapped from aircraft 4 to aircraft 6 and as the disrup-
tion of aircraft 1 realizes, the model now has created an easy
recovery option in advance without having additional delays.
In a similar way, flight 20 is swapped from aircraft 5 to aircraft
4, which allows flight 17 to be recovered without delays. The
actions per step are described below the schedules.

Initial schedule with potential unavailabilities.

Flight 11 from aircraft 4 to aircraft 6.

Flight 14 from aircraft 2 to aircraft 3.

Flight 7 from aircraft 1 to aircraft 4.

Flight 20 from aircraft 5 to aircraft 4.

Flight 17 from aircraft 1 to aircraft 5.

No action.

Flight 5 from aircraft 4 to aircraft 5
.

Figure 6: Stepwise simulation of proactive recovery solution to a multi-
disruption scenario

7.5. Robustness

Besides assessing the performance of different models in
terms of airline objectives, it is of interest to capture the behav-
ior of different policies by quantifying that behavior in mea-
sures for robustness. In this context, robustness of a model
means: ”the extend to which the schedule can be recovered
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while keeping the changes in the original plan to a minimum”
(Chiraphadhanakul and Barnhart, 2013). To assess this, the
number of recovery actions, number of involved aircraft, and
number of affected flights are compared. Figure 7 depicts the
behavior of a proactive model in comparison to a reactive model
and (reactive) exact solution. Looking at these results, it is clear
that an exact method, while finding optimal solutions, requires
more extensive recovery in terms of all three metrics. An RL
approach (reactive and proactive) arrives at solutions with fewer
actions and impact on the flight schedule. Proactive and reac-
tive approaches seem to share similar characteristics. Although
on average, slightly more actions and aircraft are involved in a
proactive approach. This is due to the fact that proactive mod-
els might make decisions, even when a potential disruption does
not realize. Cases in which a reactive model would never act.

Figure 7: Comparison of nr. of affected flights, involved aircraft and recovery
actions for different policies.

Another interesting measure for robustness of the models is
how quick a solution is reached. In Figure 8, a comparison
is made between the time to solution for the reactive and proac-
tive model (note that by time to solution, the number of time
steps until recovery is meant and not the CPU time). A proac-
tive model reaches solutions noticeably quicker, indicating that
proactive policies can indeed set up the schedule in such a way
that when a disruption happens, a solution can be reached with
very little effort. The findings presented in Figure 9 support
this. It becomes clear that a proactive model accumulates more
negative rewards at an earlier stage than a reactive model, but
saves negative rewards later on the day by doing so, and thus
limit the corrective measures that have to be undertaken at a
later stage.

Figure 8: Mean time to recovery of proactive and reactive policies in minutes.

Figure 9: Mean accumulated rewards of proactive and reactive policies over all
test schedules.

7.6. Model reasoning

Regarding the reasoning of the model (i.e. why the model
chooses certain actions), two factors play a role: 1) How and
why does the model learn that a certain state represents a good
value? 2) How and why does the model estimate a certain state
at a certain value, based on its experience/training? The first
question can be answered by considering the configuration of
the ADP algorithm defined in 4.1. The value of states is learned
iteratively and the way these iterations progress is influenced
by factors like the stepsize, discount factor, initial state val-
ues, exploration vs. exploitation trade-off, as well as the reward
structures. For the second question, the SHAP values used are
discussed in Section 4.3.2. The results are displayed in Fig-
ure 10. In Figure 10a, the impact of the individual features on
the model output (prediction of a value) is plotted. The differ-
ent colors represent high and low values of the features, while
the position on the x-axis represents the value that that specific
feature value has on the prediction. In Figure 10b, a single ex-
ample prediction is analyzed, which shows, for that prediction,
how much each feature contributed to the value of that predic-
tion w.r.t. the expected value of a prediction (the mean value of
all predictions). Additionally, a feature importance graph is dis-
played in Figure 10c. The feature importance scores measures
for each individual feature how much it reduces the variance
in the output. Looking at the values in Figure 10a and Figure
10c, it becomes evident that the metrics established in Section
4.2.2 to derive an estimate of the value of a state have the most
impact on the model output (int 1, int 2, int 3, int 4, Table 4).
This tells us that these designed features derived at least serve
the purpose being predictors of the state value to some extend.
On the other hand, however, it could also imply that the model

17



B.F.W. Vos
MSc Thesis Aerospace Engineering,

Delft University of Technology

(a) Shapley Values for the Random Forest Regression (b) Waterfall plot of SHAP values for a single prediction (c) Feature Importance scores for the random forest regres-
sion

Figure 10: Visualization of SHAP explanations, waterfall plot, and feature importance. See Table 4 for the exact definitions of the features.

does not explore enough (since the values of states are also ini-
tialized based on these metrics, and thus the model does not
explore enough to beyond what it believes is the value of a state
initially). In any case, the actions of the model can partly be
explained by these features, where the most important ones are
derived from the overlap of flights within the fleet and the num-
ber of subsequent flights swap candidate aircraft have, which
could thus be an intuitive explaining factor to why the model
might perform certain actions.

7.7. Computational performance and scalability

The scalability of the model must be assessed through the
computing times, which is an important requirement for air-
lines using such models. Since the curses of dimensionality are
only partially tackled in this ADP framework. The action space
grows exponentially and each action requires to be evaluated,
causing computation times to explode. In this work, the evalua-
tion is done exhaustively, which results in the scaling character-
istics found in Figure 11. Doubling the fleet already requires 5
times longer computations. In Figure 12, the CPU times of the
RL (reactive) model and the exact model are compared, show-
ing that both do not scale well, but a stronger increase in CPU
time is visible for the RL model.

Figure 11: Computational Performance for different instance sizes.

Figure 12: Computational Performance exact optimization vs. reinforcement
learning.

8. Hypothesis validation

Four main hypotheses were stated. Several tests have been
constructed to be able to draw conclusions and validate the
hypotheses:

Hypothesis 1
A Proactive recovery strategy leads to lower recovery costs
than reactive strategies. Note that ”costs” in this hypothesis is
an ambiguous term, and it will therefore be assessed threefold
by 1) rewards, 2) delays, 3) cancellations. For each metric, the
null and alternative hypothesis are:
H0: Zproactive = Zreactive

H1: Zproactive > Zreactive

Where Z represents the mean of the samples, observed from
the 1000 test instances. It can be seen from Table D.10 that
with more stringent reward structures in terms of penalties for
time between decision and effect (the last minute time penalty
discussed in Section 3.3.5) do have some significant results.
For most configurations however, although the means of the
proactive objective metrics are lower, there is no statistical
significance, meaning that a proactive approach does not
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necessarily yield lower cost solutions.

Hypothesis 2
The advantage of a proactive approach increases as the
schedules get more increasingly disrupted. This time, the
comparison is between the mean of the advantage of one policy
of another, for a scenario with a single disruption and a scenario
with two disruptions. Although the same flight schedules are
used as test instances for the different disruption scenarios, the
disruptions themselves differ, making the results inherently
different and thus independent. Again, the significance of the
different mean is tested for each reward structure.
H0: AM = AS

H1: AM > AS

Although there is no significant difference for the objectives
with reward structure 1, there is a significant increase in relative
performance with more disruptions in terms of total rewards
and number of cancellations for reward structures 2 and 3 (with
these reward structures, last minute decisions are penalized
more), see Table D.11.

Hypothesis 3:
The advantage of a proactive approach decreases as the slack
of the schedule increases. Here, the slack between two flights
is determined as defined by (Chiraphadhanakul and Barnhart,
2013), where it is the additional time between two flights in
excess of the Minimum Turn Time (MTT). Since in this study,
the MTT is included in the flight times, the slack is therefore
the time between two consecutive flights. The schedule slack is
then determined as the average slack per aircraft relative to the
recovery horizon. Again, the test is performed for each reward
scenario, and each disruption scenario. Results are displayed
in Table D.12.
H0: r = 0
H1: r > 0

Looking at the table, there seems to be a significant relation
between the advantage of a proactive approach and the slack
in the schedule in most cases. However, the number of
cancellations seems to not be effected statistically by the slack
in the schedule.

Hypothesis 4
Proactive recovery allows for quicker recovery. To test the
difference in the means of the time to recovery Tr for proactive
and reactive policies, the same test is performed as for hypoth-
esis 1:
H0: T proactive

r = T reactive
r

H1: T proactive
r < T reactive

r

The results are found in Table D.13 and indicate a clear statis-
tical difference between the time to recovery for proactive and
reactive models.

9. Discussion

This study showcased the potential of a proactive approach
to tackle Airline Disruption Management (ADM) problems
through an RL framework that relies on Approximate Dy-
namic Programming (ADP) with Value Function Approxima-
tion (VFA) when faced with uncertain disruption information.
Results show that a proactive policy – in circumstances where
last minute schedule changes are penalized – lead to better per-
formance in terms of number of flights cancellations. This
seems to be the case for the total reward obtained from the RL
model and the total delay as well. However, not all results show
significant differences of a proactive policy over a reactive one
in these areas. Furthermore, additional insights in the actions of
the ADP framework are provided by means of an explainability
assessment that exposes important problem characteristics that
influence decision making by the ADP model. The robustness
of the different policies is assessed and compared to an exact
method, where results indicate that an RL approach yields more
stable solutions over the exact benchmark in terms of sched-
ule intervention, meaning that the RL model achieves, although
suboptimal, efficient recovery solutions with significantly less
actions than an exact model. Additionally, the proactive model
obtains solutions quicker by anticipating the disruptions, result-
ing in fewer corrective measures when disruptions actually re-
alize. The advantage of a proactive policy is more apparent –
especially for flight cancellations – in more heavily disrupted
scenarios, as well as scenarios in which flight schedules have
little slack, which could motivate AOCC operators to consider
proactive recovery strategies when faced with such scenarios.

9.1. Limitations

While this study provided insights into proactive recov-
ery frameworks for ADM, several limiting factors must be
discussed. First of all, the proposed models are subject to a
variety of assumptions that restrict their resemblance to real
life operations; operational constraints are excluded under a
simplified hub and spoke model that models rotations as single
flights, thereby ignoring important requirements that individual
aircraft may have regarding their location (for maintenance
or schedule continuity purposes). Uncertainties regarding
disruptions are assumed to be known (e.g. duration of unavail-
ability, probability of disruption realizing). Also, the data is
synthesized, and therefore required rough assumptions on the
data characteristics without investigating the effects of how
these assumptions are substantiated. Furthermore, the ”costs”
of flight cancellations, swaps, and delays are assumed at some
value, which might differ strongly in real life depending on the
airlines. Although easily adaptable for airlines that might use
this framework, the rewards influence the models’ behavior
and thus the insights proactive approaches derived from this
study might no longer hold when subject to significant changes
in rewards. Lastly, the general ARP is only a piece of the
full disruption management problem pie, as operators have
to consider crew and passengers into the recovery as well for
optimal decisions, which is not included in this study.
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In terms of algorithmic limitations, there are several points of
attention. Firstly, there is the initialization of state values in
the ADP algorithm. This determines for a large part how the
algorithm behaves in terms of convergence and exploration.
bounded by limited computing power, the choice was made
to steer the algorithm towards exploiting states assumed to be
good and thus reaching faster convergence, while allowing
some, but limited, exploration. The set of basis features on
which the states’ values are predicted are designed to represent
the state globally (the whole system) instead of having features
that represent individual state resources (aircraft). This allows
the model to generalize to bigger problem sizes, even with
training on small problems, but comes at the cost of a loss
of detail of the states, which deteriorates the predictions on
state values. To add to this, one limitation of the algorithmic
architecture is that the values are predicted based on two ap-
proximations (learning the real state values by approximation
and predicting a state value based on those learned values),
which might amplify any inaccuracies the model may have.

Then there is limited computational ability, restricting the mod-
els training in terms of duration, training set size, granularity
of time steps in the time horizon, and problem sizes. These are
all factors that, if not limited, could improve the model perfor-
mance and allow for unbiased results and thus better insights
into the proactive framework when compared to the reactive
approach.

9.2. Scalability of RL model
Limited computational ability is a result of inefficient algo-

rithmic performance. The results have shown that the currently
proposed ADP model – while tackling some of the curses of
dimensionality – misses the elimination of the curse of the ac-
tion space, and therefore does not scale well when subject to
increased problem sizes. This does not mean that the proposed
method is unsuited for ADM problems, however. The model is
still able to solve instances with a fleet of 20 aircraft in under
2 minutes. However, in many RL applications, one of the ad-
vantages is near instantaneous computation times after training.
In this work, an exact model, although scaling equally bad, is
shown to have superior CPU times over the RL approach. The
exploration of a method to bypass the curse of the action space
in this proposed framework is therefore needed to open up the
full potential of this method to solve large scale problems in a
matter of seconds. It must be added that the comparison with
the computation times of the exact model is biased, since this
exact model does not always find a solution, meaning that some
instances with very large computation times are not included in
the comparison. This points to the rather advantageous prop-
erty of the RL method to find solutions with roughly the same
CPU times for every instances, where an exact method is not
guaranteed to find a solution within the desired runtime, since
the user is unsure beforehand whether the solution time will
be a matter of seconds or in the order of 10 minutes. To add
to this, the scope of both the RL and exact models is overly
simplified, and it is well known that MILP’s do not handle ad-
ditional complexity in terms of constraints and variables very

well when scaling, while the RL model CPU times still scales
linearly (with the action space size that is, not the problem size)
when subject to additional constraints. This could lead us to
question the computational advantage that the exact model has
over the RL approach in this work. More on this is Section 9.4

9.3. Applicability of proactive framework

One major question surrounding this research is the use of
such a framework in real-life operations by AOCC operators.
Several factors must be considered. First and foremost is the
computation time. Operators require solutions within two
minutes (Vink et al., 2020), and depending on the size of the
problem at hand, it is not a guarantee that this model meets this
condition.

Airlines also require decision support models to be transparent
in the decision making, meaning that they should understand
why a model picks certain actions. For the proposed model,
an analysis on the state features that influence the decision
the most can give substantial insights into this, allowing
airlines to run checks for why a certain action is proposed by
the model. However, the model might still make decisions
that seem random, even when considering the features and
the value predictions for the system’s state. In case that this
is detrimental for AOCC operators, additional research and
insights in the explainability of the model is required to meet
the standards for use in AOCC’s.

The quality of the solutions should not be forgotten when de-
ciding whether a proactive RL model should be used by airline
operators, as this is ultimately the goal of airline recovery. In
case exact or heuristic solution – although static and reactive
– provide significantly better solutions, the operators might
make the trade-off that the proactive RL simply does not meet
perform enough in terms of cost savings and decide not to use it.

The proactive model relies on uncertain information in aircraft
unavailabilities. It is important for airline operators to consider
if the reliability of the uncertain information is sufficient, as
the uncertainty of the predictions of disruptions add extra noise
to the problem: a proactive model can lead to better recovery
outcomes, given that the uncertain information is reliable.

9.4. Recommendations for future work

Since this work is proof of concept for anticipatory disrup-
tion management, and little proactive disruption management
works exist in literature, there are countless directions for
future work on this topic. To begin, the scope of the model
can be expanded to include more realistic operational factors
and constraints such as multi-fleet scenarios, multi-airport ro-
tations, maintenance routing constraints, soft-reserve aircraft.
Incorporating these operational aspects in the framework would
not only make the model more resemblant of real life and thus
more applicable, it could also reveal an increased performance
gain of a proactive strategy over a reactive one. We have
already seen with that highly disrupted and highly utilized
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schedules, the proactive approach has a greater advantage. This
could lead us to hypothesize that increasing the complexity
and scope of the framework would also increase the advantage
of a proactive approach, thereby showcasing the true benefit
that anticipatory disruption management can bring. To amplify
this, real operational data should be used to allow RL models
to exploit underlying patterns of that data, rather than working
on synthesized data. This includes the flight schedules that
the models are trained on, but also the characteristics of the
disruptions, which can stem from real life historical data.

Regarding the model itself, more extensive training should
be performed, preferably with tailored exploration strategies,
since general exploration is not worth the extra computation
time when using ADP with large state spaces. This could
abolish the restriction of the model in finding good solutions
imposed by too little exploration, making the ADP method
much more powerful. Then, the computational challenges
of the model should be tackled, and the incorporation of a
method that removes the need to evaluate all possible decisions
exhaustively must be investigated to improve and validate the
scalability of the model. In the ADP paradigm, many methods
exist to bypass the curses of dimensionality (Value Function
Approximation, Policy Function Approximation, Lookahead
Policies, and Cost Function Approximations (Powell and
Meisel, 2015)). Although they often must be tailored to the
problem at hand and combined with more advanced methods
to work properly (function approximation with state features
(parametric or non-parametric), or hierarchical aggregation for
example). The proposed method still requires a method that
can overcome the need for an exhaustive search in the action
space. This could be achieved by implementing an internal
optimization problem (or any other search algorithm) in the
ADP algorithm instead of searching exhaustively, or redefining
the MDP in such a way that the action space remains small
regardless the problem size. The latter being something that
is not straightforward and not guaranteed to work, however.
Regardless, this model can still be used for small subsets of
fleets that are selected by an aircraft selection algorithm that is
used in conjunction with the recovery models, something that
is proven useful for the ARP (Vink et al., 2020; Rashedi et al.,
2024).

Additionally, different RL methods should be used in the con-
text of aircraft recovery to gain insights in the individual RL
methods and single out their limitations and advantages to be
able to determine the best suited methods for different disrup-
tion management problems.

10. Conclusion

This paper proposes a novel proactive aircraft recovery
framework using model-based reinforcement learning (RL)
to address airline disruption management problems by for-
mulating the Aircraft Recovery Problem (ARP) as a Markov
Decision Process (MDP). In a simplified model scope where
hub and spoke rotations are represented as single flights, the

proposed anticipatory model integrates information on future
potential disruptions, offering a significant difference over
conventional reactive strategies. This work’s findings highlight
the fact that a proactive RL-based framework is particularly
effective in high-disruption scenarios, where it outperforms
reactive methods in minimizing delays and cancellations.
Similarly, the results indicated the advantage of a proactive
model in terms of delays increased when the slack of the
daily flight schedule decreased, demonstrating the potential of
proactive models in highly utilized schedules.

When incorporating time penalties for last minute changes to
the schedule, the proactive model obtains better rewards and
mitigates flight cancellations better than the reactive model,
while no differences become visible in terms of delays. This
indicates that proactive models are particularly beneficial
to airlines that prioritize passenger satisfaction and desire
fewer last minute changes with less cancellations. However, a
balance must be struck when quantifying these time penalties,
since the results in this study showed that it is not the case
that the higher the time penalty, the more the model mitigates
cancellations over delays.

Additionally, proactive methods reach faster solutions by proac-
tively setting up the schedule for easy recovery in case of dis-
ruptions. This indicates that anticipatory recovery strategies are
suited to provide timely and effective solutions to disruptive
scenarios. The RL model also provides robust solutions with
fewer recovery actions, emphasizing its stability compared to
an exact model. The scalability of the model remains a ma-
jor limitation that should be tackled in future research. Doing
so would unlock the full potential of RL models and allow for
better practical applicability of the model to real-world opera-
tions. The integration of explainability into the RL framework
exposed important properties of the problems that explained the
reasoning of the model when picking individual actions and
could aid operators in making decisions when using such a
model as a decision support tool. This adds additional value for
viability of real-world application, although it remains a sub-
jective matter for individual airline preferences, and should be
investigated as such before real-world application of the model.
Nonetheless, this work provided the first steps and insights to-
wards a method for anticipatory airline disruption management.
By addressing the remaining practical implications and com-
bining the proactive frameworks with data analytics for proba-
bilistic predictions on disruptions, it could become a viable tool
for improving airline resilience when operating in uncertain en-
vironments.
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Appendix A. Acronyms

Table A.9: List of abbreviations

Abbreviation Definition
AC Airport Closure
ADM Airline Disruption Management
ADP Approximate Dynamic Programming
AI Artificial Intelligence
AOCC Airline Operations Control Center
ARP Aircraft Recovery Problem
CG Column Generation
DRL Deep Reinforcement Learning
DP Dynamic Programming
DQN Deep Q-Networks
GP Gaussian Process
GRASP Greedy Randomized Adaptive Search Procedure
HMM Hidden Markov Model
IRROPS Irregular Operations
LP Linear Program
LNS Large Neighborhood Search
MAS-ADP Multi-Agent Simulation-Adaptive Dynamic Programming
MC Monte Carlo
MCTS Monte Carlo Tree Search
MDP Markov Decision Process
MIP Mixed Integer Program
MILP Mixed Integer Linear Program
ML Machine Learning
MPC Model Predictive Control
OR Operations Research
PHM Prognostics and Health Monitoring
RFR Random Forest Regression
RL Reinforcement Learning
SHAP SHapley Additive exPlanations
UTFM Uncertainty Transfer Function Model
VFA Value Function Approximation
VNS Variable Neighborhood Search
VRP Vehicle Routing Problem
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Appendix B. Exact vs. RL Comparison

Figure B.13: Initial flight schedule for example scenario.

Figure B.14: Solution from an RL model. Objective value of -805. Altered
flights are marked in green.

Figure B.15: Solution from an exact model. Objective value of -591. Altered
flights are marked in green.

Appendix C. ARP - MILP Formulation

Sets

Symbol Definition
F set of flights, indexed by f .
K set of aircraft, indexed by k.
f , f ′ pair of flights such that f , f ′.

Parameters

*The values of parameters cswap, cdelay and ccancel are the same as used in the
ADP algorithm, defined by Table 5.

Parameter Definition
d f scheduled departure time of flight f .
a f scheduled arrival time of flight f .
cswap cost of swapping a flight to another aircraft.
cdelay cost per minute of flight delay.
ccancel cost of canceling a flight.
M sufficiently large constant for the big-M constraint
Fmax

k maximum number of flights that can be assigned to air-
craft k.

ustart
k , uend

k start and end times of aircraft k’s unavailability.
k f

0 original aircraft k of flight f .

Decision Variables

Variable Definition
x f ,k 1 if flight f is assigned to aircraft k, 0 otherwise.
s f ,k 1 if flight f is assigned to a different aircraft k than its

original aircraft, 0 otherwise.
z f delay imposed on flight f in minutes.
y f 1 if flight f is canceled, 0 otherwise
δ f ,′ f 1 if f is strictly before f ′, 0 otherwise.
σ f , f ′ ,k 1 if f and f ′ are assigned to the same aircraft, 0 other-

wise.
b f ,k 1 if flight f departs before the unavailability of aircraft

k, 0 otherwise.
a f ,k 1 if flight f departs after the unavailability of aircraft k,

0 otherwise.

Exact Model Formulation
The full model is depicted in Figure C.16. The constraints can
be grouped into 5 types of constraints:
1. Flight Assignment Constraints.
2. No Overlap Between Flights on the Same Aircraft.
3. Aircraft Availability Constraints.
4. Maximum Flights per Aircraft.
5. Non-Negativity and Binary Constraints.
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Minimize
∑
f∈F

cswap

∑
k∈K

s f ,k + cdelayz f + ccancely f


S.t.

∑
k∈K

x f ,k + y f = 1, ∀ f ∈ F (1.1)

s f ,k ≤ x f ,k − x f ,k f
0
, ∀k ∈ K, k , k f

0 (1.2)

d f + z f ≤ a f ′ + z f ′ + M(1 − δ f , f ′ + y f ), ∀k ∈ K, ∀ f , f ′ ∈ F, f , f ′ (2.1)
d f ′ + z f ′ ≤ a f + z f + M(1 − δ f ′, f + y′f ), ∀k ∈ K, ∀ f , f ′ ∈ F, f , f ′ (2.2)

σ f , f ′,k ≤ δ f , f ′ + δ f ′, f + y f + y′f , ∀k ∈ K, ∀ f , f ′ ∈ F, f , f ′ (2.3)

d f + z f ≤ ustart
k + M(1 − a f ,k) − My f , ∀ f ∈ F, k ∈ K (3.1)

d f + z f ≥ uend
k − M(1 − a f ,k) + My f , ∀ f ∈ F, k ∈ K (3.2)∑

f∈F

x f ,k ≤ Fmax
k , ∀k ∈ K (4)

x f ,k, s f ,k, y f , δ f , f ′ , σ f , f ′,k, a f ,k, b f ,k ∈ {0, 1}, z f ∈ Z+ (5)

Figure C.16: Mathematical Formulation of ARP used in this paper

Appendix D. Statistical results

To determine the right statistical test for the first hypothesis,
a few factors must be considered. The test is paired since the
same instances are compared for the two policies. The sam-
ples are tested for normality with a Shapiro-Wilk test, which
resulted in p-values lower than 0.0001 for all scenarios. The
appropriate statistical model is then a Wilcoxon Signed-Rank
test. The significance of the different means is tested for each
reward structure and disruption scenario. In Table D.10, the
resulting p-values are displayed.

Table D.10: p-values for Wilcoxon Signed-Rank test to compare the means of
objective metrics for multiple scenarios.

Unavailabilities Single Multiple
Reward Structure 1 2 3 1 2 3
Reward p = .096 p = .383 p < .001 p = .963 p < .001 p < .1154
Total Delay p = .458 p = .649 p = .338 p = .510 p = .863 p = .838
Cancellations p = .475 p = .581 p = 1.00 p = .447 p = .005 p < .001

Similarly, for the second hypothesis, the distribution of the sam-
ples is tested via a Shapiro-Wilk test, also indicating that the
data is non-normal. The appropriate test for this statistic is
therefore a Mann-Whitney U test:

Table D.11: p-values for Mann-Whitney U test to compare the means of the
proactive-advantage for different objective metrics with multiple rewards struc-
tures.

Reward structure 1 2 3
Reward p = .517 p = .009 p < .001
Total Delay p = .950 p = .725 p = .282
Cancellations p = .178 p = .001 p < .001

To test the significance of the relation between schedule slack
and the advantage of a proactive approach over a reactive one, a
Pearson’s test is performed on the the correlation r between the
schedule slack as independent variable and the advantage of a
proactive approach:

Table D.12: p-values for Pearson’s test on the correlation between slack and
proactive advantage.

Unavailabilities Single Multiple
Reward Structure 1 2 3 1 2 3
Reward p < .001 p < .001 p < .001 p = .0075 p = .0127 p = .0003
Total Delay p < .001 p < .001 p < .001 p = .0010 p < .001 p < .001
Cancellations p = .3570 p = .4697 p = .4083 p = .9584 p = .9152 p = .0918

To determine the appropriate test for the fourth hypothesis, the
same reasining leads to a Wilcoxon Signed-Rank test:

Table D.13: p-values for Wilcoxon Signed-Rank test to compare the means of
the time to recovery of a proactive and reactive policy, for multiple scenarios

Unavailabilities Single Multiple
Reward Structure 1 2 3 1 2 3
T proactive

r < T reactive
r p < .001 .p < .001 p < .001 p < .001 p < .001 p < .001

Appendix E. Random Forest hyperparameters

Table E.14: (Bayesian) optimized hyperparameters for training data of different
configurations.

M1 M2 M3 S1 S2 S3
max depth 15 28 17 17 13 17
max features 0.46 0.3 0.3 0.3 1.0 1.0
min samples leaf 1 1 1 1 1 1
min samples split 2 2 2 2 2 2
n estimators 250 250 250 250 250 250
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1
Introduction

Airlines run tight optimized schedules in order to make profit in a competitive market where margins
are thin. Due to the highly optimized nature of the airlines’ operations, disruptive events can pose a
significant problem every day. Many factors can lead to disruptions. Bad weather conditions, aircraft
technical problems, airport congestion or airline delays are some of these causes. For a large portion,
these disruption are uncertain in when they will occur and how severe their impact will be in the short
and long term. The potential impact of these disruptions is vast however. For example, according to
Gershkoff (2016), airline disruptions cost an estimated 60 billion annually worldwide, which is around 8%
of worldwide airline revenue. Not only do airlines incur significant extra costs by having to compensate
crew, passengers or even airports, they can also experience customer dissatisfaction which can have
an influence on future revenue streams.

In disruption management, the recovery of the airlines’ resources (i.e. aircraft, crew, passengers) dur-
ing and after disruptive events is referred to as the Airline Recovery Problem (ARP). The goal of this
research is to address the ARP by developing a novel solution method that anticipates potential future
disruptions using a Model-Based Reinforcement Learning (RL) algorithm. Disruption management is
currently done by airlines in a reactive manner, where airline operators only act after disruptive events
have occurred. This sparks the belief that proactive methods (i.e. methods where there is acted in ad-
vance of future disruptions with a high probability of occurring, without knowing if these disruption will
actually happen) yield better performance for airline recovery. That is, a proactive approach would result
in less flight cancellations and delays then current reactive methods. Reinforcement Learning exploits
patterns in data in such a way that future scenarios can be anticipated, paving the way for a shift from
reactive disruption management to proactive disruption management for airlines. This MSc Thesis is
conducted in collaboration with Boeing.

The structure of this report is as follows: In Chapter 2, the problem surrounding the current state-of-
the-art is explained as well as the necessary background information on airline recovery. In Chapter
3, a review of the (published) literature regarding the aircraft oriented airline recovery is done and the
state-of-the-art is discussed. The state-of-the-art surrounding learning based approaches is also high-
lighted in this Chapter. In Chapter 4, the relevant research gaps are identified that will be addressed
by the research, after which the scope and main objectives of the research are defined further, and the
research questions are formulated. Lastly, the literature study and research definition are summarized
in a concluding remark in Chapter 5.
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2
Problem Statement and Background

Information

A disruption is an event in which airlines are prevented from running their operational schedules as
planned due to additional unforeseen imposed restrictions to the airlines’ operations . Causes of disrup-
tions are plentiful, but bad weather conditions, aircraft technical problems, airport congestion are some
of the causes that can lead to schedule disruptions. These causes can result in airport closures, late or
unavailable aircraft, restricted airport capacity, which in turn requires airlines to modify their schedule:
Aircraft may have to deviate from their planned route, and downstream flights cannot depart on time be-
cause of late or unavailable aircraft as a result of these deviations. Crews cannot perform their initially
planned schedules and passengers might miss their connection at hub airports.

Small disruptive events can already have an enormous impact on airlines’ operations if not managed
properly: delays accumulate easily throughout the interconnected flight schedules. According to Walker
(2017), 24% of all European flights experienced delays in Q3 of 2017. Reactionary delays (delays due
to late aircraft, crew, passengers or baggage causes by prior schedule delays) are the identified as
the main cause of all delays in European flights in March 2024 (Eurocontrol, 2024). Besides posing a
significant operational challenge, not being able to restore the schedule in a fast and efficient manner
also forms a significant financial burden for airlines, having to compensate passengers and crew during
Irregular Operations as well as facing extra operational costs. Not to mention the ”soft costs” associated
with the future effects of potential customer dissatisfaction, which is estimated to cost airlines an addi-
tional 75$ per passenger per cancelled flight (Marks, 2014). Needless to say it is extremely important
for airlines to be able to mitigate these disruptions fast and effectively and direct the planning back to
the original schedule. Disruptions happen due to unforeseen events are therefore highly unpredictable
in nature. Nevertheless, there are some disruption types in the aviation industry that come with a cer-
tain quasipredictability as they come closer in time (Serrano and Kazda, 2017). For example, weather
forecasts become more accurate at a shorter time horizon, and aircraft technical failure can be pre-
dicted better with Prognostics and Health Monitoring (PHM) when aircraft equipment gets closer to their
end of life (Xu et al., 2021). Congestion also can be anticipated better as updated and more accurate
demand-capacity information becomes available (Lee et al., 2020).

The process of Airline Disruption Management (ADM) can be divided into three phases and is summa-
rized as follows by Serrano and Kazda (2017): First, the disruption happens and the process enters
into the emergency phase. In this phase the impact of the disruption is not known yet as its duration
and severeness are still uncertain. Then, the continuity phase begins where the directly affected re-
sources, personnel and customers are helped, managed or recovered. After this, the recovery phase
starts, where the airline actively puts in effort to bring back the schedule to it’s normal operations. This
phase lasts until the schedule is fully recovered. As the name suggests, the Airline Recovery Problem
is focused on the recovery phase. Generally, the first two phases are not considered in research frame-
works surrounding airline recovery. Before diving into the practice of airline disruption management, the
process of general airline planning must be understood.

2
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2.1. Airline Planning
The planning of an initial airline schedule is a complex task that is solved in a sequential planning process
(Wen et al., 2021), where the most expensive and least flexible resources and actions are planned
first. The main resources used in airline planning are aircraft, crew and passengers (Kohl et al., 2007).
Planning starts at a tactical level, with determining the airlines’ fleet and corresponding flight network
for a specified time period based on expected passenger demand. After fleet and network planning, the
airlines schedule their flights and assign aircraft types to flights (Fleet Assignment) and a transition to
operational planning is made. After the flight schedule is defined, the airlines focus on crew scheduling,
where crew members are assigned to flights by subsequently pairing and rostering them (Kohl et al.,
2007). A few days before operations, the individual aircraft tail numbers are assigned to flights (Tail
Assignment), parallel to any changes in the crew schedule. A schematic depiction of airline planning is
shown in Figure 2.1.

Figure 2.1: Schematic depiction of airline planning, Adopted from Kohl et al. (2007)

2.2. Disruption Management
Similar to airline planning, airline recovery is usually done in a sequential manner. Starting with aircraft,
as the most vital resource, then crew, as crew is imperative for operating, and then passengers, who are
the main source of revenue for airlines. Disruption Management takes place at the operational planning
level. In Figure 2.2, a schematic depiction of the DM process is shown.

Figure 2.2: Schematic depiction of the airline recovery process. Adopted from Castro et al. (2014)

The ARP is a complex problem, since it tries to restore a highly interconnected and optimized flight
schedule that has little slack, and large amounts of data and possible actions have to be processed.
In an Airline Operations Control Center (AOCC), human evaluation of recovery actions and decisions
is necessary real-time and, to allow this human assessment, a sequential process is the only viable
option. In practice, Disruption Management teams consist of different groups focused on flight dispatch,
crew, maintenance requirements, and client support, respectively. These groups are overarched by the
operations controller, that act as the central function (Fogaça et al., 2022). Airline recovery operators
aim to reach a fast but potentially suboptimal solution to the problem, while trying to minimize disruption
effects (number of delays, delay times, revenue losses, additional costs) (Su et al., 2021). Controllers in
the AOCC actively and continuously monitor the airlines’ operations for any unexpected events. When
a disruption becomes known to the AOCC, human controllers assess the disruption and any potential
recovery solutions, in case any actions should be taken. For this task, however, computer systems can
be of great aid to help evaluate decisions real time and process the large amounts of operational data
(Kohl et al., 2007).
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When determining how to recover the flight schedule as efficiently as possible, airline operators can take
several actions regarding recovery for each resource. Recovery actions that airlines can take include,
but are not limited to, the following actions: (Su et al., 2021)

• Tail swapping - Swapping the assignment of two or more individual aircraft to their respective
flights;

• Delaying - Purposely delaying a flight, to add slack and allow for connections;

• Cancellation - Cancel a flight such that the previously utilized aircraft for that flight becomes avail-
able, or such that other flights in the schedule are not affected;

• Ferrying - Flying an aircraft from one location to another without passengers;

• Delay maintenance tasks - Postponing a scheduled maintenance task.

• Swap maintenance tasks - Swapping the assignment of two maintenance tasks for different air-
craft

• Stand-by aircraft utilization - Having a stand-by aircraft ready at an airport that can act as a
substitute aircraft for a flight.

• Deadheading - Relocating crew from one airport to another.

Note that recovery actions regarding passengers cannot help recover the schedule directly, but actions
like passenger reaccomodation (changing their itineraries) can be taken to minimize the financial losses
and passenger dissatisfaction, which is ultimately the goal in disruption management.

The need for rapid evaluation of possible recovery actions prevents controllers from finding optimal
solutions. This is due to the interconnectedness of the airlines’ resources in their operating schedules;
rapid evaluation of these interconnected schedules is too complex for human controllers and can only be
done in a sequential process (as depicted in Table 2.2). However, recovering interconnected schedules
in a sequential manner leads to suboptimal solutions. Integrated approaches at recovery (taking aircraft,
crew and passengers into account simultaneously when making recovery decisions), is not only too
complex for rapid human decision making, it also requires too much computational effort for decision
support tools and these are therefore of limited use to controllers, who have to evaluate and make
decisions within under two minutes (Vink et al., 2020).

Ideally, airlines would find optimal solutions to recover their schedules. However, the complexity of the
problem and the need for rapid solutions forms a gap between theoretical solution methods and the
practical application thereof. In other words, the practical implications of DM impair theoretical methods
to be easily applied. Advancements in technology and research can potentially bridge this gap in the
future, allowing airlines to save significant costs incurred by disruptions. Novel solution methods and
different approaches to ADM are actively being researched. Recent developments in Data Science and
Machine Learning (ML) add a promising outlook to this, providing new computational possibilities and
opening the door to new solution methods in ADM. The trends and developments in the field of research
of ADM are discussed in detail in a literature review in Chapter 3, as well as a the state-of-the-art of
Reinforcement Learning for Operations Management, and Reinforcement Learning for Disruption Man-
agement specifically. The motivation behind the exploration of DM in combination with RL will become
clear in Chapter 3.



3
Literature Review

In this chapter, two bodies of relevant literature are reviewed: 1) Literature addressing Airline Disruption
Management and 2) Literature on Reinforcement Learning methods for Operations Management. First,
a systematic review of the published literature on Airline Disruption Management is provided and dis-
tinguished in terms of scope and methodology, exploring different types of recovery problems and their
respective disruption types, recovery actions, solution methods and objectives. This systematic review
is done from an aircraft recovery perspective, and will cover papers that involve variants of the aircraft
recovery problem. Subsequently, a review of papers on the use of RL in Operations Management are
discussed to highlight the potential of this research field for ADM applications, after which literature on
the use of RL in Air Transport Management and ADM is reviewed and discussed.

3.1. Airline Disruption Management
Airline Disruption Management is an active field of research. In recent years there is a significant in-
crease in publications regarding ADM. A SCOPUS search was done on articles and reviews published
until 2024 with the query ( ”aircraft recovery” OR ”airline recovery” OR ”airline disruption management”
OR ”crew recovery” OR ”passenger recovery” OR ”air cargo recovery” ), and 171 papers were found.
From Figure 3.1, it becomes clear that this is a growing field of research, with, apart from a dip in 2018,
a drastically increasing number of publications per year from 2012 onward.

Figure 3.1: Number of published articles or reviews by year

Several authors have studied the literature around disruption management in the past: Early reviews
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of state-of-the-art include Clarke (1998) and Filar et al. (2001). Clarke (1998) summarized the state-
of-the-art in AOCC’s during disruptions, describing the structure of an AOCC, its information systems
and decision support systems. In addition to a literature review, they proposed a new decision support
framework for aircraft recovery. Filar et al. (2001) reviewed disruption management from the airports’
perspective. Although not exactly literature reviews, Kohl et al. (2007) and Fogaça et al. (2022) de-
scribed the airline disruption management process in a more practical sense. Where Fogaça et al.
(2022) emphasised the decision making process during disruption and the workflow, while Kohl et al.
(2007) described the airline planning and DM process as background information to report on the devel-
opment of the DESCARTES project, a multiple resource decision support system funded by the Euro-
pean Commission. Clausen et al. (2010) compared multiple studies on airline recovery from a modelling
perspective, comparing different network representations and functional aspects for aircraft, crew, and
integrated methods. Hassan et al. (2021) expanded on this review by structuring the publications on air-
line recovery from 2009-2019 in a similar fashion. Su et al. (2021) reviewed basic models and previously
proposed extensions for aircraft, crew, and integrated recovery, providing a complete picture of airline
recovery for multiple disruption scenarios. The most recent reviews are from Santana et al. (2023) and
Wu et al. (2024). Santana et al. (2023) performed a systematic review of publications on ARP’s much
like Clausen et al. (2010) and Hassan et al. (2021), comparing different problem features, objectives and
solution methods. Wu et al. (2024) reviewed airline recovery publications from a different perspective,
highlighting the problem from a passenger- and cargo oriented viewpoint as opposed to focusing more
on aircraft and crew.

As explained in Chapter 2, the airline recovery process can be divided into a few sequential recovery
phases for aircraft, crew, and passengers respectively. Most papers on ADM are primarily focused on
aircraft recovery, as this is the most important resource for airlines and form the first step in the decision
process (Wu et al., 2024). However, with better computational abilities and improved state-of-the-art, a
shift to methods including two or more resources can be enabled. Hassan et al. (2021) found that 50%
of publications from 2010-2020 that propose solution models for the ARP focus on recovering multiple
resources simultaneously, which indicates the sentiment to explore and develop more sophisticated
methods. Santana et al. (2023) also concluded that methods developed in recent decades tend to
focus more on the integration of resources as a step forward to attaining practical applicability of these
methods.

As mentioned, this review will cover published documents on disruption management from an aircraft
recovery perspective. For structure, the publications are categorized and grouped by the resources
they address (i.e. Aircraft, Aircraft and Crew, Aircraft and Passenger, and Aircraft, Crew and Passenger).
Comparisons will be donemainly on disruption types, recovery actions, objectives, and solution methods.
Because maintenance requirements form an important constraint for airlines, publications taking into
account these requirements are also distinguished in a separate subsection. Moreover, publications
addressing the dynamic and uncertain nature of ADMare grouped and reviewed, to get an understanding
of what is done and what can be done in the area of Anticipatory Disruption Management.

3.1.1. Aircraft Recovery
Unsurprisingly, aircraft recovery is the most extensively researched problem in ADM literature. In aircraft
recovery, the recovery decisions are solely made on inputs regarding the airlines fleet, without consid-
erations of crew and passengers. The first to tackle the aircraft recovery problem were Teodorovic and
Guberinic (1984), who developed a method that minimizes total passenger delays by delaying flights or
swapping tail-numbers. Teodorovic and Stojkovic (1990) expanded this method by incorporating airport
curfews and flight cancellations.

Thengvall et al. (2000) were the first that approached the problem in a way that allows for minimal
deviation from the initial schedule in a flexible model with room for user preferences in the objective.
The work was expanded in Thengvall et al. (2001), where hub closures and multi-fleet scenarios were
considered. In Thengvall et al. (2003), a similar problem was modelled as a multicommodity network
model and the algorithmic design for solving the model was presented, consisting of heuristic techniques
for finding feasible solutions from earlier found relaxed solutions.

In most ARP’s, the flight networks are modelled either as time-space (or time-line), connection or time-
band network and are explained in detail in the literature review of Clausen et al. (2010):
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”The idea of a time-line network is to represent the possible schedules in a natural way from the time-
and-station point of view, which is not possible when using a connection network. A time-line network
has a node for each event, an event being an arrival or a departure of an aircraft at a particular station.
Time-line networks are activity-on-edge networks, where directed edges correspond to activities of an
aircraft, and schedule information is represented explicitly by the event nodes.”

And:

”A connection network is an activity-on-node network,where flight legs correspond to nodes in the net-
work and connections between flight legs correspond to directed edges (arcs) between the nodes. A
flight leg is given by its origin, destination, departure time and date and arrival time and date. In addition,
there is a set of origin and destination nodes indicating possible positions of aircraft in a fleet at the
beginning and at the end of the planning horizon, respectively.”

The schematic depictions of a connection and time-space network for an example flight schedule with
3 aircraft and 4 airports is given in Figures 3.2 and 3.3

Figure 3.2: Connection network with 4 airports and 3 aircraft,
from Clausen et al. (2010)

Figure 3.3: Time-space network with 4 airports and 3 aircraft,
from Clausen et al. (2010)

Up until 2001, the conventional representations for airline recovery models were connection networks
and a time-space Network. Bard et al. (2001) were the first to use a Time-Band Network representation
introduced by Arguello (1998). A time-band network is a time-space network where the ground arcs
are modelled as activity nodes of a certain time span (band), this reduces the models’ size as multiple
activities can be represented as a single node, where in a time-space representation at least two nodes
and a edge are needed.

Using a connection network, Rosenberger et al. (2003) aimed to minimize cancellation and re-routing
costs while considering realistic airport constraints. They developed a heuristic selection algorithm to
determine which aircraft to select as potential swaps for disrupted aircraft, which was proven to reach
fast solutions to real-sized problems.

Eggenberg et al. (2010) introduced the problem as a constraint-specific model where each resource has
its own recovery network in a time-band representation. They divided the models’ constraints in unit-
specific and structural constraints. Up until then, maintenance constraints were not included in most
aircraft recovery frameworks. The unit-specific constraint model allowed easy consideration of these
maintenance constraints, however. They illustrated this concept by solving the aircraft recovery problem
using a Column Generation (CG) algorithm that combines individual recovery schemes into one scheme
that satisfies structural constraints. In addition to aircraft swaps, flight delays and flight cancellations,
they also considered maintenance swaps, but considered airport closures as the only disruption source.

Vos et al. (2015) solved the problem dynamically by solving for new disruptions while building on the
solution of previous disruptions, they developed the Disruption Set Solver (DSS) that uses a selection
algorithm for selecting the subset of aircraft to use in the solution. In a case study, the DSS solved most
instances within 10 minutes. Comparing the dynamic approach with a static approach, they showed that
actual disruption costs are underestimated in a static framework.

Hu et al. (2017) solved the problem with three conflicting objectives: minimization of deviation from the
flight schedule, minimization of the maximum flight delay, and minimization of the number of aircraft
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swaps. They developed a combined ϵ-constraint and neighbourhood search heuristic to enable the
method to solve large instances. Inclusion of number of aircraft swaps and deviation from the original
schedule in the objective made sure that recovery solutions implicitly followed airline preferences. The-
oretically an optimal solution could involve many swaps and large deviations, while this is practically
undesired by airlines.

In a series of publications (Wu et al. (017a), Wu et al. (017b), Wu et al. (017c)), addressed the aircraft
recovery problem. In Wu et al. (017a) they addressed long-haul airline disruption as a result of aircraft
unavailability. They adopted an iterative fixed-point approach from Dang and Ye (2015) and introduced
two division methods to divide the solution space into independent segments and compute the solution in
a distributed way. This method required less (partial) feasible routes to be generated than with an normal
Linear Program (LP) solver, and fast solutions could be generated. They expanded on this method in
Wu et al. (017b) where they took multiple fleets into account. In Wu et al. (017c), they used the same
method to solve for disruptions due to airport closures.

Liang et al. (2018) proposed a model for recovery in reduced airport capacity scenarios. In addition to
swapping, delaying or cancelling flights, they included maintenance task swaps to the recovery actions
and solved the problem with a CG generation algorithm. They found that swapping maintenance tasks
can significantly reduce recovery costs with 20%-60% dependent on the instance. Khaled et al. (2018)
proposed a multi-objective framework to schedule recovery in the tail-assignment problem when consid-
ering long term disruptions (in the order of days). An ϵ-constraint method is used to find Pareto-optimal
solutions for the different objectives.

Hondet et al. (2018) was one of the first to leverage an RL method as a solution method in a frame-
work where only aircraft swaps are considered. Although the results were far from optimal, the method
performed better than an idle scenario in which no actions are taken. In another ML approach, Hassan
(2019) developed a decision support system for aircraft recovery that delays, cancels and swaps flights.
An Integer Linear Program (ILP) model is used to find solution to the problem, and a Random Forest
Classifier is used to select a sub-network of the problem consisting of relevant aircraft to be included in
the solution, improving computation times by 45% on average over an exact method.

Lee et al. (2020) addressed the dynamic and uncertain nature of disruptions by proposing an reactive-
proactive model that incorporates partial and probabilistic forecasts based on a queuing model to repre-
sent airport congestion. They classified delays into three categories: Systemic, contingent and propa-
gated. Where systemic delays are due to congestion, contingent delays are due to unforeseen events,
and propagated delays are due to downstream effects in the schedule. They found that using these
partial predictions yields better results compared to a a myopic baseline, ultimately reducing expected
disruption costs without creating additional risk in airline recovery.

Lee et al. (2022) adopted the time-space network mathematical formulation for the ARP from Thengvall
et al. (2001). In an Reinforcement Learning approach, they modeled this ARP as a Markov Decision
Process (MDP) and used Q-learning and Double Q-learning algorithms to train the model to make good
recovery decisions given the scope of their model. This consisted of aircraft delays and swaps as
recovery actions, while the model followed three objectives: Total flight delays, number of flight delays
longer than 30 minutes, and number of flight delays longer than zero minutes. A case study on a South
Korean airline was done with data consisting of four airports, 70 flights, and seven aircraft of a single fleet.
The results were compared to other solution approaches from literature and the RL method showed
superior performance in terms of computation time. The author mentions that unnecessary aircraft
swapping was not modelled to have any negative effects, although it can have these negative effects
in real operations, and should therefore be considered to prevent the model from scheduling too many
swaps like Hu et al. (2017) has done in their framework.

Huang et al. (2022) presented the problem in a Time-Space network that relies on copies of flight arcs
to generate new solutions. A cost-driven copy evaluation method was designed that evaluates potential
copies to be incorporated in the solution on their quality and disregards ”bad” copies to limit computa-
tional effort and reduce the problem size. The effectiveness of this method was verified by comparing
solution quality and computational time to other methods. In addition to conventional recovery actions,
they incorporated retiming options for planned maintenance tasks. Wang et al. (2019) found that an
Integer Program was not flexible enough to consider complex constraints and uncertainties. They pre-
sented a simulation-based approach to correspond with existing operations of a Chinese airline and
demonstrate the potential of simulation-based approaches. Rhodes-Leader et al. (2022) addressed the
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uncertain nature of disruption management by formulating a deterministic MIP (Mixed Integer Program)
of which the solutions are improved by a simulation optimization procedure that accounts for uncertainty,
building forth on their research on multi-fidelity networks (i.e. both deterministic and uncertain) in Onggo
et al. (2018). They considered multiple disruption sources and found that the combination consistently
finds good solutions to the ARP, with the simulation optimization providing improvements over the initial
deterministic solutions.

Zhao et al. (2023) accounted for implicit costs of performing recovery actions by incorporating protection
arcs in the Time-Space network to consider effects of gate reassignment, crew rescheduling, mainte-
nance requirements, passenger dissatisfaction, and generally keep aircraft on their originally scheduled
routes. They captured the uncertainties of the disruptions in a two-stage approach with a rolling horizon
window of one hour by developing different solutions as a function of the uncertain disruption parameters.
This method could find (near-)optimal solutions in less than a second for a range of scenarios.

Zang et al. (2024) highlights the possibility of predicting disruptions and taking a proactive attitude to-
wards disruption management, examining the aircraft recovery problem from a demand-and-supply bal-
ance across parallel time-space networks of aircraft, as proposed by Vink et al. (2020). They classify
disruptions into three types as done in Lee et al. (2020): propagated, systemic, and contingent. They
apply former predictive studies on spatiotemporal distributions of airport demand-supply to the ARP. Fol-
lowing a case-study with a Chinese airline, results indicate that their method effectively reduces airline
delays and operating costs in actual operations.

In Table 3.1, an overview of some of the aforementioned papers is provided where they are distinguished
between their disruption characteristics, recovery actions, characteristics, objectives, solution methods
and recovery horizon. It can be seen that the most common recovery actions for aircraft recovery are
aircraft swaps, flight delays and flight cancellations. Some papers also include maintenance-related
recovery actions (Eggenberg et al. (2010); Liang et al. (2018); Huang et al. (2022)). Curfew violations
considerations are included in the most recent publications (Rhodes-Leader et al. (2022); Huang et al.
(2022); Zhao et al. (2023)). Most papers aim to minimize recovery or delay costs, some of which pro-
posed a multi-objective model where costs were minimized in combination with the number of delays,
number of cancellations and deviations from the schedule (Thengvall et al. (2001); Wu et al. (017b);
Rhodes-Leader et al. (2022); Zhao et al. (2023)). Others focused only on non-economical KPI’s such as
a combination of schedule deviations, maximum delay, and number of aircraft swaps (Hu et al., 2017).
Lee et al. (2022) used on time performance as a KPI by aiming to minimize total delay, number of delays,
and number of delays over 30 minutes. Commonly, a horizon of one day of operations is used.

Table 3.1: Overview of publications covering Aircraft Recovery

Paper Disruptions Recovery Actions Characteristics Objectives Method HorizonAU AC RAC DL CL SW DL CL MSW MDL Maint. Curfews Proactive

Thengvall et al. (2000) ✓ ✓ ✓ max. profit CPLEX
Thengvall et al. (2001) ✓ ✓ ✓ max. profit, min CL, min. DC CPLEX
Thengvall et al. (2003) ✓ ✓ ✓ max. profit Bundle Algorithm
Eggenberg et al. (2010) ✓ ✓ ✓ ✓ ✓ ✓ min. RC CG 1-7 days
Vos et al. (2015) ✓ ✓ ✓ ✓ min. RC Aircraft Selection Algorithm 1 day
Hondet et al. (2018) ✓ ✓ min. DC RL 1 day
Hu et al. (2017) ✓ ✓ ✓ ✓ ✓ min. SD, min. max. delay, min # swaps ϵ-constraint NSH
Wu et al. (017a) ✓ ✓ ✓ ✓ min. RC DFPI-IP
Wu et al. (017b) ✓ ✓ ✓ ✓ min. RC, min. SD DFPI-IP
Wu et al. (017c) ✓ ✓ ✓ ✓ min. delay DFPI-IP
Liang et al. (2018) ✓ ✓ ✓ ✓ ✓ ✓ min. RC CG 4 days
Hassan (2019) ✓ ✓ ✓ ✓ ✓ ✓ min. RC ML-selection 1 day
Lee et al. (2020) ✓ ✓ ✓ ✓ ✓ min. RC DP 1 day
Lee et al. (2022) ✓ ✓ ✓ min. delay, min. # delays, min. # delays > 30 minutes RL 1 day
Huang et al. (2022) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ min. RC ICD-CG hours- days
Rhodes-Leader et al. (2022) ✓ ✓ ✓ ✓ ✓ ✓ min. SD, min. DC Simulation 1 day
Zhao et al. (2023) ✓ ✓ ✓ ✓ ✓ ✓ min. SD, min. RC RH 1 day
Zang et al. (2024) ✓ ✓ ✓ ✓ ✓ ✓ ✓ min. RC DDB Heuristic 1 day

*AU: Aircraft Unavailability, AC: Airport Closure, RAC: Reduced Airport Capacity, DL: Flight Delays, CL: Flight Cancellations, SW: Aircraft Swap, MSW: Maintenance Swap, MDL: Maintenance Delay, DC:
Delay Costs, RC: Recovery Costs, SD: Schedule Deviation, CG: Column Generation, RL: Reinforcement Learning, NSH: Neghbourhood Search Heuristic, DFPI-IP: Distributed Fixed Point Iterative-Integer
Program, ML: Machine Learning, DP: Dynamic Programming, ICD-CG: Iterative Cost Driven-Copy Generation algorithm, RH: Rolling Horizon, DDB: Decision-Decomposition-Based Heuristic
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3.1.2. Aircraft and Passenger Recovery
In this section, publications that cover aircraft and passenger recovery are reviewed and discussed.
Aircraft and passenger recovery involves aircraft recovery where additional considerations for revenue
streams originating from passengers are made. Also, passenger experience is often considered in the
decision making process.
As part of the 2009ROADEFChallenge, Bisaillon et al. (2010) developed a LargeNeighbourhood Search
(LNS) heuristic that iterates between destroying and repairing the solution in three phases: construction,
repair and improvement. While considering multiple disruption sources, their objective was to minimize
operating costs, passenger dissatisfaction costs (as a function of the total delay), and aircraft inconsis-
tency costs when an aircraft is not at its designated airport after the day of operations. In addition to
common recovery decisions, they considered flight creation as a recovery action. They won the 2009
ROADEF challenge with this work. Sinclair et al. (2014) improved the LNS heuristic of Bisaillon et al.
(2010) with the aim of enhancing algorithmic performance, on which they extended in Sinclair et al.
(2016) by applying a CG post-optimization heuristic after the LNS to improve it further.
Also in the context of the ROADEF 2009 challenge and in the same disruption scenarios as in Bisaillon
et al. (2010), Jozefowiez et al. (2013) developed a three-stage heuristic that first finds a new feasible
plan by canceling flights and itineraries, then reassigns passengers to existing rotations, and subse-
quently create flight legs to accommodate the remaining unassigned passengers. Zhang et al. (2016)
later extended this model and bench-marked it against data from the ROADEF Challenge. Opposed to
previous work, they considered only flight cycles comprising exactly two flight legs and interchanged the
second and third stage of the LNS heuristic of Bisaillon et al. (2010).
Hu et al. (2015) proposed a multi-fleet aircraft routing and passenger transiting optimization model,
where necessary conditions are given for the existence of feasible solutions to the network model for a
given set of practical recovery options. The objective is to minimize costs and solutions can be adjusted
afterwards to reflect actual costs if necessary. In Hu et al. (2016), they proposed a new approach to
the problem by designing a Greedy Randomized Adaptive Search Procedure (GRASP) heuristic. The
goal is to find the optimal trade-off between passenger delay cost, passenger reassignment cost and
the cost of refunding tickets. Both studies were tested on real data of a Chinese airline and quality solu-
tions where found within 100s for many instances, they showed superior performance compared to the
current methods of the airline in which they implemented the case study.
Santos et al. (2017) presented an ILP approach. To guarantee the linearity of the optimization model
and fast computational times, a receding horizon framework is used with a horizon window of 1,5 hours.
The objective is the minimization of fuel cost, passenger compensation, and passenger inconvenience
costs. To address the fact that many hub airports are heavily congested during peak hours, different
airport capacity constraints are included and the model is tested on real-data from a hub-and-spoke
carrier. This approach led to 29% costs reductions.
Marla et al. (2017) included the innovative recovery action of flight planning in both exact and approxi-
mate mathematical model. Cruise Speed Control (CSC) would allow for longer flying times in combina-
tion with less fuel burn, which can be leveraged in disruptive scenarios. The exact model was intractable
but an approximate model was found to reduce total recovery costs within a two minute time limit. They
showed that their approach could reduce the recovery cost of airline and passengers by also considering
passengers’ willingness.
Vink et al. (2020) extended the dynamic approach of Vos et al. (2015) by solving for disruptions as
they happen and as new information becomes available. They also considered connecting passengers’
recovery itinerary operations without compromising the computation time of the model. For this, a costs
estimation model was designed to estimate the delay experienced by passengers, the costs of these
delays and the itineraries followed by passengers, without adding additional constraints or decision
variables in the optimization model. Similar to Vos et al. (2015), the dynamic approach was used to
demonstrate that using a static approach generally underestimates disruption costs.
Hu et al. (2021) constructed an integer programming model that minimizes airline recovery costs and
passenger recovery loss. The first representing short-term economic costs of the airline. The second
representing loss of the impact on passengers’ life and business work due to the itinerary changes and
long-term reputation loss for airlines. A heuristic combined with multi-directional and stochastic Variable
Neighborhood Search (VNS) algorithm is designed to solve the problem and test it on real data.
Yetimoğlu and Aktürk (2021) included seat capacity limitations in the evaluation of each passengers’
itinerary to calculate cancellation costs in a math-heuristic method. By doing so, they provided a better
financial cost estimate for disrupted passengers and a better trade-off between operational and pas-
senger related recovery costs. They also adopted the CSC decision variable in their framework while
specifically addressing aircraft unavailability as disruption source. Sun et al. (2022) modified the time-
band representation so that a large number of redundant flight arcs and infeasible recovery flight arcs
can be eliminated. They developed a method that can systematically generate passenger candidate
itineraries and incorporate them into an optimization framework. Furthermore, they introduced the inter-
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modal concept that considers downstream effects to the ARP. They showcased their methods ability to
reduce the complexity of the MILP and demonstrated that considering intermodal recovery options can
drastically reduce the number of disrupted passengers.
Cadarso and Vaze (2022) included passenger response behaviour in a model that endogenizes the im-
pacts of recovery decisions on passengers. They developed an optimization model with exact lineariza-
tion for non-linear passenger costs terms and delayed constraints for aircraft maintenance feasibility.
Testing was done with data from a major European airline and the results were promising, showing that
incorporating passenger behaviour in the model yields benefits for airline recovery performance.
Wandelt et al. (2023) evaluated node importance in flight network representations to assess the role
of airports in airline networks. They proposed a mixed-integer program formulation for airline recovery
baseline under node disruptions and designed a (VNS) heuristic to compute solutions. They showcased
a method for solving the recovery problem as well as assessing the robustness of an airline network,
which was a novel insight for the field of ADM.
Similar to Hu et al. (2017) and Khaled et al. (2018), Chen et al. (2023) focused on passenger and airline
preferences in a bi-objective optimization framework. An ϵ-constraint method was used to find Pareto
optimal solutions. Using a Genetic Algorithm they showcased efficient results.
In Table 3.2, an overview of some of the discussed papers covering aircraft and passenger recovery is
presented. Compared to aircraft recovery, delays are predominantly incorporated in aircraft and passen-
ger recovery models as disruption source. Also, all publications used recovery cost or profit in their objec-
tive as passenger related objectives usually involve monetary measures (delay compensation, missed
revenue, rebooking costs). Flight could be created as recovery option to accommodate passengers
(Bisaillon et al. (2010); Jozefowiez et al. (2013); Sinclair et al. (2014); Sinclair et al. (2016); Zhang et al.
(2016)) and CSC was considered only by Marla et al. (2017) and Yetimoğlu and Aktürk (2021). Pas-
senger behaviour and preferences were captured in the works of Marla et al. (2017), Cadarso and Vaze
(2022), Hu et al. (2017) and Chen et al. (2023) to show the importance of including individual preferences
and behaviour into the decision process.

Table 3.2: Overview of publications covering Aircraft and Passenger Recovery

Paper Disruptions Recovery Actions Characteristics Objectives Method HorizonAU AC RAC DL CL SW DL CL PR FC CSC Maint. Curfews
Bisaillon et al. (2010) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ min. RC TS-LNS 36-52 h
Jozefowiez et al. (2013) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ min. RC TS-LNS 1-3 days
Sinclair et al. (2014) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ min. RC TS-LNS 14-78 h
Sinclair et al. (2016) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ min. RC TS-LNS 14-78 h
Zhang et al. (2016) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ min. RC TSH 1-3 days
Hu et al. (2015) ✓ ✓ ✓ ✓ ✓ ✓ min. RC CPLEX 1 day
Hu et al. (2016) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ min. RC GRASP 1 day
Santos et al. (2017) ✓ ✓ ✓ ✓ min. RC RH 1 day
Marla et al. (2017) ✓ ✓ ✓ ✓ ✓ ✓ ✓ min. RC RH 1.5 days
Vink et al. (2020) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ min. RC Selective-ILP 1 day
Hu et al. (2021) ✓ ✓ ✓ ✓ ✓ ✓ ✓ min. RC MDS-VNS 1 day
Yetimoğlu and Aktürk (2021) ✓ ✓ ✓ ✓ max. profit Math-heuristic 1 day
Sun et al. (2022) ✓ ✓ ✓ ✓ ✓ min. RC CPLEX
Cadarso and Vaze (2022) ✓ ✓ ✓ ✓ ✓ ✓ min. RC CPLEX 1-3 days
Wandelt et al. (2023) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ min. RC HVNS 1 day

*PR: Passenger Reaccommodation, FC: Flight Creation, CSC: Cruis Speed Control, TS-LNS: Three-Stage Large Neighbourhood Search, TSH: Three-Stage Heuristic, GRASP: Greedy Randomized Adaptive
Search Procedure, ILP: Integer Linear Program, MDS-VNS: Multi-Directional Stochastic Variable Neighbourhood Search
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3.1.3. Aircraft and Crew Recovery
Aircraft and crew recovery is a less researched field than the aircraft and passenger recovery problem.
According to Hassan et al. (2021), only four papers were published up until 2021, in addition to Abdel-
ghany et al. (2008), which was not included in the review. However, in recent years, (2021-2024), the
number of publications that address this problem has doubled. Aircraft and crew recovery involves mak-
ing decisions on aircraft recovery while considering crew related factors such as labour constraints and
crew costs.
Abdelghany et al. (2008) was the first to address the problem by developing a tool named DSTAR.
A rolling horizon framework was used in which a schedule simulation and optimization model were
integrated. No horizon window was specified however. They aimed to minimize costs by mitigating
flight delays and cancellations. Their tool was found to obtain efficient solutions within one minute when
tested on an airport Ground Delay Program (GDP) of a US-carrier. Le and Wu (2013) reused their
previous work to include crew in the recovery while minimizing assignment cost associated with delays
and cancellations. Maintenance requirements and union regulations are considered in this work, and
the problem was solved by means of an iterative tree growing method that relies on node aggregation to
simplify routings and decrease computation time. The model was tested on data from a Chinese airline,
but no computation times were specified in their results.
Maher (2015b) used Column- and Row-Generation (C&GR) to extend on existing generic methods as
an alternative to Benders’ Decomposition. Integer optimal solutions were identified with Branch-and-
Price, which was also integrated into the method. An extensive set of recovery actions was used with
route generation, crew duty generation, crew deadheading, crew reserves, and delays and cancellations.
However, they did not include aircraft swapping.
Zhang et al. (2015) proposed a two-stage heuristic method where the two stages consisted of an aircraft
recovery model with partial crew considerations and vice-versa. A multi-commodity model was used for
crew recovery and new constraints are incorporated for the aircraft recovery to ensure feasibility. The
method was proven to outperform benchmark algorithms.
Similar to Hassan (2019), Eikelenboom (2022) used a ML-based selection algorithm named Lamb-
daMART, to rank the most relevant resources to be used in the optimization model. The model was
extensive in terms of recovery options and could recover the schedule by delaying, cancelling flights,
swapping aircraft, and swapping, deadheading or using reserve crew. The model was tested on real
flight data from Delta Airlines and was found to obtain promising results, indicating the potential of ML
methods.
Liu et al. (2023) considered costs incurred due to long crew connections. A method was proposed
that delayed flights in order to save working hours of crew by enabling crew rest, where a trade-off
between operational costs and crew costs was made. An arc-based integer programming model and
a set partitioning model with a CG algorithm was proposed that showed to be efficient and effective.
Similarly, Eshkevari et al. (2023) proposed a bi-objective model that includes crew rest and sit times.
Khiabani et al. (2022) modelled an ILP based on individual flight legs and Benders’ Decomposition
was used to solve the model. They considered crew swapping, deadheading, aircraft swapping, flight
delaying and cancellation as recovery actions. Also ground and sit time requirements for crew were
incorporated in their framework.
Zhong et al. (2024) introduced a multi-priority aircraft and crew recovery problem where priority could
be given to flights, like flights carrying first-aid items. A particle swarm optimization was done with three
repair schemes to prevent low feasibility. This approach provided a new model construction framework
for solving the aircraft and crew recovery problem. In addition, their framework can also provide series
of recovery schemes to allow for decisions support for airline managers based on their preferences.
Looking at Table 3.3, it can be seen that there is a lot of variation between the publications in term
of disruption sources. Le and Wu (2013) and Khiabani et al. (2022) stand out by considering crew
related disruptions in their framework. They both only consider DH as crew-related recovery action
however. Eikelenboom (2022) proposed the most extensive model in terms of recovery actions, but did
not incorporate operational constraints relating to maintenance and curfews. Similar to the publication
addressing aircraft and passenger recovery, all publications in the paper considered recovery costs in
the objective. This does not come as a surprise, since crew recovery decisions usually are dependent
on the compensation schemes of crew (besides labour constraints), and the impacts of aircraft and crew
recovery decisions can be translated into one KPI: financial costs.
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Table 3.3: Overview of publications covering Aircraft and Crew Recovery

Paper Disruptions Recovery Actions Characteristics Objectives Method HorizonAU AC RAC DL CL CUA SW DL CL DH RC CSW CSC Maint. Curfews
Abdelghany et al. (2008) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ min. RC RH-GO 1 day
Le and Wu (2013) ✓ ✓ ✓ ✓ ✓ ✓ min. RC ITG-NG Heuristic 1 day
Maher (2015b) ✓ ✓ ✓ ✓ ✓ ✓ min. RC C&RG 1 day
Zhang et al. (2015) ✓ ✓ ✓ ✓ ✓ ✓ min. RC TSH 1 day
Eikelenboom (2022) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ min. RC ML-selection 1 day
Liu et al. (2023) ✓ ✓ ✓ ✓ ✓ ✓ min. RC CG 1 day
Eshkevari et al. (2023) ✓ ✓ ✓ ✓ ✓ min. RC TS
Khiabani et al. (2022) ✓ ✓ ✓ ✓ ✓ ✓ min. RC BD 1 day
Zhong et al. (2024) ✓ ✓ ✓ ✓ ✓ ✓ min. RC PSO 4 days

*CUA:Crew Unavailability, DH: Deadheading, RC: Reserve Crew, CSW: Crew Swap, RH-GO: Rolling Horizon with Greedy Optimization, ITG-NG: Iterative Tree Growing with Node-Combination, C&RG:
Column- and Row Generation, TS: Tabu-Search, BD: Benders’ Decomposition, PSO: Particle Swarm Optimization
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3.1.4. Aircraft, Crew and Passenger Recovery
Integrated recovery frameworks are the most complex both in terms of formulation and computational
complexity. Many constraints must be considered for aircraft, crew and passengers to be able to effec-
tively formulate an integrated model. Besides, many of these constraints are specific to airlines and/or
countries/regions. This increases the difficulty of formulating an extensive integrated model that can
be generalized to many different problem instances. Several efforts have already been made to tackle
the integrated recovery problem, while recent technological advancements increase the capabilities of
theoretical frameworks to be used in practice.
The first to present a fully integrated approach was Lettovsky et al. (1997). Three sub problems were
formulated in a decomposition scheme that were controlled by one master problem. The three sub
problems are solved sequentially while retaining feasibility, representing the recovery process in practice
as it is done today. Only parts of the problem were actually implemented.
Bratu and Barnhart (2006) further attempted to address the integrated problem by simulating a model
that delays and cancels flights and assigns reserve crew and aircraft to flight legs. Although the model
does not take crew costs into consideration while minimizing recovery costs, they showed that the model
could be used as decision making tool and potentially reduce delays without increasing costs.
Petersen et al. (2012) extended the work of Lettovsky et al. (1997) by adopting the sequential solving
algorithm method using Benders’ Decomposition. Compared to a truly sequential method (i.e. solving
the whole problem for aircraft, then crew, then passengers) they showed to achieve superior results.
Maher (2015a) used the same C&RG approach as in their passenger recovery study for integrated
method. Using a new definition of cancellation variables that model passenger recovery by prescribing
the alternative itineraries, they developed a model in that aims for optimality with aircraft and crew re-
covery while passenger considerations are explicitly modelled to find re-booking options. This approach
showed improved computation time over a CG approach and resulted in less disrupted passengers.
In an extensive framework, Arikan et al. (2017) proposed a method that is based on the flow of each
aircraft, crew member, and passenger as entity. Almost all common disruption types and recovery ac-
tions are included as well as ferrying aircraft, cruise speed control and ticket cancellations. The model
allows for approximation and explicit modelling of passenger delay costs. The computation times were
too long for practical implementation however.
Evler et al. (2022) addressed the problem as a vehicle routing problem with homogeneous fleet. Pas-
senger and crew itineraries are modelled as links between flights where transfer times were considered
as influence on the delay due to longer turnarounds. They included turnaround time estimations to pre-
dict the propagated delays, allowing for proactive schedule changes. The links could be broken if there
was a feasible alternative and rebooking and compensation costs where still efficient. A rolling hori-
zon algorithm where the window size was determined by the departure and arrival times of flights was
used for solving the model. Results indicate that resilience of the recovery network was improved when
considering turnaround processes in comparison to individual aircraft recovery and turnaround models.
Ding et al. (2023) performed an extensive study on integrated recovery focusing on different solution
methods for large-scale instances. They proposed three solution methods to compare with each other;
one exact method, one with a Variable Neighbourhood Search heuristic, and a third VNS guidance
method based on Deep Reinforcement Learning (DRL), where the operations of the VNS heuristic are
guided by the RL agent. The solution of the optimization model consists of flight strings belonging to
entities (aircraft, crew, passengers). The DRL guided VNS then selects modified solutions by swapping,
cutting, inserting and deleting flights in the entities’ flight strings to find improved solutions. They tested
the solution approaches on multiple sizes of test instances and found that, after training, the DRL guided
VNS scales well and outperformed the heuristic method while solving a large instance of 931 flights and
279 aircraft in 14 seconds.
As expected from integrated recovery models, most include an extensive set of recovery actions, fo-
cusing on aircraft, crew and passengers simultaneously. Evler et al. (2022) used a unique approach to
integrate crew and passenger recovery with aircraft recovery by using turnaround decisions. Following
the same reasoning as with aircraft & crew passenger and aircraft & crew recovery, it comes natural that
all publication use the recovery costs in their objectives. In Table 3.4, the overview of the publications
on integrated recovery is shown.

Table 3.4: Overview of publications covering Aircraft, Crew, and Passenger Recovery

Paper Disruptions Recovery Actions Characteristics Objectives Method HorizonAU AC RAC DL CL CUA SW DL CL PR DH RC CSW CSC Maint. Curfews Proactive
Petersen et al. (2012) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ min. RC BD
Maher (2015a) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ min. RC C&RG 6 hours
Arikan et al. (2017) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ min. RC CQ MILP
Evler et al. (2022) ✓ ✓ ✓ ✓ ✓ ✓ min. RC RH 1 day
Ding et al. (2023) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ min. RC RL-VNS 1 day

*CQ MILP: Conic Quadratic Mixed Integer Linear Program, RL-VNS: RL guided Variable Neighbourhood Search
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3.1.5. Maintenance Requirements
A practically applicable recovery framework should incorporate realistic constraints that represent air-
lines’ daily operational restrictions and challenges. An important part of aircraft routing is the scheduling
of different maintenance task for individual aircraft. Since routings change during schedule recovery,
maintenance feasibility can be disturbed, which would make a recovery model that disregards mainte-
nance useless in a realistic scenario. In this subsection, several published papers that include main-
tenance feasibility in their recovery model are discussed. Note that all these papers are discussed in
prior subsections, in this subsection however, the focus lies on the way maintenance requirements are
incorporated into their frameworks.
To begin with Eggenberg et al. (2010), who developed a constraint specific recovery time-band network
to include resource specific constraints for aircraft to include maintenance constraints. They compared
results for including and excluding maintenance requirements and concluded that considering mainte-
nance is not only necessary to ensure feasibility of the recovery scheme, but the solution can also be
significantly improved by reducing delays when maintenance operations are rescheduled.
In their three-stage heuristic, Bisaillon et al. (2010) included a feasibility check for maintenance in the
construction phase. If violations occur, loops in the flight sequence are removed to make the rotation
feasible again. If that is not possible, the sequence from the critical flight to the end of the rotation is
cancelled. The critical flight is then the last flight that would depart from the maintenance airport before
the scheduledmaintenance and feasibility is restored. Sinclair et al. (2014), Sinclair et al. (2016) adopted
this same method.
In Jozefowiez et al. (2013), maintenance tasks are treated as mandatory flight legs that cannot be can-
celled in the recovery process. This ensures feasibility as the algorithm relied on cancelling and creating
flight legs. Maher (2015a) considered maintenance tasks at the end-of-day and therefore only set con-
straints to the sink nodes of aircraft at the end-of-day.
Zhang et al. (2016) specified maintenance duration in their framework. They modelled aircraft having
maintenance requirements in a separate time-space network, where maintenance arcs are treated as
a ”special flight arc” going from and to the same airport, similar to regular ground arcs. Marla et al.
(2017) used a similar approach to maintenance where each aircraft has a time-space network where
planned maintenance is represented as a ”artificial flight leg” with the maintenance station as origin and
destination. Maintenance can be delayed by creating copies of these arcs. Liang et al. (2018) considered
maintenance swaps as planning actions in case multiple airports are allowed as maintenance stations.
The tasks are planned with a large enough buffer to the actual maintenance limit in terms of flight hours,
cycles and time interval. They also included maintenance costs in the objective.
Also using a separate time-space network representation, Vink et al. (2020) made a distinction between
fixed and flexible maintenance tasks. The tasks can be classified by the airlines themselves for individual
preference. They were modelled as ground arcs, and at least one of the set of sequential ground arcs for
flexible tasks need to be used to guarantee maintenance feasibility, meaning that flexible tasks can be
postponed to other available maintenance opportunities, while fixed task must be performed as originally
planned. Zang et al. (2024) also adopted the separate time-space representation to account for aircraft
specific maintenance constraints. In their framework, maintenance task had to be performed at one of
the available stations before the flying limits were reached (flight hours, flight cycles, time interval).
Huang et al. (2022) considered unplanned maintenance as a disruption source resulting in aircraft un-
availability, in addition to planned maintenance. They also considered maintenance retimings as re-
covery action, modelled as copies of maintenance arcs (i.e. special flight arcs, Zhang et al. (2016),
Marla et al. (2017)) in a time-space network. Maintenance swaps were not allowed however. They also
included maintenance retiming costs in their objective.
In their model, Ding et al. (2023) incorporated maintenance tasks as must-visit nodes in the connection
network. Additionally to planned maintenance, unplanned maintenance formed a disruption source.
They did not consider flexible maintenance planning but recognized the improvements this could bring
to their model.
Overall, maintenance is an important operational constraint that poses a daily challenge for airlines,
and it can not be neglected during airline recovery. Most airline recovery papers consider maintenance
requirements to some extend. Eggenberg et al. (2010); Liang et al. (2018) and Huang et al. (2022)
considered maintenance related recovery decisions, allowing for more flexible models. Vink et al. (2020)
defined two classes of maintenance tasks: fixed and flexible, where the airline can define which tasks can
be postponed (the flexible tasks) and which cannot (the fixed tasks). Others considered maintenance
as hard constraints on the routings by modelling maintenance tasks as mandatory arcs (Bisaillon et al.
(2010); Sinclair et al. (2014); Sinclair et al. (2016); Jozefowiez et al. (2013); Zhang et al. (2016); Marla
et al. (2017); Ding et al. (2023)), while some only required aircraft to be at their designated maintenance
stations at the end of the recovery window after the day of operations (Maher, 2015a).
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3.1.6. Anticipatory Disruption Management
Currently, disruption management in done reactively, i.e. acting after disruptions occur. It is assumed
that more efficient recovery is expected in cases when potential future disruptions can be anticipated and
the potential disruption effects can be proactively mitigated at an earlier stage. There are two sides from
which proactive disruption management can be regarded. The first one being in the scheduling phase,
where buffers and slack are incorporated in the schedule to make it less vulnerable to disruptions. The
other way to view proactive disruption management is by utilization of frameworks where potential future
disruptions are anticipated. This could be done in conjunction with forecasts of disruptive events, and
dynamic and stochastic processes that characterise them. In this subsection, literature regarding this
second aspect view to proactive recovery in ADM is discussed.
Anticipating disruptions by predicting them is extremely hard as disruptions are various in source, type,
duration and magnitude. However, historical data can be leveraged to find patterns in disruption data
and flight operations/recovery data. Additionally, partial and probabilistic forecasts can be made on
certain disruption sources like weather events, airport congestion or equipment health, that translated
into flight delays and aircraft unavailability. This is done by Lee et al. (2020) in an aircraft recovery
framework where partial and probabilistic forecasts are made based on an stochastic queuing model
for airport congestions. The queuing model passed probability distributions as inputs to the optimization
model, which is based on the model from Marla et al. (2017), this is done by constructing stochastic
parallel time-space networks. The model is solved in a rolling horizon approach with one-hour windows,
but cannot be solved directly via backwards induction because the problem size becomes intractable.
They used an look-ahead approximation and sample average approximation method to tackle this, and
by Monte Carlo sampling, the future value of taking a decision at a certain time step is approximated. It
therefore aims to minimize the expected recovery costs based on the probabilistic inputs. The results
were compared to a myopic baseline solution (i.e. where potential future disruptions are not anticipated)
and that the model yields significant improvements over the myopic solution.
Furthermore, Evler et al. (2022) focused on uncertainty in the turnaround process. They proactively
estimated delay propagation by combining a heterogeneous vehicle routing problem with a resource-
constrained project schedule problem applied to the turnaround process. With this approach, flight-
specific delay cost functions could be calculated and substantial dependencies about the time of the
day, the number of succeeding flight legs and particular downstream destinations where identified, these
dependencies could be used to proactively mitigate delays.
Zang et al. (2024), like Lee et al. (2020), included predictions on disruption probabilities, particularly
reduced airport capacity, in a recovery framework that dynamically reschedules the disruptions. Based
on delay probabilities, they formulate expected costs associated with recovery decisions, which they
use in their objective function. Following a case-study with a Chinese airline, results indicate that their
method effectively reduces airline delays and operating costs in actual operations.
Other papers do not address anticipatory disruption management directly, but propose methods that
can be used in combination with anticipatory models (Zhao et al. (2023);Ogunsina et al. (2019); Ogun-
sina et al. (2021); Ogunsina et al. (2022)). Zhao et al. (2023) addressed two uncertainties regarding
disruptions: Disruption duration, and time that the disruption duration becomes known. Their aim was
to develop different recovery strategies as a function of the (unknown) disruption length, such that the
recovery scheme could be easily modified with the arrival of new information. Although this is not strictly
a proactive approach, a comprehensive scenario analysis indicated which aircraft or flights are likely to
be affected when certain disruptions occur. This analysis could allow for the employment of proactive
strategies.
Ogunsina et al. (2019) focused on discovering patterns in historical flight- and disruption data such that
it can be leveraged for use in anticipatory mechanisms. In particular, the adoption of Hidden Markov
Models (HMM’s) for learning temporal patterns from historical data. A framework is described that mod-
els the uncertainty in operations recovery by capturing the manner in which the schedule changes with
respect to recovery decisions made by the AOCC operators. Ogunsina et al. (2022), extends Ogunsina
et al. (2019) by implementing an Uncertainty Transfer Function Model (UTFM) for managing disruptions
in airline operations. The UTFM is based on the models described in Ogunsina et al. (2019) and are
implemented and assessed with real-world data in this paper. In Ogunsina et al. (2021), they focused on
Exploratory Data Analysis for scheduling and operations. They highlight MLmethods to analyze the data
and reveal important features to predict disruptions. These kind of works could be used in conjunction
with anticipatory recovery models.
In addition to increase in attention to anticipatory disruption management methods in recent years, it is
worth mentioning that this aspect of DM is worth exploring according to many researchers. In recent
literature reviews, it is noted that, with advancements in data analytics, anticipatory mechanisms could
enhance recovery performance (Hassan et al., 2021). Also, solutions are recommended that handle
the uncertainty and inherent dynamics of the problem (Santana et al., 2023), which would allow a more
proactive approach. Wu et al. (2024) also recommends integrating a reactive-proactive attitude towards
disruption management.



3.2. Reinforcement Learning in Operations Management 17

3.2. Reinforcement Learning in Operations Management
The fact that most papers address the highly dynamic and uncertain in nature ARP with static and
deterministic solution methods, raises the question if there are other solution methods that would yield
better results by capturing these dynamics and uncertainties of the problem. By the dynamics of the
ARP, we understand the changes that occur during the recovery process such as updated information,
additional imposed constraints, or changes in the characteristics of disruptions. These dynamics go
hand-in-hand with uncertainty, as changes these potential changes that can occur during the process
may or may not happen, unknown to the AOCC controller in a practical setting, or to the recovery model
in a more theoretical setting.
Some efforts have been made in ADM, as well as in other Operations Management problems, to utilize
RL as tool to optimally solve dynamic and uncertain problems. RL is a ML subfield that relies on an agent
that interacts with an environment to learn how to make optimal decisions. The agent performs actions
to go from one state to another subsequent state in an environment that feeds back a certain reward
reflecting the quality of the action taken and the corresponding state-transition. These processes rely on
a Markov Decision Process (MDP). An MDP is way to describe a sequential decision making problem
in which uncertainty of transitioning between states in described (Heinold, 2024). RL is an effective way
to solve MDP’s.
For every action, the agent receives a reward and tries to maximize the total accumulated reward during
a training episode consisting of a trajectory of many actions-state transition pairs. By following a certain
policy, and updating this policy after each episode based on the accumulated reward, the agent can
eventually learn an optimal policy that maximizes the total reward. This policy is nothing more than a
function that maps states to actions.
Three collections of RL algorithms that can be used to solve MDP’s can be specified. Dynamic Program-
ming (DP),Monte Carlomethods (MC) and Temporal Differencemethods (TD) (Sutton and Barto, 2018).
DP is a model-based method, i.e. it requires perfect knowledge of the environment. MC methods do
not require full knowledge of the environment and are therefore model-free. They rely on sampling from
past actions, states and rewards and therefore learn from experience. TD methods combine DP and
MC, by relying on updated estimates based in part on other learned estimates, without waiting for a final
outcome (bootstrapping instead of sampling), but without requiring knowledge of the environment.
Motivated by recent success in the application of Reinforcement Learning in Combinatorial Optimization
(CO) problems, Mazyavkina et al. (2021) did a survey on recent publications that demonstrate the use
of RL algorithms in reformulating and solving several optimization problems. Examples from literature
are highlighted and the way they were modelled as MDP’s was discussed. Additionally they compared
results of the discussed literature to emphasise benefits and shortcomings of different methods. In con-
cluding remarks, they highlight the ability of RL to generalize well to unseen problems, where traditional
CO problems can often only be implemented to a concrete set of problems. Also, the potential for
improving solution qualities of current heuristic methods is mentioned as an advantage of RL methods.
Bengio et al. (2021) also surveyed literature that leveraged MLmethods in an Operations Research (OR)
context. They showed how different types of ML can be used for OR problems and to what extend, and
at what levels ML methods can be incorporated in OR frameworks. They identified three ways in which
learned policies can be combined with optimization models: 1) End-to-End learning, where the models
is trained to output solutions directly from the input. 2) Augmented learning, where ML can provide
additional information to an algorithm like parameterization or feature selection for the OR algorithm
(Hassan (2019); Eikelenboom (2022)). And 3) a parallel framework where the OR or ”Master” algorithm
repeatedly calls the ML algorithm to make decisions throughout its execution. RL for CO problems can
be categorized as such a framework; the OR model determines the possible states, to which the RL
agent iteratively alters the states by making decisions until a solution is found. A schematic depiction of
this is illustrated in Figure 3.4.

Figure 3.4: Machine Learning alongside Operations Research algorithms, from Bengio et al. (2021)
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In the survey, they also discuss some practical challenges in the field, but conclude by mentioning the
potential of ML to be the foundation of a new era in Operations Research.
One property of RL is that it can handle complex assumptions, as it is an simulation based method
(Lee et al., 2022). Given the fact that RL methods handle complex assumptions as well as uncertain
environments, the belief is sparked that RL methods are well suitable for solving ADM problems.
These indications from literature that RL methods are promising in terms of providing efficient and quality
solutions for OR problems motivates us to explore the use of these methods in ADM further. In this
Section, we will look into literature regarding the application of ML methods, RL in particular, for solving
problems in the field of Operations Management. First we will look into general cases where RL is used
for some transportation related problems. Then, literature for the use of RL in solving Air Transport
Management-related problems is discussed, after which we will zoom in literature on the use of RL in
ADM.
3.2.1. General Problems
The use of RL methods has been proven useful in many transportation management related problems
in mobility and logistics. In this subsection, literature that addresses transportation/operations manage-
ment is reviewed, and the way they solve operational problems involving uncertain factors is discussed.
How this relates do ADM will become clear later in this section.
Van Heeswijk et al. (2015) studied a Delivery Dispatching Problem with time-windows, where order
properties like size, time-window and destination where uncertain. They modelled the problem as an
MDP and solved small instances by means of Dynamic Programming (DP), and larger instances with an
Approximate Dynamic Problem (ADP) approach. They assumed a known probability distributions of the
characteristics of arriving orders and included both deterministic and stochastic orders in their framework.
They approximated the Markov model by means of Monte Carlo simulation and used the concept of post-
decision states in their implementation, where post-decision state Sx

t is the state immediately after action
xt, but before the arrival of new information ωt+1. Results showed that using ADP to incorporate future
information (both deterministic and stochastic) improves dispatching decisions compared to benchmark
policies, demonstrating the
Firdausiyah et al. (2019) modelled the behavior of freight carriers and an Urban Consolidation Center
operator using Multi-Agent Simulation-Adaptive Dynamic Programming based Reinforcement Learning
(MAS-ADP based RL) to evaluate Joint Delivery Systems in an uncertain environment. They compared
the MAS-ADP based RL method to Q-learning, a method conventionally used in evaluating the employ-
ment of MAS in city logistics. They found MAS-ADP based RL superior in an uncertain environment by
adapting better to changes in this environment.
Beirigo et al. (2022) considered an autonomous ridesharing problem in which idle vehicles are hired on-
demand in order to meet the service level requirements of a heterogeneous user base, with uncertain
demand and idle vehicle supply. In a learning-based optimization framework they proposed an ADP
method using Value Function Approximation (VFA), where the dual variables of the underlying optimiza-
tion model are used to approximate the value functions of having additional vehicles at a certain location
at a certain time. The uncertainty of the demand is translated in the uncertainty of the time of the ar-
rival of ride requests. The model considers minimum service-levels such that it is applicable to highly
competitive mobility-on-demand service providers, and and experimental study was done on data from
New-York City Taxi-cab demand.
Alcaraz et al. (2022) presented a model for decision making in long-distance routes that was capable of
making en-route decisions while incorporating driving times, breaks, and rest periods for drivers under
uncertain conditions. They used an onlinemodel-basedRL strategy that included a samplemodel. Since
the model is online, it needed no prior training because learning and planning is done simultaneously
and the policy is generated in real-time. The model anticipates future events by generating a set of
trajectories (possible sequences of future events). It consists of three subsequent stages: 1) Model
Predictive Control (MPC), where the best action within a certain lookahead horizon is decided. 2) A
rollout strategy to estimate costs-to-go beyond the lookahead horizon. 3) A Monte Carlo Tree Search
(MCTS) to decide how many trajectories (possible sequences of future events) are generated for each
action at each stage. They tested their model with data from a Spanish long-distance transport company
and compared the results to a baseline policy and to a Deep Q-Networks (DQN), a state-of-the-art model-
free algorithm. The method showed superior performance to both in terms of costs reduction, but had
longer decision times than DQN, due to the fact that learning and planning was done simultaneously,
and DQN was trained prior. However, the decision times were still within margin.
Basso et al. (2022) also proposed a RL method for the Dynamic Stochastic Electric Vehicle Routing
Problem for transport and/or mobility providers. The idea is to minimize expected energy consumption in
the routing problem, as well as minimizing the risk of battery depletion. Monte Carlo simulation was used
to learn about the stochastic energy usage and demand. Based on Q-learning, they propose a solution
methodology that has three components: Value Function Approximation for reducing the size of the Q-
tables, a safe policy for minimizing energy consumption and failures, and a rollout training strategy that,
based on heuristics, explores relevant parts of the state-action space fist as Vehicle Routing problems
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(VRP’s) are computationally hard. 50 test instances in the city of Luxembourg were generated with both
10 and 20 customers and produced reliable and quality results.
These papers showcase the capabilities of RL methods to solve different types of transportation/oper-
ational problems involving one or more uncertain factors. A From Table 3.2, it can be seen that many
of the publication use ADP, which is suitable for handling dynamic problems that rely on changing infor-
mation and uncertain inputs. Q-learning is also used for this in combination with VFA. These examples
are discussed to sketch the similarities between these types of frameworks and recovery problems in
ADM; They contain a fleet, routings, uncertain factors and dynamically changing environments and can
be modelled in IP formulations, as well as MDP formulations. Their effectiveness suggests that similar
methods can be of particular interest to ADM applications.

Table 3.5: Overview of publications on Operations Management that use RL

Paper Theme Uncertainties Method
Order Characteristics Delivery Costs Vehicle Supply Demand Travel Times Energy Consumption DP ADP Q-Learning DQN

Van Heeswijk et al. (2015) Delivery Dispatching ✓ ✓ ✓
Firdausiyah et al. (2019) Joint Delivery Systems ✓ ✓
Beirigo et al. (2022) Autonomous Ridesharing ✓ ✓ ✓
Alcaraz et al. (2022) Long-distance Routing ✓ ✓
Basso et al. (2022) Vehicle Routing ✓ ✓ ✓

3.2.2. Air Transport Management
Many RL applications in Air Transport Management saw light in recent years as well. Problems that were
addressed include fleet planning, maintenance scheduling, crew scheduling, revenue management, Air
Traffic Management (ATM) and Disruption Management. One drawback for the use of Machine Learning
methods (or Artificial Intelligence (AI) in general) is need for explainability of the models. Strict safety
regulations in aviation require transparent and explainable models. This need for explainability is part
of the gap between research and practical implementation. Current research is being done on bridging
this gap by development of eXplainable Artificial Intelligence (xAI) frameworks in ATM (Hernandez et al.,
2021). In a survey on xAI in ATM applications, Degas et al. (2022) found that most papers that use AI
in ATM did not focus on explaining their results and that xAI should be used in order to reach end users.
Nonetheless, as stated, several problems in Air Transport Management have already been addressed
using RL in theoretical frameworks.
Geursen et al. (2023) addressed uncertain factors in fleet planning for airlines by proposing a RL-based
multi-stage fleet planning framework incorporating stochastic processes that represent demand and fuel
price uncertainty. This RL-based approached would allow managers to determine how the aircraft fleet
should evolve based on different scenarios. The state variables at each time step consisted of the
number of aircraft in the fleet from a certain type, the demand between all airports in the network, and
the fuel price. The decision variables that made up the action space consisted of number of aircraft
acquired or disposed as well as decision variables for flight frequencies and number of passengers
transported. The problem is solved with ADP, where at each time step, new information on demand
and fuel prices become available following a stochastic process. These processes where captured
via an mean-reverting Ornstein–Uhlenbeck process. An Advantage Actor-Critic (A2C) algorithm was
adopted for training and results show superior performance over deterministic methods. t’Hooft (2024)
later focused on addressing reward function design for fleet planning problems, and the use of Graph
Neural Networks was explored for this.
Mattila and Virtanen (2011) modelled fighter aircraft maintenance scheduling as a semi-MDP, where
both maximum fleet readiness and minimum threshold of fleet readiness were assessed as objectives.
Compared to heuristics, the RL method was found to be superior.
Ruan et al. (2021) formulated a network-flow based Integer Linear Program for the Operational Aircraft
Maintenance Routing problem (OAMRP). They developed a new RL-based algorithm for solving the
problem. In their framework, maximum flying-hour, limit on the number of take-offs between two con-
secutive maintenance checks and the work-force capacities are incorporated. They modelled the state
space as the set of flights in the schedule in chronological order, with information on origin, destination,
departure time and arrival time. The action space consisted of the assignment of available aircraft to
unassigned flights. The objective was to maximize the through value of the assignments and the reward
function was modelled as such. A through value is the desirability of one-stop service between a pair of
cities, i.e. the extra revenue that would be gained by the airline from extra passengers who are attracted
by this through service. Using a proposed Monte Carlo based algorithm they tested the model on real
airline data and found that for large instances, the proposed method performed significantly better than
heuristic methods. The authors mention the exclusion of disruptive events in the framework as a major
drawback.
Andrade et al. (2021) proposed a Deep Q-Learning method to optimize long term maintenance check
scheduling by reducing the total number of checks. The state variables are defined by an extensive
set of attributes that contain information on the aircraft with respect to a type of check. The action or
decision variable corresponds to selecting an aircraft to have its next check scheduled. The results of
the DQN approach are compared to a DP approach from a previous study and historical estimates from
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an airline. The proposed method produced more efficient A- and C-check schedules compared to the
airline estimates, and better C-check schedules compared to a DP approach. In Silva et al. (2023), the
same authors extended this work by proposing and adaptive method for long term check scheduling that
could reschedule based on new maintenance information like Remaining Useful Life (RUL) predictions
of aircraft equipment. Two Deep Q-learning algorithms were proposed for the long term scheduling and
the adaptive scheduling respectively.
Tseremoglou and Santos (2024) addressed the disruptive nature of airline operations in a maintenance
context by presenting a two-stage dynamic scheduling framework to solve the aircraft fleet maintenance
scheduling in a Condition Based Maintenance (CBM) context. CBM considers probabilistic predictions
on the health of the equipment and the stochastic arrival of corrective maintenance tasks. The decision
making process for regarding health predictions is modelled as a Partially Observable Markov Deci-
sion Process (POMDP) and solved using Partially Observable Monte Carlo Planning (POMCP). The
defined policy is then integrated with the (unknown beforehand) corrective tasks in a DQN network. The
model continuously creates and adjusts the schedule based on new information. Results showed that
incorporating the health monitoring predictions led to a 46.2% costs reduction compared to a corrective
approach.
Kenworthy et al. (2021) proposed a technique that combined RL and integer programming to achieve
robust crew scheduling to reduce disruption impacts. They presented NICE (Neural network IP Coeffi-
cient Extraction) to approximately represent complex objectives in an integer programming formulation.
With a Monte Carlo approach, weights for the neural network are extracted as probabilities for pilots
that captures how likely assigning a pilot to a slot is to maximize reward in a given scheduling episode.
The extracted coefficients are used in the objective function while the model is incentivized to pick pilots
with higher probabilities, making the solving process much more efficient for the integer program. Com-
pared to a baseline integer programming formulation and a robust integer programming formulation that
explicitly tries to minimize the impact of disruptions, NICE performed 33% and 48% better respectively.
Several more applications of Reinforcement Learningmechanisms relating to Air Transport Management
have been published: Shihab (2020) and Bondoux et al. (2020) focused on revenue management by
using RL-agents to optimize seat inventory control and developing a Revenue Management System
(RMS) that does not require demand forecasts, respectively. Balakrishna et al. (2010) used RL to predict
taxi-out times, which would allow for more efficient airport operations. Zhao and Liu (2022) used a
physics informed DRL model for aircraft conflict resolution.
in Table 3.6, an overview of the publications on Air Transport Management that use RL is provided.
Some of which include uncertain factors like demand, fuel price, maintenance tasks and taxi-out times.
In terms of solution methods, the algorithmic classes are distinguished by DP, ADP, TD and MCmethods
- explained earlier in this section. Note that none of the papers consider explainability in their frameworks.

Table 3.6: Overview of publications on Air Transport Management that use RL

Paper Theme Uncertainties Explainability Method
Demand Fuel Price Tasks Arrival RUL Predictions Taxi-out Times None DP ADP TD MC

Geursen et al. (2023) Fleet Planning ✓ ✓ x ✓
t’Hooft (2024) Fleet Planning ✓ x
Mattila and Virtanen (2011) Maintenance ✓ x ✓
Ruan et al. (2021) Maintenance ✓ x ✓
Andrade et al. (2021) Maintenance ✓ x ✓ ✓
Silva et al. (2023) Maintenance ✓ x ✓
Tseremoglou and Santos (2024) Maintenance ✓ ✓ x ✓
Balakrishna et al. (2010) ATM ✓ x ✓
Kenworthy et al. (2021) Crew Scheduling ✓ x ✓

*TD: Temporal Difference, MC: Monte Carlo

In the next subsection, RL applications in Airline Disruption Management are discussed.
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3.2.3. Airline Disruption Management
To the best of the authors’ knowledge, Hondet et al. (2018) was the first to utilize RL as solving mech-
anism for the ARP. They formulated an aircraft recovery problem using a Q-Learning algorithm to train
an agent that performs aircraft swaps after a disruptive event created by a simulator. For the states
they modelled two different representations, where one considers the flight path and delay of aircraft,
while the other does not. The model considers only aircraft swaps as recovery option and was tested on
real-world data and compared to an idle scenario. The results were not optimal but the model showed
that it takes relevant decisions regarding recovery.
Lee et al. (2020) combined partial and probabilistic predictions on airport delays with and addressed the
dynamic and uncertain nature of the problem with a dynamic programming approach. As stated earlier,
the model is solved in a rolling horizon approach using a window length of one hour, but cannot be
solved directly via backwards induction because the problem size becomes intractable. They used an
look-ahead approximation and sample average approximation method to tackle this. Similar to Alcaraz
et al. (2022), the cost-to-go function for the look-ahead period at a certain time step is approximated by
Monte Carlo sampling. In the rolling horizon, from one period to the next, the state variable is updated
based on prior recovery decisions and revealed disruptions at that time. The model aims to minimize the
expected recovery costs based on the probabilistic inputs. A comparison is done to a myopic baseline
solution for data using 30 scenarios capturing delays at six hubs for a look-ahead period of 4 hours.
Results show that using the partial disruption predictions in combination with an approximate algorithm
significantly enhances recovery decisions by reducing the total recovery costs while not adding adding
risk for the airlines.
In the framework of Lee et al. (2022), the aircraft recovery problem was modelled as a MDP and the
environment consisted of aircraft and aircraft routes, and flights. The environment states is a tuple
contain the aircraft states and event information. The states of aircraft contains their previous route,
future route, and a binary indicator for whether the aircraft is flying or on the ground. The states on
event information contain information on on arrivals and departures. The action variable represents
an aircraft being swapped with the departing or arriving aircraft. Q-Learning and Double Q-Learning
are implemented, the latter to counter an overestimation bias of Q-Learning. In an experimental study,
they validated the advantages of Double Q-Learning and identified three features that differentiate from
other studies: The RL approach can delay and swap flights without relying on copies of flight arcs, the
RL method is able to flexibly adapt to multiple objectives, and the RL methods can handle complex
real-world conditions without heavily relying on a mathematical model. The authors mention that it was
difficult to reuse the obtained policy for new problem instances because the states and actions were
based on routes. Also, unnecessary aircraft swapping was not modelled to have any negative effects,
which it can have in real operations.
Ding et al. (2023) proposed a RL-solution method for an integrated model that could be compared with
and exact and heuristic method for multiple size instances. They proposed a VNS heuristic, as well as a
Deep-RL based guidance framework for the VNS heuristic. In this framework, they modelled the states
space as the solution space of the optimization model (i.e. assignments of aircraft and crew to flights).
The actions is a selection of flight strings and neighbourhood operators for both aircraft and crew, such
that part of the flight strings can be swapped, cut, inserted and deleted. Proximal Policy Optimization
(PPO) was used to train the policy network. To make a trade-off between improvement steps on a policy
and accidental performance collapse, a PPO-clip variant is used which relies on specialized clipping in
the loss function to remove incentives for the new policy to get far from the old policy. After training, the
DRL guided VNS scales well and outperformed the exact and heuristic method while solving even large
instances of 931 flights and 279 aircraft in 14 seconds.
Although there are a limited number of studies addressing the ARP by means of RL based methods,
there is positive sentiment towards the use of these methods in the future. The papers discussed in
this subsection, depicted in 3.7, were either able to handle complex assumptions and conditions, solve
recovery problems fast and with quality solutions, or do both. Several methods were used, Q-learning,
ADP, and DRL. None of the papers addressed explainability in their propositions however.

Table 3.7: Overview of publications on Disruption Management that use RL

Paper Recovery Uncertainties Explainability Method
Aircraft Crew Passengers Airport Delays None Q-learning D-Q-Learning ADP DRL

Hondet et al. (2018) ✓ ✓ x ✓
Lee et al. (2020) ✓ ✓ x ✓
Lee et al. (2022) ✓ ✓ x ✓ ✓
Ding et al. (2023) ✓ ✓ ✓ ✓ x ✓

*D-Q-Learning: Double Q-Learning

It is worth mentioning that in the most recent and complete literature studies on DM, the use of RL
methods in solving recovery problems was mentioned every time. Hassan et al. (2021) stated that
advanced data analytics form a bridge to the use of RL techniques to make optimal decisions while
anticipating future consequences. Santana et al. (2023) emphasized the benefit of intelligent data usage
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as well. Wu et al. (2024) recommended future studies to use such techniques to enable them to adapt
to a broad range of scenarios, making them highly applicable.

3.3. Conclusions on Literature Review
In this literature study, two bodies of literature were reviewed and discussed: 1) Publications on ADM
in the context of aircraft recovery and 2) Publications on operations management, Air Transport Man-
agement, and ADM that use RL as solution method. Regarding the first body of literature, integrated
recovery methods have become more popular since advanced computational approaches have paved
the way for addressing more complex problems in terms of problem size and scope. Realistic scenarios
for integrated recovery can be solved with tailor made solution methods in acceptable computing times.
However, not all solution methods are able to generalize well for different problem instances. Some
common recovery actions are present in most publications (aircraft swapping, flight delaying, and flight
cancellation) and typically one day of operations is used as recovery horizon. Maintenance requirements
are considered an important part of the frameworks and maintenance related recovery actions provide
some flexibility in case of maintenance constraints. Furthermore, an increased interest in anticipato-
ry/proactive mechanisms is confirmed by the recent exploration of this topic in literature.
Regarding the second body of literature, the use of ML techniques, particularly RL, has been proven to
cope well with uncertain and dynamic problems in transportation/operations management. Due to the
highly uncertain and dynamic nature of recovery problems, the use of RL techniques is promising for
ADM as well. RL methods are also used in other areas of Air Transport Management like fleet planning,
maintenance planning, crew scheduling, revenue management and ATM. Some recent publications
already explored the use of RL for disruption management by showcasing an excellent ability to improve
solution quality and computational efficiency. The potential to capture complex uncertain environments
and produce quality results for recovery problems would indicate the usefulness for RL methods in
anticipatory disruption management frameworks. Explainability should be considered when proposing
RL frameworks for Air Transport Management applications however.



4
Research Proposal

In this chapter, the proposal for the research direction is presented. In Section 4.1, the main research
gaps following the literature study in Chapter 3 are stated and discussed. In Section 4.2, the research
objectives and questions following the identified research gaps are outlined. Subsequently, the scope
and the methodology for the research are discussed in Sections 4.4 and 4.5.

4.1. Research Gaps
4.1.1. Anticipatory Disruption Management
Some studies explored a proactive attitude towards ADM by proposing models for probabilistic predic-
tions of disruptions (Ogunsina et al. (2019); Ogunsina et al. (2021); Ogunsina et al. (2022)). Lee et al.
(2020) proposed an anticipatory recovery model based on such predictions. In a similar model, Zang
et al. (2024) used turnaround time predictions to allow proactive recovery. However, these models were
limited to on type specific type of disruption (taxiing delays and turnaround delays). No publication pro-
posed a general model that could include any disruption probability distribution as input, for multiple
disruption sources, in an anticipatory framework.

4.1.2. Learning Based Methods
Although ML and RL have proven its use for solving airline recovery problems in several cases in liter-
ature, none of the studies, with the exception of Lee et al. (2020), used a learning based method that
considers future uncertain scenarios. The model of Lee et al. (2020), however, is limited to systemic
airport delays and does not consider other disruption sources.

4.1.3. Dynamic Disruption Management
A large number of publications aim to tackle airline recovery by proposing novel frameworks and solution
methods. However, only few of them consider the inherent dynamics of a disruption scenario in their
framework. Vos et al. (2015) addressed this by proposing a model that recovers the schedule dynami-
cally by building forth on previously found solutions as (new) disruptions happen, but no papers yet have
used this dynamic solving based on real-time information on future potential disruptions.

4.1.4. Explainability
Additionally, one overlooked aspect of learning based methods for practical applications is explainability.
No papers address the limitations that explainability impose on practical use of learning based methods,
which is of particular relevance in aviation (Ribeiro et al. (2024); Degas et al. (2022)).

4.1.5. Operational Constraints
Many studies exist that include important operational constraints like maintenance planning or airport
curfews in their framework. However, looking at the research gaps identified above, no anticipatory
model exists yet that uses considers maintenance constraint while allowing the flexibility of maintenance
related recovery decisions.

4.1.6. Summary
To summarize, several gaps have been identified in the literature surrounding Airline Disruption Man-
agement. The main gap is the lack of incorporation of anticipatory mechanisms into solution methods
for airline recovery problems. Additionally, although a promising field, the number of learning based
methods applied to ADM is still fairly limited, as ML is a relatively new field on itself. The use of RL
methods for ADM is only addressed in a handful of papers, where no papers actually addressed the
aircraft recovery problem taking into account multiple disruption types. Realistic operational constraints
such as maintenance requirements of the aircraft fleet and airport curfews are covered in several papers
in literature, but not in an anticipatory framework. Furthermore, explainability regarding the use of RL
methods is a remarkably overlooked factor in literature. This is of particular importance in a highly regu-
lated industry such as aviation, where new applications are subject to strict certifications. Development
of any ADM tool for practical use should always consider certification limitations. These research will
be addressed by 1) developing an anticipatory aircraft recovery model using 2) model-based RL while
3) including operational constraints and 4) making efforts to explain the models’ actions and assess the
robustness of the model.

23



4.2. Research Objectives 24

4.2. Research Objectives
From an industry perspective, the improvement of disruption management tools can be of significant
economic and environmental benefit. anticipatory disruption management is potentially a breakthrough
approach to the Airline Recovery Problem. When combined with advanced data analytic tools for dis-
ruption forecasts, it will allow airlines to drastically reduce disruption impacts in a manner that reactive
methods cannot achieve. Furthermore, the belief that RL is a capable method for realizing such antici-
patory models motivates us to utilize this in the solution approach. Regarding the use of RL in aviation
applications, the use of model-based methods can allow for more explainability than model-free models,
since it allow the agent to communicate not only its goals, but also the way it intends to achieve them
(Moerland et al., 2018). Given the state-of-the-art, the problem scenario and the identified research
gaps the following research objective can be defined:

Research Objective
”Develop an anticipatory aircraft recovery model that proactively and effectively mitigates the effects of

potential future disruptions, in a model-based Reinforcement Learning framework”
The research objective can be segmented into the following sub-goals:

1. Develop or adopt and modify a baseline ARP MIP model suitable for the scope of the research;
2. Define disruption sources, characteristics and corresponding probability distributions;
3. Model the problem as a Markov Decision Process and train the model to make relevant recovery

decisions when subject to potential future disruptions;
4. Validate the model and the results;
5. Analyse the models’ robustness and explain its actions.

4.3. Research Questions
With the research objective clear, the following research question with corresponding sub-questions are
defined.

Research Question
”How can model-based Reinforcement Learning effectively be applied to an proactive Aircraft Recovery
Problem that anticipates future disruptions by taking into account short term disruption uncertainty?”

Sub-questions
1. How can anticipated future disruptions be incorporated in an ARPMIP model to effectively mitigate

disruption effects before they occur?
2. How can the model be trained to perform optimal recovery actions in the face of potential future

disruptions?
3. How can the arrival of new disruption information during the recovery process be incorporated in

the decision making process?
4. How can the ARP be modified to include operational constraints such as maintenance and cur-

fews?
5. How can probabilistic propagation effects of disruptions be modelled and mitigated?
6. How can the scalability and long term performance of the proactive recovery model be validated?
7. How can robustness of the model be assessed?
8. How can the models’ actions be explained?

In the next section, the scope of the research will be defined.

4.4. Scope
Having defined the research objective and research questions, the scope of the model can be deter-
mined. As already mentioned, this research will focus solely on the recovery of aircraft. The goal is to
explore an anticipatory mechanism that improves the solution quality when anticipating future scenarios
compared to myopic scenario’s, not to build the most comprehensive model that captures all resources,
constraints and recovery actions surrounding airline recovery. Therefore, the scope and size of the
problem will be limited. The focus will lie on the definition of the algorithmic design and performance,
especially in the way it handles probabilities as input for potential future disruptions. For this purpose,
only aircraft recovery is considered. In this section, the types of disruptions that will be considered are
discussed first, after which the objectives and possible recovery actions are determined.
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4.4.1. Disruptions
In the reviewed literature, the most common disruption types are Airport Closures (AC) and Aircraft
Unavailability (AU), as many disruptive events translate into one of these scenarios. For this reason,
these two disruption types will be covered in the framework. However, both should be formally defined
to avoid ambiguity in their meaning. Regarding AC, this will be defined as an airport being restricted
of any arrivals or departures in a given time span, defined as the disruption duration. AU is defined by
an aircraft being unexpectedly grounded during a certain time span, defined as the disruption duration.
In both cases, the aircraft and airport become fully operational again after the disruption duration has
passed. Optionally, Reduced Airport Capacity (RAC) can be considered into the framework as well,
which would translate to flight delays as a disruption type.
Most works that tackled an ARP solved the problem on data from one day of operations. Using one day
of operations allows for easy implementation of constraints regarding curfews and scheduled overnight
airports for individual aircraft to allow for schedule continuity. Naturally, it is also more desirable for
airlines to recovery their schedules earlier (the same day) rather than later (next day or later). For this
reason, recovery will take place during one day of operations in this framework as well. The model
will perform actions at discrete time steps during the recovery period. in this period, the environment
is subject to potential disruption realizations based on some assumed probabilities. These probabilities
become known to the model at a certain time. At this time, the recovery period begins as the model
proactively will try to make optimal recovery decisions when subject to these potential future disruptions.
However, no disruptions have actually occurred yet. Theoretically, the model should handle any given
input disruption probability distribution. However, Hassan (2019) presented disruption statistics from
a case study that could be used to resemble real life disruption probabilities. Vink et al. (2020) also
derived disruptions probability distributions for several disruption types based on historical data. Note
that except for a scenario with reduced airport capacity, delays are not considered as a disruption type
in this framework. They do play a role, however, as they result from the aforementioned disruptions by
means of downstream propagation.

4.4.2. Recovery Actions and Objectives
In terms of recovery actions, aircraft swaps (SW), flight delays (DL), and flight cancellations (CL) are
most commonly used in literature. Given the fact that maintenance requirements should be part of the
framework,maintenance swaps (MSW) could be incorporated as a third recovery action. The definitions
of the actions are as follows: SW is defined as the swapping of the assigned flights of two aircraft,
given that it would still produce a feasible schedule. DL is defined as deliberately delaying a flights’
departure time. MSW is defined as swapping the assignment of two flexible (postponable) maintenance
tasks to maintenance slots for two aircraft, given that it will still produce a feasible schedule. Given the
limited scope for the model, the objective is not based on any financial or economic loss, as this would
require detailed background information for the quantification of how schedule disruptions are translated
into economic losses. Therefore, the main objective is defined as the minimization of total flight delay,
accompanied by mitigation of the number of flight cancellations. Additionally, penalties could be given
for curfew violations and maintenance tasks violations. Some of these violations are practically possible
but highly unfavorable for airlines and should only be relied on in extreme cases as a last resort.
In case of an infeasible schedule (e.g. when a flight has to be cancelled because it cannot be performed),
the model should allow this flight to be cancelled while imposing a significant penalty. This ensures
the model will still find solutions in heavily disrupted scenarios. Flight cancellations often serve as a
last resort to ensure feasibility (and thereby automatically minimizing disruption impacts), or to prevent
penalties for maintenance and curfew violations being imposed. They can also, however, be used in
case the model thinks that cancelling a flight is better for the long term then allowing the flight to continue,
which can potentially result in severe delay propagation through the schedule.

4.5. Methodology
In order to answer the research questions, several steps have to be undertaken. First, sample data must
be gathered and the optimization model, MDP formulation, and algorithmic design should be determined.
Subsequently, the environment and agent are implemented, after which the agent can be trained. In
this phase, the model is very limited in terms of scope and capabilities: Only UA with deterministic
duration is considered as a disruption source. Regarding recovery actions, aircraft swapping, delaying
flights and cancelling flights will be included. After training, the model will be tested on small problem
instances to validate its capabilities. When this is done, the model can be expanded to incorporate
more disruptions, constraints and recovery decisions. Specifically, maintenance-related constraints and
recovery decisions can be of interests as additional feature. Also, more complex disruption scenarios are
to be included in the framework such as different disruption sources with uncertain disruption durations.
Incorporating these additional features will be done iteratively by re-training the model on small instance
every time a new feature is included. Once the model is able to capture the desired scope, the model
will be tested on both small and large problem instances and validation is done. The performance of
the model can then be compared to a baseline ARP MIP optimization model that follows a reactive only
approach. In parallel, the robustness and explainability of the model will be analyzed.
Below, the methodological steps are listed and in Figure 4.1, the full framework of this MSc Thesis is
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outlined.
1. Gather sample flight data;
2. Define CO model, MDP, Disruption Probabilities;
3. Define algorithmic design;
4. Implement agent and environment;
5. Train model;
6. Verify model;
7. Expand model;
8. Validate and compare model;
9. Analyze explainability and robustness;

10. Conclusions and recommendations.

Figure 4.1: MSc Thesis Research Framework

4.6. Planning and Resources
In order to model the problem and answer the research questions, several resources are needed. Mainly
Python will be used for implementation of the model. This will be done by using Gurobi, several RL
packages, and robustness and explainability packages. A Baseline optimization model is derived from
existing models from literature or open source code.

4.6.1. Data and Related Risks
Regarding the required data for the project. Datasets will be either provided by Boeing, taken from pub-
licly available sources (literature, online sources), or by synthesis in case insufficient real-life sample
data is available for training. Two main data types are required: Operational data from airlines, and
disruption data. In case no conclusions on historical data for disruption probability distributions can be
drawn, these will have to be assumed. This might result in the model training for disruption scenarios that
would not occur in real-life, thus making it unsuitable for practical application. However, once the model
is trained and able to effectively anticipate these potential future disruptions based on assumed distri-
butions, it can easily be re-trained for realistic disruption scenarios when real-world reflecting disruption
data becomes available.
4.6.2. Planning
Furthermore, the model can be ran on a server suitable for large optimization problems. The research
is split into four phases: Literature Review and Research Definition, Experimental Design, Experimental
Campaign, and Research Dissemination. In Figure 4.2, a Gantt chart is shown containing the planning
for the entire research divided into the four phases, with milestone moments indicated and vacations
included for the author as well as the supervisors.
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Figure 4.2: MSc Thesis Planning, depicted in a Gantt chart



5
Conclusion

Disruptions pose a significant operational challenge for airlines as their operations run on highly opti-
mized schedules with little room for error. With 8% of worldwide airline revenue being lost to disruption-
incurred costs, managing and mitigating disruptions is crucial for airline performance. The competitive
nature of commercial air transport amplifies this as airlines risk to lose customers during disruptions as
a result of customer dissatisfaction. As of today, the airline recovery problem is solved in a sequential
process. Operators act after disruptions happen, focusing first on aircraft recovery, then crew, then pas-
sengers. This yields suboptimal solutions because airline resources operate on highly interconnected
schedules. In the literature surrounding ADM, many efforts have been made to improve existing models
in order to solve more complex, larger problem instances in a matter of minutes, as this is required for
airline operations controllers. Only few studies consider looking at potential future disruptions.
This research explores a novel solution approach that integrates anticipated potential future disruptions
into the aircraft recovery problem by using Reinforcement Learning as a way to efficiently capture prob-
lem dynamics and uncertainties while being effective in terms of solution quality. Thereby showcasing
the potential benefits of maintaining a proactive attitude towards disruptions as opposed to a reactive
one, as well as the benefits of using Reinforcement Learning as a tool for solving these types of problems
fast and effectively.
To achieve this, the following research question is defined:
”How can model-based Reinforcement Learning effectively be applied to an proactive Aircraft Recovery
Problem that anticipates future disruptions by taking into account short term disruption uncertainty?”

The focus of the research will lie on the anticipatory mechanisms and the ability to outperform reactive
models when subject to potential future disruption scenarios. Therefore, the scope is limited to aircraft
recovery. After defining the optimization model, MDP, and algorithmic design, a simple proof of concept
model will be developed and trained, with a limited initial scope. After verification of this model, the
scope can be expanded to incorporate more operational constraints and potential recovery actions. After
retraining and verifying the model, validation is done and a baseline reactive optimization model is used
as benchmark comparison. Also, the robustness and explainability of the model will be analyzed.
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Abbreviations
Abbreviation Definition
AC Airport Closure
ADM Airline Disruption Management
ADP Approximate Dynamic Programming
AI Artificial Intelligence
AOCC Airline Operations Control Centre
A2C Advantage Actor-Critic
ARP Airline Recovery Problem
ATM Air Traffic Management
AU Aircraft Unavailability
CBM Condition Based Maintenance
CG Column Generation
C&RG Column- and Row-Generation
CO Combinatorial Optimization
DRL Deep Reinforcement Learning
DM Disruption Management
DP Dynamic Programming
DQN Deep Q-Networks
DSS Disruption Set Solver
DL Flight Delaying
GDP Ground Delay Program
GRASP Greedy Randomized Adaptive Search Procedure
HMM Hidden Markov Model
IROPS Irregular Operations
LP Linear Program
LNS Large Neighbourhood Search
MAS-ADP Multi-Agent Simulation-Adaptive Dynamic Programming
MC Monte Carlo
MCTS Monte Carlo Tree Search
MDP Markov Decision Process
MIP Mixed Integer Program
MILP Mixed Integer Linear Program
ML Machine Learning
MPC Model Predictive Control
MSW Maintenance Swapping
NICE Neural network IP Coefficient Extraction
OR Operations Research
OAMRP Operational Aircraft Maintenance Routing problem
PHM Prognostics and Health Monitoring
POMDP Partially Observable Markov Decision Process
POMCP Partially Observable Monte Carlo Planning
PPO Proximal Policy Optimization
RAC Reduced Airport Capacity
RMS Revenue Management System
RL Reinforcement Learning
RUL Remaining Useful Life
SW Aircraft Swapping
TD Temporal Difference
UTFM Uncertainty Transfer Function Model
UA Aircraft unavailability
VFA Value Function Approximation
VNS Variable Neighbourhood Search
VRP Vehicle Routing Problem
xAI eXplainable Artificial Intelligence
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