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Daniël Mast

Supervisors:

Zekeriya Erkin

Thijs Veugen

A literature report written in fulfilment of the requirements

for the degree of Computer Science

in the

Department of Intelligent Systems of

Delft University of Technology

October 2015



Abstract

Faculty Electrical Engineering, Mathematics and Computer Science

Delft University of Technology

Computer Science

Cryptographic Solutions for Security and Privacy Issues in the Cloud

by Daniël Mast

This report discusses the cryptographic solutions for security and privacy issues in cloud

computing. An overview is given on cloud computing, describing its definition, ar-

chitecture, and benefits and challenges. Solutions concerning outsourced computation

integrity in the cloud are discussed, as well as models for data outsourcing integrity.
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Chapter 1

Introduction

Cloud computing is an emerging field of computing today [10]. In traditional computing,

a user would often store its data and perform computations locally. Along with the

increasing popularity of the Internet, it has become much easier and faster to share data

and send it over the Internet to remote places, offering many new purposes. This is

nowadays popularly referred to as using and storing data ‘in the cloud’. First is the

ability to store data remotely as an extra backup. This means that the local system can

crash or get stolen, but the original data can still be retrieved. Second, the size of the

data may be so large that it requires a massive storage device, which is inconvenient for

storing locally. Third, storing data in the cloud enables multiple users to share data,

access it from their own location, and edit it in a collaborative way [26].

Another phenomenon that has become very popular together with this development

is performing computations remotely. Local personal computers or smart phones are

often much less powerful compared to remote supercomputers. A user can now design a

computation, which has to perform a specific task on a (very large) dataset, and assign

this computation to the remote supercomputer. Users themselves do not have to worry

anymore about buying too many or too few local machines, because they only pay for

the resources used at that time. The supercomputers are owned and maintained by the

so-called cloud provider, which can efficiently distribute the computations from a large

number of cloud users over his machines [10]. An additional advantage of this is that

users do not have to maintain their own machines anymore, saving large costs. Apart

from outsourcing the user’s data, it has become very convenient for consumers to use

services from other parties that are not installed as an application on their local machine,

but rather run elsewhere [26]. An example of this is webmail. The emails are not stored

locally, allowing the user to access them and send emails to others from anywhere he

wants. This service can be instantly used, and often does not require installing software

1



Chapter 1. Introduction 2

locally. Outsourcing computation and storage, and using remote services make cloud

computing a very powerful computing paradigm.

Apart from the benefits, the shift from local to remote storage and computation also

introduces new challenges. The user has less insight into what is happening with his

data. The cloud provider may use the data for other purposes than intended, or sell the

data to other parties. While outsourcing computations, it is hard to check for a user

whether the remote party performs the computation in the right way, and whether the

returned result is correct. The cloud provider may choose to terminate the computation

before finishing, saving energy costs, and returning an incorrect or incomplete result to

the user. Even when the cloud provider itself has no malicious intentions, the online

available data still has to be protected against other malicious parties [33].

This report focuses on security- and privacy-related challenges that occur in cloud com-

puting. Together with these challenges, a range of solutions, e.g., Verifiable Compu-

tation, Provable Data Possession and Third Party Auditing, are discussed. A special

focus will be put on cryptography-based solutions. Cryptography provides a measurable

certainty of security, and is able to be deployed without the need of special hardware

or policies. Solutions including policies, hardware tokens, network adaptations or other

facilities are not in the scope of this study.

The rest of the report is organized as follows: Chapter 2 explains in more depth what

cloud computing is, its architecture and characteristics, the underlying technique, and

why it is of such great importance in the world of computing today. Chapter 3 focuses on

the problems in securing outsourced computation, and how to tackle them. Chapter 4

discusses the security and privacy issues of storing user data in the Cloud, also referred

to as data outsourcing, and investigates how these issues can be overcome. Finally,

Chapter 5 discusses open issues and draws a conclusion.



Chapter 2

Cloud Computing

In Section 2.1, the evolution from grid computing and utility computing to cloud com-

puting will be explained. Section 2.2 shortly introduces the different actors that are

involved in the general cloud computing model. Section 2.3 gives a formal definition of

cloud computing, according to NIST [24], and lists the characterizing elements. It also

presents the service and deployment models. Section 2.5 shows how the architecture

looks like. It describes the service layers of which it consists, and the applications that

occur in these different layers. Section 2.6 takes a look at the existing implementations

that brought cloud computing from theory to practice, and shows the state-of-the-art

methods used. The chapter concludes with the benefits and challenges of cloud comput-

ing in Section 2.7.

2.1 From Grid Computing to Cloud Computing

Grid Computing, which has been around for about two decades [17], got its name from

the comparable electric power grid, in which each house is connected to the energy

network and able to get energy on demand. In Grid Computing, the network consists

of computers that can use facilities from other computers. Facilities include computing

power, hardware, software and data [17], which the user itself does not possess. With

Grid Computing, each user is able to use the power of supercomputers on demand, with a

wide range of applications, and is not limited to his own equipment. The difference with

traditional Distributed Computing is that Grid Computing not only connects computers

that solve a problem together, but instead connects computers that work in different

administrative domains. This enables using and processing a large variety of information

resources.

3



Chapter 2. Cloud Computing 4

The property of using software on demand, which Grid Computing enables, lead to the

model of Software as a Service (SaaS). In this model, software is hosted by a service

provider, and can be used by a user whenever he wants. The user accesses the service

over the Internet. Installation is not required. Also, the user does not have to worry

about updates. This is the concern of the service provider. This model offers a much

more flexible way of using software [15]. Utility Computing is the term that is used

when these services are being sold [9]. This monetized way of using services on demand

is again very similar to the electric power grid. In [9], cloud computing is defined as the

combination of SaaS and Utility Computing, meaning that the provided services are paid

for by users. However, cloud computing is more than that, because it not only defines

the use case, but also the underlying infrastructure, as in Grid Computing [17]. Cloud

computing can, therefore, be defined as the combination of Grid Computing, Utility

Computing and SaaS.

2.2 Involved Actors

In cloud computing, three main actors are involved: 1) The cloud provider: owns and

maintains the actual data centers and hardware, also referred to as the Cloud. 2) The

cloud user/SaaS provider: uses the cloud to build applications, and at the same time,

provides these applications as services. 3) The SaaS user, the end user of the provided

services. Combined roles are possible, for example when a Cloud Provider also provides

services to end (SaaS) users [10]. From here, the titles of these actors will be often used

to explain the fundamentals of cloud computing.

Figure 2.1: Actors in cloud computing [10]

2.3 NIST Definition

The National Institute of Standards and Technology (NIST) defines cloud computing as

”a model for enabling ubiquitous, convenient, on-demand network access to a shared pool
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of configurable computing resources (e.g., networks, servers, storage, applications, and

services) that can be rapidly provisioned, and released with minimal management effort

or service provider interaction.” [24]. The NIST further decomposes cloud computing

into five essential characteristics, three service models, and four deployment models [24].

2.3.1 Characteristics

Some of the characteristics will follow logically out of the definition, and are discussed in

the previous sections, but not all. Below, each characteristic will be shortly explained.

• On-demand self-service. Comparable to the electric power grid, a user can at any time

ask for computing power or other resources, without the need of human intervention.

• Broad network access. The network provides the ability to access all resources. Stan-

dard protocols allow the resources to be used by all types of different user devices.

• Resource pooling. The whole set of resources is pooled to the users in a multi-tenant

model. The physical and virtual resources are dynamically assigned to users on their

demand. The absolute location of the resources is irrelevant and often invisible to

users.

• Rapid elasticity. A quick change of scale of the resources a user needs should be no

problem. Both high and low demands are provisioned. To the user, it appears as if

the available resources are unlimited. The user does not have to predict beforehand

how many resources are going to be needed. Section 2.4 will discuss this in more

detail.

• Measured service. The use of resources is metered by the provider. This enables

optimization of resource usage, and also the monitoring of usage per user. With this,

it is possible for provider and user to follow a pay-per-use agreement.

2.3.2 Service models

The service models distinguish the different layers from which the architecture of cloud

computing is built. This architecture will be fully explained in 2.5. First, the layers will

be discussed.

• Software as a Service (SaaS). SaaS enables consumers to use the software of the

service provider on demand. The consumer does not have to manage any server- or

network-related issues, except possibly certain configuration settings.

• Platform as a Service (PaaS). PaaS gives cloud users the tools to develop applications

on the underlying cloud infrastructure from the cloud provider. The cloud user does

not have to manage the infrastructure itself.
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• Infrastructure as a Service (IaaS). The deepest layer, in which the user is able to

manage the operating system, storage and sometimes the network. The applications

that are deployed determine how these resources are used. Figure 2.3 shows examples

of these applications [24].

2.3.3 Deployment models

A deployment model defines the group that can use the cloud services. In a private

cloud, a single organization can access the cloud. The organization itself may manage

the cloud, or an external party. A community cloud is closed for the general public, but

shared by a number of organizations, managed by one of them, or an external party.

In a public cloud, the general public can use the services. The cloud can be owned by

an academic government organization or business. A hybrid cloud is a combination of

two of the previous models. Because a public cloud is often less expensive and more

scalable, this may be used for the general services, and a private cloud may be used for

more sensitive, internal services [24].

2.4 Resource Provisioning

One of the greatest benefits of cloud computing is the rapid elasticity of resources. We

explain this by first explaining the problems of the traditional situation, in which a user

cannot use the provider’s resource pool, but instead has to manage his own servers. This

is shown in Figure 2.2.

Figure 2.2: Provisioning [10]

The diagrams show the number of resources demanded over time. In (a), the owner

has successfully predicted the capacity needed, even at peak load. However, at nonpeak

times, the biggest part of the capacity is not used. This is called overprovisioning, and

leads to a waste of resources. In (b), the owner wastes less resources at nonpeak times,

but for the cost of not being able to deal with peak times. This is called underprovi-

sioning. Part (c) shows the result that underprovisioning can have in the longterm. Bad
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service can convince a part of the consumers to not use the service anymore, resulting

into less revenue. As can be seen, in a traditional setting, the owner of a service that

runs on his own server, will always suffer from either over- or underprovisioning [10].

The rapid elasticity characteristic of cloud computing tackles this problem. The cloud

user does not have to predict the demands anymore. The cloud provider provides the

resources needed, in any form and any quantity. One might argue that this only shifts

the problem from user to provider. However, since the resources are pooled over a

large number of users, it becomes much easier to predict the total demand. This total

demand is much more stable than the demand of a single web server. This enables

the provider to prevent underprovisioning and limit overprovisioning. This different

architecture drastically increases the efficient use of resources.

2.5 Architecture

Figure 2.3 clearly shows how the three deployment models are stacked as layers. Below

is the hardware, with IaaS on top of it, where different types of services manage the

resources. This happens in the lowest layer, either physically (e.g., Emulab [4]) or

virtually (Amazon EC2). Computationally, services like Hadoop MapReduce are used.

For storage, GoogleFS (File System) is a big player. In the PaaS layer, services occur

that assist developers. Google App Engine provides tools to build applications that can

use the cloud capabilities. Django [2] is a Python-based programming environment that

provides a framework for building web applications. The SaaS layer offers services for

consumers like Google Docs and other application services. Administration and business

support are found throughout the three layers. This includes the metering and billing

for used resources, and the additional configurations [33].

2.6 Implementations

Multiple products contribute to the way cloud computing functions today. Some are not

specific for cloud computing, and were created for distributed computing purposes (e.g.,

GoogleFS, Hadoop MapReduce). Others were designed specifically for cloud computing

environments (e.g., Amazon EC2, Microsoft Windows Azure, Google App Engine). Both

will be discussed.

GoogleFS and HDFS [6]. Located in the IaaS layer, the Google File System was

designed by Google with the aim of reaching a high reliability and availability of data.
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Figure 2.3: Cloud Computing Architecture [33]

Files consist of separate pieces of 64 megabytes, replicated over multiple machines, geo-

graphically distributed, ensuring that single machine failure does not lead to inaccessible

data. The design allows high throughput and speed. The Hadoop Distributed File Sys-

tem (HDFS) [8] is inspired by GoogleFS, and divides files in a similar way. HTTP allows

the data to be accessed by a web browser. A protocol enables the different machines to

redistribute their data for replication, to keep the availability high [35].

Hadoop MapReduce [7]. A framework that enables a large number of machines to

perform a computation on a large data set together. The framework, originally designed

by Google, uses a Master machine that assigns so-called jobs to the other machines. The

implementation of a job defines the task that one machine should do with the data, and

the way in which the results should be combined [35].

Amazon EC2 [3]. With Amazon Elastic Compute Cloud (Amazon EC2), cloud users

can manage their own virtual machine, which runs in the cloud. Comparable to a

traditional operating system, users can install software, and set up services that are

accessible to SaaS users. To increase availability and capacity, an image of the virtual
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machine can be obtained, to launch a new identical copy. A downside of the low level

control that cloud users have, is that automatic scaling becomes more complex [35].

Microsoft Windows Azure [1]. Comparable to Amazon EC2, Microsoft Windows

Azure delivers an operating system-like environment. Comparable to the look and feel of

Microsoft Windows, the user can install software. SQL Azure handles the data storage

and services. “.NET Services” allows using the cloud-based infrastructure. Windows

Azure focuses on languages that are also supported in traditional Windows operating

systems, like C++ and Visual Basic [35].

Google App Engine [5]. This platform operates in the PaaS layer, and therefore gives

the user less control over the underlying infrastructure, but supports better scaling and

quicker deployment of applications. Programming languages like Python and Java are

supported, including frameworks that are implemented in these languages. APIs are

available that deal with storage in Google BigTable. App Engine liberates the user from

server outage and monitoring, by dealing with this automatically [35].

2.7 Benefits and Challenges

The discussed characteristics of cloud computing have clearly shown the power of this

paradigm today. To summarize, cloud computing enables a rapid deployment of services,

and does not require purchase of local machines. This also liberates the SaaS provider

from having to predict the scale of demand, and does not have to change anything when

the scale changes over time. The resource pool is designed to take care of this, and

the cloud provider simply charges per use. The geographical distribution of machines

ensures a high availability of the data and services.

However, the design of cloud computing also incurs new challenges. In [9], a list of

top 10 obstacles is composed and divided into three types: concerning either adoption,

growth, or policy and business. Adoption-related issues include availability of service,

data lock-in, and data confidentiality and auditability. Data lock-in refers to the issue

for a user to remove his data from the cloud storage, and being certain that the cloud

provider does not retain a copy elsewhere. Growth-related obstacles include data transfer

bottlenecks, performance unpredictability, scalable storage, bugs in large distributed

systems, and quick scaling. Regarding policy and business, cloud computing has to deal

with reputation-fate sharing and software licensing.

In [33], three main challenges of cloud computing are stated, focusing on security and

privacy. These are outsourcing, multi-tenancy, and massive data and intense compu-

tation. Outsourcing incurs loss of physical control of data and tasks. Multi-tenancy
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introduces threats, because applications from multiple users run on the same machines.

Security leaks can enable adversaries to access other users’ data and applications. Mas-

sive data and computation can form a problem, because traditional ways of verifying

integrity of data can cause massive overhead. The next two chapters discuss the issues

of outsourcing, and massive data and intense computation. Multi-tenancy issues are not

discussed, as they are not typically solved by a cryptographic approach.



Chapter 3

Outsourced Computation

Integrity

A great advantage and characteristic of cloud computing is that computations can be

outsourced. A relatively weak local computing device can transfer its task to a remote

supercomputer [18]. This has become extra relevant in the last decade, in which the

usage of smartphones has increased drastically. The benefit of portability of such a

device is that it can be used anywhere, gathering information at any location [27].

The disadvantage is that its computational capacity for processing this data is limited.

Moreover, most consumer machines are incapable of dealing with the extreme amounts

of data in a reasonable time. This problem has automatically amplified the need for

outsourcing computations to remote supercomputers in the cloud.

The loss of control over the computation raises new challenges. First, how can a user be

sure that the cloud provider performs the task correctly, and returns the correct result?

It may be cheaper to terminate the computation before finishing, saving processor usage,

and providing an incorrect result to the user. The naive way of preventing this is to

run the computation locally, and check if the results match. However, this nullifies the

advantage of outsourcing. The requirement is that the check is less computationally

intensive than performing the task itself. This chapter discusses techniques that ensure

the integrity and correctness of outsourced computation. Most methods discussed also

ensure the confidentiality of the computation, disabling the untrusted party to use the

input or output, or the computation itself for malicious purposes.

In traditional computation, parties that wanted to perform heavy computations often

possessed their own supercomputers. There was no other party that they had to trust or

audit. With the emergence of cloud computing, the usage of untrusted remote supercom-

puters increased the interest of being able to verify outsourced computation integrity

11
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[30], called Verifiable Computation (VC). Verifiable Computation enables a client to

verify correct execution of his computation that is outsourced to the server. The cri-

terium is that the verification procedure should be less expensive than performing the

computation itself. This is also the biggest challenge, as current approaches often rely

on computationally costly methods, like Fully Homomorphic Encryption.

3.1 Interactive Proofs

The work in [21] introduces a modified version of Interactive Proofs. An interactive

proof system consists of two parties, the prover and the verifier. The prover, possessing

unlimited computational power has the task to convince the verifier of a certain proposi-

tion. The verifier can ask questions, and run tests on the replies of the prover, whatever

necessary to become convinced or reject the proposition. The verifier is however com-

putationally limited [20]. The research in [21] modifies this definition slightly. They

assume that the prover does not have unlimited computation power. Instead, the prover

should run in polynomial time as well, which aligns more to reality. Next, it is explained

how this system can be used for delegating computations and verifying correctness of the

execution. It is argued that this system is particularly efficient for languages computable

by log-space uniform NC, which are circuits of polylog(n) depth.

The way in which this efficiency is reached, is based on the log-space uniformity of the

circuit. The verifier does not have to traverse the entire circuit, but instead only one

path from top to bottom. The complexity is therefore linear to the depth of the circuit,

rather than the size. The circuit here is a layered arithmetic circuit. The idea is that

the distinct input leaves will together contribute to the output root. The circuit in

between matches the performed computation. The prover is challenged to provide a

path from the root to a single leaf that contains correct computations. As in every step,

the direction of traversal down the tree is randomly selected, the prover can only with

low probability guess the path and hide incorrect computations.

3.2 Pinocchio

Pinocchio [28] is a system that enables nearly practical VC. This system makes it possible

to construct a general computation, write its code in (a subset of) C, and compile it to

a program that is suitable for running the VC protocol between a verifier and a prover.

This happens in the so-called Pinocchio’s Toolchain, shown in Figure 3.1.
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Figure 3.1: Pinocchio’s Toolchain [28]

First, the C code is compiled to an arithmetic or boolean circuit representation, con-

sisting of arithmetic gates (+, *) or boolean gates (AND, OR). This circuit can be

transformed to a Quadratic Arithmetic Program (QAP) or Quadratic Span Program

(QSP). This QAP or QSP consists of a set of polynomials, which are used in the verifi-

cation protocol. The polynomials allow the verification computations to be much more

efficient compared to executing the program itself. In the protocol, bilinear maps are

used for encoding the polynomials, before they are sent. With this, the prover can still

use the polynomials to prove that he is performing the computation correctly, but at the

same time does not know the characteristics of the polynomials. This method is safe,

and more efficient compared to Homomorphic Encryption.

The table in Figure 3.1 represents a QAP. The QAP consists of three sets of m + 1

polynomials (V , W and Y ), where m equals the sum of the number of inputs and the

number of multiplication gates. V encodes the left input of the gates, W the right input,

and Y the output. For example, v1(r6) = 1, because input 1 is a left input for gate g6.

ri represents the (arbitrary) root value for gate gi. The QAP also contains a target

polynomial t(x) =
∏

g(x−rg). This polynomial equals 0 whenever x equals a gate’s root

value.

When F is a function with n inputs and n′ outputs (N = n + n′ IO elements), we can

say that a QAP Q computes F if (c1, ..., cN ) ∈ FN is a valid assignment of F ’s inputs

and outputs, which is equivalent to the existence of coefficients (cN+1, ..., cm), such that

t(x) divides p(x), where p(x) is formulated in Equation 3.1.
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p(x) =

(
v0(x) +

m∑
k+1

ck ∗ vk(x)

)
∗

(
w0(x) +

m∑
k=1

ck ∗ wk(x)

)

−

(
y0(x) +

m∑
k=1

ck ∗ yk(x)

)
(3.1)

Equation 3.1 [28] uses the fact that the output of a multiplication gate equals the product

of its inputs. Q only computes F if there exists a polynomial h(x) for which h(x)∗t(x) =

p(x) holds. If h(x) is not constructible, then t(x) does not divide p(x), and Q does not

compute F .

During the verification phase, the verifier randomly selects a secret key s ∈ F, and lets

the prover compute v(s), w(s) and y(s) “in the exponent”, using the bilinear group,

without being able to retrieve the decrypted values itself. From this, the prover can

compute p(s) and h(s), and send this as a proof to the verifier. The verifier can verify

correctness of the computation by checking whether the obtained h(s) divides p(s).

Pinocchio is faster compared to previous VC systems. However, the circuit representa-

tion does not allow mutable state and iteration, making it less useful for applying on

many existing C programs. Moreover, the setup of the evaluation and verification key

is only efficient when the pre-processing phase is amortized over multiple inputs.

3.3 Non-interactive VC

Research in [18] is the first to use the term Verifiable Computation. Its method intro-

duces interesting new features. First, it argues to be non-interactive, meaning that the

client sends a single message to the prover and vice versa. No extra communication is

required for proving correctness of the computation. As this still involves two messages,

it is more correctly referred to as minimally interactive. To fulfill the rules of Verifiable

Computation, the proving protocol must take less time for the client than performing

the computation itself. For a single computation, this is not the case. The algorithm

is only efficient in an amortized way, meaning that the algorithm only becomes efficient

when the pre-processing results can be reused for proving the correctness of a large

number of executions of the same algorithm. Second, the method is privacy-preserving,

and therefore does not allow the untrusted worker (prover) to learn the original input

or output. Next will be explained how this is achieved.

The protocol consists of three phases:
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• Preprocessing. The client computes the public and private information about the

function F . The computational cost of preprocessing is linear to one execution of

the algorithm, but only has to be performed once, and is therefore amortized over

multiple executions.

• Input Preparation. When the input x is known, the client computes the public and

private information about x and sends the public part of F and x to the worker.

• Output Computation and Verification. The worker computes πx, which is the encoded

value of F (x) and sends it to the client. The client can retrieve F (x) from this value

and verify correctness.

The protocol combines Fully Homomorphic Encryption (FHE) [19] with Yao’s Garbled

Circuits [34] to achieve computational privacy. The function F is first converted to a

boolean circuit C, and garbled with Yao’s protocol. In Yao’s original protocol, the input

and output are labeled as long random strings, as well as every internal wire, resulting

into a truth table for each gate in the circuit. This, however, disables reuse of the circuit.

The worker now possesses a valid output string. For a next computation, the worker

can choose to return this string again. It is impossible to verify whether this output is

correct. To solve this problem, the protocol is enriched with FHE, which enables reusing

the garbled circuit for multiple inputs. The labels that are associated to the input bits

are encrypted with a public key. A new public key is generated for each execution, so

that the garbled circuit can be reused, and the worker can still perform the homomorphic

computation.

Non-interactive VC argues that any future improvement of the FHE scheme will improve

their protocol as well, as FHE is used in a black box fashion. This argument, however, is

not very convenient today, as FHE is not efficient yet. Therefore, the protocol remains

theoretical. Moreover, a more complex algorithm is translated to a relatively large

boolean circuit, with a large number of input and output bits, internal wires and gates.

Creating random labels for all these wires and truth tables for each gate can also become

very impractical.

3.4 VC from Attribute-Based Encryption

The research in [27] defines VC in an even more distributed way. Public delegation

is introduced, which means that arbitrary parties are allowed to submit inputs for the

delegated function. The benefit of this feature is explained with an example of a clinic,

in which a doctor defines the structure of the function F , and the lab assistants provide

the actual inputs. The lab assistants can perform the delegation protocol with the cloud,

without involvement of the doctor. Public verifiability means that these lab assistants
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(the arbitrary parties) are also able to autonomously verify the correctness of the results

of the worker.

The method is supported by the use of Key-Policy Attribute-Based Encryption (KP-

ABE). Here, a function F is associated with a user’s key, and a set of attributes is

associated with the ciphertext. The ciphertext can only be decrypted by the key, when

the function is true for the attributes in the set. This means that the party that decrypts

the ciphertext is convinced that the attributes are true, because otherwise decryption

would not lead to the expected plaintext. When using KP-ABE in VC, the attributes

correspond with the input values of the function, so that the worker can not cheat by

using incorrect inputs.



Chapter 4

Data Outsourcing Integrity

In cloud computing, user data is not stored locally, but instead at a storage facility owned

by the cloud provider. This approach, called data outsourcing, has several advantages.

First, large local storage devices or servers become unnecessary, saving the user costs

of purchase and maintenance. Second, the user himself does not have to worry about

physical protection of his data. This means that hard disk failure or theft does not result

into permanent data loss. Third, the geographical location of a user becomes irrelevant.

His data is stored online, and is therefore universally accessible. The user does not have

to use the same device to access his data, or move his data with an external hard drive.

As long as the user is connected with the Internet, he can access the data [31].

Unfortunately, this approach of working with outsourced data also incurs serious threats,

concerning security of the data and privacy of the user. The threats are all, directly

or indirectly, caused by the fact that the user does not physically possess his own data

anymore. This chapter discusses the problems and solutions in security and privacy of

outsourced data integrity. In the context of integrity in data outsourcing, the user does

no longer know whether his data is correctly stored over time. How can the user verify

integrity of his data? Moreover, in the context of collaboration between multiple users,

and sharing of data, how can one user know that the data originates from a known

other user, and that this data is still intact? Besides integrity, some of the methods

discussed also provide ways to improve data confidentiality and privacy-preservability.

Confidentiality ensures the user that only he accesses his data, and no other unauthorized

parties.

Data outsourcing can lead to numerous other issues as well, including availability prob-

lems by network failure and accountability problems caused by the complex mixture of

involved parties. This report however, mainly discusses the literature that focuses on

issues that can be tackled by cryptographic solutions. Cryptography is more present

17
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in integrity- and confidentiality-related issues, and less in availability and accountabil-

ity. This chapter discusses different methods that improve data integrity in a cloud

environment.

4.1 Provable Data Possession

One approach to ensure data integrity is Provable Data Possession (PDP) [11]. This

method enables a client to verify that the server possesses his data, without having to

retrieve the entire data. The model implements a challenge/response protocol between

client and server, in which the server has to deliver a so-called Proof of Possession.

Instead of a deterministic proof, this proof is probabilistic, as in this protocol, it is not

possible to verify every bit of data. This would require having to download the entire

data set, which is undesirable for large amounts of data. Instead, random samples of

blocks are verified. The goal of PDP is therefore to detect misbehavior of a server when

it does not possess the complete file anymore. In contrast to some other methods, PDP

requires the client to store a small and constant amount of metadata locally, to minimize

network communication. This enables verifying large data sets, distributed over many

storage devices. The authors propose two schemes that are supposedly more secure

than previous solutions, have a constant server overhead, independent of the data size,

and have a performance bounded by disk I/O and not by cryptographic computation.

The size of the challenge and response are both 1 Kilobit. The method works with

homomorphically verifiable tags, that enable possession verification without having to

possess the files locally. For each file block, such a tag is computed. The homomorphic

property enables multiple tags to be combined into one value. The file blocks, together

with their tags, are stored.

4.1.1 Challenge/response protocol

Whenever the user wants to check whether the server is performing the right behavior,

he can decide to send a challenge to the server. The challenge consists of the references

to a random subset of file blocks. The server has to construct a proof of possession

out of the blocks that are queried, and their tags, to convince the client that the server

possesses the blocks, without having to send them. Note here that the server should not

be able to construct a proof without possessing the queried blocks. Figure 4.1 clearly

shows the steps.

Step (a) shows the pre-processing phase, in which the client uses the file to create the

metadata, and stores this metadata locally. The client may modify the file, by appending
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Figure 4.1: PDP Protocol [11]

other metadata, or encrypting the file. Next, the modified file is sent to the server, which

stores it without further processing. In (b), the verification step is shown. The client

sends a challenge to the server. The server uses the stored file to create a proof, and

sends it back to the client. The client uses the stored metadata to verify this proof.

4.1.2 Requirements

PDP states three types of performance parameters:

• Computation complexity: The costs of pre-processing a client’s file, and generating

and verifying the proof.

• Block access complexity: The number of blocks needed to generate the proof.

• Communication complexity: Amount of data sent and received during the protocol.

The computational complexity at the server side should be minimized, as the server

may interact with many clients concurrently. Therefore, only a subset of the blocks

are queried, instead of all. Communication complexity should be minimized as well, to

minimize the bandwidth. The authors claim that server misbehavior can be detected

with a challenge that contains a constant number of blocks, independent of the total

number of blocks stored. This also makes it possible to store a constant amount of local

metadata, independent of the size of the data stored at the server.
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4.1.3 Scheme

A client C stores a file F on a server S. File F consists of n ordered blocks: F = (m1,

..., mn), where m stands for a message, which in this scenario equals a block. Tm is the

homomorphically verifiable tag (HVT) for m, which is stored together with the message.

HVTs have three important properties:

• Blockless verification: the client does not have to possess the file blocks himself to

prove that the server possesses them.

• Homomorphic tags: two tags Tmi and Tmj can be combined into a value Tmi+mj ,

which is equal to the tag of the sum of the messages mi +mj .

• HVTs and their proofs have a fixed size, which is much smaller than the corresponding

file block.

The scheme consists of four polynomial-time algorithms:

• KeyGen(1k)→ (pk, sk) is run by the client, takes a security parameter k, and returns

a public and private key pair.

• TagBlock(pk, sk, m) → Tm is run by the client, uses the key pair together with a

message, and returns the corresponding HVT.

• GenProof(pk, F, chal,
∑

) → V is run by the server, takes the public key, an ordered

collection F of blocks, a challenge chal and an ordered collection
∑

of the correspond-

ing metadata of F. It returns the proof of possession V for the subset of blocks of F

that are selected in the challenge.

• CheckProof(pk, sk, chal, V) → {“success”, “failure”} is run by the client, and uses

the key pair, the challenge and the proof to verify whether the proof of possession is

correct.

The client runs KeyGen, and sends the public key to the server. It then runs TagBlock

for each file block, and sends F and
∑

to the server. The client locally stores the key

pair, but nothing else.

4.1.4 Discussion

PDP proposes an efficient protocol that enables a client to detect misbehavior of a server

concerning data storage integrity. The client only has to store a limited amount of local

data, and the protocol requires minimal communication costs. The homomorphic tags

enable possession verification without having to possess the files locally. A downside is

that the PDP promotes its method by arguing that previous methods require storage

of data at least the size of the data itself. This implies that this method only stores
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the data itself and nothing more. However, this method also requires the file blocks to

be extended with their tags. The size of the additional is however less proportionally.

Second, the proposed scheme only works for storage of static files. After a file has

been uploaded to the server, editing the file will cause the protocol to fail [33]. Third,

Figure 4.2 shows the relation between the number of file blocks n that are stored, and

the number of queried blocks c, as a percentage of n. It turns out that, for a given

percentage of deleted blocks t, the number of blocks that should be queried to detect

misbehavior with a certain probability, is constant. Therefore the claim stated in 4.1.2 is

correct. However, one might question for a real scenario, whether the number of deleted

files is a percentage of the whole. If the number of deleted files is instead static, then

misbehavior cannot be detected with a static number of queried blocks.

Figure 4.2: Probability of misbehavior detection [11]

4.2 Proof of Retrievability

Similar to PDP, a Proof of Retrievability (POR) scheme allows a client to execute a

protocol with the server, to prove whether the server can still deliver the data to the

client, without the client having to store his own data locally, or to download the entire

file. However, the difference is that POR does not require the server to possess the

original data. It only requires that the server is able to retrieve the data when neces-

sary. Therefore, possession is a stronger form of retrievability. Developments like Error

Correcting Codes allow retrievability of the original file when it has become corrupted

and possession is lost. Another example is that the server may not possess the entire file,

because the client keeps a piece of it locally, or that the server possesses an encrypted

version of the file. The authors of [22] focus on proofs of retrievability of large files,

requiring minimization of computation and communications costs.
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4.2.1 Protocol

In Figure 4.3, the scheme for the POR protocol is displayed. In contrast to PDP, the

file is encoded by the user before sending to the server. The key for this encoding is

generated at the user side, and stored by the user. Similarly to PDP, the user and archive

conduct a challenge/response protocol, in which the server has to prove file retrievability

to the verifying user.

Figure 4.3: POR Schematic [33]

For the protocol, the user is required to store a single cryptographic key, independent

of the size of the files stored, together with a small amount of dynamic state for each

file. During the protocol, only a selected portion of the file is checked, instead of the

entire content, making it a probabilistic check. In addition to the encryption, a file is

enriched with so-called sentinels, which are blocks with random content that are going

to be used in the verification step. Encryption of the file is done so that sentinels are

indistinguishable from other file blocks. During verification, the user challenges the

archive by sending a number of positions of sentinels to the archive, from which the

archive has to return the sentinel values. The underlying idea is that if the archive has

changed or deleted a substantial number of files, then the sentinels will probably be

changed as well, avoiding the archive to respond with the correct values. A relatively

small number of changes may however not change the sentinels, disabling the user to

detect malicious behavior. The protocol solves this problem by also implementing error

correcting codes, enabling correction of corrupted files [22].

4.2.2 Discussion

POR presents an elegant way to probabilistically prove that an archive can still retrieve

correct files to the user. Compared to PDP, a benefit is that POR not only strengthens

integrity of the file, but also confidentiality, because of encryption. The downside of

this is that encryption involves extra computational complexity. Furthermore, POR
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is unclear about the way in which the sentinels are verified. It is stated that only a

cryptographic key and dynamic state values are stored. This raises the question how

verification can be performed with only this little information. An external source [13]

explains the protocol in more detail. It describes a precomputation phase in which the

user computes M and Q values. The M values are a summation of sentinel subsets. The

Q values are the corresponding encrypted values of M. In the challenge/response phase,

the user asks the archive to compute these values as well and return it. The user verifies

whether M equals the decrypted Q, and returns true or false accordingly. However, it

is not clear why this equality forms a proof of retrievability. This may be possible by

the use of a secret decryption key, but lacks explanation. Next, POR distinguishes two

scenarios of data loss. In the first one, a small number of bits has changed, leading

to a corrupted file, which can be corrected with error correcting codes. In the second,

too many bits have changed for correction, but malicious behavior is detected with

high probability because sentinels are probably changed too. POR, however, does not

clearly describe how many bits can be changed before error correcting codes are unable

to correct them, or how many bits it takes to successfully detect malicious behavior.

It is not clear whether there exists a number of changes that cannot be corrected nor

detected. If this number exists, it incurs a serious security issue. Lastly, it is explained

that sentinels are one-time verifiable, because after usage, the archive knows that this is

a sentinel, and not a regular file block. The question is however, why sentinels have to

be implemented for verification, and why it is not possible to use the regular files itself

for this. This would probably also tackle the one-time verifiability issue, because even

though this block may have been used for verification before, the archive is still not able

to delete it.

4.3 Third Party Auditing

The previous approaches used a direct protocol between client and server. A downside

of this is that the client is still burdened with the verification task. This involves local

storage of data needed for verification, local verification computation, as well as the

communication overhead of the challenge/response protocol [33]. A way to relieve the

client from this work is to introduce a third party, which becomes an auditor that takes

over the work. However, the outsourcing of auditing from a client to a third party should

not introduce new privacy issues. In other words, it is desirable that the third party

auditor (TPA) can successfully audit a server without learning the content of the client’s

data.
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4.3.1 Architecture

The architecture of third party auditing in a Cloud environment is shown in Figure

4.4. The three attending parties are the Client (or User), the Server (or Cloud Service

Provider) and the Third Party Auditor (TPA). The client and server only communicate

when the client wants to read or edit his data. The TPA does the auditing work,

executing a protocol with the server, and sending the verification results to the client.

In this architecture, it is key that the TPA is trusted by both client and server. The

client must trust that the TPA performs the verification checks correctly, reporting

misbehavior when it is detected (false negative). The server must trust that the TPA

does not unfairly report misbehavior when this is not the case (false positive). The TPA

usually possesses more computational resources than the client, so that it can successfully

perform the auditing computations, which would be too heavy for the client.

Figure 4.4: TPA Architecture [31]

4.3.2 Techniques

The research in [31] comes up with a scheme that enables third party auditing. The

method uses the following techniques:

• Public key based homomorphic authenticators. They work in a similar way as the

HVTs explained in 4.1.3. A homomorphic authenticator is an encoded version of

the original file block, that can be used to check correctness of the block, without

possessing or accessing the file block itself. This is a very convenient property for third

party auditing, because the third party can use these homomorphic authenticators to

do verification without obtaining knowledge about the client’s files. Homomorphic

authenticators are implemented using bilinear maps.

• Random masking. This prevents that a TPA can build a linear group of linear equa-

tions from which the file content of the client can be derived. This however does not

affect the ability to audit.
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4.3.3 Protocol

The protocol consists of four algorithms. KeyGen is run by the client and sets up

the scheme. SigGen is run by the client and generates verification metadata used for

auditing. GenProof is run by the server and generates the proof of correctness of data.

VerifyProof is run by the TPA and verifies the server’s proof.

The client first runs KeyGen and SigGen. He sends the file to the server and the

metadata to the TPA. Then he deletes his local data. In the auditing phase, the TPA

creates a challenge and sends it to the server. The server runs GenProof, sends the proof

to the TPA, and the TPA runs VerifyProof to verify.

4.4 Dynamic Provable Data Possession

Both client/server auditing as third party auditing until now supported only the stor-

age of static data. Insertion and modification of files would disable the client to detect

malicious behavior of the server. As the services in cloud computing demand more than

just archival storage, it is of critical importance that dynamic data too can be tested

for integrity. Dynamic Provable Data Possession (DPDP) [16] is the first technique that

enables this, stating the four dynamic operations that have to be supported: append,

insert, modify, and delete. It uses a variant of authenticated dictionaries based on rank

information, involving computational overhead for dynamic updates. However, this over-

head is low in practice. The research also introduces three operations: PrepareUpdate,

PerformUpdate and VerifyUpdate. The actual update is performed by the server, but

the preparation and verification are done by the client [33].

Research in [32] is the first to combine dynamic data auditing with a third party. It uses

an improved version of the POR method, combined with bilinear maps and a modified

version of the Merkle Hash Tree (MHT) [25] construction for block tag authentication.

The aim is to give the client a periodical integrity verification check of his remotely stored

data, without requiring local copies at the client side or computational overhead for the

client. First is explained why the original POR method is not suitable for dynamic data

operations. Every file block is assigned an index i for the order. Insertion of a new block

requires all following blocks to increase their index by 1. This also requires updating all

their signatures, which incurs a high computational overhead. The new method removes

the index information in the signature, and instead creates a tag that is only constructed

by the content of the block, and not his position in the file.
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4.4.1 Merkle hash tree

An MHT is an authentication structure in the form of a binary tree, that proves that

a set of elements is undamaged and unaltered. The leaves are hash values of the data

blocks. A parent is a hash value of the sum of hashes of its children. The root node can

therefore be used to verify whether the entire data set is authentic.

Figure 4.5 shows how using an MHT architecture enables dynamic data. Block n2 is

modified, becoming n′2, and its hash value in the tree is updated. Now, all parents have

to be updated as well, all the way up to the root. This requires the hashes of the siblings,

which the server provides to the verifier.

Figure 4.5: MHT modification operation [32]

4.4.2 Protocol

The protocol consists of the following algorithms:

• KeyGen(1k)→ (pk, sk). Run by client. Creates a public and private key pair.

• SigGen(sk, F ) → (Φ, sigsk(H(R))). Run by client. Creates a set of signatures Φ =

{σi} for each block mi in file F , and a signature of the root R (signed with the private

key) of the Merkle hash tree.

• GenProof(F,Φ, chal) → (P ). Run by server. Constructs a proof out of file F, the

signature set, and the challenge chal (created by the TPA).

• V erifyProof(pk, chal, P ) → {TRUE,FALSE}. Run by TPA. Verifies the proof,

using the public key and the corresponding challenge. Returns true or false.

• ExecUpdate(F,Φ, update) → (F ′,Φ′, Pupdate). Run by server. Performs the update

on the file, and returns the new file and signatures set, as well as a proof for the

update.

• V erifyUpdate(pk, update, Pupdate) → {(TRUE, sigsk(H(R′))), FALSE}. Run by

client. Verifies whether the update proof is correct, meaning that the update has

been performed correctly. If correct, returns a new root signature.
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4.4.3 Discussion

The need for the verifier to receive the siblings’ hashes from the prover, can form a

security risk, as the prover can provide certain values that confirm his proof, even when

it is not correct. Unfortunately, this risk is not clearly elaborated on. Another indis-

tinctness is the distribution of work over client and TPA. The research claims that the

TPA relieves the client by taking over most of the work, but as the protocol algorithms

show, most algorithms are still conducted by the client. Also, the client still needs to

store the private key for signing.

4.5 Distributed Storage

Previous methods strongly contribute to the detection of misbehavior of a server, deleting

or wrongly modifying files of the client. However, after detection, there is no way in

which the files can be retrieved again (ECCs will work only for small changes). HAIL

(High-Availability and Integrity Layer) [12] is a distributed setting in which the client’s

files are spread across multiple servers with redundancy. It reuses the POR method

for integrity checking, and supplements it with a file recovery mechanism. When one

server has lost data, it communicates with the other servers to retrieve the correct data.

Future research has to enable dynamic operations on data, as of now, only static data

is supported.

4.6 Authenticated Data Structures

So far, this chapter has discussed methods for a client to ensure that his data is stored

correctly. Another scenario is possible, in which other users except the data owner want

to be certain that the data they query is equal to the data that the owner stored in the

first place. This is where authenticated data structures (ADS) become useful. In [29],

ADSs are defined as “a model of computation where untrusted responders answer queries

on a data structure on behalf of a trusted source and provide a proof of the validity of

the answer to the user” [29]. The supporting example introduces a stock exchange, in

which stock quotes from the main stock exchange are distributed over brokerages. The

main stock exchange is trusted, but the brokerages are not. An investor wants to be

sure that the stock quotes he retrieves from a brokerage are identical to the ones at the

stock exchange.

For different reasons it may be very convenient to introduce a middle party between

original source and user. Data can be replicated geographically, bringing it closer to the
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user, reducing latency. Replicated servers can remedy denial-of-service attacks. Also,

scalability can be improved [29].

The models is formalized as a structured collection S of objects and three parties: the

source, the responder, and the user. When the source performs an update, it sends the

new data to the responder, along with structure authentication information, consisting

of a time-stamped sign. When a user performs a query to the responder, the responder

enriches the data with answer authentication information, with which the user can proof

that the data is valid [29]. A similar definition, but with different party names, is given

in [23]. Figure 4.6 shows the corresponding scheme. The data owner sends his data to

the publisher, which owns the database. The clients send queries to the publisher to get

the data, who returns the result, and a verification-object. In contrast to the original

scheme, the owner also communicates with the clients, in the form of sending a small

digest that helps the clients to verify the results.

Figure 4.6: ADS scheme [23]

A comparable model can be used very effectively in a cloud environment. In [14], the

owner is referred to as the writer, the clients are readers, and the publisher is an untrusted

cloud server. The digest that the writer sends to the readers is a short authenticator

value.
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Conclusion & Discussion

This report has given a broad overview on integrity-related issues in Cloud Computing.

A clear view of the definition of Cloud Computing was given, along with its architecture,

its benefits and challenges. A distinction was made between integrity of outsourced

computation, and data outsourcing. For both fields, many methods were discussed that

improve integrity in the cloud.

Future work should continue improving the efficiency of verification techniques, in order

to achieve practical usage. Here, it is important that both the requirements of users as

well as the cloud provider have to be taken into account. Full confidentiality of a user’s

data might discourage cloud providers to store their data, as it cannot be used anymore

for analytics.

In the context of computation integrity, most algorithms still require computationally

expensive pre-computation steps, requiring one function to be executed many times

before it becomes efficient. This is not always a realistic scenario. Often, a client may

only want to execute a function once by the server. Future work should make verifiable

computation for these types of functions more efficient.

Regarding data integrity, future work should combine misbehavior detection of the server

with methods to retrieve the data, because detection only is not very useful when re-

trieval is impossible, causing permanent loss. When a large amount of data is lost or

damaged, error correcting codes will be insufficient, so this will have to be supported by

additional methods. When a third party is active, the client should not be still imposed

with computations for key and signature generation, and update verification. Instead,

the client should be genuinely relieved from these tasks, to obtain full efficiency of a

TPA.

29
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In my own work, I will continue focusing on authenticated data structures. I will im-

plement different existing techniques, compare storage complexity, and performance of

query and update operations, and look for possible improvements of weaknesses of ex-

isting schemes, aiming to bring deployment of these structures in a cloud environment

closer to reality.
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