

shaping the future of optics

Tunable Optofluidic Aperture

Master thesis presentation

Zürich, February 4th 2011

Joep Mutsaerts

Content

- Tunable aperture
 - Concept
 - Trapped liquid
 - Conclusion
- Membrane model identification
 - Experiments
 - Analysis
 - Simulations

What is a tunable aperture?

- Most common: Leaflet structure
- Control of:
 - Light
 - Depth of Field
 - Optical quality
 - F number

What is a tunable aperture?

f/32 – slow shutter

f/5.6 – fast shutter

- Optical quality in mobile phone market
- Small size
- Low part count
- Available design

Aperture Concept Trapped liquid Conclusion

ML Demonstrator 1

- Trapped fluid problem
 - Spot depends on speed
- Identified possible causes
 - Particle size
 - Concentration

Possible solution	Argument pro	Contra
Low concentration	Less aggregation	
Small particle size	Less aggregation	

• Goal: test lower concentration, filtered particles (< $1 \mu m$)

• Aperture seems clear, but:

ML Demonstrator 2

- Lens effect caused by remaining fluid
- Optical quality depends on speed
- Lens effect on aperture edge
- Identified possible solution
 - Surface tension
 - Coated glass

optotune

TUDelft

"trapped fluid" analysis

Possible solution	Argument pro	Contra
Low concentration	Less aggregation	Lens effect in soft edge
Small particle size	Less aggregation	Lens effect in soft edge
High surface tension	Less wetting	
Glass coating	Less wetting	

Aperture Concept • Trapped liquid Conclusion

Fluid	Surface Tension
Mercury	470
Water	73
	<< 60

ML Demonstrator 3

- Goal: Test influence of
 - Surface tension of water
 - Glass silicon coating

- Trapped fluid problem
 - High surface tension is not enough
 - Speed dependent
- Identified possible solution
 - Increase contact angle

"trapped fluid" analysis

Possible solution	Argument pro	Contra
Low concentration	Less aggregation	Lens effect in soft edge
Small particle size	Less aggregation	Lens effect in soft edge
High surface tension	Less wetting	Does not solve problem
Glass coating	Less wetting	Does not solve problem
Contact angle	Less wetting	

ML Demonstrator 4

- Goal: test influence of contact angle
- Trapped fluid problem
 - Soft edge with lens effect

"trapped fluid" analysis

Possible solution	Argument pro	Contra
Low concentration	Less aggregation	Lens effect in soft edge
Small particle size	Less aggregation	Lens effect in soft edge
High surface tension	Less wetting	Does not solve problem
Glass coating	Less wetting	Does not solve problem
Contact angle	Less wetting	Does not solve problem
Positive pressure	Force pushes liquid away	

- Air pressurized bulge pushes fluid away.
- Particles < 5µm: Clear aperture result but soft edge
- Particles > 5µm: trapped fluid problem

"trapped fluid" analysis

Possible solution	Argument pro	Contra
Low concentration	Less aggregation	Lens effect in soft edge
Small particle size	Less aggregation	Lens effect in soft edge
High surface tension	Less wetting	Does not solve problem
Glass coating	Less wetting	Does not solve problem
Contact angle	Less wetting	Does not solve problem
Positive pressure	Force pushes liquid away	Potential Solution

• Optotune lens design with two liquid compartments

- Prototype results: trapped fluid appears again (speed dependent)
- Over time, pigments migrate through membrane into transparent fluid
- Particles were not filtered small enough

- Use transparent fluid
- Is concept pigment dependent?

- Trapped fluid problem has not been solved
 - Surface profile of transparent lens should be measured
 - Particle size and concentration play a large role
- Lens effect can be solved by double fluid
 - Bigger and more complicated to produce
 - Pigments leak through the membrane
- Feasibility study advises to put the project on hold
 - Uncertainty of product quality and costs
 - Not the lowest hanging fruit

Content

- Tunable aperture
 - Concept
 - Trapped liquid
 - Conclusion
- Membrane model identification
 - Experiments
 - Analysis
 - Simulations

Deflection versus pressure - radius

Measurements statistics

- 148 bulge measurements done
- Thickness 10 200 µm
- Radius 5 40 mm
- Pressure 0 30000 Pa

Further challenges

- Bulge loading
- Material model might change

• Thickness not constant

Bulge loading

- Thickness proportional to stretch
- Where to measure thickness / stretch?

• 'Math slide'

Stress Strain calculated

Deflection versus Pressure - Simulation

Shape Predictor

Tunable Optofluidic Aperture

Master thesis presentation

Zürich, February 4th 2011

Joep Mutsaerts