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Abstract

Learning curves represent the relationship between
the amount of training data and the error rate in ma-
chine learning. An important use case for learning
curves is extrapolating them in order to predict how
much data is needed to achieve a certain perfor-
mance. One way to do such extrapolations is using
Deep Learning with a Prior-Fitted Network(PFN).
This paper explores how training the PFN on an
imbalanced dataset, i.e. containing learning curves
from two or more machine learning models with
a skewed distribution, affects the performance of
the network. Research into imbalanced learning
has shown that machine learning models can fa-
vor the more prevalent classes or data. Therefore,
it is worthwhile to explore whether such trends
can occur for the neural networks that we train for
learning curve extrapolation. Our experiments fo-
cused on analyzing different imbalance scenarios
and comparing them. Our results show that mixing
learning curves from different learners can improve
extrapolation performance in some cases, but the
effect strongly depends on the learner characteris-
tics and training proportions.

1 Introduction
When training a machine learning model we might expect a
certain performance - this is usually dependent on the amount
of data we use during training. However, collecting data can
be difficult, expensive and/or time-consuming. Therefore, it
can be beneficial to know the relationship between perfor-
mance and the amount of training data. The plot of this re-
lation is called a learning curve. More specifically, it can be
useful if we have the learning curve until some point to be
able to extrapolate and predict how it would look like if more
data is used. This means that we can predict how much data is
needed for a machine learning model to achieve a particular
performance.

Traditionally the extrapolation of learning curves has been
done using parametric formulas [6]. It is expected that more
training data leads to better performance. However, learn-
ing curves can be ”ill-behaved”, i.e. the performance of
the model does not always improve with more data. Learn-
ing Curve Prior-Fitted Networks (LC-PFNs) [7] are used for
learning curve extrapolation as well. They are trained directly
on a dataset containing learning curves. The learning curves
the LC-PFN is trained on depend on both the learner and
dataset from which the curves are derived from. Therefore,
this leads to three testing scenarios: Unseen Data - we eval-
uate the model on learning curves that come from the same
learner but use different datasets, Unseen Learner - the learn-
ing curves used for evaluation use the same data but on a dif-
ferent learner, Unseen Data Unseen Learner - a combination
of the two other testing scenarios. Our research focused on
the evaluation of the performance of the LC-PFN when the
training data used are sampled from two different learners and
it is imbalanced, i.e. the curves from one learner are more

represented than the curves from the other. For testing pur-
poses we focused only on the Unseen Data scenario because
the other two introduce a domain shift [8] , which also has an
effect on performance. This paper will address the following
questions:
RQ1: How does training LC-PFNs on imbalanced datasets
compare to training them on data from a single learner in
terms of extrapolation performance?
RQ2: What trends emerge in LC-PFN performance as the
proportion of training data from each learner changes in
mixed training sets?
The outline of the report is as follows. Section 2 discusses
related work to our research - formal definition of learning
curves, LCDB, LC-PFNs and imbalanced regression. Section
3 presents the experimental setup - what models are trained,
how their performance is evaluated and the metrics used. In
Section 4 a summary of the results of our experiments can
be found and their implication. Moreover, the ethical aspects
and reproducibility of our work are presented in Section 5.
Finally, Section 6 outlines the future work that can be done
on the project and gives a conclusion in which key concepts
and takeaways are summarized.

2 Related Work
This paper extends recent research in learning curve extrapo-
lation by building upon the Learning Curve Prior-Fitted Net-
works framework [7]. We provide background on learning
curves in machine learning and review the LC-PFN approach
to curve extrapolation, which forms the foundation for our re-
search. Moreover, this section discusses the Learning Curve
Database (LCDB) [4; 9] and its uses. Finally, imbalanced
regression is also presented as a concept.

2.1 Learning Curves
Learning curves are fundamental tools in machine learning
that visualize the relationship between model performance
and training set size. There are two types of learning curves:
Epoch-wise learning curves, that plot the performance over
multiple training runs over the same data, and Sample-size
learning curves. Sample-size curves plot the performance of
the model as a function of the size of the training set. Both
types of curve are used in machine learning research and
practice. Epoch-wise curves are useful for hyperparameter
tuning and algorithm selection [6]. Sample-size curves are
more beneficial for project planning or resource allocation
because they give the relationship between amount of data
and performance of model. On Figure 1 an example of a
learning curve is shown. It can be seen that the error of the
machine learning model decreases as it is trained on more
data, [6] defines such curves as ”well-behaved”.

However, [6] shows that not all learning curves follow
such a pattern. These curves are defined as ”ill-behaved”.
An example of a ”ill-behaved” curve is shown on Figure 2.
Certain machine learning models are more prone to have
ill-behaving learning curves such as Quadratic Discriminant
Analysis(QDA). Research shows that ”ill-behaved” curves
are more common than expected [9]. Our research focuses
on Sample-size learning curves, more specifically doing



Figure 1: Example of a learning curve -

Figure 2: Example of a ill-behaved learning curve

extrapolation using a neural network.

2.2 Learning-Curve Prior Fitted Network
The first usage of prior-data fitted neural networks (PFNs) for
epoch-wise learning curve extrapolation can be found in [1].
Learning Curve Prior-Fitted Networks(LC-PFNS) represent
a bayesian approach to learning curve extrapolation that uses
transformer architecture. Moreover, [7] extends the LC-PFN
approach to also work for sample-wise learning curves. The
PFN developed can be trained on two types of data driven
priors. The first uses parametric curve fitting to generate syn-
thetic data and the second trains directly on learning curves.
Both approaches use the Learning Curve Database (LCDB)
for training and evaluation. This approach enables LC-PFNs
to provide not just a single curve as a prediction but also a
confidence interval for the shape of the learning curve which
can be beneficial especially in cases of ill-behavior. Figure 3
shows an example prediction of the LC-PFN: In this paper we
used the sample-wise LC-PFN trained directly on data from
LCDB.

Figure 3: Prediction of the LC-PFN

2.3 Learning Curve Database
The Learning Curves Database (LCDB) 1.0 is an extensive
collection of learning curves that provides empirical data
for 20 classification algorithms evaluated on 246 OpenML
datasets [4]. Unlike previous studies limited to small num-
bers of datasets and algorithms, LCDB offers over 150 GB of
ground truth and probabilistic predictions, enabling compre-
hensive analysis of learning curve behavior. Initial analysis
from LCDB demonstrates that sample-wise learning curves
are predominantly monotonic and convex, with peaking being
relatively rare. The research also reveals systematic patterns
in learning curve crossing behavior, where algorithms may
start poorly but eventually outperform other learners with
enough training data. However, [9] developed an extension
to this database called LCDB 1.1 which contains significantly
more data and fixes issues with the database such as adding
feature scaling. Research into LCDB 1.1 reveals that ”ill-
behaved” learning curves are more frequent than previously
thought. Furthermore, some learners are more prone to being
”ill-behaved” than others. On table 1 the results of this re-
search into different learners is shown. We used this table in
order to select the learners for our experiment. The learners
we used for training the LC-PFNs used in our experiments
were selected based on the results shown in the paper. Ta-
ble 1 shows which learners we used and the percentage of ill-
behaved learning curves that are in the dataset for that learner.
Based on this we can label Extra Tree, Extra Trees and Per-
ceptron as ”well-behaved learners” and QDA and SVC Sig-
moid as ”ill-behaved learners”. We will use these groupings
later in the paper.

2.4 Imbalanced Regression
Imbalanced learning traditionally refers to scenarios where
certain classes or data distributions are underrepresented
which can lead to models that are biased towards the more
dominant classes or distributions. While most commonly re-
searched in classification, the concept extends to regression
settings - the continuous target values have an imbalanced



Table 1: Percentage of Ill-Behaved Learning Curves per Learner
based on results from LCDB 1.1

Learner % Ill-Behaved Curves
Extra Trees 3.4%
Extra Tree 1.9%
Perceptron 3.8%
SVC Sigmoid 58.1%
QDA 45.7%

distribution. As discussed in this survey of imbalanced learn-
ing [2] , such a distribution skew in regression tasks can lead
to performance degradation, particularly in the underrepre-
sented regions. When dealing with imbalanced training data
it can be beneficial to evaluate the performance of a machine
learning model separately for each class or data distribution.
This is because poor performance on one class or distribu-
tion can be masked by a strong performance on another when
results are combined in a mixed test set. The curve predic-
tion done by the LC-PFN is a type of regression, however, in
this case the target values are curves. Nevertheless, the idea
of an imbalanced target value distribution is still applicable.
Therefore, our experiments explore the effect of imbalance
by training LC-PFNs on imbalanced splits of learning curves
from different learners and analyzing the impact on extrapo-
lation performance.

3 Experimental Setup
This section describes the experiment that has been per-
formed in order to answer our research question. The learn-
ing curves used for training and evaluation were sourced from
LCDB 1.1, and the model was based on the LC-PFN neural
network architecture.
We choose two learners whose learning curves we will use
for training. Since it is infeasible to experiment with every
possible combination of learners, we used the results from
[9] in order to select learners with ”well-behaved” learning
curves and learners with ”ill-behaved” ones. There are 3
possible scenarios for the experiment: ”well-behaved” mixed
with ”well-behaved”, ”well-behaved” with ”ill-behaved” and
”ill-behaved” with ”ill-behaved”.
For each combination of learners A and B we have the same
training splits: (80% A, 20% B), (60% A, 40% B), ( 40% A,
60% B) and (20% A, 80% B). The amount of curves that are
used for training remains the same - 5300, but the proportion
of curves from each learner is varied. We train 3 PFNs for
each split with different random seeds.
We also train 3 PFNs with on different seeds with curves only
from one of the learners and 3 other PFNs with curves from
the other learner. We use these networks as a baseline to com-
pare the mixed training networks with. We use three different
seeds to account for the variability introduced during training
- which curves we train on and also there is an element of
randomness during the training of the PFN.
We then evaluate each training split for learners A and B on
the Unseen Data curves for both learners separately. They are
the same for each seed and training split which ensures that
the comparisons are fair. The metrics used are MAE, Miscov-

erage and Area. Their formal definitions are provided later in
the report.
Finally, we compare every pairwise combination for training
splits, i.e. 80%/20% versus 60%/40%, using the Wilcoxon
Signed-Rank test.
For our performance metric we picked the following metrics:
MAE = 1

n

∑n
i=1 |yi − ŷi| - Mean Absolute Error between

the ground truth, i.e. the curve after the cutoff, and the pre-
diction mean of the PFN.
Miscoverage = (ŷtrue < ŷlower)∨(ŷtrue > ŷupper): the percent-
age of the curve that is outside the 90% Confidence Interval.
Area =

∑N
i=1

(
ŷ
(i)
upper − ŷ

(i)
lower

)
: the total area covered by the

confidence interval for the curve. This metric is used together
with Miscoverage, as a reduction in Miscoverage can some-
times be achieved by increasing the confidence interval. A
larger area thus can indicate increased uncertainty about the
shape of the learning curve.
All of the metrics are defined such that lower values indicate
better performance. This is why Miscoverage is used instead
of Coverage - to maintain consistency in interpretation. In
order to check the statistical significance of the results of our
experiments we used the Wilcoxon Signed-Rank Test [5]. It
is a non-parametric statistical test used to check if two re-
lated samples come from the same distribution. It checks if
the population mean ranks of the samples differ,i.e. whether
there is a consistent difference between paired observations.
It serves as a non-parametric alternative to the paired t-test
and does not assume normality of the data. Moreover, it is
possible to do this test with a two-tailed or one-tailed hypoth-
esis. A two-tailed test is appropriate when we are interested
in detecting any difference between the two paired samples,
regardless of direction. A one-tailed test is used when we
have a specific directional expectation. For our experiment
we used a one-tailed test because we are interested in learning
whether the performance metrics are increasing or decreas-
ing. Wilcoxon Signed-Rank test is the appropriate test for
these metrics because they are not normally distributed thus a
t-test is not applicable. When doing multiple comparisons the
chance of a Type 1 error (false positive) increases. Therefore,
we also use the Bonferroni correction method [3].

4 Results and Discussion
For each scenario for the experiment we get six plots - com-
paring the MAE, Miscoverage, and Area values when evalu-
ating on the Unseen Data for each learner. On Figures 4, 5,
6 we can see the boxplots comparing training splits for PFNs
trained on Extra Trees and SVC Sigmoid and evaluated on
Extra Trees. On these figures we have only plotted the results
for one seed to give an idea of how the results look like. All of
the results can be found in the Appendix A. Moreover, due to
the training setup for the LC-PFN - the results for each seed
are statistically independent. Therefore, it is better to analyze
each seed separately and look for results that hold across all
of them. Furthermore, as can be seen on Figure 4 the dis-
tribution of results for MAE is skewed, which is shown by
the high number of outliers in the box plot. This is why the
Wilcoxon signed-rank test was used as the primary method
for comparing the different training splits. Moreover, Table 2



Figure 4: MAE results for mixed training with Extra Trees and SVC
Sigmoid training splits evaluated on Unseen Data for Extra Trees

Figure 5: Miscoverage results for mixed training with Extra Trees
and SVC Sigmoid training splits evaluated on Unseen Data for Extra
Trees

shows the result of applying multiple Wilcoxon signed-rank
tests with correction when comparing PFNs trained on dif-
ferent splits of Extra Tree and Perceptron on seed 23. The
comparison column shows which training splits we are com-
paring - 100% refers to the PFN trained only on data from the
learner which we are doing the Unseen Data evaluation on.
The second column indicates which training split performs
better. If the p-value of one of the two one-sided tests is be-
low 0.05, the result is considered statistically significant. If
neither test yields a significant result, the outcome is marked
as ”neither.”

Well-behaved and ill-behaved:
For this case we picked Extra Trees as the well-behaved
learner and SVC Sigmoid as the ill-behaved one. From Ta-
ble 1 we can see that SVC Sigmoid has 58.1% ill-behaved
curves compared to 3.4% for Extra Trees. When comparing
the different training splits in the case of Unseen Data for Ex-
tra Trees we have the following results:

• MAE: Comparing the results of the mixed training
sets(80%/20%, 60%/40% etc.) to the results from the
PFN trained only on curves from Extra Trees does not
give very consistent results. Across all three seeds the

Figure 6: Area results for mixed training with Extra Trees and SVC
Sigmoid training splits evaluated on Unseen Data for Extra Trees

Comparison Better performing split
100% vs 80% 100% Perceptron
100% vs 60% 100% Perceptron
100% vs 40% 100% Perceptron
100% vs 20% 100% Perceptron
80% vs 60% 60% Perceptron
80% vs 40% 40% Perceptron
80% vs 20% 20% Perceptron
60% vs 40% 40% Perceptron
60% vs 20% 20% Perceptron
40% vs 20% 20% Perceptron

Table 2: Results of multiple Wilcoxon signed-rank tests with correc-
tion for PFNs trained on a mixed split of Extra Tree and Perceptron
for MAE on Unseen Data for Perceptron for seed 23.

60%/40% split always has lower MAE than the PFN
trained on the Extra Trees learner. Moreover, when
comparing the the mixed training splits between them-
selves, the Wilcoxon test reveals that using 20% of Ex-
tra Trees is consistently the worst performing PFN. The
other comparisons are inconsistent across seeds.

• Miscoverage: The overall trend for this metric is that
as the amount of curves from Extra Trees we use for
training is reduced so does the Miscoverage rate.

• Area: This metric follows a similar trend to miscover-
age. In this case as we reduce the training data from Ex-
tra Trees the area of the Confidence Interval increases.
This can be used to explain why the miscoverage is im-
proving - as the confidence interval grows it is more
likely to contain the curve.

In the case of comparing the results from evaluating the
Unseen Data for SVC Sigmoid we have the following results:

• MAE: When we compare the PFN trained exclusively
on curves from the SVC learner to the mixed train-
ing models, we can see that the mixed models with a
low amount of curves from Extra Trees (20%) consis-
tently outperforms the former. When analyzing pairwise
mixed splits, MAE tends to improve as the proportion of



Extra Trees curves in the training data decreases. How-
ever, this improvement plateaus between the 40% and
20% splits

• Miscoverage: The mixed training models outperform
the PFN trained on only SVC Sigmoid consistently. The
pairwise comparisons between the training splits do not
give consistent results across splits apart from when we
compare the 80%/20% and 60%/40% splits and 80%
versus 40%. In these cases the PFNs that are trained
on less data from Extra Trees are better.

• Area: The area of the confidence interval is lower when
we train on only curves from SVC Sigmoid compared to
using a mixed training set in all cases. However, doing
a pairwise comparison between training splits does not
show any trend - for example for Seed 10 a 20%/80%
split is worse than a 40%/60% split, but for Seed 23 it is
the opposite.

Well-behaved and Well-behaved:
For this case we picked Extra Tree as the first well-behaved
learner and Perceptron as the second well-behaved one. From
Table 1 we can see that they have 1.9% and 3.8% ill-behaved
curves respectively. When comparing the different training
splits in the case of Unseen Data for Extra Tree we have the
following results:

• MAE: Using a mixed training split with 20% or 40%
curves from Extra Tree gives a better performance com-
pared to using a PFN trained only on the Extra Tree
learner. For the pairwise comparisons, the 80% split is
consistently the worst performing one for MAE. How-
ever, the rest do not follow a clear trend and depend on
the seed.

• Miscoverage: The trend for this metric is that it im-
proves as the amount of curves from Extra Tree is re-
duced until they are 40-20% of the training data. This is
true for both pairwise comparisons and when comparing
to PFN trained only on the Extra Tree learner.

• Area: For this metric as we reduce the training data
from Extra Tree the area of the Confidence Interval in-
creases. This can be used to explain why the miscover-
age is improving - as the confidence interval grows it is
more likely to contain the curve.

When comparing the different training splits in the case of
Unseen Data for Perceptron we have the following results:

• MAE: When comparing the PFN trained only on curves
from Perceptron and the mixed training splits there is not
a general trend. However, for the pairwise comparisons
between mixed splits the less data is used from Extra
Tree the better the MAE.

• Miscoverage: The PFNs trained on only data from Per-
ceptron perform best overall here. Analyzing the pair-
wise comparisons shows that using more curves from
the Perceptron learner results in better miscoverage.

• Area: The PFNs trained purely on Perceptron show the
worst performance in terms of area. Pairwise compar-
isons reveal that as the proportion of Extra Tree training
curves is reduced the area metric consistently improves.

Ill-behaved and ill-behaved:
For this case we picked QDA as the first ill-behaved learner
and SVC Sigmoid as the second ill-behaved one. From Table
1 we can see that they have 45.7% and 58.1% ill-behaved
curves respectively. Comparing the results of the Wilcoxon
tests for each seed revealed no trend for any metric with one
exception - the area of the confidence interval is consistently
lower when comparing the PFN trained only on curves from
SVC Sigmoid compared to the mixed training splits.

Discussion
Based on the comparative analysis, the effectiveness of mixed
training splits depends significantly on the characteristics of
the learners that are used: Mixing well-behaved and ill-
behaved learners consistently improves performance when
evaluating on the ill-behaved learner (SVC Sigmoid). In-
cluding even 20% well-behaved (Extra Trees) curves reduces
MAE and miscoverage for SVC Sigmoid evaluation, suggest-
ing well-behaved data acts as a stabilizer. Moreover, there is
evidence that mixing well-behaved and ill-behaved training
curves can also improve MAE performance. This suggests
that training on a mixed learner set could be inherently better
for MAE performance. Although reducing Extra Trees data
improves miscoverage due to wider confidence intervals, this
presents a trade-off between coverage and certainty which is
not always an improvement.

Mixing two well-behaved learners (Extra Trees & Percep-
tron) shows asymmetric benefits. Extra Trees performance
improves (lower MAE & miscoverage) when augmented with
Perceptron data (particularly at 20-40% splits). However,
evaluating on Unseen Data for Perceptron shows best results
when trained only on Perceptron learning curves for miscov-
erage, suggesting its stability might be diluted by external
data despite slight MAE gains from very low Extra Trees in-
clusion in some cases.

Mixing two ill-behaved learners (SVC Sigmoid & QDA)
yields no consistent performance trends for MAE or miscov-
erage across metrics or seeds. The only clear effect is that
mixed splits produce larger confidence intervals than train-
ing solely on SVC Sigmoid, mirroring the area/miscoverage
trade-off observed elsewhere but without clear performance
advantages.

In general, well-behaved learners improve the reliability of
ill-behaved learners when included in training. However, the
optimal mixing ratio depends on the learner’s themselves and
the metric prioritized,e.g. MAE vs. coverage. Ill-behaved
learners offer little reciprocal benefit when mixed, and com-
bining them can give unreliable results.

5 Responsible Research
This section examines the ethical implications of our research
and discusses the reproducibility of our methods.

5.1 Reproducibility
All experiments were done using fixed random seeds (5, 10,
23) which allows for our research to be reproducible. The
experimental setup including the specific training splits and
evaluation metrics (MAE, Miscoverage, Area) can be found



in this paper in Section 3. Moreover, our code is publicly
available at https://github.com/Bozhidar1/ResearchProject.

5.2 Data Ethics
This research used publicly available datasets from the Learn-
ing Curve Database (LCDB) 1.1 [9] , which contains learning
curves derived from established OpenML datasets. The use of
publicly accessible data ensures transparency and eliminates
concerns regarding sensitive information.

5.3 Usage of LLM
We used generative AI tools such as LLM as support when
writing this report in LaTeX. They were not used to generate
code, ideas, or to analyze results. Some examples of prompts
used are:
”¡data¿ Can you write this data as a table in latex.”
”¡paragraph¿ Rewrite this paragraph so it sounds better.”
”I want to say that ¡idea¿, can you help me write it as a sen-
tence.”.

6 Conclusions and Future Work
This section first lays out the conclusions we have made from
our research. Then it gives suggestions for related future
work.

6.1 Conclusion
This research investigated how training Learning Curve Prior-
Fitted Networks (LC-PFNs) on imbalanced datasets affects
their performance in learning curve extrapolation. We ad-
dressed two primary research questions: (RQ1) how imbal-
anced training compares to single-learner training, and (RQ2)
what trends emerge as the proportion of training data from
different learners changes.
Our experimental analysis reveals that the effectiveness of
mixed training is highly dependent on the underlying char-
acteristics of the learners being combined. Key findings
include that well-behaved learners can improve ill-behaved
ones when included in training data, but this benefit is not re-
ciprocal. Mixed training consistently improved performance
when evaluating on ill-behaved learners, with even small
proportions (20%) of well-behaved data providing signifi-
cant benefits. However, combining two well-behaved learn-
ers showed asymmetric effects, and mixing two ill-behaved
learners yielded no consistent improvements.
These results suggest that the composition of training data
matters significantly for LC-PFN performance, and that
strategic mixing of learner types can be beneficial under spe-
cific conditions. The optimal mixing strategy depends on
both the learner characteristics and the performance metrics
prioritized.

6.2 Future Work
Improve LC-PFN training:
The current parameters we used for training the LC-PFN are
not the best performing ones found in [1]. Moreover, during
training, we only used curves with length 80 or less. There-
fore, it can be worthwhile to repeat our experiments with a

different training setup. One significant limitation of our cur-
rent work is the sensitivity of the neural network’s perfor-
mance to the random seed used during training. Addressing
this issue would allow for more reliable and conclusive ex-
perimental findings.
Look into Sampling-Based Strategies for addressing Im-
balanced Regression:
There are methods to address the performance degrada-
tion that can be introduced by imbalanced learning. It has
been suggested that imbalanced regression can be addressed
through various data sampling strategies [2]. The paper high-
lights SMOGN (Synthetic Minority Over-sampling Tech-
nique for Regression with Gaussian Noise) as a key method,
which enhances the representation of rare target values by
generating synthetic samples and adding noise to diversify the
training data. Additionally, WERCS (Weighted Relevance-
based Combination Strategy) is proposed to adjust oversam-
pling based on the relevance of each sample. Such methods
can be explored in order to improve the performance of the
LC-PFN.
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A Results of Unseen Data evaluations

Figure 7: MAE results for mixed training with Extra Trees and SVC
Sigmoid training splits evaluated on Unseen Data for Extra Trees

Figure 8: Miscoverage results for mixed training with Extra Trees
and SVC Sigmoid training splits evaluated on Unseen Data for Extra
Trees

Figure 9: Area results for mixed training with Extra Trees and SVC
Sigmoid training splits evaluated on Unseen Data for Extra Trees

Figure 10: MAE results for mixed training with Extra Trees and
SVC Sigmoid training splits evaluated on Unseen Data for SVC Sig-
moid

Figure 11: Miscoverage results for mixed training with Extra Trees
and SVC Sigmoid training splits evaluated on Unseen Data for SVC
Sigmoid

Figure 12: Area results for mixed training with Extra Trees and SVC
Sigmoid training splits evaluated on Unseen Data for SVC Sigmoid



Figure 13: MAE results for mixed training with Extra Tree and Per-
ceptron training splits evaluated on Unseen Data for Extra Tree

Figure 14: Miscoverage results for mixed training with Extra Tree
and Perceptron training splits evaluated on Unseen Data for Extra
Tree

Figure 15: Area results for mixed training with Extra Tree and Per-
ceptron training splits evaluated on Unseen Data for Extra Tree

Figure 16: MAE results for mixed training with Extra Tree and Per-
ceptron training splits evaluated on Unseen Data for Perceptron

Figure 17: Miscoverage results for mixed training with Extra Tree
and Perceptron training splits evaluated on Unseen Data for Percep-
tron

Figure 18: Area results for mixed training with Extra Tree and Per-
ceptron training splits evaluated on Unseen Data for Perceptron



Figure 19: MAE results for mixed training with QDA and SVC Sig-
moid training splits evaluated on Unseen Data for QDA

Figure 20: Miscoverage results for mixed training with QDA and
SVC Sigmoid training splits evaluated on Unseen Data for QDA

Figure 21: Area results for mixed training with QDA and SVC Sig-
moid training splits evaluated on Unseen Data for QDA

Figure 22: MAE results for mixed training with QDA and SVC Sig-
moid training splits evaluated on Unseen Data for SVC Sigmoid

Figure 23: Miscoverage results for mixed training with QDA and
SVC Sigmoid training splits evaluated on Unseen Data for SVC Sig-
moid

Figure 24: Area results for mixed training with QDA and SVC Sig-
moid training splits evaluated on Unseen Data for SVC Sigmoid

B Results of Statistical tests
Mixed training for learners
ens.ExtraTrees and SVC_sigmoid
evaluated on Unseen Data for ens.ExtraTrees.



===============================
STATISTICAL ANALYSIS FOR SEED 5
===============================
--- MAE (Seed 5) ---
Split 1.0 vs 0.8:greater
Split 1.0 vs 0.6:greater
Split 1.0 vs 0.4:greater
Split 1.0 vs 0.2: less
Split 0.8 vs 0.6: greater
Split 0.8 vs 0.4:greater
Split 0.8 vs 0.2:less
Split 0.6 vs 0.4: greater
Split 0.6 vs 0.2:less
Split 0.4 vs 0.2:less
--- Miscoverage (Seed 5) ---
Split 1.0 vs 0.8:greater
Split 1.0 vs 0.6:greater
Split 1.0 vs 0.4:greater
Split 1.0 vs 0.2:greater
Split 0.8 vs 0.6:greater
Split 0.8 vs 0.4:greater
Split 0.8 vs 0.2:greater
Split 0.6 vs 0.4:greater
Split 0.6 vs 0.2:greater
Split 0.4 vs 0.2: less
--- Area (Seed 5) ---
Split 1.0 vs 0.8:less
Split 1.0 vs 0.6:less
Split 1.0 vs 0.4:less
Split 1.0 vs 0.2:less
Split 0.8 vs 0.6:less
Split 0.8 vs 0.4:less
Split 0.8 vs 0.2:less
Split 0.6 vs 0.4:less
Split 0.6 vs 0.2:less
Split 0.4 vs 0.2:less
===============================
STATISTICAL ANALYSIS FOR SEED 10
===============================
--- MAE (Seed 10) ---
Split 1.0 vs 0.8: greater
Split 1.0 vs 0.6:greater
Split 1.0 vs 0.4: not significant
Split 1.0 vs 0.2: not significant
Split 0.8 vs 0.6:greater
Split 0.8 vs 0.4: less
Split 0.8 vs 0.2:less
Split 0.6 vs 0.4:less
Split 0.6 vs 0.2:less
Split 0.4 vs 0.2: less
--- Miscoverage (Seed 10) ---
Split 1.0 vs 0.8:greater
Split 1.0 vs 0.6:greater
Split 1.0 vs 0.4:greater
Split 1.0 vs 0.2:greater
Split 0.8 vs 0.6:greater
Split 0.8 vs 0.4:greater
Split 0.8 vs 0.2:greater
Split 0.6 vs 0.4:less

Split 0.6 vs 0.2:greater
Split 0.4 vs 0.2:greater
--- Area (Seed 10) ---
Split 1.0 vs 0.8:less
Split 1.0 vs 0.6:less
Split 1.0 vs 0.4:less
Split 1.0 vs 0.2:less
Split 0.8 vs 0.6:less
Split 0.8 vs 0.4:less
Split 0.8 vs 0.2:less
Split 0.6 vs 0.4: not significant
Split 0.6 vs 0.2:less
Split 0.4 vs 0.2:less
===============================
STATISTICAL ANALYSIS FOR SEED 23
===============================
--- MAE (Seed 23) ---
Split 1.0 vs 0.8:greater
Split 1.0 vs 0.6:greater
Split 1.0 vs 0.4: not significant
Split 1.0 vs 0.2:less
Split 0.8 vs 0.6: not significant
Split 0.8 vs 0.4: less
Split 0.8 vs 0.2:less
Split 0.6 vs 0.4: less
Split 0.6 vs 0.2:less
Split 0.4 vs 0.2:less
--- Miscoverage (Seed 23) ---
Split 1.0 vs 0.8:greater
Split 1.0 vs 0.6:greater
Split 1.0 vs 0.4:greater
Split 1.0 vs 0.2:greater
Split 0.8 vs 0.6: not significant
Split 0.8 vs 0.4:greater
Split 0.8 vs 0.2:greater
Split 0.6 vs 0.4:greater
Split 0.6 vs 0.2:greater
Split 0.4 vs 0.2:greater
--- Area (Seed 23) ---
Split 1.0 vs 0.8:less
Split 1.0 vs 0.6:less
Split 1.0 vs 0.4:less
Split 1.0 vs 0.2:less
Split 0.8 vs 0.6:greater
Split 0.8 vs 0.4:less
Split 0.8 vs 0.2:less
Split 0.6 vs 0.4:less
Split 0.6 vs 0.2:less
Split 0.4 vs 0.2:less

Mixed training for learners
ens.ExtraTrees and SVC_sigmoid
evaluated on Unseen Data for SVC_sigmoid.
===============================
STATISTICAL ANALYSIS FOR SEED 5
===============================
--- MAE (Seed 5) ---
Split 1.0 vs 0.8:(*) less
Split 1.0 vs 0.6: not significant



Split 1.0 vs 0.4:(*) greater
Split 1.0 vs 0.2:(*) greater
Split 0.8 vs 0.6:(*) greater
Split 0.8 vs 0.4:(*) greater
Split 0.8 vs 0.2:(*) greater
Split 0.6 vs 0.4:(*) greater
Split 0.6 vs 0.2:(*) greater
Split 0.4 vs 0.2:(*) less
--- Miscoverage (Seed 5) ---
Split 1.0 vs 0.8:(*) greater
Split 1.0 vs 0.6:(*) greater
Split 1.0 vs 0.4:(*) greater
Split 1.0 vs 0.2:(*) greater
Split 0.8 vs 0.6:(*) greater
Split 0.8 vs 0.4:(*) greater
Split 0.8 vs 0.2: not significant
Split 0.6 vs 0.4:(*) greater
Split 0.6 vs 0.2: not significant
Split 0.4 vs 0.2:(*) less
--- Area (Seed 5) ---
Split 1.0 vs 0.8:(*) less
Split 1.0 vs 0.6:(*) less
Split 1.0 vs 0.4: not significant
Split 1.0 vs 0.2: not significant
Split 0.8 vs 0.6:(*) greater
Split 0.8 vs 0.4:(*) greater
Split 0.8 vs 0.2:(*) greater
Split 0.6 vs 0.4:(*) greater
Split 0.6 vs 0.2:(*) greater
Split 0.4 vs 0.2:(*) greater
===============================
STATISTICAL ANALYSIS FOR SEED 10
===============================
--- MAE (Seed 10) ---
Split 1.0 vs 0.8: not significant
Split 1.0 vs 0.6:(*) greater
Split 1.0 vs 0.4:(*) greater
Split 1.0 vs 0.2:(*) greater
Split 0.8 vs 0.6:(*) greater
Split 0.8 vs 0.4:(*) greater
Split 0.8 vs 0.2:(*) greater
Split 0.6 vs 0.4:(*) greater
Split 0.6 vs 0.2:(*) greater
Split 0.4 vs 0.2: not significant
--- Miscoverage (Seed 10) ---
Split 1.0 vs 0.8:(*) greater
Split 1.0 vs 0.6:(*) greater
Split 1.0 vs 0.4:(*) greater
Split 1.0 vs 0.2:(*) greater
Split 0.8 vs 0.6:(*) greater
Split 0.8 vs 0.4:(*) greater
Split 0.8 vs 0.2:(*) greater
Split 0.6 vs 0.4:(*) less
Split 0.6 vs 0.2: not significant
Split 0.4 vs 0.2: greater
--- Area (Seed 10) ---
Split 1.0 vs 0.8:(*) less
Split 1.0 vs 0.6:(*) less
Split 1.0 vs 0.4:(*) less

Split 1.0 vs 0.2:(*) less
Split 0.8 vs 0.6:(*) less
Split 0.8 vs 0.4: not significant
Split 0.8 vs 0.2: not significant
Split 0.6 vs 0.4:(*) greater
Split 0.6 vs 0.2:(*) greater
Split 0.4 vs 0.2:(*) greater
===============================
STATISTICAL ANALYSIS FOR SEED 23
===============================
--- MAE (Seed 23) ---
Split 1.0 vs 0.8:(*) less
Split 1.0 vs 0.6:(*) less
Split 1.0 vs 0.4: not significant
Split 1.0 vs 0.2:(*) greater
Split 0.8 vs 0.6:(*) greater
Split 0.8 vs 0.4:(*) greater
Split 0.8 vs 0.2:(*) greater
Split 0.6 vs 0.4:(*) greater
Split 0.6 vs 0.2:(*) greater
Split 0.4 vs 0.2:(*) greater
--- Miscoverage (Seed 23) ---
Split 1.0 vs 0.8: not significant
Split 1.0 vs 0.6:(*) greater
Split 1.0 vs 0.4:(*) greater
Split 1.0 vs 0.2:(*) greater
Split 0.8 vs 0.6:(*) greater
Split 0.8 vs 0.4:(*) greater
Split 0.8 vs 0.2:(*) greater
Split 0.6 vs 0.4:(*) greater
Split 0.6 vs 0.2:(*) greater
Split 0.4 vs 0.2:(*) greater
--- Area (Seed 23) ---
Split 1.0 vs 0.8:(*) less
Split 1.0 vs 0.6:(*) less
Split 1.0 vs 0.4:(*) less
Split 1.0 vs 0.2:(*) less
Split 0.8 vs 0.6:(*) greater
Split 0.8 vs 0.4: not significant
Split 0.8 vs 0.2: less
Split 0.6 vs 0.4:(*) less
Split 0.6 vs 0.2:(*) less
Split 0.4 vs 0.2:(*) less

Mixed training for learners ExtraTree and
Perceptron evaluated on Unseen Data for ExtraTree.
===============================
STATISTICAL ANALYSIS FOR SEED 5
===============================
--- MAE (Seed 5) ---
Split 1.0 vs 0.8:greater
Split 1.0 vs 0.6:not significant
Split 1.0 vs 0.4:greater
Split 1.0 vs 0.2:greater
Split 0.8 vs 0.6:less
Split 0.8 vs 0.4:greater
Split 0.8 vs 0.2:greater
Split 0.6 vs 0.4:greater
Split 0.6 vs 0.2:greater



Split 0.4 vs 0.2:less
--- Miscoverage (Seed 5) ---
Split 1.0 vs 0.8:greater
Split 1.0 vs 0.6:not significant
Split 1.0 vs 0.4:greater
Split 1.0 vs 0.2:greater
Split 0.8 vs 0.6:less
Split 0.8 vs 0.4:greater
Split 0.8 vs 0.2:greater
Split 0.6 vs 0.4:greater
Split 0.6 vs 0.2:greater
Split 0.4 vs 0.2:greater
--- Area (Seed 5) ---
Split 1.0 vs 0.8:less
Split 1.0 vs 0.6:less
Split 1.0 vs 0.4:less
Split 1.0 vs 0.2:less
Split 0.8 vs 0.6:not significant
Split 0.8 vs 0.4:not significant
Split 0.8 vs 0.2:less
Split 0.6 vs 0.4:less
Split 0.6 vs 0.2:less
Split 0.4 vs 0.2:less
===============================
STATISTICAL ANALYSIS FOR SEED 10
===============================
--- MAE (Seed 10) ---
Split 1.0 vs 0.8:not significant
Split 1.0 vs 0.6:greater
Split 1.0 vs 0.4:greater
Split 1.0 vs 0.2:greater
Split 0.8 vs 0.6:greater
Split 0.8 vs 0.4:greater
Split 0.8 vs 0.2:greater
Split 0.6 vs 0.4:less
Split 0.6 vs 0.2:less
Split 0.4 vs 0.2:not significant
--- Miscoverage (Seed 10) ---
Split 1.0 vs 0.8:greater
Split 1.0 vs 0.6:greater
Split 1.0 vs 0.4:greater
Split 1.0 vs 0.2:greater
Split 0.8 vs 0.6:greater
Split 0.8 vs 0.4:greater
Split 0.8 vs 0.2:greater
Split 0.6 vs 0.4:greater
Split 0.6 vs 0.2:greater
Split 0.4 vs 0.2:not significant
--- Area (Seed 10) ---
Split 1.0 vs 0.8:less
Split 1.0 vs 0.6:less
Split 1.0 vs 0.4:less
Split 1.0 vs 0.2:less
Split 0.8 vs 0.6:not significant
Split 0.8 vs 0.4:less
Split 0.8 vs 0.2:less
Split 0.6 vs 0.4:less
Split 0.6 vs 0.2:less
Split 0.4 vs 0.2:less

===============================
STATISTICAL ANALYSIS FOR SEED 23
===============================
--- MAE (Seed 23) ---
Split 1.0 vs 0.8:greater
Split 1.0 vs 0.6:greater
Split 1.0 vs 0.4:greater
Split 1.0 vs 0.2:greater
Split 0.8 vs 0.6:greater
Split 0.8 vs 0.4:greater
Split 0.8 vs 0.2:greater
Split 0.6 vs 0.4:greater
Split 0.6 vs 0.2:greater
Split 0.4 vs 0.2:not significant
--- Miscoverage (Seed 23) ---
Split 1.0 vs 0.8:greater
Split 1.0 vs 0.6:greater
Split 1.0 vs 0.4:greater
Split 1.0 vs 0.2:greater
Split 0.8 vs 0.6:greater
Split 0.8 vs 0.4:greater
Split 0.8 vs 0.2:greater
Split 0.6 vs 0.4:greater
Split 0.6 vs 0.2:greater
Split 0.4 vs 0.2:less
--- Area (Seed 23) ---
Split 1.0 vs 0.8:less
Split 1.0 vs 0.6:less
Split 1.0 vs 0.4:less
Split 1.0 vs 0.2:less
Split 0.8 vs 0.6:less
Split 0.8 vs 0.4:less
Split 0.8 vs 0.2:less
Split 0.6 vs 0.4:less
Split 0.6 vs 0.2:less
Split 0.4 vs 0.2:less

Mixed training for learners ExtraTree and
Perceptron evaluated on Unseen Data for Perceptron.
===============================
STATISTICAL ANALYSIS FOR SEED 5
===============================
--- MAE (Seed 5) ---
Split 1.0 vs 0.8:less
Split 1.0 vs 0.6:less
Split 1.0 vs 0.4:greater
Split 1.0 vs 0.2:greater
Split 0.8 vs 0.6:greater
Split 0.8 vs 0.4:greater
Split 0.8 vs 0.2:greater
Split 0.6 vs 0.4:greater
Split 0.6 vs 0.2:greater
Split 0.4 vs 0.2:not significant
--- Miscoverage (Seed 5) ---
Split 1.0 vs 0.8:less
Split 1.0 vs 0.6:less
Split 1.0 vs 0.4:less
Split 1.0 vs 0.2:less
Split 0.8 vs 0.6:greater



Split 0.8 vs 0.4:greater
Split 0.8 vs 0.2:greater
Split 0.6 vs 0.4:greater
Split 0.6 vs 0.2:greater
Split 0.4 vs 0.2:greater
--- Area (Seed 5) ---
Split 1.0 vs 0.8:greater
Split 1.0 vs 0.6:greater
Split 1.0 vs 0.4:greater
Split 1.0 vs 0.2:greater
Split 0.8 vs 0.6:less
Split 0.8 vs 0.4:less
Split 0.8 vs 0.2:less
Split 0.6 vs 0.4:less
Split 0.6 vs 0.2:less
Split 0.4 vs 0.2:less
===============================
STATISTICAL ANALYSIS FOR SEED 10
===============================
--- MAE (Seed 10) ---
Split 1.0 vs 0.8:less
Split 1.0 vs 0.6:greater
Split 1.0 vs 0.4:greater
Split 1.0 vs 0.2:greater
Split 0.8 vs 0.6:greater
Split 0.8 vs 0.4:greater
Split 0.8 vs 0.2:greater
Split 0.6 vs 0.4:greater
Split 0.6 vs 0.2:greater
Split 0.4 vs 0.2:not significant
--- Miscoverage (Seed 10) ---
Split 1.0 vs 0.8:less
Split 1.0 vs 0.6:less
Split 1.0 vs 0.4:less
Split 1.0 vs 0.2:less
Split 0.8 vs 0.6:greater
Split 0.8 vs 0.4:greater
Split 0.8 vs 0.2:greater
Split 0.6 vs 0.4:greater
Split 0.6 vs 0.2:greater
Split 0.4 vs 0.2:less
--- Area (Seed 10) ---
Split 1.0 vs 0.8:greater
Split 1.0 vs 0.6:greater
Split 1.0 vs 0.4:greater
Split 1.0 vs 0.2:greater
Split 0.8 vs 0.6:less
Split 0.8 vs 0.4:less
Split 0.8 vs 0.2:less
Split 0.6 vs 0.4:less
Split 0.6 vs 0.2:less
Split 0.4 vs 0.2:less
===============================
STATISTICAL ANALYSIS FOR SEED 23
===============================
--- MAE (Seed 23) ---
Split 1.0 vs 0.8:less
Split 1.0 vs 0.6:less
Split 1.0 vs 0.4:less

Split 1.0 vs 0.2:less
Split 0.8 vs 0.6:greater
Split 0.8 vs 0.4:greater
Split 0.8 vs 0.2:greater
Split 0.6 vs 0.4:greater
Split 0.6 vs 0.2:greater
Split 0.4 vs 0.2:greater
--- Miscoverage (Seed 23) ---
Split 1.0 vs 0.8:less
Split 1.0 vs 0.6:less
Split 1.0 vs 0.4:less
Split 1.0 vs 0.2:less
Split 0.8 vs 0.6:greater
Split 0.8 vs 0.4:greater
Split 0.8 vs 0.2:greater
Split 0.6 vs 0.4:greater
Split 0.6 vs 0.2:greater
Split 0.4 vs 0.2:greater
--- Area (Seed 23) ---
Split 1.0 vs 0.8:greater
Split 1.0 vs 0.6:greater
Split 1.0 vs 0.4:greater
Split 1.0 vs 0.2:not significant
Split 0.8 vs 0.6:less
Split 0.8 vs 0.4:less
Split 0.8 vs 0.2:less
Split 0.6 vs 0.4:less
Split 0.6 vs 0.2:less
Split 0.4 vs 0.2:less

Mixed training for learners QDA and SVC_sigmoid
evaluated on Unseen Data for QDA.
===============================
STATISTICAL ANALYSIS FOR SEED 1
===============================
--- MAE (Seed 1) ---
Split 1.0 vs 0.8:greater
Split 1.0 vs 0.6:less
Split 1.0 vs 0.4:not significant
Split 1.0 vs 0.2:greater
Split 0.8 vs 0.6:less
Split 0.8 vs 0.4:not significant
Split 0.8 vs 0.2:greater
Split 0.6 vs 0.4:greater
Split 0.6 vs 0.2:greater
Split 0.4 vs 0.2:greater
--- Miscoverage (Seed 1) ---
Split 1.0 vs 0.8:greater
Split 1.0 vs 0.6:greater
Split 1.0 vs 0.4:greater
Split 1.0 vs 0.2:greater
Split 0.8 vs 0.6:less
Split 0.8 vs 0.4:greater
Split 0.8 vs 0.2:greater
Split 0.6 vs 0.4:greater
Split 0.6 vs 0.2:greater
Split 0.4 vs 0.2:less
--- Area (Seed 1) ---
Split 1.0 vs 0.8:less



Split 1.0 vs 0.6:less
Split 1.0 vs 0.4:less
Split 1.0 vs 0.2:less
Split 0.8 vs 0.6:greater
Split 0.8 vs 0.4:less
Split 0.8 vs 0.2:less
Split 0.6 vs 0.4:less
Split 0.6 vs 0.2:less
Split 0.4 vs 0.2:greater
===============================
STATISTICAL ANALYSIS FOR SEED 2
===============================
--- MAE (Seed 2) ---
Split 1.0 vs 0.8:greater
Split 1.0 vs 0.6:greater
Split 1.0 vs 0.4:greater
Split 1.0 vs 0.2:greater
Split 0.8 vs 0.6:less
Split 0.8 vs 0.4:less
Split 0.8 vs 0.2:less
Split 0.6 vs 0.4:greater
Split 0.6 vs 0.2:greater
Split 0.4 vs 0.2:less
--- Miscoverage (Seed 2) ---
Split 1.0 vs 0.8:greater
Split 1.0 vs 0.6:greater
Split 1.0 vs 0.4:greater
Split 1.0 vs 0.2:greater
Split 0.8 vs 0.6:not significant
Split 0.8 vs 0.4:greater
Split 0.8 vs 0.2:not significant
Split 0.6 vs 0.4:greater
Split 0.6 vs 0.2:not significant
Split 0.4 vs 0.2:less
--- Area (Seed 2) ---
Split 1.0 vs 0.8:greater
Split 1.0 vs 0.6:less
Split 1.0 vs 0.4:not significant
Split 1.0 vs 0.2:less
Split 0.8 vs 0.6:less
Split 0.8 vs 0.4:less
Split 0.8 vs 0.2:less
Split 0.6 vs 0.4:not significant
Split 0.6 vs 0.2:less
Split 0.4 vs 0.2:less
===============================
STATISTICAL ANALYSIS FOR SEED 3
===============================
--- MAE (Seed 3) ---
Split 1.0 vs 0.8:greater
Split 1.0 vs 0.6:greater
Split 1.0 vs 0.4:greater
Split 1.0 vs 0.2:greater
Split 0.8 vs 0.6:greater
Split 0.8 vs 0.4:greater
Split 0.8 vs 0.2:less
Split 0.6 vs 0.4:not significant
Split 0.6 vs 0.2:less
Split 0.4 vs 0.2:less

--- Miscoverage (Seed 3) ---
Split 1.0 vs 0.8:greater
Split 1.0 vs 0.6:greater
Split 1.0 vs 0.4:greater
Split 1.0 vs 0.2:greater
Split 0.8 vs 0.6:greater
Split 0.8 vs 0.4:greater
Split 0.8 vs 0.2:greater
Split 0.6 vs 0.4:not significant
Split 0.6 vs 0.2:not significant
Split 0.4 vs 0.2:not significant
--- Area (Seed 3) ---
Split 1.0 vs 0.8:not significant
Split 1.0 vs 0.6:greater
Split 1.0 vs 0.4:greater
Split 1.0 vs 0.2:less
Split 0.8 vs 0.6:not significant
Split 0.8 vs 0.4:not significant
Split 0.8 vs 0.2:less
Split 0.6 vs 0.4:not significant
Split 0.6 vs 0.2:less
Split 0.4 vs 0.2:less

Mixed training for learners QDA and SVC_sigmoid
evaluated on Unseen Data for SVC_sigmoid.
===============================
STATISTICAL ANALYSIS FOR SEED 1
===============================
--- MAE (Seed 1) ---
Split 1.0 vs 0.8:less
Split 1.0 vs 0.6:less
Split 1.0 vs 0.4:less
Split 1.0 vs 0.2:greater
Split 0.8 vs 0.6:less
Split 0.8 vs 0.4:not significant
Split 0.8 vs 0.2:greater
Split 0.6 vs 0.4:greater
Split 0.6 vs 0.2:greater
Split 0.4 vs 0.2:greater
--- Miscoverage (Seed 1) ---
Split 1.0 vs 0.8:not significant
Split 1.0 vs 0.6:less
Split 1.0 vs 0.4:greater
Split 1.0 vs 0.2:greater
Split 0.8 vs 0.6:less
Split 0.8 vs 0.4:greater
Split 0.8 vs 0.2:greater
Split 0.6 vs 0.4:greater
Split 0.6 vs 0.2:greater
Split 0.4 vs 0.2:greater
--- Area (Seed 1) ---
Split 1.0 vs 0.8:less
Split 1.0 vs 0.6:less
Split 1.0 vs 0.4:less
Split 1.0 vs 0.2:less
Split 0.8 vs 0.6:greater
Split 0.8 vs 0.4:less
Split 0.8 vs 0.2:less
Split 0.6 vs 0.4:less



Split 0.6 vs 0.2:less
Split 0.4 vs 0.2:greater
===============================
STATISTICAL ANALYSIS FOR SEED 2
===============================
--- MAE (Seed 2) ---
Split 1.0 vs 0.8:greater
Split 1.0 vs 0.6:less
Split 1.0 vs 0.4:greater
Split 1.0 vs 0.2:not significant
Split 0.8 vs 0.6:less
Split 0.8 vs 0.4:less
Split 0.8 vs 0.2:less
Split 0.6 vs 0.4:greater
Split 0.6 vs 0.2:less
Split 0.4 vs 0.2:less
--- Miscoverage (Seed 2) ---
Split 1.0 vs 0.8:greater
Split 1.0 vs 0.6:greater
Split 1.0 vs 0.4:greater
Split 1.0 vs 0.2:greater
Split 0.8 vs 0.6:not significant
Split 0.8 vs 0.4:less
Split 0.8 vs 0.2:not significant
Split 0.6 vs 0.4:less
Split 0.6 vs 0.2:less
Split 0.4 vs 0.2:not significant
--- Area (Seed 2) ---
Split 1.0 vs 0.8:less
Split 1.0 vs 0.6:less
Split 1.0 vs 0.4:less
Split 1.0 vs 0.2:less
Split 0.8 vs 0.6:less
Split 0.8 vs 0.4:less
Split 0.8 vs 0.2:less
Split 0.6 vs 0.4:greater
Split 0.6 vs 0.2:not significant
Split 0.4 vs 0.2:less
===============================
STATISTICAL ANALYSIS FOR SEED 3
===============================
--- MAE (Seed 3) ---
Split 1.0 vs 0.8:less
Split 1.0 vs 0.6:not significant
Split 1.0 vs 0.4:greater
Split 1.0 vs 0.2:not significant
Split 0.8 vs 0.6:greater
Split 0.8 vs 0.4:greater
Split 0.8 vs 0.2:not significant
Split 0.6 vs 0.4:greater
Split 0.6 vs 0.2:less
Split 0.4 vs 0.2:less
--- Miscoverage (Seed 3) ---
Split 1.0 vs 0.8:greater
Split 1.0 vs 0.6:greater
Split 1.0 vs 0.4:greater
Split 1.0 vs 0.2:greater
Split 0.8 vs 0.6:greater
Split 0.8 vs 0.4:greater

Split 0.8 vs 0.2:not significant
Split 0.6 vs 0.4:greater
Split 0.6 vs 0.2:less
Split 0.4 vs 0.2:less
--- Area (Seed 3) ---
Split 1.0 vs 0.8:less
Split 1.0 vs 0.6:less
Split 1.0 vs 0.4:less
Split 1.0 vs 0.2:less
Split 0.8 vs 0.6:not significant
Split 0.8 vs 0.4:less
Split 0.8 vs 0.2:less
Split 0.6 vs 0.4:less
Split 0.6 vs 0.2:less
Split 0.4 vs 0.2:not significant

C Usage of LLM
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