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Abstract

Advanced Driving Assistance Systems (ADAS) technologies like Adaptive Cruise Control (ACC) are
becoming the normality for many users, and many major car manufacturers are introducing SAE
level 2 and 3 [1] automation systems [2–4] into the market. The main advantage of Automated Vehi-
cles (AV) will be the significant decrease in road accidents and casualties [5, 6]. However, a signifi-
cant shift from conventional to automated vehicles must occur before it can have a positive impact
on society. If the behaviour of the vehicle is not perceived as natural, the user will most likely not
activate the ADAS features again. During this study a naturalistic dataset is used to investigate the
driver behaviour, in the hope of bringing the current ACC logic to a more human-like behaviour that
will feel more natural to the driver.

The research question summarizes the final objective of this study: How can Naturalistic Driv-
ing Study (NDS) datasets be used in target performance setting for ACC systems? In particular, this
study will answer the research question by studying human behaviour in the scene of following an
accelerating vehicle. The main body of this thesis is divided in three chapters, one for each step of
the research. First, in Chapter 2, the information about the used datasets are provided together with
the methodologies used to extract the relevant time-series data. Secondly, in Chapter 3, driver be-
haviour models are created in order to mathematically characterize human behaviour. The strength
of the created models is their ability to represent the full range of driver behaviour in terms of driv-
ing style. The aggressiveness parameter of the model can be easily adjusted to represent different
percentiles of driver behaviour. This allows for a quick and effective tuning process: by changing
a single parameter the driving style of the model can be fully modified. Finally, in Chapter 4 the
driver behaviour models are implemented into a simulation environment. The models are simu-
lated against an existing ACC logic in order to assess the difference in behaviour. The compari-
son highlighted two conclusions: first, the ACC logic behaves in a very conservative way compared
to driver behaviour, especially when starting from standstill. Secondly, the aggressiveness kept by
the ACC logic was not consistent throughout the speed range. This variation of the logic’s driving
style could result even more bothersome to the customer than its general conservative behaviour.
The string stability of the driver behaviour models was also assessed. Although the proposed logic
proved more stable than the regular ACC logic, it still cannot reach full string stability.

Hopefully, with the method developed in this study, the process of getting accustomed to this
new technology will become easier for the customer. Thanks to the driver behaviour models the
motion of the vehicle can feel familiar and predictable, with the controller becoming part of the
Human Machine Interface (HMI). As the customer gets more familiar with this technology his ex-
pectation will also increase and change, especially as the levels of automation start to increase. This
will inevitably push automakers to continue to improve the technology to deliver increasingly ad-
vanced and safe vehicles.

Keywords: ACC, ADAS, driver behaviour, automated vehicle, naturalistic driving study, driver model,
car-following
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Definitions

Table 1: List of acronyms.

ACC Adaptive Cruise Control
ADAS Advanced Driving Assistance Systems
AEB Automated Emergency Braking
AP Acceleration Percentile
AV Autonomous Vehicles
CACC Cooperative Adaptive Cruise Control
CC Cruise Control
CFD Cumulative Distribution Function
DP Distance Percentile
ECU Electronic Control Unit
FCW Forward Collision Warning
FOT Field Operational Test
GEV Generalized Extreme Value
GM General Motors
HMI Human Machine Interface
IDM Intelligent Driver Model
KPI Key Performance Indicator
LDW Lane Departure Warning
NDS Naturalistic Driving Study
RMSE Root Mean Square Error
SiLS Software in the Loop Simulation
THW Time Headway
UA User Acceptance
VMC Vehicle Management Centre
WTP Willingness To Pay
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Nomenclature

τ Driver reaction time delay [s]

ae Ego vehicle acceleration [m/s2]

at Target vehicle acceleration [m/s2]

Dr Relative distance (or headway) between ego and lead vehicle [m]

h0 Desired following distance at standstill [m]

hd Desired following distance [m]

hv Constant THW contribution to hd [s]

je Ego vehicle jerk [m/s3]

Ve Ego vehicle speed [m/s]

Vr Relative speed between ego and lead vehicle (negative when approaching) [m/s]
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1
Introduction

With Advanced Driving Assistance Systems (ADAS) already being standard equipment for the ma-
jority of new vehicles, automated driving is the biggest change happening to the transportation
industry since the replacement of horse carriages. ADAS technologies like Adaptive Cruise Control
(ACC) are becoming the normality for many users, and many major car manufacturers are intro-
ducing into the market SAE level 2 and 3 [1] automation systems [2–4].

The main advantage of Automated Vehicles (AV) will be the significant decrease in road acci-
dents and casualties [5, 6]. Despite this, a significant shift from conventional to automated vehicles
must occur before it can have a positive impact on society. This evolution will be heavily influenced
by the Willingness to Pay (WTP) and by the faith that customers will have in the technology. Bansal
and Kockelman [8] tried to forecast the long-term adoption of AV’s by the American citizens. They
estimated that by 2045 the market penetration of AV’s can be as low as 24.8% and as high as 87.2%.
This high variance in the results is caused by the different levels of WTP, highlighting the importance
of the human factor in the design of these types of technologies. If the client does not see the tech-
nology as an added value to his/her driving experience the WTP will not be high enough to allow a
quick market penetration of these technologies.

1.1. Research Question
If the design process of automated devices is only based on how good the technology works, there
is a high risk that the customers will not respond to the product as expected: the User Acceptance
(UA) of the customer might be low due to trust issues towards the automation. The Psychology
department of the University of Toronto tried to understand trust between humans and the auto-
mated system [9]. It was found that trust was built with experience, in a very similar way to how
trust between human beings increases. The task of the engineer is to accelerate this process via
a user-friendly experience. For instance, in the design of ADAS systems, the support provided by
the automated system should be perceived as natural. If a Front Collision Warning (FCW) system
has a very early trigger compared to the normal breaking behaviour of the driver, the system will
be likely switched off by the user, thus also losing acceptance in more advanced systems like Auto-
mated Emergency Braking (AEB). To cope with this issue from the early stages of the design process,
Toyota Motor Europe is undertaking a series of research activities focused to study naturalistic driv-
ing behaviour using “big data”. These studies will be used to set humanlike target performance for
ADAS systems.

The following research will be focused on target performance setting for the ACC system, focus-
ing on scenarios where the driver is accelerating when following a leading vehicle. The user feed-
back regarding the current system shows that acceleration levels are very conservative, especially

1



2 Introduction

at low speeds. Studying a 580,000 km database recorded in the EuroFOT project, the objective is to
model driver behaviour and investigate how it differs from current logic’s. Subsequently, it will be
possible to consider how the control logic of the ACC can be modified to achieve a more naturalistic
response. In performing this type of research it is important to keep into consideration the fact that
people often do not want to be driven in the same manner as they drive. The perception of driving
style as a passenger is different from a driver’s [10]. For this reason, throughout the whole research
it will be crucial to keep in mind the human factors involved. The main focus of the project can be
summarized in the following research question:

How can Naturalistic Driving Study (NDS) datasets be used in target performance setting for ACC
systems?

The main challenges of this study are formulated in the following sub research questions:

• How can the variance of driver behaviour be modelled?

• What driving styles are more suitable for the comfort of the driver?

• What are the shortcomings of current ACC logic?

• How can the logic be improved in accelerating car-following scenarios?

1.2. Literature Review Conclusions
Before starting this project a literature review was conducted and the conclusions gathered are sum-
marized below, more information can be found in the literature review report. The existing research
studied can be divided into two main categories. The first part is focused on previous attempts in
driver behaviour modelling and on the possibly useful information to the modelling process, like
human perception. The second part covers all the human factor aspects related to the ACC system.

• Driver Modelling: since driver behaviour models use vehicle states as inputs it is important to
understand how humans perceive these states, thus human perception was analysed. From
literature it seems that the human eye perceives driving speed using optic flow [11, 12]. For
approaching emergency situations research has shown that drivers use looming to get the in-
formation relative to the lead vehicle [13–15]. This means that drivers are directly able to infer
the relative states. In steady state following situations, research has shown that drivers tend
to keep a constant Time Headway (THW) at every driving speed [16–18], this information is
very useful for the design of the ACC logic. Driver modelling for traffic simulation purposes
was found to be a very broad field. The attention was focused on two types of models: con-
tinuous [19–22] and psychophysical [23–26]. The strength of the continuous models is their
ability in correctly approximating the general behaviour of the driver, unfortunately, they are
not accurate enough to give detailed acceleration estimates. They also are not able to repre-
sent different driving manners apart from the one used to fit them. Psychophysical models
offer a different approach on the car-following problem: their intent is to integrate human
biological limitations in the modelling process. This is achieved through the use of percep-
tual thresholds. Overall it is hard to judge the accuracy of the psychophysical models since
the implementation of the thresholds is often done in a very peculiar manner. The biological
meaning of the thresholds also poses some difficulties in the calibration process of these types
of models. The coherence deriving from the biological meaning of the perceptual thresholds
is the main advantage of these models. Many implementations of the psychophysical models
are, by definition, discontinuous and this could create discomfort in the driver.
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• ACC Human Factors: the human factors involved in this type of device are crucial to under-
standing the difference between the driver and the passenger perspective. Even if this infor-
mation is not directly used in the modelling process, how humans approach this technology
should always be kept into consideration during the design process. It has been seen from
numerous studies in literature that the ACC has both positive and negative impacts on the
driver. The use of an ACC tends to lower the average driving speed and helps to comply with
the speed limits [27, 28], on the other hand, it worsens the reaction time to potentially dan-
gerous situations in which the user needs to take back full control of the vehicle [29, 30]. From
a comfort perspective, optimal controller tuning should be achieved to enable smooth lon-
gitudinal and trajectory automation, moreover the car needs to keep a behaviour which is
perceived as safe by the user. Motion sickness is already quite a common issue which is fur-
ther aggravated by automated systems, the lack of control has been shown to be the principal
cause to increase car-sickness [31, 32]. A thoughtful design of the HMI can aid mitigate the
issue: the screens should have a moderate size and be positioned at the height of the hori-
zon [33, 34]. Trust and user acceptance are important aspects in defining the adoption rate
of the new technology. Many research examples already looked into users’ trust in automated
systems [9, 29, 35–37]. The common conclusion of almost all the papers found is that the neg-
ative effects of the system, both in terms of trust and driver behaviour, are diminished with
experience if the user is correctly informed about the functionality and the limitations of the
automated system. This highlights a very important aspect of the design of ADAS features.

Few gaps in current research were observed during the literature review. No driver model was found
that was able to specify different driving styles. The ability to choose a certain driving manner with-
out the need of recreating the model would give a great advantage during the tuning of the con-
troller. It was also noticed that no previous research found used extensive NDS dataset to create
such driver model. The only example was from Moon and Yi [38], although it represents an interest-
ing example the methodology still has many limitations. The focus of the master thesis project will
be to try to cover these research gaps and to understand the impact of this study on the design of an
ACC system.

1.3. Method Overview
In order to achieve the objectives set in the research question it is necessary to develop a proper
methodology. Figure 1.1 shows a diagram explaining the process followed in this study.
The first step is to collect the data. The dataset used in this study is the result of a European funded
project called EuroFOT. During this project 35 participants drove their own vehicle for approxi-
mately one year. This resulted in a total of 581.347 km and 13.407 hours of naturalistic driving data.
More details about the data will be covered in Section 2.1.

From the continuous recordings of the driving data it is necessary to extract the driving scene of
interest. In the example of this thesis the scene studied is following an accelerating vehicle. Other
examples can be: driving in corners or braking when approaching another vehicle. Given the ex-
tensive size of the dataset this process cannot be done manually, hence an algorithm needs to be
programmed in order to extract the driving scenes automatically. The algorithm needs to be thor-
oughly designed and validated. If the detection includes unintended samples this will created biases
in the statistical analysis. The detection logic will be treated in detail in Section 2.2.

Once the driving scene is extracted it is possible to analyze the data and develop the driving
behaviour model. The driver behaviour models developed in this study take into consideration
three aspects: the driving conditions, the driving behaviour and the driving manner. The driving
conditions are all the factors that define the context to the scene that will ultimately influence the
driving behaviour. Finally the driving manner (or style) is assumed to be the variation in driving
behaviour that is not caused by the driving conditions. Modelling the driving manner allows more
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Figure 1.1: Methodology overview.

aggressive and calmer behaviours from the same or different drivers to be included in the model.
This gives great advantages during the implementation process as it’s easily possible to adapt the
driving style to the system to what the most suitable driving manner is. The driver modeling portion
of this project will be covered in Chapter 3.

The final step of this study is to convert the driver model into a simulation environment. The fact
that a behaviour model represents well the drivers intentions does not necessarily make it useful. A
model needs to be implementable, both in a simulation environment and directly in a real vehicle.
During this process a set of challenges can arise, from the fact that the model needs to run online to
the robustness to real life sensor accuracy. The simulations performed in this project have the aim
of comparing the current ACC logic with the proposed changes coming from the NDS study. Details
about the simulations will be covered in Chapter 4.

1.3.1. Following an Accelerating Vehicle
The methodology explained above can be applied to different driving scenes. In this project the
analysis will be focused on the following an accelerating vehicle scenario. In this scenario, the lead
vehicle (also referred to as the target vehicle) accelerates whilst remaining in the same lane, and as
a reaction the ego vehicle (the instrumented one) follows the acceleration whilst also still remaining
in the same lane. Only the events with a reaction of the ego vehicle are considered in this study. As is
shown in Figure 1.2, this event is considered to happen whilst the ego vehicle follows the lead vehi-
cle. In Figure 1.2 it is also possible to see that after the acceleration event the driver will either reach
his desired speed or will go back to the following state. The context of the scene and its relationship
with the following behaviour will cover an important role in this project as will be explained in the
next chapters.
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Figure 1.2: Driving scene overview.





2
Data Extraction

This chapter will cover the scenario extraction process. More information about the data used will
also be treated. One of the challenges of working with large amounts of data is to be able to filter the
information which is not considered relevant in the scope of the study. In the case of this project it
was necessary to extract the following an accelerating vehicle scenario from the hours of continuous
driving. The process and the algorithms used are explained in the chapter.

2.1. EuroFOT Data set
Started in May 2008, the EuroFOT project is one of the biggest Field Operational Tests (FOT) ever
performed in Europe. Overall the project was financed with 21.6 million Euros, 65% of which was
provided by the European Commission [39]. Some of the biggest automakers together with the
suppliers of ADAS systems like Bosch and Continental also joined the project as partners [7]. The
main objective of the project was the evaluation of the impact of ADAS systems, like ACC and LDW,
both from a technical and a socio-economic point of view. Different systems were studied in the 4
different Vehicle Management Centers (VMC’s) across Europe. An overview of the different VMC’s
constituing the EuroFOT project is shown in Figure 2.1.

Figure 2.1: Vehicle Management Centers (VMC’s) constituting the EuroFOT project [7]

The data used and analyzed in this study was only the one gathered and provided by CEESAR
in the French VMC. It was only possible to use the French data set because it is the only one which

7



8 Data Extraction

includes a radar sensor in the vehicles, providing the estimated distance and relative speed of the
lead vehicle. The data logging has been done over the period between 2010 and 2012 with a total of
40 vehicles driven by non professional drivers. The vehicles used were 21 Renault Laguna 3 and 14
Renault Clio 3 with manual transmission, these 35 vehicles were driven by ordinary drivers whilst
the remaining 5 were driven by CEESAR employees. Due to cost and privacy reasons the equipment
of the two groups of cars was different, an overview of the instruments used on both vehicle groups
is shown in Table 2.1. The first group of vehicles drove for approximately one year, while the CEESAR
group drove for 6 weeks spread across the two years testing period. An overview of the length and
duration of the data gathered can be found in Figures 2.2a and 2.2b, a total of 581.347 km was
recorded during 13.407 hours of driving.

Table 2.1: Equipment of test cars used in French EuroFOT.

Equipment 35 Ordinary Drivers 5 CEESAR Drivers
CTAG Datalogger 2 YES YES
GPS YES YES
Data Transfer Method GPRS Manual
TRW AC20 Radar YES YES
Custom VideoLogger (H.264) NO YES
Cameras 0 4
Mobileye AWS NO YES
Smarteye Eyetracker NO YES

(a) Length overview of the EuroFOT French data set. (b) Duration overview of the EuroFOT French data set.

Figure 2.2: Overview of length and duration of the EuroFOT data set

2.2. Scenario Extraction
The selection of a consistent extraction algorithm is a crucial step when analyzing big FOT data sets.
The extraction process limits the available data for the analysis. This means that there is a risk of
excluding important or interesting episodes, hence creating biases in the final data set. The added
difficulty in the design of these kinds of algorithms is that often there is no absolutely correct answer.
Often it is necessary to find a balance between the amount of data and its quality. If the detection
conditions are very strict the scenarios detected will be more consistent, with the downside being
that many cases potentially containing relevant driving patters may be discarded.

During the development of the algorithm the effect of every change in the logic was always mon-
itored by visually checking the result. The main focus was to make sure that all the detected scenar-
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ios were clearly pertinent to the study. In some cases, even if a particular scenario was satisfying
the conditions it was impossible to detect, even visually, the most basic KPI’s. For this reason, only
the cases which were clearly acceleration scenarios were included in the extraction. To guarantee
consistency within the extractions, if the scenario did not comply with the requirements it was dis-
carded. Previous versions of the algorithm were structured in such a way that if a detection method
failed then an alternative one was used. It was soon clear that this created an inconsistency within
the different scenarios as it is challenging to create an alternative detection logic which produces a
similar outcome. The method used in this study is now explained. Starting from a continuous time
series record, this method will produce the singular segments with the acceleration episode.

2.2.1. Start Timing Detection
The most important part of the acceleration episodes is the beginning. In particular both the target
and ego vehicle start timing. The start timing is defined as the exact moment in which the target and
ego vehicle start the detected acceleration episode. The procedure developed to robustly detect the
start timing point is shown below:

1. Search every point after the lead vehicle speed increases more than 7.5km/h in a 4 seconds
time window. Approximately equivalent to a 0.5m/s2 average acceleration.

2. The same speed increase condition is applied to the ego vehicle.

3. For each point detected in the previous two steps the corresponding point was found in which
the speed is 6.5km/h less than the speed that triggered the previous conditions. This will
result in a first estimate of the start timing.

4. All possible end points are detected. An end point is found whenever the ego speed increase
is less than 0 for 2 consecutive seconds.

5. Every target start timing is associated with ego start and end. If one of the three is missing all
the episode is discarded. A new episode should not start if the previous is not ended.

6. Finally the corrected start timing is calculated. Using a threshold on the jerk, the bend point
in the speed is found in a time window of two seconds before the estimated start timing. Since
the precision of the start timing point is crucial in the study of this scenario, if the corrected
point is not found the whole scenario is discarded.

Two examples of the detection logic can be seen in Figure 2.3 and 2.4. The first shows an example
at standstill starting conditions while the second one, a case at higher speed. By comparing these
two cases it is clear that precisely detecting the start timing point is easier in standstill cases as the
acceleration start is more visible, creating an algorithm that worked at every starting speed was one
of the the biggest challenges at this stage of the analysis.

In Figure 2.3 it’s possible to see that the ego acceleration has an earlier onset than the speed.
This is due to the filtering process executed by the supplier on the raw data. Since the acceleration
signal is derived from the speed signal, the focus of the start timing detection was to get the bend-
point in speed rather than the one in acceleration. In order to check the influence of the timing, the
speed signal is compared with the integral of the acceleration and the acceleration to the derivative
of the speed. The results are shown in Figure 2.5. Apart from some noise introduced by the deriva-
tive, the signals match correctly. To make sure that also the other signals are correct this check was
performed on each measurement provided.
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Figure 2.3: Example of scene extraction starting from standstill conditions.

Figure 2.4: Example of scene extraction starting from middle speed conditions.

2.2.2. Additional Conditions
The fact that the start timings were found in an episode did not guarantee that the episode was
interesting for the analysis, additional checks were needed to make sure that the episode detected
was valid for the analysis. Firstly, it was necessary to check that the reaction of the ego vehicle was
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Figure 2.5: Validation of ego vehicle states.

caused by the target vehicle acceleration. This could not be inferred with absolute certainty but
these conditions were set to increase confidence:

• Ego start timing must be after target start timing.

• Ego start timing must be within 5 seconds of the target start timing.

• The THW must be less than 2 seconds or the relative distance less than 10 meters at target
start timing.

• The relative speed must be greater than −5km/h (negative when approaching) at target start
timing. There is no upper limit for the relative speed.

Since the radar sensor can change or loose the target, additional checks were implemented together
with the supplier to make sure that for the entirety of the detection the target did not change and
was never lost. On top of that the target and ego vehicle need to drive in the same lane for the full
duration of the episode.

2.2.3. Considerations about the detection logic
Finally, the extraction algorithm detected a total of 55.096 acceleration episodes. Via a visual vali-
dation the final version of the detection logic proved to be very robust and reliable. Other possible
logics were also taken into consideration: the use of the throttle input sensor would have given the
actual start timing as of the intention of the driver. Unfortunately, the throttle position sensor was
often missing moreover the signal was in general more difficult to post-process due to its quality. By
detecting the start timing with the acceleration, it was always possible to compute the throttle start
timing afterwards in the cases where the signal was present.

2.3. Initial Acceleration Level Extraction
The conditions at start timing cannot give any information about the actual magnitude of the ac-
celeration levels in the episode. For this reason the initial acceleration level is extracted from every
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scenario, both for the ego and for the target vehicle. The aim was to get the acceleration value at the
first bend point of the signal together with the corresponding jerk value. This value represents the
first intention of the driver from an acceleration magnitude standpoint.

To be able to detect the most accurate point two different calculation methods are used and
afterwards one of the two results is selected. The main method uses the jerk signal to detect the
first bend point of the acceleration signal, this method is discussed more in detail in Section 2.3.1.
The second method used is simply the maximum acceleration value in the episode. Once the two
alternative acceleration values are determined, the corresponding mean jerk from the start to the
selected point is calculated. Among the two methods, the one that yields the highest jerk value is
selected as the final value, more about the selection method is reported in Section 2.3.2.

2.3.1. Bend Point Method
The aim of this calculation method is to find the first significant bend point in the acceleration sig-
nal. First the acceleration increase at every time instant is computed (2.1). Afterwards the condition
in Equation 2.2 is evaluated, with k = 0.15.

∆ai = ai −ai−1 (2.1)

a > 0 AND ∆a > k max(∆a) (2.2)

The algorithm detects as the final point the first instance in which the condition becomes false for
at least 0.4 seconds. The minimum duration criterion is needed to prevent that the condition is
triggered by the small disturbances in the acceleration signal caused by the gear shift. This is one
of the downsides of using vehicles with manual transmission. In only 240 cases the algorithm fails
to find a point, these cases are very short episodes in which the acceleration always increases at the
same rate, hence a bend point does not exist. In these cases the maximum value method is used as
it still gives a representation of the acceleration level.

2.3.2. Acceleration Point Selection
If the bend point method found the relevant point then the selection between the two alternatives
is done based on the corresponding jerk values. For both methods, the mean jerk value from the
beginning to the detected point is computed. The method that yields the highest value in jerk is
selected. This method was implemented because in uncertain conditions there is not always a clear
correct point hence the bend point method struggles to detect the best one. An example of this issue
is shown in Figure 2.6a.

In other cases it is possible for the incorrect point to be detected by the maximum value. If the
acceleration signal has a clear bend point but afterwards keeps increasing, the maximum point will
be very far from the beginning and it will not correctly represent the first intention of the driver. If
the maximum point is too far from the beginning, its mean jerk value will be low hence the bend
point will be selected. An example of this scenario is visible in Figure 2.6b.

2.3.3. Initial Acceleration Level Considerations
The detection of acceleration level was visually validated, and overall gives a reliable detection. In
the great majority of the cases a clear bend point was easily detectable. As expected, not every
driver always accelerates with a clear step acceleration and a clear bend point is often difficult to
detect even manually. The algorithm was tuned to give a reference acceleration value also in these
challenging cases. Overall the required precision of this algorithm is not as critical as the start timing
as the position of the point is not as relevant. The algorithm reliably gives a good impression of the
first acceleration intention of both the target and ego vehicle. This important KPI will later be used
in the analysis of the driver behaviour.
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(a) Example of bad detection of the bend point
method: maximum point is selected.

(b) Example of bad detection of the maximum point
method: the bend point is selected.

Figure 2.6: Possible issues in initial acceleration level detection.

2.4. General Statistics of Data Extractions
Ultimately 55.096 acceleration episodes where extracted from the EuroFOT French data set. To
better understand the extracted data the distribution of some of the key parameters are checked.
This process is also helpful to verify that the extraction algorithm did not affect negatively the final
dataset.

In Figure 2.7a it is possible to see the distribution of ego speed at ego acceleration start. Around
30% of the samples start at standstill, the rest of the cases allow to model the behaviour up to
80km/h. As expected, the extraction logic is not able to detect cases at high speeds, this is due
to the fact that at high speeds the drivers rarely perform high accelerations since they are smoothly
following the lead vehicle in highway conditions. In Figure 2.7b the time delay between the ego and
target reaction is shown. It is possible to see that most reactions happen in an interval between 1
and 1.5 seconds. The steps in the cumulative distribution are simply given by the fact that since the
data has a frequency of 10H z the minimum resolution of the delay is of 0.1s.

Figure 2.8a shows that many acceleration episodes start at a very short relative distance, even
closer than 2 meters. Figure 3.16) confirms that these episodes represent the very low percentiles
of the cases starting at very low speed. As discussed above, standstill cases represent 30% of the
dataset. Figure 2.8b shows the distribution of relative speed at ego acceleration start, with relative
speed being positive when the target is faster that the ego vehicle. A small part of the data set has
negative relative speed at ego start, this means that the the ego vehicle was still approaching the
target when it started accelerating. In these cases the driver is not reacting to the target vehicle
motion but to the scene context (e.g. traffic lights), for this reason these cases were excluded from
the analysis. Thanks to the understood context the driver is reacting to the situation and not directly
to the lead vehicle. This is also possible to see from Figure 2.7b where the delay of ego reaction is
as low as 0.2 seconds. Within this time the human body is not able to process the information and
react pressing the accelerator pedal. Finally in Figure 2.9 the distributions of initial ego acceleration
and jerk are compared: the distribution of these variables is quite similar both in terms of values
and shape. More about this similarity will be studied in Section 3.2.
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(a) Ego speed at ego start timing. (b) Reaction time between ego and target vehicle.

Figure 2.7: Distribution of the extracted data set: ego speed and reaction delay.

(a) Relative Distance at ego start timing. (b) Relative Speed at ego start timing.

Figure 2.8: Distribution of the extracted data set: relative states.

(a) Ego initial acceleration level. (b) Ego initial jerk level.

Figure 2.9: Distribution of the extracted data set: ego initial acceleration and jerk.



3
Driver Behaviour Models

This chapter will cover the process followed for the creation of the driver behaviour models. Three
models are created to model the following acceleration scenario: initial acceleration level, initial jerk
and start relative distance. Combined, these models define both the most appropriate timing and
magnitude of the acceleration event of the ego vehicle. In the creation of this modelling methodol-
ogy the trade off between complexity and accuracy was always kept in mind. The simplicity of these
models allows simpler implementation and evaluation in real vehicles. Nonetheless the accuracy of
the model should be kept, making sure that the driver behaviour is accurately modelled.

3.1. Initial Acceleration Level
The first model that will be treated is the initial acceleration level. The objective of this model is to
provide an acceleration value based on conditions given by the driving scene and the driving man-
ner. The dependent variable used to create the model was the initial acceleration level previously
computed in Section 2.3.

3.1.1. Choice of the independent variables

The main method used to determine the dependency between the different parameters was to bin
the independent variable along its range and afterwards check the distribution of the dependent
variable within the bin. The impact of various parameters on the acceleration level was checked.
The first parameter selected was the ego driving speed at ego start timing. Driving speed is an im-
portant parameter as it heavily defines the driving scene in which the acceleration scenario hap-
pens. A scenario at stand still will be perceived differently by the driver compared to one at high
driving speed.

Another important influence on driver’s reaction will be done by the target vehicle’s behaviour.
Whether the target vehicle accelerates more or less will affect the response of the ego vehicle. The
main states influenced by the target vehicle behaviour are relative speed, relative distance and tar-
get acceleration. By checking the dependency of these three parameters the relative speed has the
clearest influence, on top of that, humans perceive relative speed more easily than target vehicle
acceleration. The initial acceleration level was binned both for ego and relative speed, both taken
at ego start timing. The 50th percentile of each bin is then plotted in Figure 3.1. Thereby this fig-
ure captures the median human response. All bins with less than 75 data points inside of it were
discarded.

15
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Figure 3.1: Initial acceleration level 50th percentile binned for ego and relative speed.

3.1.2. Fitting the model
Given the points plotted in Figure 3.1 it is now necessary to find a function that can correctly rep-
resent the influence of the two independent variables on the initial acceleration level. By analyzing
more in detail the separate influence of each parameter it is possible to notice that their effect is
not the same. By looking at Figure 3.2a it is clear that the acceleration level decreases rapidly with
the increase of ego speed. After doing a trial fitting it was found that an exponential relationship
represented the trend of the data more correctly compared with a more traditional polynomial least
square regression. On the other hand, in Figure 3.2b it is possible to see that a simple linear fit
correctly represents the dependency of the relative speed on the initial acceleration level.

(a) Focus on ego speed dependency. (b) Focus on relative speed dependency.

Figure 3.2: Initial acceleration level 50th percentile binned for ego and relative speed. (side views)



3.1. Initial Acceleration Level 17

The main fitting function of the model will have to include both dependencies of the indepen-
dent variables in one single expression. The first version of the fitting function simply sums the
linear correlation of relative speed with the exponential one of ego speed:

ae, i ni t i al = p1Vr +p2 +p3V p4
e (3.1)

A limitation of Equation 3.1 was quickly discovered: the slope (p1) of the linear influence of
relative speed was always constant. As it is possible to see in Figure 3.2b the slope changes and gets
lower as ego speed increases. In order to include this behaviour in the fitting function the linear and
the exponential contribution were multiplied (Equation 3.2). This was able to fit the data correctly
but if the ego speed is equal to zero the initial acceleration level will also be zero which is not what
the data shows. To solve this issue a constant value of 1 is added to the ego speed (Equation 3.3).
This drawback could also be solved by adding a fourth parameter to the fitting. This was taken into
consideration but ultimately the gained precision was negligible compare to the simplicity of having
one less parameter in the model. In the final version of the fitting function if the speed goes to zero
the initial acceleration level is simply given by the linear relationship with relative speed.

ae, i ni t i al =
(
p1Vr +p2

)
(Ve )p3 (3.2)

ae, i ni t i al =
(
p1Vr +p2

)
(Ve +1)p3 (3.3)

In Figure 3.3 it is possible to see the final function fitted to the initial acceleration 50th percentile,
the function is able to correctly follow the trends of the data. In order to make sure that the function
works correctly for the full driving behaviour range, the fitted function is also plotted for the 10th

and 90th percentile. The result is visible in Figure 3.4.

Figure 3.3: Fitting of Initial acceleration level 50th percentile binned for ego and relative speed.

Now that a correctly working function is found it is possible to continue in the final fitting of the
driver behaviour model. Firstly the selected function is fitted for each Acceleration Percentile from
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Figure 3.4: Fitting of Initial acceleration level 10th and 90th percentile binned for ego and relative speed.

the 10th to the 90th . The goodness of each fit is shown in Figure 3.5 (blue points) in terms of both R-
squared (Figure 3.5a) and RMSE (Root Mean Square Error) (Figure 3.5b). Overall the accuracy of all
fit is very high, as expected some precision is lost for very high and very low percentiles nonetheless
the RMSE remains lower than 0.1 m/s2 and the R-square higher than 0.97. The result of this fitting
process is a set of three parameters (p1, p2 and p3) specifically optimized for a particular percentile.
This corresponds to a total of 240 different parameters which is an unpractical amount for an even-
tual implementation of the model. In order to simplify the model, the optimized parameters, plotted
in Figure 3.6 (blue points), are fitted by means of linear regression as a function of the Acceleration
Percentile. The resulting fitted functions are shown in Figure 3.6 (red lines). The exponent param-
eter p3, shown in Figure 3.6c, was ultimately kept constant in function of Acceleration Percentile.
It was quickly noticed that applying the linear fitting to the parameter was not increasing the ac-
curacy of the model by much. Keeping the exponent constant greatly simplifies the mathematical
operations necessary to formulate the model in a practical matter. More about the mathematical
steps will be covered in Section 3.1.3. Finally, the accuracy of the fit is computed again accounting
for the fact that the parameters are estimated with the linear regression. The results are shown in
Figure 3.5. Comparing the results to the ones obtained with the optimized parameters shows that
not much accuracy is lost, especially in the range between the 20th and the 80th . The R-square val-
ues are still above 0.92 and the RMSE ones are still below 0.16 m/s2, the accuracy lost is considered
acceptable.

3.1.3. Model Formulation
Now all the parameters necessary to produce a final formulation of the model are known. Firstly,
the fitting function seen in Equation 3.3 is rewritten in a matrix form in the following manner:

ae, i ni t i al =
[

p1

p2

]T [
Vr (Ve +1)p3

(Ve +1)p3

]
=⇒ ae, i ni t i al = pT V (3.4)
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(a) R-squared values of the initial acceleration model
fitting.

(b) RMSE values of the initial acceleration model fit-
ting.

Figure 3.5: Goodness of fit of the initial acceleration model.

(a) p1 parameter as a function of the Acceleration Per-
centile

(b) p2 parameter as a function of the Acceleration Per-
centile

(c) p3 parameter as a function of the Acceleration Percentile

Figure 3.6: Fitting parameters of initial acceleration model as a function of the Acceleration Percentile.

Where p is the vector of the parameters and V is the vector of the vehicle states. Here it is already
possible to appreciate one of the benefits of keeping the parameter p3 constant. If p3 is not constant
it would not be possible to explicitly separate the parameters vector from the vehicle states one,
hence the next steps would have to be done recursively.

In the previous section the other parameters (p1, p2) were linearly fitted as a function of the
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Acceleration Percentile, this dependency is also written in a more compact vector form in Equation
3.5. Where α and β are the vectors containing the parameters of the linear regression. By plugging
the resulting expression from Equation 3.5 into Equation 3.4, the two possible formulations of the
model are found: one with the initial acceleration level as the output and the other with the accel-
eration percentile as the output. They can both be found in Equation 3.6.

{
p1(AP ) =αp1 AP +βp1

p2(AP ) =αp2 AP +βp2

=⇒ p =αAP +β (3.5)

ae, i ni t i al =
(
αT AP +βT

)
V ⇐⇒ AP =

ae, i ni t i al −βT V

αT V
(3.6)

It is now possible to highlight the main benefit of this type of models. Not only is it possible to com-
pute the corresponding acceleration level to a certain driver percentile, but it is also possible to do
the inverse process: given an acceleration level it is possible to check the percentile it corresponds
to.

ae, i ni t i al = f (Ve , Vr , AP ) ⇐⇒ AP = f
(
Ve , Vr , ae, i ni t i al

)
(3.7)

3.1.4. Model Validation & Correction for Target Acceleration
Before proceeding with the development of the model it is necessary to check how accurate the
model is, and if all the main influences on driver behaviour are correctly modeled. First, using
the model in Equation 3.6, the AP value is computed for every acceleration episode. Subsequently
the AP was binned for different parameters and for each bin different percentiles were computed.
This was done in order to check that the model correctly represents the influence of the modelled
parameters and whether other parameters influence it or not. In Figure 3.7 the dependency of the
two independent variables of the model on AP is plotted. Ideally, if the fitting of the model was
perfect at every percentile, in these figures the lines would be perfectly horizontal as the influences
of ego and relative speeds are perfectly modelled. Due to the various assumptions made throughout
the creation of the model these lines have small fluctuations but overall they are quite constant. As
could be seen in the fit performance, in these plots it is also clear that the precision of the model
decreases as the distance from the 50th increases.

(a) AP binned for ego speed. (b) AP binned for relative speed.

Figure 3.7: Initial acceleration model validity verification (left scale: acceleration percentile, right scale: amount of data-
points per bin).
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At this stage the influence of other parameters is also checked. This is done to make sure that all
the necessary independent variables are included in the model. Out of the checked driving scene
parameters the only one that had a clear influence on AP was the Target Acceleration at Ego Start.
Reasonably, the magnitude of the target vehicle’s acceleration has a direct influence on the acceler-
ation level of the ego vehicle. This was also found in literature in the research of Sultan et al. [40]. In
Figure 3.8 it is clearly visible that the target acceleration has a linear influence on the AP.

Figure 3.8: Acceleration Percentile (AP) binned for target acceleration at ego start timing.

This dependency cannot be ignored, for this reason it will be introduced in the model. Rather
than performing a four dimensional regression which would have overly complicated the model,
the AP value is simply corrected with the following linear correlation:

AP∗ = AP −σat (3.8)

Whereσ is the slope of the linear dependency and at is the target acceleration level. By inserting
the expression in Equation 3.7 the new expressions of the model are found:

ae, i ni t i al =
(
αT (

AP∗+σat
)+βT

)
V ⇐⇒ AP∗ =

ae, i ni t i al −βT V

αT V
−σat (3.9)

Now using the second expression of Equation 3.8 the AP∗ value can be calculated but unfortu-
nately, due to the model inaccuracies and the final correction for the target acceleration, the AP∗

value no longer represents an exact estimation of the driving percentile. In the next section the
model is finalized with the conversion of the AP∗ value in aggressiveness.

3.1.5. Conversion to Aggressiveness
At this stage the values of AP∗ calculated back from the acceleration episodes of the data set have
lost the meaning of data percentile. This is because of the inaccuracies of the model and the target
acceleration correction. The aim of this final step is to convert the AP∗ back to a value between 0
and 100 that will be called aggressiveness.

If the distribution of AP values is inspected (Figure 3.9a) it is possible to see that the back-
calculation of the model led to some unusual values: both smaller than 0 and higher than 100. This
not only due to the imperfection of the fit but also due to the fact that the model was fitted between
the 10th and the 90th percentile as it is not the intent of this modelling process to grasp very extreme
driving behaviour but rather to accurately model the average variations in it. The distribution of the
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corrected AP∗ values in Figure 3.9b shows that the amount of unusual values only grows with the
introduction of the third independent variable: the target acceleration. In this case the median of
the data shifts from 50 to 25.

(a) Distribution of Acceleration Percentile (AP)
(b) Distribution of Corrected Acceleration Percentile
(AP*)

Figure 3.9: Comparison of the distributions of the corrected and non corrected acceleration percentiles

In order to convert the AP∗ values into aggressiveness the distribution in Figure 3.9b is fitted to a
known distribution. By taking the Cumulative Distribution Function (CDF) of the fitted distribution
this will return a value between 0 and 1 for every AP∗ based on how aggressive the driver was in that
scenario. The distribution of AP∗ is both fitted to a Normal distribution and a Generalized Extreme
Value (GEV) distribution, the results are compared in Figure 3.10. Although both types of distribu-
tions can correctly fit the AP∗ values, the Normal distribution was chosen being the most common
type of distribution. In this case, the data fitted had an almost perfectly symmetric distribution,
but this is not always the case when modelling driver behaviour. For example, in the first chapters
when checking the distribution of the extracted data it was possible to see that the distribution like
the relative distance at ego start timing (Figure 2.8a) had a very asymmetric CDF. This is given by the
fact that very high values of relative distance are still possible, whilst very low ones are limited by the
possibility of collision between the vehicles. During the modelling of the acceleration start distance
(Section 3.3) it will be possible to see the benefits of the GEV distribution.

Now that the final step of the model is complete it is possible to once again compute the vali-
dation plots to verify that the changes to the model didn’t influence its accuracy. In Figure 3.11 it is
possible to see that the aggressiveness value is almost constant in function of the three independent
variables, being very close to the respective percentile value. This means that not only the third in-
dependent variable is correctly modelled but also that the correction did not affect the accuracy of
the influence of ego and relative speed.

With the final model it is now possible to compute the acceleration level from an aggressiveness
value (from 0 to 100) and, vice versa, given an acceleration level it is possible to determine which is
the corresponding aggressiveness value. As explained in the beginning, this type of model allows for
a flexible tuning procedure when the model is implemented in a real vehicle. A visual representation
of the model can be seen in Figure 3.12.
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Figure 3.10: Comparison of fitted distributions.

(a) Aggressiveness binned for ego speed. (b) Aggressiveness binned for relative speed.

(c) Aggressiveness binned for target acceleration.

Figure 3.11: Initial acceleration model final validity verification.
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(a) Acceleration model for target acceleration 0m/s2 (b) Acceleration model for target acceleration 2m/s2

Figure 3.12: Visualization of final acceleration level model.

3.2. Initial Jerk
Now that the acceleration level used by the drivers is modelled, in order to characterise a realistic
acceleration profile, the modelling of jerk needs to be included. This is a necessary step in order to
understand at what comfortable rate the acceleration level can be achieved. Estimating the exact
jerk value is not as critical as estimating the acceleration level, for this reason it was chosen to follow
a much simpler modelling approach compared to the aggressiveness method used in the accelera-
tion model. This model will not vary with the changing of driving style but will only be influenced
by the driving condition. Using this approach it is possible to have a realistic image of the jerk value
without having to deal with a complicated model, facilitating the implementation of the model in a
possible logic.

It is important to remark that the jerk value modeled in this chapter is the average jerk associated
with the extracted initial acceleration value explained in Section 2.3. During the development of the
initial acceleration model, the influence of the driving scene on the driving behavior was checked.
For example, in the previously shown Figure 3.2a, the influence of ego speed at ego start timing on
the initial acceleration is inspected. This process was also followed for the initial jerk and it was
quickly clear that the driving condition influence on the jerk value was very similar to the one on
the initial acceleration level. As it’s possible to see in Figure 3.13 the effect of relative speed and ego
speed on the two variables follows the same trends. For this reason, the possibility of creating a sim-
pler model is investigated. Instead of also taking into consideration in this case the aggressiveness
of the driver, this model will define just the correlation between initial jerk and initial acceleration
level.

In Figure 3.14 it is possible to see how all the acceleration events are distributed in the accel-
eration - jerk plane, where the coloured lines represent the percentage of data set enclosed in the
contours. By looking at how the data is distributed, a trend is clearly visible: the higher the accelera-
tion level the higher the corresponding jerk level. This correlation is probably given by the fact that
the driver is willing to increase the acceleration quicker when a high level of acceleration is required.
This is likely done by the driver in order to achieve a faster reaction to a high accelerating target vehi-
cle. The data set is fitted using a linear regression method that minimizes the orthonormal distance
between the points and the data. The final result is visible in Figure 3.15 and the expression of the
fitting is written as follows:
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(a) Initial acceleration level 50th percentile. (b) Initial jerk level 50th percentile.

Figure 3.13: Comparison of the effect of ego and relative speed on initial acceleration and jerk.

je, i ni t i al = 1.07 ae, i ni t i al −0.35 (3.10)

Figure 3.14: Distribution of all acceleration events in the acceleration - jerk plane.

Since the model would output negative jerk values in cases of very low initial acceleration, the
model is limited between the 10th and 90th percentile of initial acceleration as outside this range
there is not enough data to assess the validity of the model, this limitation of validity can also be
seen in Figure 3.15. The final model, despite being simple, can be used to estimate the allowable
jerk in the acceleration scenario. This is a very critical part of the acceleration control of a vehicle, as
the acceleration changes cannot be instantaneous, a proper level of jerk must be ensured in order
to achieve appropriate driver comfort.
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Figure 3.15: Final regression model and model limitations

3.3. Start Relative Distance
Now the full driver reaction is modelled. The remaining portion of the driving scene that still needs
to be modelled is the start timing of the ego reaction. In which conditions is the driver willing to
start the acceleration reaction? The modelled variable that represents the driver behaviour is the
relative distance at ego start. The time delay of the reaction was also taken into consideration as the
driver behaviour variable, ultimately it was discarded as the relative distance facilitates the imple-
mentation of the model into a working logic: detecting online the start trigger of the delay may be
challenging.

If the target vehicle has accelerated far enough then the ego vehicle is comfortable to start ac-
celerating. Regarding the driving scene, many variables were checked in order to see which ones
had the biggest influence. Ego speed at ego start had the most significant influence, for this reason
it was chosen as driving scene variable. In Figure 3.16 it is possible to see the influence of the ego
speed on the driver behaviour, the higher the speed, the higher the start distance. This trend is also
influenced by the fact that, at higher speeds the following distance is already higher as drivers want
to keep a bigger safety margin. The methodology used to create the model is the same used for the
initial acceleration level model (Section 3.1). In this case the steps will be simpler as the model has
only one input. As for the initial acceleration model, the variation in driving behaviour is included
in the aggressiveness parameter.

3.3.1. Model Fitting & Formulation
Compared to the initial acceleration model the choice of the fitting function is much simpler. A
polynomial quadratic expression (Equation 3.11) is chosen in order to fit the data. As can be seen
in Figure 3.17a the function successfully fits the data from the 10th to the 90th percentile. In Figure
3.17b the relative distance values are also displayed in terms of THW, is possible to see that, at higher
speed, THW is almost constant.

Dr = p1V 2
e +p2Ve +p3 (3.11)
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Figure 3.16: Relative distance at ego start timing binned for ego speed at ego start timing.

(a) Fitting of relative distance values. (b) Relative distance values and function converted in THW.

Figure 3.17: Fitting of relative distance at ego start timing binned for ego speed at ego start timing.

As was done for the initial acceleration level model the first step towards the construction of
the model can be performed: the function is fitted to every percentile from the 10th to the 90th .
Also for this model the amount of parameters is reduce by fitting linearly the optimized parameters
in function of the distance percentile. The resulting parameters together with the linear fitting are
shown in Figure 3.18. The goodness of the fit is assessed both in terms of R-square and RMSE.
The results are visible in Figure 3.19, both for the optimized parameters and for ones estimated by
linear regression. Also for this model the final results of the linear regression simplification are very
positive. In this case the precision is lost not only for the very low and very high percentile but also
for the central values close to the 50th , nonetheless, the performance is still good with R-square
values above 0.93 and a maximum RMSE value of only 2.3 meters.

The model formulation is very similar to the initial acceleration model. The first step is rewriting
the fitting function (Equation 3.11) into the following matrix form:

Dr =
 p1

p2

p3

T  V 2
e

Ve

1

 =⇒ Dr = pT V (3.12)

Where the vector p contains the fitting parameters and vector V the vehicle states, with the latter



28 Driver Behaviour Models

(a) p1 parameter as a function of the Distance Per-
centile

(b) p2 parameter as a function of the Distance Per-
centile

(c) p3 parameter as a function of the Distance Percentile

Figure 3.18: Fitting parameters of relative distance model as a function of the Distance Percentile.

(a) R-squared values of the relative distance fitting. (b) RMSE values of the relative distance fitting.

Figure 3.19: Goodness of fit of the relative distance model.

in this case only referring to the ego speed. In Equation 3.13 also the linear fitting of the optimized
parameters are written in a more compact matrix form. Where α and β are the vectors containing
the parameters of the linear regression. Lastly by combining Equations 3.12 and 3.13, the two pos-
sible final expressions for the model are obtained in Equation 3.14. In the first one the start distance
of reaction can be computed from the ego vehicle speed and the Distance Percentile. In the sec-
ond model formulation, from an acceleration scenario it’s possible to compute the corresponding
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percentile to the recorded reaction distance.
p1(DP ) =αp1 DP +βp1

p2(DP ) =αp2 DP +βp2

p3(DP ) =αp3 DP +βp3

=⇒ p =αDP +β (3.13)

Dr =
(
αT DP +βT

)
V ⇐⇒ DP =

Dr −βT V

αT V
(3.14)

3.3.2. Conversion to Aggressiveness & Validation
The final step of the creation of the model is the conversion of the Distance Percentile into aggres-
siveness. From each acceleration episode the corresponding DP value is calculated using Equation
3.14. In Figure 3.20 it is possible to see how this value is distributed.

Figure 3.20: Distribution of Distance Percentile (DP).

As expected, some values of DP are outside the 0 to 100 range due to the fitting inaccuracies.
As was done for the initial acceleration model, the DP values are converted into values ranging
from 0 to 100 called aggressiveness. This operation is done by fitting the DP distribution to a known
distribution. In Figure 3.21 the resulting fitting to both a normal and GEV distribution is shown. As
explained in Section 3.1.5, often when modelling driver behaviour the variables are not distributed
in a symmetric manner. The relative distance is a good example of it as low values are limited by the
risk of collision but very high values are still possible. Since the fitting performance is almost perfect,
the GEV distribution is chosen. Since a high percentile corresponds to a high distance value it means
that the least aggressive drivers will keep a bigger margin when accelerating. For this reason, the DP
value is converted by taking 1-CDF so that a high percentile corresponds to a low aggressiveness. The
final visualization of the model can be seen in Figure 3.22. Lastly, the model is validated by checking
if the influence of the driving condition is correctly represented by the model. In Figure 3.23 the
aggressiveness is plotted in function of the driving condition: ego speed at ego start timing. Clearly
the model is able to estimate aggressiveness independently of the driving condition as the plotted
lines are constant.
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Figure 3.21: Comparison of fitted distributions.

Figure 3.22: Visualization of final relative distance model.

3.4. Correlation Between the Models
Once all the models are created is possible to check if there is any correlation between them. In
particular if the initial acceleration model and the start relative distance model represent aggres-
sive and conservative behaviour at the same time. Does a driver that keeps a short distance to the
preceding vehicle also accelerate stronger than average? In Figure 3.24 is possible to see that this is
not necessarily the case. Here the start relative distance aggressiveness is plotted against the initial
acceleration aggressiveness. Overall the percentile lines are almost flat apart from a slightly posi-
tive slope of the 50th percentile line. If the influence would have been greater it would have been
possible to combine the two models and reduce even further the number of required parameters to
represent driver behaviour.
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Figure 3.23: Relative distance model validity verification.

Figure 3.24: Correlation between initial acceleration aggressiveness and initial relative speed aggressiveness.





4
Simulation

In this chapter, two examples of the implementation of the driver behaviour models developed in
the previous chapter are shown. The models are simulated and compared to a current Toyota ACC
logic, highlighting the potential shortcomings of the system in the acceleration during following
behaviour. All simulations mentioned in this chapter were performed using the Simulink simulation
environment.

4.1. Implementation of driver behaviour models
The three driver behaviour models explained in Chapter 3 characterize how the driver reacts when
following a lead vehicle accelerating. This is done by modelling three main variables: initial accel-
eration, initial jerk and relative distance at reaction start. At this stage, models represent only the
fitted formulas already explained in Chapter 3. In order to simulate and eventually implement the
models into a control logic, the output of the models need to be computed online when the ego
vehicle is presented with the lead vehicle acceleration. The basic calculation of the driver behavior
models is implemented in the subsystem shown in Figure 4.1.

Figure 4.1: Implementation of driver behaviour

The mathematical expressions of the models, already shown in Chapter 3, are implemented in
the orange and blue subsystems (Figure 4.1). In order to retain the flexibility given by the type of
models fitted, the aggressiveness value is set by a parameter in the initialization file of the model. It
is important to notice that, while the start relative distance model is computed continuously, the
initial acceleration and jerk models are only triggered when the actual relative distance crosses the
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threshold set by the start timing model. In the previous chapters the models were fitted with the
driving condition (ego speed, relative speed, target acceleration) taken at ego acceleration start tim-
ing. This is the reason why the values should not be taken continuously as the conditions would be
outside of the fitted range, and the models would provide incorrect values. The output values of the
models’ subsystem are then processed in order to create the acceleration profile.

The type of output given by the models can be seen by simulating a simple example. Starting
from standstill the target vehicle is set to perform a step increase in speed. The simulation results
for five different aggressiveness levels are shown in Figure 4.2. The results, shown both in terms of
speed and acceleration, clearly demonstrate the effect of the aggressiveness parameter. By simply
varying the aggressiveness level, the behaviour of the system is changed to reflect the full range of
driving manner. It is worth noting that the axes of Figure 4.2 have been hidden due to confidentiality
reasons.

Figure 4.2: Example of implemented models’ simulation.

4.2. Comparison with Current ACC Logic
With the implementation of the model explained in the previous section it is possible to perform
some comparison simulations. In particular, the initial acceleration reaction starting from a steady
following condition. As previously mentioned, the driver behaviour models will be compared to
one of current Toyota ACC logic, and numerical values on axes have been hidden for confidentiality
reasons. The current system’s logic is simulated using SiLS (Software in the Loop Simulation). This
means that the exact software loaded in the ECU (Electronic Control Unit) of Toyota vehicles is pre-
compiled and simulated in the Simulink simulation environment.

The target speed profile inputted in the simulation was a step increase with high but realistic ac-
celeration ( > 2m/s2 ) and a limitation on jerk. The exact values are not disclosed for confidentiality
reasons. The simulation was carried out for three different initial driving speeds: 0 km/h, 30 km/h
and 70 km/h. Higher speeds were not tested as almost no acceleration scenarios were detected at
speeds higher than 80 km/h (see Section 2.4). The ACC system has three different drive mode set-
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tings and three distance settings. The results will be shown only for the short distance setting as it
does not affect the acceleration and jerk levels of the system. On the other hand, the drive mode
directly affects the acceleration levels of the system, for this reason the results will be shown for all
three settings: sport, normal and eco.

The first case shown is also the most interesting: initial speed equal to 0 km/h. In Figure 4.3 the
simulation results are shown. The main conclusion that can be drawn from the graphs is that cur-
rent ACC acceleration and jerk levels are significantly lower than the driver behaviour models, even
lower than the 10th aggressiveness percentile. Looking closer it is possible to see that the jerk level
kept by the ACC system is independent of the drive mode, for all three modes the jerk value is lower
than the 10th aggressiveness percentile. Considering the acceleration, the behaviour of the system
slightly differs depending on the drive mode: sport mode achieves a higher acceleration level com-
pared to normal and eco modes which accelerate in a practically identical manner. Nonetheless,
for all three modes, the maximum acceleration level is lower than the 10th aggressiveness percentile.
Using the inverted formulas it is possible to compute what aggressiveness level corresponds to the
acceleration and jerk values of the system. The sport mode acceleration corresponds to the 5.2th

aggressiveness percentile and the jerk value corresponds to an aggressiveness lower than the 5th per-
centile.

Figure 4.3: Comparison between ACC SiLS and driver behaviour model: 0 km/h initial speed.

This results show that current system, when starting from a standstill position, has a very con-
servative acceleration level. Most drivers in the same conditions have much higher acceleration and
jerk levels. This highlights a potential weak point of the system and if the customer is not satisfied
by the behaviour of the system this might lead to annoyance. If the first experiences of the customer
with a new system do not match expectations, it is likely that the customer might decide to not use
it and simply driving manually.

The remaining two simulated cases are now analyzed. In Figures 4.4 and 4.5 the simulation re-
sults are shown for the 30 km/h and the 70 km/h starting speed scenarios respectively. In both cases
it is evident that the ACC system is closer to the driver behaviour model compared to the standstill
scenario. Now, in both cases, the jerk level of the normal drive mode is very close to the one of the
10th aggressiveness percentile. Similarly, the acceleration level of the sport mode is much closer if
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not higher than the one of the 10th aggressiveness percentile. That said, the overall behaviour of the
system still is considerably more conservative than the driver behaviour, especially when looking at
the eco drive mode.

Figure 4.4: Comparison between ACC SiLS and driver behaviour model: 30 km/h initial speed.

Figure 4.5: Comparison between ACC SiLS and driver behaviour model: 70 km/h initial speed.

As for the standstill scenario, it is possible to compute the equivalent aggressiveness value to
the the system’s behaviour. The results for all drive modes and all simulated starting speeds can be
seen in Table 4.1. When looking at the results the first clear conclusion is that the values are quite
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low. Clearly the system’s behavior is quite far from the average driver behaviour favouring a more
conservative acceleration control strategy. This might not be as bothersome to the driver as another
clear conclusion from the results: the inconsistency throughout the speed range. Even within the
same drive mode the aggressiveness value varies significantly at different speed values. This means
that the system, depending on the speed condition, will follow a more aggressive or conservative
driving style. This might be an unexpected behaviour from the customer point of view which could
lead to discomfort.

Table 4.1: Equivalent aggressiveness values of ACC SiLS, for each initial speed and drive mode.

Initial Speed [km/h]
Drive Mode 0 30 70
Eco 0.4 0.3 0.05
Normal 0.9 5 1
Sport 5.2 35 21

These results, besides from highlighting some potentially small shortcomings of the current sys-
tem, show the power and flexibility of this methodology. By performing very quick simulations and
comparing them with the driver behaviour models it is possible to inspect some specific behaviours
of the system without the need to perform tests on real vehicles. This methodology, although not
aimed at replacing vehicle validation, can without doubt aid in maximizing the efficiency of the
process by saving time and resources.

4.3. String Stability
The driver behaviour implementation includes the start timing model. This model waits until cer-
tain conditions are met to initiate the movement of the vehicle, introducing a delay in the control
system. This may highlight downsides of the chosen logic when a platoon of vehicles is equipped
with this type of system. The delay in the response will amplify the behaviour throughout the pla-
toon creating an undesired performance.

In order to asses the string stability of the driver behaviour models a platoon of six cars is sim-
ulated responding to a step increase in speed by the target vehicle. The driver behaviour models
are compared to a simplified model of current logic’s SiLS, which was technically not possible to
simulate in a platoon configuration. In order to carry out the string stability simulation the driver
behaviour model implementation, explained previously in Section 4.1, has been enhanced using the
Helly car-following model [20]. The modifications to the implementation are explained in Section
4.3.1, while more information about the Helly model can be found in Section 4.3.2.

4.3.1. Implementation for continuous simulation
The models created represent driver behaviour only in a small part of driving conditions: whilst
following an accelerating vehicle. Similarly, the model used for the simulations explained in the first
part of this chapter is not suitable to simulate any driving condition since it is unable to represent
braking and low relative speed conditions. By adding the Helly model alongside the driver behaviour
models the new logic can be simulated in every condition. The Helly model was chosen both for its
popularity but also for its simplicity. Being linear it can be seen as the simplest approach to ACC
design. Practically, the selection between the driver behaviour models and the Helly model is done
by using a threshold on the relative speed: if the relative speed is higher than 4 km/h, the driver
behaviour models are used as a high acceleration from the target vehicle is occurring. For all the
other values of relative speed the Helly model logic is selected.

If a simple simulation is performed, similar to the ones done in the beginning of the chapter, it
is possible to see when each different logic is in action. In Figure 4.6 is clearly visible when the driver



38 Simulation

behaviour models are acting (red line) and when the Helly model takes over (blue line).

Figure 4.6: Example of the integration of the Helly model with the driver behaviour models.

4.3.2. Helly Linear Model
First introduced by Helly [20] in the late fifties, the Helly model is the most used linear car-following
models in literature. The Helly model is typically expressed as:

ae (t ) = Kv Vr (t −τ)+Kd {Dr (t −τ)−hd (t )} (4.1)

where hd (t ) = h0 +hv Ve (t ) (4.2)

The acceleration level is given by two main contributions: the relative speed delayed by a time τ and
the difference between the delayed relative distance and the desired following distance hd . Each of
the two contributions are multiplied by a corrective feedback gain, Kv for the relative speed and Kd

for the relative distance. The desired following distance is modelled as a linear function of the ego
driving speed (Ve ), where h0 represents the desired distance at standstill and hv the additional THW
that describes the dependency of the ego speed.

The interesting feature of the Helly model is that it simplifies the human behaviour to a linear
controller, hence the parameters have an intuitive physical meaning. The higher the value of Kv

compared to Kd , the bigger the influence of the relative speed in the feedback loop compared to the
relative distance will be. Saffarian et al. [41] fitted the Helly model to inspect how the value of the
gains changed in different conditions, if the parameters didn’t have a physical meaning this proce-
dure would not have been relevant. They also added an extra term to the model: Ka al (t −τ) with
al being the lead vehicle acceleration and Ka its respective gain. This term models a feedforward
contribution to the acceleration control where a unitary gain symbolizes that the driver is willing to
follow the lead vehicle’s acceleration profile.
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4.3.3. Simulation results
Here the results for the string stability comparison are presented. As mentioned earlier, the driver
behaviour models logic is compared to a model of current system’s logic. String stability will be as-
sessed through the analysis of the simulations results, by measuring the overshoot of the last vehicle
of the platoon. The scenario simulated sees the target vehicle performing a step increase starting
from standstill. As seen in Section 4.2, this was clearly the most interesting scenario. The target
vehicle is followed by six vehicles forming the platoon, each of the following vehicles reacts only to
the vehicle immediately in front of it.

The results of the simulation are summarised in Figure 4.7. Most axes are removed for confi-
dentiality apart from the distance and speed axes which are normalized to the final value in order
to highlight the overshoot of each logic. As expected, both logics lead to an amplification of the
initial input which increases along the platoon length. It is also evident that, in this case, the driver
behaviour model is able to perform better than the current logic, keeping the overshoot to a lower
value. This performance is reached by achieving a higher acceleration level which is limited in cur-
rent logic. This was also the key difference of the driver behaviour models highlighted in Section
4.2.

Figure 4.7: Results of string stability simulation.

In order to highlight the differences between the two logics, the first and the sixth vehicles of
both results are overlaid in Figure 4.8. The differences between the two logics is even more evident
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with this visualization. The simulated maximum overshoot of the sixth vehicle gives a numerical
value to the systems performance. In terms of relative distance, the maximum overshoot for the
driver models is 2.3, whilst for the current logic this value is 3.7. The overshoots of the speed values
give a similar result: 2.0 for the driver behaviour models and 2.4 for current logic. Both looking
at relative distance and speed the difference in performance of the two systems is evident. As a
comparison, a simulation using only the Helly model is also performed. In Figure 4.8 is possible to
see that the Helly model clearly outperforms both logics in terms of string stability. The parameters
chosen for the gains are: Kv = 0.7 and Kd = 0.2, while the delay τ is set to 0. The desired relative
distance is set by the start timing driver behaviour model. Is important to notice that the simulated
Helly model is still unstable. With the appropriate parameters, this model could be designed to be
string stable. The choice of the gains was based on simulating a Helly model with the behaviour
of an ACC logic comparable to modern systems. The creation of a string stable logic is beyond the
scope of this thesis, the purpose of these simulation is solely to compare the hypothetical behaviour
of the analysed logics in the context of a platoon of vehicles.

Figure 4.8: String stability results: first and sixth vehicles of both logics and helly model overlaid.

These results show that the higher acceleration response of the driver behaviour models allows
them to have an acceptable string stability response especially when compared to the current sys-
tem model. The delay in the start of reaction given by the start timing model is bridged by the higher
acceleration values. Although the performance is acceptable, looking at a not so far future in which
every vehicle is equipped with an ACC system, the vehicle capabilities in a platoon scenario should
improve. The advent of vehicle to vehicle communication will significantly improve the possibilities
of development in these scenarios especially with the help of new technologies like 5G telecommu-
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nication. Nonetheless, it is important to highlight that a platoon of vehicles using ACC exists only
if the users activate the system, and it is precisely for this reason that the balance between a sys-
tem able to perform mathematically well and a logic that can be trusted by the user is of crucial
importance.





5
Discussion & Conclusion

5.1. Discussion & Recommendations
This section will present the main conclusions of the research, will highlight the novelty of the
methodology presented, and will critically assess areas which could be further investigated by fu-
ture research. The main aim of this project was to answer the following research question and sub
questions:

How can Naturalistic Driving Study (NDS) datasets be used in target performance setting for ACC
systems?

• How can the variance of driver behaviour be modelled?

• What driving styles are more suitable for the comfort of the driver?

• What are the shortcomings of current ACC logic?

• How can the logic be improved in accelerating car-following scenarios?

When performing a study on large datasets the quantity and quality of the data has a major influ-
ence on every type of analysis. The French data of the EuroFOT project, one of the largest FOTs in
Europe, was used in this project. With a total duration of 13.407 hours, this data contains accurate
lead vehicle information (longitudinal and lateral position and velocity) provided by a radar sensor
installed in the vehicle. The data was collected and pre-processed by an external supplier, CEESAR
partner in the EuroFOT project. Thanks to the experience of the data suppliers, the data provided
could be used immediately to start the analysis without the need of any filtering or censoring. The
downside of this approach was that direct access to the dataset was not possible as the data was
owned by the supplier. This could slow down the debugging process of the detection logic.

The scenario extraction was a preliminary step of the analysis which was just as crucial as the
data recording itself: any type of mistake or assumption at this stage could have introduced bias
in the analysis. A detection algorithm comprised of many conditions was developed in order to
mainly detect two key aspects of the following an accelerating vehicle scenario: the acceleration start
timing and the initial acceleration level. The former was the most challenging, the algorithm had
to find the exact moment in which either the ego or the lead vehicle started accelerating. This was
achieved by setting conditions on the average acceleration and jerk of both vehicles, details of the
detection logic can be found in Chapter 2. Once the acceleration start timing was found, the initial
acceleration level could be extracted. From the whole dataset, a total of 55.096 acceleration episodes
were extracted. Alternative detection logics were also taken into consideration. For example, the
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use of the throttle input sensor could have been used to give the actual start timing representing the
intention of the driver. Unfortunately, the throttle position sensor was often missing and the signal
was in general more difficult to post-process due to its quality. In this study the detection algorithm
was manually programmed to ensure certain conditions on the extracted scenarios. In the future
more advance machine learning methods might be explored such as neural networks or other types
of supervised learning algorithms. For the effective use of these type of methods, having free access
to the full database will be crucial, which was not the case for this study. The ability to see the video
recordings and label the interesting detections is a fundamental step in the performance evaluation
of supervised learning algorithms.

The extracted scenarios could finally be used in the analysis in order to create the driver be-
haviour models. The type of models developed in this study present some differences to what is
currently found in literature. The most used models in research like the Helly model [20] or the
Intelligent Driver Model (IDM) [22] succeed very well in representing a realistic generic driver be-
haviour in all conditions. Unfortunately, they are not able to represent different driving styles or
precisely represent a particular driving behaviour like hard braking [42]. These are the shortcom-
ings that the models developed in this study are covering. By being based on data percentiles, the
models developed can cover the entire variation in driver behaviour in one single parameter in-
corporated in the model called aggressiveness. The variance found in the human behaviour cannot
be neglected, if some drivers behaved in a more conservative or aggressive manner it is crucial to
understand that in most cases there was a reason for this behaviour which cannot be simplified by
simply taking the average behaviour. Moreover, the driver behaviour models developed during this
study can also be used to evaluate the aggressiveness of a known acceleration episode. This can be
quite useful to evaluate the driving style of a specific driver or to assess the performance of exist-
ing systems. In this study three models were created to model three crucial aspects of the following
an accelerating vehicle scenario: initial acceleration level, initial jerk and relative distance at accel-
eration start. These three models together are capable of modelling the human behaviour in this
specific scenario. More details about how the models are created can be found in Chapter 3.

The final step of this study was to implement the models created into a simulation environment.
All simulation results can be found in Chapter 4. First the models were compared to a simulation of
current ACC logic, secondly the string stability of the model was evaluated. In the first set of simula-
tions the driver behaviour models and the ACC logic were simulated reacting to the same, acceler-
ating, lead vehicle. This was repeated for different starting speed values. The main conclusion from
the results was that the current system tends to behave in a quite conservative manner with low
acceleration values, especially when starting from standstill. When calculating the aggressiveness of
the system through the speed range, a second conclusion became apparent. The driving style of the
current system not only was quite conservative, but it was also found to change at different starting
speeds. This means that the behaviour is not consistent in every condition, an unpredictable be-
haviour which might surprise the user since the system has different behaviours at different speeds.
Since the models were built for specific scenarios, simulating them is challenging, as they cannot
be easily used in every driving condition. This was clearly shown in the string stability simulations.
In order to carry out the simulation the driver behaviour models’ implementation was combined
with the Helly model [20]. In this manner the Helly model could take over when the conditions were
outside of the operating range of the created models. This new logic created was then compared
with a model of current ACC logic by simulating a platoon of six cars following the lead vehicle. As
expected, the results showed that both logics were unstable in a string formation. That said, the new
logic using the driver behaviour model was clearly less unstable than current ACC. This shows that
more natural behaviour can also lead to more stable behaviour. This study on string stability must
be seen as a first verification of the logic’s performance. It still does not represent the real vehicle
performance, and for this reason it is not possible to solely rely on these results. Further checks
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need to be done as the logic gets closer to the final product.

The approach explained in this study and finally the expansion of the Helly model showed a
potential benefit to fields of research outside of ADAS development, like traffic flow simulation. In
his research, Vlaar [22] clearly showed that traditional driver models such as the Helly model and the
IDM are not able to mimic the very low acceleration levels reached by human drivers. This type of
shortcoming could be solved by extending the models with a driver behaviour model like the ones
created in this study. The mentioned models are widely used in the simulation of traffic flow and
enhancing them to imitate better human drivers can only benefit the quality of the found results.

The first simulation results showed a clear difference in driving style between the driver be-
haviour model and current ACC system. The ACC system was clearly more conservative than the
human driver, with much lower acceleration values. This difference could be highlighting a mistake
in current ACC design or simply answering a very intuitive question: do people want to be driven
differently to what they drive? During this study the data used to construct the models was of peo-
ple driving. However, it is perfectly reasonable to think that, when losing control of the vehicle, the
driver will expect the automation to behave more cautiously, especially as he/she builds trust with
this new technology. The findings in this research are not enough to answer the question. The as-
sumption is that the correct behaviour is captured in the model, but the desired driving style of the
user will be achieved by selecting the correct value of aggressiveness. This must be done with further
validation, possibly in a driving simulator or in a prototype vehicle. In this way it will be possible to
check if people tend to decrease their preferred aggressiveness value when they lose control of the
vehicle.

The modelling approach followed in this paper could also be extended to other driving scenes
beyond following an accelerating vehicle. Some interesting scenes could be for example: steady fol-
lowing and braking. Every scene can be modelled as long as the three key components of the model
can be identified: driving scene, driving behaviour and driving manner (Figure 1.1). Once the main
scenes are studied it would also be interesting to see how they interact. For example, in Section
1.3.1 it was explained how the steady following scenario is tied to the following an accelerating vehi-
cle scenario. Further research could answer questions like: in which conditions does the transition
between these scenarios happen? Can this behaviour be modelled? Once these important ques-
tions are answered it is crucial to check if the models created in this study are still valid or if they
need some modifications.

5.2. Conclusion
This master thesis project showed how driver behaviour models built using driving data can be used
to improve the target performance of future ACC systems. Data driven methods for the development
of ADAS and AD systems are inevitably going to increase in importance. Not only for the training of
recognition algorithms but also in the development of control logics. The potential of the informa-
tion that resides in the data can be very rich despite sometimes being challenging to extract. This
study covered the modelling of drivers in “normal” driving conditions, similar approaches could be
used in studying the limit cases or the safety critical situations by looking at the extreme data per-
centiles. AD systems must be ready to cope with every situation they are presented with. Even the
least occurring ones.

The process explained in this thesis, together with the validation and implementation of the
models, has to be seen as cyclic. In each iteration the models highlight the critical point of the cur-
rent implementation whilst the implementation highlights what is still missing in the models. With
regards to the latter, this refers to the cases in which the analysis approximates too much the human
behaviour and is therefore in need of being expanded. Even if some ADAS like ACC have been on the
market for many years, it is only recently that these technologies are becoming widespread and that
customers are starting to get accustomed to them. By using driver behaviour models this process is
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facilitated as the behaviour of the vehicle is familiar and predictable, the controller becomes part of
the Human Machine Interface (HMI). As the customer gets more familiar with this technology his
expectation will also increase and change, especially as the levels of automation start to increase.
This will inevitably push automakers to continue to improve the technology to deliver increasingly
advanced and safe vehicles, in the hope that one day the ultimate industry target of zero accidents
will be achieved.
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