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Summary

Offshore wind turbines have seen a significant increase in size over the past decades. A critical conse-
quence of this increase in size is a substantial increase in the torque transferred from the wind turbine
rotor. This leads to the necessity of larger and heavier drivetrains to adhere to structural failure require-
ments and subsequently to larger and heavier tower and support structures increasing the total mass
and cost of the turbine. Hence, reducing the mass-to-torque ratio of the drivetrain has become a key
design challenge.

The company Delft Offshore Turbines (DOT) proposes to replace the conventional drivetrain in the top
of the turbine with a hydraulic drivetrain, which has a lower mass-to-torque ratio. Although this concept
shows promise, finding a low mass design that fulfils the infinite fatigue life requirement can be chal-
lenging. Using topology optimization to minimize mass while constraining the structural requirements
could, therefore, be instrumental in the realization of this concept.

The design case by DOT can be classified as rotating machinery. In general rotating machinery is
commonly subjected to periodic loading that varies non-proportionally in time. This results in fluctuat-
ing stresses causing material fatigue. A consequence of the non-proportionality of loading is that the
time response needs to be computed to evaluate for fatigue, which adds additional computation cost.
However, another common aspect found in rotating machinery is that parts are cyclic symmetric, which
allows for a potential reduction in computation cost.

In this thesis a method is presented to implement infinite fatigue life constraints into density based topol-
ogy optimization for structures subjected to non-proportional loading, while cyclic symmetric properties
are exploited to reduce computation cost. It was found that when the load case on a cyclic symmet-
ric part adheres to certain conditions, a single static FE-analysis can provide multiple time steps for a
quasi-static analysis. Decreasing the computational burden roughly proportional to the unique number
of time steps obtained. The largest local variations in stress are estimated using a smooth min/max
function and aggregated into a global constraint.

The method was tested on several numerical problems as well as applied to the DOT design case.
The results showed that the method was able to properly constrain a global fatigue constraint while
minimizing mass, achieving final designs that might not be trivial to find by hand.
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1
Introduction

Offshore wind turbines have seen a significant increase in size over the past decades, as this improves
the economy per system. Since the extracted power is proportional to the area covered by the rotor
blades, an increase in rotor diameter leads to a quadratic increase in power. To avoid rapid decay of the
wind turbine blades, however, the speed at the blade tips must be limited. This leads to a proportional
decrease in rotation speed as rotor size increases. As themechanical power produced by awind turbine
is the product of torque and rotation speed, the increase in size results in a cubic increase of the torque
in the turbine. A consequence of the increased torque is the necessity of larger and heavier drivetrains
to transfer loads while adhering to structural failure requirements. This increases the top-mass of the
turbine, which subsequently leads to larger and heavier tower and support structures increasing the
total mass and cost of the turbine. Hence, to reduce mass, converting large torque to useful energy
whilst minimizing the mass-to-torque ratio has become a key drivetrain design challenge (DOT 2022).

A technological development by the company Delft Offshore Turbines (DOT), which focuses on Lev-
elized Cost of Energy (LCOE) reduction of offshore wind energy, offers a potential path to this mass
reduction. DOT proposes to replace the conventional drivetrain in the top of the turbine with a hydraulic
drivetrain, which has a lower mass-to-torque ratio. The drivetrain is designed to operate at the same
rotation speed and torque input as the turbine rotor without the need of a transmission. It transforms
the kinetic energy in the turbine blades into hydraulic energy by pressurizing seawater. The pressur-
ized seawater is used to generate power through a Pelton-generator on a central platform as shown
in Figure 1.1. Multiple turbines can be coupled to this platform for collective power generation, which
further contributes to LCOE reduction (DOT 2022).

Figure 1.1: Hydraulic wind turbine concept of DOT (DOT 2022)
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2 1. Introduction

Although this concept shows promise, the large torque input and strict structural requirements canmake
it challenging to find a low mass design. Topology Optimization (TO), since its introduction by Bendsøe
& Kikuchi (1988), has become a well-established design method for finding lightweight structures which
adhere to a certain set of design constraints. Using TO to minimize mass while fulfilling the fatigue and
stress requirements could, therefore, be instrumental in the realization of this concept.

3610 [mm]

(a) The drivetrain stator

4380 [mm]

(b) The drivetrain rotor

In this research two large structural parts of the DOT hydraulic drivetrain are chosen as a case study
for mass minimization. The first part is the drivetrain stator, as illustrated in Figure 1.2b, which consists
of a ring with a number of flanges. The flanges provide linear guidance to rollers moving back and forth
radially. The tangential forces are transferred to the fixed inner ring. The second part is a casing that
transfers an input torque at the inner ring, which is radially constrained, to a number of rollers through
a camring, as illustrated in Figure 1.2b. By analysing the design cases, three aspects that render them
unique were identified:

• The parts are to be designed for infinite fatigue life.

• The parts are subjected to periodic surface loads which change in magnitude as well as position
in time.

• The parts are dividable in cyclic symmetric segments.

These aspects have been studied separately in TO literature. The combination of fatigue and the non-
proportionality of the type of loading, however has not been sufficiently studies for infinite fatigue life
constraints. The consequence of this combination is that a time-varying stress history needs to be
computed, as the maximum and minimum stress in time needs to be ascertained at every point in the
design domain. This significantly increases the computational cost of the FE-analysis. Therefore, com-
bining this method with a procedure that exploits cyclic symmetric properties to reduce computational
cost, is certainly relevant to explore. A suitable method which combines the different aspects is lacking
in existing literature and combining different TO approaches is known to often be nontrivial. This thesis,
therefore, aims to present a method for problems of this nature, which leads to the research question:

How can time-varying periodic loading and cyclic symmetry be combined for fatigue con-
strained TO?

In order to answer this, the following sub questions are answered:

• How can fatigue be incorporated in TO for non-proportional time-varying loading?

• To what extent can taking non-proportionality of loading into consideration improve constraint
adherence of the optimized result?

• How can cyclic symmetry be exploited to reduce the computational cost of the optimization prob-
lem?
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The main matter of this thesis is a written article on the method developed to combine the different as-
pectsmentioned, which is presented in Chapter 3. Some additional background information on topology
optimization and specifically stress based TO is provided in Chapter 2. The resulting method is dis-
cussed and conclusions are drawn in Chapter 5. In Appendix A some less straight forward implemen-
tation approaches in COMSOL are shown and in Appendix B some supplementary results considering
mesh size and filter radius are presented.





2
Background Topology optimization

2.1. Topology optimization
Topology optimization is part of a set of structural optimization methods. Bendsøe & Sigmund (2003)
distinguish the following three categories: sizing, shape and topology optimization (as illustrated in
Figure 2.1). Sizing optimization is typically used when structural members are optimized using a single
sizing parameter, for instance the cross sectional area of a truss. The limitation to this method is that
a ground structure needs to be defined pre-emptively. Shape optimization is more free in optimizing a
geometry. It takes as starting point a parameterized predefined topology and uses the parameters to
optimize its shape. Both these methods need a priori assumptions about the optimal topology, resulting
in optimized designs that can be highly dependent on the initial assumptions. Topology optimization
does not need these assumptions. It distributes material within a defined design domain, adding or
removing material freely where necessary. This makes TO the most versatile structural optimization
method.

Figure 2.1: Different structural optimization approaches. a) Sizing optimization, b) shape optimization and c) topology optimiza-
tion (Bendsøe & Sigmund 2003).

2.2. Stress constraints
Stress based topology optimization introduces two main challenges into the optimization. The first one
is the so called “singularity” problem, which is caused by stress constraints vanishing when design vari-
ables go to zero density. The second one is that stress is a local variable. Constraining the maximum
stress on a domain results in a large set of local constraints, which makes the computation of sensitiv-
ities expensive, due to a loss in the efficiency of the adjoint method. Both these issues are discussed
further in the following sections.
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6 2. Background Topology optimization

2.2.1. Stress relaxation
The singularity problem was observed by Cheng & Jiang (1992) when including stress constraints in
a truss optimization problem. It is caused by stress constraints discontinuously jumping to zero when
one of the design variables reaches zero density as shown in Figure 2.2. This results in a part of the
design domain being of a lower dimension known as a degenerate subdomain. The desired optimum
can reside in this subdomain and is called a singular optimum. Gradient based optimization algorithms
cannot reach this subdomain and will converge to a different local optimum.

This issue can be resolved using constraint relaxation methods, which smooth the discontinuous point
of the stress constraint so that the degenerate subdomain is reunited to the rest of the feasible domain.
Methods like 𝜖-relaxation (Cheng & Guo 1997)(Duysinx & Bendsøe 1998) and 𝑞𝑝-relaxation (Bruggi
2008)(Le et al. 2010), have been shown to successfully deal with this issue.

Figure 2.2: The design domain of a stress constrained optimization problem with two design variables 𝑥1 and 𝑥2 and two stress
constraints 𝑔1 and 𝑔2. The dashed lines represent levels of the objective function 𝑓. Point A is a singular optimum and in this
case also the global optimum. Point B is a discontinuous point of constraint 𝑔1. Point C is a local optimum. The domain between
point A and B is a degenerate subdomain.

2.2.2. Constraint aggregation
The issue of the large set of local constraints can be dealt with by combining them into a single global
constraint. This has been done with the use of aggregation functions like the 𝑝-norm (Duysinx & Sig-
mund 1998) shown in Equation 2.1 and Kresselmeier–Steinhauser (KS) function (Yang & Chen 1996)
shown in Equation 2.2, which approximate the maximum local variables in a smooth, thus differentiable,
manner. These functions introduce an aggregation parameter 𝑘, which determines the accuracy of the
approximation. When 𝑘 goes to infinity, the approximation will approach the true maximum. For fi-
nite values of 𝑘, the functions will overestimate the true maximum. These functions are turned into a
smooth minimum approximation by using a negative value for 𝑘. In this case the approximated mini-
mum is smaller than the true minimum.

𝜎PNmax = (∑
𝑖∈Ω
(𝜎𝑖(𝑥))

𝑘)

1
𝑘

≥max
𝑖∈Ω

𝜎𝑖(𝑥), 𝜎PNmin = (∑
𝑖∈Ω
(𝜎𝑖(𝑥))

−𝑘)

1
−𝑘

≤min
𝑖∈Ω

𝜎𝑖(𝑥) (2.1)

𝜎KSmax =
1
𝑘 ln(∑

𝑖∈Ω
𝑒𝑘𝜎𝑖(𝑥)) ≥max

𝑖∈Ω
𝜎𝑖(𝑥), 𝜎KSmin =

1
−𝑘 ln(∑

𝑖∈Ω
𝑒−𝑘𝜎𝑖(𝑥)) ≤min

𝑖∈Ω
𝜎𝑖(𝑥) (2.2)
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fatigue life of cyclic symmetric structures

subjected to non-proportional loading
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Topology optimization for infinite fatigue life of cyclic symmetric structures subjected to
non-proportional loading

Marek Slebioda

Abstract

This paper presents a density based topology optimization method for infinite fatigue life constraints of non-proportional load cases,
with a specific focus on parts with cyclic symmetry. Considering non-proportional loads into topology optimization significantly
broadens the types of design problems that can be handled. The method estimates the local variation in signed von Mises stress
using a smooth min/max function and constrains the resulting stress amplitude using established stress based topology optimization
methods. Accounting for non-proportionality of loading significantly increases the computation cost with respect to existing
proportional methods, as the time-varying stress field needs to be computed. Inertia effects are neglected in the structural analysis.
Therefore, a quasi-static analysis is used to obtain the stress history. To reduce the computational cost advantage is taken of
cyclic symmetric properties to reduce the number of necessary time steps to evaluate. This reduces the computational cost roughly
proportional to the number of unique load time steps present in the repeated segments as opposed to a standard implementation.
The method is tested on numerical examples in 2D and 3D for both proportional and non-proportional loads and was found to be
locally accurate up to the accuracy of the aggregation over the relaxed constraints.

Keywords: Topology optimization, Fatigue constraints, Non-proportional loading, Cyclic symmetry

1. Introduction

Rotating machinery is a common sight in industrial applications
(Rao, 2011). Due to relative rotation between a part and
its loading, the load case generally varies periodically in
time, resulting in fluctuating stresses in the material. These
fluctuations cause material fatigue even for stresses below the
yield stress of the material. Fatigue failure as opposed to
static failure is, therefore, often the critical failure constraint
for dynamically loaded structures. The life time of a part
with respect to material fatigue is dependent on the magnitude
and amount of load cycles it is subjected to. For parts
where a long lifetime is desired, for example due to costly or
inconvenient replacement, a requirement can be that the part
should be designed for infinite fatigue life. This constraint can
be conflicting with other design requirements like minimizing
the material usage of the part to reduce weight, inertia or cost.
While in some cases a proportional load case applies, many
applications are subjected to a non-proportional load case like
moving loads or out of phase loads. This has implications
for both the structural analysis and choice of fatigue criterion,
which substantially increase the computational cost. Another
common aspect of rotating parts subjected to periodic loading,
however, is the presence of cyclic symmetry in the design,
which can result from cyclic symmetry in the load case or
possibly for manufacturing reasons. This symmetry can often
be exploited to reduce the computation cost of the structural
analysis.

Finding a low mass design while fulfilling the structural
requirements can be challenging. Density based Topology
Optimization (TO) has become a well-established design

Figure 1: A design problem combining the three key aspects of this paper. The
gray design region consists of twelve cyclic symmetric segments and must be
designed for infinite fatigue life while minimizing material usage. The loads
vary periodically in position and magnitude around the circumference

method for finding lightweight structures which adhere to a
certain set of design constraints. Using TO to minimize for
mass while constraining fatigue and exploiting cyclic symmetry
could be very useful for rotating machinery design.

TO methods separately considering infinite fatigue life, time-
varying non-proportional loading and cyclic symmetry have
been proposed previously. However, a suitable method which
combines them is lacking in existing literature. This paper,
therefore, aims to present a TO method that can be used to

Preprint submitted to Computers & Structures March 19, 2023



design parts like illustrated in Figure 1 containing the following
aspects:

• The part is to be designed for infinite fatigue life.

• The part is subjected to periodic loads which vary non-
proportionally in time.

• The part is dividable in a number of cyclic symmetric
segments.

Below the state of the art regarding each individual aspect
is briefly reviewed and choices are motivated, before the
contributions of this paper are stated.

1.1. Fatigue based TO

Fatigue failure is caused by subjecting a structural component
to dynamic loading conditions. Even though resulting stresses
can be well below the static failure criteria, the component will
break due to material fatigue after a certain amount of loading
fluctuations. To evaluate the expected fatigue life of a structural
component, different approaches can be considered: crack
propagation rate, strain-life and stress-life. Crack propagation
rate approaches are used to estimate the propagation of surface
cracks through the material after crack initiation and therefore
more commonly used for finite lifetime applications. Strain-
life is commonly used for short lifetime applications where
plastic deformations occur. For longer lifetime applications,
including infinite lifetime, a stress-life approach is commonly
used (Lalanne, 2014). The majority of existing fatigue based
TO research is based on a stress-life approach. For these
reasons a stress-life approach is used in this paper.

Stress-life fatigue analysis looks at the variations in stress
caused by the dynamic loading. These stress fluctuations,
called stress cycles, can then be interpreted to an expected life
time using an SN-diagram, for illustration shown in Figure 2.
Three approximate regions can be distinguished in the SN-
diagram, the first region being for low-cycle fatigue which is
characterised by plastic deformations. The second region is
for high-cycle, but finite fatigue life. The third region is for
infinite fatigue life (Lalanne, 2014). Some loading might result
into stress fluctuations where defining stress cycles is non-
trivial. A Rainflow counting method (Amzallag et al., 1994)
can then be used to dissect the complicated fluctuations into
a combination of stress cycles and Palmgren-Miner rule can
be used to evaluate the accumulative fatigue damage (Lalanne,
2014). It is important to note that SN-diagrams are based on
experimental data and are only valid for uniaxial and zero mean
stress cases. When this is not the case, correction methods
are necessary. Methods like the signed von Mises stress,
largest principal stress direction and critical plane methods are
commonly used in fatigue analysis for defining an equivalent
uniaxial stress from a multiaxial stress state (Carpinteri et al.,
2017). For mean stress correction the Modified Goodman,
Soderberg or Gerber corrections can be used (Lalanne, 2014).

Since a stress-life fatigue approach is based on stress
fluctuations, fatigue based TO problems are closely related to

Figure 2: A general representation of an SN-diagram. It shows an
approximation of the expected amount of lifetime in number of cycles N for
a given stress cycle amplitude. Some materials, like most steel types, have an
endurance limit σD below which no fatigue damage occurs.

stress based TO and evidently the same problems arise as have
been observed with stress based TO.

One of these problems is the so called “singularity” problem,
which was observed by Cheng and Jiang (1992) when including
stress constraints in a truss optimization problem. It is caused
by stress constraints vanishing when one of the design variables
reaches zero density. This results in a part of the design domain
being of a lower dimension known as a degenerate subdomain.
The desired optimum can reside in this subdomain and is called
a singular optimum. Gradient based optimization algorithms
cannot reach this subdomain and will converge to a different
local optimum.

This can be resolved using constraint relaxation methods,
which smooth the discontinuous point of the stress constraint
so that the degenerate subdomain is reunited with the rest of
the feasible domain and can be reached by the optimization
algorithm. Methods like ϵ-relaxation (Cheng and Guo, 1997;
Duysinx and Bendsøe, 1998) and qp-relaxation (Bruggi, 2008;
Le et al., 2010), have been shown to successfully deal with this
issue.

A second difficulty is the local nature of stress and fatigue.
The constraint should be satisfied everywhere in the design
domain. This gives a large set of local constraints, which makes
the computation of sensitivities expensive, as the efficiency of
the adjoint method used for the sensitivity analysis is lost.

This problem can be dealt with by aggregating the many local
constraints into a single global constraint. This has been done
with the use of aggregation functions like the p-norm (Duysinx
and Sigmund, 1998) and the Kresselmeier–Steinhauser (KS)
function (Yang and Chen, 1996), which approximate the
maximum local constraint value in a differentiable manner,
where the accuracy of the approximation is controlled with
an aggregation parameter. For large aggregation parameters,
however, the global constraint becomes unstable. To improve
the inaccuracy of the approximation, Le et al. (2010) proposed
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a global constraint scaling measure, that uses the true and
approximated maximum stress of the previous optimization
iteration to scale the approximation of the current iteration.
In Verbart et al. (2017), a unified aggregation and relaxation
method is proposed to deal with both the local constraints and
singularity problem simultaneously using a single aggregation
parameter. This was done by introducing a lower bound version
of the p-norm and KS-function aggregation.

A disadvantages of aggregation methods is a loss in local
stress control as well as the accuracy of the approximation
being problem and mesh size dependent. Recent studies have,
therefore, proposed the use of the Augmented Lagrangian (AL)
method to handle the local stress constraints (Senhora et al.,
2020; da Silva et al., 2021a). The AL method treats the stress
constraints as a local quantity by adding them to the objective
function in the form of a penalty term, which is updated at each
iteration. This unconstrained problem is expected to converge
to the solution of the original constrained problem, but requires
only a single adjoint vector in the sensitivity analysis. The local
stress control of the AL method was shown to be significantly
better than global constraint approaches by da Silva et al.
(2021a).

Previous studies have successfully incorporated fatigue into
TO. Holmberg et al. (2014) were the first to incorporate the
methods from stress based TO and apply them to a fatigue
based problem. The fatigue analysis is performed in advance
of the optimization by computing the largest allowable stress
amplitude for which the accumulative damage, for a known
load spectrum, is not exceeded. This stress amplitude is then
incorporated like a stress constraint. Oest and Lund (2017)
takes a similar approach, but incorporates the fatigue analysis
into the optimization problem directly, by constraining the
accumulative damage function. Jeong et al. (2015) consider
infinite fatigue life for zero-mean harmonic loading in steady
state. The mean stress is computed from a static analysis
of the mean load and the amplitude stress from a harmonic
analysis of the load amplitude. They employ a SIMP like
interpolation scheme on the mass matrix, with the aim to
avoid localized mode issues. Furthermore, they provide
differentiable versions of some commonly used mean stress
correction methods. Collet et al. (2017) incorporates the
mean stress correction in a different manner by implementing
the endurance envelope of the modified Goodman correction
as separate stress constraints. Furthermore, they use an
active constraint set to limit the number of local constraints
considered instead of aggregating them into one constraint.
Since the amount of active constraints changes during the
optimization, a global compliance constraint is introduced to
smooth any discontinuities. Lee et al. (2015) consider fatigue
constraints for a stochastic load case and utilises and compares
frequency based fatigue analysis methods. Jeong et al. (2018)
perform a transient analysis to acquire the time-varying stress
history caused by variable amplitude loading. A multiaxial
cycle counting method by Wang and Brown (1996) is used
to extract effective stress cycles. Since the computation of
transient sensitivities is expensive, they are computed from the

equivalent static load (Kang et al., 2001) at discrete time steps.
The fatigue constraint studies discussed so far have only

considered proportional load cases. This is computationally
advantageous, as the stress history can be obtained by linearly
scaling the stress field from a single reference load. For non-
proportional load cases, like moving loads or out of phase loads,
the time response cannot be obtained in this manner and these
methods will therefore not suffice.

Recent contributions have proposed fatigue based TO
methods which involve non-proportional load cases. Zhang
et al. (2019) propose that the non-proportional loading can
be decomposed into a linear combination of unit loads with
time varying weight factors. The stress history can then
be constructed by summing the resulting unit stress fields
multiplied by the corresponding time varying weight factors.
From the stress history, the equivalent signed von Mises stresses
are computed and rainflow counting is used to extract stress
cycles at every element in the design domain. Suresh et al.
(2020) use a continuous time fatigue analysis method developed
by Ottosen et al. (2008) to approximate the evolution of damage
at each element using differential equations. An endurance
surface is defined in the stress space, which evolves depending
on the current stress and a back stress tensor. Damage is
accumulated when the stress state is outside of the endurance
surface while it is evolving.

In this paper an alternative approach is presented to deal with
non-proportional load cases. Since the goal is to design for
infinite fatigue life, the fatigue analysis can be simplified to
determining whether the amplitude of the largest stress cycle
is below the endurance limit. Therefore, a smooth min/max
function is used to approximate the local stress extrema in time,
which defines the largest stress cycle locally. These local stress
cycles are constrained using the stress constraint formulations
presented in Bruggi (2008) and Verbart et al. (2017).

1.2. Time-varying TO

To obtain the time response of a structure under non-
proportional loading, three types of approaches can be
considered:

1. Quasi-static analysis
2. Transient analysis
3. Frequency response analysis

Previous studies have successfully implemented these
approaches for different time-varying TO problems. The
aforementioned approach by Zhang et al. (2019) and the
Equivalent Static Load (ESL) method by Kang et al. (2001)
are examples of a quasi-static analysis. The ESL is defined as
a static load that would results in the same displacement field
caused by a time-varying load at a chosen time point. Choi and
Park (2002) used an approximate version of the ESL method to
obtain the quasi-static time response for all time intervals.

For the transient analysis approach, time integration of
the Equations of Motion (EoM) is required. Giraldo-
Londoño and Paulino (2021b) have implemented the HHT-α
integration scheme by Hilber et al. (1977), which is based
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on a Newmark integration method, to solve time-varying
compliance minimization problems. Time integration is a
computationally expensive approach for TO problems. To
reduce the computational burden, model reduction methods can
be used to transform the EoM’s into a reduced set of uncoupled
equations, which can be solved more efficiently. Either modal
DoF’s or Ritz vectors can be used to replace the nodal DoF’s as
a base of the EoM’s (Cook et al., 2002).

These model reduction methods can also be used for
frequency response analysis. The frequency response gives
the response of a DoF to harmonic excitation forces. It is
computationally more efficient than time integration, but is
limited to forces that can be expressed as a sum of Fourier series
components, meaning that the forces should be periodic (Cook
et al., 2002). Studies by Yoon (2010) and Liu et al. (2015)
have investigated the accuracy and advantages of using model
reduction methods for frequency response analysis in dynamic
compliance minimization problems.

The main purpose for implementing the ESL method,
transient analysis or frequency response analysis is usually to
incorporate the dynamics of accelerating masses or vibrations.
For this paper, these dynamic effects are not deemed relevant
and therefore not considered. A quasi-static analysis similar to
the approach used by Zhang et al. (2019) will therefore be used
to obtain the time-varying stress history.

1.3. Cyclic symmetry
Many studies have exploited symmetry and periodicity to
reduce the computational burden of solving optimization
problems. An often considered example is the “MBB-beam”,
where instead of optimizing the entire beam, half the beam is
modelled and a boundary condition is added to represent the
symmetry.

In other cases, the design problem itself might not be
symmetric, but a design requirement could be that the resulting
geometry is. Kosaka and Swan (1999) proposed a method to
enforce symmetry into the design by combining the densities of
symmetrically corresponding elements into one design variable.
A similar approach was used by Huang and Xie (2008) and
Zuo (2009) for problems containing finite periodic cells. They
average the sensitivities of corresponding elements to enforce
periodicity. For infinitely periodic problems, where the load
case is equivalent between periodic cells, Barbarosie and
Toader (2010) used a periodic boundary condition. This links
the nodes of corresponding periodic boundaries and reduces the
structural analysis to a single Representative Unit Cell (RUC).

An equivalent way to formulate cyclic symmetry is as
periodically repeating segments in tangential direction. Moses
et al. (2002) studied periodic compliant minimization problems
where the loads do not adhere to the periodicity of the geometry.
They made use of the Discrete Fourier Transform (DFT) to
solve the boundary value problem. Due to the specific nature of
the DFT, this method is limited to infinitely periodic problems
and complex numbers arise in the computation. Thomas (1979)
presents two approaches to reduce the FE-analysis to a RUC
for cyclic symmetric problems, where the periodic loading

between segments is shifted in time. The first is through modal
analysis, where the periodicity is described by mode shapes
containing complex numbers. The second is by describing the
periodic loading using complex numbers. Petrov (2004) uses
the complex mode shape approach and performs a frequency
response analysis.

This paper considers load cases where each cyclic symmetric
segment is subjected to the same load case. The load case
of each segment, however, is out-of-phase with respect to the
other segments. Therefore, the complete load case does not
follow the cyclic symmetry of the geometry at a single point
in time. The approaches by Moses et al. (2002), Thomas
(1979) and Petrov (2004) are capable of reducing the structural
analysis of such a problem to a single segment. however, the
introduction of complex numbers has a higher computational
cost. Therefore, in this paper a different approach is chosen.
The cyclic symmetry is enforced similarly to the method
used by Kosaka and Swan (1999), where the full structure is
modeled. The disadvantage of not reducing the FE-analysis,
however, is mitigated by combining it with the quasi-static
analysis as will be explained further in Section 2.4.

1.4. Contribution

This paper presents a method to incorporate infinite fatigue life
constraints into topology optimization of structures subjected
to non-proportional loading. The largest stress cycle is
determined using a smooth min/max function on the time-
varying signed von Mises stress obtained from a quasi-static
analysis. The method is combined with an approach to enforce
cyclic symmetry in the design. This combination is of interest,
as it can significantly reduce the computational cost of the
quasi-static analysis when the loading adheres to the following
conditions:

1. The loading is periodic.
2. Each segment is subjected to the same loading over one

time period.
3. Between segments exists a constant shift in time over the

loading period.

When these conditions are met, a single static analysis of the
structure can represent multiple time steps of the quasi-static
analysis. Types of loading that follow these conditions are load
cases that appear to act like a traveling wave around the axis of
symmetry, which is not uncommon in rotating machinery.

The presented fatigue constraint approach is first tested
independently on three numerical examples, where a
comparison is made to proportional approximations of
the problems. This is meant to illustrate the relevance of
taking non-proportionality of loading into consideration. The
combination of the method with cyclic symmetry is thereafter
tested on a 2D and a 3D example.

The results are validated for fatigue using both the signed von
Mises method and Dang Van critical plane method (Karolczuk
et al., 2016). A comparison is made to identify weaknesses of
using the signed von Mises stress as equivalent fatigue stress.
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The remainder of the paper is structured as follows. In
Section 2 first the density based TO method used is explained
and subsequently the proposed method is presented. The
analysed fatigue test problems including the cyclic symmetric
problems are introduced in Section 3 and the results of the
problems are presented in Section 4 and thereafter discussed.
Finally, conclusions are drawn in Section 5.

2. Methodology

2.1. Density based topology optimization
The objective in the considered design problems is to minimize
the mass of the structure, while adhering to a global infinite
fatigue life constraint. An equivalent interpretation is to
minimize the material volume V used within the design domain,
which is normalised with respect to the total volume VΩ of
the design domain. Density based TO will be used to achieve
this. The domain is partitioned into finite elements, where an
artificial density design variable ρe ∈ [0, 1] is assigned to
each element e. A density of 1 represents a volume element
containing material, while a density of 0 represents a void
volume element. The isotropic material properties of the finite
elements are made dependent on these design variables in a
continuous manner, such that the global structural performance
with respect to the design variables can be analysed.

Since the fatigue constraint gf
G only constrains the

fluctuations in stress, which can allow for stresses above
the yield stress, an additional global stress constraint gs

G is
necessary to constrain the static yield requirements of the
structure, resulting in the following optimization problem:

P : min
ρ

V =
1

VΩ

∑
e∈Ω

ρ̄eve,

s.t. gf
G ≤ 0,

gs
G ≤ 0,

0 ≤ ρ ≤ 1,

(1)

where VΩ is the volume of the design domain Ω, ve is the
volume of a finite element and ρ̄e is the projected density field,
which will be discussed further in Section 2.2.

The iterative optimisation works as follows: a FE-analysis is
performed on an initial design to acquire the displacements and
stress field of the structure from which the constraint values
and objective function are evaluated. This is followed by a
sensitivity analysis of the constraints and objective function
with respect to the design variables. The gradients and function
values are used to update the design variable values for the next
iteration.

The density based method used is the modified SIMP method
by Sigmund (2007). It applies a penalization function, ηK(ρ̄e) =
ρ̄e

p, on the Young’s modulus E0 used to construct the elemental
stiffness matrices Ke as follows:

Ee(ρ̄e) = Emin + ηK(ρ̄e)(E0 − Emin), (2)

where Ee(ρ̄e) denotes the effective Young’s modulus. The
penalization variable p is chosen such that the elemental

stiffness gained from intermediate densities is low relative to
the amount of mass gained. This is achieved for values of
p > 1. A common choice is p = 3, which is also used for
this paper and for which the interpolation is shown in Figure 3.
To avoid singularity of the global stiffness matrix K(ρ̄), a lower
bound value Emin = 10−9E0 is assigned to the effective Young’s
modulus. The global stiffness matrix is assembled from the
elemental stiffness matrices Ke as follows:

K(ρ̄) =
∑
e∈Ω

Ke(Ee(ρ̄e)). (3)

An underlying constraint of the optimization problem is that the
solution should satisfy the static equilibrium equations:

K(ρ̄)u(ρ̄, ti) = f(ti), i = 1, ..,N, (4)

where u is the nodal displacement vector and f is the vector
containing the external forces. This is implemented through
the FE-analysis step. A time-varying stress history needs to
be determined for fatigue analysis, while inertia effects can be
neglected. A quasi-static FE-analysis is, therefore, performed
at discrete time steps ti. The number of time steps N is an
important consideration. In this paper the number of time steps
used is chosen intuitively for the individual examples. The
choice is based on the range of motion of the load and its
variation in magnitude, making sure that points of interest such
as load and motion extrema are included.

2.2. Distributed density formulation

The design variables ρ are connected to the density distribution
field ρ̄ through a density filter and threshold projection. The
density filter works like a blurring filter causing a gray
transition between material and void regions in the design
domain. It avoids mesh dependency of the solution and
introduces control over minimal feature size. The gray
transition region is also necessary for stress based problems
to avoid high local stresses along jagged material boundaries.

Figure 3: Interpolation functions used for the Young’s modulus (ηK ) and stress
(ηS ).
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The density filter used is a Partial Differential Equation (PDE)
based filter (Lazarov and Sigmund, 2011) and gives the density
filtered field ρ̃ according to:

ρ̃ = ρ − R2
PDE∇

2ρ̃. (5)

Here, RPDE is the filter radius. Unless specified otherwise, the
filter radius is set to RPDE = 1.5 le, where le is the average
element size.

A threshold projection subsequently controls the gray
transition region and relates the filtered density field to the
projected field using a Heaviside projection function (Wang
et al., 2011):

ρ̄ =
tanh (βη) + tanh (β(ρ̃ − η))
tanh (βη) + tanh (β(1 − η))

. (6)

Here, η is the projection threshold and is set to 0.5. The
steepness of the projection function and therefore the width of
the gray transition region is controlled by the parameter β. In
da Silva et al. (2021b) an upper bound on β for stress based
optimization problems using the given PDE filter is defined.
The upper bound ensures a minimum transition width of one
element and is given as βlim =

2R
le
√

3
, where R is the filter radius

of the classical linear hat function by Bruns and Tortorelli
(2001), which is related to RPDE according to R = 2

√
3RPDE

(Lazarov and Sigmund, 2011). For the filter radius used this
results in βlim = 6.

2.3. Infinite fatigue life constraint

When the stress history is acquired from the quasi-static
analysis, the largest stress cycle needs to be identified for
the fatigue evaluation. The signed von Mises stress is used
as equivalent stress measure. First, however, the singularity
problem as mentioned in the introduction needs to be dealt with.
This is done by using the qp-relaxation approach by Bruggi
(2008) as applied by Lee et al. (2015). Giving the von Mises
stress interpolation function ηS as follows:

ηS (ρ̄e) =
ηK(ρ̄e)
ρ̄

q
e
= ρ̄

(p−q)
e . (7)

Choosing a stress interpolation parameter q < p relaxes the
stress for intermediate densities and resolves the singularity
problem. A value of q = 2.5 is chosen, giving the interpolation
function ηS (ρ̄e) = ρ̄e

1
2 shown in Figure 3 and the relaxed stress

computation:

σ̂e(ρ̄e, ti) = ηS (ρ̄e)Ceϵe(ti). (8)

Here, σ̂e is the relaxed stress, Ce the elasticity tensor based on
the non-penalised Young’s modulus and ϵe(ti) the infinitesimal
strain at time step i.

The signed von Mises stress is computed from the relaxed
stress as shown in Equation 9, where J2 is the second invariant
of the deviatoric stress tensor. The sign is determined from
the sign of the hydrostatic stress σH

e . Since the sign operator
is discontinuous at 0, it is replaced by the hyperbolic tangent
function tanh, which acts as a smooth sign function.

σ̃e(ρ̄e, ti) = tanh(σH
e (ti))

√
3J2(σ̂e(ρ̄e, ti)). (9)

For an infinite fatigue life constraint, the fatigue life analysis
can be reduced to whether the largest stress cycle in the stress
history of each element is below the endurance limit σD and no
complex cycle counting method is required. The largest stress
cycle is determined by approximating the maximum σmax

e (ρ̄e)
and minimum σmin

e (ρ̄e) signed von Mises stress in time using
the upper bound KS-function as follows:

σmax
e (ρ̄e) =

1
k1

ln

 N∑
i=1

ek1σ̃e(ρ̄e,ti)

 . (10)

σmin
e (ρ̄e) =

1
−k1

ln

 N∑
i=1

e−k1σ̃e(ρ̄e,ti)

 . (11)

The KS-function is chosen over the p-norm, because the latter
cannot distinguish negative from positive input values. The
aggregation parameter k1 controls how much the function will
overestimate the true maximum and minimum. A value of
k1 = 20 is chosen. From the maximum and minimum stresses
the mean and amplitude stress of the largest stress cycle are
computed according to:

σm
e (ρ̄e) =

σmax
e (ρ̄e) + σmin

e (ρ̄e)
2

. (12)

σa
e(ρ̄e) =

σmax
e (ρ̄e) − σmin

e (ρ̄e)
2

. (13)

Mean stress can have a negative effect on the fatigue life.
To correct for the mean stress, the modified Goodman method,
as illustrated in Figure 4, is applied. Since only the tensile
mean stress is assumed to negatively impact the fatigue life,
the correction is non-smooth at σm

e (ρ̄e) = 0. For this reason

Figure 4: The effect of mean stress on the allowable stress amplitude according
to the modified Goodman correction method. σa0 is the stress amplitude at
zero mean stress, σY is the yield stress and σU is the ultimate tensile stress
of the material. The combination of fatigue and static yield criteria define an
endurance envelope which constrains a feasible region.
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the differentiable modified Goodman approach by Jeong et al.
(2015) is used, which puts all negative mean stresses to zero in
a differentiable manner as follows:

σm0
e (ρ̄e) =

σm
e (ρ̄e)
2
+

√
σm

e (ρ̄e)2 + γ

2
. (14)

This operation can be considered as a smooth max(σm
e (ρ̄e), 0)

operation, where γ is a small value making the function smooth
around zero mean stress. This operation eliminates the effect
of negative mean stresses in the modified Goodman correction
which is given by:

σa0
e (ρ̄e) = σa

e(ρ̄e)
(
1 −
σm0

e (ρ̄e)
σU

)−1

, (15)

where σU is the ultimate tensile strength of the material and
σa0

e (ρ̄e) is the stress amplitude we want to constrain, which is
valid for comparison with an SN-diagram.

The stress amplitude of the largest stress cycle is constrained
with the fatigue limit of the material σD according to:

gf
e =

(
σa0

e (ρ̄e)
σD

− 1
)
ρ̄e ≤ 0, e ∈ Ω (16)

The fatigue constraint gf
e is multiplied with ρ̄e, as the

constraint should not apply to void elements (vanishing
constraints) and this multiplication ensures that the constraints
are satisfied when an element is at zero density. The result
is a large set of local constraints on the design domain. The
large set of local constraints is problematic, as this significantly
reduces the efficiency of the adjoint method used to compute
the gradients. To solve this, the local constraints are aggregated
into a single global constraint by estimating the maximum
constraint value using the lower bound KS-function from
Verbart et al. (2017) as follows:

gf
G =

1
k2

ln

 1
VΩ

∑
e∈Ω

ek2gf
e

 . (17)

Note that the upper bound KS-function was used for the
maximum and minimum stress approximation and the lower
bound KS-function for the constraint aggregation. The reason
for this is that the KS-function is more accurate in estimating
peak values in an array and the KS-mean more accurate when
the values are at the same level (Holmberg et al., 2013). The
assumption is that the former is better suited for approximating
the max and min stress in time and the latter for aggregating the
constraints. The aggregation parameters k1 and k2 are chosen
as k1 = k2 = 20.

The global stress constraint gs
G is obtained following

Equations 16 and 17, but in the equations σa0
e (ρ̄e), σD and gf

e are
replaced by the relaxed von Mises stress σ̃vm

e (ρ̄e), yield stress
σY and the local stress constraints gs

e respectively.

2.4. Combining cyclic symmetry and quasi-static analysis

For cyclic symmetric design problems which adhere to the
conditions stated in Section 1.4, the cyclic symmetry and
the quasi-static analysis can be combined in a clever way.

t = 1 t = 4

Figure 5: Two time steps of a cyclic symmetric problem with 12 segments and
13 loads. The loads move counterclockwise. Time step 4 is essentially the same
as physically rotating time step 1 counterclockwise by three segment. The load
with the largest magnitude is plotted in blue for both time steps to illustrate how
the model appears to have rotated.

Cyclic symmetry is enforced by making material properties at
corresponding locations dependent on the same design variable,
which is similar to the method used by Kosaka and Swan
(1999). A benefit to this approach is that the density filter
can cross the boundary to neighboring segments, ensuring a
smooth density transition between them. This enforced cyclic
symmetry approach would normally not save computation time
for the FE-analysis as the response of the entire structure
is computed. However, for the type of design problems
mentioned, the responses of the additional segments hold useful
information for the quasi-static analysis. The problem shown
in Figure 5 contains 13 equidistantly spaced point loads around
the circumference of 12 segments. Together they appear to act
like a single counterclockwise traveling wave. By looking at
the difference between time steps 1 and 4 shown, it can be
noted that this is the same as physically rotating the model three
segment counterclockwise. For this problem, a single static FE-
analysis of the entire cyclic symmetric structure, therefore, is a
physical representation of a quasi-static analysis containing a
number of time steps equal to the number of forces present.
The disadvantage of having to compute the entire structural
response when enforcing symmetry in the presented way is,
therefore, negated. This is a key insight that is exploited in
the proposed method.

It should be noted that depending on the number of segments
and number of traveling waves, it could occur that the entire
structure contains two or more identical sets of segments.
The copies of a set of segments do not provide additional
information for the quasi-static analysis and are therefore
redundant. The copies can in such cases be removed from the
analysis by applying a periodic boundary condition like was
used by Barbarosie and Toader (2010). This results in a lower
computation cost per time step but more time steps need to
be evaluated for the quasi-static analysis, as the smaller set of
segments return less time information. For further clarification
if there would have been 14 equidistantly spaced loads over the
12 segments, there would be 6 unique segments. Segments that
are opposite of each other are loaded identically. This unique
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set of segments contains 7 loads and therefore provides 7 time
steps. The number of identical sets can be determined from the
largest common divider between the amount of segments and
the amount of loads.

2.5. Optimization approach
Due to the large amount of design variables ρ used in TO, a
gradient based optimization method is necessary to make the
optimization problem computationally feasible. A sensitivity
analysis is, therefore, performed after the FE-analysis to obtain
the gradients of the constraints and objective function with
respect to the design variables. The adjoint method (Michaleris
et al., 1994) is used to compute the sensitivities, which is
efficient for problems containing many design variables and few
functional responses. The general expression of the gradient of
a set of functionals h(u(ρ), ρ) is as follows:

dhi

dρ j
=
∂hi

∂ρ j
+
∂hi

∂u
·

du
dρ j
, (18)

where ∂hi
∂ρ j

and ∂hi
∂u are explicit terms and du

dρ j
is an implicit

term. The explicit terms can be worked out analytically,
the implicit term on the other hand is computationally
expensive. The adjoint method eliminates this term from
the problem by augmenting the functional with the static
equilibrium equations: K(ρ)u − f = 0 with a Lagrange
multiplier λi. This adds the following term to Equation 18:

+λi

(
∂f
∂ρ j
− ∂K
∂ρ j

u −K du
dρ j

)
. After rearranging the terms into

explicit and implicit parts as follows:

dhi

dρ j
=
∂hi

∂ρ j
+ λi

(
∂f
∂ρ j
−
∂K
∂ρ j

u
)
+

(
∂hi

∂u
− λiK

)
du
dρ j
, (19)

the implicit term du
dρ j

can be eliminated from the problem by

computing the Lagrange multiplier such that ∂hi
∂u − λiK = 0.

The explicit terms ∂hi
∂ρ j

and ∂hi
∂u have to be worked out

analytically, which is shown for Equations 9, 10 & 11, as these

Table 1: Properties and settings

Property Value

Young’s modulus E0 = 200 [GPa]
Lower bound Young’s modulus Emin = 10−9E0

Poisson’s ratio ν = 0.3
Yield stress σY = 75 [MPa]
Ultimate tensile stress σU = 100 [MPa]
Endurance limit σD = 50 [MPa]
2D Model Plane stress
Thickness 10 [mm]
Element type Bilinear quadrilateral
Element size 1 [mm]
Filter radius RPDE = 1.5 [mm]
Projection slope parameter β = 6
Aggregation parameters k1 = k2 = 20
SIMP parameter stiffness p = 3
SIMP parameter stress q = 2.5
Initial density distribution ρ = 1

are specific to the presented method of this paper. Sensitivities
of the other steps of the method and the objective function can
be found in their respective literature. The sensitivity of the
maximum signed von Mises stress with respect to the design
variables ∂σ

max
e (ρ̄e)
∂ρe

reads as follows:

∂σmax
e (ρ̄e)
∂ρe

=

(∑N
i=1 ek1σ̃e(ρ̄e,ti) ∂σ̃e(ρ̄e,ti)

∂ρe

)
(∑N

i=1 ek1σ̃e(ρ̄e,ti)
) . (20)

The sensitivity of the minimum signed von Mises stress ∂σ
min
e (ρ̄e)
∂ρe

is obtained by replacing k1 with −k1. The sensitivity of the
signed von Mises stress ∂σ̃e(ρ̄e,ti)

∂ρe
is as follows:

∂σ̃e(ρ̄e, ti)
∂ρe

= tanh(σH
e (ti))

∂σ̃vm
e (ρ̄e, ti)
∂ρe

+
(
1 − tanh2(σH

e (ti))
) ∂σH

e (ti)
ρe

σ̃vm
e (ρ̄e, ti), (21)

where σ̃vm
e (ρ̄e, ti) =

√
3J2(σ̂e(ρ̄e, ti)) is the von Mises stress.

The sensitivities with respect to u are obtained equivalently.
The gradient based optimization algorithm used is GCMMA

(Globally Convergent Method of Moving Asymptotes)
(Svanberg, 2002), which is an extension to the commonly used
Method of Moving Asymptotes (MMA) by Svanberg (1987).
The ordinary MMA solves the optimization problem by first
approximating a set of convex subproblems between two
asymptotes at the current iteration. The asymptotes are updated
based on information from the previous iteration, while the
convex approximations are based on the gradient information
at the current iteration. The set of convex subproblems can
be efficiently solved using a dual method and the optimal
solution found are the new design variable values ρ for the
next iteration. GCMMA extends MMA by considering inner
and outer iterations. The outer iterations represent the regular
MMA. However, for every outer iteration, there can be multiple
inner iterations. The GCMMA method aims to always reduce
the objective function between outer iterations using these
inner iterations.

For the examples considered in this paper the default settings
are used with the addition of a move limit of 0.1. The maximum
number of inner iteration per outer iterations is set to 10. The
outer iterations continue until either the optimality tolerance at
0.001 is obtained, which is the default convergence criteria of
GCMMA in COMSOL, or a maximum outer iteration of 500 is
reached.

3. Test problems and procedures

The method is implemented in COMSOL Multiphysics using
the structural mechanics and optimization modules. Unless
specified otherwise, the properties and settings as listed in
Table 1 are used for the test problems analysed. The test
problems contain both 2D and 3D problems. For the first
three problems, which are 2D, cyclic symmetry is not yet
considered. The intend of these first three problems is to test the
performance of the non-proportional fatigue constraint method
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independently. Thereafter, the method is applied to two cyclic
symmetric problems, the first of which is in 2D and the second
in 3D.

3.1. Fatigue test problems

The three Test problems considered for the independent fatigue
constraint test are: an L-bracket subjected to a proportional
periodic load (Figure 6), an L-bracket subjected to two periodic
out-of-phase loads (Figure 7) and a beam subjected to a time
varying moving load (Figure 8). For each test case two
optimization approaches are considered, one proportional and
the other non-proportional.

For the proportional approach assumptions are made
to replace non-proportional loading by a proportional
interpretation of the loading if necessary. In the proportional
optimization approach Equations (10) and (11) are removed and
σmax

e and σmin
e are instead obtained from scaling a reference

stress field, as obtained from a unit load, with the known
maximum and minimum force in time.

For the non-proportional optimization approach no
simplifications of the loading are necessary and the method
as described in Section 2.3 is used. The results of both
approaches are compared to establish to what extent using
the more computationally intensive non-proportional method
improves the constraint adherence of the optimised design as
opposed to making proportional assumptions. It is expected
that the proportional approach will show a significantly worse
fatigue performance than the non-proportional approach for the
problems subjected to non-proportional loading when the non
simplified loading is applied to the optimized geometry.

3.1.1. L-bracket with proportional periodic loading
The L-bracket is a commonly considered design problem for
stress and fatigue based optimization problems, due to the
stress concentration at the re-entrant corner. For this first
Test problem, a proportional sinusoidal load case is considered
with a mean load Fm = 0.25 [kN] and load amplitude
Fa = 1 [kN]. Since the load case is proportional, both
the proportional and non-proportional approach should yield
acceptable results. The main intend of this problem is,
therefore, to establish a benchmark to which the problems
subjected to non-proportional loading can be compared.

The design problem is shown in Figure 6 and the properties
and settings used are listed in Table 1. The proportional
load is distributed and applied over 7 nodes at the top of the
right most boundary and a small section of 4 x 6 elements is
excluded from the design domain, meaning that the density is
set to fully solid and local constraints are not included in the
constraint aggregation. This is to avoid large local stresses at
the application point from influencing the global constraint.
Along the inside boundaries, connected to the re-entrant corner,
a passive void region is added which allows the filter to create a
smooth transition between void and solid around the re-entrant
corner.

60

60

40

40

Figure 6: Test problem 1 is an L-bracket. The design domain is shown in
light gray. The bracket is fixed at the black bar and a small region around the
load application point marked in dark gray is excluded from the design domain.
The proportional load is sinusoidal with an amplitude Fa = 1 [kN] and a mean
Fm = 0.25 [kN]. Dimensions are in [mm].

3.1.2. L-bracket with non-proportional out-of-phase loading

In the second problem a non-proportional load case is applied
to the L-bracket. Apart from the load case the problem is
equivalent to the first test problem. The loading consists of two
proportional sinusoidal loads P1 and P2 in x and y direction at
the application point. Both loads have an amplitude of 1 [kN]
and a mean of 0 [kN]. The loads are out-of-phase with respect
to each other by a phase of 90◦, which makes the combined
loading non-proportional. The resulting load case is a load that
has a constant magnitude of 1 [kN] and rotates with a constant
rotation speed around the application point as illustrated in
Figure 7.

For the proportional approach the proportional loads P1
and P2 are evaluated for fatigue separately from each other
and are combined in the optimization by implementing them
as a multiple loading optimization. In the non-proportional
approach 12 time steps are used in the quasi-static analysis for
one full rotation of the load.

60

60

40

40

P2

P1

Figure 7: Test problem 2 is the same L-bracket from Test problem 1, but now
a horizontal (P1) and vertical (P2) load are applied both with an amplitude
Fa = 1 [kN] and a mean Fm = 0.25 [kN]. The loads are 90◦ out of phase,
which results in a rotating load with constant rotation speed and a constant
magnitude of 1 [kN]. Dimensions are in [mm].
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3.1.3. Moving load across beam

For the third fatigue test problem a moving load across a beam
is considered. The design problem is shown in Figure 8 and the
properties and settings used are listed in Table 1. A load moves
along the top surface of the beam at a constant speed and is
equally distributed over 11 nodes. The magnitude of the load
varies sinusoidal with respect to its position on the beam with
a mean of 2.5 [kN] and an amplitude of 1.5 [kN]. The beam
has roller connections at both lower ends. The top layer is a
passive region set to full solid, but is included in the constraint
aggregation, as the load is distributed over a sufficient amount
of nodes to avoid too high application stresses.

A proportional interpretation of the loading is made by
defining a proportional load case at critical time points of the
moving load. At the locations of these critical time points
a proportional load is applied. This proportional load has a
maximum equal to the magnitude of the moving load at that
time point and a minimum equal to 0 [kN], which represents
the presence and absence of the moving load at that location.

50

150

90

5

110

10

𝐹𝑚

𝐹𝑎

Figure 8: Test problem 3 is a beam with a moving load that varies sinusoidal
between 1 [kN] and 4 [kN] with respect to its position on the beam. The light
gray region is the design domain. The dark gray bar is set to solid material and
the blue boundary connections are rolling contacts. Dimensions are in [mm].
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Figure 9: The proportional interpretation of Test problem 3 is three separate
proportional load cases P1, P2, and P3 with a maximum magnitude of 4 [kN]
and a minimum of 0 [kN]. The separate load cases are evaluated for fatigue
independently and combined in a multiple loading optimization.

Similar to the proportional approach of the second test problem
these load cases are evaluated for fatigue separately from each
other and combined in the optimization by implementing them
as a multiple loading optimization. For this problem three
critical time steps where the moving load magnitude is at its
peak are identified, which conveniently cover the range of
motion as well. For the quasi-static analysis performed in the
non-proportional approach 13 time steps are used.

3.2. Cyclic symmetric fatigue problems

The remaining two problems analysed are cyclic symmetric,
which is exploited to reduce the computation cost. The first
problem considered is a 2D ring with flanges subjected to time-
varying moving loads (Figure 10). The second problem is a 3D
casing where time-varying moving loads travel along the inside
boundary (Figure 11.

𝑡5

𝑡7

𝑡9

𝑡11

𝑡1

𝑡3

𝑡2

𝑡4

𝑡6

𝑡8

𝑡10

𝑡12

(a) Total problem showing the represented time steps by the segments.

30 40

(b) A single segment
(c) Magnitude and position of the moving
load over one period.

Figure 10: Test problem 4 is the first cyclic symmetric problem considered. It
consits of 12 segments each containing a radially moving load. The inner ring
(black) is fixed. The dark gray region is solid material and excluded from the
design domain (light gray). Along the boundaries connected to the re-entrance
corners is a passive void region. Dimensions are in [mm].
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3.2.1. Cyclic symmetric problem in 2D
The first cyclic symmetric problem, shown in Figure 10, consist
of 12 identical segments. It is fixed at the inner ring. The
boundary loads move with a constant speed back and forth
in the radial direction. The loads are applied over 6 nodes
and magnitudes vary sinusoidal with a mean of 2 [kN] and
amplitude of 1.5 [kN], as shown in Figure 10c. The design
domain (one segment) is meshed using 26 354 triangular mesh
elements and is copied to the other eleven segments. The
density distribution of the design domain is mapped onto the
other segments to enforce the cyclic symmetry. The constant
shift in time between the segments is 5 time steps clockwise
or equivalently 7 time steps counterclockwise, as illustrated in
Figure 10a. For this setup each segment provides a unique
time step for the quasi-static analysis. Therefore, a single static
response of the whole structure returns 12 time steps, which is
considered sufficient to describe the load case.

3.2.2. Cyclic symmetric problem in 3D
The second cyclic symmetric problem analysed is 3-
dimensional, as shown in Figure 11. It consists of 12 cyclic
symmetric segments. Each segment has an identical mesh
containing 47 498 tetrahedral elements with an average element
size of 25 [mm], giving a total mesh of 569 976 elements. Since
this mesh is relatively coarse with respect to the dimensions
of the problem, a smaller filter radius of RPDE = 1 le, giving
RPDE = 25 [mm], is used to allow for smaller features. 13
loads are equidistantly spaced around the diameter, as shown
in Figure 12. The loads move in tangential direction and cross
between segments. Both the radial and tangential components
of the load magnitudes vary in time according to the graph
shown in Figure 13. The constant shift in time between the
segments is 1 time step both clockwise as counterclockwise.
Each load represents a time step in the quasi static analysis.
As there are 13 loads distributed over 12 segments, there is a
segment containing two of the loads. This segment represents
the time steps for both these loads and the static response of
the complete structure, therefore, provides 13 time steps for
the quasi-static analysis, which is considered sufficient for this
problem.

3.3. Fatigue validation

The results of both proportional and non-proportional
approaches are validated for fatigue failure by applying the
non-simplified loading to the optimized structure. To define a
geometry from the optimized result, the density distribution is
first projected on a twice as fine mesh using a density filter step
to improve the smoothness of transitions between material and
void. COMSOL projects mesh data like the density distribution
as a continuous field using shape functions. A geometry is
extracted by defining the boundaries at ρ̄ = 0.5. Densities above
are set to full material and densities below to void. The resulting
geometry is meshed with linear triangular elements for the 2D
Test problems and linear tetrahedral elements for the 3D Test
problem using a twice as fine mesh size as was used for the
optimization.

𝑡5

𝑡7

𝑡9
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𝑡13

Figure 11: Test problem 5 consists of 12 cyclic symmetric segments in 3D. The
time steps for the 13 equidistantly spaced loads are shown.

r = 1350 
250 50

r = 1200 

r = 500 

Figure 12: The dimensions and boundary conditions of Test problem 5. The
dark gray ring where the load is applied is solid material and is excluded from
the design domain. The blue boundaries are roller connections. Dimensions are
in [mm].

Figure 13: The magnitude of the loads in Test problem 5 expressed in radial
and tangential directions with respect to the angular coordinate of a segment.
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A quasi-static FE-analysis is performed and material fatigue
is determined by evaluating the largest variation in the signed
von Mises stress, which is the same approach used in
Section 2.3. The fatigue constraint is evaluated in at least
10 000 evenly distributed points, which are used to establish
percentually how much of the geometry domain adheres to the
constraint. Furthermore, for the sampled evaluation points, the
stress amplitude is plotted with respect to the mean stress in
a plot as shown in Figure 4. This shows local adherence to
the fatigue and yield stress constraints defined by the failure
envelope.

In addition to the variation in signed von Mises stress, the
Dang Van critical plane method Karolczuk et al. (2016) has
been used to evaluate fatigue, as this is regarded as a more
accurate fatigue approximation method for non-proportional
loading (Papuga et al., 2012). The validation using the signed
von Mises stress is shown in Section 4.1 & 4.2 together with
the optimized density distribution, whereas the results of the
Dang Van method are discussed separately in Section 4.4 and
compared to those of the signed von Mises criterion.

4. Results & Discussion

In this section the results of the Test problems described in
the previous section are presented and discussed. First the
three fatigue test problems and thereafter the 2D and 3D cyclic
symmetric problems. Ultimately, the validations using a critical
plane method are shown and compared to the signed von mises
stress validation.

4.1. Fatigue test results

For each fatigue test problem two optimization approaches
were performed, a proportional approach and a non-
proportional approach. The results for both are presented and
compared.

4.1.1. Test problem 1: L-bracket with proportional periodic
loading

The results for both problem definitions were obtained after 500
iterations and are shown in Figure 15 and Table 2. As expected,
the results for both approaches are very similar and nearly
indistinguishable. The proportional approach has a material
usage of 0.3151, which is about 0.6% lower than the 0.3169 of
the non-proportional approach. However, the percentage of the
domain which satisfies the fatigue constraint is slightly worse
for the proportional method at 97.1% versus the 97.5% of the
non-proportional approach.

The difference in volume usage and constraint adherence
between both approaches can be explained by the fact that
the non-proportional approach makes an overestimation in its
approximation of the largest stress cycle. This makes the
approach more conservative and results in the trade off in
volume performance and constraint performance.

Both approaches show a maximum normalized fatigue
stress peak σa0

e
σD

that is significantly higher that allowable. A
peak of 1.3922 for the proportional approach and a peak

(a) Proportional approach (b) Non-proportional approach

Figure 14: The local fatigue constraint values gf
e, which are aggregated using

the lower bound KS-function. Results are shown for ρ ≤ 0.5.

of 1.3507 for the non-proportional approach. There are a
couple of accountable reasons that contribute to these peaks.
To start, from Figure 14 can be seen that the lower bound
aggregation function underestimates the true local maximum
constraint violation by about 10%. Secondly, due to the SIMP
interpolation of the material properties, which was necessary
to enforce the optimization towards a solid and void material
distribution, representation of stresses by intermediate density
variables found in the transition boundary is less accurate.
When the sharpness of the boundary increases, as was done in
the validation, the stresses increase. At last the large peaks can
to an extent be attributed to the way the final result is interpreted
at the 0.5 density threshold for the validation, as explained
in Section 3.3. Due to the underlying rectangular mesh, the
threshold gives a boundary that is not perfectly smooth. This
results in local stress peaks and, therefore, larger stress cycles.

In Appendix A a manual design iteration is performed
in an attempt to reduce local stress peaks which can be
explained from this phenomenon by improving the smoothness
of boundaries while avoiding adding significant extra volume.
After the manual iteration the maximum normalized fatigue
stress are about 1.24 for the proportional approach and 1.19 for
the non-proportional approach. This is considerably less while
only increasing the volume by 0.5% and 0.7% respectively,
which shows that the interpretation of a geometry from the
optimized result is a significant reason for these higher then
expected fatigue stresses found. Due to the manual iteration
being inconsistent, the maximum constraint violation is not
taken as a measure of comparison for the remaining Test
problems but the domain percentages shown in Table 2 are
instead.

The local stress behaviours are plotted in Figure 15c &
15d. Two straight lines are apparent. This is expected
for proportional loading. The steepness of the lines can be
derived from the choice of relative magnitude between the
amplitude and mean of the proportional load. Convergence
of the objective functions is shown in Figure 18a & 18d. The
convergence of both approaches is smooth and similar.

4.1.2. Test problem 2: L-bracket with non-proportional out-of-
phase loading

The results for both problem definitions were obtained after
500 iterations and are shown in Figure 16 and Table 3. The
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Table 2: Results of Test problem 1: the normalised material usage V and local fatigue constraint adherence differentiated into five ranges from satisfied (≤ 1) to
exceeded by a factor larger than 1.2 are shown for the proportional (P) and non-proportional approach (NP). The fatigue constraint adherence is shown for both the
optimization model as well as the validation model.

Test problem 1 V ≤ 1 1 − 1.05 1.05 − 1.10 1.10 − 1.20 > 1.20

P validation result 0.3151 97.1% 2.1% 0.5% 0.3% 0.1%
NP validation result 0.3169 97.5% 1.9% 0.3% 0.2% < 0.1%

(a) Proportional approach (b) Non-proportional approach

(c) Proportional approach (d) Non-proportional approach

Figure 15: Results of Test problem 1. (a) and (b) show the density distribution and the normalized fatigue stress amplitude σ
a0
e
σD

. (c) and (d) show a scatter plot of
the local stress behaviour.

density distribution shows a clear difference in topology. The
proportional approach has a material usage of 0.3606, which
is about 9.3% lower than the 0.4010 of the non-proportional
approach. As expected, however, the percentage of the domain
which satisfies the fatigue constraint is significantly worse for
the proportional method at 90.3% versus the 97.8% of the non-
proportional approach which is in accordance to the results
from Test problem 1. Convergence of the objective functions is
plotted in Figure 18b & 18e, which is again smooth and similar.

The difference in material usage and constraint adherence
between both approaches can be explained by the fact that the
proportional method only considers loads in the horizontal and
vertical direction separately and therefore does not account for
diagonal loads, which results in too high stresses when the
rotating load is not oriented horizontally or vertically. The non-

proportional approach does consider the different orientations
of the load and is therefore able to properly constrain the load
and achieve results that are on accordance to the results of
Test problem 1. To properly constrain the load more material
usage is required. The result of the proportional definition could
arguably be improved by increasing the number of loads with
different orientations used in the multiple loading optimization.

Looking at the local stress behaviour in Figure 16c & 16d,
again a straight line is observed even though the loading is non-
proportional. In this specific case the straight line is obtained
from the fact that for every load, a counter load points in the
opposite direction at some time during the rotation. This results
into no present mean stress of the largest stress cycle in the
structure after one rotation. Taking this into consideration, the
results of the proportional definition might yield a comparable
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Table 3: Results of Test problem 2: the normalised material usage V and local fatigue constraint adherence differentiated into five ranges from satisfied (≤ 1) to
exceeded by a factor larger than 1.2 are shown for the proportional (P) and non-proportional approach (NP).

Test problem 2 V ≤ 1 1 − 1.05 1.05 − 1.10 1.10 − 1.20 > 1.20

P validation result 0.3606 90.3% 2.7% 2.1% 2.8% 2.1%
NP validation result 0.4010 97.8% 1.3% 0.7% 0.2% 0.1%

(a) Proportional approach (b) Non-proportional approach

(c) Proportional approach (d) Non-proportional approach

Figure 16: Results of Test problem 2: (a) and (b) show the density distribution and normalized fatigue stress amplitude σ
a0
e
σD

. (c) and (d) show a scatter plot of the
local stress behaviour

result when more load cases are used.

4.1.3. Test problem 3: Moving load across beam
The results of both problem definitions are shown in Figure 17
and Table 4. Smooth convergence of the objective functions is
shown in Figure 18c & 18f. The proportional problem reached
the maximum number of 500 iterations, whereas the non-
proportional problem reached the convergence criteria after 460
iterations.

A slight difference in topology can be observed between
the two approaches. The main difference is close to the
boundary where the loading is applied. With a material usage of
0.2879, which is about 20.3% lower than 0.3556, similar to the
previously analysed problem the proportional approach shows
a lower material usage than the non-proportional approach,
but at 86.6% performs significantly worse in adhering to the

fatigue constraint opposed to the 99.7% of the non-proportional
approach.

The local stress behaviour in Figure 17c & 17d shows that the
violation of constraints is quite significant for the proportional
simplification of the design problem. Nevertheless, it did
manage to obtain the main topological features found in the
non-simplified problem. This shows that simplified problems,
where choosing the critical time steps is quite intuitive, might
still result in an acceptable initial design, but quite some
post processing will be necessary to satisfy the constraints.
In general a proportional simplification might not be trivial
and making drastic assumptions about the loading could be
undesirable.

An observation, which was made for moving load problems,
is that the method struggled to fully converge to an all black
and white density distribution and a gray region remains in the
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Table 4: Results of Test problem 3: the normalised material usage V and local fatigue constraint adherence differentiated into five ranges from satisfied (≤ 1) to
exceeded by a factor larger than 1.2 are shown for the proportional (P) and non-proportional approach (NP).

Test problem 3 V ≤ 1 1 − 1.05 1.05 − 1.10 1.10 − 1.20 > 1.20

P validation result 0.2879 86.6% 2.1% 1.8% 2.9% 6.5%
NP validation result 0.3556 99.7% 0.1% 0.1% 0.1% < 0.1%

(a) Proportional approach (b) Non-proportional approach

(c) Proportional approach (d) Non-proportional approach

Figure 17: Results of Test problem 3: (a) and (b) show the density distribution and normalized fatigue stress amplitude σ
a0
e
σD

. (c) and (d) show a scatter plot of the
local stress behaviour

final result. This can also be observed at the top middle of
Figure 17b. A definitive cause for this issue was not established.
A possible explanation could be that the moving load can be
seen as a distributed load over the entire range of motion. This
issue of gray areas has been observed in existing research that
considers distributed loads (Zhao and Wang, 2014).

4.2. Cyclic symmetric fatigue test results

For the cyclic symmetric problems only the non-proportional
method has been considered.

4.2.1. Test problem 4: Cyclic symmetric problem in 2D

The optimization converged after 286 iterations and the results
are shown in Figure 19 and Table 5. The resulting topology
contains no major gray regions and has a final volume usage
fraction of 0.2832. The local fatigue constraints are satisfied for
97.2% of the design domain. For the remaining 2.8%, where the
constraint is violated, a comparable trend as in Test problem 1
can be observed, where the violations up to about 1.20 times
the constraint can be attributed to the approximation of the
aggregation function and the violations above 1.20 are mainly
attributed to non-smooth boundaries of the optimized geometry.

From the local stress behaviour in Figure 19d can be
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(a) Test problem 1: Proportional (b) Test problem 2: Proportional (c) Test problem 3: Proportional

(d) Test problem 1: Non-proportional (e) Test problem 2: Non-proportional (f) Test problem 3: Non-proportional

Figure 18: Convergence of the objective function for Test problems 1, 2 and 3

observed that a large portion of the points cluster into two
opposing lines. These points are most likely located at the
two main truss features of the resulting topology, where the
effect of the motion of the loads is not as significant. From the
perspective of these points, the motion and magnitude variation
of the load approaches proportional behaviour. The region
where both trusses join at the inner ring seems to be a critical
point. The reason for this is that a large tensile stress transverses
through this region when the segment is under peak loading,
while a large compressive stress transverses through this region
when the neighbouring segment is under peak loading. This
results in a large change in the signed von Mises stress. The
signed von Mises stress is known to be less accurate for such
regions and gives exaggerated stress cycles (Papuga et al.,
2012). A further analysis of these regions using a critical plane
fatigue method is discussed in Section 4.4.

4.2.2. Test problem 5: Cyclic symmetric problem in 3D

The results of the optimization are shown in Figure 20 and
Table 6. The design converged to a black and white design in 96
iterations to a material usage factor of 0.4844. The local fatigue
constraint adherence of 99.3% of the domain is in agreement
with the results found in the previous analysed Test problems.
From Figure 20d it can be seen that the local stress behaviour is
widely distributed below the failure envelope. A proportional
approach would most likely not have yielded a satisfactory
result.

4.3. Discussion

It could be argued that the effectiveness of the presented method
is not yet optimal, as the optimised topology might still need
manual design iterations to fully eliminate the > 1.00 constraint
violations. Some approaches are suggested to further improve
the effectiveness of the method.

The first and simplest suggestion is to choose a more
conservative fatigue constraint. The approximation error of the
aggregation function for instance can be accounted for in the
initial choice of the fatigue limit. A more conservative choice
should significantly improve the local constraint adherence.

The second suggestion is a less heuristic approach. The
global constraint scaling method introduced by Le et al.
(2010) can be implemented, which scales the aggregated
approximation based on the true and approximated maximum
of the previous iteration and has been shown to work for stress
based optimization problems. Applying constraint scaling
during the optimisation is, however, not straightforward in the
COMSOL environment.

A third suggestion is to replace the lower bound KS-
function used in Equation 17 with the upper bound KS-
function which is also used in Equations 10 & 11. This
results in an overestimation of the local constraints instead
of an underestimation. The choice between upper and lower
bound KS-function, however, should be carefully considered
depending on the design problem and the expected outcome,
as the accuracy of the estimation is highly dependent on the
distribution range of the aggregated data. For the Test problems
considered in this paper, where only a fatigue/stress constraint
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Table 5: Results of Test problem 4: the normalised material usage V and local fatigue constraint adherence differentiated into five ranges from satisfied (≤ 1) to
exceeded by a factor larger than 1.2 are shown for non-proportional approach (NP).

Test problem 4 V ≤ 1 1 − 1.05 1.05 − 1.10 1.10 − 1.20 > 1.20

NP validation result 0.2832 97.2% 1.5% 1.0% 0.3% < 0.1%

(a) Density distribution (b) Normalised fatigue stress

(c) Convergence of the objective function (d) Failure envelope of the local constraints

Figure 19: Results of Test problem 4: (a) and (b) show the density distribution and normalized fatigue stress amplitude σ
a0
e
σD

. (c) and (d) show the objective function
convergence and a scatter plot of the local stress behaviour.

is used, the upper bound might yield unnecessary conservative
results, as a fully stressed final design is expected where the
fatigue limit is approached throughout the geometry.

A last suggestion is to use the Augmented Lagrangian
method to handle the local constraints as opposed to a global
constraint method, which has been shown to have an improved
local control (da Silva et al., 2021a).

A final observation, which was made while working out
the discussed problems, is that Equation 15 contains a
discontinuity. When σm0

e (ρ̄e) approaches σU, then σa
e(ρ̄e) is

divided by zero and σa0
e (ρ̄e) goes to infinity. For σm0

e (ρ̄e) > σU
the resulting stress amplitude even becomes negative which
always fulfills the constraint. In practice the discontinuity does
not necessarily cause problems during the optimization, since
the additional stress constraint avoids σm0

e (ρ̄e) from reaching
σU. For the initial conditions it should definitely be avoided

though. A suggestion to avoid this issue is to implement a
smooth min(σm0

e (ρ̄e), σU) operator (Jeong et al., 2015) after
Equation 14, such that the mean stress cannot exceed the
ultimate tensile stress. To further limit σa0

e (ρ̄e) from becoming
excessively large, Equation 15 can be modified as follows:

σa0
e (ρ̄e) = σa

e(ρ̄e)
(
(1 + γ) −

min(σm0
e (ρ̄e), σU)
σU

)−1

. (22)

The small offset γ limits the effect of a large compressive mean
stress.

4.4. Critical plane method fatigue validation

Critical plane methods are considered to be more accurate
for multiaxial fatigue evaluation of non-proportional loading
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Table 6: Results of Test problem 5: the normalised material usage V and local fatigue constraint adherence differentiated into five ranges from satisfied (≤ 1) to
exceeded by a factor larger than 1.2 are shown for non-proportional approach (NP).

Test problem 5 V ≤ 1 1 − 1.05 1.05 − 1.10 1.10 − 1.20 > 1.20

NP validation result 0.4844 99.3% 0.3% 0.1% 0.2% 0.2%

(a) Density distribution and normalised fatigue stress of the design domain (b) Normalised fatigue stress of the full structure

(c) Convergence of the objective function (d) Failure envelope of the local stress behaviour

Figure 20: Results of Test problem 5: (a) and (b) show the density distribution and normalized fatigue stress amplitude σ
a0
e
σD

. show the objective function convergence
and a scatter plot of the local stress behaviour.

(Carpinteri et al., 2017). The methods are based on locally
defining the orientation of a failure plane, where some fatigue
expression of stress or strain is maximal. The fatigue expression
depends on the critical plane model used. The results obtained
above using the non-proportional method are validated using
the Dang Van critical plane method (Karolczuk et al., 2016)
and compared to the results of the Signed von Mises stress
fatigue evaluation shown in the previous subsections. The Dang
Van method defines the fatigue expression as a combination
of the shear stress τn(t) and the hydrostatic stress σH(t). The
orientation n of the critical plane is the plane of maximal shear

stress in time t according to:

τD = max
t

(max
n

(τn(t)) + ασH(t)), (23)

where α is the hydrostatic stress sensitivity coefficient, which
can be calculated from the relationship:

α = 3
τD

σD
−

3
2
. (24)

The fatigue limit for bending σD and torsion τD are material
properties. For metals, the ratio τD

σD
is usually close to 2

3 (Fukuda
and Nisitani, 2003). This ratio is used for the material of this
paper with σD = 50 [MPa], giving τD ≈ 33 [MPa].
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(a1) Signed von Mises criteria (a2) Dang Van method

(a) Test problem 1

(b1) Signed von Mises criteria (b2) Dang Van method

(b) Test problem 2

(c1) Signed von Mises criteria (c2) Dang Van method

(c) Test problem 3

(d1) Signed von Mises criteria (d2) Dang Van method

(d) Test problem 4

(e1) Signed von Mises criteria (e2) Dang Van method

(e) Test problem 5

Figure 21: Validation of the normalized local fatigue constraints using the Dang Van critical plane method

From the results, shown in Figure 21, can be seen that for
Test problems 1 & 2, the difference between the signed von
Mises stress and Dang Van method is small. The difference
between the two methods is more apparent in the succeeding
analysed problems. Test problems 3, 4 & 5 show some regions
that are critical using the signed von Mises stress, yet allowable
according to the critical plane method. In these regions the
sign of the hydrostatic stress suddenly shifts from positive to
negative between time steps, which happens when the local
stress is close to pure shear stress. This results in a significantly
large stress variation that is an unrealistic representation of
the reality. The signed von Mises stress has in previous
research been shown to be less accurate when dealing with
non-proportional loading for this reason (Papuga et al., 2012).
Another notable difference is that the Dang Van method is less
conservative for regions with a compresive mean stress. This is
due to a difference in assumptions on the effect of mean stress
between the two methods used. In Equation 14 of the method of
this paper it was assumed that compresive mean stress does not
affect the fatigue stress amplitude, whereas from Equation 23

can be seen that a negative hydrostatic stress reduces the fatigue
criteria of the Dang Van method.

5. Conclusion & Recommendations

In this paper, a method has been presented to implement infinite
fatigue life constraints in density based topology optimization
for non-proportional loading problems as well as, in particular,
cyclic symmetric problems. This combination did not exist and
is practical for the design of rotating machinery, where cyclic
symmetry is often seen. The method was used to minimize
the mass of design problems in both 2D and 3D and in general
black and white converged designs where found.

The method was first tested on several academic problems,
where the non-proportional method was compared to a
proportional approach, where proportional assumptions of
the loading conditions were made. It was found that the
non-proportional method could properly constrain the fatigue
locally up to the accuracy of the constraint aggregation.
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In contrast, the proportional approximations of the problems
showed severe local violations of the fatigue constraint when
subjected to the original non simplified loading. Although the
studied examples did show that by making good assumptions,
main topological features can be found, this is not always trivial
and significant post processing would be necessary to obtain a
final design which adheres to the constraints.

The non-proportional method also worked properly in
combination with the enforced cyclic symmetry. Both a 2D
and 3D problem have been analysed, where a single static FE-
analysis provided respectively 12 and 13 time steps to the quasi-
static analysis, significantly reducing the computation cost.

The Signed von Mises stress fatigue evaluation used is
known to be inaccurate for regions where the sign of the
hydrostatic stress suddenly changes in time. A critical plane
method is more suitable for non-proportional loading fatigue
evaluation and should be implemented into the method to
improve final results.

Other recommendations are to incorporate new or existing
methods to improve the constraint aggregation approximation,
so that local constraint adherence is improved. Furthermore,
the discontinuity in the modified Goodman correction, when the
mean stress approaches the ultimate tensile strength, should be
addressed and future research could also focus on suppressing
the regions of intermediate density occasionally observed in
moving load problems.

Appendix A. Manual design iteration to remove local
stress peaks

A manual design iteration is made for the result of Test problem
1 to reduce the maximum constraint violations presumed
to originate from numerical reasons or jagged interpreted
boundaries. Where necessary, boundaries are manually
redrawn using smooth curves while avoiding adding additional
material. After the manual adjustment, the design is reanalyzed.
The resulting maximum local fatigue for the proportional
approach is 1.24307, as shown in Figure A.22, while only
increasing the material usage by 0.51%. The resulting
maximum local fatigue for the non-proportional approach is
1.18526, as shown in Figure A.23, with a material usage
increase of 0.68%.

(a) Result of Test problem 1 (b) After a manual design iteration

Figure A.22: Reduced stress peaks after a manual design iteration for the
proportional approach of Test problem 1.
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4
DOT design cases

The presented method has been applied to the two DOT cases. An additional challenge of these cases
that became apparent was that allowable deformations were quite dominant constraints and had a sig-
nificant influence on the optimized mass. These allowable deformations, however, were based on a
FE-analysis of the whole drivetrain assembly and not very precise defined for the individual parts, espe-
cially when using simplified boundary conditions like the fixed support at the inner ring. Nevertheless,
assumptions where made for these deformation constraints and applied. Approaches that where tried
out to constrain displacements were either to constrain the mean compliance in time or to aggregate
displacements on a specific surface where a specific maximum displacement was allowed. Since the
global fatigue constraint underestimates the local fatigue constraints, a more conservative fatigue limit
of 50 [MPa] as opposed to 60 [MPa] was used during the optimization, which means that the local con-
straints resulting from the optimization are satisfied according to the real fatigue limit for local fatigue
amplitudes of 𝜎

𝑎0

𝜎D
≤ 1.2.

4.1. DOT stator
For the DOT stator a target mass of 750 [kg] was specified for the full part. The assumed deformation
constraint is a maximum allowable displacement at the load application surface. As a maximum dis-
placement both 0.3 [mm] and 0.2 [mm] were used. The design domain is shown in Figure 4.1. The
2D model has an artificial thickness of 30 [mm]

Figure 4.1: Design domain of the a stator segment. The black region is prescribed solid and fixed to the world. The dark gray
regions are prescribed solid. A prescribed void region (white) is added along the boundary. A time-varying moving load is applied
on the left boundary. A significantly smaller distributed load is applied on the prescribed solid section inside the light gray design
domain.

29



30 4. DOT design cases

The results of both optimizations are shown in Figure 4.2 and Figure 4.3 respectively. The total opti-
mized mass obtained was 447 [kg] for the 0.3 [mm] constraint (40.4% below target) and 519 [kg] for a
constraint of 0.2 [mm] (30.8% below target), which shows how sensitive the optimized design is to this
non precise defined constraint. The two optimisations together do show a rough trend from which re-
gions with potential mass reduction can be concluded. The local fatigue constraints for the real fatigue
limit (1.2) were satisfied for both designs.

(a) Density distribution (b) Normalised fatigue amplitude

Figure 4.2: Result of the optimized stator using a displacement constraint of 0.3 [mm].

(a) Density distribution (b) Normalised fatigue amplitude

Figure 4.3: Result of the optimized stator using a displacement constraint of 0.2 [mm].

4.2. DOT rotor
The mass target of the rotor part was about 3000 [kg] excluding the cam ring. The deformation con-
straint of the rotor part was a lot more dominant than the allowable fatigue with respect to the material
usage. A maximum axial displacement of 0.15 [mm] is prescribed on the inner ring and a maximum
radial deformation of 0.3 [mm] on the cam ring. The design domain is shown in Figure 4.4.

From the results shown in Figure 4.5 can be seen that the fatigue is satisfied with respect to the real
fatigue limit (1.2) and notably low throughout the structure. A mass of 2117 [kg] was obtained which is
29.4% smaller than the prescribed mass budget.
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Figure 4.4: Design domain of the a rotor segment shown in light gray. The dark gray regions are prescribed solid. The inner
ring can move freely in the axial direction. The left surface of the cam ring is constrained in the axial direction. A time-varying
moving load is applied on the cam ring surface for which the different time steps are shown.

(a) (b)

Figure 4.5: Normalised fatigue amplitude of the optimized rotor

4.3. Manufacturability
An additional structural requirement by DOT was the preference to construct the parts out of welded
plates. For the 2D stator result obtained, which can be cut out from a plate, this should not be an issue.
For the obtained rotor design however, the interpretation to a plate design is not trivial.





5
Discussion & Conclusion

5.1. Discussion
This section will give a brief discussion on the method presented in the article of Chapter 3. In general
the final results of the examples analysed were black and white and convergence of the objective
function was smooth. Some moving load problems, however, showed difficulty in fully eliminating gray
regions. A possible explanation for this can be that the moving load can be considered as a distributed
load over the range of motion. These remaining gray regions have been observed in previous research
when dealing with distributed loads.

The results of Examples 2-5 show that when using the presented method, a fatigue constraint adher-
ence can be achieved for non-proportional loading problems, that is comparable to the proportional
problem Example 1. On the other hand, the proportional definitions of the problems showed severe
local violations of the fatigue constraint. Depending on the quality of assumptions, the proportional
approach was able to find main topological features in some cases. Making proper proportional as-
sumptions of loading is, however, not always trivial and significant post processing would be necessary
to obtain a final design which adheres to the constraints.

From the results of Examples 3-5, a disadvantage of using the signed von Mises stress as a fatigue
criteria can be seen. Regions where the sign of the hydrostatic stress suddenly changes in time show
exaggerated stress cycles which are an unrealistic representation of the reality. This effect is not always
avoidable by changing the topology and can therefore show up as critical regions in the design, which
most likely limit the optimization to further reduce the mass.

Using the method on the DOT design cases resulted in designs with considerably lower masses than
the prescribed mass budget for the parts, while adhering to the fatigue requirements. However, it
became apparent that the mass of the optimized result was very sensitive to the prescribed deformation
constraints, which were not very precisely defined. The reliability of the structural optimum found is
therefore debatable, but at the least it illustrated the potential of a significant mass reduction.

A preference was to construct the parts out of welded plates. Fatigue requirements around welds are
generally more strict. To improve the manufacturability of the optimized design, a method could be
developed that takes the plate design requirement into account, where more conservative regional
fatigue constraints around weld locations are incorporated.

5.2. Conclusion
The goal of this work has been to presented a fatigue constrained topology optimization method to
minimize the mass of cyclic symmetric structures subjected to non-proportional loading.

To evaluate infinite fatigue life for non-proportional loading, a quasi-static analysis is performed to obtain
the time-varying stress history and a smooth min/max function is used to estimate the local largest
stress cycles, which is differentiable and can therefore be implemented into TO.
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34 5. Discussion & Conclusion

The method was tested on some academic problems and compared to a proportional approach, where
proportional assumptions of the loading conditions were made. It was found that the non-proportional
method could properly constrain the fatigue for both 2D and 3D Test problems. The the proportional
approach, on the other hand, showed severe violations.

It was found that cyclic symmetry can be exploited to reduce the computational cost of the quasi-static
analysis. When the loading acting on each cyclic symmetric segment adheres to specified conditions,
the static response of the whole structure can provide multiple time steps for the quasi-static analysis of
a single segment through the responses of the other segments, significantly reducing the computational
cost of the optimization problem.

5.2.1. Future work
The Signed von Mises stress fatigue evaluation used is known to be inaccurate for regions where the
sign of the hydrostatic stress suddenly changes in time. A critical plane method is more suitable for
non-proportional loading fatigue evaluation and should be implemented into the method to improve final
results.

Another recommendations is to incorporate new or existing methods to improve the local constraint
control, so that local constraint adherence is improved.

A last recommendation is to include a method which takes manufacturability constraints of a welded
plate structure into account.



A
COMSOL implementation methods

In this appendix some of the less straight forward methods that were used for the implementation
in COMSOL are discussed. It is, therefore, assumed that the reader is familiar with the basics of
COMSOL.

A.1. Modeling a moving load
The distributed, moving loads are modeled using a Neumann type boundary condition (Sönnerlind
2016). This type of condition implements the load as a weak constraint on the selected boundary,
as it is not possible to define a boundary mesh that fits the load distribution for all time points. The
time-varying, moving load f(𝑟(𝑡), 𝑡) is defined as follows:

Ku(𝑡) = f(𝑟(𝑡), 𝑡), (A.1)

f(𝑟(𝑡), 𝑡) = {f(𝑡), if 𝑟(𝑡) ≤ 𝑎,
0, otherwise, (A.2)

𝑟(𝑡) = √(𝑥 − 𝑥(𝑡))2. (A.3)

Here, K and u(𝑡) are the stiffness matrix and nodal displacements respectively. 𝑥(𝑡) is the time de-
pending position of the loading as shown in Figure A.1 and 𝑟(𝑡) is a vector describing the absolute
distance away from the loading. If the magnitude of the distance vector is smaller than the application
width 𝑎, the distributed load f(𝑡) is applied.
By defining 𝑥(𝑡), 𝑟(𝑡) and 𝑎 as variables, f(𝑟(𝑡), 𝑡) can be implemented as an if statement in a distributed
boundary load.

𝑎

Figure A.1: An illustration of the variables used to model the moving load
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A.2. Cyclic symmetry and quasi static analysis
The Cyclic symmetry and quasi static analysis is modeled using the linear extrusion function, which is
a non local coupling that makes it possible to project variable fields of one geometry, onto a copy of
that geometry as shown in Figure A.2. The density field of the copied segments are set to the projected
density field of the design domain. The stress field is projected back to the design domain to construct
the quasi static analysis.

𝝆

𝝈 𝑡𝑖

Design Domain Segment i

Figure A.2: Projection of densities and stress response between segments and design domain

A.3. Fatigue constraint
To implement the stress relaxation, the equation view option needs to be enabled. In the equation view
option under the chosen material model of the solid mechanics, the stress relaxation can be applied to
the individual elements of the stress matrix.

For the smooth maximum and minimum stress estimation in time, the linear extrusion function men-
tioned is used to sum the time step contributions of the design domain copies.

The lower bound aggregation function is implemented using the non local coupling average function.

A.3.1. Alternative approaches tried
Finding a method to implementing the smooth min/max estimation in time, in a way that was compatible
with the TO study, was found to be quite a challenge. Several approaches were tried that did not work.

Firstly, using the withsol() operator to refer to the stress fields of different time steps, so that they can
be summed in the smooth min/max function.

A second approach was to add the different time step contributions of the smooth min/max summation
in a state variable.

Another approach was attempting to use the fatigue module study step into the TO study, which is
a independent study step which evaluates fatigue from a FE-analysis input. The fatigue study did
however not update between iterations.

The most promising approach that was tried was to integrate the time contributions of the smooth
min/max function using the domain ODE interface. This approach was found to work for a compliance
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minimization problem using the global ODE interface, but further investigation was abandoned when
the linear extrusion approach was found to work for fatigue.

A.4. Using COMSOL Livelink for MATLAB
Implementing the method in COMSOL takes a lot of repetitive steps for each new case. To avoid
mistakes and save time the Livelink with MATLAB can be used to adept the COMSOL model using
MATLAB commands. This can help automate the set up of the linear extrusions and boundary condi-
tions of the individual segments as well as apply changes in the model to all segments simultaneously.
See the following example for commands that were used to set up the example problems studied. Text
between <> require input that depends on the problem:

1 segs = <number of segments>;
2
3 model = mphopen('<COMSOL_filename>');
4
5 %% Copy geometry
6 model.component('comp1').geom('geom1').create('copy1', 'Copy');
7 model.component('comp1').geom('geom1').feature('copy1').selection('input')

.set({<geometry_to_copy>});
8 model.component('comp1').geom('geom1').feature('copy1').set('displx', <

displacement>*[1:(segs-1)]);
9 model.component('comp1').geom('geom1').run('fin');

10
11 %%Copy meshing sequence
12 model.component('comp1').mesh('mesh1').feature('<mesh type>').selection.

geom('geom1', 2);
13 model.component('comp1').mesh('mesh1').feature('<mesh type>').selection.

set(<selection of original segment>);
14 model.component('comp1').mesh('mesh1').create('copy1', 'Copy');
15 model.component('comp1').mesh('mesh1').feature('copy1').selection('source'

).geom(2);
16 model.component('comp1').mesh('mesh1').feature('copy1').selection('

destination').geom(2);
17 model.component('comp1').mesh('mesh1').feature('copy1').selection('source'

).set(<selection original segment>);
18 select = [];
19 for i = 1:(segs-1)
20 select = [select <selection of copy i>];
21 end
22 model.component('comp1').mesh('mesh1').feature('copy1').selection('

destination').set(select);
23
24 %% Set up linear extrusions
25 for i = 1:(segs-1)
26 model.component('comp1').cpl.create(sprintf('linext%d',2*i-1), '

LinearExtrusion');
27 model.component('comp1').cpl(sprintf('linext%d',2*i-1)).selection.set(<

selection copy i >);
28 model.component('comp1').cpl(sprintf('linext%d',2*i-1)).selection('

srcvertex1').set([<point 1 copy i>]);
29 model.component('comp1').cpl(sprintf('linext%d',2*i-1)).selection('

srcvertex2').set([<point 2 copy i>]);
30 model.component('comp1').cpl(sprintf('linext%d',2*i-1)).selection('

srcvertex3').set([<point 3 copy i>]);
31 model.component('comp1').cpl(sprintf('linext%d',2*i-1)).selection('

dstvertex1').set([<point 1 original segment>]);
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32 model.component('comp1').cpl(sprintf('linext%d',2*i-1)).selection('
dstvertex2').set([<point 2 original segment>]);

33 model.component('comp1').cpl(sprintf('linext%d',2*i-1)).selection('
dstvertex3').set([<point 3 original segment>]);

34
35 model.component('comp1').cpl.create(sprintf('linext%d',2*i), '

LinearExtrusion');
36 model.component('comp1').cpl(sprintf('linext%d',2*i)).selection.set(<

selection segment 1>);
37 model.component('comp1').cpl(sprintf('linext%d',2*i)).selection('

srcvertex1').set([<point 1 original segment>]);
38 model.component('comp1').cpl(sprintf('linext%d',2*i)).selection('

srcvertex2').set([<point 2 original segment>]);
39 model.component('comp1').cpl(sprintf('linext%d',2*i)).selection('

srcvertex3').set([<point 3 original segment>]);
40 model.component('comp1').cpl(sprintf('linext%d',2*i)).selection('

dstvertex1').set([<point 1 copy i>]);
41 model.component('comp1').cpl(sprintf('linext%d',2*i)).selection('

dstvertex2').set([<point 1 copy i>]);
42 model.component('comp1').cpl(sprintf('linext%d',2*i)).selection('

dstvertex3').set([<point 1 copy i>]);
43 end
44
45 %% Set up density model
46 model.component('comp1').common('dtopo1').selection.set(<design domain

selection>);
47 model.component('comp1').common('<optional features>').selection.set(<

selection optional feature>);
48
49 for i= 1:(seg-1)
50 model.component('comp1').common.create(sprintf('ftopo%d',i), '

FixedTopologyDomain');
51 model.component('comp1').common(sprintf('ftopo%d',i)).selection.set(<

design domain copy i>);
52 model.component('comp1').common(sprintf('ftopo%d',i)).set('

fixedDensityType', 'Custom');
53 model.component('comp1').common(sprintf('ftopo%d',i)).set('theta_fix',

sprintf('linext%d(dtopo1.theta_c)',2*i));
54 end
55
56 %% Set up boundary conditions
57 model.component('comp1').physics('solid').feature('bndl1').selection.set(<

selection on segment 1>);
58
59 model.component('comp1').variable.create('T1');
60 model.nodeGroup('grp1').add('variable', 'T1');
61 model.component('comp1').variable('T1').selection.geom('geom1', 2);
62 model.component('comp1').variable('T1').selection.set(<selection segment

1>);
63 model.component('comp1').variable('T1').set('time', '1');
64
65 for i = 1:(steps-1) %Exampele for a boundary load
66 model.component('comp1').physics('solid').create(sprintf('bndl%d',(i+1)),

'BoundaryLoad', 1);
67 model.component('comp1').physics('solid').feature(sprintf('bndl%d',(i+1)))

.selection.set(<selection on copy i>);
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68 model.component('comp1').physics('solid').feature(sprintf('bndl%d',(i+1)))
.set('LoadType', 'ForceLength');

69 model.component('comp1').physics('solid').feature(sprintf('bndl%d',(i+1)))
.set('FperLength', {'if(r_t<a,f,0)' '0' '0'});

70
71 model.component('comp1').variable.create(sprintf('T%d',(i+1)));
72 model.nodeGroup('grp1').add('variable', sprintf('T%d',(i+1)));
73 model.component('comp1').variable(sprintf('T%d',(i+1))).selection.geom('

geom1', 2);
74 model.component('comp1').variable(sprintf('T%d',(i+1))).selection.set(<

selection copy i>);
75 model.component('comp1').variable(sprintf('T%d',(i+1))).set('time',

sprintf('%d',i));
76 end
77
78 %% Set up constraints
79 model.component('comp1').variable.create('stress constraint');
80 model.component('comp1').variable.create('fatigue constraint');
81
82 local_stress_tmax = ”exp(Snorm*k1)”; %Snorm = normalised von mises

stress
83 local_Sstress_tmax = ”exp(SSnorm*k1)”; %SSnorm = normalised signed von

mises stress
84 local_Sstress_tmin = ”exp(SSnorm*-k1)”; %K1 = aggregation parameter
85
86 for i = 1:(segs-1)
87 local_stress_tmax = append(local_stress_tmax,sprintf(”+exp(linext%d(Snorm)

*k1)”,2*i-1));
88 local_Sstress_tmax = append(local_Sstress_tmax,sprintf(”+exp(linext%d(

SSnorm)*k1)”,2*i-1));
89 local_Sstress_tmin = append(local_Sstress_tmin,sprintf(”+exp(linext%d(

SSnorm)*-k1)”,2*i-1));
90 end
91
92 local_stress_tmax = append(”log(”,local_stress_tmax,”)/k1”);
93 local_Sstress_tmax = append(”log(”,local_Sstress_tmax,”)/k1”);
94 local_Sstress_tmin = append(”log(”,local_Sstress_tmin,”)/-k1”);
95 model.component('comp1').variable('stress constraint').set('

local_stress_tmax', local_stress_tmax);
96 model.component('comp1').variable('fatigue constraint').set('

local_Sstress_tmax', local_Sstress_tmax);
97 model.component('comp1').variable('fatigue constraint').set('

local_Sstress_tmin', local_Sstress_tmin);
98
99 model.component('comp1').cpl('aveop1').selection.set(<selection on segment

1 to aggregate>);
100
101 %% Save
102 mphsave(model,sprintf('<COMSOL_filename>_%dsegs',segs))





B
Mesh refinement and filter radius

Themesh size affects the solution in multiple ways. The increased number of elements result in a larger
set of local constraints to aggregate. This lowers the accuracy of the aggregation function, as can be
seen in Table B.1. Another way the mesh size influences the design is that it allows for a smaller filter
radius, resulting in sharper boundaries, as can be seen in Table B.1. Due to the SIMP interpolation
used on the material properties, the stresses found in the gray boundary are misrepresented. The
sharper boundary increases the accuracy of the stresses in the structure.

Table B.1: The effect of the mesh size and filter radius 𝑅PDE on the optimized design of Test problem 2.

Mesh = 100x 100,
RPDE = 1.5 [mm]

Mesh = 200x 200,
RPDE = 1.5 [mm]

Mesh = 200x 200,
RPDE = 0.75 [mm]

𝑉 = 0, 4010 𝑉 = 0, 4229 𝑉 = 0, 3811
𝑔f𝑒,max = 0, 12391 𝑔f𝑒,max = 0, 18978 𝑔f𝑒,max = 0, 16087
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