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1
Introduction

Mechanisms are all around us, and we use them every day. From the drive-train in a car and your bicycle to
the lock of a door, the mechanism of a clock and a wrench. A definition that includes all these mechanisms is:
“Mechanical device used to transfer or transform motion, force, or energy” [1]. In a conventional mechanism,
multiple parts are working together to achieve this. Examples of such parts are: gears, belts, chains, rigid links,
bearings and springs [2]. An alternative to conventional mechanisms is the use of compliant mechanisms. A
compliant mechanism uses elastic deformation to achieve the transfer of motion, force, or energy. The field
of compliant mechanisms is a popular research subject because of the advantages compliant mechanisms
have over conventional mechanisms; less parts are required to build a compliant mechanism, resulting in
a light-weight mechanism with lower assembly costs that require less maintenance, there is no backlash or
friction and no lubrication is required [3, 4]. Compliant mechanisms can also be found in our daily life. In
the supermarket, the cap of a bottle of sauce is connected to the bottle with a compliant hinge. Figure 1.1
shows two versions of the mechanism inside a bicycle bell. In Figure 1.1a, a spring is connected to a lever to
transform the applied force of your thumb into a rotation of the gear. In Figure 1.1b the spring and lever are
combined into a single compliant part with the same functionality.

(a) A conventional mechanism in a bicycle bell
consisting of a spring and a lever [5].

(b) A compliant mechanism in a bicycle bell
consisting of a single part.

Figure 1.1: A comparison between two types of mechanisms in a bicycle bell.

The use of compliant mechanisms also has some drawbacks. The main drawback is that external work
is required to elastically deform the mechanism [1], i.e. the mechanism has a certain stiffness in the desired
direction of motion. The elastic material behaves like a spring, without an applied force the mechanism will
stay in the equilibrium position. However, there is a solution for this drawback; with the right combination
of geometry, stiffness and prestress the stiffness can be reduced or even removed [6]. If the stiffness is
successfully removed, the compliant mechanism has zero-stiffness behaviour [7], also referred to as neutral-
stability. Therefore, a large part of the research on compliant mechanisms is focussed on creating compliant
mechanisms with zero-stiffness behaviour [8, 9]. The basic principle is based on applying a preload in the
stiffest direction of the flexible beam [10]. At a certain preload, the bending stiffness approaches zero and
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2 1. Introduction

zero-stiffness is obtained [11, 12]. In most zero-stiffness compliant mechanisms, leaf springs are preloaded
in their stiffest direction [13, 14, 15, 16, 17]. This corresponds to the compression of the leaf springs and the
critical preload is related to the critical load for Euler buckling [18].

Euler buckling is not the only existing type of buckling. One of the other types is lateral torsional buckling
(LTB). This type of buckling typically occurs for slender beams with open cross-sections such as an I-section
[19]. LTB occurs when a bending load is applied in the stiffest bending direction of the beam. Figure 1.2
provides a drawing of the undeformed and deformed state for LTB of an I-beam. Due to the type of cross-
section, the stiffest bending direction is bending around the y-axis. If a force F is applied in the positive
z-direction, the bottom flange of the I-beam is compressed and the top flange is tensioned. For a certain
critical force LTB occurs, causing the I-beam to deflect laterally by a distance u and rotate by an angle α

[20, 21]. LTB is well known in civil and structural engineering, where slender beams with open cross-sections
are used for mass reduction. However, the focus of these engineering fields is on preventing LTB instead of
using the elastic deformation of the beams [22].

X

Z

Y

X'

Z'

Y'

w
u

α

F

Figure 1.2: Unloaded and loaded configuration for lateral torsional buckling of an I-beam. A force F is applied,
and when lateral torsional buckling occurs the deformed beam has a lateral displacement u and a rotation α.

The objective of this research is to investigate the possibility of implementing lateral torsional buckling
into a compliant mechanism to obtain zero-stiffness behaviour. The hypothesis is that this working principle
can successfully be implemented if the bending force is applied in the stiffest bending direction of the
beam. In order to investigate this, the thesis is divided into two parts. First, a literature review is conducted
on the buckling behaviour of Euler buckling and lateral torsional buckling. The focus of this literature
review is on calculation methods that are used to calculate the critical buckling load for both types of
buckling. The obtained knowledge is used in the research paper which is the second part of this thesis.
The research paper proposes a method to implement lateral torsional buckling in compliant joints to obtain
zero-stiffness behaviour. When the movements of a mechanism are evaluated, two main types of motion
can be distinguished; translation and rotation. In the research paper, two types of compliant joints with
these motions are considered; a translational joint [23, 24, 13] and a rotational joint [25, 16]. In the paper,
an analytical analysis is carried out on the lateral torsional buckling of an I-beam. Next, the two joints are
implemented in a finite element analysis (FEA) to simulate the zero-stiffness behaviour. A sensitivity analysis
is performed to investigate how the cross-sectional dimensions affect the zero-stiffness behaviour. Lastly, the
results from the FEA are verified by experiments on prototypes of the two joints.

The outline of this report is as follows. In Chapter 2, the literature review on calculation methods for the
buckling behaviour of Euler buckling and lateral torsional buckling is provided. Next, the research paper on
the implementation of lateral torsional buckling in translational and rotational compliant joints to obtain
zero-stiffness behaviour is provided in Chapter 3. The obtained results in this work will be discussed in
Chapter 4, followed by a general conclusion in Chapter 5. Lastly, any additional material that is used in this
work is provided in the Appendices.
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Literature review on calculation methods for the buckling behaviour
of Euler buckling and lateral torsional buckling

Marco Moerman

Abstract—Compliant mechanisms are a popular alterna-
tive to conventional mechanisms because of their advan-
tages in mass reduction, friction, backlash and lubrication.
A drawback in the use of compliant mechanisms is the
presence of stiffness. The advantages of compliant mech-
anisms and conventional mechanisms can be combined if
the stiffness in the direction of motion of the compliant
mechanism can be reduced or ideally removed. If the
stiffness is successfully removed a zero-stiffness compliant
mechanism can be realized. The creation of zero-stiffness
mechanisms is often based on the principle of Euler
buckling. A possible alternative for Euler buckling could
be the use of lateral torsional buckling in compliant
mechanisms. In this literature review calculation methods
for the buckling behaviour of Euler buckling and lateral
torsional buckling are discussed. The found methods are
provided in an overview and compared to each other using
comparison criteria to investigate the possibility of using
lateral torsional buckling to create zero-stiffness compliant
mechanisms.

Index Terms— Lateral torsional buckling, column buckling,
Euler buckling, critical load, compliant mechanisms, zero-
stiffness

I. INTRODUCTION

Compliant mechanisms are a popular alternative for con-
ventional mechanisms for several reasons; the same mecha-
nism can be built using less parts resulting in a light-weight
mechanism, no lubrication is needed and there is no friction
or backlash [1]. In a conventional mechanism rigid parts
connected by joints are used to achieve force and/or motion
transmission. In a complaint mechanism, however, elastic
deformation is used to achieve this transmission. Compliant
mechanisms are a research field where possibilities are ex-
plored looking for clever designs. An interesting possibility
is the use of compliant mechanisms in exoskeletons. Next
to the already mentioned advantages compliant mechanisms
show potential in terms of adaptability, safety, efficiency and
comfort [2]. These are all important properties of exoskeletons
which explain the interest in the use of compliant mechanisms.

The use of compliant mechanisms introduces also some de-
sign challenges. One of the main challenges is the requirement
of external work to elastically deform the mechanism due to
the stiffness of the mechanism [3]. Part of the research in

This literature review is written for the ME56010 course of the
Mechanical Engineering - High Tech Engineering program at the
University of Technology Delft)

compliant mechanisms is focused on reducing or removing
this stiffness in a mechanism in order to create a zero-stiffness
compliant mechanism [4]. With the right combination of
geometry, stiffness and prestress the stiffness can be removed.
If this is successfully done the advantages of compliance can
be used without the requirement of external work.

One of the possible solutions to this challenge is using the
principle of Euler buckling in a compliant mechanism. Euler
buckling is also known as column buckling and is described
by Leonard Euler in 1757 [5]. A compressive axial load is
applied to a column and for a certain critical load, the column
is put in a state of unstable equilibrium. A load beyond this
critical load results in the buckling of the column which can be
observed by the lateral deflection of the column. In compliant
mechanisms, this principle is used by applying an axial load
on a leaf spring or a similar type of compliant member. The
lateral instability at the critical load can be used to create a
zero-stiffness mechanism [6]–[8]. By applying a load that is
beyond the critical load bistable behaviour can be obtained.
Instead of the unstable equilibrium the mechanism now has
two stable states [9]–[11].

Euler buckling is not the only existing type of buckling.
Lateral Torsional Buckling (LTB) is a type of buckling that
occurs typically for slender beams with open cross-sections
[12]. LTB is mostly known in civil- and structural- engineering
where slender open cross-section beams are often used for
mass reduction. In most cases, an I-beam is used. LTB occurs
when a downward load is applied on the I-beam resulting in
compression of the bottom flange and tensioning of the top
flange. At a certain critical load this results in an instability
which causes the I-beam to deflect laterally and twist at the
same time [13]. Early studies on LTB were carried out by
Prandtl (1899) and Timoshenko (1953) [14], [15]. Due to the
static nature of civil- and structural- engineering LTB is an
undesired phenomenon considered to be a failure mode [16].
Therefore, a lot of research is carried out to obtain the critical
load for LTB. However, literature on LTB loads beyond the
critical load or post-buckling behaviour is not available.

It would be interesting to investigate the possibility to
use LTB as an alternative for Euler buckling in a compliant
mechanism to obtain zero-stiffness behaviour. Therefore it
is required to get more insight into both types of buckling.
The aim of this literature review is to find methods for
calculating the critical load behaviour of both Euler buckling
and lateral torsional buckling. There are three main approaches
to calculate these; empirical, analytical and numerical. The
goal is to find similarities between the types of buckling to see
if it is possible to implement LTB in a compliant mechanism
to obtain zero-stiffness behaviour.
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Fig. 1. Categorization literature review

In this literature review, the different techniques to calculate
the buckling behaviour of Euler buckling and lateral torsional
buckling are investigated and categorized. In Section II the
used method including the categorization, search protocol and
comparison criteria are described. Next in Section III the found
literature is presented and will be compared using the proposed
criteria. In Section IV the results will be discussed and the
gaps in the literature will be identified. Lastly, the conclusion
of the literature review is given in Section V.

II. METHODS

In this section, the methods used in this literature review
are discussed. First, the categorization that will be used to
distinguish the found literature will be introduced. Next, the
search protocol which will be used to find all the relevant
literature is described. Lastly, the criteria for comparison of
the literature are given.

The aim is to compare different calculating methods for
Euler Buckling and LTB. In order to do this systematically
the found literature is divided into categories. The first dis-
tinction of the categorization is made on the type of buckling.
The focus of this review is on two types of buckling; (i)
Euler buckling and (ii) Lateral Torsional Buckling. Also, a
distinction is made based on the calculation method. Here
three types of analysis are available. An (i) empirical analysis
is based on the results of experiments. An (ii) analytical
analysis uses theoretical formulas to obtain a result. In a (iii)
numerical analysis the problem is solved using algorithms
that use numeric approximations. In many papers, multiple
types of analysis are used. For example, a numerical method
is proposed and the results of this analysis are validated by
experiments. Or some analytical background is given which
will be used in the numerical analysis. In such a case, it
is possible that a single paper is used in two categories if
both types of analysis can be used independently. A schematic
overview of this categorization is provided in Figure 1.

In order to find all the relevant literature in a systematic
way a search protocol is composed. The relevant keywords
and search terms used in this search are provided in Table II.
The terms in each column can be combined with a term from
another column to obtain a complete search term. For example
”Euler buckling” from column one combined with ”Critical
Load” from column two and ”Analysis” from column three
result in the complete search term ”Euler buckling critical load

analysis”. In order to find the literature search engines such
as Scopus, ScienceDirect, Google Scholar and the TU library
are used.

TABLE I
OVERVIEW OF USED SEARCH TERMS TO FIND LITERATURE ON

CALCULATION METHODS

Search terms combined with AND/OR
Column buckling Critical load Calculation
Lateral buckling Critical moment Numerical
Torsional buckling Failure Analytical
Lateral torsional buckling Stability Empirical
Euler buckling Load Measurements
Flexural buckling FEM
Flexural torsional buckling Analysis

Experiments

After all the literature is gathered also a comparison is made
between the found calculation methods. For this comparison,
some criteria are chosen on which each method will be ex-
amined. The first criterion is correctness, for every method an
indication of the correctness is given. A method is an estimate
(- -) if the result can only be used to give an estimation of the
actual result, accurate (++) if the result has high precision and
one of these three other levels (-, +- and +) if it is somewhere
in between. This assessment is based on the results reported in
the corresponding work. The second criterion is computation
time. Here five levels of computation time are defined; slow
(- -), fast (++) and again the levels in between (-, +- and +)
for very slow to very fast computations respectively. The next
criterion is called applicability which gives an indication of the
flexibility of the found method to apply to slightly different
situations. This gives an indication of how many boundary
conditions and load cases are taken into account in the method.
Also here five levels are defined; bad (- -) if the method can
only be used for a single situation, good (++) if the method
is applicable for (almost) all possible situations and the other
levels (-, +- and +) if it is somewhere in between. The last
criterion is difficulty as an indication of how difficult it is to
implement and use the method. In this case, possibilities are
difficult (–), easy (++) and the other options (-, +- and +) for
methods of decreasing difficulty.
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III. RESULTS

The results of the literature review are discussed in this
section. First, an overview is given of the number of papers
found for each category. Next, for each category, the relevant
information found in the literature is provided. Lastly, the
found literature is summarized in a table and the assessment
made based on the comparison criteria is discussed.

In Table III the number of papers for each category is
provided. The abbreviations used in this table are; EB (Euler
Buckling), LTB (Lateral Torsional Buckling), E (Empirical),
A (Analytical) and N (Numerical). Also, the references to the
papers in every category are given.

TABLE II
NUMBER OF PAPERS FOUND FOR EACH CATEGORY

Category Number of papers Sources
EB-E 4 [17]–[20]
EB-A 7 [15], [21]–[26]
EB-N 4 [27]–[30]
LTB-E 5 [31]–[35]
LTB-A 9 [15], [36]–[43]
LTB-N 5 [31], [38], [40], [43], [44]

A. Euler buckling - critical load
Empirical. The first method to determine the critical load

for Euler buckling is empirical research. Experiments are
conducted and can be compared to known references for val-
idation. In other cases, the experiments are used as validation
for a proposed analytical or numerical method. In an exper-
imental investigation by Ban et al., [17], [18] the buckling
behaviour of steel columns is investigated. In this research
initial imperfections such as residual stress, initial bending
and loading eccentricity are measured beforehand and taken
into account in the comparison. In total twelve specimens
are tested, some are box-sections and some are I-sections,
which are welded together. On both ends, a cylindrical hinge
is attached to ensure the pin support. The compression load
is applied by a hydraulic actuator. Transducers are used to
measure the relevant horizontal and vertical displacements
and rotations. The results from these experiments can be
displayed in a force-displacement diagram as shown in Figure
2. In the end, the results from the imperfect specimens are
compared with results from a Finite Element Analysis (FEA).
This comparison is used to predict the buckling behaviour for
imperfect columns with different dimensions.

A similar empirical study was conducted by Shi et al. [19].
In this study, the focus is on determining the critical load
for circular columns with imperfections. To fit the boundary
conditions spherical hinges are used on both sides. This allows
rotation of the column. Some pictures of three columns with
different lengths are provided in Figure 3. The red lines
in these pictures correspond to the deformed centerlines of
the columns. In this study the results are used to modify
the existing design code, the Eurocode 3 [45], by adding
an imperfection factor to it to further improve the design
efficiency.

Fig. 2. Typical loading-horizontal displacement curve [17].

Fig. 3. Column in buckled state for three different specimens [19].

In the work of Luible & Crisinel [20], an experimental study
is performed to find the buckling behaviour of columns made
of glass elements. An eccentric compression load is applied to
the column which is again supported by two cylindrical hinges.
The columns are tested for different values of the slenderness
ratio and the results are compared to a theoretical Euler curve
as shown in Figure 4. In this experiment, an initial deformation
w0 is used.

Analytical. In the work of Timoshenko et al. [15] the crit-
ical load for a compressed bar is obtained by considering the
behaviour of an ideal column. This ideal column is assumed
to be perfectly straight and compressed by an applied load.
The critical load is calculated using the differential equation

6 2. Literature survey



Fig. 4. Euler buckling and test results [20].

of the deflection curve of the column. Euler buckling for a
column of which the upper end is free is shown in Figure 5.
This figure shows different buckling modes for these boundary
conditions.

Fig. 5. Column or Euler buckling [15]

The curvature of the axis of the beam for a given bending
moment is

EI
d2y

dx2
= −M . (1)

The quantity EI in this formula is the flexural rigidity of the
beam. The bending moment at any cross-section m − n in
Figure 5(b) is

M = −P (δ − y) . (2)

If this bending moment is inserted in Equation 1 this differ-
ential equation becomes

EI
d2y

dx2
= P (δ − y) . (3)

By inserting the simplification k2 = P
EI into Equation 3 the

equation can be rewritten in the form

d2y

dx2
+ k2y = k2δ . (4)

The solution of this differential equation with the boundary
conditions at the lower end of the column taken into account
is

y = δ(1− cos(kx)) . (5)

The boundary condition at the upper end of the column is
satisfied if δcos(kl) = 0. This gives the expression

kl = (2n− 1)
π

2
. (6)

The smallest critical load is obtained by taking n = 1 in
Equation 6. The value of the critical load P is

Pcr =
π2EI

4l2
. (7)

The formula obtained in Equation 7 is valid for these
specific end conditions; one end of the column is fixed and the
other end is free. The formula is slightly different for other
boundary conditions. In the work of Qiao, & Davalos [21] an
overview is given of some possible boundary conditions as
shown in Figure 6. With the effective length factor including
Equation 7 can be written as

Pcr =
π2EI

l2e
. (8)

In this expression, le is the effective length. The first set of
end conditions in the figure corresponds to the situation of
Equation 7 by using le = 2l. The other possible boundary
conditions result in different values for the critical load. The
effective length factor for a special set of end conditions is
discussed by Cao et al. [22]. Instead of fixed ends of the
column, rotational spring hinges are used resulting in a coun-
teracting moment when the column is bending. Depending
on the stiffness of the springs the effective length factor le
lies between 0.5 and 1, corresponding with situations (b) (no
stiffness) and (d) (high stiffness) in Figure 6.

Fig. 6. Effective length factors for various end-conditions [21].

There are also analytical expressions available when the
load is not applied through the centroid of the column [23],
[24]. In this case, the load is applied at an eccentric distance
e. For increasing values of e the maximum deflection vmax of
the column also increases. This deflection can be calculated
using

vmax = e

[
sec

(√
P

EI

L

2

)
− 1

]
. (9)
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Webber et al. [25] propose a method for calculating the
effective length of columns in multi-story frames. Such frames
are built from separate beams which are connected to each
other. These connections influence the effective length of the
whole frame resulting in a different critical load. This method
is taken a step further by Slimani et al. [26]. In this work, the
effective length factor of columns in frames is determined for
asymmetrical frames which are asymmetrically loaded. From
both studies can be concluded that the effective length factor
is strongly affected by the stiffness and loading conditions in
the adjacent columns.

Numerical. In a numerical study conducted by Desai &
Satish [27] the effect of the slenderness ratio on the critical
load for Euler buckling is investigated. The formula for the
slenderness ratio is

λ =
le
r

,

r =

√
I

A
.

(10)

It is defined as the effective length le divided by the minimum
radius of gyration r. This minimum radius of gyration is
the root of the smallest moment of inertia I divided by
the cross-sectional area A. In this study some assumptions
are made; the column is perfectly straight and the load is
applied axially, the cross-section is uniform, the material is
perfectly elastic homogeneous and isotropic and the length
of the column is large compared to the size of the cross-
section. The analysis is carried out in ANSYS in which
the columns are modelled using 80 elements. An eigenvalue
buckling analysis is conducted and the found critical load is
compared to the theoretical value. It was found that results
between the numerical analysis and theoretical results were
relatively large for a slenderness ratio smaller than 50.

The work of Yazdchi & Anaraki [28] focuses on the
presence of a crack in one of the sides of the column. The
goal is to find how this crack influences the buckling behaviour
of the column. In this study, ANSYS is used to perform the
FEA and the Euler-Bernoulli beam model is used. The cracked
section is modelled as a rotational spring, the stiffness of this
spring depends on the properties of the crack. It was found that
the effects of the crack depend strongly on the location and
the depth of the crack. The buckling load decreases when the
flexibility of the column increases (so the stiffness becomes
smaller).

In the work of Shi et al. [29] a FEA is used to determine
the buckling behaviour of equal angle profiles. This analysis
is performed using ANSYS and the element-type SHELL 181
is used. This type of element supports non-linear buckling
analysis and also has to option to include initial stress in the
model. An element has 4 nodes with 6 Degrees of Freedom
(DoF) each. Part of the study is to investigate the influence
of an end plate at both ends of the column, the model of this
configuration is shown in Figure 7.

A numerical method to investigate the buckling behaviour
of columns under eccentric compression is proposed by Zhao
et al. [30]. In this study, the focus is on two types of columns;
square hollow section (SHS) and circular hollow section

Fig. 7. Finite element model of the column including end plates [29].

(CHS) columns. The FEA software ABAQUS is used and ge-
ometric and material nonlinearities are taken into account. To
describe the non-linear stress-strain relationship the Ramberg-
Osgood model is used. In ABAQUS the solid element C3D8R
is used to model the rigid ends of the columns and shell
element S4R is used to model the columns. An example of
the deformed model in the first buckling mode is shown in
Figure 8 for both types of columns.

Fig. 8. Deformed model for SHS and CHS columns [30].

B. Lateral torsional buckling

Empirical. In the work of Demirhan et al. [31] an ex-
perimental study is performed on cantilever I-beams loaded
under a point load at the free end of the beam. There are
two main experimental variables in this study. The length
of the cantilever is varied to investigate the influence of the
slenderness ratio on the performance of the beam. For this
experiment beams of three different lengths are used. The
second variable is the height of the application point of the
load on the beam with respect to the shear center. In Figure 9
this height is defined as the variable zg and can be a positive or
a negative value. In this study, three different force application
points are used: at the top flange, at the bottom flange and at
the shear center of the beam. The three variations in length and
force application points result in nine different test specimens.
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Fig. 9. Application point of the force with respect to the shear center
[13].

For the experiments, a set-up is used where one end of
the beam is fixed and a load is applied on the other end.
A schematic overview of this test set-up is shown in Figure
10. Most important in this setup is the hydraulic jack which
applies an increasing force on the beam and the load cell which
measures the applied force. Also, two distance sensors are used
to measure the vertical and lateral displacement of the tip of
the beam.

Fig. 10. Schematic overview of test set-up [31].

The results of the experiments are compared to a numerical
calculation. One of the resulting graphs is shown in Figure
11. It is a load-lateral displacement graph that clearly shows
the increase of lateral displacement at a certain (critical)
load. From the experiments is concluded that decreasing the
slenderness of the beam results in an increased critical load.
For the second experimental variation is found that loading at
the bottom flange results in the highest critical loads, followed
by the shear center and the top flange with the lowest critical
loads.

Similar studies as the one described above are conducted for
different types of boundary conditions. In the work of Mottram
[32] a simply supported I-beam, but with lateral deflection,
warping and twist at the ends restrained, is investigated. In
this study, a single load is applied at the middle of the beam.
Bhat & Gupta [33] have conducted an experimental study with
similar boundary conditions, but the load is now applied at

Fig. 11. Load - lateral displacement graph of one of the specimens
[31].

two locations on the span of the beam. The focus of this
study is to investigate the influence of holes in the web of
the beam. The results are compared with a FEA and a factor
is introduced to give an indication of the influence of the holes.
The work of Fortan & Rossi [34] has a focus on the buckling
behaviour of welded I-beams. In total 13 welded I-beams of
varying cross-section dimensions and lengths are tested. The
beams are placed on fork supports and four-point bending tests
are carried out. In the experiments, geometrical imperfections
and residual stresses introduced by welding are taken into
account. The results are compared with the available design
codes. In an experimental study by Jankowska-Sandberg et

Fig. 12. Steel buckled I-beam [34].

al. [35] the lateral torsional buckling behaviour of a steel
truss is investigated. Instead of a single beam, a truss is build
consisting of a number of beams. Several experiments are
performed on different configurations and load cases. In this
study was found that the critical load depends on the type
of loading (on the top or on the bottom of the truss), on the
dimensions of the truss and members and on the stiffness of
the connections of the members.

Analytical. One of the first analytical descriptions of LTB
was provided by Timoshenko & Gere [15]. In this derivation,
nonlinear differential equations are used to obtain the critical
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load for a cantilever I-beam. The results of these calculations
are

Pcr = γ2

√
EIyC

l2
,

C = GJ ,

C1 = ECw ,

Cw =
tfh

2b3

24
,

γ2 =
4.013

(1−
√

C1/l2C
2 .

(11)

C is considered to be the torsional rigidity and C1 is the
warping rigidity. γ2 is a dimensionless stability coefficient that
is dependent on the ratio l2C/C1. For large values of this ratio,
the dimensionless factor can be calculated using the formula
shown below. For smaller values, a table is provided in which
the value for γ2 can be found. Some variations in boundary
conditions and load cases are mentioned by Timoshenko &
Gere: LTB of beams in pure bending and LTB of simply
supported beams.

Over the years many improvements are made in the for-
mulation of Timoshenko & Gere. In the case of a cantilever
beam the most extensive formulation is given by Andrade et
al. [36]. This paper provides a formula that can be both singly
and doubly symmetric. A distributed load, concentrated load or
a combination can be used. Also, the option to add a warping
constraint at the fixed end of the beam is included. A schematic
representation of the used cantilever is shown in Figure 13.

Fig. 13. (a) Representation of the used cantilever. (b) Warping
conditions at the fixed end. [36].

The expression for the critical moment is

Mcr = C1
π2EIz
(kzL)2

×


√(

kz
kw

)2
Iw
Iz

+
(kzL)2GIt
π2EIz

+ (C2zg − C3zj)
2 − (C2zg − C3zj)



. (12)

C1, C2 and C3 are coefficients depending on the load case,
warping conditions, cross-section symmetry and dimensions.
The dependence on cross-section dimensions is taken into
account in the dimensionless parameter K, calculated by

K =
π

L

√
EIzh2

s

4GIt
. (13)

Low values of K correspond to short compact cantilevers
while high values of K correspond to long slender cantilevers.

kz and kw are effective length factors. zj is a cross-sectional
property that depends on the asymmetry between the top and
the bottom flange. In the case of a doubly symmetric beam
zj = 0.

An analytical method to obtain the governing differential
equations of LTB is introduced by Yoo & Lee [37]. This
method is called the Energy Method. The critical load is
derived for an I-beam supported at both ends with an applied
distributed transverse load. First, the strain energy of the
loaded equilibrium configuration is calculated. Also, the loss
of potential energy of the transverse load is calculated. The
change of potential energy from the unbuckled to the buckled
state is used. With the strain energy and the loss of potential
energy, the total energy function Π = U + V is composed.
By solving the differential equations of Π, a characteristic
equation for the critical moment is obtained. This equation
is similar to the one obtained by Timoshenko & Gere in
Equation 11 but can be used in more cases because the stability
coefficient γ2 is given for more loading and boundary condi-
tions. A schematic representation of some of the boundary
conditions is shown in Figure 14. The paper provides stability
coefficients for various loading and boundary conditions. With
these stability coefficients, the critical moment is determined
for the specific set of conditions.

Fig. 14. Schematic overview of possible boundary conditions [38].

The study also introduces the Rayleigh-Ritz method to de-
termine an approximation of the critical loads for LTB. This is
a method to obtain the eigenvalues of the differential equations
used in the Energy Method. An important observation made
in this work is the effect of the position of the transverse load
with respect to the shear center of the beam. When the load is
applied on the upper flange of the beam it tends to increase the
rotation and therefore had a destabilizing effect. This results in
a lower critical load. An applied load on the bottom flange on
the other hand has a stabilizing effect and results in a higher
critical load.
A similar approach to the Energy Method is used in the
work of Raftoyiannis & Adamakos [38]. The paper uses a
simplified expression for the potential energy loss obtained
from Chajes [46]. Also is the critical moment specifically
calculated for web-tapered I-beams. The focus of the study
is on determining modification factors to calculate the critical
load when web-tapered I-beams are used. A variation in this
study is performed by Yuan et al. [39]. In this study the focus
of also on web-tapered beams, but the critical buckling load
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is calculated for T-section beams instead. The influence of the
flange width, indicated by the ratio (width/web height), on the
critical load is also investigated.

An analytical method to calculate the critical load for a
beam that is restrained against warping at the supports is
described in a study conducted by Piotrowski & Szychowski
[40]. In this paper, the beam is stiffened by adding for
example a plate at the end of the beam which results in a
different stiffness. For the calculation of the critical load, the
energy method is used. An extra term is added to the total
energy function in which the elastic energy of the restraint
against warping is calculated. The study provides also a set of
approximation formulas for different loading schemes. These
formulas contain coefficients that are dependent on a factor
κ. The value of this fixity factor κ depends on the type of
restraint at the end of the beam.

In the work of Challamal, & Wang [41] a method is
proposed for the analytical calculation of the critical load
for intermediate and end point loads of a cantilever beam.
The paper uses the exact buckling formula derived for Euler
columns [47] and extends these results to LTB. An important
property of the cantilever beam used in this study is the
narrow rectangular cross-section as shown in Figure 15. The
equilibrium equations that need to be solved in this method
are second-order linear differential equations. Using an I-
beam was not considered in this study because it requires the
implementation of warping in the calculations. Warping leads
to fourth-order differential equations instead of second-order
differential equations.

Fig. 15. LTB of a cantilever beam under combined intermediate and
end point loads. [41].

In the work of Bresser et al. [42] a general formulation
of an equivalent moment factor for elastic LTB is proposed.
The paper focuses on slender rectangular sections and I-
section beams. The known design codes provide a procedure to
design beams based on equivalent moment factors. However,
in many cases, a load pattern is found for which the design
codes do not provide solutions. In these cases, the designer
must rely on assumptions or very case-specific literature. The
paper proposes a general formulation to obtain the equivalent
moment factors for any load case. These moment factors can
be used for both slender rectangular sections and I-section
beams loaded at the shear center. The beams are supported at
both ends by fork supports. The fork support prevents lateral
displacement and twisting at the ends of the beams and allows
for lateral bending. In the paper, an energy method is used
to determine the general formulation. The strain and potential
energy before and after bending are calculated. The result is an

expression with five coefficients that depend on the load case.
This formulation can be applied to at least twenty different
load cases. With this formulation, it is also possible to combine
different load cases into one load case.

In the work of Ozbasaran [43] a formula is proposed for
cantilever I-beams. The formula is

Pcr =
Kb

Ck
E

(
t2f
h

)2

, (14)

and in this formula two coefficients are used, a dimensionless
factor Kb depending on the section properties and loading case
and a slenderness ratio Ck. The slenderness ratio is calculated
using

Ck =

(
Ltf
hb

)2

. (15)

Factor Kb depends on the loading case and on Ck. In the
paper five load cases are described; an applied end-force, a
distributed force, a distributed force + an applied force halfway
the beam, a distributed force + an end-point force and an
applied moment. Also, two types of I-beams are taken into
account which is commonly used in industry; IPE (beam with
straight flanges) and IPN (beam with more curved and tapered
flanges). For the IPN beam and an applied end-force, the
expression for Kb is

Kb = 0.61C−0.56
k + 1.04C−0.05

k . (16)

Numerical. There are several numerical methods available
for calculating the critical load for LTB. In the work of
Wijaya et al. [44] a FEA is used for this calculation. In this
FEA shell elements are used to describe the I-beams. Every
node has six degrees of freedom, three translations and three
rotations. The focus of this study is on cantilever beams,
where one of the ends of the beam is fixed and the other is
free. Two load cases are considered: a point load at the end of
the beam and a uniformly distributed load. For the analysis,
a buckling analysis in an SAP program is used. The results
are compared with analytical results for some variations in
the cross-section and lengths of the beam.

In the subsection of empirical methods, the experiments in
the paper of Demirhan et al. [31] are already mentioned. The
results of these experiments are compared to the results of
a numerical calculation. The numerical method in this paper
consists of two steps. In the first step, the elastic critical
buckling loads and the corresponding buckling mode shapes
are determined. A non-linear load-displacement analysis, in-
cluding geometrical and material non-linearity, is performed
in the second step. The method used in this second step is
called the Riks method and is a post-buckling method. The
numerical analysis is performed in ABAQUS software. To
model the cantilever beams, thin-shell elements (S8R5) are
used. S8R5 is a shell element with eight nodes and five degrees
of freedom per node. In the first step of the analysis, a linear-
elastic material model is used. Using this numerical analysis
the critical load for LTB, the von Misses stress distributions
and buckling mode shapes are determined. An example of a
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resulting figure obtained from this numerical analysis is shown
in Figure 16 where one of the models is shown in the buckled
state.

Fig. 16. Mode shape obtained from numerical analysis [31].

In the analytical method, subsection a paper for the calcula-
tion of the critical load for a beam restrained against warping
at the supports is already described [40]. In this study, a
numerical analysis is performed to verify the results of the
analytical calculations. One of the methods used is a free
software program called LTBeam. The user must provide the
beam properties, boundary conditions and loading case. The
software uses the provided information to calculate the critical
load. The other method used in the study is a FEM analysis
performed in ABAQUS. For this analysis volumetric elements
(C3D8) are used. These elements have eight nodes and six
degrees of freedom for each node. The computations are only
performed in the elastic range of the beam.

In the work of Raftoyiannis, & Adamakos [38] a numerical
calculation is used to verify the results of the proposed
analytical analysis for web-tapered I-beams. The Algor FEA
software is used to perform this analysis. A model consists
of 1200 3-D oriented quadrilateral plate elements. A uniform
load q is applied on the top flange and the beam is simply
supported. An undeformed I-beam modelled in the software
is shown in Figure 17.

Fig. 17. FE model of a undeformed web-tapered I-beam [38].

A parametric study on the buckling load for LTB is con-
ducted by Ozbasaran [43]. In this study, the influence of the
length L, elasticity modulus E, section height h, flange width

w and flange thickness tf on the buckling load is investigated.
Using these parameters two coefficients are composed; a
slenderness ratio Ck and a dimensionless coefficient Kb which
depends on the loading case and section properties. The values
of these coefficients varied in the study. The FEA is performed
in ABAQUS. For this analysis S8R5 shell elements are used.
This is a rectangular element with 8 nodes and 5 DoF at
every node. To simplify the modelling the fillets between the
flange and the web are neglected. It was found that these
simplifications don’t have a significant effect on the results. In
this research four different load cases are taken into account;
an applied moment, a distributed load, an applied force and
a combination between an applied force and distributed load.
One of the resulting plots is shown in Figure 18. In this plot,
the critical moment is calculated for a varying slenderness ratio
Ck. The results from the FEA (green dots) are compared with
results from a presented formula.

Fig. 18. Critical moment depending on slenderness ratio Ck [43].

C. Comparison
In this subsection, an overview of the found literature is

presented and the calculation methods are compared to each
other. In Table III all the found calculation methods are listed
per category. The aim of this table is to give insight into the
differences between the categories and how they score on each
of the comparison criteria.

IV. DISCUSSION

The purpose of this literature review is to create an overview
of the available calculation methods for the buckling behaviour
of Euler buckling and lateral torsional buckling. In this section,
the results from the found literature will be discussed.

The first discussion point is on the categorization used in
this literature review. The two categories Euler buckling and
lateral torsional buckling were well chosen, and no overlap
between these categories was found. The other division in the
categories; empirical, analytical and numerical was a bit more
problematic. In many papers, a combination of these calcu-
lation methods is used. For example, a proposed analytical
formula is verified by a FEA or experiments. Some of these

12 2. Literature survey



TABLE III
OVERVIEW OF THE FOUND CALCULATION METHODS FOR EULER BUCKLING AND LATERAL TORSIONAL BUCKLING.

Source Category Correctness Computation time Applicability Difficulty
[17] EB-E + - - - +-
[18] EB-E + - - - +-
[19] EB-E + - - - +-
[20] EB-E +- - - - -
[15] EB-A + ++ - +
[21] EB-A + ++ +- +
[22] EB-A + + - - +-
[23] EB-A + +- - +-
[24] EB-A + +- - +-
[25] EB-A + +- + +-
[26] EB-A + +- + +-
[27] EB-N ++ +- + +-
[28] EB-N + +- +- +
[29] EB-N + + +- +
[30] EB-N ++ +- + +
[31] LTB-E - - - - +-
[32] LTB-E + - - - +-
[33] LTB-E + - - - +-
[34] LTB-E + - - - +-
[35] LTB-E + - - +-
[15] LTB-A + ++ +- +-
[36] LTB-A + + + -
[37] LTB-A ++ +- ++ -
[38] LTB-A + + +- +-
[39] LTB-A + + +- +-
[40] LTB-A + + + +-
[41] LTB-A + + - +
[42] LTB-A ++ + ++ +-
[43] LTB-A + + +- +-
[44] LTB-N ++ + - +-
[31] LTB-N ++ + + +-
[40] LTB-N + +- + +
[38] LTB-N ++ + +- +
[43] LTB-N ++ +- + +

papers are used in multiple categories. This is only the case if
the described calculation method can be used independently
from any other methods from different categories.

The differences between calculation methods for the two
buckling phenomena are also points for discussion. In general,
Euler buckling is easier to understand and calculate. For Euler
buckling the critical load can be calculated using a simple
formula with a single effective length factor for different
boundary conditions. The slenderness ratio is a guideline for
the buckling behaviour that is used in many methods. The
relatively simple formula is used as a starting point in some
other methods focused on more specific cases. For example,
an eccentric load, flexible fixation, model imperfections and
Euler buckling in frames are topics discussed in the literature.
For LTB the basic formula is more complicated and depends
on many parameters and factors. In the easiest version, a single
coefficient is used depending on a slenderness coefficient, but
this formula can only be used for one specific load case. More
elaborate formulas require multiple coefficients depending on
load case and boundary conditions. Many of the proposed
methods are focuses on reducing the weight of the beams, for
example by using a web-tapered beam, adding holes in the

web or using a T-section beam instead of an I-section beam.
This can be explained by the fact that LTB is mostly known
in civil- and structural- engineering.

The next discussion point is the difference between the
three calculation types. From Table III can be concluded that
empirical methods score very low on computation time and
applicability. The process of building a set-up, gathering mate-
rials and performing the experiments is very time-consuming.
Also, the results from experiments can only be used in that
very specific case of dimensions, boundary conditions, mate-
rial and load case. Therefore, these methods are in most cases
used to verify results from an analytical or numerical method.
When the analytical and numerical methods are compared it
can be concluded that the numerical methods score slightly
higher on correctness and applicability. This can be explained
by the fact that in most analytical formulas some coefficients
are used that are only valid for a certain range of parameters
or a specific load case. A FEA is more flexible and it is also
possible to include imperfections or expand to the analysis of
more complicated problems. However, the numerical methods
score a bit lower on computation time and difficulty. In most
cases, it requires some time to build the model for a FEA
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and it is often more complicated because of all the modelling
possibilities that are available.

The focus of found literature on LTB is on relatively large
beams made of steel. This was already explained by the
engineering field where LTB is used. In all these papers LTB
is considered to be a failure mode and must be avoided. The
beams deform plastically just beyond the critical load due to
the relatively low maximum strain of the used materials. When
different materials are used, for example, plastics or high-
strength metals, with a higher allowable strain the buckling
of the beam remains within the elastic domain. This could
be used in a compliant mechanism to obtain zero-stiffness or
bistable behaviour.

V. CONCLUSION

This literature review is conducted in order to investigate
the possibility of using LTB in a compliant mechanism as
an alternative to Euler buckling. Therefore it is desired to
get an overview of the available calculation methods for
both buckling phenomena. In total 34 papers with different
calculation methods are found and the relevant information
in these papers is discussed. A categorization is made be-
tween these papers and the methods are compared to each
other using comparison criteria. The results are discussed to
indicate the differences and similarities between the buckling
phenomena and calculation methods. It can be concluded that
lateral torsional buckling can be used to create zero-stiffness
compliant mechanisms. This can be done as long as a correct
combination of geometry and material properties is used such
that the mechanism deforms only elastically.
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Lateral torsional buckling in translational and rotational compliant
joints to obtain zero-stiffness behaviour

Marco Moerman

Abstract—Compliant mechanisms are a popular alternative
to conventional mechanisms consisting of multiple parts. Mass
reduction, no backlash, no friction and less maintenance are some
of the advantages of the use of compliant mechanisms. However,
there is also a major drawback; there is always some stiffness
present in the desired direction of motion. The advantages of
conventional and compliant mechanisms can be combined if the
stiffness can be reduced or ideally removed, resulting in a zero-
stiffness compliant mechanism. The stiffness can be removed if a
preload is applied in the stiffest direction of a flexible beam. In the
current design of most zero-stiffness compliant mechanisms, this
working principle is based on Euler buckling. This work proposes
a method to use lateral torsional buckling in translational and
rotational compliant joints to obtain zero-stiffness behaviour. In
an analytical analysis, the lateral torsional buckling of a single
beam is determined. The translational and rotational joint are
implemented in a finite element analysis (FEA) to investigate
the zero-stiffness behaviour. Experiments on a prototype verify
the results from the FEA. Additionally, a sensitivity analysis is
carried out on the effect of the cross-sectional dimensions of the
flexible beam on the zero-stiffness range. The translational joint
has a zero-stiffness range of 28.8 mm, corresponding to 11.5%
of the beam length, and the rotational joint has a zero-stiffness
range of 26.4◦. From the sensitivity analysis, it is found that a
rectangular cross-section has the best region of zero-stiffness.

Index Terms— Lateral torsional buckling, Euler buckling, zero-
stiffness, neutral stability, compliant mechanisms, translational joint,
rotational joint

I. INTRODUCTION

Compliant mechanisms can be used as an alternative to conven-
tional mechanisms consisting of multiple parts. Compliant mech-
anisms use elastic deformation to achieve force and/or motion
transmission. In conventional mechanisms, rigid parts are connected
by joints to achieve force and/or motion transmission. The field
of compliant mechanisms is a popular research subject because of
the advantages over conventional mechanisms; less parts are needed
to build the same mechanism resulting in light-weight mechanisms
that require less maintenance, there is no friction or backlash and
no lubrication is required [1, 2]. However, the use of compliant
mechanisms has some drawbacks. The main challenge is that external
work is required to elastically deform the mechanism [3], i.e. the
mechanism has a certain stiffness. However, with the right combina-
tion of geometry, stiffness and prestress the stiffness can be reduced
or even removed to create a zero-stiffness mechanism [4].

Over the years all kinds of compliant joints have been designed,
which can be divided into 2D and 3D mechanisms [5, 6]. Also, a
distinction can be made in the type of joint; translational joints [7–
9], rotational joints [10, 11] and joints that have both translational
and rotational freedom [10]. A large part of the research on compliant
mechanisms is focused on making compliant joints with zero-stiffness
behaviour [12, 13]. One way to do this is to make use of leaf springs
that are preloaded in their stiffest direction. By applying the preload
the bending stiffness is reduced. At a certain preload, the bending
stiffness approaches zero, and zero-stiffness (or neutral stability) is
obtained [14, 15]. The principle of applying a preload in the stiffest
direction of the leaf spring is based on Euler buckling [16]. The
preload at which the bending stiffness approaches zero is related to

the critical load for Euler buckling [17]. By applying a load that is
beyond the critical load, bistable behaviour can be obtained. In this
situation the mechanism has an unstable equilibrium at the point that
was neutrally stable for the critical load and two stable equilibrium
states [18, 19].

Next to Euler buckling, there are also other types of buckling.
One of these types is lateral torsional buckling (LTB). This type of
buckling occurs typically for slender beams with open cross-sections
[20]. This specific type of beam, slender with open cross-sections,
is mostly known in civil and structural engineering where it is used
to achieve mass reduction. A commonly used type of beam in LTB
research is an I-beam. Due to the static nature of civil and structural
engineering, LTB is an undesired phenomenon and is considered to
be a failure mode [21]. In Figure 1 a drawing is provided of the
unloaded and loaded state for LTB of an I-beam. LTB occurs when
a transverse load (in positive z direction) is applied to the I-beam.
Similar to Euler buckling, the load is applied in the stiffest bending
direction. The load results in compression of the bottom flange and
tension of the top flange. When the load is increased to a certain
critical load the combination of compression and tension results in
an instability of the beam. The instability causes the I-beam to deflect
laterally (denoted by u) and rotate (α) at the same time [22, 23].

X

Z

Y
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Z'

Y'

w
u

α

F

Fig. 1: Unloaded and loaded configuration for lateral torsional buck-
ling of an I-beam. A force F is applied, and when lateral torsional
buckling occurs the deformed beam has a lateral displacement u and
a rotation α. The vertical displacement is w.

In current literature, lateral torsional buckling is not considered
to be a possible working principle to create zero-stiffness compliant
joints. The objective of this work is to examine the possibility of
making a zero-stiffness compliant joint with lateral torsional buckling
as a working principle. Due to the similarities between the buckling
behaviour of Euler buckling and LTB, this could be a promising
alternative to create zero-stiffness compliant mechanisms. The focus
of this research is on two types of joints; a translational joint (TJ)
and a rotational joint (RJ). A method is proposed to analyse these
mechanisms analytically and in a finite element analysis (FEA). The
results of this proposed method are verified by an experimental
setup that contains a prototype of the mechanisms. Additionally,
a sensitivity analysis is performed on the design parameters to
investigate their influence on the results. The focus of the sensitivity
analysis is on maximizing the stroke of the zero-stiffness region of
the mechanism. Lastly, the potential of using multiple mechanisms in
series to increase the stroke of zero-stiffness behaviour is investigated.
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The outline of this paper is as follows. In Section II, the used
method is explained starting with a description of the concept
followed by an analytical, numerical and experimental analysis of
the designs. Section III presents the results of the simulations and
experiments. Next, the results are discussed in Section IV, followed
by the conclusion of the paper in Section V.

II. METHODS

In this section, the process of obtaining a mechanism with zero-
stiffness behaviour using LTB is explained. First, in Section II-A,
the concept that will be used is introduced. Next, in Section II-B,
the mechanism is simplified to a single beam to explain the applied
loads. An analytical analysis of the mechanisms is performed using
this simplification. Next, the modelling of a numerical model in the
form of a finite element analysis (FEA) in MATLAB® is discussed
in Section II-C. Lastly, Section II-D elaborates on a prototype and
the conducted experiments.

A. Concept
In this paper, the idea to use LTB to obtain zero-stiffness behaviour

will be applied to two commonly used compliant mechanisms.
In the first mechanism, see Figure 2a, a linear moving shuttle is
connected to the ground by parallel flexible beams [7, 16]. The shuttle
can move a distance yd with respect to the neutral position. The
second mechanism contains a joint that is often used in compliant
mechanisms, namely a crossed flexure hinge [24, 25]. The flexible
beams that connect the shuttle to the ground are not parallel but
are crossed instead. This results in a mechanism with a rotational
degree of freedom (DoF) with an angle ϕ as shown in Figure 2b.
The mechanisms are based on the two principal movements in 2D,
translation and rotation, and will be referred to as translational joint
(TJ) and rotational joint (RJ) respectively.

(b)

Φ

(a)

yd

X

Y

View A

Fig. 2: (a) The translational joint (TJ) mechanism, (b) The rotational
joint (RJ) mechanism. The black lines represent the flexible beams.
The grey blocks represent the rigid parts.

In this research, I-beams will be used as flexible beams. A side-
view of both mechanisms is provided in Figure 3. In this figure,
a cross-section of one of the flexible beams is given to define the
orientation of the I-beams. As discussed in Section I, an applied
transverse load is required for LTB to occur. With the orientation
used in the figure, this corresponds to a load in the z-direction. The
transverse load is applied to the flexible beams by increasing the
distance zd. The flexible beams will move laterally in y-direction
when the transverse load is high enough for LTB to occur. For the
analysis of the mechanisms the critical preload displacement and
corresponding load are important to know. This will be determined
in the next subsection of the analytical analysis. The formulas of
the analytical analysis will be used in the numerical implementation
of the mechanisms into a FEA. Next, a sensitivity analysis to find
the optimal dimensions of the I-beams will be performed using the
FEA. The results from the FEA will be verified by experiments on
a prototype.

zd

B B
Section B-B

X

Z

View A

Fig. 3: Sideview of the two mechanisms including the orientation of
the flexible beams and the preload displacement zd.

B. Analytical analysis

As a starting point of the analytical analysis, a single beam of
the mechanism will be considered in 2D. Figure 4a displays the load
case and boundary conditions of the single beam. One end of the
beam is fixed, i.e. the translations and rotation are constrained. On
the other end, a transverse load is applied. The end of the beam is
free to translate in both directions but rotation is constrained. In the
figure also the beam in the deformed state, the Free Body Diagram
(FBD), shear diagram and moment diagram of the beam are shown.
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Fig. 4: (a) Single beam of the mechanism with an applied transverse
load including deformed state, FBD, shear diagram and moment
diagram, (b) Simplified cantilever including deformed state, FBD,
shear diagram and moment diagram.

To the authors knowledge, no analytical models have been devel-
oped yet to calculate the critical load for these specific boundary
conditions. A simplification of the model can be made to solve this
problem. The moment diagram in Figure 4a is a straight line between
M and −M . The value of M is given by the equation

∑
M0 = −2M + FL = 0 ,

M =
1

2
FL .

(1)
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Halfway the beam the moment is 0, as can be seen in the moment
diagram. The first half of the moment diagram corresponds to that
of a cantilever beam with only a transverse force at the free end of
the beam. The simplified version of the beam is shown in Figure
4b. One end of the beam is again fixed, translations and rotation are
constrained. However, the other end of the beam is free to translate
and rotate. It’s a cantilever beam of length L/2 with matching shear
and moment diagrams to the first half of the beam with full length
in Figure 4a.

The cantilever with an applied load at the free end is a commonly
used load case in LTB problems. For the analytical analysis, the
following considerations are taken into account; the cantilever beam
is a doubly symmetric I-beam as shown in Figure 5. A cartesian
reference coordinate system xyz is introduced such that, (i) the
longitudinal axis of the beam is aligned with the x-axis, (ii) y and
z are the major and minor central axis of the cross-section and (iii)
the top flange of the beam corresponds to positive values of z. The
shape of the cross-section is given by four parameters H,h,W,w. H
is the height between the two flanges also known as the web height,
h is the thickness of the top and the bottom flange, W is the width
of the top and bottom flange and w is the thickness of the web. The
length of the beam is defined as Lc, this corresponds to the length
of the cantilever L/2 in Figure 4b.
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w
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Lc

Fig. 5: Cantilever beam with applied end-point load and cross-section
of the I-beam with relevant dimensions.

As discussed in Section II-A the transverse load on the beam is
applied by the preload displacement zd. Therefore, it is required to
know the critical distance zd,cr at which LTB occurs. The critical
distance is

zd,cr =
FcrL

3
c

3EIyy
, (2)

which is the deflection formula for bending of a cantilever beam [26].
Next to the Young’s modulus E and second moment of inertia Iyy the
critical force Fcr is required to calculate the deflection. The critical
force is calculated by

Fcr =
Mcr

Lc
, (3)

in which Mcr is the critical internal moment in the beam. As
illustrated in 4b, the maximum internal moment is at the fixed end
of the beam. In order to calculate the critical moment Mcr for the
cantilever beam the first step is to determine some of the mechanical
quantities of the beam. Important quantities are the second moments
of inertia about the y− and z−axis [26]. For an I-beam these second
moments of inertia are

Iyy =
1

12
wH3 +

2

12
Wh3 +

2

4
hW (H + h)2 ,

Izz =
1

12
Hw3 +

2

12
hW 3 .

(4)

Together with the Young’s modulus E, the second moments of
inertia form the flexural rigidities EIyy and EIzz of the beam
[27]. Also, the St. Venant torsional constant is required for the

calculations. This constant is a measure of the resistance of the beam
to pure torsion [28]. The equation to calculate the St. Venant torsional
constant is

J =
2

3
Wh3 +

1

3
Hw3 . (5)

Together with the Shear modulus G, the constant forms the
torsional rigidity GJ . Formulas to calculate the critical moment have
been formulation for a large variety of load cases and boundary
conditions [22, 29–32]. For a doubly-symmetric cantilever beam with
a load at the free end, which will be used in this work, the formula
is

Mcr = C1
π2EIzz
(kzLc)2

√(
kz
kw

)2
Iw
Izz

+
(kzLc)2GJ

π2EIzz
, (6)

which uses a few additional parameters [23]. Iw is the warping
constant and is defined as

Iw =
1

4
Izzh

2
s , (7)

parameter hs is the distance between the centers of the two flanges
and is defined as hs = H + h. Coefficients kz and kw are effective
length factors. kz is associated with the rotations of the end of the
beam about the z-axis and kw with the restriction of warping of the
end of the beam. In the case of a cantilever beam fixed values are
assigned: kz = 2.0 and kw = 1.0. Coefficient C1 depends on the
load case and boundary conditions of the cantilever beam. For the
used boundary conditions and load case the expression for C1 is

C1 = 2.462/

√
1 +K

2
+ 2.383K/

√
1 +K

2
. (8)

To calculate C1 a dimensionless parameter K is used, which
gives an indication of the slenderness of the cantilever beam. K is
calculated using

K =
π

Lc

√
EIzzh2

s

4GIt
. (9)

A low value of K means a long cantilever and compact cross-
section. On the contrary, a high value of K corresponds to a short
cantilever with a slender cross-section.

The results from the analytical analysis of the cantilever beam
are used to derive the critical load and corresponding deflection for
the beam with full length shown in Figure 4a. The critical load
is the same for both situations and the deflection can simply be
doubled. When this conclusion is expanded to the translational and
rotational mechanisms the deflection doubles again (two beams in
series as can be seen in Figure 3). The critical load is in this case
also doubled because parallel beams are used as can be seen in Figure
2. Summarizing, using the results from the cantilever the critical
distance has to be multiplied by four and the corresponding critical
load is multiplied by two to calculate critical preload displacement
zd,cr and critical force Fcr for the complete mechanism.

C. Numerical implementation
The derived formulas in the analytical analysis can be used to

determine the critical deflection and corresponding load. However,
the behaviour of the beam at or beyond the critical load is not
included in the analysis. In this section, the implementation of
the mechanisms into a FEA is described. For the FEA, an Euler-
Bernoulli beam formulation is used based on the work of Battini [33].
The formulation uses geometrically non-linear co-rotational beam
elements. The undeformed geometry is modelled by defining the
coordinates of the nodes of the beam elements. For both mechanisms,
the complete model of four beams is used in the FEA. The relevant
dimensions to model the mechanisms are shown in Figure 6. The
used values for these parameters and the cross-section dimensions
are provided in Table I. The table includes a value for the length of
the beams of the rotational joint. This value is defined by d1 and α
but gives an idea of how the length of the beams compares to the
length of the beams of the translational joint.
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Fig. 6: Overview of the translational joint (TJ) and rotational joint
(RJ) with the relevant dimensions and nodes for modelling.

TABLE I: Dimensions of the two mechanisms for FEA and experi-
ments.

Translational Joint (TJ) Rotational Joint (RJ)
H 4.15 mm H 4.15 mm
W 3.50 mm W 3.50 mm
h 1.45 mm h 1.45 mm
w 0.80 mm w 0.80 mm
d1 100 mm d1 80 mm
- - α 25◦
L 250 mm L 189 mm
d2 20 mm d2 20 mm
- - d3 25 mm

In the FEA every beam consists of 20 beam elements. After
defining the coordinates, the connections between the nodes are
assigned. For the analysis, the second moments of inertia Iyy , Izz ,
cross-section area A and St. Venant torsional constant J are required.
Additionally, the material properties, the Young’s modulus E and the
Shear modulus G, are required. Imperfections in the dimensions and
material of the beam can result in differences between the simulations
and experiments. Therefore, a number of material tests were carried
out on the beams that will be used in the experiments. A tensile test is
performed to determine the axial rigidity EA of the beam. Two three-
point bending tests were performed to obtain the flexural rigidities
EIyy and EIzz . Lastly, a torsion test is performed to determine the
torsional rigidity GJ of the material. The results of these material
tests are implemented in the FEA. Using the rigidities directly, instead
of measuring the material and cross-sectional properties separately
minimizes the effects of material and dimensional imperfections. This
ensures better results for the final experiments that will be conducted.
In the FEA the cross-section of the rigid part is modelled the same
as the beam elements. For these rigid parts, E and G are multiplied
by a factor thousand to increase their stiffness.

Next, the boundary conditions are defined. In a 3D model, a node
has 6 DoF; 3 translations and 3 rotations. In Figure 6 a few nodes are
indicated with numbers. Nodes 1 and 2 are always fully constrained
in both models, the values for the other nodes depend on the loading

step. An overview of the different loading steps in the FEA is shown
in Figure 7. The influence of gravity was neglected in the analysis. For
clarification, stills from the FEA are shown in Figure 8. The figures
show the positions of the translational joint before and after each
loading step. For both mechanisms, the first step is a displacement
yd in lateral direction (negative y) applied on node 5 followed by the
applied preload in form of a displacement zd in positive z direction on
nodes 3 and 4. During the third step, a positive lateral displacement
2yd is applied on node 5. The reaction force to the displacement is
calculated which will be used to analyse the lateral stiffness of the
mechanism.

Fig. 7: Loading steps for a single analysis of the mechanisms. Nodes
1 and 2 are always fully constrained. Displacements for nodes 3,4
and 5 are provided for each loading step.

Fig. 8: Stills from the FEA to illustrate the loading steps. Step 1
is a lateral displacement yd in -y. Step 2 is the applied preload
displacement zd in +z. Step 3 is a lateral displacement 2yd in +y.

The order of loading steps is chosen for better stability of the
FEA. If the preload displacement zd is used as the first step the
FEA could have problems solving close to the critical distance zd,cr
because this is the bifurcation point of the mechanism. By applying
the lateral displacement first, this problem is solved. In the case of
the RJ, it is also possible to apply a rotation and calculate the reaction
moment to investigate the moment-angle characteristic. However, this
introduced significant challenges in the experimental validation of the
model. So, a displacement is applied in the RJ mechanism as well.
The loading steps are applied in 50 substeps. For every substep, the
displacements and reaction forces are saved. Next, this information
is used to analyse the reaction forces and displacements.

The described FEA so far is combined into a single function. As
an input for the function zd, yd, E, G and the dimensions of the
mechanism are required. The output of the function is a file that
contains all the information about the performed analysis.
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The results from the analysis are used to generate a force-
displacement plot. On the horizontal axis the lateral displacement
and on the vertical axis the reaction force are displayed. The next
step in the numerical analysis is determining the optimal preload
displacement zd,opt for which the zero-stiffness region is the largest
for a given set of dimensions of the mechanism. This process is
explained below and Figure 9 is used as clarification.

1) First the analysis is performed with zd = 0, resulting in the
red line in Figure 9. The difference between the minimum and
maximum reaction force is used as a reference. A bound on
the reaction force RFb is calculated by taking a percentage of
the reference, for example, 5% as is used in Figure 9. Half the
height of the green box corresponds to RFb.

2) The region of zero-stiffness is calculated by taking the distance
between the first point larger than −RFb and the last point
smaller than RFb. In the figure, this is illustrated by the width
of the green box dzs.

3) It is found that the maximum zero-stiffness region corresponds
to the case where the distance between +RFb and the maxi-
mum value of the first half of the plot is minimal. A variable
dobj is defined as this distance.

4) An optimization step is performed to minimize dobj for
design variable zd. For this step, the MALTAB® function
fminsearch is used, which is a simplex search method [34].
As an initial starting point for zd the result from Equation 2
is used.

At the end of this process, there is an optimal preload displacement
zd,opt and a corresponding value for the zero-stiffness region dzs for
a given set of dimensions.

Fig. 9: Force-displacement plot with variables for preload optimiza-
tion.

The resulting value for the zero-stiffness region dzs is of particular
interest. It can be used to investigate the influence of changing the
dimensions of the mechanism. A sensitivity analysis in form of a
grid search is performed to see how these changes in dimensions
influence the zero-stiffness region dzs. The grid search is performed
three times, each time some of the variables are varied while the
others are kept constant. An overview of the grid search is provided
in Table II. The range of the grid search is given by the first two
numbers. For example, for H in GS1, the range is 1 mm to 10 mm.
The number between brackets is the used step size. In the first grid
search (GS1), it is investigated how the size of the cross-section,
defined by H and W , influences the region of zero stiffness dzs.
The other parameters are kept constant. The focus of the second grid
search (GS2) is on the thickness of the flanges and the web, variables
h and w respectively. Lastly, in the third grid search (GS3) the size
of the cross-section and the thickness of the flanges are varied. In
order to have two free variables, H and W are coupled by defining
W = 0.75H and h and w are coupled by keeping them equal to
each other.

TABLE II: Values for the dimensional parameters in the grid search
including the used step sizes between brackets.

H [mm] W [mm] h [mm] w [mm] L [mm]
GS1 1:10 (0.3) 1:10 (0.3) 1 1 250
GS2 6 4 0.5:3 (0.1) 0.5:3 (0.1) 250
GS3 1:10 (0.3) 0.75·H 0.5:3 (0.1) h 250

In the grid search, a constraint is taken into account to see if
the set of parameters results in a feasible solution. For every set of
parameters also the strain is calculated. For this calculation, the saved
information from a simulation is used. For every node, the coordinates
of the cross-section are determined using the undeformed coordinates,
displacements and rotations of the model. For the four outer corners,
where the strain will be the largest, the length of the element dL is
estimated by a straight line between one of the corners on node n
and on node n+1. The original length of the element dL0 is defined
by the length of an element in the undeformed state. These lengths
are used in

ϵ =
dL− dL0

dL0
(10)

to calculate the strain. The maximum strain from the four outer
corners is determined and saved. This procedure is repeated for all
elements and finally, the maximum strain in the complete model is
determined. The value of the strain is compared to the yield strain of
the material. The yield strain can be calculated using Hooke’s law

ϵy =
σy

E
, (11)

in which σy is the yield stress and E is the Young’s modulus of the
material [26]. In the grid search the same material is used as will be
used in the experiments. This is polystyrene and this material has a
yield strength varying from 5 MPa to 50 MPa [35]. In the analysis, a
value of 30 MPa is used. For the Young’s modulus, 2.1 GPa is used.
With these material properties, the yield strain becomes 1.42%. The
calculated strain and yield strain will be compared in the grid search
as a constraint on the dimensional variables.

A second constraint is applied on the second moment of inertia
Izz . LTB occurs when bending is applied in the stiffest bending
direction. To achieve this, the second moment of inertia about the
horizontal axis Iyy must be larger than the second moment of
inertia about the vertical axis Izz . The FEA cannot find a solution
when Izz > Iyy because LTB does not occur. Therefore, both Iyy
and Izz are calculated and when Izz > Iyy the region of zero-
stiffness is not calculated and the grid search continues with the
next set of parameters. The grid search is only performed on the
translational joint because only the cross-sectional dimensions of the
beam are taken into account. The results will be similar for the
rotational joint because the focus of the sensitivity analysis was not
on the dimensions of the used mechanism geometry. In order to save
computation time a single beam is used instead of the four beams. In
the model, at the free end of the beam, all rotations are constrained.
The model has the same behaviour as the complete model with four
beams.

Changing the dimensions of the mechanism is not the only
possible solution for maximizing the zero-stiffness region dzs. An
interesting alternative is connecting multiple mechanisms in series
with each other. It is expected that the distances dzs of the individual
mechanisms can be added together for the mechanism in series. This
idea is tested on the TJ mechanism of which two mechanisms are
connected in series. This mechanism will be referred to as the double
translational joint (DTJ). An overview of the mechanism is provided
in Figure 10. The mechanism has three moving shuttles (the I-shaped
rigid parts) while the normal translational joint only has one. The
important nodes are again provided in the overview. Node 5 is now
a point on the shuttle in the middle, this is the shuttle with the
largest displacements. For the mechanism, the same loading scheme
in Figure 7 is used.
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Fig. 10: Overview of the double translational joint (DTJ).

D. Experimental validation
A prototype is designed using SolidWorks for both mechanisms to

validate the results from the numerical analysis. For the prototypes,
the dimensions from Table I are used. The cross-section dimensions
in this table correspond to the dimensions of the used Polystyrene I-
beams in the experiments. The I-beams are off-the-shelf beams from
MAQUETT of the type 414-55 [36]. The Young’s modulus E of
Polystyrene is 2.1 GPA and the Shear modulus G = 0.8 GPA, these
material properties were provided by the manufacturer. The beams
are connected with 3D-printed Polylactic Acid (PLA) rigid parts. In
the rigid parts, rectangular holes are modelled with a clearance of
+0.1 mm with respect to the outer cross-section dimensions. The
clearance allows modular construction of the mechanism without the
need for other types of fixation. The rigid parts are mounted on
two XE25L300/M Thorlabs construction rails using M6 bolts. The
SolidWorks designs of the two mechanisms are shown in Figure 11.

Fig. 11: Solidworks design of the TJ and RJ.

For the experiments, the setup consists of the construction rails
mounted vertically on a Thorlabs breadboard. The lateral displace-
ment is applied by a translational precision stage with a range of
100 mm (PI M-505.4DG [37]). The reaction force is measured by
a load cell (Futek FSH03875 [38]). The mechanism is connected to
the load cell using a fishing line. A fishing line is chosen because
it is lightweight and stiff compared to the measured stiffness in
the experiments. Additionally, it is used because a relatively large
distance between the mechanism and the load cell is required. Over
the range of motion, the application point on the mechanism has
a small parasitic displacement in negative x direction. By setting a
relatively large distance between the mechanism and the load cell any

undesired forces are minimized. On the other side of the mechanism,
a mass of 500 gr is connected using a fishing line over a pulley in
order to apply a constant pulling force on the sensor. This allows
the sensor to measure a reaction force for both negative and positive
displacements. The correct preload displacement for the mechanism
is set using gauge blocks. An overview of the test setup is shown
in Figure 12. The red lines in the picture represent the fishing line
that is used to connect the precision stage to the mechanism and the
mechanism to the mass. With white text, the relevant parts of the
experimental setup are indicated.

Fig. 12: Experimental setup; the precision stage with force sensor,
the compliant mechanism and the mass connected to each other by
a fishing line.

On both mechanisms, four experiments are conducted with differ-
ent preload displacements. For each configuration, the experiment
is conducted five times. One experiment consists of the lateral
movement from -50 mm to 50 mm followed by the reverse movement.
The results from the experiments are loaded into MATLAB® for
comparison with the simulations. For each configuration, the mean
of the five experiments is calculated and compared to the result of
the simulation.

The utilized pulley is 3D-printed PLA and contains a steel bush
in the center. The steel bush has a hole of 1.1 mm and is placed
on a needle with a diameter of 1 mm. A small diameter minimizes
the friction in the pulley. However, the presence of friction cannot
be neglected. Therefore an experiment is conducted where the mech-
anism is removed and the mass is directly connected to the sensor.
The precision stage performs a forward movement followed by a
backward movement. The measured difference by the sensor gives
an indication of the amount of friction introduced by the pulley.

A prototype is constructed for the double translational joint (DTJ),
following the same procedure as described for the TJ and the RJ. The
same type of experiments is carried out on this prototype as well.
However, the experiment is carried out at two different preloads,

Fig. 13: Experimental setup for the double translational joint.
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(a) Contour plot of grid search on H and W (h = w = 1 mm, L = 250mm)
including constraint on the strain and on the second moment of inertia.

(b) Contour plot of grid search on h and w (H = 6, W = 4, L =
250mm) including constraint on the strain and on the second moment
of inertia.

(c) Contour plot of grid search on H and h (W = 0.75H , w = h, L = 250mm)
including constraint on the strain and on the second moment of inertia.

Fig. 14: Contour plots of the grid search on the cross-section dimensions of the I-beam. Contours give the obtained region of zero-stiffness
dzs. Constraints are used on the strain and the second moment of inertia Izz . The dashed line indicates the infeasible region resulting from
the constraint. In grey, the shape of the cross-section is provided for the area of design points close to that particular shape.

one without preload and one at the optimal preload for comparison
with the single translational joint. The same testing procedure as
described above is used. For this mechanism, a different orientation
(beams vertical) is used in the experiments. In the original orientation
(beams horizontal) the middle shuttle could touch the rigid parts
which resulted in extra friction force in the measurements. A picture
of the mechanism is provided in Figure 13. The mechanism is still
connected to the mass by the fishing line but only the first part of
the line is visible in the picture.

III. RESULTS

In this section, the results will be discussed. First, in Section
III-A the results from the numerical analysis are provided. In Section
III-B the results of the experiments and the comparison with the
simulations are shown. Lastly, the results from the experiments of
the double translational joint are provided in Section III-C.

A. Simulations
The FEA is used for a sensitivity analysis on the cross-sectional

dimensions of the I-beam in the translational joint. The results from

the grid searches are provided in Figure 14. The grid search is
performed three times, each time with a comparison between different
parameters. The grey cross-sections are added to give some idea of
the shape of the cross-section in that area of the grid search. For
example, the top-left area of Figure 14a corresponds to wide, but
low cross-sections. In the first contour plot, shown in Figure 14a,
the results of the grid search on H and W (GS1) are visible. The
values on the contour lines represent the region of zero-stiffness dzs
for the corresponding values for H and W . The remaining design
parameters are kept constant; h = w = 1 mm and L = 250 mm.
Additionally, two constraint lines are visible. The red line corresponds
to the constraint considering the strain. The dashed red line indicates
the infeasible region. Combinations of H and W at the side of the
dashed line result in a strain exceeding the maximum allowed strain
ϵy . For combinations of H and W at the dashed side of the black
constraint, LTB does not occur because in these cases Izz > Iyy .
This can be explained by the relatively high values of the flange
width W compared to the web height H . From the contour plot
can be concluded that the region of zero-stiffness dzs increases for
decreasing values of H and W . The increasing values of the objective
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(a) Raw data from the experiments on the translational joint with four
different preloads.

(b) Raw data from the experiments on the rotational joints with four
different preloads.

Fig. 15: Raw data from the experiments.

remain within the bounds of the constraints. However, the smallest
value of 1 mm is chosen because the web and flange thickness, h
and w, would otherwise be larger resulting in an infeasible geometry.

The results of the second grid search (GS2), on the thicknesses h
and w, are provided in Figure 14b. Again the contour lines of the
objective dzs and the constraints are shown. Similar to the first grid
search the remaining parameters are kept constant; H = 6 mm, W = 4
mm and L = 250 mm. Because H > W there is no infeasible region
for the constraint on the moments of inertia. This is the reason that
the black constraint is not visible. The region right and above the red
dashed line is infeasible because of the constraint on the strain. The
contour lines show that the region of zero-stiffness is increasing for
increasing values of the thicknesses h and w. It is also observed that
the web thickness w is dominant with respect to the flange thickness
h. The constraint on the strain limits the maximum achievable region
of zero-stiffness.

In Figure 14c the results from the last grid search are shown. In
this grid search, the size of the cross-section (H and W ) is compared
to the thickness of the flanges (h and w). On the axes of the plot,
only H and h are visible. However, the other two parameters are
not independent. A relation between the web height and flange width
is defined by W = 0.75H . Similarly, the web thickness and flange
thickness are related by w = h. Again, the length of the beam is kept
constant; L = 250 mm. A very small piece of the black constraint is
visible in the top-left corner. The shown domain is part of the feasible
domain for this constraint because of H > W . The constraint on the
strain limits the possible solutions to the bottom-left region. Similar to
the first two plots, the highest values for dzs are found for decreasing
cross-section size (H and W ) and increasing flange thicknesses (h
and w).

B. Experiments
On the prototypes of the translational and rotational joint ex-

periments are conducted to verify the results from the FEA. The
raw measurement data from these experiments is shown for both
mechanisms in Figure 15. In Figure 15a, the results are shown
for four different preloads zd on the translational joint. The figure
contains the data of all five measurements for every preload. On
the x-axis the lateral displacement in mm is shown, the range of -
50 mm to +50 mm corresponds with the range of the translational
precision stage. A single experiment is a forward motion followed by
a backward motion. This results in a hysteresis loop consisting of two
lines slightly above each other. On the y-axis, the measured reaction
force by the force sensor is shown in newton [N]. In Figure 15b, the

measured data from the rotational joint is provided. The mean of the
five experiments of each configuration is calculated for comparison
with the results from the FEA.

For the translational joint, the comparison between simulation
and experiments is shown in Figure 16. The figure consists of
four sub-figures, each corresponding to a different preload for the
translational joint. Every sub-figure is a force-displacement plot
containing the results from the simulation and experiment for the
same preload. Without a preload, the stiffness of the mechanism is
constant while the reaction force is linear. With increasing preload
the stiffness decreases and for the optimal preload zd,opt the zero-
stiffness behaviour can be observed. If the mechanism has a preload
beyond the optimal preload it becomes bistable and around the origin,
negative stiffness is observed. In this simulation the bound on the
reaction force RFB is set on 1% which is in this case 0.0613 N.
With the FEA a corresponding optimal preload of zd,opt = 53.6
mm is found. For this preload, the region of zero-stiffness is 28.8
mm, this is 11.5% of the length of the beams. The prototype is
tested on a slightly higher preload of 54 mm. Small differences are
found between simulations and experiments for the preloads. The
used values to obtain the figures are provided in Table III. Also, the
corresponding values for the region of zero-stiffness dzs are provided
in this table.

TABLE III: Used preloads in simulations and experiments and
resulting region of zero-stiffness dzs of the translational joint.

Plot Simulation zd [mm] Experiment zd [mm] dzs [mm]
16a 0.0 0.0 1.9
16b 40.0 40.0 4.4
16c 53.6 54.0 28.8
16d 59.0 60.0 2.4

In Figure 17 the results from simulations and experiments are
compared for the rotational joint. In Table IV the used preloads in
the simulations and experiments and the resulting regions of zero-
stiffness dzs from the simulations are provided. From the simulations,
an optimal preload zd,opt of 70.4 mm was found. The bound on the
reaction force RFb is 1%, which for this mechanism is 0.0646 N.
The corresponding width of the zero-stiffness region is 40.9 mm. This
corresponds to a rotation of 26.4◦ (± 13.2◦) of the shuttle. Again the
decreasing stiffness for increasing preload can be observed. However,
the behaviour of the mechanism beyond the optimal preload zd,opt
is different from the translational joint. The rotational joint does
not show bistability but behaves more like a multistable mechanism
instead. The difference between the simulation and experiment for
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(a) Translational joint force-displacement for zd = 0 mm (b) Translational joint force-displacement for zd = 40 mm

(c) Translational joint force-displacement for zd = 54 mm (d) Translational joint force-displacement for zd = 60 mm

Fig. 16: Force-displacement plots of the translational joint for varying zd. Results from the simulations and experiments.

this configuration is quite significant. The used preload and the shape
of the plots show some differences.

TABLE IV: Used preloads in simulations and experiments and
resulting region of zero-stiffness dzs of the rotational joint.

Plot Simulation zd [mm] Experiment zd [mm] dzs [mm]
17a 0.0 0.0 1.9
17b 55.0 55.0 4.2
17c 70.4 71.0 40.9
17d 76.0 85.0 24.4

Also, an experiment on the friction force introduced by the pulley
was conducted. From the experiment is found that the friction force
is 0.05 N. This is the average of the friction force over the range
of motion. The friction force is constant because the force applied
on the pulley by the fishing line is also constant. The applied force
depends only on the mass that is connected at the end of the fishing
line. The determined friction force is part of the hysteresis that can
be seen in the plots of the experiments.

C. Double rotational joint
Lastly, experiments are conducted on the double translational joint

to investigate the possibility of adding multiple mechanisms in series.

The results from these experiments are shown in Figure 18. The
prototype is tested at no preload and at the optimal preload. Again,
the results are compared with the simulations. For comparison, the
results from the single translational joint are provided in the same
figure. In both plots, the dashed lines represent the force-displacement
behaviour from the simulations. From Figure 18a, it can be observed
that the stiffness for the DTJ is approximately half the stiffness of
the TJ. The used preloads in the simulations and experiments are
shown in Table V. For the TJ the region of zero-stiffness was found
to be 28.8 mm. For the DTJ the same settings of the FEA are used.
For this mechanism, the region of zero-stiffness is 54.6 mm. This
is 1.90 times higher than the region of zero-stiffness for the TJ. A
good agreement is found between the results from simulations and
experiments.

TABLE V: Used preloads in simulations and experiments and result-
ing region of zero-stiffness dzs. A comparison between translational
joint and double translational joint.

Plot Simulation zd [mm] Experiment zd [mm] dzs [mm]
18a-TJ 0.0 0.0 1.9
18b-TJ 53.6 54.0 28.8
18a-DTJ 0.0 0.0 3.8
18b-DTJ 100.4 100.0 54.6
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(a) Rotational joint force-displacement zd = 0 mm (b) Rotational joint force-displacement zd = 55 mm

(c) Rotational joint force-displacement zd = 70 mm (d) Rotational joint force-displacement zd = 85 mm

Fig. 17: Force-displacement plots of the rotational joint for varying zd. Results from the simulations and experiments.

(a) TJ and DTJ force displacement zd = 0 mm. (b) TJ and DTJ force displacement at optimal preload; zd,TJ = 54 mm and
zd,DTJ = 100 mm

Fig. 18: Force displacement of the TJ and DTJ for varying zd. Results from the simulations and experiments.

27



IV. DISCUSSION

A. Sensitivity analysis
The subject of the first part of the discussion is the collection

of results from the sensitivity analysis. The sensitivity analysis is
performed to investigate the influence of the cross-section dimensions
on the region of zero-stiffness dzs. The length of the beam L is in all
cases constant because increasing the length of the beam will always
increase the region of zero-stiffness, which is trivial. In GS1, provided
in Figure 14a, the influence of the web height H and the flange width
W is investigated. The top-left region is not feasible because of the
constraint on Izz . When Izz > Iyy LTB does not occur. The FEA
cannot find a valid solution for dzs so this part of the contour plot is
not calculated. In the bottom-right part of the contour plot of GS1 the
contour lines show some non-smooth behaviour. This part of the grid
search corresponds with a high, narrow cross-section with a small
thickness. For the FEA it is hard to find the correct solution because,
at the critical load, this type of cross-section has multiple buckling
modes very close to each other. The beam has a low flexural rigidity
EIzz and a low torsional rigidity GJ [22]. The highest values for
the objective dzs are obtained for low values of H and W . This
corresponds to a small, narrow cross-section. The constraint on the
strain is not a limiting factor for these low values.

GS2 focuses on the influence of the web and flange thickness h
and w. The shown contour plot in Figure 14b is completely within the
feasible region of the constraint on Izz . This is the case because of the
chosen constant values H = 6 mm and W = 4 mm. The highest values
of dzs are found for increasing values of h and w. The constraint on
the strain is in this case the limiting factor. The dashed line indicates
the region where the strain exceeds the maximum allowable strain.

In GS3 the effect of the size of the cross-section (H and W ) and
the thickness of the web and flanges (h and w) is investigated. Since
it is only possible to have two free variables in a 2D-contour plot, H
and W are coupled by defining W = 0.75H and h and w are coupled
by defining w = h. Similar to GS2, the contour plot in Figure 14c is
almost completely within the feasible region of the constraint on Izz
because W is relatively small compared to H . In accordance with
GS1 and GS2, the highest values for dzs are found for small values
of H and W and high values of h and w. The maximum achievable
dzs is limited by the constraint on the strain.

An interesting conclusion can be drawn from these results. For
small values of H and W combined with high values of h and
w, the cross-section is no longer an I-beam. This can be explained
using the definition of the cross-section in Figure 5. For example,
if H = W = 1 mm and h = w = 2 mm are used, the shape
of the cross-section becomes a plus-shape. The width of the web
w is larger than the width of the flanges W and the height of the
web H is smaller than the height of the flanges h. The situation
where H = W = h = w corresponds to a rectangular shape. It
is expected that the rectangular shape results in the highest region
of zero-stiffness dzs. The flexural rigidity EIzz is relatively low for
this situation resulting in large lateral displacement at the critical
load. However, the expression of the St Venant torsional constant
J , provided in Equation 5, is only valid for a thin-walled I-section.
To draw a more justified conclusion, it is recommended to use a
general expression for the torsional constant that is accurate for
all types of cross-sections. When this expectation is compared to
what is known in literature about LTB this seems reasonable. As
discussed in the introduction, LTB is mostly known in civil and
structural engineering where LTB is an undesired phenomenon. In
contrast to this research, where the goal is to utilize the elastic lateral
torsional buckling behaviour. An I-section has better cross-sectional
properties in the prevention of LTB and is therefore used in civil and
structural engineering. A similarity is found between this result and
obtaining zero-stiffness using Euler buckling. A rectangular cross-
section (leaf-spring) has a lower resistance to Euler buckling than
other types of cross-sections (for example an I-section). Leaf springs
are in almost all cases used in compliant mechanisms to obtain zero-
stiffness behaviour.

In the process to calculate the region of zero-stiffness, a bound
on the reaction force RFb is used. The mechanism is considered to
have zero-stiffness as long as the reaction force remains within this
bound. The goal is to maximize the region of zero-stiffness. Using
a RFb of 1% results in a significant reduction of the stiffness for
this purpose and a slightly bistable mechanism has a larger region of
quasi zero-stiffness. However, for other purposes, a higher reduction
may be desired. For these purposes, a lower RFb can be used in
the same method. When the goal is to obtain actual zero-stiffness
behaviour, RFb should approach zero.

B. Experiments
Next, the results from the experiments and comparison with

simulations for the translational joint and rotational joint will be
discussed. In the FEA the rigidities EA, EIyy , EIzz and GJ are
used instead of the separate material properties E and G and the
cross-section properties A, Iyy , Izz and J . To obtain the rigidities
a tensile test, two three-point bending tests and a torsional test
were conducted. The use of rigidities gives more accurate results
because the material and geometric imperfections are averaged out
in these tests. Material properties can vary from batch to batch.
Additionally, time, temperature and UV light can have an effect on
the properties of the material. The dimensions of the cross-section
are determined using a calliper. This introduces measuring inaccuracy
for the dimensions. Also, the fillet between the web and the flange is
not taken into account in the formulas to determine the cross-section
properties. The flanges are also slightly tapered, and h increases from
the side of the flange towards the web. These imperfections together
can have a significant effect on the cross-sectional properties and
therefore also on the results of the FEA.

In Figure 15, the raw data from the experiments for the trans-
lational joint and rotational joint is shown. Each coloured line is a
set of five repeated measurements. Because the deviation between the
single measurements is small, the mean of the five measurements can
be calculated for comparison with simulations. In the other plots, the
calculated mean is always compared with the simulation.

For both mechanisms, similar behaviour is observed in Figures 16
and 17. Without preload, the lateral stiffness is linear. By increasing
the preload, the stiffness decreases around the origin until for an
optimal preload zd,opt the stiffness approaches zero. Beyond this
preload, the translational joint becomes bistable resulting in a negative
stiffness at the origin. For the rotational joint, the last configuration
behaves differently. In Table IV the preloads for the simulations and
experiments of the rotational joint are shown. For this configuration
the preloads are 76 mm and 85 mm for the simulation and experiment
respectively. In Figure 17d, can be seen that the result from the
experiment has a similar shape when compared to the simulation.
However, the in the experiment, the reaction force increases slightly
over the range of motion. During the experiment, it was observed
that the four beams did not buckle at the same time. When travelling
from left to right two of the beams always buckled before the other
two. For the reverse motion, the other two beams buckled first. A
possible explanation for this behaviour is imperfections in assembling
the mechanism. Even the smallest differences in the length of the
beams can result in a preferred position of the mechanism at the
bifurcation point.

For the rotational mechanism, it was decided to investigate the
force-displacement behaviour. However, it would make more sense to
have a moment-angle characteristic for a rotational joint. Conducting
experiments to obtain a moment-angle characteristic, however, would
introduce all kinds of challenges. The center of rotation for a
compliant rotational joint is not constant but drifts slightly [39].
This makes it difficult to apply a pure rotation on the mechanism.
The most feasible option was to use the same test setup as for the
translational joint. In Figure 6 the position of node 5, on which the
lateral displacement yd is applied, is chosen in the middle of the
shuttle. This point has the least parasitic motion on the x-direction
over the range of motion. However, the parasitic motion in x-direction
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cannot be neglected. Also for the translational joint, a small motion
in x-direction is present over the range of motion. A direct solid
connection between the force sensor and mechanism was therefore
not possible. Instead, a fishing line was used to connect the sensor
and mechanism. This makes it possible to create a certain distance
between the sensor and mechanism. For an increasing distance, the
effect of the parasitic motion on the force measurement decreases.
Between the sensor and mechanism, the space was limited, this can
be seen in Figure 12. However, the available distance was enough
to minimize the effects of the parasitic motion in x-direction. The
rotational joint has the most parasitic motion, referred to as xp. For a
complete movement, this is 8.9 mm. The available distance between
the sensor and mechanism Ls is 140 mm. For the experiments, the
aim is to position the force sensor such that xp is exactly divided into
two. The amount of parasitic motion will be the same for the neutral
position yd = 0 mm and the outer positions yd = ±50 mm. However,
for the following calculation, the worst-case scenario is considered.
With xp = 8.9 mm and Ls = 190 mm the angle of the fishing line
is 2.69◦. For the rotational joint with zd = 0 mm, this can result in
a measurement error of 0.0035 N or 0.11%.

The translational joint and rotational joint were tested in an
orientation with horizontal beams. An orientation with vertical beams
would be better because the influence of gravity is less in that
orientation. However, this was not possible because of the limited
height of the precision stage, resulting in a situation where the force
sensor and moving shuttle cannot be connected to each other in the
correct way. Therefore, the horizontal orientation was chosen. The
shuttle is made of 3D-printed PLA. By choosing a relatively low
infill of the 3D-print and reducing the volume of the shuttle the mass
is kept as low as possible. The effect of gravity is tested in the FEA by
applying a gravitational force at the shuttle and comparing the results
to a FEA without gravity. For the used mass of the shuttle, these
effects are very low. Therefore, it is concluded that the translational
and rotational joints can be tested in a horizontal orientation.

The plots of the experiments all consist of a forward and a reverse
motion resulting in two lines. These lines form the hysteresis loop
of the experiment. One of the sources of hysteresis is friction. For
the forward motion, the measured force is slightly higher due to the
friction force. For the reverse motion, the measured force is slightly
lower. The pulley that is used to redirect the pulling force introduces
friction to the measurements. The friction force of the pulley is
determined by performing the experiment without the mechanism.
The mass is directly connected to the force sensor by the fishing line.
The found friction force is 0.05 N, so the contribution of friction to
hysteresis is 0.1 N. The friction force is always the same, as long as
the same weight is used.

Friction is not the only source of hysteresis. From the plots can
be concluded that the amount of hysteresis is increasing for an
increasing preload displacement zd. For example, in Figure 16 the
force-displacement plots for the translational joint are shown. In the
plot for zd = 0 mm, the hysteresis is approximately 0.13 N. In the
bistable configuration, zd = 60 mm, the hysteresis is almost 0.5 N.
The additional type of hysteresis is elastic hysteresis. During the
movement of the mechanisms, part of the energy is dissipated as
heat due to internal friction [40]. A preloaded mechanism has higher
internal stresses which increase the internal friction. This explains
the increasing hysteresis for an increasing preload displacement. In
a typical hysteresis loop, the amount of hysteresis approaches zero
at the ends of the movement and increases towards the middle. This
effect is also visible in the plots of the experiments.

An important factor to take into account during the experiments
is creep of the I-beams. Creep is a time-dependent permanent
deformation. When stresses are present in the material for a long
period of time due to a certain load the beams will deform [26].
For the prototypes used in the experiments, creep can occur when
the preload displacement zd is applied for a long period of time.
When creep occurs and the beams are deformed permanently, this
will change the behaviour of the mechanism. The amount of time
needed for creep to occur depends on the stresses in the mechanism

and therefore on the used preload. In the case of these mechanisms,
the amount of time can be a few hours for high preload displacements
zd. In order to minimize the effect of creep the preload is applied to
the mechanism just before the experiment is started.

C. Double translational joint
The last set of experiments is performed on the double translational

joint. From Figure 18a, the mechanisms without preload can be
concluded that the stiffness of the DTJ is half the stiffness of the TJ.
This can be explained by the fact that for the DTJ the mechanism
of the TJ is used twice in series. The resultant stiffness of two
equal springs in series is half the stiffness of a single spring. This
can also be used for these two mechanisms in series. The regions
of zero-stiffness dzs are 28.8 mm and 54.6 mm for the TJ and
DTJ respectively. It was expected that dzs for the DTJ would be
double the value of the TJ. However, for the DTJ the region of
zero-stiffness is 1.90 times higher than for the TJ. To understand
the difference also the used preloads are of importance. The used
preloads zd are 53.6 mm for the TJ and 100.4 mm for the DTJ. This
means that the preload for the DTJ is 1.87 times higher than for
the TJ. Again, a factor of 2 was expected. A possible explanation
is observed during the experiments. When a lateral displacement is
applied to the mechanism, the forces on the two shuttles that are
next to each other are not balanced out. A picture of the mechanism
with an applied lateral displacement yd is shown in Figure 19a. A
FBD of the two shuttles, in the configuration without preload, is
provided in Figure 19b. The forces, indicated by the red arrows, are
applied on the shuttles by the I-beams. These forces form a couple,
causing the shuttles to rotate. In this case, the left side of the shuttles
rotates towards each other. For the preloaded configuration, the FBD
is provided in Figure 19c. In this situation, the forces applied on the
shuttles also have a vertical component, resulting in a rotated resultant
force. Additionally, the I-beams apply a moment on the shuttles

(a) Picture of the double translational joint with a
lateral displacement yd.

(b) FBD of the two shuttles without
preload.

(c) FBD of the two shuttles with
preload.

Fig. 19: Explanation of rotation of the shuttles. The displacement
of the bottom shuttle is indicated with the black arrow. In red the
applied loads are given.
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counteracting the rotation introduced by the forces. For a certain
preload, the applied moment is dominant resulting in an opposite
rotation. In this case, the right side of the shuttles rotates towards
each other. Both types of rotations result in a change in the effective
applied preload displacement. This explains why the results of the
DTJ are not exactly double the results of the TJ.

Performing the experiments on the DTJ in a horizontal orientation
of the beams was not possible. Because the beams are in series
and multiple shuttles are used the influence of gravity could not
be neglected in this case. This was easily solved by testing the
mechanism in a vertical orientation of the beams, as can be seen in
Figure 13. Because the displacement is applied on the middle shuttle
the limited height of the precision stage is no longer a problem.

The idea of adding multiple mechanisms in series can be expanded
to n mechanisms instead of only two. It is expected that the region
of zero-stiffness improves by a factor n. For the DTJ, the FEA had
some problems finding the correct solution for the critical load. At
the bifurcation point, the model has three DoF compared to one DoF
for the TJ. All three shuttles are in unstable equilibrium and can
either go to +y or −y. For a model with n mechanisms in series,
the number of DoF at the critical load is 2n− 1.

D. Recommendations
From the results can be concluded that lateral torsional buckling

can be used in compliant mechanisms to obtain zero-stiffness be-
haviour. Similar to zero-stiffness obtained with Euler buckling, the
flexible beams have to be preloaded in the stiffest direction. However,
with LTB a bending load is applied compared to a compressive load
for Euler buckling. This opens up opportunities for applications where
applying a compressive load may be challenging. Additionally, when
the available space is limited, LTB can be a solution because the load
is applied perpendicular to the flexible beam. In order to improve on
this conceptual idea the following recommendations are proposed.

A recommendation for future research is further investigation of
the optimal shape of the cross-section. It is expected that a rectangular
beam is the optimal shape but the current model needs to be improved
in order to prove this. Next, a new sensitivity analysis can be
conducted to find the optimal dimensions for this rectangular beam.

In the research, the possibility to add multiple mechanisms in
series to improve the region of zero-stiffness is investigated. This
concept is proved by simulations and experiments on the translational
joint. However, it would be interesting to expand this concept to the
rotational joint. It is also recommended to investigate the positions
of the beams in the current model. As discussed earlier the current
configuration results in the rotation of the shuttles. It would be
beneficial to have these forces aligned in order to prevent the
undesired rotation.

The proposed method in this research can be applied to create a
mechanism with variable stiffness. Without preload the stiffness is
positive. The stiffness decreases for increasing preload until zero-
stiffness behaviour is obtained. Beyond the critical preload, the
mechanism has negative stiffness around the origin. The negative
stiffness can be used in combination with an equal positive stiffness
to obtain zero-stiffness behaviour.

Lastly, the focus of this work is on two types of joints, a
translational and a rotational joint. For future work, also joints in 3D
can be considered. The translational joint can be expanded to a spatial
joint and the rotational joint to a spherical joint. Also, implementing
the concept of LTB in compliant mechanisms with a translational and
(coupled) rotational degree of freedom can be considered.

V. CONCLUSION

To conclude, in this work the possibility to use lateral torsional
buckling in a compliant mechanism to obtain zero-stiffness behaviour
is investigated. This concept is applied to a translational joint and
a rotational joint with I-beams as flexible beams. A single beam
is evaluated analytically to obtain the critical buckling load and

displacement. Both mechanisms are implemented in a FEA to in-
vestigate the behaviour. With the FEA the stroke of the mechanism
considered to have zero-stiffness can be determined. Experiments on
the mechanisms verify the results from the FEA. For the translational
joint, a region of zero-stiffness dzs = 28.8 mm is found. The rotational
joint has a region of zero-stiffness dzs = 40.9 mm or 26.4◦. The FEA
is also used to perform a sensitivity analysis on the cross-sectional
dimensions. The goal of the sensitivity analysis is to maximize
dzs. It is found that an I-section is actually not the optimal shape
of the beam. The maximum values of dzs are found for beams
with a rectangular cross-section. The region of zero-stiffness can
also be improved by adding multiple mechanisms in series. This
is performed for the translational joint in the FEA and verified by
experiments. The double translational joint has a region of zero-
stiffness dzs = 54.6 mm. This is a multiplication of 1.90 compared
to the translational joint. In general, the results of this work show
that lateral torsional buckling can be used in compliant mechanisms
to obtain zero-stiffness behaviour. Lateral torsional buckling is a
possible alternative to Euler buckling in zero-stiffness compliant
mechanisms, which makes it possible to use zero-stiffness in a wider
range of applications.
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4
Discussion

4.1. Discussion literature review
This thesis focused on obtaining zero-stiffness compliant joints using lateral torsional buckling. First, the
literature review was carried out. Because the current design of zero-stiffness compliant mechanisms is in
most cases based on Euler buckling, the focus of the literature review was on comparing Euler buckling and
lateral torsional buckling. Calculation methods for both types of buckling were gathered in order to find
similarities between the buckling behaviour. Both types of buckling have a similar working principle, a load
is applied in a stiff direction of the beam resulting in a deflection in a direction with lower stiffness at the
critical load. There is also a major difference, for Euler buckling a compressive (axial) load is applied on a
beam. At the critical load, the beam has a deflection in the direction of the lowest bending stiffness. For
lateral torsional buckling, however, a (transverse) load is applied in the direction with the highest bending
stiffness. This results in a deflection in the direction of the lowest bending stiffness (lateral) in combination
with a rotation of the beam at the critical load.

In the literature review is found that determining the critical load is the focus of research on lateral
torsional buckling. It is an undesired phenomenon and is considered to be a failure mode of the designed
beams. An obvious explanation is that lateral torsional buckling is almost always investigated in civil and
structural engineering. The focus of these engineering fields is on statics and not on the flexible behaviour of
beams. However, with the correct combination of geometry and material properties, a beam will only deform
elastically.

4.2. Discussion research paper
Next, the results from the research paper will be discussed. The simulations and experiments showed that
zero-stiffness behaviour can be obtained using lateral torsional buckling. A good agreement was found
between the results of simulations and experiments on the translational and rotational joints. In order to
make a correct comparison between simulations and experiments it was required to use the rigidities in the
FEA. The rigidities are E A, E Iy y , E Izz and G J , and are derived from the material properties E and G and the
cross-sectional properties A, Iy y , Izz and J . Using the rigidities results in more accurate results because the
material and geometric imperfections are averaged out. The rigidities are determined in a set of material
tests. A more elaborate explanation of these tests and the obtained rigidities is provided in Appendix A. In the
experiments, a certain amount of hysteresis was measured. Part of the hysteresis is introduced by the pulley
in the experiments. The other source of hysteresis is elastic hysteresis, which increases for an increasing
preload displacement.

A third prototype was made of the double translational joint (DTJ). This model consists of two
translational joints (TJ) in series. The idea behind this concept is that the region of zero-stiffness is doubled
for two joints in series. The found regions of zero-stiffness are 28.8 mm and 54.6 mm for the TJ and the DTJ
respectively. This is a multiplication of 1.90, where 2 was expected. However, a possible explanation for this
difference was observed. The forces and moments applied by the beams on the shuttles result in a rotation of
the shuttles. The rotation results in a change of the effective applied preload displacement. An explanation of
this observation is included in Appendix C. Nevertheless, the results from the DTJ show that using multiple
mechanisms in series improves the region of zero-stiffness.
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A sensitivity analysis of the cross-sectional dimensions is also part of the research paper. The effect of
variations of these dimensions on the region of zero-stiffness dzs is determined. For this analysis, three grid
searches are performed, each with a different combination of dimensions. In the sensitivity analysis is found
that the highest values of dzs are found for low values of the web height H and flange width W and high values
of the flange thickness h and web width w . This combination of dimensions, however, does not correspond
with an I-section anymore. It is found that a rectangular cross-section is the optimal shape. However, this
causes a problem in the FEA, the used expression for the St. Venant torsional constant J is only valid for thin-
walled I-sections. How this can be improved in order to perform a better sensitivity analysis of the optimal
shape is discussed in Appendix B.

4.3. General discussion and recommendations
A general point of discussion is the used terminology in this work. The term zero-stiffness is used to describe
the behaviour of the compliant mechanisms. Possible alternative terms are quasi-zero-stiffness [26] or
neutral stability [27]. In this work, the extent of zero-stiffness behaviour depends on the used bound on
the reaction force RFb . A higher RFb results in a higher region of zero-stiffness, which is the aim of this
research. For other purposes, however, it might be beneficial to use a very low RFb resulting in a mechanism
that actually approaches zero-stiffness. For example, for vibration isolation, actual zero-stiffness behaviour
is required [26, 28, 29].

The focus of this work was not directly on obtaining zero-stiffness behaviour. It started with a more
general idea: using lateral torsional buckling in compliant mechanisms. One of the conceptual ideas was
changing the shape of an I-beam such that, lateral torsional buckling occurs at a desired location at a desired
load. The idea of a twisted beam with an applied load such that lateral torsional buckling occurs after the twist
is removed by rotation looked promising. A basic model with possible alternations of this idea is provided in
Appendix E.

From the research paper can be concluded that lateral torsional buckling can be implemented in a
compliant mechanism to obtain zero-stiffness behaviour. For this behaviour, a preload is required in the
stiffest bending direction of the flexible beams. This main difference, compared to current zero-stiffness
compliant mechanisms, opens up opportunities to apply zero-stiffness in a wider range of compliant
mechanisms. For example, it might be challenging to apply a compressive load to a flexible beam, or a
mechanism can be made smaller if lateral torsional buckling is used as a working principle. Additionally, an
application where a gravitational force of a mass causes lateral torsional buckling belongs to the possibilities.
However, a comparison with current zero-stiffness compliant mechanisms is not included in this work.
Therefore, it is complicated to draw a conclusion about the region of zero-stiffness. It is recommended
to compare the region of zero-stiffness of both working principles by, for example, using beams of similar
dimensions. The following recommendations are proposed for further improvement of this idea.

It is recommended to further investigate the optimal shape of the cross-section. It is expected that the
optimal shape is a rectangular cross-section. However, as mentioned before, in this analysis the expression
for the St. Venant torsional constant is not always correct. After the improvement of the expression, a new
sensitivity analysis can be carried out to find the optimal shape and dimensions of the cross-section.

The investigation of adding multiple mechanisms in series focused on the translational joint. Promising
results were obtained for this idea. Therefore, it would be interesting to apply this concept to the rotational
joint as well. This idea can also be expanded to more than two mechanisms in series. Next to the increase in
zero-stiffness this can also be used to obtain a multistable mechanism.

The stiffness of the mechanisms in the research paper can be varied. One of the possibilities is to create
a (bistable) mechanism with negative stiffness around the origin. Such a mechanism can be combined with
an equal positive stiffness (for example a spring) to obtain zero-stiffness behaviour.

Lastly, the focus of this work was on a translational and rotational joint, both mechanisms move in the 2D-
plane. For future research, also joints in 3D can be considered. In the process of finding a working principle,
an alternative to the rotational joint was considered consisting of two beams connected to each other by a
rigid part. This concept has some unsolved problems but may be interesting for future research. A more
elaborate description is given in Appendix D.



5
Conclusion

The objective of this thesis was to investigate the use of lateral torsional buckling in compliant joints to obtain
zero-stiffness behaviour. In the literature review was found that Euler buckling and lateral torsional buckling
have similarities in their working principles. A load is applied in a direction with high stiffness of the flexible
beam for both buckling types. At the critical buckling load, the flexible beams will deflect to one of the
directions with lower stiffness.

The research paper showed that zero-stiffness compliant mechanisms can be obtained using lateral
torsional buckling. This concept is applied to two compliant joints, a translational and a rotational joint,
with I-beams as flexible beams. First, the buckling behaviour of a single beam is determined in an analytical
analysis. Next, the two joints are implemented into a model in a finite element analysis. Using the models,
the optimal preload displacement at which the zero-stiffness behaviour occurs is determined. Experiments
on prototypes of the compliant joints verify the results from the simulations. The translational joint has a
region of zero-stiffness of 28.8 mm. For the rotational joint, a region of zero-stiffness of 40.9 mm is found, this
corresponds with a rotation of 26.4°. A sensitivity analysis is performed on the cross-sectional dimensions
to find the optimal region of zero-stiffness. It is found that not an I-section, but a rectangular shape is the
optimal shape of the cross-section. An additional option to improve the region of zero-stiffness is adding
multiple mechanisms in series. This is performed for the translational joint, a model is made in the FEA and
the results are verified by experiments. The so-called double translational joint has a region of zero-stiffness
of 54.6 mm, a multiplication of 1.90 with respect to the single translational joint.

In general, it can be concluded that lateral torsional buckling can be implemented in compliant
mechanisms to obtain zero-stiffness behaviour. A proof of concept is given in this work, together with
recommendations for further research. In future work, the performance of the zero-stiffness compliant
mechanisms of this work can be compared to the current design of zero-stiffness compliant mechanisms.
Additionally, some improvements and extensions for this work are discussed. This work is a first step towards
zero-stiffness compliant joints with lateral torsional buckling as a working principle. An actual application is
yet to be discovered, but the results of this work are promising.
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Appendices

The appendices contain supplementary material that is used in the thesis. Appendix A contains the
determination of the rigidities that are used in the experiments. An explanation is given of the performed
material tests and how the results are used in the FEA. In Appendix B, the determination of a general
expression of the St. Venant torsional constant is described. Appendix C contains the testing protocol that
is used to carry out the experiments. Additionally, an explanation of the parasitic x-displacement during the
experiments is given. Also, some photos of the experiments are provided and the rotation of the shuttles in the
double translational joint is discussed in more detail. An alternative design of the rotational joint is provided
in Appendix D. The design of a twisted beam, for which lateral torsional buckling occurs after the beam is
twisted back, is described in Appendix E. The used MALTAB® codes in this work are provided in Appendix
F. The appendix starts with a description of the analysis of one of the mechanisms. An elaboration of the
sensitivity analysis is provided next. Appendix G contains a description of the processing of the measurement
data.
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A
Rigidities

For comparison of the simulations and experiments, the rigidities of the beams are used. There are four
rigidities; the axial rigidity E A, two flexural rigidities E Iy y and E Izz and the torsional rigidity G J . The rigidities
are obtained by multiplying one of the material properties, Young’s Modulus E and Shear Modulus G , with
one of the cross-sectional properties, the area A, the second moments of inertia Iy y and Izz and the St.
Venant torsional constant J . Originally, the material properties and cross-sectional properties were used
separately in the finite element analysis (FEA). However, the results of the FEA did not match the results from
the experiments. Imperfections in dimensions and the material are included in the determination of the
rigidities. This results in better agreement between the FEA and the experiments. The relevant dimensions of
the beams are provided in Figure A.1 for clarification.

F

X

Z

Y

Y

Z

h
w

H

W

Lc

Figure A.1: Cantilever beam with applied end-point load and cross-section of the I-beam with relevant
dimensions.

A.1. Axial rigidity
To determine the axial rigidity E A, a tensile test is performed. In all the material tests, the same beams are
used as in the experiments on the prototypes. For the tensile test, three specimens of L = 0.100 mm are
tested up to the point of failure. The results from these tensile tests are provided in Figure A.2. In this work,
the beams will only be used in the elastic domain. It is decided to calculate E A for the linear part up to an
elongation of 1 mm. The strain is calculated by

ϵ= ∆L

L
= 1 mm

100 mm
= 0.01 . (A.1)

The strain is used to calculate the Young’s modulus in

E = σ

ϵ
. (A.2)

This expression requires the stress, which is calculated by

σ= F

A
. (A.3)
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If we use σ in Equation A.2 and multiply both sides by A, this results in

E A = F

ϵ
. (A.4)

With ϵ = 0.01 and F = 242.34 N, the axial rigidity becomes E A = 2.42x104 N.

Figure A.2: Results from the tensile test for determination of axial rigidity E A.

A.2. Flexural rigidities
To determine the flexural rigidities, two three-point bending tests are performed. In Figure A.3 a picture is
provided from a three-point bending test. Two points of the beam are simply supported, in the middle a
vertical displacement is applied and the reaction force is measured.

Figure A.3: Picture of the three-point bending test.

First, the flexural rigidity E Iy y will be determined. This is the orientation corresponding to Figure A.3
and is the stiffest bending direction. The distance between the two simply supported points Lb is 60 mm.
The results from the three-point bending tests are provided in Figure A.4. Unfortunately, one of the files with
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measurement data was corrupted, so only two tests are used in this determination. A straight line is fitted
through the results to obtain E Iy y . The flexural rigidity is calculated using

E Iy y =
F L3

b

48w
, (A.5)

in which w is the deflection [30]. With F = 15.31 N and w = 0.5x10−3 m the flexural rigidity becomes E Iy y =
0.138 N/m2.

Figure A.4: Results from the three-point bending test for determination of flexural rigidity E Iy y .

The same procedure is performed for the flexural rigidity E Izz . The results are shown in Figure A.5. The

Figure A.5: Results from the three-point bending test for determination of flexural rigidity E Izz .

flexural rigidity is calculated using

E Izz =
F L3

b

48w
, (A.6)

with F = 8.686 N and w = 2x10−3 m the flexural rigidity becomes E Izz = 0.0195 N/m2.
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A.3. Torsional rigidity
Lastly, the torsional rigidity G J is determined by a torsion test. A beam of length L = 100 mm is used for this
test. A rotation θ = 90° is applied on the specimen. The results of the torsion tests are shown in Figure A.6.
The angle of twist of determined by

θ = T L

G J
, (A.7)

in which T is the applied torque [30]. This expression can be rewritten into

G J = T L

θ
. (A.8)

With T = 0.0671 Nm, L = 0.1 m and θ = 90°, the torsional rigidity becomes G J = 0.0043 Nm2. The found

Figure A.6: Results from the torsion test for determination of torsional rigidity G J .

rigidities are used in the FEA instead of the separate material and cross-sectional properties and are provided
in Table A.1. To give an idea of how much the results will differ without the use of rigidities the cross-
sectional properties are calculated using the expressions in Equation A.9 and using the obtained values for
the rigidities. For this calculation, a very important assumption is made: the material properties provided by
the manufacturer are correct. The used material properties are E = 2.1 GPa and G = 0.8 GPa. This assumption
implies that the material properties are perfect and all the imperfections are cross-sectional imperfections.
The errors in the cross-sectional properties are varying from 11% up to 31%. The actual material properties
will be a bit lower and the actual values of the cross-sectional properties lie somewhere in between the values
in the table. However, we can not determine what the correct values are. This is the reason the rigidities are
used in the FEA.

Table A.1: Determined rigidities

Rigidities Material test Formula
E A 2.42x104 N A 1.15x10−05 m2 1.34x10−05 m2

E Iy y 0.138 N/m2 Iy y 6.56x10−11 m4 8.45x10−11 m4

E Izz 0.0195 N/m2 Izz 9.31x10−12 m4 1.05x10−11 m4

G J 0.0043 Nm2 J 5.33x10−12 m4 7.81x10−12 m4
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A = 2W h +H w

Iy y = 1

12
w H 3 + 2

12
W h3 + 2

4
hW (H +h)2

Izz = 1

12
H w3 + 2

12
hW 3

J = 2

3
W h3 + 1

3
H w3

(A.9)





B
Torsional constant

B.1. Optimal shape
In the sensitivity analysis in the research paper, the influence of the cross-sectional dimensions on the region
of zero-stiffness is investigated. The dimensions of the cross-section are provided in Figure B.1a. From the
sensitivity analysis is concluded that the highest region of zero-stiffness is found for low values of H and
W and high values of h and w . A cross-section corresponding with these values of shown in Figure B.1. The
definition of the dimensions is still the same. The shape of the cross-section, however, is completely different.

(a) Dimensions of the cross-
section of an I-beam.

(b) A possible shape of
the beam cross-section when
H ,W < h, w .

Figure B.1: Dimensions of the cross-sections that will be used in the determination of the torsional constant
J .

The changing shape of the cross-section causes some problems in the FEA. In the FEA, the following cross-
sectional properties are calculated; the area A, the second moments of inertia Iy y and Izz and the St. Venant
torsional constant J . The expressions of A, Iy y and Izz remain the same for the changing shape and are

A = 2W h +H w .

Iy y = 1

12
w H 3 + 2

12
W h3 + 2

4
hW (H +h)2 ,

Izz = 1

12
H w3 + 2

12
hW 3 .

(B.1)
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B.2. Definition torsional constant
The expression of the St. Venant torsional constant, however, does not remain the same. In the research
paper, the used torsional constant is

J = 2

3
W h3 + 1

3
H w3 , (B.2)

which is only valid for a thin-walled I-section [20]. The St. Venant torsional constant is also referred to as the
polar moment of inertia [31]. The definition of this constant is

J =
∫

R2 d A , (B.3)

in which each element of area d A is multiplied by the square of the distance to the origin. R and d A are also
provided in Figure B.1a. By defining R2 = y2 + z2 and d A = d yd z, this integral becomes

J =
Ï

(y2 + z2)d y d z =
Ï

y2 d y d z +
Ï

z2 d y d z . (B.4)

The cross-section is divided into 3 parts, which are shown in Figure B.1a. The torsional constant is now
calculated using

J = J1 + J2 + J3 . (B.5)

First, the torsional constant of the web J1 is determined. If the bounds of the integral are added to Equation
B.4 the integral becomes

J1 =
∫ H
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−w
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The integration with respect to z is performed resulting in

J1 = z
∣∣∣ H
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If we fill in the integral bounds on z, this results in

J1 = H
∫ w
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−w
2

y2 d y + 1
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H 3
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2

d y . (B.8)

Now, the integration with respect to y is performed, this gives

J1 = H
1

3
y3

∣∣∣ w
2
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+ 1
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H 3 y
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2
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2

. (B.9)

The integral bounds on y are filled in, resulting in the final expression

J1 = 1

12
H w3 + 1

12
w H 3 . (B.10)

The expressions for J2 and J3 are the same. The determination is similar to J1, the bounds on the integral
are added to Equation B.4. The integral becomes

J2 =
∫ H
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The integration with respect to z becomes

J2 = z
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This is followed by filling in the integral bounds of z, which results in

J2 = H
∫ W
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Next, the integration with respect to y is performed, resulting in

J2 = H
1

3
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When we fill in the bounds we find the final expression

J2 = 1
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hW 3 +W
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H 2h

4
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3

)
, (B.15)

for J2 and J3. When these results are used in Equation B.5, the expression for the torsional constant becomes

J = 1

12
H w3 + 1

12
w H 3 + 1
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hW 3 + 1
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W H 2h +W Hh2 + 2
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W h3 . (B.16)

This expression can be rewritten into

J = 1

12
w H 3 + 2

12
W h3 + 2

4
hW (H +h)2 + 1

12
H w3 + 2

12
hW 3 . (B.17)

When comparing this expression with the second moments of inertia in Equation B.1, it can be concluded
that

J = Iy y + Izz . (B.18)

The same result is also found in literature [20, 31, 30]. This general expression can be applied to both cross-
sections in Figure B.1. We end up with a situation where Equation B.2 is valid for thin-walled I-sections and
where Equation B.18 is valid for rectangular cross-sections. For further research, it is recommended to find
an expression for J that is always valid or, to develop a few lines of code that can determine J based on the
shape of the cross-section using multiple expressions for J .





C
Experiments

C.1. Testing protocol
This appendix elaborates on the testing protocol used to carry out the experiments. An overview of the test
set-up is provided in Figure C.1. The relevant parts are indicated with white text. The force sensor, connected
to the precision stage, is connected to the mechanism by a fishing line. For clarification, the used fishing line
is made red in the figure. The mechanism is connected to a mass by another fishing line and a green cartesian
coordinate system is provided for the directions. The pulley is used to redirect the vertical gravitational force
of the mass to a horizontal force.

Figure C.1: Experimental set-up; the precision stage with force sensor, the compliant mechanism and the
mass connected to each other by a fishing line.

The following steps are taken for a set of measurements for one of the mechanisms (translational joint or
rotational joint):

1. The mechanism, without preload, is mounted on two XE25L300/M Thorlabs construction rails. Next,
the construction rails are mounted on the Thorlabs breadboard. The mechanism is connected to the
precision stage and mass by the fishing lines. The position of the precision stage is in the middle (50
mm).

2. The height of the pulley and precision stage is adjusted such that the fishing lines are horizontal. Next,
the pulley and precision stage are positioned such that the x−position is correct. A more elaborate
explanation of the x-positioning will be given after this measurement protocol.

3. The mechanism is now ready for the first set of measurements. The precision stage moves to 0 mm, this
corresponds to -50 mm after data-processing. Next, the precision stage performs a forwards motion
from 0 mm to 100 mm followed by the reverse motion from 100 mm to 0 mm. The displacements and
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measured forces are saved to an Excel-file. This is a single measurement, this process is repeated 5
times to reduce measurement-errors.

4. The mechanism can now be prepared for the next set of measurements. A preload displacement zd

is applied using gauge blocks. One of the rigid parts, mounted on the construction rails, is displaced
zd
2 downwards and the other rigid part is displaced zd

2 upwards. Using this method, the fishing lines
remain always horizontal and no further adjusting is required for the force sensor and pulley. The
measurement process in step 3 can now be performed.

5. Step 4 is repeated for all the required preloads.

After all the steps are taken for the measurements on a mechanism, this process can be repeated for the other
mechanism. The Excel-files are loaded into MATLAB®, the data is processed and the results are compared to
the results from the FEA.

C.2. Parasitic x-displacement
As mentioned above, the x-position of the pulley and precision stage requires more attention. Over the range
of motion, the mechanism has a parasitic x-displacement xp . The parasitic displacement is the largest for
the rotation joint and can result in measurement errors because the fishing line is no longer in line with the
force sensor. To minimize parasitic forces the distance between the mechanism and force sensor have to be
maximized. The same holds for the distance between the mechanism and the pulley. As can be seen in Figure
C.1, the available space between the mechanism and force sensor was limited. Therefore, the effect of the
relatively small distance on the measurements will be determined. The minimum length of the fishing line
between the mechanism and force sensor is L f = 190 mm. A top-view of the situation is provided in Figure
C.2. The green line corresponds with the path of the middle point of the shuttle over the range of motion. The
blue line is the rotational mechanism at the end position. The red line is the fishing line from the mechanism
to the force sensor. The black lines are used to make a triangle to determine the angle of the fishing line.

Figure C.2: Determination of the parasitic displacement xp .

This triangle is rotated, as can be seen in Figure C.3. The dimensions to calculate α are also provided. The
formula to calculate the angle is

α= arcsin
xp

L f
. (C.1)
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For the rotation mechanism, xp = 8.9 mm. Combined with L f = 190 mm, this results in α = 2.69°. Next,
α can be used to determine the measurement error introduced by xp . The measured reaction force in the
end position for the rotational joint without preload is Fm = 3.1822 N. The tension force in the fishing line is
calculated by

Ft = Fm

cosα
. (C.2)

This results in Ft = 3.1857 N. So the difference between the measured force and the actual force in the fishing
line is 0.0035 N. The error is calculated using

error = Ft −Fm

Fm
100 . (C.3)

The resulting error is 0.11%. It can be concluded that the limited space between the force sensor and
mechanism has a minimal effect on the measurement results. The situation described above is the worst
case scenario. In the experiments the parasitic displacement xp was already taken into account. In step 2
of the measurement protocol is mentioned that the precision stage is positioned such that the x-position is
correct. The aim is to position the precision stage halfway the parasitic displacement such that xp is the same
for the neutral position yd = 0 mm and the outer positions yd = ±50 mm. If the force sensor has the perfect
x-position, the measurement error is 0.0009 N or 0.02%.

Figure C.3: Rotated triangle to determine α.

C.3. Additional photos
Next, some photos from the experiments are provided. In Figure C.4 two close-ups from the connections
of the fishing wire to the force sensor and shuttle are shown. In Figure C.5 the positions over the range of
motion of the translational joint are shown. Similar, but from above, in Figure C.6 the positions over the
range of motion of the rotational joint are shown. Figure C.7 is a close-up of the translational mechanism at
the critical preload displacement. The photo gives a clear view on how the beams deform.

(a) Close-up of the connection to the force sensor. (b) Close-up of the connection to the 3D-printed
shuttle.

Figure C.4: Close-up of the connections of the fishing wire to the components of the experimental set-up.
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(a) Translational joint in left end
position.

(b) Translational joint in the middle
position.

(c) Translational joint in right end
position.

Figure C.5: Positions of the translational joint over the range of motion without preload.

(a) Rotational joint in left end position. (b) Rotational joint in the middle
position.

(c) Rotational joint in right end
position.

Figure C.6: Positions of the rotational joint over the range of motion without preload.

Figure C.7: Close-up on the translational joint at the critical preload displacement.
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The double translational joint is tested to investigate the potential of adding multiple mechanisms in series.
For the experiments, this prototype is tested with the beams oriented vertically. It is decided to do this
because the influence of gravity could not be neglected for this prototype. A picture of the DTJ in the right
end position is provided in Figure C.8.

Figure C.8: Double rotational joint in right end position.

C.4. Rotation shuttles
As discussed in the research paper, the forces on the two top shuttles are not balanced out. This will be
explained using the FBD in Figure C.9. The black arrow indicates the direction of the bottom shuttle. In the
configuration without preload, the forces applied on the shuttles form a couple. These forces are indicated
by the red arrows. This couple results in a rotation of the shuttles. In this situation, the left ends of the
shuttles will move towards each other. In the preloaded situation, shown in Figure C.9b, some additional
loads are applied on the shuttles. The I-beams also apply a vertical force component, resulting in a rotation
of the resultant force. Additionally, a moment is applied on the shuttles by the I-beams. These moments
are counteracting the rotation introduced by the forces. For a certain preload, the moments are dominant
resulting in an opposite rotation. In this case, the right ends of the shuttles move towards each other.

(a) FBD of the two shuttles without preload. (b) FBD of the two shuttles with preload.

Figure C.9: Explanation of rotation of the shuttles. The displacement of the bottom shuttle is indicated with
the black arrow. In red the applied loads are given.
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The rotations are observed during the experiments. Figure C.10a shows the DTJ without preload. The left
ends of the shuttles are rotated slightly towards each other. The preloaded configuration is shown in Figure
C.10b. In the picture, the bottom shuttles moves away from the viewer. Similar to the result in Figure C.9b,
the shuttles rotate towards each other at the same side the bottom shuttle is moving.

(a) Rotations of the shuttles in the configuration
without preload.

(b) Rotations of the shuttles in the configuration with
preload.

Figure C.10: Pictures of the prototype during the experiments. These pictures show the rotations of the two
top shuttles when a lateral displacement yd is applied.



D
Rotational joint

D.1. Basic model
In this appendix, an alternative design of the rotational joint is presented. Several designs for the compliant
joints are considered during the project. One of the rotational joints showed potential but at the time it
seemed not to be the best solution. The basic idea and some first results will be discussed in this appendix.
The rotational joint consists of two flexible I-beams. The beams are connected to each other with a rigid part
at the free end of the beams. The top-left plot in Figure D.1 shows the design of the rotational joint. The
beams are of length L and the rigid part has a length R.

Figure D.1: Design of alternative rotational joint with stills from the FEA. Step 1 is a negative rotation θ around
the x-axis. Step 2 is the preload displacement zd , equally divided at the two end points. Step 3 is a positive
rotation 2θ around the x-axis.
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Figure D.1 also shows the loading steps of a single analysis of this joint. First, the rigid part is rotated
a negative angle α around the x-axis. Next, the preload displacement zd is applied at the fixed ends of the
beams. The preload displacement is divided equally such that the middle point of the rigid part remains at
the same position. Lastly, a positive rotation 2θ around the x-axis is applied on the rigid part. The reaction
moment to this rotation is calculated and will be used in the analysis. A moment-angle plot of two different
preload displacements is provided in Figure D.2. The red line corresponds with the mechanism without
preload, the blue line is obtained with zd = 50 mm. The results for this rotational joint are quite good, with a
region of zero-stiffness of approximately 30°.

Figure D.2: Moment-angle plot of the rotational joint for two different preload displacements.

D.2. Improvement zero-stiffness range
There is an additional idea to further improve the region of zero-stiffness. However, proof of this idea is
not obtained so far. For this idea one of the two beams in this design is analysed. The model consists of a
cantilever beam, rotation of the end of the beam around y is constrained (just as in the model with 2 beams).
A displacement is applied in the negative z-direction. First, the end of the beam will move vertically. At
the displacement where lateral torsional buckling occurs, the end of the beam will start to move laterally.
The displacement of the end of the beam in the y − z-plane is provided in Figure D.3. Changing the cross-

Figure D.3: Movement of the free end of a cantilever beam for lateral torsional buckling.
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sectional dimensions and the length of the cantilever changes the path of the free end of the beam. The path
of the free end of the beam looks like a part of a circle. The idea is the following: the region of zero-stiffness
increases if we manage, by adjusting the cross-sectional dimensions and L and R, to overlap the circular path
with the circular path of the rigid part in Figure D.1. This can be performed in a sensitivity analysis or in an
optimization process.





E
Twisted beam

At the start of the project, many options for using LTB in a compliant mechanism were considered. One of
the ideas was to change the shape of the beam. The aim of this idea was to be able to change the shape of
the beam, such that LTB occurs at a desired place of the beam at a desired load or displacement. One of the
possibilities to do this had promising results and will be discussed in this appendix.

The beam in this design consists of two parts. One of the ends of the first part is fixed, and the other end
is free. Over the length of the first part, the beam has a twist of 90°. This twist is modelled in the FEA using a
helical function. The implementation of this function is shown below.

1 %% use this for a twisted guide curve
2 dia = 100;
3 pitch = 0.1;
4 height = 0.1;
5 t = linspace(0,-pi/2,20);
6 radius = dia/2;
7 yy = radius*sin(t);
8 zz = radius*cos(t);
9 xx = t/(pi/2)*pitch;

10

11 m.GuideCurve(:,1:20) = [xx; yy; zz];
12 s = linspace(0,2*pi,m.numberNodes);
13 m.GuideCurve(2,:) = m.GuideCurve(2,:) + 0.1*sin(s);
14

15 m.guidecurve = reshape(m.GuideCurve,3*m.numberNodes,1);

Perpendicular to the first part, a second part of the beam is modelled. The stiffness is multiplied by 1000 in
order to make this part rigid. Both parts have a length of 0.1 m. At the end of the second part, a downward
displacement zd is applied. Some stills of the deformation for increasing zd of this beam are provided in
Figure E.1. After the twist in the first part of the beam is removed, lateral torsional buckling occurs as can be
seen in Figure E.1d. The shown example is the most basic version of this idea. Some possible alternations
and extensions are listed below.

• The second part of the beam can be connected to the first part with a small offset zo in the positive
z-direction (for example zo = 0.005 m). This ensures that the twist in the first part of the beam is
completely removed before LTB occurs. In the situation where the second part becomes almost vertical
(approximately the position in Figure E.1c), the downward force will still have a moment arm with
respect to the first part.

• The used angles in the model can be varied to change the behaviour of the beam. The twist-angle of the
first part can be changed. Also, the orientation of the second part can be changed, a rotation around x
and z both belong to the possibilities.

• This model contains two parts. The initial idea was to expand this to a beam with more parts that will
buckle at the same time, or at different desired times. Ideally, we want to be able to model the (desired)
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buckling behaviour of a beam with n parts. So far, this idea has some challenges that have not been
solved yet.

(a) Twisted beam with applied displacement zd = 0 m. (b) Twisted beam with applied displacement zd = -0.05 m.

(c) Twisted beam with applied displacement zd = -0.10 m. (d) Twisted beam with applied displacement zd = -0.12 m.

Figure E.1: Stills of the deformation of the twisted beam with perpendicular arm. Displacement zd is applied
at the end of the arm.



F
Matlab code

F.1. Analysis mechanism
In this appendix, the used MALTAB® code is provided. The first function is shown below. This function is
a single analysis of the translational joint. The function can easily be adjusted to the rotational joint or the
double translational joint by changing the geometry of the model in lines 20-43. As input, the dimensions
to build the mechanism (H ,W,h, w,L), the preload displacement zd , lateral displacement yd and some extra
parameters are required. These parameters are for example the number of elements, the beam type that is
used and the material properties E and G . In lines 56-65, the possibility to use rigidities is implemented. If
this option is used, the rigidities E A, E Iy y , E Izz and G J obtained from the material tests are used. After the
model is completely defined, three loading steps are performed. The displacements and reaction forces are
saved in a struct for each time step. This struct is the output of the function and can be used to analyse the
mechanism.

1 function [history3, m3] = Exp_compare_straight(z_d,y_d,par,params,H,W,h,w,L)
2 % LTB straight mechanism translational joint, single analysis of the
3 % mechanism. Input z_d,y_d,H,W,h,w and extra parameters in par and params.
4 % Output is struct with deformations and reaction force for each time step.
5 % Marco Moerman
6 % 11-10-2022
7

8 par.nTimestep = 20;
9 par.nIter = 100;

10 par.conv = 1e-6;
11 par.getKend = 0;
12 par.step = 'on';
13 par.view = 'off';
14 par.plots = 'off';
15

16 addpath '..\core'
17

18 %% Model
19 % generation of coordinates and connectivities
20 d1 = 0.1;
21 d2 = 0.02;
22 length_beam = L;
23 el_beam = params.Elements;
24

25 x_beam = linspace(0,length_beam,el_beam).';
26 y_beam = [repmat(0,length(x_beam),1) repmat(0,length(x_beam),1)...
27 repmat(d1,length(x_beam),1) repmat(d1,length(x_beam),1)];
28 z_beam = [repmat(0,length(x_beam),1) repmat(d2,length(x_beam),1)...
29 repmat(d2,length(x_beam),1) repmat(0,length(x_beam),1)];
30

31 x = [x_beam; x_beam(end); flip(x_beam); x_beam; x_beam(end); flip(x_beam)];
32 y = [y_beam(:,1); y_beam(end,1); y_beam(:,2); y_beam(:,3); y_beam(end,3); y_beam(:,4)];
33 z = [z_beam(:,1); d2/2; z_beam(:,2); z_beam(:,3); d2/2; z_beam(:,4)];
34
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35 nbeam = numel(x);
36

37 m.X = [x y z,zeros(3,nbeam)'];
38 m.elementNodes = [1:2*el_beam 2*el_beam+2:nbeam-1 el_beam+1;...
39 2:2*el_beam+1 2*el_beam+3:nbeam 3*el_beam+2]';
40 m.numberNodes = size(m.X,1);
41 m.numberElements = size(m.elementNodes,1);
42 m.eqn = 6*m.numberNodes;
43 m.x = reshape(m.X',m.eqn,1);
44

45 %% material properties
46 index = [el_beam el_beam+1 3*el_beam 3*el_beam+1 4*el_beam+1];
47 m.E = params.E * ones(1,m.numberElements);
48 m.E(index) = 1E3*params.E;
49 m.G = params.G * ones(1,m.numberElements);
50 m.G(index) = 1E3*params.G;
51

52 name = params.type;
53

54 m = DefineCrossSection(m,name,H,W,h,w);
55

56 if params.useEI == 1
57 m.E = 1 * ones(1,m.numberElements);
58 m.E(index) = 1E3*1;
59 m.G = 1 * ones(1,m.numberElements);
60 m.G(index) = 1E3*1;
61 m.A = params.EA*ones(1,length(m.A));
62 m.I22 = params.EI22*ones(1,length(m.I22));
63 m.I33 = params.EI33*ones(1,length(m.I33));
64 m.J = params.GJ*ones(1,length(m.J));
65 end
66

67 %%
68 %Use this for a single orientation point
69 CSO = [0 0 100]'; % cross section orientation. Is the point towards which e03 ...

points. Used to be fixed [0.00001 0.000001 1]'
70 m.GuideCurve = repmat(CSO,1,m.numberNodes);
71

72 s = linspace(0,2*pi,m.numberNodes);
73 m.GuideCurve(2,:) = m.GuideCurve(2,:) + 0.1*sin(s);
74

75 m.guidecurve = reshape(m.GuideCurve,3*m.numberNodes,1);
76

77 for e = 1:m.numberElements
78 % m.tr1(:,:,e) = eye(3)*rotRo1(m.X(e+1,1:3)'-m.X(e,1:3)');
79 % m.tr2(:,:,e) = eye(3)*rotRo1(m.X(e+2,1:3)'-m.X(e+1,1:3)');
80

81 %modified rotRo1 met richting e03 naar bepaald punt (niet de snelste versie)
82 x21=(m.X(m.elementNodes(e,2),1:3)'-m.X(m.elementNodes(e,1),1:3)');
83 e01 = (x21)/norm(x21);
84 % e03star = veccross(e01,[0.00001 0.000001 1]');
85 e03star = cross(e01, m.guidecurve(3*(m.elementNodes(e,1)-1)+[1:3]) - ...

m.X(m.elementNodes(e,1),1:3)');
86 e03 = e03star/norm(e03star);
87 e02 = cross(e03,e01);
88 Ro = [e01 e02 e03]; % voor eqn 4.28
89

90 m.tr1(:,:,m.elementNodes(e,1)) = eye(3)*Ro;
91 m.tr2(:,:,m.elementNodes(e,1)) = eye(3)*Ro;
92

93 end
94 m.tr1(:,:,m.numberElements) = eye(3)*Ro;
95 m.tr2(:,:,m.numberElements) = eye(3)*Ro;
96

97 % m.tr1 = repmat(eye(3),1,1,m.numberElements);
98 % m.tr2 = repmat(eye(3),1,1,m.numberElements);
99 m.Rg1 = ...

repmat(eye(3),1,1,m.numberElements);%repmat({eye(3)},m.numberElements,1);
100 m.Rg2 = repmat(eye(3),1,1,m.numberElements);
101

102 m.D = zeros(6,m.numberNodes)';
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103 m.d = zeros(m.eqn,1);
104

105 % PlotBeamsCrossSectionsModified(m,par, 'undeformed')
106

107 %% BOUNDARY CONDITIONS on begin- and endpoint
108 y_dist = -y_d;
109 ep1 = [0 0 0];
110 theta1= [0 0 0];
111 ep2 = [0 0 0];
112 theta2 = [0 0 0];
113 ep3 = [0 0 0];
114 theta3 = [0 0 0];
115 ep4 = [0 0 0];
116 theta4= [0 0 0];
117 mp1 = [nan y_dist nan];
118 thetamp1 = [0 0 0];
119 Fe = zeros(m.eqn,1);
120 PreFe = zeros(m.eqn,1);
121

122 mp = [el_beam+1 2*el_beam+1 2*el_beam+2];
123 bc = [1:6 6*mp(1)-5:6*mp(1) 6*mp(2)-5:6*mp(2) 6*mp(3)-5:6*mp(3) m.eqn-5:m.eqn];
124 dofs.dp = [ep1 theta1 mp1 thetamp1 ep2 theta2 ep3 theta3 ep4 theta4]';
125 dofs.all = (1:m.eqn)';
126 dofs.bc = bc(¬isnan([dofs.dp]));
127 dofs.dp = dofs.dp(¬isnan([dofs.dp]));
128 dofs.R = sparse(1:length(dofs.bc),[dofs.bc],1+0*dofs.bc,length(dofs.bc),m.eqn);
129

130 [history, m] = solveNONLINstaticCOR(m,dofs,par,Fe,PreFe);
131

132 % PlotBeamsCrossSectionsModified(m,par, 'deformed')
133

134 %% Prepare for loading step 2
135 ep2 = [0 0 z_d];
136 ep3 = [0 0 z_d];
137 mp1 = [nan 0 nan];
138

139 bc = [1:6 6*mp(1)-5:6*mp(1) 6*mp(2)-5:6*mp(2) 6*mp(3)-5:6*mp(3) m.eqn-5:m.eqn];
140 dofs.dp = [ep1 theta1 mp1 thetamp1 ep2 theta2 ep3 theta3 ep4 theta4]';
141 dofs.all = (1:m.eqn)';
142 dofs.bc = bc(¬isnan([dofs.dp]));
143 dofs.dp = dofs.dp(¬isnan([dofs.dp]));
144 dofs.R = sparse(1:length(dofs.bc),[dofs.bc],1+0*dofs.bc,length(dofs.bc),m.eqn);
145

146 [history2, m2] = solveNONLINstaticCOR(m,dofs,par,Fe,PreFe);
147 % PlotBeamsCrossSectionsModified(m2,par, 'deformed')
148

149 %% loading step 2
150 par.nTimestep = 50;
151 y_dist = 2*y_d;
152 ep2 = [0 0 0];
153 ep3 = [0 0 0];
154 mp1 = [nan y_dist nan];
155 % Fe(pertub_node) = -pertub;
156

157 bc = [1:6 6*mp(1)-5:6*mp(1) 6*mp(2)-5:6*mp(2) 6*mp(3)-5:6*mp(3) m.eqn-5:m.eqn];
158 dofs.dp = [ep1 theta1 mp1 thetamp1 ep2 theta2 ep3 theta3 ep4 theta4]';
159 dofs.all = (1:m.eqn)';
160 dofs.bc = bc(¬isnan([dofs.dp]));
161 dofs.dp = dofs.dp(¬isnan([dofs.dp]));
162 dofs.R = sparse(1:length(dofs.bc),[dofs.bc],1+0*dofs.bc,length(dofs.bc),m.eqn);
163

164 [history3, m3] = solveNONLINstaticCOR(m2,dofs,par,Fe,PreFe);
165

166 if history3(end).flag == 0
167 return
168 end
169 end
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In Figures F.1 and F.2 the loading steps for the translational and rotational joints are provided for
clarification on the designs of the joints and the order of the loading steps.

Figure F.1: Stills to illustrate the loading steps of the translational joint. Step 1 is a lateral displacement yd in
-y . Step 2 is a preload displacement zd in +z. Step 3 is a lateral displacement 2yd in +y .

Figure F.2: Stills to illustrate the loading steps or the rotational joint. Step 1 is a lateral displacement yd in -y .
Step 2 is a preload displacement zd in +z. Step 3 is a lateral displacement 2yd in +y .
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F.2. Sensitivity analysis
The results from this function are used for further analysis of the mechanism. For example, in the sensitivity
analysis, the mechanism is analyzed for varying dimensions and preload displacements zd . The code for the
grid search that is performed for the sensitivity analysis of H and W is shown below. The cross-sectional
dimensions and the length are used in vector x. This vector is used in the function beamob j con which
contains the calculation of the objective and constraints. These results are used to make a contour plot of the
sensitivity analysis.

1 clear all
2 close all
3 % sensitivity analysis of design variable H and W. h,w and L are constant
4 % Marco Moerman
5 % 12-10-2022
6

7 % Design variables
8 Hgrid = 1:0.3:10;
9 Wgrid = 1:0.3:10;

10 h = 1;
11 w = h;
12 L = 0.25;
13 m.numberElements = 1;
14 name = 'Ibeam';
15 % Vector of output values
16 for i = 1:length(Hgrid)
17 for j = 1:length(Wgrid)
18 tic
19 x(1) = Hgrid(i);
20 x(2) = Wgrid(j);
21 x(3) = h;
22 x(4) = w;
23 x(5) = L;
24 m = DefineCrossSection(m,name,Hgrid(i),Wgrid(j),h,w);
25 if m.I33>m.I22
26 break
27 end
28 % Objective function
29 [f,g,¬,z_opt, RF_lim, xcor1, xcor2] = beamobjcon(x);
30 % Grid value of objective function
31 fob(j,i) = f;
32 % Constraint
33 % {¬,g,¬] = beamobjcon(x);
34 % Grid value of constraintsL
35 g1(j,i) = g(1);
36 g2(j,i) = g(2);
37 g3(j,i) = g(3);
38 g4(j,i) = g(4);
39 % optimal preload z values
40 z_opt_save(j,i) = z_opt;
41 RF_lim_save(j,i) = RF_lim;
42 xcor1_save(j,i) = xcor1;
43 xcor2_save(j,i) = xcor2;
44 progress = ((i-1)*length(Wgrid)+j)/(length(Hgrid)*length(Wgrid))*100;
45 time(j,i) = toc;
46 formatSpec = 'Progress = %4.2f, time = %4.2f s, H = %2.1f, W = %2.1f, obj = ...

%4.2f, pre = %4.2f\n';
47 fprintf(formatSpec,progress,toc,x(1),x(2), -f*1000, z_opt*1000)
48 end
49 end
50

51 %%
52 Hgrid = Hgrid(1:length(fob(1,:)));
53 Wgrid = Wgrid(1:length(fob(:,1)));
54 g1(g1==0) = nan;
55 g2(g2==0) = nan;
56 g3(g3==0) = nan;
57 fob(fob==0) = nan;
58 z_opt_save(z_opt_save==0) = nan;
59 RF_lim_save(RF_lim_save==0) = nan;
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60 xcor1(xcor1==0) = nan;
61 xcor2(xcor2==0) = nan;
62

63 %%
64 %Contour plot of beam sensitivity
65 figure()
66 obj_contours = [12 16 20 24 28 32 36 40 44 48 52];
67 contour(Hgrid, hgrid, -fob*1000, obj_contours,'showtext','on')
68 xlabel('Web height H [mm]')
69 ylabel('Flange thickness h [mm]')
70

71 hold on
72 contour(Hgrid, hgrid, g3, [0.0 0.0],'r')
73 contour(Hgrid, hgrid, g3, [0.01 0.01],'--r','HandleVisibility','off') % Infeasible ...

region
74

75 contour(Hgrid, hgrid, g4, [0.0 0.0],'k')
76 contour(Hgrid, hgrid, g4, [0.02 0.02],'--k') % Infeasible region
77 grid on
78 legend('d_{zs} [mm]','Constraint strain','Constraint I_{zz}','Location','NorthEast')

In the function beamob j con the region of zero-stiffness and the values for the constraints are calculated.
The dimensions and constants are used in a function z_opti mi zati on.

1 function [f,c,ceq,z_opt, RF_lim, xcor1, xcor2] = beamobjcon(x)
2 % computation of scaled constraints
3 % LTB analysis of beams
4

5 % Input: Design variables H,W,h,w,L
6

7 % Output: region of zero-stiffness f, constraints c, equality constraints
8 % ceq, used optimal preload z_opt, bound on reaction force RF_lim,
9 % coordinates of zero-stiffness xcor1 and xcor2

10

11 % Assignment of variables
12 H = x(1)/1000;
13 W = x(2)/1000;
14 h = x(3)/1000;
15 w = x(4)/1000;
16 L = x(5);
17

18 % Constant beam values
19 beamparams;
20

21 % Analysis of current beam design strain
22 [y_res, epsilon, z_opt, RF_lim, xcor1, xcor2] = z_optimization(par,params,H,W,h,w,L);
23

24 f = -y_res;
25 % Scaled dimension constraint
26 % g(1) = W/H - 1;
27 %
28 % % Scaled thickness constraint
29 % g(2) = 4*h/H - 1;
30

31 % Scaled strain constraint
32 epsilonmax = params.epsilonmax; % max strain [%}
33 g(3) = epsilon/epsilonmax - 1;
34

35 % Scaled constraint on Izz
36 g(4) = m.I33/m.I22-1;
37

38 c = g;
39 ceq = [];
40 end
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The function z_opti mi zati on is used to calculate the optimal preload displacement for a set of design
variables. First the preload displacement is estimated using the function pr eload_est i mati on4. Next the
mechanism is analyzed once without preload in lines 7-12. Note that here a different function is used as the
one provided at the start of this appendix. This function contains a single beam instead of four to minimize
the calculation time. The result from this analysis without preload is used to calculate the bound on the
reaction force RFl i m . In lines 15-21 the optimal preload displacement is determined using the MALTAB®

function f mi nsear ch. As a initial guess the result from the analytical estimation is used. The result from
this optimization step x2 is analyzed once more in lines 26-31. This analysis is used to calculated the region
of zero-stiffness in line 40, in this code referred to as y_r es. In lines 42-46 the maximum value of the strain in
the mechanism is calculated.

1 function [y_res, epsilon, z_opt, RF_lim, xcor1, xcor2, RFz] = ...
z_optimization(par,params,H,W,h,w,L)

2 % tic
3

4 [z_guess, Pcr] = preload_estimation4(H,W,h,w,L,params,par);
5

6 %% Calculation for RF_lim
7 z_dist0 = 0;
8 [history3, m3] = ...

Opt_bistable_mech_complete_function_singlebeam(z_dist0,par,params,H,W,h,w,L);
9 for i = 1:length(history3)

10 RFy0(i) = history3(i).RF(7);
11 end
12 RF_lim = 0.01*max(RFy0);
13

14 %% fminsearch
15 x0_search = 2*z_guess;
16 opt2.options = optimset('Display','off','TolFun',1E-4,'TolX',1E-4);
17 opt2.x0 = x0_search;
18 opt2.objective = @(x) z_obj(x,H,W,h,w,L,RF_lim);
19 opt2.solver = 'fminsearch';
20

21 [x2,fval2,exitflag2,output2] = fminsearch(opt2);
22

23 %% investigate result
24 z_dist = x2;
25

26 [history3, m3] = ...
Opt_bistable_mech_complete_function_singlebeam(z_dist,par,params,H,W,h,w,L);

27 for i = 1:length(history3)
28 RFy(i) = history3(i).RF(7);
29 RFz(i) = history3(i).RF(8);
30 dispy(i) = history3(i).m.d(history3(end).dofs.bc(7));
31 end
32

33 % RF_lim = params.RF_lim;
34 Xq = linspace(-L/5,L/5,2000);
35 Vq = interp1(dispy,RFy,Xq,'spline');
36

37 index1 = find(Vq>-RF_lim,1);
38 index2 = find(Vq<RF_lim,1,'last');
39

40 y_res = Xq(index2)-Xq(index1);
41

42 for i = 1:length(history3)
43 m = history3(i).m;
44 max_strain(i) = StrainEstimation(m,par,'deformed');
45 end
46 epsilon = max(max_strain);
47

48 z_opt = x2;
49 RFz = max(RFz);
50 xcor1 = Xq(index1);
51 xcor2 = Xq(index2);
52 end
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As discussed above, the function pr eload_est i mati on4 is used to estimate the critical preload
displacement of the mechanism. The function uses the cross-sectional dimensions and beam length as input
and calculates the critical displacement of a cantilever beam [21].

1 function [z_guess, Pcr, I, Kbar] = preload_estimation4(H,W,h,w,L,params,par)
2 % Estimation of the critical preload of a cantilever beam
3 % Used formula obtained from Andrade et al. 'On the evaluation of elastic
4 % critical moments in double and singly symmetric i-section cantilevers.'
5 % Marco Moerman
6 % 23-09-2022
7

8 % beamparams;
9 m.numberElements = 1;

10 name = params.type;
11

12 m = DefineCrossSection(m,name,H,W,h,w);
13

14 % Method for estimating the critical load and displacement z
15 C2 = 0;
16 C3 = 0;
17 zg = 0;
18 zj = 0;
19 L = L/2;
20 hs = H+h;
21 G = params.G;
22 E = params.E;
23 It = m.J;
24 Iz = m.I33;
25 kz = 2;
26 kw = 1;
27 Iw = 1/4*Iz*hs^2;
28 I = m.I22;
29

30 Kbar = pi/L*sqrt((E*Iz*hs^2)/(4*G*It));
31 C1 = 2.462/sqrt(1+Kbar^2)+2.383*Kbar/sqrt(1+Kbar^2);
32 Mcr = ...

C1*((pi^2*E*Iz)/((kz*L)^2))*(sqrt((kz/kw)^2*Iw/Iz+(((kz*L)^2*G*It)/(pi^2*E*Iz))+ ...
(C2*zg-C3*zj)^2)-(C2*zg-C3*zj));

33

34 Pcr = Mcr/L;
35 w2 = Pcr*L^3/(3*E*I);
36

37 z_guess = w2;
38 end

In z_opti mi zati on the optimal preload displacement is determined using f mi nsear ch. The objective
for this optimization step is defined in the function z_ob j , which is provided below. The objective is
minimizing the distance between the set value +RFb and the maximum value of the first half of the graph.
This corresponds with the preload for which the maximum region of zero-stiffness is found.

1 function f = z_obj(x,H,W,h,w,L,RF_lim)
2 % Objective function
3

4 % Assignment of design variables
5 z_dist = x(1);
6

7 % Constant parameters
8 beamparams;
9

10 % Analysis of beam design
11 [y_res] = z_analysis(par,params,z_dist,H,W,h,w,L,RF_lim);
12

13 f = y_res;
14 end
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(a) Raw data from the experiments on the translational joint
with four different preloads.

(b) Raw data from the experiments on the rotational joints
with four different preloads.

Figure F.3: Optimization process for determining the optimal preload zd ,opt .

In the function z_ob j the mechanism is analyzed in the function z_anal y si s. This function is shown
below, for a given set of cross-sectional dimensions, beam length and a preload displacement z_di st the
distance between RFb and the maximum of the first half of the graph is calculated. For clarification Figure F.3
is provided. dob j in Figure F.3a is the objective and needs to be minimized. The optimal preload displacement
for which the region of zero-stiffness is the largest is shown in Figure F.3b. The mechanism is analysed in the
function in line 7. It is a similar to the first function provided in this appendix. However, a single beam is
analyzed in this function to minimize the computation time.

1 function [y_res] = z_analysis(par,params,z_dist,H,W,h,w,L,RF_lim)
2 % Analysis of the mechanism for a given set of cross-sectional dimensions
3 % and beam length. A preload distance z_dist is provided. The output y_res
4 % is the distance between RF_b and the top of the graph.
5 % Marco Moerman
6

7 [history3] = Opt_bistable_mech_complete_function_singlebeam(z_dist,par,params,H,W,h,w,L);
8 for i = 1:length(history3)
9 RFy(i) = history3(i).RF(7);

10 dispy(i) = history3(i).m.d(history3(end).dofs.bc(7));
11 end
12

13 %% objective function option 3
14 Xq = linspace(-L/5,L/5,2000);
15 Vq = interp1(dispy,RFy,Xq,'spline');
16 index1 = find(Vq>0,1);
17 index2 = length(Xq)/2;
18 if index2<index1
19 index1 = index2-1;
20 end
21

22 maxx = max(Vq(index1:index2));
23

24 y_res = abs(RF_lim - maxx);
25 end

In z_opti mi zati on, an estimation is made of the maximal strain in the mechanism over the range of
motion. This estimation is made using the function Str ai nE sti mati on, which is provided below. In lines 21-
28 the coordinates of all the corners of the I-section are calculated for every element. The distance between
a corner on node n and n+1 is approximated by a straight line between these points. This distance, together
with the undeformed distance defined in line 8, is used in line 35 to calculate the strain.
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1 function max_strain = StrainEstimation(m,par,def)
2 % In this function an estimation is made for the strain of every element.
3 % For this estimation the coordinates of the corners of an I-beam are
4 % determined by taking into account m.X, m.D and the rotations in m.tr1.
5 % Marco Moerman
6 beamparams;
7

8 dL0 = m.X(2,1); % aanpassen voor crossed beams
9

10 if strncmpi(def,'def',3)
11 coordinates = m.X + m.D;
12 elseif strncmpi(def,'und',3)
13 coordinates = m.X;
14 end
15

16 if strncmpi(m.CStype,'Ibeam',3)
17 H = m.H;% Flange-flange inner face height (web height)
18 W = m.W;% Flange (total) width
19 h = m.h;% thickness flanges
20 w = m.w;% web thickness
21 for e = 1:params.Elements-1
22 up=m.tr1(:,2,e);
23 side=m.tr1(:,3,e);
24 X= [ coordinates(m.elementNodes(e,1),1)+side(1)*W(e)*.5+up(1)*H(e)*.5; ...

coordinates(m.elementNodes(e,1),1)+side(1)*W(e)*.5+up(1)*H(e)*.5+up(1)*h(e); ...
...

coordinates(m.elementNodes(e,1),1)-side(1)*W(e)*.5+up(1)*H(e)*.5+up(1)*h(e); ...
...

coordinates(m.elementNodes(e,1),1)-side(1)*W(e)*.5+up(1)*H(e)*.5; ...
...

coordinates(m.elementNodes(e,1),1)+up(1)*H(e)*.5-side(1)*w(e)*.5; ...
coordinates(m.elementNodes(e,1),1)-up(1)*H(e)*.5-side(1)*w(e)*.5; ...
coordinates(m.elementNodes(e,1),1)-up(1)*H(e)*.5-side(1)*W(e)*.5; ...
coordinates(m.elementNodes(e,1),1)-up(1)*H(e)*.5-side(1)*W(e)*.5-up(1)*h(e); ...

...
coordinates(m.elementNodes(e,1),1)-up(1)*H(e)*.5+side(1)*W(e)*.5-up(1)*h(e); ...

coordinates(m.elementNodes(e,1),1)-up(1)*H(e)*.5+side(1)*W(e)*.5; ...
coordinates(m.elementNodes(e,1),1)-up(1)*H(e)*.5+side(1)*w(e)*.5; ...
coordinates(m.elementNodes(e,1),1)+up(1)*H(e)*.5+side(1)*w(e)*.5; ...
coordinates(m.elementNodes(e,1),1)+side(1)*W(e)*.5+up(1)*H(e)*.5];

25 Y= [ coordinates(m.elementNodes(e,1),2)+side(2)*W(e)*.5+up(2)*H(e)*.5; ...
coordinates(m.elementNodes(e,1),2)+side(2)*W(e)*.5+up(2)*H(e)*.5+up(2)*h(e); ...

...
coordinates(m.elementNodes(e,1),2)-side(2)*W(e)*.5+up(2)*H(e)*.5+up(2)*h(e); ...

...
coordinates(m.elementNodes(e,1),2)-side(2)*W(e)*.5+up(2)*H(e)*.5; ...

...
coordinates(m.elementNodes(e,1),2)+up(2)*H(e)*.5-side(2)*w(e)*.5; ...
coordinates(m.elementNodes(e,1),2)-up(2)*H(e)*.5-side(2)*w(e)*.5; ...
coordinates(m.elementNodes(e,1),2)-up(2)*H(e)*.5-side(2)*W(e)*.5; ...
coordinates(m.elementNodes(e,1),2)-up(2)*H(e)*.5-side(2)*W(e)*.5-up(2)*h(e); ...

...
coordinates(m.elementNodes(e,1),2)-up(2)*H(e)*.5+side(2)*W(e)*.5-up(2)*h(e); ...

coordinates(m.elementNodes(e,1),2)-up(2)*H(e)*.5+side(2)*W(e)*.5; ...
coordinates(m.elementNodes(e,1),2)-up(2)*H(e)*.5+side(2)*w(e)*.5; ...
coordinates(m.elementNodes(e,1),2)+up(2)*H(e)*.5+side(2)*w(e)*.5; ...
coordinates(m.elementNodes(e,1),2)+side(2)*W(e)*.5+up(2)*H(e)*.5];

26 Z= [ coordinates(m.elementNodes(e,1),3)+side(3)*W(e)*.5+up(3)*H(e)*.5; ...
coordinates(m.elementNodes(e,1),3)+side(3)*W(e)*.5+up(3)*H(e)*.5+up(3)*h(e); ...

...
coordinates(m.elementNodes(e,1),3)-side(3)*W(e)*.5+up(3)*H(e)*.5+up(3)*h(e); ...

...
coordinates(m.elementNodes(e,1),3)-side(3)*W(e)*.5+up(3)*H(e)*.5; ...

...
coordinates(m.elementNodes(e,1),3)+up(3)*H(e)*.5-side(3)*w(e)*.5; ...
coordinates(m.elementNodes(e,1),3)-up(3)*H(e)*.5-side(3)*w(e)*.5; ...
coordinates(m.elementNodes(e,1),3)-up(3)*H(e)*.5-side(3)*W(e)*.5; ...
coordinates(m.elementNodes(e,1),3)-up(3)*H(e)*.5-side(3)*W(e)*.5-up(3)*h(e); ...

...
coordinates(m.elementNodes(e,1),3)-up(3)*H(e)*.5+side(3)*W(e)*.5-up(3)*h(e); ...
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coordinates(m.elementNodes(e,1),3)-up(3)*H(e)*.5+side(3)*W(e)*.5; ...
coordinates(m.elementNodes(e,1),3)-up(3)*H(e)*.5+side(3)*w(e)*.5; ...
coordinates(m.elementNodes(e,1),3)+up(3)*H(e)*.5+side(3)*w(e)*.5; ...
coordinates(m.elementNodes(e,1),3)+side(3)*W(e)*.5+up(3)*H(e)*.5];

27 geo(:,:,e)=[X,Y,Z];
28 end
29 end
30 for j = 1:params.Elements-2
31 P1 = geo(:,:,j);
32 P2 = geo(:,:,j+1);
33 for i = 1:length(P1(:,1))
34 dL(j,i) = norm(P2(i,:)-P1(i,:));
35 strain(j,i) = (dL(j,i)-dL0)/dL0*100;
36 end
37 max_strain = max(abs(strain(j,:)));
38 end





G
Data processing

This appendix elaborates on the data processing of the experiments. During the experiments, the
measurement data is saved in Excel files. The data is loaded into MATLAB® using the function xl sr ead .
The data is divided into two vectors, one with the displacements and the other with the reaction forces. The
lengths of these vectors may be different for each measurement. Therefore, an interpolation step is performed
to make sure that all the vectors have the same length. The function used for the interpolation is shown below.
The displacements and forces are divided into a forward and a backward motion.

1 function I = interpolate(data,x)
2 % Interpolation of the data and devide in forward and backwards motion
3 % Make vector of specified length
4

5 [¬,index] = min(data(:,1));
6 % Devide in forward and backwards motion
7 dispF = data(1:index,1);
8 dispB = data(index:end,1);
9 forceF = data(1:index,2);

10 forceB = data(index:end,2);
11

12 % Interpolation of values
13 dF = dispF(round(dispF,2) ̸=0);
14 fF = forceF(round(dispF,2) ̸=0);
15 dB = dispB(round(dispB,2) ̸=0);
16 fB = forceB(round(dispB,2) ̸=0);
17

18 fF = fF(round(dF,2) ̸=round(max(dispF),2));
19 dF = dF(round(dF,2) ̸=round(max(dispF),2));
20 fB = fB(round(dB,2) ̸=round(max(dispB),2));
21 dB = dB(round(dB,2) ̸=round(max(dispB),2));
22

23 I.fF = interp1(dF,fF,x);
24 I.fB = interp1(dB,fB,x);
25

26 I = [I.fF I.fB]';
27

28 end

73
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After the interpolation step the raw data is plotted. For the translational (TJ), rotational (RJ) and double
translational (DTJ) the raw data is provided in Figure G.1. The curves in these plots are a collection of five
measurements for every preload displacement.

(a) Raw data translational joint for four different preload
displacements.

(b) Raw data rotational joint for four different preload
displacements.

(c) Raw data double translational joint for twodifferent
preload displacements.

Figure G.1: Raw data from the experiments for the three prototypes.

After plotting the raw data, the mean of the five measurements is calculated for every configuration. These
plots are provided in Figure G.2. By averaging the five measurements, the thickness of the plotted lines is
decreased.

The mean of the measurements is compared to the results from the FEA. A simulation of the mechanism
is performed using the same preload displacement as used in the experiment. One of the resulting figures is
provided in Figure G.3, this plot corresponds to the black curves in Figures G.1a and G.2a. The blue line is the
result of the FEA. Similar plots are obtained for the other configurations as well.
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(a) Mean data translational joint for four different preload
displacements.

(b) Mean data rotational joint for four different preload
displacements.

(c) Mean data double translational joint for twodifferent
preload displacements.

Figure G.2: Mean data from the experiments for the three prototypes.

Figure G.3: Force displacement of the translational joint for a preload displacement zd = 54 mm.
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