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After thirty-nine years of looking at myself in the mirror
I have learnt nothing about me,

but I am becoming an expert in mirrors

— Neorrabioso





Abstract

Verifiable quantum secret sharing (VQSS) is the task of sharing a secret quantum
state among the n nodes of a quantum network, in a way that it is possible to verify
that the secret has been correctly distributed. A number of protocols that perform
this task have been proposed. In particular, the verifiable hybrid secret sharing
(VHSS) scheme proposed by Lipinska et al. (2019) realizes this task while reducing
the number of required qubits, as compared to other existing protocols.
The VHSS scheme was proven secure for noiseless quantum networks. In this work, we
analyze its performance in the presence of noise. To do that, we first define different
noise models in which qubits can be randomly erased or depolarized. Then, we
propose several modifications for the protocol that allow us to run it more efficiently
on quantum networks described by such noise models.
Additionally, we explore a new approach to the VQSS task using approximate
quantum error correction. We propose the verifiable trap secret sharing (VTSS)
protocol, which combines the scheme by Lipinska et al. (2019) and the trap code by
Broadbent et al. (2013). Our protocol achieves the same functionalities as the VHSS
protocol and only requires that a strict majority of the nodes follow the protocol
honestly, raising the maximum number of nodes that can cheat from bn−1

4 c to bn−1
2 c.

We can do this at the cost of increasing the probability of error in the protocol.
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1
Introduction

Verifiable secret sharing is a classical cryptography task for a network in which a
dealer wants to share a secret with several nodes by giving a piece of information
to each of them. We call each of these pieces of information a share. The dealer
must distribute them in a way that (i) the secret can be reconstructed only when
a sufficient number of shares are combined together, (ii) small groups of curious
nodes cannot retrieve any information about the secret, and (iii) all the nodes can
collectively check that their shares are consistent with some secret. Note that the
nodes must be able to verify the consistency of their shares without revealing any
information about the secret. Different protocols for verifiable secret sharing have
been proposed [1, 2, 3, 4], and they are widely used as a subroutine in other crypto-
graphic applications. Some of these applications are secure multi-party computation
[5, 6, 7], byzantine agreement [8], and end-to-end auditable voting systems [9].

In the recent years the scientific community has experienced a growing interest
in quantum technologies. In particular, a lot of effort is dedicated to the development
of quantum networks that would enable remote quantum communication [10, 11, 12].
The practical use of these networks relies on the design of cryptographic protocols
tailored to their needs. As in the classical framework, many quantum applications,
such as secure quantum multi-party computation, require a verifiable quantum secret
sharing (VQSS) subroutine. This task is similar to its classical analogue, but the
secret to be shared is a quantum state, which is encoded into many other states that
are distributed among the nodes of a quantum network.
The first proposal of a VQSS protocol is the one by Crépeau, Gottesman, and Smith
(2002) [13]. However, this approach requires a large number of qubits at each node
of the network. The nodes of early quantum networks will have limited quantum
resources, and therefore it would be convenient to design a more efficient VQSS
scheme in terms of the number of qubits required.
To remedy that, in 2019, Lipinska et al. proposed the verifiable hybrid secret sharing
(VHSS) protocol [14]. Their approach preserves the same properties as the previous
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VQSS and also achieves a reduction of the quantum resources by combining VQSS
with classical encryption and classical secret sharing.

Currently, one of the technical issues that prevent the deployment of quantum
networks is the presence of noise which influences the quantum states we wish to
send in the network. In order to close the gap between theory and experimental
implementations, we review the VHSS protocol and propose several modifications
aimed at improving its performance when qubits are subject to different types of
noise. In addition, the VHSS protocol can tolerate up to bn−1

4 c cheating nodes,
where n is the total number of nodes, that can perform any joint operation on their
shares and do not follow the protocol honestly. In the last part of this thesis, we
investigate how to use approximate quantum error correction to increase the number
of cheaters that the protocol tolerates.
Our efforts have been directed towards answering the following research questions:

The VHSS protocol from [14] assumes noiseless quantum states. In which
ways are the security statements affected when considering noisy qubits?

How can we modify the protocol in order to improve its performance in
noisy networks?

The protocol tolerates up to bn−1
4 c cheaters. Can we use approximate

error correction to lift this bound while keeping the number of quantum
resources low enough?

Outline and contributions. The structure of this thesis is the following:

• In Chapter 2 we give a brief overview of the classical and quantum theory
of error correction and introduce the concepts and definitions that are used
throughout this thesis. First, in Section 2.1, we discuss the fundamentals of
classical error-correcting codes. Then, in Sections 2.2 and 2.3, we focus on
exact and approximate quantum error correction, respectively.

• Chapter 3 contains a review of the quantum secret sharing protocols mentioned
before. In particular, the VHSS protocol is discussed in detail in Section 3.2.

• In Chapter 4 we present a large part of our contributions. In Sections 4.1
and 4.2 we consider several noise models in which qubits can be erased with
certain probability while traveling from node to node. Then, we analyze the
performance of the VHSS scheme in quantum networks described by these
models. Importantly, we also provide modifications that enable the usage of
this protocol in such networks. Next, in Section 4.3, we perform a similar
analysis with a different type of noise models, in which qubits are depolarized
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instead of erased. Finally, in Section 4.4, we propose a major modification
of the protocol. Namely, we discuss an alternative strategy to distribute the
quantum shares among the nodes in such a way that the effects of noise are
reduced. This chapter gives an extensive answer to the first two research
questions.

• In Chapter 5 we aim at increasing the number of cheaters that the protocol
tolerates. In Section 5.1, we review previous work on this direction, and in
Section 5.2 we present the rest of our contributions. We propose a novel scheme
for verifiable quantum secret sharing that achieves the desired functionality
while preserving the security of the protocol, answering to the third research
question. Note that this last section is presented as an open discussion in
which some formal proofs are still required.





2
Theory of error correction

The goal of most cryptographic protocols is to ensure the secrecy of the communi-
cation between two or more parties. This communication consists in information
exchange over a physical medium called channel. Examples of channels are air,
for oral conversations, and cables, for electrical signals travelling inside electronic
devices.
The choice of a proper channel is crucial to successfully send and receive messages,
since it might introduce some noise. Nevertheless, even in the presence of noise,
it is possible to communicate by encoding the messages. One can employ a code
to transform the original information into more robust encoded data. This way,
the encoded message will protect the original information by adding some amount
of redundancy. As a simple example, imagine a conversation between Alice and
Bob in a noisy environment. If Alice’s last sentence was distorted and Bob did
not understand it, he might ask her to repeat it. If the problem persists, several
repetitions may be necessary, yielding a simple repetition code.
Codes can be used to protect classical and quantum data. In the quantum framework,
a quantum state can be encoded into a larger state, and the redundancy of the
message is stored in the entanglement between the encoded qubits.

In this chapter, we start by reviewing the fundamentals of classical error-correcting
codes (Section 2.1). Then, in Section 2.2, we discuss the basics of quantum error
correction, focusing on the properties of Calderbank-Shor-Steane codes. Ultimately,
in Section 2.3, we introduce the concepts of approximate quantum error correction
and quantum authentication, as well as the trap code, a specific construction that is
used later in Chapter 5.

2.1. Classical error-correcting codes

Cryptography is a field at the intersection of mathematics, physics, and computer
science that we already explore as children, usually when we want to secretly
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communicate in the presence of adult eavesdroppers. A common practice is to play
around with words to create our own secret codes. For example, two siblings may
refer to their ‘parents’ as ‘birds’ and to ‘candy ’ as ‘a walk ’. Then, the sentence
‘when the birds leave, we can go for a walk ’ can be used to secretly propose going
for candy when their parents leave home. This way, the siblings have constructed
a code C = {birds, a walk} which is associated with the following encoding map:
parents → birds, candy → a walk.

Definition 2.1.1. A classical error-correcting code C over the finite alphabet
Σ is a subset of Σn, where Σn is the set of all strings of length n generated by
combining elements from Σ (each element can be repeated an arbitrary number of
times) [15].

The elements of the code are called codewords. Codes are associated with an encoding
map, which maps each of the possible messages to a different codeword. Consequently,
we require the size of C to be the same as the size of the set of all possible messages.
In many applications, Σ = Zq, where Zq is the set of integers modulo q. Throughout
this work, we will only consider classical codes over Z2 = {0, 1}.
The mapping of a message to a codeword is generally performed to make it more
robust against noise. In classical codes defined over Z2, noise can produce two types
of error: bit flips and bit erasures. The former changes 0s to 1s and vice versa,
while the latter erases the bit. The fundamental difference between both of them is
that bit erasures are flagged1. Hence, we always know the positions of the erasures
within the string before performing any error detection operation. For bit flips, this
information is not available a priori. We will refer to bit flips as errors and to bit
erasures as erasures.

The error-correcting power of a code is measured with the code distance.

Definition 2.1.2. The distance d of a code is the minimum Hamming distance
between any two codewords, i.e.,

d = min
x,y∈C
x 6=y

dH(x, y), (2.1.1)

where the Hamming distance dH(x, y) between two strings x and y is the number of
symbols in which they differ.

We can model the bit flip errors by introducing the error string e, which has 1s in the
bit flip positions and 0s in the rest of them. The total number of errors is denoted
by t, i.e., dH(0, e) = t. Using this notation, the string obtained after adding errors
to a codeword x ∈ C is x+ e, where the sum is a bitwise addition modulo 2. This
string is at distance dH(x, x+ e) = t from the original codeword. We say that a code
can correct t errors iff x+ e is closer to x than to any other codeword y, for any x, y

1Deletion of a bit without raising a flag is also possible, although this type of error is not common
in most physical setups and therefore we do not consider it in this thesis.
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and e. Mathematically, this condition can be written as

C can
correct t errors

⇔ dH(x+ e, y) > t, ∀x, y ∈ C s.t. x 6= y

and ∀e s.t. dH(0, e) = t.
(2.1.2)

Regarding erasures, we define the punctured codeword x|b as a codeword that suffered
from bit erasures in the positions specified by b = (b1, b2, . . . , bu), bi ∈ Zn. The
number of erasures is u = |b|, and the distance between two different punctured
codewords satisfies the following condition:

dH(x|b, y|b) ≥ d− u, ∀x, y ∈ C s.t. x 6= y and ∀b s.t. |b| = u. (2.1.3)

We say that a code can correct u erasures iff we can distinguish any two punctured
codewords, i.e.,

C can
correct u erasures

⇔ dH(x|b, y|b) > 0, ∀x, y ∈ C s.t. x 6= y

and ∀b s.t. |b| = u.
(2.1.4)

Theorem 2.1.1. Any classical error-correcting code can correct t errors or 2t
erasures iff it has distance d ≥ 2t+ 1 [15].

Proof. We start by considering two different codewords x, y ∈ C. The error string is
e and the total number of errors is t. First, we use the triangle inequality [16] to
derive the following partial result:

dH(x, y) ≤ dH(x, x+ e) + dH(x+ e, y) ⇔ d ≤ t+ dH(x+ e, y)

⇔ dH(x+ e, y) ≥ d− t, ∀x, y, e, (2.1.5)

where we have used that dH(x, y) ≥ d for x 6= y and dH(0, e) = t.
(⇒) Let us consider a code C that can correct t errors. Assume that the distance is
d < 2t+ 1. Let x∗ and y∗ be two codewords such that dH(x∗, y∗) = d. Then, there
exists some e∗ such that dH(x∗ + e∗, y∗) = d− t, with t < d. This e∗ only has 1s in t
positions in which x∗ and y∗ differ. Hence,

dH(x∗ + e∗, y∗) = d− t < 2t+ 1− t = t+ 1 ⇔ dH(x∗ + e∗, y∗) ≤ t. (2.1.6)

However, we are considering a code that can correct t errors and therefore dH(x∗ +
e∗, y∗) > t, ∀x∗, y∗, e∗ (see Eq. (2.1.2)). We have arrived to a contradiction, which
means that our hypothesis about the distance was not true. Consequently, a code
that can correct t errors must have distance d ≥ 2t+ 1.
(⇐) We consider now the case in which the distance of the code is d ≥ 2t+ 1. Using
the triangle inequality from Eq. (2.1.5):

dH(x+ e, y) ≥ d− t ≥ t+ 1 > t. (2.1.7)

Then, the condition from Eq. (2.1.2) is satisfied and the code can correct t errors.
(⇒) Regarding erasures, let us first consider a code that can correct 2t erasures, and
assume that d < 2t. Let x∗ and y∗ be two codewords such that dH(x∗, y∗) = d. Then,
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there exists some b with |b| = 2t such that all bits in which x∗ and y∗ differ are
erased. Therefore, dH(x∗|b∗ , y∗|b∗) = 0. This contradicts Condition (2.1.4), which
holds for any x, y, and b. Consequently, the hypothesis about the distance was not
correct and we conclude that d ≥ 2t+ 1.
(⇐) On the other hand, consider now a code with distance d ≥ 2t + 1. Using Eq.
(2.1.3), we obtain

dH(x|b, y|b) ≥ d− 2t ≥ 1, ∀x, y ∈ C s.t. x 6= y and ∀b s.t. |b| = 2t,

which means that the code can correct 2t erasures, according to Eq. (2.1.4).

An alternative statement of the previous theorem can be found in [16].

Corollary 2.1.1.1. A code that can correct up to t errors or up to 2t erasures has
distance d ∈ {2t+ 1, 2t+ 2} [17].

Proof. A code C1 with distance d1 = 2t + 3 can correct t + 1 errors or 2(t + 1)
erasures by virtue of Theorem 2.1.1. Then, a code C2 that can correct t errors or
2t erasures (d2 ≥ 2t+ 1) but not more must have distance d2 < 2t+ 3. Therefore,
d2 ∈ {2t+ 1, 2t+ 2}.

After discussing the meaning of the distance of a code and how it is related to the
number of errors it can tolerate, let us provide a definition of error-correcting code
that is more convenient for our work than the one given at the beginning of the
section:

Definition 2.1.3. An [n, k, d] classical error-correcting code C over Z2 is a
subset of Zn2 of size |C| = k, i.e., it encodes k bits into n bits, and it has distance d.

For a better understanding of the the previous definition, consider the following
example: the repetition code. The [4, 1, 4] repetition code encodes 1 bit into 4 bits,
and it has two codewords: 0000 and 1111. The distance of this code is 4, as this is
the minimum distance between codewords. Similarly, any [n, 1, d] repetition code
has two codewords, one of them composed by n zeros and the other formed by n
ones. Moreover, d = n. Figure 2.1 shows a graphical representation of this family of
codes for n ≤ 4.
Graphically, when a codeword is affected by a single error, the new string is one edge
away from the original node. Then, we can correct t errors if the new string is still
more than t edges away from the other codeword, i.e., when we can guess which was
the original codeword with absolute certainty. For example, take the n = 4 code.
A single error takes 0000 to any of the yellow nodes and 1111 to any of the blue
ones. As a consequence, if we receive a string corresponding to a yellow node and
we know that it has not suffered from more than one error, we conclude that the
original codeword was 0000 and the error can be corrected. Similarly, blue nodes can
be corrected to recover 1111. However, two errors take both codewords to a green
node, which makes it impossible to determine whether the codeword was 0000 or
1111. Following this reasoning, the codes from Fig. 2.1 can correct up to t = 1, 1, 0, 0
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(0,0,0,0)

(1,1,1,1)

(0,1,0,0)

(1,0,0,0)

(0,0,0,1)

(0,0,0)

(1,1,1)

(1,0,0)

(0,0,1)

(1)

(0)(0,0)

(1,1)

(1,0)

(0,1,0)

(0,0,1,0)

d 4 3 2 1
t 1 1 0 0
u 3 2 1 0

Figure 2.1. Visual representation of [n, 1, d] repetition codes, with n = d = 4, 3, 2, 1, from left to
right. The codewords are represented with stars. See main text for a detailed discussion.

errors, for n = 4, 3, 2, 1, respectively.
Now let us consider bit erasures. In order to correct them, we need the remaining
string to correspond to a single codeword with no uncertainty. In the case of the
repetition code, we can erase up to n− 1 bits, as the remaining string would be 0 for
codeword 0000 and 1 for codeword 1111. Then, the codes tolerate up to u = 3, 2, 1, 0
erasures for n = 4, 3, 2, 1, respectively. Moreover, after erasing a bit from the [n, 1, n]
repetition code, the remaining bits form the [n− 1, 1, n− 1] code (the next one to
the right in Fig. 2.1). We say then that the [n− 1, 1, n− 1] repetition code is the
1-punctured code of the [n, 1, n] code.
This graphical derivation of t and u provides a helpful interpretation of Theorem
2.1.1 and Corollary 2.1.1.1, which state that any distance d code can correct up to
t = b(d− 1)/2c errors.

Finally, another relevant concept that we need to introduce is the dual code.

Definition 2.1.4. The dual code of an [n, k, d] classical error-correcting code C is

C⊥ := {c⊥ ∈ Zn2 |
〈
c⊥, c

〉
= 0,∀c ∈ C},

where the inner product is defined as 〈x, y〉 := x1 · y1 + x2 · y2 + · · ·+ xn · ynmod 2,
∀x = x1x2 . . . xn, y = y1y2 . . . yn ∈ Zn2 .

A corollary of the previous definition is the following:〈
x⊥, x

〉
6= 0, x⊥ ∈ C⊥ ⇒ x /∈ C. (2.1.8)

On the other hand, note that it is possible that C and C⊥ intersect, and even that
C = C⊥ in the case of self-dual codes [18].
We refer to the distance of the dual code as dual distance d⊥. However, according
to [19], “there is no theoretical result known which combines the minimum distance
of C and C⊥”, and therefore we do not provide any general relation between both
distances.
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2.1.1. Classical linear codes
Classical linear codes are the main building block for the specific type of quantum
codes that we will be using later. Linear codes are defined as a linear subspace
of a vector space Fnq , where Fq is a finite field with q elements and n ∈ Z+, with
Z+ := {1, 2, 3, . . . }. Since the finite field we use is Z2, we provide the following
definition for linear codes.

Definition 2.1.5. An [n, k, d] linear code C is a linear subspace of the vector
space Zn2 that has dimension |C| = k and code distance d.

A useful property of linear codes is that a sum of codewords is also a codeword:
x + y ∈ C, ∀x, y ∈ C. By linearity, we also find that the zero string2 is always a
codeword: x+ x = 0 ∈ C, ∀x ∈ C.
The concept of code distance can be simplified in linear codes:

d = min
x,y∈C
x 6=y

dH(x, y) = min
x,y∈C
x6=y

dH(x+ y, y + y) = min
z∈C
z 6=0

dH(z, 0), (2.1.9)

where we have used that x+ y = z ∈ C and y + y = 0 in the last step. The previous
expression can be interpreted as follows: the distance of a linear code is the minimum
number of 1s in a nonzero codeword.
The dual code C⊥ of a code C is always linear, even if C is not [15]. In addition, if
C is an [n, k, d] linear code then C⊥ is an [n, n− k, d⊥] linear code [15].

To conclude this section, we derive a set of addition rules that determine if a
sum of strings is a codeword or not.
Let C be an [n, k, d] linear code. Moreover, x, y ∈ C, with x 6= y, and x̃ /∈ C. Then:

x+ y ∈ C, (2.1.10a)

x+ x̃ /∈ C. (2.1.10b)

The first addition rule follows from the linearity of C. The second one can be proven
as follows. Assume that x+ x̃ ∈ C, with x ∈ C and x̃ /∈ C. Then, using linearity of
C, we have that x+ (x+ x̃) = x̃ ∈ C. However, one of the hypothesis was x̃ /∈ C.
We have arrived to a contradiction, which means that the assumption x+ x̃ ∈ C was
wrong. Hence, we conclude that x+ x̃ /∈ C.
It is not possible to state a simple addition rule for the case x̃ + ỹ, with x̃, ỹ /∈ C.
As an example, take the dual code of the [7, 4, 3] Hamming code: C = {0000000,
0001111, 0110011, 0111100, 1010101, 1011010, 1100110, 1101001}. The sum of the
words 0000001 /∈ C and 0000011 /∈ C is 0000010 /∈ C. However, the sum of the words
0000011 /∈ C and 0001100 /∈ C is 0001111 ∈ C.

2.2. Quantum error-correcting codes

As in classical communication, the exchange of quantum information through a
quantum channel is subject to noise. In the classical case, this noise can either flip or
2We represent the zero string 0 . . . 0 with a single 0 for clarity.
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erase a bit. However, quantum channels can introduce a continuum of different errors
in a qubit [20]. Moreover, two additional difficulties for quantum error correction
are the no-cloning theorem [21], which prevents the creation of back-up copies of
quantum states, and the loss of information in each measurement due to the collapse
of the wave function. Despite these obstacles, quantum error correction (QEC) is
still possible [20]. In the following paragraphs, we discuss the basics of QEC and
later we focus on Calderbank-Shor-Steane (CSS) codes, a particular type of quantum
error-correcting codes (QECC). We assume that the reader is familiar with quantum
information theory and the Dirac notation. For an introduction to them, we refer
the reader to [20].

When analyzing errors on qubits, we distinguish between independent and cor-
related error models. Independent errors happen independently on each qubit and
do not affect the rest of them. Hence, they are useful to describe the evolution
of non-interacting qubits. On the other hand, correlated errors are joint quantum
operations performed over several qubits, possibly involving the use of extra ancillary
qubits. All possible errors can be included in either of these two categories. For
example, systematic inaccuracies in the implementation of a quantum gate U are
modeled by applying the noisy gate Ũ = EU , where E is a noise operator acting only
on those qubits on which the gate is applied [22]. If U is a single-qubit gate, this is
an independent noise model, whereas if U is a multi-qubit gate, this is a correlated
noise model.

Independent noise models. Some noisy processes affect each qubit in-
dependently, and therefore it is possible to analyze them by considering the case of a
single qubit. We distinguish between two general types of independent noise models:
erasures and arbitrary errors. The concept of erasure is the same as in classical error
correction: the qubit is lost and a classical flag is generated, indicating that the
qubit has been erased.
Arbitrary errors correspond to rotations of the qubit in the Bloch sphere. As pre-
viously stated, there is a continuum of possible arbitrary errors. Nevertheless, the
Pauli matrices and the 2 × 2 identity form an orthogonal basis for the complex
Hilbert space of 2 × 2 matrices [20]. Therefore, an arbitrary error E acting on a
single qubit can be decomposed as

E = eII + eXX + eY Y + eZZ = eII + eXX + eXZXZ + eZZ, (2.2.1)

where the ei are constants, the Pauli matrices are defined as

X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, and Z =

(
1 0
0 −1

)
, (2.2.2)

and we have used that Y ∝ XZ. As a result, quantum errors, despite being
continuous, can be corrected by a discrete set of operations. In particular, one can
employ X and Z gates to correct them.
Independent errors can be modeled using quantum channels, which determine the
evolution of a quantum state.
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Definition 2.2.1. A quantum channel is a linear, completely positive, and trace-
preserving (CPTP) map T : ρ→ T (ρ) [23].

A fundamental property of a quantum channel is that, for any input density matrix
ρ, the output T (ρ) is also a valid density matrix. In this work, we will focus on two
types of quantum channel: erasure and depolarizing channels.

Definition 2.2.2. A single-qubit erasure channel is quantum channel

Terasure : ρ → (1− q)ρ+ q |⊥〉〈⊥| ,

where ρ is a 2× 2 density matrix, q ∈ [0, 1], and 〈⊥| ρ |⊥〉 = 0.

Definition 2.2.3. A single-qubit depolarizing channel is quantum channel

Tdepol : ρ → (1− q)ρ+ q
I
2
,

where ρ is a 2× 2 density matrix, I is the 2× 2 identity matrix, and q ∈ [0, 1].

The previous definitions are given for a single-qubit state since we are working under
the assumption of independent errors. The erasure channel erases the qubit with
probability q. If this happens, a flag is issued, which allows us to identify which qubit
was erased. Note that this increases the size of the output Hilbert space with respect
to the input [24]. This channel is used as a simple model for physical setups in
which the quantum information can be lost, e.g., optical fibers used for single-photon
communication.
On the other hand, the depolarizing channel yields a completely mixed state with
probability q [25]. Hence, all the quantum information is lost and no flag is issued,
so it is not possible to know a priori if any qubits were affected. This constitutes a
worst-case-scenario model that is well suited when we do not make any assumptions
about the physical realization of the channel [24].

Correlated error models. Errors can be introduced in a correlated way,
such that they are not properly described by any independent noise model. When cor-
related noise affects a set of t qubits, the problem becomes too complex to model, as
the possibilities can be endless. Two basic examples are the undesired application of
any multi-qubit gate and the random re-initialization of all t qubits. In this thesis, we
do not assume any specific model for correlated errors. Instead, we will assume that
any joint operation can be applied to all the qubits that are prone to correlated errors.

After a quantum state has suffered from errors, it is interesting to compare ini-
tial and final states. For that purpose, we introduce the fidelity, which measures how
close is the final state to the original one.

Definition 2.2.4 (From [20]). The fidelity between two quantum states σ and ρ
is defined as

F (σ, ρ) := Tr
√
σ1/2ρσ1/2. (2.2.3)
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In many problems, the initial state is pure. In that case, the calculation of the
fidelity can be simplified to

F (|φ〉 , ρ) = Tr
√
〈φ| ρ |φ〉. (2.2.4)

As previously discussed, even though quantum errors are continuous, it is pos-
sible to correct them by applying a discrete set of operations. This idea is at the
core of quantum error correction theory [18, 20]. We assume that the reader is famil-
iar with this theory and therefore we only provide some definitions and theorems
that are explicitly used in our work. We start by defining the concept of quantum
error-correcting code (QECC):

Definition 2.2.5. An [[n, k, d]] quantum error-correcting code C is a 2k-dimen-
sional subspace of a 2n-dimensional Hilbert space Hn. This code has distance d.

Note that the double square bracket notation [[·]] is used to distinguish quantum
from classical codes, and the distance is still to be defined for quantum codes.
Let Hk be a 2k-dimensional Hilbert space and Bk = {|ψi〉}i=1,...,k be an orthonormal
basis. Let BC = {|φi〉}i=1,...,n be the basis of C. QECCs encode a pure k-qubit state
from Hk into a pure n-qubit state of C. The original k qubits are called the physical
state, while the encoded ones are the logical state, denoted with a bar, e.g., |0̄〉 and
|1̄〉 represent a single logical qubit3. As an example, take Shor’s 9-qubit code [26],
which encodes 1 physical qubit into a logical state composed by 9 physical qubits
(n = 9, k = 1):

|0〉 → |0̄〉 = 1
2
√

2
(|000〉+ |111〉)⊗3

|1〉 → |1̄〉 = 1
2
√

2
(|000〉 − |111〉)⊗3

The mapping is established by an encoding map, which is a bijection between each
element of Bk and BC . The encoding enlarges the Hilbert space of our quantum state,
spreading the information contained in the original qubits into correlations between
the encoded qubits. This nonlocalization of the information via entanglement is
key for quantum error correction, since it allows for qubits to be lost or modified
without any information loss. In addition, any density matrix supported on the
2k-dimensional subspace C is a valid codeword [22].

C can correct the set of errors E = {Ei} iff there exists a quantum operation
R such that (R ◦Ei) |φk〉 = |φk〉, ∀Ei ∈ E , |φk〉 ∈ C [20]. However, it is not necessary
to find R in order to assess the error-correcting properties of C. The Knill-Laflamme
conditions [27] are necessary and sufficient conditions for error correction. They
state that C can correct the set of errors E = {Ei} iff

〈φk|E†iEj |φl〉 = Cijδkl, (2.2.5)
3If k > 1, the logical states can be labeled with decimal or binary digits, e.g., |0̄〉, |1̄〉, |2̄〉, and |3̄〉,
or
∣∣00
〉
,
∣∣01
〉
,
∣∣10
〉
, and

∣∣11
〉
, for k = 2.
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where Cij is a constant. If E constitutes a basis for t-error operators, i.e., if any
operator introducing errors in t qubits can be written as a combination of Ei, then
C can correct any t errors [28]. Moreover, if C can correct any t errors, it can
alternatively correct any 2t qubit erasures [28]. Finally, we are ready to define the
distance of a quantum code:

Definition 2.2.6. The distance of a quantum error-correcting code C is the mini-
mum weight4 of an error operator Ej such that

〈φk|Ej |φl〉 6= Cjδkl, for |φk〉 ∈ C, (2.2.6)

where Cj is a constant.

This definition together with the Knill-Laflamme conditions imply that a quantum
code with distance d ≥ 2t+ 1 can correct t errors or 2t erasures [18].

2.2.1. Calderbank-Shor-Steane codes
A Calderbank-Shor-Steane (CSS) code [29, 30] is a special type of quantum code
which is built upon two classical codes V and W that satisfy the following conditions
[20]:

• V is an [n, kV , dV ] linear code that can correct up to tV errors, i.e., dV ≤ 2tV +1.

• W is an [n, kW , dW ] linear code that can correct up to tW errors, i.e., dW ≤
2tW + 1. Note that W⊥ is an [n, k⊥, d⊥] linear code, with k⊥ = n − kW (see
Subsection 2.1.1).

• W⊥ ⊆ V .

These classical codes generate an [[n, k, d]] CSS code, with k = kV + kW − n, whose
logical states are defined as

|̄i〉 =
1√
2k⊥

∑
w∈W⊥

|vi + w〉 , (2.2.7)

where vi ∈ V and the sum is a bitwise addition modulo 2. We denote the CSS code
generated by V and W as C := CSS(V,W ).
Interestingly, C can correct up to tV bit flips and up to tW phase flips [18]. As a
consequence,

d ≥ min(dV , dW). (2.2.8)

Since the formulation of CSS codes in 1996 [29, 30], their properties have been widely
studied [20]. Here, we list those that are necessary for the secret sharing protocols
discussed in Chapters 3, 4, and 5:

4The weight of an operator is the number of qubits acted on by a nontrivial Pauli matrix (X, Y ,
and Z) [18].
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• The error correction can be divided into two separate stages: bit flip correction
and phase flip correction [18].

• Certain logical operations Λ̄ can be implemented by applying local operations
Λ [14], i.e., Λ̄ = Λ⊗n, where n is the number of qubits. This property is called
transversality. In particular, the CNOT gate is transversal.

• When a state |̄i〉 ∈ C is measured in the standard basis, the measurement
outcome corresponds to a codeword from V . When measured in the Fourier
basis, the outcome is a codeword from W [18].

• Applying a qubit-wise Fourier transform5 F⊗n maps codewords from the
original code CSS(V,W ) to codewords from the code CSS(W,V ) [14].

To conclude this section, let us mention that an encoded quantum state can be
further protected against noise by performing a second encoding to each of the qubits,
yielding a concatenated code.
The number of errors tolerated by a concatenated code grows exponentially with
the total number of concatenations, but so does the number of qubits required.
For example, g successive concatenations of an [[n, 1, d]] code yields an [[ng, 1, dg]]
code that can correct up to bdg−1

2 c errors [31]. If the codes used were [[ni, 1, di]],
i = 1, . . . , g, the concatenated code would be an [[N, 1, D]] quantum code with
N = n1 · n2 · . . . · ng and D ≥ d1 · d2 · . . . · dg [18].

2.3. Approximate quantum error correction

The no-cloning theorem [21] establishes a fundamental limit to the theory of quantum
error correction. Consider a single-qubit pure state |φ〉 that is encoded using an
[[n, k, d]] quantum code. Let us assume that any bn−1

2 c encoded qubits could be
used to reconstruct the original quantum state. In that case, we could take half of
the encoded qubits to decode the state and obtain |φ〉. However, the other half of
the qubits could also be used to recover |φ〉, obtaining a second copy of the original
state. This result violates the no-cloning theorem and therefore it cannot be true.
Consequently, the decoding of any encoded quantum state requires more than bn−1

2 c
encoded qubits.
The QECCs presented so far are exact codes, meaning that they will correct any
errors with probability 1, as long as there are not too many of them. From this point
on, we refer to exact QECC simply as QECC.
As discussed in the previous section, a QECC that corrects any 2t erasures can
alternatively correct t arbitrary errors. Since the no-cloning theorem establishes
the maximum number of correctable erasures in bn−1

2 c, the maximum number of
correctable arbitrary errors is bounded from above by bn−1

4 c.6

5The quantum Fourier transform maps an n-qubit state |j〉 to 1√
2n

∑2n−1
k=0 ωjk |k〉, with ω = e2πi/2

n
.

When applied to a single qubit, the mapping is |0〉 → |+〉, |1〉 → |−〉.
6Some other bounds that are more restrictive have been found. For example, the quantum Singleton
one: n− k ≥ 2(d− 1). See [18] for a general overview of these bounds.
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While t ≤ bn−1
4 c holds for any QECC, it is possible to design an approximate

quantum error-correcting code (AQECC) that encodes k qubits into an n-qubit state
and tolerates more than bn−1

4 c arbitrary errors. The price to pay is that the recovery
of the encoded state has a small probability of error, which can be quantified by, for
example, the fidelity between the decoded and the original states.

Definition 2.3.1. An [[N,n; t, ε]] approximate quantum error-correcting code
(AQECC) is a pair of quantum algorithms Encode and Decode such that [32]:

• Encode takes an n-qubit state, ρ, as input and outputs an N -qubit state
denoted by Encode(ρ).

• Decode takes an N -qubit state, σ, as input and outputs an n-qubit state
denoted by Decode(σ).

Moreover, for all initial states ρ and all operators O acting on at most t qubits,

F (ρ, ρout) ≤ 1− ε, (2.3.1)

where ρout = Decode(O(Enc(ρ))).7

In [32], Crépeau, Gottesman, and Smith propose a construction of AQECCs based
on quantum authentication schemes (QAS). Before introducing this construction, we
must define what a QAS is.

2.3.1. Quantum authentication
The authentication of classical messages is a complex task that remained an open
question until Wegman and Carter proposed cryptographically secure authentication
schemes based on hash functions in 1981 [33]. The formulation of the problem,
however, is simple: Alice wants to send a message to Bob in such a way that Bob
can be sure that the message received was actually sent by Alice. The general way
to do that is to send a tag attached to the message, which is used by Bob to verify
the identity of the sender (see, e.g., [34] for further details).
In a quantum framework, the statement of the problem is slightly different: Alice
wants to send a quantum state ρ to Bob in such a way that, if Bob accepts the
received state, the fidelity between that state and ρ is close enough to 1. The way to
do this is to encrypt the original quantum message combined with some tag qubits
in a particular way, using a key from a set of keys K shared between Alice and Bob.

Definition 2.3.2. A quantum authentication scheme (QAS) is a pair of keyed
quantum algorithms Encryptk and Decryptk of the form [35]

• Encryptk: ρ→ Uk(ρ⊗ σk)U†k .

• Decryptk: ρ′ → TrT
[
(I⊗m ⊗Πacc

k ) U†kρ
′Uk (I⊗m ⊗Πacc

k )
]

+ TrMT

[
(I⊗m ⊗Πrej

k ) U†kρ
′Uk (I⊗m ⊗Πrej

k )
]
⊗ |⊥〉〈⊥|

7Note that the original definition from [32] uses Tr(|φ〉〈φ| ρout) ≤ 1− ε, where |φ〉 is the initial state.
Since this is not relevant for our results, we use the fidelity for handiness.
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where

- ρ is an m-qubit quantum state to be authenticated,

- k is a key from a set of keys K,

- Uk is a key-dependent unitary,

- σk is a key-dependent τ -qubit tag state,

- ρ′ is an (m+ τ)-qubit state,

- TrT and TrMT denote the partial trace over the tag (last τ qubits) and the
message and tag (all qubits), respectively,

- Πacc
k and Πrej

k are orthogonal projectors onto the support of σk and its comple-
ment, respectively,

- and |⊥〉〈⊥| is an m-qubit flag state.

A QAS is defined by a keyed collection {(Uk, σk}k∈K of unitaries and tag quantum
states. The previous definition can be understood in the following terms. First, a
quantum state ρ, the message, is encrypted by combining it with some tag qubits σk
and applying a unitary Uk. Then, the decryption algorithm undoes the action of
the unitary and checks the state of the tag, using the projectors Πacc

k and Πrej
k . If

the tag lies in the acceptance subspace defined by Πacc
k , the state is accepted and

the tag is traced out. Otherwise, the whole state is traced out and the message is
replaced by a flag state |⊥〉〈⊥| that means rejection of ρ′.

There exist several methods to perform the encryption and decryption of a QAS,
depending on the functionalities that one wants to achieve, e.g., key recycling between
different authenticated messages [36] and ciphertext authentication [37], in which the
message is accepted only if the entire ciphertext (message and tag qubits) remains
untouched. For a general overview of these types of authentication, see [35]. In this
work, we will not require any of these properties. Instead, we only need our QAS to
be plaintext authenticating, meaning that we accept the state if the message remains
untouched. Therefore, we make use of Definition 1 from [35], which is, in turn, based
on [38]:

Definition 2.3.3. A plaintext ε-authenticating quantum authentication
scheme (ε-QAS) is a QAS defined by the keyed collection {(Uk, σk}k∈K of uni-
taries and tags such that for all completely-positive maps O acting on the message,
tag, and a side-information register, there exist completely-positive maps Sacc and
Srej such that Sacc + Srej is trace-preserving and

1

2

∣∣∣∣∣∣E
k

[
Decryptk ◦O ◦Encryptk

]
−
(
I⊗m⊗Sacc + |⊥〉〈⊥| (TrM ⊗Srej)

)∣∣∣∣∣∣
�
≤ ε, (2.3.2)

where Encryptk and Decryptk are the quantum algorithms defining the QAS, and
||A||� := supρ Tr

√
Aρ(Aρ)† is the diamond norm of a quantum channel A.
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This definition ensures that, for any message and any key, the decrypted state
corresponds to the original message in the accept case, while it is discarded and
replaced by a flag state if rejected, therefore providing plaintext authentication up
to certain error ε. For other functionalities such as key recycling and ciphertext
authentication, the previous definition needs to be strengthened [35].

A QAS can be used to design an AQECC, as stated before. First, an [[n, k, d]]
non-degenerate stabilizer code is used to encode a k-qubit state into an n-qubit state.
Next, each of the n qubits is authenticated using an ε-QAS, yielding a new state
with n · (1 + τ) qubits in total, where τ is the number of tag qubits used by the QAS.
Then, this state is sent to the receiver, who needs the encryption key to retrieve the
message. In order to send the key, a classical secret sharing scheme and a classical
authentication subroutine are employed (see [32] for further details).
This whole construction allows the receiver to individually authenticate each of
the encoded qubits and reject them if they were affected by any arbitrary error.
Consequently, arbitrary errors are flagged and therefore can be treated as erasures,
tolerating up to d−1 ≤ bn−1

2 c, and yielding an [[n · (1+ τ), k; d−1, εAQECC]] AQECC,
with [32]

εAQECC = 2n2ε. (2.3.3)

Note that the size of the encoded state is proportional to τ , which also determines
the error ε. Even though a larger τ generally reduces ε, the exact relation between
these two variables depends on the inner structure of the QAS, and therefore the
tradeoff between the error and the total number of encoded qubits must be analyzed
for each particular case.

To conclude this subsection, let us discuss a way to build an ε-QAS that satis-
fies the requirements from Definition 2.3.3. To do that, we use a very specific type
of unitaries, namely, the encoding maps of purity-testing codes.

Definition 2.3.4 (From [35]). A set of QECCs with encoding maps {Uk}k∈K,
where K is a set of keys, is purity-testing with error ε (ε-PT) if, for any Pauli
Pl ∈ Pm+τ\{I⊗m+τ},

Pr
k

[
U†kPlUk ∈ (Pm\{I⊗m})⊗ {I, Z}⊗τ

]
≤ ε, (2.3.4)

for some m and τ , where Pm is the m-qubit Pauli group by and its elements are
labeled as Pl, where l is a 2m-bit string indicating the positions of bit flips and phase
flips.

When the unitaries of an ε-PT code are used to build a QAS, m and τ are the
number of message and tag qubits, respectively. Then, the interpretation of the
previous definition is that, for ε-PT codes, the probability that an error is introduced
in the message and not detected by the tag is at most ε.
A convenient method to construct a QAS is the encode-encrypt scheme proposed in
Protocol 5.2 of [39] and formally defined in Construction 1 of [35]. This approach
consists in encoding the message and the tag qubits using a code Cj from a family of
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ε-PT codes with encoding maps {Uk}k∈K, where j ∈ K is the encoding key. Then,
the encoded state is encrypted using one-time pad. The Decryptk algorithm also
consists of two steps: first, the one-time pad encryption is decrypted, and then the
syndrome of the state in the code Cj is measured. If this syndrome is 0, no errors
have been introduced and the state can be accepted. If the syndrome corresponds to
a nonzero string, the state is rejected.
The set of codes {Uk}k∈K that is used to build the QAS plays a key role in the
relation between τ and ε. In [39], Barnum et al. define a ε-PT set of codes with

ε =
2(m+ τ)

τ(2τ + 1)
. (2.3.5)

We refer to this set as the efficient family of ε-PT codes.

2.3.2. The trap code
In our work, we will employ a set of ε-PT codes based on the trap code proposed by
Broadbent et al. [40].

Definition 2.3.5 (From [40]). The trap code is a QECC whose encoding map can
be written as

Uk = πk(E ⊗ I⊗ñ ⊗H⊗ñ), (2.3.6)

where E is the encoding map of an [[ñ, 1, d̃]] CSS code, k is a key specifying the
permutation of 3ñ elements, and πk is the permutation operator, which permutes
the qubits of a state according to the permutation key k. This encoding map must
be applied to |φ〉 ⊗ |0〉⊗3ñ−1, where |φ〉 is the singe-qubit state to be encoded.

The trap code encodes a single-qubit state |φ〉 into a 3ñ-qubit state. As long as the
permutation key is not revealed to an attacker that is trying to introduce errors in
|φ〉, this attacker might accidentaly introduce them in the ñ tag qubits that remained
as |0〉 after the encoding or in the ñ tags that remained as H |0〉 = |+〉. We call
these 2ñ tags the traps. The traps at state |0〉 can be measured in the Z basis to
reveal whether a bit flip has been applied to them. Similarly, traps at state |+〉
reveal phase flips. We say that a trap has been triggered whenever a |0〉 tag suffers
from a bit flip or a |+〉 tag suffers from a phase flip.
A set of trap codes {Uk}k∈K together with the set of keys K is ε-PT, with

ε ≤
(

2

3

)d̃/2
, (2.3.7)

where d̃ is the distance of the underlying CSS code [41]. Interestingly, it also
constitutes an ε-QAS in which the unitaries Uk are the encoding maps of the trap
code and the tag qubits are zeros, i.e., σk = |0〉⊗3ñ−1 [40].
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Secret sharing protocols

Secret sharing is a task in which a dealer wants to share a secret with n nodes in
a network by giving a piece of the secret, which we call a share, to each of them.
Moreover, this has to be done in a way that (i) the secret can be reconstructed only
when a sufficient number of shares are combined together and (ii) any group of p
nodes cannot retrieve any information at all about the secret. The first solutions to
this problem were proposed by Shamir [42] and Blakley [43] in 1979.

Secret sharing is suitable for multi-party cryptographic protocols in which the
nodes do not trust each other [13]. However, in these applications not even the dealer
is necessarily trusted by the rest of the nodes. Hence, we would like our protocols
to be verifiable, meaning that the honest nodes can verify if the dealer is honest,
i.e., whether they hold shares that are consistent with some secret. For example,
if all the hyperplanes in Blakley’s approach were parallel, the shares would not be
consistent with any secret.
The hard part of this problem is that the shares must be verified without revealing
any information about the secret. Nevertheless, a solution based on oblivious transfer
[44] was proposed by Chor et al. [1] in 1985. Since then, many applications have
used verifiable secret sharing as a subroutine, e.g., secure multi-party computation
[5, 6], byzantine agreement [8], and end-to-end auditable voting systems [9].

In this chapter, we review verifiable secret sharing protocols. In particular, we
focus on protocols in which the shared secret is a single-qubit quantum state instead
of a bitstring. In Section 3.1, we give a general overview of the quantum secret
sharing task. Then, in Section 3.2, we explain a specific protocol in detail, namely,
the verifiable hybrid secret sharing (VHSS) by Lipinska et al. [14].

21
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3.1. From classical to quantum

Quantum secret sharing (QSS) is the quantum analogue of secret sharing. The
fundamental difference is that the secret to be shared is a quantum state instead of
a bitstring.
Hillery, Buzek, and Berthiaume published in 1998 the earliest proposal of a QSS
scheme [45]. In 1999, Cleve, Gottesman, and Lo proposed another scheme [46], and
they already pointed out the relevance of quantum error correction (QEC) in the
context of secret sharing: “Every QSS scheme is, in some sense, a quantum error-
correcting code; however, some error-correcting codes are not secret sharing schemes,
since they may contain sets of shares from which partial information about the secret
can be obtained ”. As in QEC, the information is not stored in the qubits themselves,
but in the entanglement between them. In fact, quantum error-correcting codes
(QECC) constitute a fundamental building block in the protocols that we discuss later.

The main limitation of the protocol from [46] is that it was not verifiable. In
2002, Crépeau, Gottesman, and Smith published their verifiable quantum secret
sharing (VQSS) scheme [47, 13]. In this protocol, a quantum state is encoded using
a concatenated Calderbank-Shor-Steane (CSS) code (see Subsection 2.2.1), and the
verification stage consists in checking that the encoded qubits have not suffered from
too many errors that prevent them to be decoded into a valid state.
In the protocol from [13], the number of qubits that each node must control si-
multaneously grows with the size of the network. Specifically, the node workspace
size must be at least Ω(r2n log n), where n is the total number of nodes and r is
a security parameter of the protocol. This prevents its implementation in early
quantum networks, in which nodes cannot control too many qubits at the same time.

Research has been done towards reducing the number of quantum resources in
QSS [48]. An approach to achieve this in the VQSS task is the one proposed by
Lipinska et al. [14]. They designed a protocol that combines the VQSS from [13]
with classical encryption and classical secret sharing. We use this protocol as the
starting point for most of the work developed throughout this thesis. Consequently,
we extensively discuss it in the following section.

3.2. Verifiable hybrid secret sharing (VHSS)

The verifiable hybrid secret sharing (VHSS) protocol proposed by Lipinska et al.
[14] combines a classical encryption and classical secret sharing with a quantum
subroutine based on the VQSS protocol from [13].
As in the VQSS, the goal is to share a quantum state among several nodes in a way
that (i) it can be reconstructed only when a sufficient number of shares are combined
together, (ii) small groups of nodes cannot retrieve any information about the shared
state, and (iii) it is possible to verify that honest parties hold consistent shares that
can be decoded into a valid quantum state. The protocol runs on a network with nc
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nodes that can process classical data perfectly and n nodes that can hold quantum
shares and perform quantum operations on them. Note that a single node could
simultaneously work with classical and quantum information. We assume that nodes
which can hold quantum shares can also hold classical bits, and therefore nc ≥ n.
The VHSS protocol is summarized as follows. First, the dealer D encrypts the
quantum secret |ψ〉 using quantum one-time pad and a classical secret key s. Then,
the classical key is distributed between nc classical nodes, following a verifiable
classical secret sharing (VCSS) scheme. In parallel, the encrypted quantum state is
encoded into n qubits using a CSS code C, which are distributed among the quantum
nodes. These nodes perform a second encoding and redistribute the shares among
themselves. After that, the verification stage takes place. Finally, if the protocol
does not abort during verification, all quantum and classical shares are sent to the
reconstructing node R, who reconstructs the classical key and then decodes and
decrypts the quantum state.
The main advantages of this protocol with respect to the VQSS are the number of
quantum resources required to run the protocol and the degree of security:

• In the VHSS, each of the n quantum nodes is only required to have a
workspace of at most 3n simultaneous qubits, while the VQSS from [13]
requires Ω(r2n log n) (see [14] for further details about this comparison).

• The classical encryption ensures that the VHSS scheme achieves maximum
secrecy, i.e., no group of p ≤ bn−1

2 c nodes can retrieve any information about
the secret.

3.2.1. The protocol
The original protocol is described step by step in [14]. In this subsection, we dis-
cuss each of the steps in order to provide a template over which we propose some
modifications in the next chapters. The steps are divided into three stages: sharing,
verification, and reconstruction. In addition, we assume that the nodes have access
to an authenticated classical broadcast channel and a public randomness source, and
that each pair of nodes is connected by an authenticated classical channel and a
quantum channel (the latter is only required for each pair of quantum nodes).

Sharing. In this first stage, a pure single-qubit state |ψ〉 = α |0〉 + β |1〉 is
encrypted, encoded into n shares, and distributed among the nodes.

1. (Encryption) The dealer D performs quantum one-time pad on the secret
state |ψ〉 using a classical secret key s to obtain the state Φ0,0.

The classical key is a two-bit string s = xz. After encryption, the quantum state is
described by a maximally mixed state from the point of view of the nodes since they
do not know s, i.e.,

Φ0,0 =
1

4

∑
xz={0,1}2

XxZz |ψ〉〈ψ|ZzXx.
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2. (VCSS) D distributes the classical key s among the nc nodes using a verifiable
classical secret sharing (VCSS) scheme.

In this work, we follow the approach of [14] and do not discuss the details of the VCSS
protocol. Instead, we just assume that this subroutine does not leak any information
about s to any set of at most pc nodes, except with probability exponentially small
in a security parameter r.

3. (Branch encoding and distribution) D encodes Φ0,0 into an n-qubit state
Φ0,0

[1,n] using the code C. Then, it sends qubit Φ0,0
i to node i, ∀i = 1, . . . , n.

The quantum code employed here is an [[n, 1, d]] CSS code, C = CSS(V,W ), built
upon two classical linear codes V andW that fulfill the conditions stated in Subsection
2.2.1: V is an [n, kV , dV ] linear code, W is an [n, kW , dW ] linear code, W⊥ ⊆ V ,
kV + kW − n = 1, and d ≥ min(dV , dW ). This CSS code can correct up to t ≤ bd−1

2 c
arbitrary errors or up to u ≤ d− 1 erasures.
Note that the dealer can only introduce errors in the secret shares before sending
Φ0,0

[1,n] to the nodes. Hence, a dishonest dealer cannot tamper with the secret after
step 3.

4. (Leaf encoding and distribution) Each node i encodes its share Φ0,0
i into an

n-qubit state Φ0,0
i[1,n]

using the code C. Then, it sends qubit Φ0,0
ij

to node j,
∀j = 1, . . . , n.

Steps 3 and 4 of the sharing stage are depicted in Fig. 3.1, which shows the distribu-
tion of qubits after each action. Due to the similarity with a tree, we refer to Φ0,0

[1,n]

and Φ0,0
i[1,n]

as the branch and the leaf shares, respectively.
After step 4, no more errors can be introduced directly in the branch shares Φ0,0

[1,n]

since each qubit Φ0,0
i has been further encoded into Φ0,0

i[1,n]
.

Verification. After the sharing stage, the nodes want to verify that they
are holding consistent shares that later will allow for reconstruction of a quan-
tum state. It is crucial to perform this check without retrieving any information
about the secret, as we want it to remain unknown for the nodes throughout the
protocol. Here, we only discuss the verification of the quantum shares, although
the nodes also have to verify the classical shares of the VCSS subroutine [3] in parallel.

As discussed in Section 2.2, arbitrary errors can be described as a combination
of bit flips and phase flips. Hence, in order to detect arbitrary errors in their shares,
the nodes employ r ancillary qubits initialized in the state |+̄〉 =

∑
v∈V |v〉 to find
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Figure 3.1. Sharing steps of the VHSS protocol in a toy network with n = 3 nodes (note that
this is just a graphical example, since no CSS code exists for n = 3). (a) The dealer encodes the
secret and shares the n-qubit state with the nodes. (b) The nodes encode their qubits and hold all
the new shares. (c) Nodes redistribute their shares.

bit flip errors (Z basis), and r ancillas initialized in |0̄〉 =
∑
w∈W⊥ |w〉 to find phase

flips (X basis).

for m = 1, . . . , r:

5. (Preparation and distribution - Z basis) The dealer D prepares an n-qubit
ancillary state |+̄〉0,m[1,n] =

∑
v∈V |v〉. Then, it sends qubit |+̄〉

0,m
i to node

i, ∀i = 1, . . . , n.

6. (Leaf encoding and distribution - Z basis) Each node i encodes its share
|+̄〉0,mi into an n-qubit state |+̄〉0,mi[1,n]

using C. Then, it sends qubit |+̄〉0,mij
to node j, ∀j = 1, . . . , n.

7. (CNOTs - Z basis) A public random bit b0,m is generated. Then, each
node i applies the following operation to their shares:

CNOTb0,m(Φ0,0
ji
, |+̄〉0,mji ), ∀j = 1, . . . , n, (3.2.1)

i.e., a CNOT is applied if b0,m = 1.

8. (Measurements - Z basis) Each node i measures the n ancillary states it is
holding (systems indexed with m and l = 0) in the Z basis and broadcasts
the measurement outcomes. All measured qubits are discarded.

end

An ancillary tree of states is generated in steps 5-6 in the same way as it was done
with the secret in steps 3-4. The goal of step 7 is to propagate bit flip errors from
Φ0,0
ji

to |+̄〉0,mji using CNOTs, so that they can be detected later in steps 18-19. After
the leaf encoding (step 4), each n-qubit state Φ0,0

j[1,n]
is a superposition of 2kV states

of the form |vi〉, vi ∈ V . Similarly, |+̄〉j[1,n]
is also a superposition of states of the
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form
∣∣v+
k

〉
, v+

k ∈ V . If there were some bit flips1 on vi or v+
k , these bit strings would

no longer be in V .
The CNOTs in step 7 can be applied separately to each share since it is a transversal
operation for encoded states of a CSS code [14]. Moreover, it is also a linear operation
and therefore it is possible to discuss how bit flips propagate from the secret shares
to the ancillas by applying step 7 to a single combination of |vi〉 and

∣∣v+
k

〉
. After

the CNOT, the resulting state can either be in V or not, depending on which qubits
were affected by bit flips. This can be determined using the addition rules from
Eqs. (2.1.10). All possible scenarios are summarized in Table 3.1, where checkmarks
denote that the word is in V and crosses denote that it is not. When only one
of the qubits has been affected by a bit flip, the final ancillary state captures this
information. However, when both states have suffered from errors, the CNOT could
compensate them and yield a final state in V .

Table 3.1. Possible scenarios in step 7 of the protocol (see main text). A
checkmark means that the word is in V , a cross means that it is not, and
a question mark means that it cannot be predetermined in a general case.
Note that the sum is a bitwise addition modulo 2.

vΦ
i v+

k vΦ
i + v+

k

X X X

X × ×
× X ×
× × ?

In order to prevent cheaters from maliciously introducing errors in the secret and
in the ancillas that cancel out, the CNOT is applied at random. Moreover, the
random bit bl,m is drawn after distributing all ancillas labeled with l,m, so cheaters
do not know a priori to which shares they should apply the CNOT. By doing this,
errors introduced in the ancillas are detected at least 50% of the time. Consequently,
cheaters will only be able to pass verification holding a share that has suffered from
bit flips with probability at most 2−Ω(r), where r is the number of rounds. For a
more detailed discussion, see Appendix A of [14].
Finally, step 8 measures the ancillas to find the bit flip errors.

for l = 1, . . . , r:

9. (Preparation and distribution - X basis) The dealer D prepares an n-qubit
ancillary state |0̄〉l,0[1,n] =

∑
w∈W⊥ |w〉. Then, it sends qubit |0̄〉

l,0
i to node

i, ∀i = 1, . . . , n.

1Recall that we assume at most t cheaters and therefore at most t bit flips.
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10. (Leaf encoding and distribution - X basis) Each node i encodes its share
|0̄〉l,0i into an n-qubit state |0̄〉l,0i[1,n]

using C. Then, it sends qubit |0̄〉l,0ij to
node j, ∀j = 1, . . . , n.

for m = 1, . . . , r:

11. (Preparation and distribution - l,m 6= 0) The dealer D prepares an
n-qubit ancillary state |0̄〉l,m[1,n] =

∑
w∈W⊥ |w〉. Then, it sends qubit

|0̄〉l,mi to node i, ∀i = 1, . . . , n.

12. (Leaf encoding and distribution - l,m 6= 0) Each node i encodes its
share |0̄〉l,mi into an n-qubit state |0̄〉l,mi[1,n]

using C. Then, it sends qubit
|0̄〉l,mij to node j, ∀j = 1, . . . , n.

13. (CNOTs - l,m 6= 0) A public random bit bl,m is generated. Then, each
node i applies the following operation to their shares:

CNOTbl,m(|0̄〉l,0ji , |0̄〉
l,m
ji

), ∀j = 1, . . . , n, (3.2.2)

i.e., a CNOT is applied if bl,m = 1.

14. (Measurements - l,m 6= 0) Each node i measures its n qubits indexed
with l,m in the Z basis and broadcasts the measurement outcomes.
All measured qubits are discarded.

15. (Fourier transform) Each node i applies the Fourier transform F to its
remaining shares, obtaining ΦF,0,0ji

and |0̄〉F,l,0ji
, j = 0, . . . , n.

16. (CNOTs - X basis) A public random bit bl,0 is generated. Then, each
node i applies the following operation to their shares:

CNOTbl,0(ΦF,0,0ji
, |0̄〉F,l,0ji

), ∀j = 1, . . . , n. (3.2.3)

i.e., a CNOT is applied if bl,0 = 1.

17. (Measurements - X basis) Each node i measures the n ancillary states it is
holding (systems indexed with l and m = 0) in the Z basis and broadcasts
the measurement outcomes.

end

Steps 9-17 have a similar goal as steps 5-8. In this case, the states |0̄〉l,0 are used to
find phase flips in the secret shares. To do that, nodes apply a Fourier transform
to the states and look for bit flips instead. Nevertheless, it is also necessary to
check that the states |0̄〉l,0ij have not suffered from bit flips, so the nodes perform
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r additional checks on each of them. If we did not perform these checks, bit flips
on |0̄〉l,0ij would transform into phase flips on |0̄〉F,l,0ij

that would propagate to ΦF,0,0ij
with the application of the CNOT in step 16. These phase flips would become again
bit flips on Φ0,0

ij
that would not be detected anymore. Therefore, if we do not ensure

that the ancillas |0̄〉l,0ij have not suffered from bit flips, we could introduce additional
errors in the secret shares.
From steps 9-17, we see that each node i is required to hold only 3n qubits simulta-
neously at each round (l,m): n secret shares Φ0,0

ji
(j = 1, . . . , n), n ancillary shares

|0̄〉l,0ji , and n extra ancillas |0̄〉l,mji . Table 3.2 shows all the (r + 1)2 quantum states
that are used in a single leaf ji of the protocol.

Table 3.2. Sketch of the states used in the verification step at leaf ji.
The total number of states per leaf is (r + 1)2.

Φ0,0
ji

|+̄〉0,1ji . . . |+̄〉0,mji . . . |+̄〉0,rji
|0̄〉1,0ji |0̄〉1,1ji . . . |0̄〉1,mji . . . |0̄〉1,rji
...

...
...

...
...

...

|0̄〉l,0ji |0̄〉l,1ji . . . |0̄〉l,mji . . . |0̄〉l,rji
...

...
...

...
...

...

|0̄〉r,0ji |0̄〉r,1ji . . . |0̄〉r,mji . . . |0̄〉r,rji

18. (Decoding leaves - Z basis) Broadcasted values vl,m,i,j in steps 8 and 14 yield
words vl,m,i = vl,m,i,1vl,m,i,2 . . . vl,m,i,n that should correspond to codewords
from code V . For each word, the nodes:

(a) Classically decode the word to obtain a single bit al,m,i.

(b) If a bit flip occurred at position k of vl,m,i, include this position in a set
Bi. We denote this as Bi ← Bi ∪ {k}. If |Bi| > t, then B ← B ∪ {i}.

19. (Decoding branches - Z basis) Decoded values al,m,i form words al,m, which
should also correspond to codewords from V . If an error occurred in position
k of al,m, then B ← B ∪ {k}.

20. (Decoding leaves - X basis) Broadcasted values wl,0,i,j in step 17 yield words
wl,0,i that should correspond to codewords from W . For each word, the
nodes:

(a) Classically decode the word to obtain a single bit al,0,i.

(b) If a bit flip occurred at position k of wl,0,i, include this position in Bi,
i.e., Bi ← Bi ∪ {k}. If |Bi| > t, then B ← B ∪ {i}.
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21. (Decoding branches - X basis) Decoded values al,0,i form words al,0, which
should also correspond to codewords from W . If an error occurred in position
k of al,0, then B ← B ∪ {k}.

22. (Abort condition) If |B| > t, reject the dealer and abort the protocol. Other-
wise, continue.

23. (Inverse Fourier transform) Nodes apply an inverse Fourier transform to
revert the transform from step 15. Each node holds again Φ0,0

[1,n]j
.

Let us define CD as the set of nodes whose shares have suffered from errors introduced
by a dishonest dealer. If the dealer is honest, |CD| = 0.
We also define a set Ccheat of cheating nodes which do not follow the protocol honestly
and can introduce errors in their shares. They can do that by performing any joint
operation on their qubits. Consequently, they can introduce correlated errors. The
maximum number of errors that the CSS code C can correct is t, and therefore we
assume that there are at most t cheaters.
Moreover, we define another set CC which includes:

• Nodes holding a branch share (Φ0,0
i , |+̄〉0,mi , or |0̄〉l,mi ) that contains errors not

introduced by the dealer.

• Nodes holding a branch share (Φ0,0
i , |+̄〉0,mi , or |0̄〉l,mi ) that cannot be recon-

structed due to an excess of errors in the leaves (Φ0,0
i[1,n]

, |+̄〉0,mi[1,n]
, or |0̄〉l,mi[1,n]

).

In an ideal quantum network in which qubits do not experience any noise, branch
shares only suffer from errors introduced by the dealer or by the nodes that hold them.
Hence, the first type of nodes in CC are cheaters. Moreover, a branch share of an
honest node i can always be reconstructed, since cheaters cannot introduce errors on
more than t shares of Φ0,0

i[1,n]
, |+̄〉0,mi[1,n]

, or |0̄〉l,mi[1,n]
. Therefore, the second type of nodes

in CC are cheaters that tampered with their own leaf shares. Hence, CC ⊆ Ccheat
and |CC | ≤ |Ccheat| ≤ t. Note also that the size of CC can grow throughout the
protocol.

The set C = CD ∪ CC corresponds to the set of all nodes holding branch shares that
have suffered from errors or that cannot be reconstructed due to an excess of errors
in the leaves. Hence, the branch shares held by nodes i ∈ C cannot be used for
reconstruction.
In steps 18-21 of the verification, the nodes perform a classical decoding of the
measurement outcomes (see Figure 3.2) and create the set B of apparent cheaters.
The protocol identifies B = C with probability exponentially close to 1 in a security
parameter r, and it aborts if the size of B is too large, meaning that there had been too
many errors that prevent the reconstruction of the secret (see [14] for a formal proof).
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=
=
=

→
→
→

=

Figure 3.2. Sketch of the classical decoding in steps 18-21. The sketch corresponds to an arbitrary
combination of l and m. For clarity, we have omitted these indices in the variables, e.g., vi
corresponds to vl,m,i. The measurement outcomes are represented by vi,j , which form words vi
that are decoded as ai. Finally, all bits ai form the word a.

Reconstruction. After passing verification, the nodes can attempt to recover
the original quantum state shared by the dealer.

24. (Send to R) All nodes send their quantum and classical shares to the
reconstructing node R.

25. (Reconstruct s) R reconstructs the classical key s following the VCSS scheme.

26. (Detect cheaters) for i = 1, . . . , n:

26.1. R runs an error-detecting circuit for code C on Φ0,0
i[1,n]

. For each
error detected at position j: Bi ← Bi ∪ {j}.

26.2. If |Bi| ≤ t, R corrects the errors in Φ0,0
i[1,n]

and decodes it to
obtain Φ0,0

i . Otherwise, B ← B ∪ {i}.

27. (Reconstruct Φ0,0) R takes n− 2t shares Φ0,0
i , i /∈ B, at random and applies

an erasure-recovery circuit to obtain Φ0,0.

28. (Decrypt) R decrypts Φ0,0 using s to obtain the original quantum state |ψ〉.

The reconstruction of the secret is performed by a reconstructing node R, which
is assumed to act honestly—otherwise, we cannot give any guarantees about the
completeness of the protocol.
To reconstruct the secret, R first completes the VCSS subroutine to obtain the
classical key s. Then, it detects and corrects errors that were introduced by cheaters
after verification. Reconstruction will be possible as long as the number of arbitrary
errors in Φ0,0

[1,n] is not larger than 2t ≤ d− 1, since C tolerates up to d− 1 erasures.
Note however that the abort condition in step 22 of the verification stage is |B| > t
instead of |B| > 2t. This way, even in the case in which all errors are introduced by
a dishonest dealer, the cheaters cannot make reconstruction to fail after a successful
verification (|B| ≤ t), since they can introduce at most t extra errors, yielding
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|B| ≤ 2t.
Finally, if there are at least n− 2t branches Φ0,0

i , i /∈ B, that have not suffered from
errors, R decodes and decrypts the quantum secret.





4
Quantum noise in the VHSS

protocol

In this chapter, we analyze how noisy communication channels can affect the perfor-
mance of the VHSS protocol. We consider a situation in which each qubit suffers
from noise when traveling from node to node. This noise is independent for each
qubit.
Classical communication is more advanced and reliable than quantum. Hence, we
assume that none of the bits involved in the protocol suffers from noise. This as-
sumption is commonly adopted in quantum cryptography problems, since the levels
of classical noise are negligible compared to the levels of quantum noise.
First, we consider a network in which qubits can be erased, e.g., a network in which
qubits are transmitted in the form of single photons. We start by assuming that only
the quantum secret shares are affected by noise, while the ancillas remain noiseless.
In this scenario, the security statements made by Lipinska et al. [14] do not hold
anymore, e.g., there is a non-negligible probability to abort the protocol in the
verification phase even when the dealer is honest. In Section 4.1, we propose some
modifications to the original protocol that should be adopted when the network is
described by this noise model. We also analyze the probability of passing verification
and use it to reformulate the security statements.
One might argue that most quantum networks running VHSS would distribute secret
and ancilla shares over the same channels, and therefore they should be subject
to the same noise model. For this reason, we propose two additional noise models:
one in which channels are broken with certain probability and lose all the qubits,
and another one in which all qubits in the protocol can be independently lost with
certain probability. We then generalize the approach from the first noise model to
these two, in Section 4.2.
In Section 4.3, we discuss how the depolarizing noise on each individual qubit affects
the protocol. We show that our results regarding erasures can be adapted in the
depolarizing noise models.

33
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Finally, in Section 4.4 we propose an alternative sharing stage that improves the
robustness of the protocol against all the previous types of noise.

4.1. Erasures in the secret

Let us assume that every time a qubit is sent from one node to another, there is a
probability q that it is lost. Branch shares can be lost when the dealer distributes
its qubits, while leaf shares can suffer from erasures when nodes redistribute their
shares and when they send them to the reconstructor. In this section, we assume
that only the secret shares can be lost. We can picture this as a quantum network
whose channels are noisy during the sharing and the reconstruction stages, while,
for some reason, noise drops to negligible levels (q = 0) during verification. This is
not a common scenario, but allows us to get some insight into the problem before
including erasures of the ancillas in the model (Section 4.2).

Definition 4.1.1. We define the ‘Erasures on the Secret’ (ES) model as a
noise model for quantum networks running the VHSS protocol in which: (i) each
qubit has an independent probability q of being erased when traveling from node to
node and (ii) only shares of the encoded secret can be erased, i.e., ancillary qubits
do not suffer from noise.

Protocol modifications. When the noise in the quantum network can be
described by the ES model, it is convenient to perform some modifications over the
original VHSS protocol from [14].
First, recall that the goal of the verification phase is to create a set of apparent
cheaters B such that B = C, where C is the set of nodes whose branch shares cannot
be used to reconstruct the secret. We keep the definitions of CD, Ccheat, and CC.1
As in the original scheme, C = CD ∪ CC. However, errors can be now randomly
introduced by the communication channels and CC can contain honest nodes, as
opposed to the case of the ideal network in which only the dealer and the cheaters
could tamper with the qubits and CC only contained cheating nodes (see Subsection
3.2.1).
In contrast to the original scheme, which tolerates up to t cheaters, where t is the
maximum number of errors tolerated by the CSS code, let us assume that there
are at most tc cheaters, with tc ≤ t. The motivation for this is to increase the
probability that an honest dealer passes verification by decreasing the maximum
number of tolerated cheaters. This assumption requires some steps of the protocol to
be modified. In particular, the condition for passing verification must be |B| ≤ 2t−tc.
This is a way to ensure that, even in a worst case scenario in which all tc cheaters
introduce as many errors as they can after verification, the size of B will not exceed
2t, which is the maximum allowed for reconstruction. Note that the dealer can
introduce up to 2t− tc arbitrary errors and still pass verification.
1CD: set of nodes whose branch shares carry errors introduced by the dealer.
Ccheat: set of cheating nodes.
CC : set of nodes whose branch shares carry errors not introduced by the dealer or cannot be
reconstructed due to an excess of errors in the leaves.
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On the other hand, we can also take advantage of the fact that erasures are flagged.
Honest nodes will publicly announce erasures. Then, if there were too many of them,
nodes can abort the protocol before verification, if they happened in the sharing
phase, or at the beginning of reconstruction, if they happened when sending all qubits
to R. This way, they can avoid performing a large number of quantum operations as
they know beforehand that the secret cannot be reconstructed.
Cheaters can decide to not report erasures. In that case, we could have more erasures
than allowed and still not abort the protocol before verification or reconstruction.
However, this is not problematic, since these erasures will act as arbitrary errors
introduced by the cheaters and will be detected in the verification stage or in step
26 of reconstruction.
In addition, throughout the protocol, nodes will replace erased qubits by arbitrarily
initialized states in order treat erasures as arbitrary errors. The reason to do this is
that we would like to keep as many steps as possible from the original VHSS without
any modification. By treating erasures as arbitrary errors, the reconstructor can
run the same error-correcting circuits as in the original reconstruction stage. If we
did not follow this approach, a careful analysis of the reconstruction stage would
be required, as the quantum circuits employed for reconstruction might be different
depending on which qubits were erased.

We include the previous considerations in the protocol with the following modi-
fications for steps 3, 4, 22, and 24:

VHSS-ES protocol. VHSS protocol for networks described by an ES noise
model. Here, we only list the steps that are different with respect to the original
scheme by Lipinska et al. [14] (see Subsection 3.2.1).

...

3ES. (Branch encoding and distribution)

3ES.1. D encodes Φ0,0 into an n-qubit state Φ0,0
[1,n] using the code C. Then,

it sends qubit Φ0,0
i to node i, ∀i = 1, . . . , n.

3ES.2. Erasures are publicly announced by the nodes. If an erasure
happens on Φ0,0

i , node i replaces its share by an arbitrary qubit
and B ← B ∪ {i}.

3ES.3. If |B| > 2t− tc, abort the protocol. Otherwise, continue.

...

4ES. (Leaf encoding and distribution)
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4ES.1. Each node i encodes its share Φ0,0
i into an n-qubit state Φ0,0

i[1,n]

using the code C. Then, it sends qubit Φ0,0
ij

to node j, ∀j =
1, . . . , n.

4ES.2. Erasures are publicly announced by the nodes. If an erasure
happens on Φ0,0

ij
, node j replaces this share by an arbitrary qubit

and Bi ← Bi ∪ {j}.
4ES.3. If |Bi| > t, B ← B ∪ {i}, ∀i = 1, . . . , n.

4ES.4. If |B| > 2t− tc, abort the protocol. Otherwise, continue.

...

22ES. (Abort condition) If |B| > 2t− tc, reject the dealer and abort the protocol.
Otherwise, continue.

...

24ES. (Send to R)

24ES.1. All nodes send their quantum and classical shares to the recon-
structing node R.

24ES.2. If an erasure happens on Φ0,0
ij

, R replaces this share by an arbitrary
qubit and Bi ← Bi ∪ {j}.

24ES.3. If |Bi| > t, B ← B ∪ {i}, ∀i = 1, . . . , n.

24ES.4. If |B| > 2t, abort the protocol. Otherwise, continue.

...

Security statements and design function. After being adapted to
the ES model, the protocol must still be secure, sound, and complete. Here, we show
that the VHSS-ES protocol meets these three security requirements. First, the
secrecy of the protocol can be stated as follows:

Theorem 4.1.1 (Secrecy). In the verifiable hybrid secret sharing protocol for net-
works under the ES noise model, VHSS-ES protocol, when D is honest and
there are at most tc active cheaters in the verification phase, no group of at most
pc nodes learns nothing about D’s secret state throughout the protocol except with
probability exponentially small in the security parameter r, where pc is the secrecy of
the underlying classical scheme.
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Proof. The proof given in [14] still applies to VHSS-ES protocol. It is based on
the security of the underlying VCSS scheme, which ensures that no group of at most
pc nodes can reconstruct the classical encryption key s that was used to apply a
one-time pad on the quantum secret. This implies that the decoded quantum secret
remains as a maximally mixed state if s is not known.

Next, we formulate the soundness statement. The intuitive interpretation is that, if
there are too many errors, the protocol will abort, except with probability 2−Ω(r).
Let us state this formally:

Theorem 4.1.2 (Soundness). In the verifiable hybrid secret sharing protocol for
networks under the ES noise model, VHSS-ES protocol, either the honest parties
hold a consistently encoded secret or the protocol aborts, with probability at least
1− 2−Ω(r). Moreover, after passing verification and sending all qubits to an honest
R, either the shares are still consistent or the protocol aborts, with probability at least
1− 2−Ω(r).

Proof. Regarding the first part of the statement, we proceed in a similar way as
Lipinska et al. did to prove the soundness statement of the original VHSS [14]. The
statement can be reformulated as: the probability that verification fails to identify
B = C is at most 2−Ω(r). Failure can happen either in the underlying VCSS scheme
or in the VQSS:

Pr(VCSS fails ∨VQSS fails) ≤ Pr(VCSS fails) + Pr(VQSS fails). (4.1.1)

Regarding the classical subroutine, we also consider the protocol from [3], whose
probability of failure is exponentially small on a security parameter rVCSS. We choose
rVCSS = r to obtain Pr(VCSS fails) ≤ 2−Ω(r).
Lipinska et al. showed in Appendix A of [14] that Pr(VQSS fails) ≤ 2−Ω(r). The
proof consists in showing that the state held by the nodes after verification is close to
a codeword in C with at most t errors on branch shares held by nodes in C, or that
the protocol aborts. For the VHSS-ES protocol, the proof is the same except for
a minor subtlety: bitstrings obtained from the measurement of the ancillas in the
modified protocol can have up to 2t− tc errors. This has no influence on the proof
from [14] since all the measurement outcomes from steps 8 and 14 still correspond
bitstrings that belong to a 2-goodV tree (similarly, measurement outcomes from
step 17 correspond to bitstrings from a 2-goodW tree). Informally, this means that
all bitstrings correspond to codewords from the code V (or W ) up to 2t− tc errors.
For a formal definition of 2-good trees, see Definition 1 from [13] and Definition 4,
Proposition 2.10, and Lemma 2.11 from [47]. Finally, combining the results for the
VCSS and the VQSS, we obtain

Pr(VCSS fails ∨VQSS fails) ≤ 2−Ω(r). (4.1.2)

Let us now show the second part of the statement: after sending all shares to R,
either they remain consistent or the protocol aborts, except with a exponentially
small probability. Right after passing verification, there is at least a probability of
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1− 2−Ω(r) that the shares are consistent, as stated in the first part of the Theorem.
In other words, nodes successfully identified B = C with probability 1 − 2−Ω(r).
Qubits can be erased while traveling to R and cheaters could have faked to be honest
during verification and may introduce errors right before sending their qubits to R.
Both events could enlarge C. To prove the second part of the statement, we must
show that, if the nodes were holding consistent shares, the set B is always correctly
updated by R, such that it matches the enlarged C.
First, recall that erasures are flagged and the reconstructor is honest. Hence, it
would successfully update the sets Bi and B if any erasure happened.
The arbitrary errors introduced in the leaf shares by the cheaters are detected in
step 26, as long as there are not more than 2t errors in total. We only look at
those branches i /∈ B, since the rest of them are not used for reconstruction. For
these branches, |Bi| ≤ t after step 24ES. Since there are at most tc ≤ t cheaters, the
maximum number of arbitrary errors in a branch i /∈ B is 2t for any value of tc, and
therefore R will correctly identify all errors.
As a result, if B = C after verification, i.e., R will always update B correctly before
trying to reconstruct the quantum secret. Therefore, it will either reconstruct the
original state (if |B| ≤ t) or abort (if |B| > t). Consequently, the probability of R
holding consistent shares or aborting is at least 1− 2−Ω(r).

Before discussing the completeness of the modified protocol, it is convenient to
compute some useful functions. Given a network under the ES noise model and the
number of errors introduced by the dealer, td, the probability that less than 2t− tc
nodes are in the set C right after verification2, i.e., |Cv| ≤ 2t− tc, is
Pr(|Cv| ≤ 2t− tc) ≥ fv(n, t, q, tc, td)

:= Pr(|Cv| ≤ 2t− tc | max. cheats)

=

2t−tc∑
x=0

3tn−2t2∑
y=0

Pr(u(1) = x) · Pr(u(2) = y)

· Pr(|Cv| ≤ 2t− tc|u(1), u(2),max. cheats),

(4.1.3)

where n is the number of nodes, t is the maximum number of errors tolerated by
the CSS code employed, q is the probability of erasure in the ES model, tc is the
maximum number of cheaters, and ‘max. cheats’ means that all cheaters introduce
errors in all the shares to which they have access. Each of the terms in the sum
corresponds to a particular combination of the total number of branch erasures, u(1),
and the total number of leaf erasures, u(2). Both of them are random variables,
whose probability distributions are given by:

Pr(u(1) = x) = qx
(
n

x

)
(1− q)n−x, (4.1.4)

2We employ the subindex v on sets B and C when we refer to the state of those sets right after
verification, since more elements could be included during the reconstruction phase.
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Pr(u(2) = y) = qy
(
n2

y

)
(1− q)n2−y. (4.1.5)

The analytical expression for Pr(|Cv| ≤ 2t − tc|u(1), u(2),max. cheats) is more
complicated and can be found in Appendix A, together with a full derivation
of fv(n, t, q, tc, td).

From the previous analytical expressions, the dependence of fv on n, t, q, tc, and
td is not explicit enough. Therefore, we proceed with a graphical representation
of the function in order to extract more useful information. The evaluation of the
analytical expression of Pr(|Cv| ≤ 2t− tc|u(1), u(2),max. cheats) given in Appendix
A is computationally demanding and not reliable if done by brute force, due to
the large amount of terms involving combinatorial factors of different orders of
magnitude.
We have designed Algorithm 1 to evaluate Pr(|Cv| ≤ 2t− tc|u(1), u(2),max. cheats)
by sampling, and its output converges to the correct value for large enough number
of samples:

Proposition 4.1.1. Let h(x, N) be the output of Algorithm 1, with x := (n, t, q, tc, td,
u(1), u(2)), and let us define g̃(x, N) := Pr(u(1)) · Pr(u(2)) · h(x, N) and g(x) :=
Pr(u(1)) · Pr(u(2)) · Pr(|C| ≤ 2t − tc|u(1), u(2),max. cheats), where Pr(u(1)) and
Pr(u(2)) are the probability distributions given by Eqs. (4.1.4) and (4.1.5), respec-
tively. Then,

Pr
[
|g̃(x, N)− g(x)| < δ

]
≥ 1−N−1 · δ−2 · ε, (4.1.6)

for any x, N > 0, and δ > 0, with

ε ≤ q2u(1)+2u(2) · (1− q)2n2+2n−2u(1)−2u(2) ·
(
n

u(1)

)2

·
(
n2

u(2)

)2

·
[(

n

u(1)

)
·
(
n2

u(2)

)
·
(
n

td

)
·
(
n

tc

)
− 1

]
.

(4.1.7)

Proof. The proof can be found in Appendix B.

Proposition 4.1.1 states that we can use Algorithm 1 to compute each of the terms
in Eq. (4.1.3) with error smaller than δ, with probability at least 1−N−1 · δ−2 · ε.
Let us employ the symbol ‘∼’ to denote the order of magnitude of a variable. Since
there are (2t − tc + 1) · (3tn − 2t2 + 1) terms in Eq. (4.1.3), the error in fv is
smaller than δ · (2t − tc + 1) · (3tn − 2t2 + 1) ∼ 10δ, where we assume that t ∼ 1
and n ∼ 10. Therefore, it is possible to choose a value of δ that produces a reliable
representation of fv (e.g., δ = 10−3 yields an absolute error in fv of ∼ 10−2) and
then use Proposition 4.1.1 to calculate the number of samples required in Algorithm 1.

Using Algorithm 1, we can obtain graphical representations of fv, and then use them
to tune the parameters of the protocol in order to achieve the highest probability of
passing verification holding consistent shares. Hence, we have obtained a useful tool
for hyperparameter tuning and for network design.
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Algorithm 1 - Approximating Pr(|Cv| ≤ 2t−tc|u(1), u(2),max. cheats) by sampling.
Inputs:

n: number of nodes in the network.
t: maximum number of errors the CSS code can correct.
q: probability of qubit erasure.
tc: maximum number of cheaters.
td: number of errors introduced by the dealer.
u(1): total number of erasures in the branches.
u(2): total number of erasures in the leaves.
N : number of samples.

1: Create a variable P ← 0
2: for s = 1, . . . , N do
3: Create an n × n array, V , with u(2) ones and n2 − u(2) zeroes distributed

uniformly at random
4: Generate a tc × 1 array, h, whose entries are integers between 0 and n with

no repetition
5: for j = 1, . . . , tc do
6: k ← hj
7: Vik ← 1, ∀i = 1, . . . , N
8: end for
9: Sum all the values in each row of V to obtain an n×1 array v (vi =

∑n
j=1 Vij)

10: Create an n× 1 array, b, full of zeroes
11: for i = 1, . . . , N do
12: if vi > t then bi ← 1
13: end if
14: end for
15: Randomly choose u(1) elements of b and set them to 1 (regardless whether

their previous value was 0 or 1)
16: Randomly choose td elements of b and set them to 1 (regardless whether their

previous value was 0 or 1)
17: for j = 1, . . . , tc do
18: k ← hj
19: bk ← 1
20: end for
21: if

∑n
i=1 bi ≤ 2t− tc then P ← P + 1

22: end if
23: end for
24: Normalize P over the number of samples: P ← P/N
25: return P
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As an example, take a network of n = 18 quantum nodes running VHSS with an
[[18, 1, 5]] CSS code (t = 2). Before running the protocol, we want to choose the
values of the parameters that will maximize the probability of having |C| ≤ 2t− tc
right after the verification. We consider two different scenarios: (i) a network with
fixed q = 0.02, and (ii) a network with an honest dealer.

In (i), we want to select a suitable value for tc and td. For all possible combi-
nations of values, we have ε < 8 · 10−2. A reasonable value for δ is 10−3, as this
provides a precision of 10−2 in the estimate of fv, which is enough to assess the
performance of the protocol. Moreover, we would like to ensure this with more
than a 99.9% chance. Hence, using Proposition 4.1.1, we find that it is safe to use
the algorithm with at least N ∼ 107 samples. Note that this is a clear advantage
in the computational cost since the evaluation of most of the terms in Eq. (4.1.3)
already requires a loop over more than 107 different configurations of erasures for
fixed u(1) and u(2), e.g., for u(1) = 0 and u(2) = 5 there are roughly 1013 different
configurations.
Figure 4.1a shows fv(n, t, q, tc, td) for n = 18, t = 2, q = 0.02, and different com-
binations of tc and td. This can be employed to find the values that better fit
our interests. For example, if one wants the probability that honest nodes hold
consistent shares to be larger than 0.9, i.e., Pr(|C| ≤ 2t − tc) > 0.9, it is enough
to ensure that fv(n, t, q, tc, td) > 0.9. In Fig. 4.1a we observe that, in order to
achieve it, we can tolerate at most 1 cheater if the dealer is honest and none if the
dealer introduces up to 3 arbitrary errors. In any other case, we cannot ensure that
Pr(|C| ≤ 2t− tc) > 0.9.
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Figure 4.1. Design function for the VHSS-ES protocol built upon an [[18, 1, 5]] CSS code.
These plots can be used to tune the maximum number of cheaters, tc, and the maximum number of
errors introduced by the dealer, td), that the protocol tolerates, and possibly to determine whether
improving the quality of the channels, i.e., reducing q, is necessary or not. (a) Quantum network
with q = 0.02. (b) Quantum network with honest dealer (td = 0). Both subfigures were computed
using Eq. (4.1.3) and Algorithm 1 with N = 107.
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In situation (ii), the dealer is honest, and we would like to choose a proper value
for tc. Figure 4.1b shows fv(n, t, q, tc, td) versus the probability of erasure q. As an
example, if the network was characterized by q = 0.15, we observe that fv is almost
zero even if we do not tolerate any cheater, and therefore we cannot ensure that the
secret would be properly shared among the honest nodes. Let us now assume that
q = 0.02 and that we aim for Pr(|C| ≤ 2t − tc) > 0.9. Then, by looking at which
curves are above 0.9 at q = 0.02, we determine that it is possible to tolerate up to 1
cheater.
Note that Figure 4.1b still captures the case of the original VHSS protocol (q = 0), in
which an honest dealer (td = 0) would always pass verification (Pr(|C| ≤ 2t−tc) = 1).

After discussing the meaning and use cases of fv, we are ready to state the complete-
ness of the VHSS-ES protocol.

Theorem 4.1.3 (Completeness). In the verifiable hybrid secret sharing protocol for
networks under the ES noise model, VHSS-ES protocol, if D is honest then it
passes the verification phase with probability at least fv(n, t, q, tc, 0). Moreover, if R
is also honest, it reconstructs D’s secret with probability at least

(1− 2−Ω(r)) · (1− q)(n−2t)(n−t), (4.1.8)

where r is the security parameter.

Proof. The probability of passing verification for an honest dealer is:

Pr(pass verification) := Pr(|Bv| ≤ 2t− tc)
= Pr(|Cv| ≤ 2t− tc) · Pr(|Bv| ≤ 2t− tc

∣∣ |Cv| ≤ 2t− tc)
+ Pr(|Cv| > 2t− tc) · Pr(|Bv| ≤ 2t− tc

∣∣ |Cv| > 2t− tc)
a
≥ Pr(|Cv| ≤ 2t− tc)
b
≥ fv(n, t, p, tc, 0)

(4.1.9)

where, in step a, we have used that Pr(|Bv| ≤ 2t− tc
∣∣ |Cv| ≤ 2t− tc) = 1 and that

the second term of the sum is non-negative; and in step b we have used the defini-
tion of fv(n, t, p, tc, td) (see Eq. (4.1.3)) with td = 0, since we assume an honest dealer.

Let us now consider the second part of the statement. First, from Theorem 4.1.2, we
know that the honest nodes hold consistent shares after verification (i.e., |C| ≤ 2t−tc)
at least with probability 1−2−Ω(r). Then, the probability that R also holds consistent
shares and therefore is able to reconstruct is at least (1 − 2−Ω(r)) · Pr(X), where
Pr(X) is the probability that the size of C remains less than or equal to 2t after
sending all shares to R (we call this event X). As discussed in the proof of Theorem
4.1.2, R always updates the set B correctly. Therefore, Pr(X) can also be regarded
as the probability that |B| ≤ 2t after sending all shares to R.
In order to reconstruct the secret, we need |B| ≤ 2t. This implies that at least
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n− 2t branch shares have not suffered from errors and can be reconstructed, i.e., at
least n − t of their leaf shares have not suffered from errors (|Bi| ≤ t, ∀i /∈ B). If
these (n− 2t)(n− t) leaf shares did not suffer from stochastic erasures (we call this
event Y ), then the shares held by R are still consistent. Mathematically, Y ⇒ X.
Therefore,

Pr(X) ≥ Pr(Y ) = (1− q)(n−2t)(n−t), (4.1.10)

where (1− q)(n−2t)(n−t) is the probability that none of the (n− 2t)(n− t) leaf shares
is erased.
We can conclude that the probability that R still holds consistent shares after
verification is

(1− 2−Ω(r)) · Pr(X) ≥ (1− 2−Ω(r)) · (1− q)(n−2t)(n−t). (4.1.11)

4.2. Erasures in the secret and the ancillae

In the previous section, we assumed that erasures only happened in the secret shares.
A more realistic model should consider that the ancillas travel through the same
communication channels and therefore are also subject to noise. In this section, we
allow both secret and ancilla shares to be erased, giving rise to two new models:

Definition 4.2.1. We define the ‘Channel Erasure’ (CE) model as a noise
model for quantum networks running the VHSS protocol in which: (i) each pair
of nodes j and k is connected by two opposite unidirectional channels, one from j
to k and another one from k to j, (ii) each of these channels can be independently
broken with probability q at the beginning of the protocol, erasing all qubits that
are sent through it, and (iii) all channels are restored after verification but they can
break again before reconstruction with probability q.

Definition 4.2.2. We define the ‘Erasures on the Secret and the Ancillas’
(ESA) model as a noise model for quantum networks running the VHSS protocol
in which each qubit has an independent probability q of being erased when traveling
from node to node.

CE model. Let us assume that the dealer is connected to node i by channel i
and that each node i is connected to j by the unidirectional channel ij . All qubits
are distributed using these channels. We assume that, instead of erasing qubits
with probability q, each channel is broken with probability q at the beginning of the
protocol and therefore it losses all qubits, i.e., if channel ij breaks down, shares Φ0,0

ij
,

|+̄〉0,mij (m = 1, . . . , r), and |0̄〉l,mij (l = 1, . . . , r, m = 0, . . . , r) are erased, but Φ0,0
ji

,

|+̄〉0,mji , and |0̄〉l,mji are not. In addition, we assume that all channels are restored
after verification. Hence, when the qubits are sent to the reconstructor, they can
again be erased with probability q.
As in the ES model, we treat erasures as arbitrary errors. Erased shares are replaced
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by new arbitrary qubits, but we use the fact that erasures are flagged to update
the sets Bi and B every time a qubit is lost. To implement this, the sharing stage
requires the same changes as with the ES model, i.e., steps 3 and 4 from the original
protocol (see Subsection 3.2.1) must be replaced by steps 3ES and 4ES from the
VHSS-ES protocol. Verification also requires the same abort condition as the
VHSS-ES protocol besides an additional modification: whenever an ancillary
qubit is lost, it has to be replaced by a new arbitrary qubit. However, it is not
necessary to publicly announce erasures nor to update the sets Bi or B, since erased
ancillas correspond to erased secret shares and therefore these actions are already
performed in steps 3ES and 4ES. Finally, the reconstruction stage is identical to the
reconstruction within the ES model, since each share can be lost independently with
probability q when traveling to the reconstructor.
For completeness, we present all the previous modifications in the following box, in
the same format as VHSS-ES protocol.

VHSS-CE protocol. VHSS protocol for networks described by a CE noise
model. For simplicity, we only list here the steps that are different with respect
to the VHSS-ES protocol.

...

5CE. (Preparation and distribution - Z basis) The dealer D prepares an
n-qubit ancillary state |+̄〉0,m[1,n] =

∑
v∈V |v〉. Then, it sends qubit |+̄〉

0,m
i

to node i, ∀i = 1, . . . , n. If share |+̄〉0,mi is erased, node i replaces it by
an arbitrary qubit.

6CE. (Leaf encoding and distribution - Z basis) Each node i encodes its
share |+̄〉0,mi into an n-qubit state |+̄〉0,mi[1,n]

using C. Then, it sends

qubit |+̄〉0,mij to node j, ∀j = 1, . . . , n. If share |+̄〉0,mij is erased, node j
replaces it by an arbitrary qubit.

...

9CE. (Preparation and distribution - X basis) The dealer D prepares an
n-qubit ancillary state |0̄〉l,0[1,n] =

∑
w∈W⊥ |w〉. Then, it sends qubit

|0̄〉l,0i to node i, ∀i = 1, . . . , n. If share |0̄〉l,0i is erased, node i replaces
it by an arbitrary qubit.

10CE. (Leaf encoding and distribution - X basis) Each node i encodes its share
|0̄〉l,0i into an n-qubit state |0̄〉l,0i[1,n]

using C. Then, it sends qubit |0̄〉l,0ij
to node j, ∀j = 1, . . . , n. If share |0̄〉l,0ij is erased, node j replaces it by
an arbitrary qubit.
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...

11CE. (Preparation and distribution - l,m 6= 0) The dealer D prepares
an n-qubit ancillary state |0̄〉l,m[1,n] =

∑
w∈W⊥ |w〉. Then, it sends

qubit |0̄〉l,mi to node i, ∀i = 1, . . . , n. If share |0̄〉l,mi is erased, node
i replaces it by an arbitrary qubit.

12CE. (Leaf encoding and distribution - l,m 6= 0) Each node i encodes its
share |0̄〉l,mi into an n-qubit state |0̄〉l,mi[1,n]

using C. Then, it sends

qubit |0̄〉l,mij to node j, ∀j = 1, . . . , n. If share |0̄〉l,mij is erased, node
j replaces it by an arbitrary qubit.

...

The CE and the ES models describe different physical scenarios. However, their
respective modified VHSS protocols achieve the same functionalities, meaning that
the security statements (Theorems 4.1.1, 4.1.2, and 4.1.3) and the design function fv
of the ES model (see Section 4.1) also apply to the CE model. Let us discuss now why.

The fundamental difference between both models is that, in the CE model, whenever
a secret share is erased, its corresponding ancillary share is also erased.
Let us assume that a branch share Φ0,0

k has been erased when traveling from the
dealer to node k. In both VHSS-ES protocol and VHSS-CE protocol, if k
acts honestly, it will publicly announce the erasure and include k in the set B. After
that, the k-th branch ancillas, |+̄〉0,mk and |0̄〉l,mk , are not useful anymore. Therefore,
the erasure of these ancillas has no effect over the protocol.
If node k is a cheater, it will only pass verification without reporting the erasure and
including k in B with probability exponentially small in the security parameter r,
regardless of the state of the ancillas |+̄〉0,mk and |0̄〉l,mk , since the CNOTs between
secret and ancilla shares are applied at random (see Subsection 3.2.1). Nevertheless,
this situation is taken into account even in the original protocol, since the cheater
itself could erase the qubit.
We conclude that, if a branch share Φ0,0

k is erased, the state of its corresponding
ancillas, |+̄〉0,mk and |0̄〉l,mk , is not relevant. A similar argument can be given if a
leaf share Φ0,0

ij
was erased. Hence, the VHSS-CE protocol and the VHSS-ES

protocol satisfy the same security statements, and fv given by Eq. (4.1.3) is valid
for both models.

ESA model. Let us now assume that qubits have an independent probabil-
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ity q of being erased every time they travel from node to node. If they are lost,
they are replaced by arbitrary qubits and the erasure is treated as an arbitrary error
(although it is still flagged). This might seem much more complex to analyze than
the ES and the CE models, since any of the ancillary qubits can be erased. However,
a change of variables will allow us to apply the results of the ES model to the ESA
model.
First, let us propose a modified VHSS protocol for the ESA model. The only change
that we need to introduce with respect to the VHSS-CE protocol is that ancillary
qubit erasures have to be publicly announced in order to properly update sets Bi
and B. We give an explicit description of the protocol in the following box:

VHSS-ESA protocol. VHSS protocol for networks described by an ESA noise
model. For simplicity, we only list here the steps that are different with respect
to the VHSS-ES protocol.

...

5ESA. (Preparation and distribution - Z basis)

5ESA.1. The dealer D prepares an n-qubit ancillary state |+̄〉0,m[1,n] =∑
v∈V |v〉. Then, it sends qubit |+̄〉

0,m
i to node i, ∀i = 1, . . . , n.

5ESA.2. Erasures are publicly announced by the nodes. If an erasure
happens on |+̄〉0,mi , node i replaces its share by an arbitrary
qubit and B ← B ∪ {i}.

5ESA.3. If |B| > 2t− tc, abort the protocol. Otherwise, continue.

6ESA. (Leaf encoding and distribution - Z basis)

6ESA.1. Each node i encodes its share |+̄〉0,mi into an n-qubit state
|+̄〉0,mi[1,n]

using C. Then, it sends qubit |+̄〉0,mij to node j, ∀j =

1, . . . , n.

6ESA.2. Erasures are publicly announced by the nodes. If an erasure
happens on |+̄〉0,mij , node j replaces its share by an arbitrary
qubit and Bi ← Bi ∪ {j}.

6ESA.3. If |Bi| > t, B ← B ∪ {i}, ∀i = 1, . . . , n.

6ESA.4. If |B| > 2t− tc, abort the protocol. Otherwise, continue.

...
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9ESA. (Preparation and distribution - X basis)

9ESA.1. The dealer D prepares an n-qubit ancillary state |0̄〉l,0[1,n] =∑
w∈W⊥ |w〉. Then, it sends qubit |0̄〉l,0i to node i, ∀i =

1, . . . , n.

9ESA.2. Erasures are publicly announced by the nodes. If an erasure
happens on |0̄〉l,0i , node i replaces its share by an arbitrary
qubit and B ← B ∪ {i}.

9ESA.3. If |B| > 2t− tc, abort the protocol. Otherwise, continue.

10ESA. (Leaf encoding and distribution - X basis)

10ESA.1. Each node i encodes its share |0̄〉l,0i into an n-qubit state
|0̄〉l,0i[1,n]

using C. Then, it sends qubit |0̄〉l,0ij to node j, ∀j =

1, . . . , n.

10ESA.2. Erasures are publicly announced by the nodes. If an erasure
happens on |0̄〉l,0ij , node j replaces its share by an arbitrary
qubit and Bi ← Bi ∪ {j}.

10ESA.3. If |Bi| > t, B ← B ∪ {i}, ∀i = 1, . . . , n.

10ESA.4. If |B| > 2t− tc, abort the protocol. Otherwise, continue.

...

11ESA. (Preparation and distribution - l,m 6= 0)

11ESA.1. The dealer D prepares an n-qubit ancillary state |0̄〉l,m[1,n] =∑
w∈W⊥ |w〉. Then, it sends qubit |0̄〉

l,m
i to node i, ∀i =

1, . . . , n.

11ESA.2. Erasures are publicly announced by the nodes. If an
erasure happens on |0̄〉l,mi , node i replaces its share by an
arbitrary qubit and B ← B ∪ {i}.

11ESA.3. If |B| > 2t− tc, abort the protocol. Otherwise, continue.

1ESA. (Leaf encoding and distribution - l,m 6= 0)

12ESA.1. Each node i encodes its share |0̄〉l,mi into an n-qubit state
|0̄〉l,mi[1,n]

using C. Then, it sends qubit |0̄〉l,mij to node j,
∀j = 1, . . . , n.
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12ESA.2. Erasures are publicly announced by the nodes. If an
erasure happens on |0̄〉l,mij , node j replaces its share by an
arbitrary qubit and Bi ← Bi ∪ {j}.

12ESA.3. If |Bi| > t, B ← B ∪ {i}, ∀i = 1, . . . , n.

12ESA.4. If |B| > 2t− tc, abort the protocol. Otherwise, continue.

...

The VHSS-ESA protocol can be employed in the absence of noise and in networks
described by any of the proposed noise models so far. This can be easily shown
by checking that all the modified steps in the VHSS-ESA protocol reduce to
the VHSS-CE protocol, the VHSS-ES protocol, or the original protocol from
[14] when using the corresponding noise model. For example, if the ancillas are not
affected by noise, the VHSS-ESA protocol automatically reduces to VHSS-ES
protocol since the qubits cannot be erased when traveling from node to node.

Let us now show how to apply the analysis from Section 4.1 to the ESA model.
A major difference between the ES and the ESA models in terms of the variables
employed throughout the protocol is that, in the latter, ancilla erasures can enlarge
the set C.
When qubits are noisy, it is not possible to distinguish whether an erasure is due
to a noisy channel or a cheater. The VHSS-ES protocol already considers that
cheaters can perform any operation on their shares. Therefore, in order to include
the effect of noisy ancillas in the results derived for the ES model (Section 4.1), it is
only necessary to analyze the state of the qubits held by honest nodes.
Let us assume that nodes i and j are honest. As discussed previously, the erasures
of Φ0,0

i , |+̄〉0,mi , and |0̄〉l,mi have the same effect over the set B: after any of these
qubits is lost, node i will publicly announce it and i will be included in B. The
probability that none of the aforementioned qubits is erased is (1− q)(r+1)2 , since
there are (r + 1)2 branch shares labeled with index i. Hence, the probability that at
least one of those qubits is erased is 1− (1− q)(r+1)2 . Similarly, the erasures of Φ0,0

ij
,

|+̄〉0,mij , and |0̄〉l,mij have the same effect, and j is included in Bi with probability

1− (1− q)(r+1)2 .
Then, we conclude that the verification stage of the ESA model is equivalent to an
ES model in which each secret share can be erased with an effective probability

qs := 1− (1− q)(r+1)2 (4.2.1)

when traveling from node to node in the sharing stage.
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Finally, qubits can be independently erased with probability q while traveling to the
reconstructor in both models. Since the reconstruction stages in the VHSS-ESA
protocol and the VHSS-ES protocol are the same, the results derived for the
ES model are valid for the ESA model.

After the previous discussion, we are ready to reformulate the security statements.
First, Theorem 4.1.1 (secrecy) applies to VHSS-ESA protocol, since the proof
relies on the secrecy of the underlying VCSS scheme and it is not affected by errors
happening on the quantum shares.
Theorem 4.1.2 (soundness) also applies to the VHSS-ESA protocol, and the proof
is the same as for the ES model, since the erasures on the ancillas are flagged and
therefore the set B is always properly updated by the honest nodes throughout the
protocol.

The function fv employed in Section 4.1 was derived by analyzing the state of
the shares in the sharing and verification stages. Therefore, Eq. (4.1.3) is valid if
we use qs instead of q, i.e., fv(n, t, qs, tc, td) is a lower bound for Pr(|Cv| ≤ 2t− tc)
in the ESA model (recall that Cv denotes the set C right after verification). The
derivation of the full expression is the same as for the ES model, except that the
probability distributions of the total number of branch erasures, u(1), and the total
number of leaf erasures, u(2), are now given by

Pr(u(1) = x) = q xs

(
n

x

)
(1− qs)n−x, (4.2.2)

Pr(u(2) = y) = q ys

(
n2

y

)
(1− qs)n

2−y. (4.2.3)

Moreover, Algorithm 1 can still be used to evaluate fv(n, t, qs, tc, td) by sampling,
since it takes a fixed u(1) and a fixed u(2) as inputs and hence it does not involve
any probability of erasure.
In the ESA model, we can therefore use fv and Algorithm 1 to tune the parameters
of the protocol in order to improve its performance, in the same way as we did within
the ES model (see Fig. 4.1).

Finally, we state the completeness of the VHSS-ESA protocol:

Theorem 4.2.1 (Completeness). In the verifiable hybrid secret sharing protocol for
networks under ESA noise model, VHSS-ESA protocol, if D is honest then it
passes the verification phase with probability at least fv(n, t, qs, tc, 0), where fv is
given by Eq. (4.1.3) and qs = 1 − (1 − q)(r+1)2 . Moreover, if R is also honest, it
reconstructs D’s secret with probability at least

(1− 2−Ω(r)) · (1− q)(n−2t)(n−t), (4.2.4)

where r is the security parameter.

Proof. The proof is the same as for Theorem 4.1.3 but considering that the probability
of erasure in the sharing stage is now qs = 1−(1−q)(r+1)2 , as previously discussed.
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Note that qs is monotonously decreasing in q but it increases exponentially in r.
Therefore, a larger value of the security parameter r decreases the probability of
passing verification holding inconsistent shares, but it also decreases the probability
of passing verification at all. This is actually an intuitive result: the more verification
rounds r that are run, the higher the probability of adding node i to set B due to
a random erasure. We find here a tradeoff that should be taken into consideration
when implementing the VHSS-ESA protocol on a real quantum network.

4.3. Depolarizing noise

Let us now consider the case of a network in which the channels connecting any
two nodes can depolarize the qubits. The natural analogues of the ES, the CE, and
the ESA noise models are the DS (‘Depolarization on the Secret’), CD (‘Channel
Depolarization’) and the DSA (‘Depolarization on the Secret and the Ancillas’)
models. In these noise models, erasure channels are replaced by depolarization
channels. Let us explicitly define the three models:

Definition 4.3.1. We define the ‘Depolarization on the Secret’ (DS) model
as a noise model for quantum networks running the VHSS protocol in which: (i)
each qubit has an independent probability q of being depolarized when traveling
from node to node and (ii) only shares of the encoded secret can be depolarized, i.e.,
ancillary qubits do not suffer from noise.

Definition 4.3.2. We define the ‘Channel Depolarization’ (CD) model as a
noise model for quantum networks running the VHSS protocol in which: (i) each
pair of nodes is connected by two opposite unidirectional channels, (ii) each of
these channels can be independently broken with probability q at the beginning of
the protocol, depolarizing all qubits that are sent through it, and (iii) all channels
are restored after verification but they can break again before reconstruction with
probability q.

Definition 4.3.3. We define the ‘Depolarization on the Secret and the An-
cillas’ (DSA) model as a noise model for quantum networks running the VHSS
protocol in which each qubit has an independent probability q of being depolarized
when traveling from node to node.

Throughout this work, erasures have been effectively treated as arbitrary errors.
Therefore, when the network is described by the DS, the CD, or the DSA model,
one could make use of the VHSS-ES protocol, the VHSS-CE protocol, or the
VHSS-ESA protocol, respectively. However, a strong limitation arises from the
fact that depolarized qubits are not flagged, and the security statements derived in
the previous sections may not apply anymore. If too many qubits are depolarized,
the protocol can fail. For example, after the nodes pass verification holding consistent
shares, all qubits can be depolarized on their way to the reconstructor, possibly
generating a valid but different encoded state. In that case, even if a secret is
reconstructed, we cannot guarantee that it corresponds to the original state. As a
result, the security statements that we can derive for the depolarization models are
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weaker than the ones for the erasure models.

Let us first consider the DS model. We start by defining the function S(z;n, q),

S(z;n, q) :=

z∑
k=0

qk(1− q)n−k
(
n

k

)
, (4.3.1)

which corresponds to the cumulative distribution function of a random variable
that follows a binomial distribution with parameters n (number of trials) and q
(probability of success per trial).
The secrecy statement, Theorem 4.1.1, still holds when qubits can be depolarized
instead of erased, since its proof is based on the properties of the underlying VCSS
scheme and it is not affected by quantum errors happening on the VQSS subroutine.
Regarding soundness, we have the following statement:

Theorem 4.3.1 (Soundness). In the VHSS-ES protocol, when run on a network
described by the DS noise model, either the honest parties hold a consistently encoded
secret or the protocol aborts, with probability at least

[
S(2t−tc;n, q)

]n−tc ·(1−2−Ω(r)).
Moreover, after passing verification and sending all qubits to an honest R, either the
shares are still consistent with the same secret or the protocol aborts, with probability
at least

[
S(2t− tc;n, q)

]n−tc[
S(t− tc;n, q)

]n · (1− 2−Ω(r)).

Proof. First, note that the original VHSS from [14] and all our modified protocols
already consider that branch shares Φ0,0

i can be depolarized, as the dealer could
have introduced any arbitrary errors on the qubits before sending them to the nodes.
However, the same is not true for the leaves Φ0,0

i[1,n]
: in order to detect all arbitrary

errors, there must be at most 2t.3 There are at most tc cheaters, therefore, if more
than 2t− tc leaf shares from a single branch were depolarized, these errors may not
be detected and this branch should not be trusted. In the ES, CE, and ESA models,
erasures were flagged, so this situation was avoided by including branch i into the set
of apparent cheaters B whenever the number of erasures in its leaves exceeded certain
threshold. Unfortunately, depolarizations are not flagged and it is not possible to
assess whether this happened or not. Nevertheless, as long as the branches held by
the n− tc honest nodes do not suffer more than 2t− tc stochastic depolarizations
(we call this event T ), the sharing and verification stages from VHSS-ES protocol
work. This means that either the honest parties hold a consistently encoded secret
or the protocol aborts (we call this event A), with probability

Pr(¬T ) · Pr(A | ¬T ) + Pr(T ) · Pr(A | T ) ≥ Pr(T ) · Pr(A | T )

=
[
S(2t− tc;n, q)

]n−tc · (1− 2−Ω(r)),

(4.3.2)

where Pr(A | T ) = 1 − 2−Ω(r) was found in the proof of Theorem 4.1.2 (in that
proof, Pr(T ) = 1, since erasures were flagged). Moreover, we have also used that
3Recall that, in general, the underlying CSS code cannot detect more than 2t arbitrary errors.
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Pr(T ) =
[
S(2t − tc;n, q)

]n−tc , since the probability of T is the probability that
at most 2t − tc out of n leaves are erased, which is described by the cumulative
distribution function of a binomial distribution, in each of the n−tc branches encoded
by the honest nodes.
After verification, qubits can still be depolarized on their way to the reconstructor.
Again, these errors are not flagged and a branch should not be trusted if too many
of its leaf shares were depolarized. Hence, we need that the leaf shares from each
branch i /∈ B (those that could be used to reconstruct the secret) do not suffer more
than 2t− tc − t errors while traveling to the reconstructor (we call this event Tr), in
order to be able to detect these errors. This way, we allow tc cheaters to introduce
errors and still have less than 2t in total, considering that branches i /∈ B have at
most t leaf errors at the end of the verification stage. Finally, the shares held by
R are still consistent with the same secret or the protocol aborts (event Ar) with
probability 1 − 2−Ω(r), the same as in Theorem 4.1.2, as long as there is not an
excess of depolarizations, i.e., given T and Tr. Hence,

Pr(¬ (T ∧ Tr)) · Pr(Ar | ¬ (T ∧ Tr)) + Pr(T ∧ Tr) · Pr(Ar | T ∧ Tr)

≥ Pr(T ∧ Tr) · Pr(Ar | T ∧ Tr)

= Pr(T ) · Pr(Tr | T ) · Pr(Ar | T ∧ Tr)

≥
[
S(2t− tc;n, q)

]n−tc[
S(t− tc − 1;n, q)

]n · (1− 2−Ω(r)),

(4.3.3)

where Pr(T ) =
[
S(2t− tc;n, q)

]n−tc , Pr(Ar | T ∧ Tr) = 1− 2−Ω(r), and

Pr(Tr | T ) ≥
[
S(t− tc;n, q)

]n
, (4.3.4)

since S(t− tc;n, q) is the probability that the leaves of a single branch i /∈ B do not
suffer more than t− tc errors while traveling to R, and there are at most n of these
branches.

In the original VHSS and in the modified versions for erasure models, all errors can
be detected. Consequently, either the nodes hold consistent shares or the protocol
aborts with probability exponentially close to 1 in r. The strong limitations imposed
by the fact that depolarizations are not flagged are already present in the soundness
statement. There exists a non-negligible probability that the protocol fails. This
can happen in several ways, e.g., nodes could hold inconsistent shares and attempt
to reconstruct instead of aborting. In the case of an honest dealer, nodes could
reconstruct a different secret instead of the one shared by D.

The function S(z;n, q) is not easy to manipulate when the number of terms in
the sum is large. In some situations, particularly for n� 1, one can use the following
bound (see Appendix C for a detailed derivation):

S(z;n, q) ≥ 1−
(
z + 1

nq

)−(z+1)(
n− (z + 1)

n− nq

)z+1−n

, q <
z

n
< 1. (4.3.5)
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This bound is particularly tight for small values of q [49], as displayed in Figure
4.2. This figure shows the probability that the honest parties hold a consistently
encoded secret or the protocol aborts, except with probability exponentially small in
r, versus q, for n = 18 and t = bn−1

4 c = 4. Furthermore, this plot shows that one
can improve the performance of the protocol by decreasing the maximum number of
cheaters that are tolerated, since the blue lines (tc = 0) are above the orange ones
(tc = t). For example, if the channels of our network have a probability q = 0.1 of
depolarizing qubits, we can set tc = 0 instead of tc = t to ensure that the probability
of holding consistent shares or aborting is larger than 0.999.
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Figure 4.2. Probability that the honest parties hold a consistently encoded secret or the protocol
aborts, except with probability exponentially small in r, when the network is described by the
DS noise model (see Theorem 4.3.1). In this example, n = 18 and t = bn−1

4
c = 4. Solid lines

correspond to the exact definition of S(z;n, q) from Eq. (4.3.1). Dashed lines were computed using
the lower bound from Eq. (4.3.5), and they are only valid for q < 0.44 and q < 0.22 when tc = 0
and tc = t, respectively. We only represent the interval between q = 0 and q = 0.2 since generally
we are not interested in larger values of q.

Let us now state the completeness of the protocol when using the DS model.

Theorem 4.3.2 (Completeness). In the VHSS-ES protocol, when run on a
network described by the DS noise model, if D is honest then it passes the verification
phase with probability at least

[
S(2t − tc;n, q)

]n−tc · fv(n, t, q, tc, 0), where fv is
given by Eq. (4.1.3). Moreover, if R is also honest, it reconstructs D’s secret with
probability at least

(1− 2−Ω(r)) ·
[
S(2t− tc;n, q)

]n−tc · (1− q)(n−2t)(n−t), (4.3.6)

where r is the security parameter.

Proof. As discussed in the proof of the soundness statement, the completeness of
the ES model (Theorem 4.1.3) can be applied to the DS model as long as there are
not too many depolarizations. A sufficient condition is that each branch that was
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encoded by an honest node does not suffer more than 2t− tc leaf depolarizations.
The probability of this event is

[
S(2t − tc;n, q)

]n−tc , as discussed in the proof of
Theorem 4.3.1. Consequently, Theorem 4.1.3 holds at least with this probability,
yielding this new completeness statement for the DS model.

To conclude this section, let us briefly discuss the CD and DSA noise models. On
the one hand, the same arguments that were used in the previous section to show
that the CE and the ES models are equivalent can be used to show that the CD
model is equivalent to the DS model. Therefore, the security statements derived in
this section remain valid when using the CD model.
On the other hand, in the DSA model, the ancillary qubits can be depolarized. Let
us consider one of the (r + 1)2 trees formed after the encoding of the encrypted
secret or an ancilla. Let us assume that the leaf shares of any of the n− tc branches
that were encoded by honest nodes suffer at most 2t− tc depolarizations, otherwise
we could not directly make a general statement about the security of the protocol,
since the errors introduced may not be detected. By assuming this, each branch
has at most 2t arbitrary errors in the leaf shares, and the verification stages of
the DSA and the ESA models are equivalent (the flags from the erasures are not
necessary because they can always be detected by the CSS code). This happens with
probability [S(2t − tc;n, q)](n−tc)(r+1)2 , as there are n − tc branches and (r + 1)2

trees. Consequently, the first part of the soundness statement (Theorem 4.1.2) and
the whole completeness statement (Theorem 4.2.1) of the ESA model hold for the
DSA model at least with this probability.
The second part of the soundness statement involves sending secret shares to the
reconstructor. Therefore, besides the previous assumption, we also require that the
leaves do not suffer an excess of depolarizations while traveling to R. Then, this part
of the statement holds with probability at least [S(2t− tc;n, q)](n−tc)(r+1)2 · [S(t−
tc;n, q)]

n (see the proof of Theorem 4.3.1 for the derivation of the second term).

4.4. Efficient qubit sharing

Throughout this chapter we have studied the VHSS protocol under different noise
models. We have also proposed several changes that improve its performance in the
presence of noise. In this section, we propose a final modification that makes the
protocol more robust against any of the noise models proposed so far.
One of the most often recurring assumptions in this work is that qubits can experience
an erasure or a depolarization at random only when traveling from node to node.
Hence, it is obvious that, the less qubits that are shared, the less qubits that can
suffer from noise.
The protocol upgrade that we propose here consists in taking advantage of the
previous remark and performing the leaf distribution (step 4 from the original
protocol, see Subsection 3.2.1) in a different way:
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4EFF. (Leaf encoding and distribution)

4EFF.1. Each node i encodes its share Φ0,0
i into an n-qubit state Φ0,0

i[1,n]

using the code C.
4EFF.2. Each node i sends qubit Φ0,0

ij
to node [(i + j) mod n] + 1, for

j = 0, . . . , n− (t− tc)− 2, while keeping Φ0,0
i[n−(t−tc),n]

.

Recall that n is the number of nodes, tc is the maximum number of cheaters, and t
is the maximum number of correctable errors of the underlying CSS code.
The distribution of leaf ancillas (steps 6, 10, and 12) must be modified in the same
way, but we omit it here for simplicity.
The rest of the protocol also needs to be accordingly modified, so that the operations
to be applied on certain qubits (CNOTs and measurements) are the same but they
are performed by the new holder. For example, in the original VHSS, shares Φ0,0

12
,

|+̄〉0,m12
, and |0̄〉l,m12

are held by node 2 after the sharing stage. However, they can now
be held by node 1, who is the new responsible for the operations to be performed on
these qubits.
We will refer to a VHSS protocol that implements all the previous modifications as
VHSS with efficient sharing.

Figure 4.3 shows an example of the leaf shares distribution when running the
VHSS in a network with n = 7, t = 3, and tc = 2 (note that this scheme is not valid
since there does not exist any CSS code compatible with such parameters, but it
produces a clear graphical representation). In the original protocol, each node i
would encode its branch share Φi into n leaf qubits and send one of them to each
node (Subfigures (a) and (b)). This way, n− 1 = 6 qubits are prone to noise. Using
the efficient sharing (subfigures (c) and (d)), each node i keeps 1 + t− tc = 2 of the
encoded qubits Φij and only n−(1+t−tc) = 5 shares are transmitted to other nodes.

Due to the symmetry in the new distribution of leaf shares, every node holds
the same total number of qubits as in the original VHSS. Hence, the number of
quantum resources required is kept constant.

Let us now show the effects of this modification over the security statements of the
erasure models from Section 4.2. The VHSS-ESA protocol reduces to any of the
other schemes (VHSS-ES protocol and VHSS-CE protocol) if the network is
described by the corresponding noise model. In the absence of noise, it reduces to the
original protocol by Lipinska et al. [14]. Then, we take the VHSS-ESA protocol
as reference, since this is the most general scheme and the results will also apply to
the ES and CE noise models as well as to the original protocol.
On the one hand, if one sets tc = t, the only effect of the efficient sharing is that
nodes are labeled in a different order. Each node would keep one of its leaf shares and
send the rest of them to the other nodes. Consequently, all the security statements
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(a) (b)

(c) (d)

Figure 4.3. (a-b) Sketch of the leaf sharing in the VHSS protocol (see Section 3.2) using a CSS
code of length n = 7 that tolerates up to t = 3 errors (note that this code does not exist, we only
use it to have a clear graphical representation). Black circles represent qubits to be shared, e.g.,
the encrypted quantum secret Φ. These initial qubits are encoded into n-qubit states Φ[1,n], and
each share is sent to a different node. The arrows represent nodes 1 to 7, labeled from left to right.
Green/purple circles correspond to qubits held by honest/cheating nodes (we assume that nodes 6
and 7 are cheaters). Each qubit Φi is encoded into n further qubits and distributed in the same
way. Subfigures (a) and (b) show the leaf encoding of Φ3 and Φ6, respectively.
(c-d) Same as in (a-b) but using the efficient leaf distribution (see main text, Section 4.4). In (c),
node 2 does not hold any leaf share and node 3 holds two of them. In (d), node 5 does not hold
any leaf qubit while node 6 holds two of them.

hold. On the other hand, if tc < t, each node keeps 1 + t− tc of its own leaf shares.
Let us assume that node i is honest and j is a cheater. After step 4NEW, the whole
set of cheaters holds at most tc leaf shares from i and t leaf shares from j.
The sets Bi and Bj are only taken into account as long as |Bi| ≤ t and |Bj | ≤ t.
Therefore, they will always be updated properly in the verification, since erasures are
flagged and cheaters are not able to introduce more than t errors in the leaf shares
of each branch (we would not be able to detect the errors if there were more than 2t
in total).
Moreover, the cheaters cannot introduce more than t errors after verification in
any of the branches, and the sets Bi and Bj can still be updated correctly in the
reconstruction stage. Hence, the proof of Theorem 4.1.2 (soundness) remains valid
when using the VHSS-ESA protocol and the efficient sharing.
With the efficient sharing, less qubits are transmitted, and therefore the probability
that at most 2t− tc branches suffered from errors right after verification is larger,
yielding

fEFF
v (n, t, q, tc, td) ≥ fv(n, t, q, tc, td), (4.4.1)

where fv is the probability that at most 2t−tc branches suffered from errors assuming
that all cheaters introduced errors in their shares (see Eq. (4.1.3)), and fEFF

v corre-
sponds to the same probability when the efficient sharing is used. The completeness
statement of the VHSS-ESA protocol, Theorem 4.2.1, can be derived in the same
way when using the efficient sharing. However, instead of using fv as a lower bound
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for the probability that an honest dealer passes the verification phase, one can use
fEFF
v .

The efficient sharing was proposed in the latest stages of this thesis, so we do not
compute fEFF

v explicitly. Nevertheless, the true advantage of this new distribution of
qubits relies in this function: if one uses the efficient sharing, an honest dealer will
be more likely to pass verification, in general.4
The secrecy statement, Theorem 4.1.1, also holds when using the efficient sharing,
as the proof is based on the underlying VCSS protocol [14].

Regarding the depolarization models from Section 4.3, a similar analysis can be
done. The only effect of the efficient sharing over the security statements is that the
probability that an honest dealer passes verification is larger.

4In some cases, e.g., for tc = t, the probability that an honest dealer passes verification does not
increase by using the efficient sharing. In any case, this probability never decreases by using it.





5
Approximate quantum error

correction and verifiable
quantum secret sharing

In this chapter, we assume that qubits are noiseless, and we focus on schemes that
aim at increasing the maximum number of cheaters that can be tolerated in the VQSS
task. The main idea behind these protocols is to use the concepts from approximate
quantum error correction discussed in Section 2.3. Let us summarize them here.
Quantum authentication schemes (QAS) ensure that a quantum state has not been
modified, up to a certain error. Assume that a quantum state Φ has been encoded
with an [[n, k, d]] quantum code C, yielding an n-qubit state Φ[1,n]. If we use a QAS
to authenticate each of the resulting qubits, the location of arbitrary errors can be
identified: the QAS will reject qubits that have suffered from errors (except with
a small probability). Hence, arbitrary errors raise a flag and they can be treated
as erasures, so the code can tolerate up to d − 1 ≤ bn−1

2 c instead of up to bn−1
4 c.

The main drawback of this approach is that the fidelity between the shared secret
and the reconstructed state cannot be as high as in the VQSS [13] and VHSS [14]
protocols discussed in Chapter 3.
This line of research has already been explored. Ben-Or et al. [7] propose a protocol
for VQSS that can tolerate up to bn−1

2 c cheaters, achieving a fidelity exponentially
close to 1 in some security parameters. However, this scheme requires a large num-
ber of qubits to be realized. Specifically, each node needs a workspace of at least
Ω(r2n log(n)) qubits, where r is a security parameter.
Figure 5.1 shows a comparison of all these protocols in terms of node workspace
size, maximum number of cheaters, and fidelity between the original secret and the
reconstructed state.

Throughout this chapter, we summarize our efforts to design a protocol that keeps

59
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the number of quantum resources as low as in the VHSS but increases the maximum
number of cheaters up to bn−1

2 c. First, in Section 5.1, we review the protocol
proposed in [7], which requires a large number of qubits per node. In Section 5.2,
we discuss why the VHSS protocol cannot be trivially modified by using a QAS to
increase the number of cheaters. Then, we propose the verifiable trap secret sharing
(VTSS), a new protocol based on the VHSS from [14] that achieves the desired
functionalities by making use of the trap code from [40]. We present this section
as a discussion and we leave formal proofs as an open question. In addition, we
highly recommend the reader to review the concepts explained in Section 2.3 before
continuing with this chapter, as we constantly use them.

Figure 5.1. Qualitative comparison between the VQSS protocols discussed in this thesis. We
assume that qubits do not suffer from noise. In the design of these protocols, three parameters play
a key role: the node workspace size, the maximum number of cheaters that are tolerated, and the
fidelity F between the shared secret and the reconstructed state.
An optimal protocol (indicated with a star in the diagram) would maximize these three parameters.
The protocols placed in the sketch are the following. VQSS: protocol by Crépeau et al. [13]. VHSS:
protocol by Lipinska et al. [14]. AVQSS: protocol by Ben-Or et al. [7]. VTSS: VTSS protocol,
proposed in Section 5.2. Note that the fidelity of the VQSS and VHSS is not 1, but 1 − 2Ω(r),
where r is the security parameter.

5.1. Approximate verifiable quantum secret sharing

One of the early proposals of a VQSS scheme tolerating up to bn−1
2 c cheaters is the

one from [7]. This protocol relies on the fact that a QAS can be used to create an
authenticated quantum channel between each pair of nodes. Let us briefly review
the protocol.
They start by defining a subroutine for weak quantum secret sharing (WQSS). The
difference between WQSS and VQSS is that, in the former, the dealer can prevent the
nodes from reconstructing the secret at any time. The core of their WQSS consists
in sharing authenticated zero states between the dealer and each node, that are later
used to generate shared EPR pairs. Then, the dealer can teleport an encoded state
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to the nodes using these EPR pairs. For a detailed description of this procedure, see
the Protocol Zero-Share and Appendix B from [7].
The whole protocol, to which we refer as AVQSS, consists in the following general
steps:

1. D initializes Ω(r) qupits in the state |0〉, where r is a security parameter. Then,
D encodes them using a quantum code of length n and sends the i-th share to
node i using WQSS.

2. For each share received from D, each node initializes Ω(r) qupits in the state
|0〉. Then, it encodes them using a quantum code of length n and sends the
i-th share to node i using WQSS.

3. Some quantum and classical operations are applied to conclude the verification
stage (see Appendix C from [7]).

4. Nodes generate shared EPR pairs and send the half of each pair to the dealer.

5. D shares the secret with the nodes using the EPR pairs.

6. For reconstruction, a similar procedure is performed between the nodes and
the reconstructor R: they create shared EPR pairs which are used to teleport
their secret shares to R.

Note that the previous steps are missing relevant details that are not necessary for
the upcoming discussion (see [7] for a complete description of the protocol).
During the first steps of the protocol, each node receives Ω(r) shares from the dealer.
Then, it generates Ω(r) zeros and encodes them into n further shares. Each share has
size Ω(log(n)), since they work with qupits, and p > n. Consequently, this scheme
requires a node workspace size of Ω(r2n log(n)).
In the spirit of creating protocols for early quantum networks in which the quantum
resources are limited, redesigning this AVQSS protocol to use less qubits and achieve
the same functionalities did not seem feasible within the timeframe of this thesis.
Hence, we adopted a different approach to the problem and decided to work towards
increasing the number of tolerable cheaters in the VHSS.

5.2. Verifiable trap secret sharing

A naive approach to the problem would be to directly substitute the CSS code
employed in the VHSS protocol from [14] by an AQECC. Let us assume that the
first encoding is still performed by the dealer using an [[n, 1, d]] CSS code. Then,
the nodes employ an AQECC for the leaf encoding, instead of using the same CSS
code. By using an AQECC in the second encoding, we can lift the number of errors
tolerated in the leaves from b(d − 1)/2c to d − 1. Nevertheless, before analyzing
whether the verification and reconstruction stages would work in the same way as
in the original protocol, we already find an important drawback, namely the large
number of qubits that each node must handle.
Figure 5.2 shows the structure of this type of sharing. The dealer encodes a state
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Φ into Φ[1,n]. Then, each branch share Φi is further encoded into Φi[1,n]
using an

[[n, 1, d]] non-degenerate stabilizer code. Finally, each leaf share Φij is authenticated,
yielding A(Φij ). These final states are composed by 1 + τ qubits, where τ is the
number of tag qubits. Consequently, each node holds n · (1 + τ) qubits.

Figure 5.2. Sketch of the encoding in a VHSS scheme in which the second encoding is performed
by an AQECC (see main text). The black circle represents a quantum state to be shared, e.g.,
the encrypted secret. Blue and green circles correspond to branch and leaf shares, respectively.
Orange circles represent an authenticated leaf share—note that the number of qubits employed in
this graphical representation does not necessarily correspond to a valid QAS.

The value of τ depends on the fidelity that one wants to achieve. Nevertheless, to
obtain reasonable errors, large values of τ are required. As an example, consider the
efficient family of codes (see Section 2.3). Using Eqs. (2.3.3) and (2.3.5), we can
compute the error of the resulting AQECC:

εAQECC = 2n2ε = 2n2 2(m+ τ)

τ(2τ + 1)
≈ 4n2

2τ
, (5.2.1)

where we can do this approximation since τ � 1. In order to keep this error small
(it should be at least less than 1), τ must grow faster than log n. Then, the number
of qubits per node scales with n at least as fast as in the AVQSS from [7], so we
would not be able to achieve the desired reduction of quantum resources.
If we used a set of trap codes based on an [[ñ, 1, d̃]] CSS code instead of the efficient
family, the error of the whole AQECC would be given by

εAQECC = 2n2ε = 2n2

(
2

3

)d̃/2
≥ 2n2

(
2

3

)ñ/4
, (5.2.2)

where we have used Eqs. (2.3.3) and (2.3.7), and the fact that d̃ ≤ b ñ−1
2 c. In order

to have εAQECC < 1 for small networks (n < 100), ñ must grow faster than n, yielding
a total of n · 3ñ > 4n2 number of qubits per node. Following the same reasoning as
before, this scheme is not valid since the number of quantum resources scales even
faster than in the AVQSS.

The conclusion of the previous discussion is that incorporating an AQECC to
the protocol means that an extra level of encoding is required, due to the need for
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authentication with a QAS. This implies a dramatical increase in the number of
qubits per node. A cheaper alternative can be designed by using part of the AQECC
instead of the whole construction. Hence, we take a similar approach to the previous
one but without making use of a full AQECC: we employ a trap code for the second
level of encoding, which acts as a QAS for each of the branch qubits (see Figure 5.3).
We call this new proposal verifiable trap secret sharing protocol (VTSS protocol).

Figure 5.3. Sketch of the qubit encoding in the VTSS protocol, in which the second encoding
is performed by a trap code (see main text). The black circle represents a quantum state to be
shared, e.g., the encrypted secret. Blue circles correspond to shares encoded with the first CSS
code. Green circles represent shares encoded using the second CSS code. Orange and purple circles
correspond to the traps that detect errors in the X and the Z basis, respectively. The permutation
of encoded qubits and traps is not represented here. Note that the number of qubits employed in
this graphical representation does not necessarily correspond to a valid trap code.

The requirements for the VTSS scheme are the same as for the VHSS from [14],
namely, we assume that the nodes have access to an authenticated classical broadcast
channel and a public randomness source, and that each pair of nodes is connected
by an authenticated classical channel and a quantum channel. In addition, a clas-
sical trusted third party (classical-TTP) is needed for the verification stage. This
classical-TTP can be replaced by a secure multi-party computation subroutine [3].
Moreover, the protocol makes use of an [[n, k, d]] CSS code C = CSS(V,W ) and a
family of trap codes {Cki}ki∈K based on an [[ñ, 1, d̃]] CSS code CSS(Vtrap,Wtrap).
V , W and Vtrap, Wtrap are two pairs of classical codes meeting the conditions to
generate a CSS code (see Subsection 2.2.1), and the set of keys K spans all possible
permutations of 3ñ elements.

In the VHSS scheme, the dealer can be cheating. In the VTSS protocol, how-
ever, we assume that the dealer can be faulty but not a cheater: it can introduce
errors in the quantum states but it does not collaborate with the cheaters (see Figure
5.4). This can be useful as a framework for distributed systems with consensus
problems [8].

We provide a step-by-step description of the VTSS protocol in the following
box:
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  Cheating dealer

 Faulty dealer

Honest dealer

Figure 5.4. The dealer models that we consider in this work are three. A cheating dealer can
perform any operation on the qubits and can collaborate with the rest of cheaters. A particular
type of cheating dealer is the faulty one, which does not collaborate with other cheaters. An honest
dealer follows the protocol honestly and does not introduce any errors. The VTSS protocol assumes
that the dealer is faulty (regions highlighted in green).

VTSS protocol.

Sharing stage.

1. (Key generation) The dealer D generates n random keys k1, . . . , kn. Each of
them specifies a permutation of 3ñ elements.

2. (Key sharing) D sends all keys to the classical-TTP.

3. (Encryption) The dealer D performs quantum one-time pad on the secret
state |ψ〉 using a classical secret key s to obtain the state Φ0,0.

4. (VCSS) D distributes the classical key s among the n nodes using a verifiable
classical secret sharing (VCSS) scheme.

5. (Encoding and distribution)

5.1. D encodes Φ0,0 into an n-qubit state Φ0,0
[1,n] using the CSS code C.

5.2. D encodes each qubit Φ0,0
i using the trap code Cki , yielding Φ0,0

i[1,3ñ]
.

5.3. D sends Φ0,0
i[1,3ñ]

to node i.

Verification stage.

for m = 1, . . . , r:
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6. (Preparation and encoding - Z basis) The dealer D prepares an n-qubit
ancillary state |+̄〉0,m[1,n] =

∑
v∈V |v〉. Then, it encodes each qubit |+̄〉0,mi

using Cki , yielding |+̄〉0,mi[1,3ñ]
.

7. (Distribution - Z basis) D sends |+̄〉0,mi[1,3ñ]
to node i.

8. (CNOTs - Z basis) A public random bit b0,m is generated. Then, each
node i applies the following operation to their shares:

CNOTb0,m(Φ0,0
ij
, |+̄〉0,mij ), ∀j = 1, . . . , 3ñ, (5.2.3)

i.e., a CNOT is applied if b0,m = 1.

9. (Measurements - Z basis) Each node i measures the 3ñ ancillary states it
is holding (systems indexed with m and l = 0) in the Z basis, obtaining bit
strings v0,m

i , and sends all the measurement outcomes to the classical-TTP.
All measured qubits are discarded.

for l = 1, . . . , r:

10. (Preparation and encoding - X basis) The dealer D prepares an n-qubit
ancillary state |0̄〉l,0[1,n] =

∑
w∈W⊥ |w〉. Then, it encodes each qubit |0̄〉l,0i

using Cki , yielding |0̄〉
l,0
i[1,3ñ]

.

11. (Distribution - X basis) D sends |0̄〉l,0i[1,3ñ]
to node i.

for m = 1, . . . , r:

12. (Preparation and encoding - l,m 6= 0) The dealer D prepares an
n-qubit ancillary state |0̄〉l,m[1,n] =

∑
w∈W⊥ |w〉. Then, it encodes each

qubit |0̄〉l,mi using Cki , yielding |0̄〉
l,m
i[1,3ñ]

.

13. (Distribution - l,m 6= 0) D sends |0̄〉l,mi[1,3ñ]
to node i.

14. (CNOTs - l,m 6= 0) A public random bit bl,m is generated. Then, each
node i applies the following operation to their shares:

CNOTb0,m(|0̄〉l,0ij , |0̄〉
l,m
ij

), ∀j = 1, . . . , 3ñ, (5.2.4)

i.e., a CNOT is applied if bl,m = 1.
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15. (Measurements - l,m 6= 0) Each node i measures its 3ñ ancillary states
indexed with l,m in the Z basis, obtaining bit strings vl,mi , and sends
all measurement outcomes to the classical-TTP. All measured qubits
are discarded.

16. (Fourier transform) Each node i applies the Fourier transform F to its
remaining shares, obtaining ΦF,0,0ij

and |0̄〉F,l,0ij
, j = 0, . . . , 3ñ.

17. (CNOTs - X basis) A public random bit bl,0 is generated. Then, each
node i applies the following operation to their shares:

CNOTbl,0(ΦF,0,0ij
, |0̄〉F,l,0ij

), ∀j = 1, . . . , 3ñ, (5.2.5)

i.e., a CNOT is applied if bl,0 = 1.

18. (Measurements - X basis) Each node i measures its 3ñ ancillary states
indexed with l and m = 0 in the Z basis, obtaining bit strings vl,0i , and
sends all measurement outcomes to the classical-TTP. All measured qubits
are discarded.

19. (Measurement permutations) The classical-TTP permutes each vl,mi according
to ki, yielding strings v̂l,mi .

20. (Check traps) For each i, the classical-TTP checks whether any of the last 2ñ

bits of any v̂l,mi is 1, i.e., if any trap has been triggered. If a trap has been
triggered, then it includes i in the set of apparent cheaters B: B ← B ∪ {i}.

21. (Leaf decoding - Z basis) For each i, the classical-TTP checks whether
any v̂l,mi , m 6= 0, does not correspond to a codeword from Vtrap. If this
happens, then B ← B ∪{i} and the classical-TTP creates a variable al,mi =⊥.
Otherwise, it classically decodes all the strings and saves the decoded values
al,mi .

22. (Branch decoding - Z basis) Decoded values al,mi form words al,m, which
should correspond to codewords from V . If an error occurred at position k of
al,m, then B ← B ∪ {k}.

23. (Leaf decoding - X basis) For each i, the classical-TTP checks whether any
v̂l,0i does not correspond to a codeword from Wtrap. If this happens, then
B ← B ∪ {i} and the classical-TTP creates a variable al,0i =⊥. Otherwise, it
classically decodes all the strings and saves the decoded values al,mi .

24. (Branch decoding - X basis) Decoded values al,0i form words al,0, which should
correspond to codewords from W . If an error occurred at position k of al,0,
then B ← B ∪ {k}.
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25. (Abort condition) The classical-TTP publicly announces the size of B. If
|B| > 2t, reject the dealer and abort the protocol. Otherwise, continue.

26. (Inverse Fourier transform) Nodes apply an inverse Fourier transform to
revert the transform from step 11. Each node i holds again Φ0,0

i[1,3ñ]
.

Reconstruction stage.

22. (Send to R) All nodes send their quantum and classical shares to the recon-
structing node R. The classical-TTP also sends all the keys to R.

23. (Reconstruct s) R reconstructs the classical encryption key s following the
VCSS scheme.

24. (Check traps) For each i /∈ B, R decodes Φ0,0
i[1,3ñ]

using Cki . If any of the traps
is triggered or an error is detected, then B ← B ∪ {i}. If |B| > 2t, R aborts
the protocol.

25. (Reconstruct Φ0,0) For i /∈ B, R takes n − 2t shares Φ0,0
i at random and

applies an erasure-recovery circuit to obtain Φ0,0.

26. (Decrypt) R decrypts Φ0,0 using s to obtain the original quantum state |ψ〉.

The main differences between the VTSS protocol and the VHSS protocol from
[14] are the following:

• A set of random keys k1, . . . , kn is required. Therefore, the first step (key
generation) is new with respect to the VHSS protocol.

• The second level encoding (step 4 from the VHSS scheme in Subsection 3.2.1
and step 5.2 from the VTSS protocol) is now performed by the dealer
instead of the nodes, using a trap code instead of a CSS code.

• The nodes do not check their measurements outcomes. Instead, a classical-
TTP with access to the keys k1, . . . , kn does it for them, since these keys are
necessary for decoding.

As previously stated, the trap code acts as a QAS on the branch shares Φi. It
is important to note that the trap code is particularly suitable for this protocol
since the CNOT and the Fourier transform remain transversal—other QAS may not
preserve this property.
Moreover, the trap code is secure as long as the key is not recycled [35]. This
comes from the fact that the trap code is plaintext authenticating, meaning that the
probability that a Pauli alters the message but leaves the tag qubits untouched is
very small (see Subsection 2.3.1). However, certain attacks may find out the position
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of some traps by applying a Pauli and checking whether the message is accepted
or rejected. This way, they can retrieve partial information about the key. This
problem can be solved by using a different key for each qubit that is authenticated,
although this is not a desirable strategy if one wants to perform computations on
simultaneously authenticated qubits, as they must be encoded under the same key.1
There exist other QASs similar to the trap code that are ciphertext authenticating,
i.e., they enable key-recycling [35]. However, in the VTSS protocol, we do not
employ a ciphertext authenticating scheme, as it is not an essential property. Let
us discuss why. Each branch share Φi is encoded using a trap code with a different
permutation key ki. Then, in the verification stage, the ancillary qubits are authen-
ticated in the same way. If a cheating node i followed the strategy of applying a
Pauli to any of the encoded qubits to obtain information about the key, this would
be reflected in the measurement outcomes (except with a probability exponentially
small in d̃). Then, the state Φi[1,3ñ]

would be rejected, leaking some information to
node i but also leaving it out of the protocol.

The reason for assuming a faulty dealer instead of a cheating dealer becomes apparent
after going through the protocol. If the dealer shared the permutation keys of the
cheaters, {ki}i∈Ccheat

2, with them, they could easily introduce logical errors without
being detected by the traps. In order to prevent this, we must assume that the dealer
does not collaborate with the cheaters, although it can still introduce arbitrary errors
in the quantum states.

To conclude, we present the security statements of the VTSS protocol. As
stated before, we give informal proofs for them (except for the secrecy statement),
while formal proofs remain an open question.

Theorem 5.2.1 (Secrecy). In the VTSS protocol, when D is honest and there
are at most tc active cheaters in the verification phase, no group of at most pc nodes
learns nothing about D’s secret state throughout the protocol, where pc is the secrecy
of the underlying classical scheme, except with probability exponentially small in the
security parameter r.

Proof. In the VTSS protocol, the dealer encrypts its quantum state with a one-
time pad before encoding it, in the same way as in the original VHSS scheme from
[14]. Then, the encryption key is shared using a VCSS subroutine. Therefore, the
proof of their security statement also applies to our protocol, since it is based on the
security of the underlying VCSS scheme.

Claim 5.2.1 (Soundness). In the VTSS protocol, either the nodes hold a consis-
tently encoded secret or the protocol aborts, with probability at least 1−2−Ω(r)− εΩ(r),
1This is actually the motivation for Dulek and Speelman [35] to create a “strong trap code”, which
is ciphertext authenticating and yields a key-recycling QAS.

2Recall that Ccheat is a set containing the labels of the cheating nodes.
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where ε ≤ ( 2
3 )d̃/2 is the error of the trap code employed. Moreover, after passing

verification and sending all qubits to an honest R, either the shares are still consistent
or the protocol aborts, with probability at least 1− 2−Ω(r) − 2εΩ(r).

Proof (informal). The first part of the statement can be rephrased as the probability
that the nodes pass verification holding inconsistent shares is at most 2−Ω(r) + εΩ(r).
The branch shares Φ0,0

i are authenticated before being sent to the nodes. Since the
nodes do not know the permutation keys ki, a cheater j can introduce errors in
Φ0,0
j[1,3ñ]

without being detected by the traps with probability at most εΩ(r). This ε is
an upper bound for the probability of introducing an error in the message qubits
and not in the traps (see Subsection 2.3.2). The exponential dependence on Ω(r)
comes from the fact that we employ Ω(r) ancillas.
If the dealer introduces errors in the branch shares, this will be detected by the
ancillas in the same way as in the original VHSS scheme. However, in our protocol, D
can also tamper with the authenticated shares Φ0,0

i[1,3ñ]
. If D introduces an error in the

message qubits, it could also introduce an error in the ancillas such that they always
cancel out after applying the CNOT. However, the random bit that determines
whether the CNOT is applied or not is drawn after the corresponding ancilla has
been distributed. Therefore, these errors will not be detected with probability at
most 2−Ω(r), as in the original VHSS protocol.
Combining both previous results, the probability that an error is introduced and not
detected is at most 2−Ω(r) + εΩ(r).

Let us now consider the second part of the statement. It can be reformulated
as the probability that R holds inconsistent shares and does not abort is at most
2−Ω(r) + 2εΩ(r). This can only happen in two situations: if the nodes pass verifica-
tion holding inconsistent shares (event X) or if the nodes pass verification holding
consistent shares but the cheaters manage to introduce some errors in their qubits
without being detected by traps (event Y ). X happens with probability at most
2−Ω(r) + εΩ(r), as previously discussed. Regarding Y , the nodes pass verification
holding consistent shares (event Y1), and then cheaters introduce errors without
falling into the traps (event Y2) with probability εΩ(r). Since events X and Y cannot
happen simultaneously and Y1 and Y2 are independent, the probability that R holds
inconsistent shares is given by:

Pr(X) + Pr(Y ) ≤ (2−Ω(r) + εΩ(r)) + Pr(Y1)Pr(Y2)

≤ (2−Ω(r) + εΩ(r)) + Pr(Y2)

= (2−Ω(r) + εΩ(r)) + εΩ(r)

= 2−Ω(r) + 2εΩ(r).

(5.2.6)

Claim 5.2.2 (Completeness). In the VTSS protocol, if D is honest then it passes
the verification phase. Moreover, if R is also honest, it reconstructs D’s secret with
probability at least 1− εΩ(r).
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Proof (informal). The probability that an honest dealer does not pass verification
corresponds to the probability that |B| > 2t. However, since there are at most
2t cheaters, they cannot introduce any errors in more than 2t branch shares Φ0,0

i .
Consequently, D passes verification with probability 1. If R is also honest, it
reconstructs D’s secret unless a cheater manages to introduce an error in its shares
without being detected by the traps. This happens with probability at most εΩ(r), as
discussed in the proof of Theorem 5.2.1. Therefore, D’s secret can be reconstructed
with probability at least 1− εΩ(r).



6
Conclusions and outlook

Most of the verifiable quantum secret sharing (VQSS) protocols proposed so far, e.g.,
the ones from [13] and [14], are proven to be secure in ideal networks with a fixed set
of cheating nodes. Throughout this thesis we have explored two directions in which
these schemes can be improved, namely, the amount of noise they can tolerate and
the maximum number of cheaters. Moreover, we did this while keeping the required
node workspace size as low as possible. For this reason, the core of our work has
been focused on verifiable hybrid secret sharing (VHSS) schemes, which combine
VQSS with a classical encryption and classical secret sharing to reduce the number
of quantum resources.

In Chapter 4, we analyzed the performance of the VHSS from [14] when it is
run on noisy networks. First, we proposed several noise models in which qubits
can be erased while traveling from node to node but do not suffer from stochastic
arbitrary errors. The fact that erasures are flagged was used to modify the original
protocol, obtaining new schemes tailored to the needs of each model (VHSS-ES
protocol, VHSS-CE protocol, and VHSS-ESA protocol). The soundness
and the secrecy of these modified schemes was found to be the same as for the original
protocol. The completeness, however, was found to be slightly weaker, although this
was already expected, since an honest dealer may not be able to pass verification
when errors can happen at random on any qubit. Moreover, we derived a function
fv (Eq. 4.1.3) that corresponds to the probability of having a number of arbitrary
errors that still allows for the reconstruction of the secret. As discussed in Section
4.1, this function can be used to tune the parameters of the protocol in order to
maximize the probability of successfully sharing a secret in a quantum network that
can lose qubits with certain probability.
A similar analysis was performed for several noise models in which qubits could
be depolarized instead of erased. In this case, errors are not flagged and it is not
possible to abort the protocol whenever too many qubits have been depolarized.
Consequently, the security statements derived for the depolarization models are
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noticeably weaker, as the protocol can fail in many ways, e.g., there is a nonzero
probability that a logical error is introduced after the verification stage.
Furthermore, in all the previous noise models, qubits suffer from noise while they
are traveling between nodes. To alleviate this, we designed a new sharing stage for
the VHSS protocol that achieves the same functionalities while sending less qubits
around (see Section 4.4).

Lastly, in Chapter 5, we took a different approach to the problem. We consid-
ered again noiseless networks and worked towards increasing the maximum number
of cheaters tolerated in the VHSS protocol. We proposed the VTSS protocol,
which raises the maximum number of tolerable cheaters from bn−1

4 c up to bn−1
2 c,

making use of a quantum authentication scheme based on the trap code from [40].
This chapter is presented as an open discussion in which some formal proofs are still
required.

Future work still has to be done in the same directions. First, our noise mod-
els do not take into account the noise present in the quantum memories. A complete
description of the physical layout must consider both the quantum noise introduced
by these memories and by the communication channels. Therefore, this thesis can
serve as the groundwork for a more advanced noise analysis. On the other hand, the
use of quantum authentication schemes and approximate error correction for VQSS is
a promising line of research that enables the presence of up to bn−1

2 c cheaters. More
efficient approximate VQSS protocols in terms of computational cost and quantum
resources than the current ones, e.g., [7], could be designed.
Finally, the simulation or implementation of the protocols discussed in this thesis in
noisy networks would also be an interesting exercise. This could be used to evaluate
the validity of the theoretical results and would potentially lead to new tools for
improving the performance of the protocols.
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A
Derivation of fv(n, t, q, tc, td)

In this appendix we derive the function fv(n, t, q, tc, td) presented in Section 4.1.
Note that the analytical expressions derived here are not used in the main chapters,
since the results are computationally demanding and not very reliable when evaluated
by brute force, due to the large number of combinatorial factors involved. Therefore,
instead of evaluating the form of fv found in this appendix, we designed Algorithm
1 to obtain an estimate which is arbitrarily close to the analytical expression (see
Proposition 4.1.1).
We derive the exact value of fv by dividing the problem into subproblems that are
easier to solve. We do this by employing the law of total probability (LTP) [50],
which states that, if Bn, with n = 1, 2, 3, . . . , N , are pairwise disjoint events whose
union is the entire sample space, then

Pr(A) =

N∑
n=1

Pr(Bn) · Pr(A|Bn), (A.0.1)

for any event A of the same probability space.

Recall that fv(n, t, q, tc, td) := Pr(|Cv| ≤ 2t− tc | max. cheats). This is the probabil-
ity that |C| ≤ 2t− tc right after verification, assuming that all cheaters introduced
errors in their shares.
We start by using the LTP to write fv in the following form:

fv(n, t, q, tc, td) =

2t−tc∑
x=0

3tn−2t2∑
y=0

[
Pr(u(1) = x) · Pr(u(2) = y)

· Pr(|C| ≤ 2t− tc | u(1) = x, u(2) = y,max. cheats)

]
,

(A.0.2)
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where u(1) is the total number of branch shares that suffered from stochastic erasures
in the communication channels, and u(2) is the total number of stochastic erasures
in the leaf shares. The first sum goes from 0 to 2t − tc, since more than 2t − tc
errors in the branches already make the condition |C| ≤ 2t− tc to fail, i.e., Pr(|C| ≤
2t−tc | u(1) > 2t−tc) = 0. Similarly, the maximum number of leaf erasures that allow
for reconstruction is 3tn−2t2. This can be shown as follows. First, each of the n−2t
branch shares that are used to reconstruct the secret cannot suffer more than t leaf
errors, while each of the other 2t branches can suffer up to n. This yields a maximum
of (n− 2t)t+ 2tn = 3tn− 2t2 leaf erasures: Pr(|C| ≤ 2t− tc | u(2) > 3tn− 2t2) = 0.
Pr(u(1) = x) corresponds to a binomial probability distribution in which n branch
shares have an independent probability q of being erased. Similarly, Pr(u(2) = y) also
corresponds to a binomial distribution in which n2 leaf shares can be independently
erased with probability q. Therefore,

Pr(u(1) = x) = qx
(
n

x

)
(1− q)n−x, (A.0.3)

Pr(u(2) = y) = qy
(
n2

y

)
(1− q)n2−y. (A.0.4)

Next, we need to compute Pr(|C| ≤ 2t − tc | u(1), u(2),max. cheats). In the re-
mainder of this appendix, all probabilities are conditioned on ‘max. cheats’, but
we will not write it explicitly for handiness. Using the LTP, this probability can be
written as

Pr(|C| ≤ 2t− tc | u(1) = x, u(2) = y) =

min(n,td+x)∑
ω=max(td,x)

Pr(t(1d) = ω | u(1) = x)

· Pr(|C| ≤ 2t− tc | t(1d) = ω, u(2) = y).

(A.0.5)

where t(1d) is the number of branches that suffered from stochastic erasures or from
errors introduced by the dealer. A single branch can be affected by both types of
errors. Therefore, the minimum value of t(1d) takes place when all the stochastic
erasures happen in branches in which the dealer already introduced errors (or vice
versa). Therefore, t(1d) cannot be less than the maximum between the number of
stochastic erasures, u(1) = x, and the number of errors introduced by the dealer, td.
If all these errors happened in td + x different branches instead, the value of t(1d)

would be maximum, with n as upper bound, since this is the total number of branches.

Let us now compute Pr(t(1d) = ω|u(1) = x). The approach we take is to first
calculate the total number of ways to combine u(1) erasures and td errors in the
branches such that t(1d) = ω, and then divide it by the total number of possible
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combinations. This yields

Pr(t(1d) = ω|u(1) = x) =

(
n

max(td,x)

)(
max(td,x)
td+x−ω

)(
n−max(td,x)
ω−max(td,x)

)(
n
x

)(
n
td

) . (A.0.6)

Let us explain the previous expression factor by factor. First,
(
n
x

)(
n
td

)
is the total

number of possible combinations of u(1) erasures and td errors happening in n
branches. Regarding the numerator, the first factor accounts for the total number of
ways of choosing max(td, x) out of n branches. These branches are assumed to suffer
from some kind of error. Moreover, among these max(td, x) branches, we have to
consider all the combinations of branches that suffered simultaneously from stochastic
erasures and errors introduced by the dealer. There are a total of td + x − ω of
such branches, yielding the factor

(
max(td,x)
td+x−ω

)
. Finally, from the other n−max(td, x)

branches, we choose the remaining ω−max(td, x) branches that suffered from errors.

In the previous step, we included the effect of the dealer. We must also in-
clude the errors introduced by the cheating nodes (recall that we assume that
all of them introduce errors in their shares). To do that, we apply the LTP to
Pr(|C| ≤ 2t− tc | t(1d) = ω, u(2)) in the same way as we did in Equation (A.0.5):

Pr(|C| ≤ 2t− tc | t(1d) = ω, u(2) = y) =

min(n,tc+ω)∑
z=max(tc,ω)

Pr(t(1) = z | t(1d) = ω)

· Pr(|C| ≤ 2t− tc | t(1) = z, u(2) = y),

(A.0.7)

where

Pr(t(1) = z|t(1d) = ω) =

(
n

max(tc,ω)

)(
max(tc,ω)
tc+ω−z

)(
n−max(tc,ω)
z−max(tc,ω)

)(
n
ω

)(
n
tc

) . (A.0.8)

In Eq. (A.0.7), we combine the branches affected by erasures and errors introduced
by the dealer (t(1d) in total) with those affected by arbitrary errors introduced by
the cheaters (tc in total). This gives the total number of branches that suffered from
any kind of error t(1). The reasoning that leads to Eq. (A.0.8) is the same one as for
Eq. (A.0.6), but using t(1), t(1d), and tc instead of t(1d), u(1), and td.

Next, we need to compute Pr(|C| ≤ 2t− tc | t(1) = z, u(2) = y). We apply again the
LTP as follows:

Pr(|C| ≤ 2t− tc | t(1) = z, u(2) = y) =

min(y,n(n−z))∑
η=max(0,y−nz)

Pr(u(2h) = η|u(2) = y, t(1) = z)

· Pr(|C| ≤ 2t− tc | t(1) = z, u(2h) = η),

(A.0.9)
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where u(2h) is the total number of stochastic erasures that affect leaf shares from
branches that were not affected by errors. This variable takes its minimum value
when the n leaf shares from each of the t(1) branches that suffered from errors suffer
from as many erasures as possible. If all erasures happened in those nt(1) leaf shares,
then u(2h) = 0, and if there were some more leaf erasures (i.e., u(2) > nt(1)), then
u(2h) = u(2)−nt(1). The maximum value of u(2h) corresponds to a situation in which
the n(n− t(1)) leaf shares from the branches that did not suffer from errors suffer
as many erasures as possible. Then, this value is the minimum between u(2) and
n(n− t(1)).
To calculate Pr(u(2h) = η|u(2) = y, t(1) = z), we proceed in a similar way as we did for
Eq. (A.0.6). This probability corresponds to the number of configurations of u(2) = y
erasures in the leaves such that y of them happen in the n− t(1) = n− z branches
that were not affected by errors, divided by the total number of configurations with
u(2) = y. Hence,

Pr(u(2h) = η|u(2) = y, t(1) = z) =

(
n(n−z)

η

)(
nz
y−η
)(

n2

y

) . (A.0.10)

The denominator is the total number of ways of choosing y out of n2 leaf shares.
The first factor in the numerator accounts for the number of ways of choosing
η out of the n(n − z) leaves from branches that were not affected by errors. The
second factor is the number of combinations of y−η leaves from the other nz branches.

Next, we calculate Pr(|C| ≤ 2t− tc | t(1) = z, u(2h) = η) as follows:

Pr(|C| ≤ 2t− tc | t(1) = z, u(2h) = η) =

2t−tc−z∑
ξ=0

Pr(t(12) = ξ|t(1) = z, u(2h) = η),

(A.0.11)

where the variable t(12) is the number of branch shares that cannot be reconstructed
due to an excess of errors in their leaves. To ensure |C| ≤ 2t− tc, t(12) cannot be
greater than 2t− tc − z, since z branches have already suffered from errors.
In order to find an analytical expression for Pr(t(12) = ξ|t(1) = z, u(2h) = η), let us
first introduce the following probability distribution:

Pr(ti = t̃i|ui = ũi) =

(
n

max(tc,ũi)

)(max(tc,ũi)

tc+ũi−t̃i

)(n−max(tc,ũi)

t̃i−max(tc,ũi)

)(
n
ũi

)(
n
tc

) , (A.0.12)

where ti is the total number of leaf errors in branch i, including the tc leaves affected
by errors introduced by the cheaters, and ui is the number of stochastic leaf erasures
in branch i. The previous probability distribution can be derived in the same way as
Eq. (A.0.6), but using ti, ui, and tc instead of t(1d), u(1), and td.
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Using the LTP and Eq. (A.0.12), we can write

Pr(t(12) = ξ|t(1) = z, u(2h) = η) =

=

(
n− z
ξ

)
·

n∑
t̃1=t+1

t̃1∑
ũ1=t̃1−tc

[
Pr(t1 = t̃1|u1 = ũ1) · Pr(u1 = ũ1)

· . . . ·
n∑

t̃i=t+1

t̃i∑
ũi=t̃i−tc

[
Pr(ti = t̃i|ui = ũi) · Pr(ui = ũi|

i−1∑
j=1

uj =

i−1∑
j=1

ũj) · . . .

·
n∑

t̃ξ=t+1

t̃ξ∑
ũξ=t̃ξ−tc

[
Pr(tξ = t̃ξ|uξ = ũξ) · Pr(uξ = ũξ|

ξ−1∑
j=1

uj =

ξ−1∑
j=1

ũj)

·
Yξ+1∑

t̃ξ+1=Xξ+1

t̃ξ+1∑
ũξ+1=t̃ξ+1−tc

{
Pr(tξ+1 = t̃ξ+1|uξ+1 = ũξ+1)

· Pr(uξ+1 = ũξ+1|
ξ+1−1∑
j=1

uj =

ξ+1−1∑
j=1

ũj)

· . . . ·
Yi∑

t̃i=Xi

t̃i∑
ũi=t̃i−tc

{
Pr(ti = t̃i|ui = ũi) · Pr(ui = ũi|

i−1∑
j=1

uj =

i−1∑
j=1

ũj) · . . .

·
Yn−z∑

t̃n−z=Xn−z

t̃n−z∑
ũn−z=t̃n−z−tc

Pr(tn−z = t̃n−z|un−z = ũn−z)

· Pr(un−z = ũn−z|
n−z−1∑
j=1

uj =

n−z−1∑
j=1

ũj)

}}]]]
,

(A.0.13)

where Xi = max(0, η −∑i−1
j=1 ũj − t(n− z − i))), Yi = min(t, tc + η −∑i−1

j=1 ũj), and

Pr(ui = ũi|
i−1∑
j=1

uj =

i−1∑
j=1

ũj) =

(η−∑i−1
j=1 ũj
ũi

)(n(n−z)−η−
∑i−1
j=1(n−ũj)

n−ũi

)(
n(n−z)−n(i−1)

n

) . (A.0.14)

The previous expressions can be explained using the following thought experiment.
Let us assume that we labeled the n− z branches that did not suffer from errors in a
particular way. Moreover, all the u(2h) stochastic leaf erasures are applied manually
by us. We start by applying u1 of these erasures to the leaf shares of branch 1. Next,
u2 leaf erasures are applied to branch 2, and so on. Note that

∑n
i=1 ui = u(2h), and

therefore the number of erasures applied to branch i is conditioned on the number
of erasures applied to all the previous branches (e.g., if

∑m
i=1 ui = u(2h), then ui = 0

for any i > m).
After distributing all these stochastic erasures, we want to compute the probability
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that the first ξ branches have more than t arbitrary errors, considering stochastic
erasures and errors introduced by the cheaters. The factor

(
n−z
ξ

)
in Eq. (A.0.13)

considers all possible ways of choosing these ξ branches out of the n− z. Then, we
calculate the probability that each of those ξ branches have t + 1 or more errors
using the LTP. The probability for each branch i depends on the previous branches,
since they must satisfy

∑n
i=1 ũi = η. This explains the first 2ξ sums. For each of

the other n− z − ξ branches, we require the total number of errors to be less than t.
Note that the total number of errors cannot be larger than tc + η −∑i−1

j=1 ũj , where
the sum considers all the leaf erasures applied to previous branches, explaining the
expression we gave for Yi. Moreover, Xi must be at least η−∑i−1

j=1 ũj − t(n− z− i)),
otherwise there would be too many erasures left for the next branches and some of
them would receive more than t erasures.
Finally, Equation (A.0.14) gives the probability that branch i has ũi stochastic
erasures given the number of erasures that happened in the previous branches (recall
that

∑n
i=1 ũi = η). Imagine we had a bag with all the n(n − z) leaves, and η of

them have suffered from errors. The combinatorial number in the denominator
accounts for all the possible ways to choose n leaves from a bag of n(n− z)−n(i−1),
where n(i− 1) considers the leaves that were extracted from the bag and assigned to
branches preceding branch i. In the numerator, the first combination accounts for
the ways of choosing ũi erased leaves from a total of η −∑i−1

j=1 ũj , where the sum
represents the erased leaves assigned to previous branches. The second term is for
the ways of choose n− ũi leaves that were not affected by stochastic erasures from a
total of n(n− z) minus η erased leaves and minus

∑i−1
j=1(n− ũj) non-erased leaves

that were retrieved from the bag for previous branches.

To sum up, the final solution is

Pr(|Cv| ≤ 2t− tc) ≥ fv(n, t, q, tc, td)

=

2t−tc∑
x=0

3tn−2t2∑
y=0

[
Pr(u(1) = x) · Pr(u(2) = y)

·
min(n,td+x)∑
ω=max(td,x)

[
Pr(t(1d) = ω|u(1) = x)

·
min(n,tc+ω)∑
z=max(tc,ω)

[
Pr(t(1) = z|t(1d) = ω)

·
min(y,n(n−z))∑
η=max(0,y−nz)

[
Pr(u(2h) = η|u(2) = y, t(1) = z)

·
2t−tc−z∑
ξ=0

Pr(t(12) = ξ|u(2) = y, t(1) = z, u(2h) = η)
]]]]

,

(A.0.15)
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where all the analytical expressions of the probability distributions involved have
been found throughout this appendix.

The previous expression could be simplified but this is not a trivial task. Moreover,
upper and lower bounds can be computed, although we did not find any tight bound
with a simple analytical expression. We remark again that this is not problematic
for our work, as we proved that the results obtained from Algorithm 1 are arbitrarily
close to the analytical expressions found in this appendix (see Proposition 4.1.1).





B
Convergence of the
sampling algorithm

In this appendix, we provide the proof of Proposition 4.1.1. Let us state it here
again:

Proposition B.0.1. Let h(x, N) be the output of Algorithm 1, with x := (n, t, q, tc, td,
u(1), u(2)), and let us define g̃(x, N) := Pr(u(1)) · Pr(u(2)) · h(x, N) and g(x) :=
Pr(u(1)) · Pr(u(2)) · Pr(|C| ≤ 2t − tc|u(1), u(2),max. cheats), where Pr(u(1)) and
Pr(u(2)) are the probability distributions given by Eqs. (4.1.4) and (4.1.5), respec-
tively. Then,

Pr
[
|g̃(x, N)− g(x)| < δ

]
≥ 1−N−1 · δ−2 · ε, (B.0.1)

for any x, N > 0, and δ > 0, with

ε ≤ q2u(1)+2u(2) · (1− q)2n2+2n−2u(1)−2u(2) ·
(
n

u(1)

)2

·
(
n2

u(2)

)2

·
[(

n

u(1)

)
·
(
n2

u(2)

)
·
(
n

td

)
·
(
n

tc

)
− 1

]
.

(B.0.2)

Proof. First, recall that the function fv(n, t, q, tc, td) from Eq. (4.1.3) corresponds
to the probability that |C| ≤ 2t− tc in case that all tc cheaters introduced errors in
their shares. Note that this function can be written in terms of g(x):

fv(n, t, q, tc, td) =

2t−tc∑
u(1)=0

3tn−2t2∑
u(2)=0

g(x) (B.0.3)

Proposition B.0.1 states that g̃(x, N), which is computed using Algorithm 1, is close
to g(x) with high probability. Hence, this could be used to obtain an estimation of
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fv(n, t, q, tc, td) by replacing all terms g(x) by g̃(x, N).
Our goal in this proof is to derive a lower bound for Pr

[
|g̃(x, N) − g(x)| < δ

]
.

For handiness, let us define P1 := Pr(u(1)), P2 := Pr(u(2)), and PC := Pr(|C| ≤
2t − tc|u(1), u(2),max. cheats). PC corresponds to the probability that less than
2t− tc branch qubits suffered from errors (either directly introduced on the branch
or due to an excess of errors on its leaves), given the total number of erasures in the
branches, u(1), and in the leaves, u(2). This can be written as

PC =

M∑
i=1

θi
M
, (B.0.4)

where M is the total number of configurations of errors (for fixed values of u(1) and
u(2)), i is a label that identifies a specific configuration, and θi is a binary variable
that has value 1 only when configuration i satisfies |C| ≤ 2t− tc. Instead of using
the exact value of M , we will employ the following bound:

M ≤
(
n

u(1)

)
·
(
n

td

)
·
(
n

tc

)
·
(
n2

u(2)

)
. (B.0.5)

This bound does not consider the indistinguishability of all sources of errors (noisy
channels, dealer, and cheaters), and it corresponds to the number of different ways
of choosing u(1) branch shares out of n to be erased in the communication channels
between nodes, u(2) leaf shares out of n2 to be erased in the channels, td branch
shares out of n in which the dealer introduces errors, and tc cheaters out of n nodes.
Figure B.1 shows three examples of configurations of errors for n = 7 nodes, u(1) = 1,
u(2) = 5, td = 1, and tc = 1. Configurations (a) and (b) are equivalent and therefore
should only be considered once when computing M . The upper bound that we give
for M considers that both of these configurations are different.

To estimate PC , Algorithm 1 generates a configuration of errors i and computes θi,
i.e., it checks if |C| ≤ 2t− tc. This process is repeated over N iterations. In order to
avoid large memory requirements, the Algorithm does not store which configurations
have been already checked. Therefore, it could choose the same configuration several
times. Let us define the binary variable zij , with i = 1, . . . ,M and j = 1, . . . , N ,
which has value 1 only if configuration i was the one chosen at iteration j of the
Algorithm. We can describe zij as a discrete random variable that takes value 0 with
probability M−1

M and value 1 with probability 1
M .

We can write the output of Algorithm 1 as

h(x, N) =

M∑
i=1

∑N
j=1 zij

N
θi, (B.0.6)

where
∑N
j=1 zij is the number of times that configuration i was sampled over the N

iterations.
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Now, we are ready to calculate the lower bound for Pr
[
|g̃(x, N) − g(x)| < δ

]
.

We proceed as follows:

Pr
[
|g̃(x, N)− g(x)| < δ

] a
= Pr

[
P1 · P2 · |h(x, N)− PC | < δ

]
= Pr

[
|h(x, N)− PC | <

δ

P1P2

]
b
= Pr

[∣∣∣∣ M∑
i=1

∑N
j=1 zij

N
θi −

M∑
i=1

θi
M

∣∣∣∣ < δ

P1P2

]

= Pr

[∣∣∣∣ M∑
i=1

θi

(∑N
j=1 zij

N
− 1

M

)∣∣∣∣ < δ

P1P2

]
c
≥ Pr

[
M∑
i=1

∣∣∣∣θi(
∑N
j=1 zij

N
− 1

M

)∣∣∣∣ < δ

P1P2

]
d
≥ Pr

[
M∑
i=1

∣∣∣∣
∑N
j=1 zij

N
− 1

M

∣∣∣∣ < δ

P1P2

]
e
≥ Pr

[∣∣∣∣
∑N
j=1 zij

N
− 1

M

∣∣∣∣ < δ

P1P2M

]

= 1− Pr

[∣∣∣∣
∑N
j=1 zij

N
− 1

M

∣∣∣∣ ≥ δ

P1P2M

]
f

≥ 1− (M − 1)P 2
1P

2
2

Nδ2

g
= 1− ε

Nδ2
,

(B.0.7)

with the following steps:

a. We use the definitions of g̃(x, N) and g(x).

b. We use Eqs. (B.0.6) and (B.0.4).

c. For any finite sum
∑N
i=0 |ai| < η, it is true that

∣∣∑N
i=0 ai

∣∣ < η. Moreover,
Pr(B) ≥ Pr(A) for any two probabilistic events A and B such that A ⇒ B.
Then, Pr

(∣∣∑N
i=0 ai

∣∣ < η
)
≥ Pr

(∑N
i=0 |ai| < η

)
.

d. For any finite sum
∑N
i=0 |ai| < η, it is true that

∑N
i=0 |θiai| < η, with θi ∈

{0, 1}. As in the previous step, if A ⇒ B, then Pr(B) ≥ Pr(A). Hence,
Pr
(∑N

i=0 |θiai| < η
)
≥ Pr

(∑N
i=0 |ai| < η

)
.

e. Using that |ai| < η
M , ∀i ∈ {0, . . . ,M} ⇒ ∑M

i=1 |ai| < η and that, if A ⇒ B,

then Pr(B) ≥ Pr(A), we obtain Pr
(∑M

i=1 |ai| < η
)
≥ Pr

(
|ai| < η

M

)
for some

i ∈ {0, . . . ,M}.
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f. Chebyshev’s inequality states that [50]

Pr
(∣∣X − E[X]

∣∣ ≥ ε) ≤ V[X]

ε2
, (B.0.8)

for any discrete or continuous random variable X with expected value E[X]
and variance V[X], and any ε > 0. The binary variables zij are discrete
random variables with expected value E[zij ] = 1

M and variance V[zij ] =

E[z2
ij ]− E[zij ]

2 = M−1
M2 . These variables are independent for different values of

j, since the samples are not correlated in the Algorithm. Hence, Z =
∑N
j=1

zij
N

is a random variable with expected value E[Z] = V[zij ] = 1
M and variance

V[Z] =
V[zij ]
N = M−1

NM2 [50]. Then,

Pr
(
|Z − 1

M
| ≥ ε

)
≤ M − 1

NM2ε2
. (B.0.9)

By setting ε = δ
P1P2M

, we obtain

Pr

[∣∣∣∣
∑N
j=1 zij

N
− 1

M

∣∣∣∣ ≥ δ

P1P2M

]
≤ (M − 1)P 2

1P
2
2

Nδ2
. (B.0.10)

g. We define

ε = (M − 1)P 2
1P

2
2

≤ q2u(1)+2u(2) · (1− q)2n2+2n−2u(1)−2u(2) ·
(
n

u(1)

)2

·
(
n2

u(2)

)2

·
[(

n

u(1)

)
·
(
n2

u(2)

)
·
(
n

td

)
·
(
n

tc

)
− 1

]
,

(B.0.11)

where we have used Eqs. (4.1.4), (4.1.5), and (B.0.5).
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(a)

(b)

(c)

Figure B.1. Example of three configurations of errors for n = 7 nodes, u(1) = 1, u(2) = 5, td = 1,
and tc = 1. The top circle represents a qubit to be encoded, e.g. the encrypted secret. The
first level of circles corresponds to the branch shares, and the second level, to the leaf shares. A
purple cross represents that the qubit has suffered from a stochastic error introduced by the noisy
channels. Blue and orange crosses denote that an error has been introduced in the share by the
dealer and the cheaters, respectively. Note a single share can simultaneouly suffer from stochastic
erasures and from arbitrary errors introduced by the dealer or the cheaters, as depicted in (a) and
(b). Configurations (a) and (b) are equivalent, while (c) is different. For the bound given in Eq.
(B.0.5), all three configurations are different (see main text).





C
Lower bounds for the
binomial distribution

Let X be a discrete random variable that follows a binomial distribution with
parameters n and q. This distribution models a situation in which n identical
experiments are run and each one has an independent probability of success q. The
most common example for these experiments is a coin tossing. The random variable
X corresponds to the total number of experiments that are successful.
The probability distribution of X is

P (X = k) = qk(1− q)n−k
(
n

k

)
, (C.0.1)

and the cumulative distribution function is given by

S(z;n, q) :=

z∑
k=0

qk(1− q)n−k
(
n

k

)
. (C.0.2)

In [49], the authors provide lower bounds for the binomial distribution. In particular,
they found that

P (X ≥ z) ≤ exp

(
− nD

[
z

n
||q
])

, for q <
z

n
< 1, (C.0.3)

where D(a||q) is the relative entropy between two Bernoulli distributions with
parameters a and q, respectively,

D[a||q] = a log

(
a

q

)
+ (1− a) log

(
1− a
1− q

)
. (C.0.4)
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By rewriting Equation (C.0.3) in terms of the cumulative distribution function, we
find the following lower bound:

S(z;n, q) ≤ 1− exp

(
− nD

[
z + 1

n
||q
])

= 1− exp

(
− (z + 1) log

(
z + 1

nq

)
+ (z + 1− n) log

(
n− (z + 1)

n− nq

))

= 1− exp

(
− (z + 1) log

(
z + 1

nq

))
exp

(
(z + 1− n) log

(
n− (z + 1)

n− nq

))

= 1−
(
z + 1

nq

)−(z+1)(
n− (z + 1)

n− nq

)z+1−n

,

(C.0.5)

which is only valid for q < z
n < 1.
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