
Delft Center for Systems and Control

Safe model-based Reinforcement
Learning via Model Predictive
Control and Control Barrier
Functions

Kerim Dzhumageldyev

M
as

te
ro

fS
cie

nc
e

Th
es

is

Safe model-based Reinforcement
Learning via Model Predictive Control

and Control Barrier Functions

Master of Science Thesis

For the degree of Master of Science in Systems and Control at Delft
University of Technology

Kerim Dzhumageldyev

October 10, 2025

Faculty of Mechanical Engineering (ME) · Delft University of Technology

Copyright © Delft Center for Systems and Control (DCSC)
All rights reserved.

Abstract

Optimal control strategies are often combined with safety certificates to ensure both per-
formance and safety in safety-critical systems. A prominent example is combining Model
Predictive Control (MPC) with Control Barrier Functions (CBF). Yet, tuning MPC param-
eters and choosing an appropriate class K function in the CBF is challenging and problem
dependent. This thesis introduces a safe model-based Reinforcement Learning (RL) frame-
work where a parameterized MPC incorporates a CBF with a parameterized class K function
and serves as a function approximator to learn improved safe control policies. Three variations
are introduced, distinguished by the way the class K function is parameterized. The Learnable
Optimal Decay CBF (LOPTD-CBF) extends the Optimal Decay CBF by allowing RL to tune
the optimal decay parameters, improving performance while enhancing constraint feasibility
and preserving safety guarantees. The Neural Network CBF (NN-CBF) parametrizes the de-
cay term of a discrete exponential CBF with a neural network, enabling richer state-dependent
safety conditions. Finally, the Recurrent Neural Network CBF (RNN-CBF) extends the NN-
CBF with a recurrent architecture to handle time-varying CBF constraints, such as moving
obstacles. Numerical experiments on a discrete double-integrator with static and dynamic
obstacles demonstrate that the proposed methods improve performance while ensuring safety,
each offering distinct trade-offs in performance, feasibility and complexity.

Master of Science Thesis Kerim Dzhumageldyev

ii

Kerim Dzhumageldyev Master of Science Thesis

Acknowledgments

Firstly, I would like to express my deepest gratitude to my supervisors, Azita and Filippo,
for their immense support throughout this project. Azita, thank you for your invaluable
guidance and insight. Our meetings always helped me gain clarity on the technical aspects
of the project and shape its overall direction. Filippo, thank you so much for mentoring me
all the way. Thank you for being so patient with all my ideas, even the stupid ones. I truly
appreciate your great and detailed feedback on my reports and ideas, and I really enjoyed all
our long discussions about the thesis. Sorry if I ended up taking too much of your time with
them.

I would like to thank my friends for their support throughout all my years at Delft. It has
been a joy to study, spend time, play sports and share countless moments together. A special
thanks goes to my friends from high school who also came to Delft to study. My time here
would not have been nearly as memorable without you.

I would also like to especially thank my girlfriend. Thank you for always being there for
me throughout this entire process of writing, stressing and learning. I can’t imagine that
constantly asking you to read my work was much fun, but I truly appreciate your patience
and support. I couldn’t have done this without you.

Lastly, and most importantly, I would like to thank my family. I want to thank my brother
for his continuous love, and support throughout the years. I also want to thank my parents
for bringing me from Turkmenistan to the Netherlands and giving me the opportunity to
grow up in a free and open society. Because of their courage and sacrifices, I was able to grow
up in a country where I feel safe, can express my opinions freely and have access to quality
education. This achievement is as much theirs as it is mine.

Delft, University of Technology Kerim Dzhumageldyev
October 10, 2025

Master of Science Thesis Kerim Dzhumageldyev

iv Acknowledgments

Kerim Dzhumageldyev Master of Science Thesis

Table of Contents

Acknowledgments iii

1 Introduction 1
1-1 Problem Statement . 2
1-2 Thesis Outline . 3

2 Theoretical Background 5
2-1 MPC-based RL Framework . 5

2-1-1 Model Predictive Control . 5
2-2 Reinforcement Learning . 6

2-2-1 MPC-based RL framework . 8
2-2-2 Q-learning . 10
2-2-3 Computing Sensitivities . 11

2-3 Control Barrier Functions . 11
2-3-1 Nagumo’s Theorem . 12
2-3-2 Control Lyapunov Functions . 13
2-3-3 Control Barrier Functions . 13
2-3-4 CBF-based Controllers . 17
2-3-5 Exponential Control Barrier Functions 18
2-3-6 Optimal Decay CBFs . 19

3 Literature Review 21
3-1 Data-Driven Shaping of CBF Constraints . 21

3-1-1 Adaptive class K in RL-MPC with CBF 21
3-1-2 Learning class K for CBF . 23
3-1-3 BarrierNet: Learned Penalty Terms in CBF Constraints 24

3-2 Learning CBF From Data . 26
3-2-1 Neural CBFs . 26

Master of Science Thesis Kerim Dzhumageldyev

vi Table of Contents

4 Methodology 29
4-1 Learnable Optimal Decay CBF . 30
4-2 Neural Network CBF . 31
4-3 Recurrent Neural Network CBF . 35
4-4 Training Architecture . 36

5 Simulation Results 39
5-1 Static Obstacle . 40

5-1-1 Learnable Optimal Decay CBF . 41
5-1-2 Neural Network CBF . 44
5-1-3 Comparison . 45

5-2 Dynamic Obstacles . 46
5-2-1 Neural Network CBF . 49
5-2-2 Recurrent Neural Network CBF . 52
5-2-3 Comparison . 54

6 Conclusions and Future Work 59
6-1 Conclusion . 59
6-2 Future Work . 61

6-2-1 Improving the proposed NN-based methods. 61
6-2-2 Uncertainties and Disturbances . 62
6-2-3 Higher Relative Degree . 62
6-2-4 Comparisons with Other Methods . 63
6-2-5 Unknown CBF . 63
6-2-6 Complex Numerical Experiment . 64
6-2-7 Learning a generalizable class K function 64

A Settings of the Experiments 65
A-1 LOPTD-CBF Static Obstacle Experiment . 66
A-2 NN-CBF Static Obstacle Experiment . 67
A-3 NN-CBF Dynamic Obstacles Experiment . 68
A-4 RNN-CBF Dynamic Obstacles Experiment . 69

B Adam 71

C Static Obstacle Experiment Without Terminal Cost Parametrization 73
C-0-1 LOPTD-CBF . 73
C-0-2 NN-CBF . 75

D RNN-CBF Alternative Solution 77

E Paper Draft 79

Bibliography 89

Glossary 93
List of Acronyms . 93

List of Symbols . 94

Kerim Dzhumageldyev Master of Science Thesis

Chapter 1

Introduction

Safety is a concern at the core of numerous problems in control. Throughout the years, various
methodologies and theoretical frameworks have been put forward to ensure safety in control
systems. Among these, one of the most prominent methods in the current literature is the
use of Control Barrier Functions (CBFs). In essence, CBFs ensure safety by requiring that
system trajectories remain within a safe set defined by a barrier function usually denoted
by h(x). The idea is that any action taken by the system must guarantee that the state
remains inside a control invariant set, meaning a set from which there always exists a control
action that keeps the system inside it. To achieve this, the CBF regulates how fast the safety
function h(x) can change over time. Specifically, it imposes a lower bound on the allowable
decrease of h(x), governed by a class K function. The controller must then select an action
that ensures the change in h(x) does not drop below this bound [8, 10]. CBFs have been
employed in a variety of safety-critical applications, such as automotive systems, multi-robot
systems, quadrotors, and robotic systems [8, 1, 2, 7, 15, 23, 37].

Nevertheless, the pursuit of safety can sometimes conflict with the goal of a controller achiev-
ing optimal performance. While most optimization-based controllers focus on performance
objectives, unless safety is explicitly incorporated, for instance through risk-averse optimiza-
tion or safety filters, they do not inherently prioritize safe trajectories. In contrast, introducing
safety filters enforces safer paths, but this often comes at the expense of reduced performance.
One common approach is to combine CBFs with Quadratic Programming (QP) formulations,
where the QP optimizes performance while enforcing safety through the CBF constraint
[8, 10, 9, 2, 37]. Although this approach effectively balances safety and performance, it often
leads to myopic policies. Even though these myopic policies still guarantee safe state tra-
jectories due to the forward invariance condition of the CBF, they might become infeasible
when other constraints are introduced, such as bounds on the control action. Additionally,
these myopic policies have a greater difficulty balancing safety and performance, since they
only look one step ahead, compared to policies with longer horizons.

In this context, the need to incorporate CBFs into optimization-based controllers with ex-
tended prediction horizons emerged to enable the evaluation of CBF conditions at future
predicted states [36, 38]. This led to the integration of CBFs, as constraints, within the

Master of Science Thesis Kerim Dzhumageldyev

2 Introduction

Model Predictive Control (MPC) framework [25], thereby combining the predictive capabili-
ties of MPC with the safety guarantees of CBFs.

Nevertheless, the integrated MPC-CBF framework often degrades nominal MPC performance
because safety and performance objectives may conflict. The CBF constraint in the MPC
shrinks the feasible set of states to guarantee safety, making it harder for the optimizer
to find high-quality, or even feasible, trajectories that satisfy both safety and performance
requirements over the entire horizon. This is especially apparent in cases when the MPC’s
tuning (cost weights, horizon, model) is suboptimal.

To address these challenges, Sabouni et al. introduced a novel idea [26] that extended the
MPC-CBF framework by using model-free Deep Reinforcement Learning (DRL) to learn the
objective weights of the MPC and a simple class K function of the CBF. The class K function,
as introduced earlier, modulates the conservativeness of the CBF condition by restricting the
rate at which trajectories may approach the safe-set boundary.

As an alternative, this thesis adopts an MPC-based Reinforcement Learning (RL) framework
in which, unlike in the work of [26], the RL agent uses the MPC controller itself as its function
approximator rather than a Neural Network (NN). The choice of using MPC-based RL is mo-
tivated by three main advantages. Firstly, the MPC inherently incorporates prior knowledge
through the prediction model, as opposed to a DRL which is a black-box. Secondly, MPC
controllers come with provable guarantees for stability and constraint satisfaction, whereas
neural-network methods are largely uninterpretable. Moreover, although not straightforward,
it is possible to preserve these theoretical properties of MPC (stability, recursive feasibility,
and constraint guarantees) during the RL learning process [18]. Lastly, unlike neural net-
works and many other function approximation schemes, MPC directly handles input and
state constraints in its optimization, ensuring they are always satisfied.

1-1 Problem Statement

The integration of MPC-based RL with CBFs remains largely unexplored. Therefore, the
main research goal of this thesis is to explore this combination, with a specific focus on the
trade-off between safety and performance in such a framework. This motivates the following
main research question:

To what extent can performance be improved while still guaranteeing safety in
MPC-based Reinforcement Learning using Control Barrier Functions?

In addition to this main question, the research will be extended to investigate the following
sub-questions:

1. Which type of CBF formulation yields the best trade-off between safety and performance
in MPC-based RL?
Different CBF formulations developed in this thesis will be implemented and tested
within the MPC-based RL framework to identify the approach that provides the most
favorable balance between safety guarantees and achievable performance.

Kerim Dzhumageldyev Master of Science Thesis

1-2 Thesis Outline 3

2. How does tuning the CBF condition affect the balance between safety and performance?
The CBF also plays an important role in regulating performance. To understand this
role, the thesis investigates how much performance can be improved by tuning the
CBF while still guaranteeing safety. In the numerical experiments, some cases will
parametrize and learn only the CBF condition, while keeping all other learnable param-
eters fixed to assess this effect.

3. How can MPC-based RL using CBFs guarantee safety in dynamic environments, e.g.,
multiple dynamic obstacles?
The framework will be extended to scenarios involving multiple moving obstacles, as
commonly encountered in real-life safety applications, to investigate effective methods
for addressing such complex situations.

1-2 Thesis Outline

To explore the goals outlined above, the thesis is structured as follows. Chapter 2 provides an
overview of the theoretical background on MPC-based RL and CBF, which forms the basis
for the methods developed later. Chapter 3 presents a literature review on existing data-
driven techniques to learn CBFs as well as to improve the CBF condition. Chapter 4 then
introduces the methods designed to address the research questions and the identified gap in
the literature. Chapter 5 evaluates these methods through numerical experiments, first on
a simple example and then on a more complex case. Finally, the thesis concludes with a
summary of the results and recommendations for future research.

Master of Science Thesis Kerim Dzhumageldyev

4 Introduction

Kerim Dzhumageldyev Master of Science Thesis

Chapter 2

Theoretical Background

This chapter presents the preliminary theoretical background required for the rest of the
thesis. The first section reviews the fundamentals of MPC and RL to motivate the MPC-
based RL framework. The second section introduces CBF theory and presents the various
CBF formulations employed throughout this work.

2-1 MPC-based RL Framework

The integration of MPC with RL has emerged as a compelling approach to address the chal-
lenges of optimizing control policies in systems with known models. This section outlines
the MPC-based RL framework, beginning with a brief introduction and review of the fun-
damental principles of MPC. Similarly, this chapter aims to provide a review of the core RL
formulations, serving as contextualization for the MPC-based RL framework. Combining the
ideas of RL and MPC, the MPC-based RL framework is introduced and presented in the form
of a Q-learning algorithm.

2-1-1 Model Predictive Control

Model Predictive Control is a prominent optimal control strategy employed for dynamical
systems when a model is known, especially in the presence of constraints. It uses a math-
ematical model to predict future state trajectories and optimize control actions over a set
horizon [25]. At each time step, the optimization minimizes a cost function, often balancing
desired performance and penalizing control effort while respecting constraints such as input,
output, or state limits. Only the first control action from this optimized sequence is imple-
mented, and the process is repeated with updated measurements, allowing MPC to adapt to
system changes and disturbances. Mathematically, the MPC is formulated as follows.

Master of Science Thesis Kerim Dzhumageldyev

6 Theoretical Background

min
X,U

ℓf
(
xN

)
+

N−1∑
k=0

ℓ
(
xk, uk

)
(2-1a)

s.t. xk+1 = f
(
xk, uk

)
, k = 0, . . . , N − 1, (2-1b)

x0 = xcurrent, (2-1c)
xk ∈ X , uk ∈ U , k = 0, . . . , N − 1, (2-1d)
xN ∈ Xf . (2-1e)

Where the primal variables include the sequence of predicted states X =
[
x0 . . . xN

]⊤
and

the sequence of predicted control inputs U =
[
u0 . . . uN−1

]⊤
, over the prediction horizon

N . The objective function minimizes the cumulative stage cost
∑N−1

k=0 ℓ(xk, uk) over the
horizon and the terminal cost ℓf (xN) at the final state xN , where ℓ : X × U → R and
ℓf : X → R, with X ⊆ Rn and U ⊆ Rm denoting the admissible state and input sets,
respectively. The prediction model of the system is defined by the dynamics xk+1 = f(xk, uk),
with f : X ×U → X governing the evolution of the state xk under the control input uk. The
initial condition x0 = xcurrent denotes the measured current state of the actual system. The
constraints in the MPC ensure that the state xk and the control input uk remain within
the permissible sets X and U , respectively, at each time step. The final state xN belongs
to a terminal constraint set Xf , the target state for the system. Moreover, as noted earlier,
at each time step MPC solves this optimization problem and applies only the first optimal
control input u⋆

0. This process is repeated in a receding-horizon fashion, allowing the MPC
to account for new state measurements and disturbances. However, the advantages of MPC
come at the cost of significant computational demands and the requirement for an accurate
system model with well-tuned parameters, such as the prediction horizon and the weights of
the cost function [25]. Consequently, there is a growing need to enhance MPC performance,
even when the model is imprecise or the parameters are not optimally tuned.

2-2 Reinforcement Learning

Reinforcement Learning is a machine learning paradigm that focuses on training an agent
to make sequential decisions by interacting with an environment in order to minimize a
cumulative cost (or maximize a reward signal) [30]. The framework is typically modeled as a
discrete-time Markov Decision Process, where transitions from state s to s′ occur via action
a and are governed by the conditional probability density [5]

P [s′ | s, a] : S × S ×A → [0, 1], (2-2)

where A ⊆ Rna is the action space and S ⊆ Rns is the state space. The learning process within
this framework is illustrated in Figure 2-1. At each time step, the agent observes the current
state s, selects an action a based on its policy, and incurs a cost c from the environment,
which then transitions to a new state s′. This cycle forms the foundation of RL, where the
agent iteratively refines its policy by leveraging this feedback loop [30]. The objective of the

Kerim Dzhumageldyev Master of Science Thesis

2-2 Reinforcement Learning 7

agent is to learn a policy π : S → A, that minimizes the expected discounted cumulative
stage cost:

J(π) := E
[

T∑
k=0

γk
RLL(sk, π(sk))

]
, (2-3)

where L : S × A → R is the stage cost, γRL ∈ (0, 1] is the discount factor and T is the task
length [5]. The optimal policy π⋆ is given then by

π⋆ = arg min
π
J(π). (2-4)

An alternative way of learning the optimal policy is to use value functions, namely the state
value function Vπ(s):

Vπ(s) = E
[∞∑

k=0
γk

RLL(sk, π(sk))
∣∣∣ s0 = s

]
, (2-5)

which gives the expected cost when starting in state s and following policy π(s), as well as
the action-value function Qπ(s, a):

Qπ(s, a) = E
[
L(s, a) +

∞∑
k=1

γk
RLL(sk, π(sk))

∣∣∣ s0 = s, a0 = a
]
, (2-6)

which measures the cost of taking action a in state s and then following policy π. Additionally,
under a deterministic policy Q(s, a) and V (s) relate as

V (s) = Q
(
s, π(s)

)
= min

a∈A
Q(s, a). (2-7)

Finally, the optimal policy can be extracted using the optimal action-value function as follows:

π(s) = arg min
a∈A

Q(s, a). (2-8)

In practice, it is impossible to find and characterize the true optimal policy π⋆ and the
corresponding optimal value functions {V ⋆, Q⋆}. To address this, RL relies on function
approximation techniques, such as NNs or more recently MPC, which enable the formula-
tion of approximate parametrized policies πθ and approximate parametrized value functions
{Vθ, Qθ}[12, 18]. These parameters are learned either via policy-gradient methods, which up-
date πθ directly [27, 30], or via value-based methods, which estimate {Vθ, Qθ} and act greedily
with resepct to Qθ. Depending on the algorithm (policy-gradient or value-based), gradients
updates are performed either on πθ parameters or {Vθ, Qθ} parameters via

θ ← θ − η∇θψ(sk, ak, sk+1, θ), (2-9)

where ψ(sk, ak, sk+1, θ) captures the performance of the controller, η > 0 is the learning rate,
and m is the batch size [5].

RL approaches can be further broadly classified into model-free and model-based methods
[30]. Model-free RL relies solely on observed state transitions and incurred costs, without
requiring explicit knowledge of the environment’s dynamics. While this makes it relatively
straightforward to implement, model-free RL is often sample-inefficient and requires extensive
exploration for efficient learning. In contrast, model-based RL utilizes a learned or known

Master of Science Thesis Kerim Dzhumageldyev

8 Theoretical Background

model of the environment to predict state transitions and incurred costs, enabling planning
and more sample-efficient learning. However, model-based methods are sensitive to inaccura-
cies in the model, which can negatively impact the performance of the derived policy.

Despite its potential, RL faces several significant challenges. Most notably, RL algorithms
often lack formal safety and stability guarantees, largely because they are commonly developed
with neural networks, which are typically non-interpretable. This makes it challenging to
ensure safety and stability in practical applications. Additionally, RL struggles to incorporate
design considerations such as hard state and input constraints or structured stage and terminal
costs. Instead, such considerations are typically handled indirectly through cost shaping or
heuristics, which cannot provide hard guarantees on system behaviour [18].

Agent

Environment

action
state cost

Figure 2-1: RL Framework: The agent–environment interaction, inspired by [30].

2-2-1 MPC-based RL framework

Note. Before introducing the MPC-based RL formulation, a short notational remark is made.
Throughout this thesis, whenever MPC-based RL is used, the actual system state and action
are denoted by s and a, respectively. The MPC-predicted states and actions are denoted by
xk and uk, with X = [x0, . . . , xN] and U = [u0, . . . , uN−1] denoting the sequences of predicted
states and actions. Since the methods proposed in this thesis rely on MPC-based RL, this
convention is also consistently used in Chapters 4 and 5.

As discussed earlier, MPC excels at incorporating design considerations such as input con-
straints, performance via structured stage and terminal costs, as well as stability and safety
guarantees into the control scheme. However, reliance on an accurate model is a significant
drawback of MPC, especially when faced with model uncertainties. More importantly, proper
tuning of MPC cost components can be tricky and time-consuming when carried out manually,
especially in the presence of economic and/or nonconvex terms in the objective. Conversely,
RL can learn a policy without an explicit model of the system, making it well-suited for
environments with unknown or complex dynamics, as it only requires crafting a meaningful
cost signal. Despite this advantage, RL algorithms struggle to provide formal guarantees on
behavior, such as stability or constraint satisfaction. Furthermore, integrating specific design
choices directly into the learning process remains a nontrivial task.

Kerim Dzhumageldyev Master of Science Thesis

2-2 Reinforcement Learning 9

As a notational remark, throughout this thesis, whenever MPC-based RL is used, the actual
system state and action are denoted by s and a, respectively, while the MPC-predicted states
and actions are denoted by xk and uk, with X = [x0, . . . , xN] and U = [u0, . . . , uN−1]. Since
the methods proposed in this thesis rely on MPC-based RL, this convention is consistently
used also in Chapters 4 and 5.

To leverage the strengths of both approaches, the MPC-based RL framework, originally pro-
posed in [18], is introduced. In this framework, a parametric MPC acts as both a policy
provider and a function approximator, while RL adjusts the MPC parameters to enhance
performance. The framework can be visually represented in Figure 2-2 [5]. This diagram
mirrors the generic RL architecture in Figure 2-1, but now explicitly embeds the parametric
MPC as the policy approximator.

In this formulation, the parametric MPC is generally used to approximate the value function
Vθ, as defined in (2-10). Note that representing Vθ with MPC is not required, as alternative
value-function approximators can be used within the MPC-based RL framework [18, 4].

Vθ(s) = min
X,U,Σ

λθ(x0) + γN
RL

(
ℓf,θ(xN) + w⊤

f σN

)
+

N−1∑
k=0

γk
RL

(
ℓθ(xk, uk) + w⊤σk

)
(2-10a)

s.t. xk+1 = fθ(xk, uk), k = 0, . . . , N − 1 (2-10b)
x0 = s, (2-10c)
g(uk) ≤ 0, k = 0, . . . , N − 1 (2-10d)
cθ(xk, uk) ≤ σk, k = 0, . . . , N − 1 (2-10e)

cf
θ (xN) ≤ σN . (2-10f)

Under this parameterization, λθ : S → R represents an initial cost term. The stage cost ℓθ :
S×A → R measures the cost associated with a given predicted state x and a predicted input u,
while the terminal cost ℓf,θ : S → R penalizes deviations from the desired terminal conditions
[18, 4]. The system dynamics are modeled using the function fθ : S × A → S, which is a
parameterized approximation of the true system dynamics. The function g : A → R represents
input constraints, such as actuator limits. Inequality constraints are expressed as cθ : S×A →
R, for mixed state-input constraints and cf

θ : S → R for terminal constraints [18, 4]. Slack
variables Σ =

[
σ0 . . . σN

]⊤
are introduced to relax these constraints when necessary, ensuring

feasibility. The weights w and wf are assigned to these slack variables, controlling the degree
of constraint relaxation by penalizing larger slack variables [18, 4]. Larger values of these
weights render the constraints more rigid, closely approximating the behavior of an unrelaxed
formulation, while smaller values provide greater flexibility by allowing the controlled violation
of the original -inequalities, if needed. Additionally, the policy derived from the MPC always
applies the first optimal control input (u⋆

0), from the computed sequence of control inputs,
given as πθ(s) = u⋆

0. Similarly, the parametrized MPC action-value function Qθ(s, a) can be
defined as follows:

Qθ(s, a) = min
X,U,Σ

(2-10a) (2-11a)

s.t. (2-10b)− (2-10f) (2-11b)
u0 = a, (2-11c)

Master of Science Thesis Kerim Dzhumageldyev

10 Theoretical Background

which resembles Vθ(s), with the addition of the input constraint u0 = a [18, 4]. The RL policy
is then obtained by selecting the action that minimizes the learned action-value function, as
shown before:

πθ(s) = arg min
a

Qθ(s, a). (2-12a)

RL Agent

Environment

Parametric MPC

state
parameters

cost

action

Figure 2-2: Diagram of the MPC-based RL architecture. [5]

2-2-2 Q-learning

The MPC-based RL framework can be adapted to a variety of RL algorithms. However, this
thesis concentrates on Q-learning, a value-based method. The core idea of the Q-learning
algortihm is to minimize the Bellman residual

min
θ

E
[
∥Q⋆(s, a)−Qθ(s, a)∥2

]
, (2-13)

in order to learn the optimal action-value function and subsequently recover the optimal policy
from it. In its recursive formulation, minimizing the Bellman residual amounts to driving the
expected Temporal Difference (TD) error, defined as

τk = L(sk, ak) + γRL min
ak+1

Qθ(sk+1, ak+1)−Qθ(sk, ak), (2-14)

to zero, where minak+1 Qθ(sk+1, ak+1) reflects the greedy nature of Q-learning. This term
ensures that the action selected at the next state minimizes the action-value estimate, priori-
tizing long-term cost reduction rather than strictly following the current policy. Alternatively,
using the Bellman equation Vθ(sk) = minak+1 Qθ(sk+1, ak+1), the TD error can also be written
as

τk = L(sk, ak) + γRLVθ(sk+1)−Qθ(sk, ak). (2-15)

Kerim Dzhumageldyev Master of Science Thesis

2-3 Control Barrier Functions 11

Using (2-9) with ψ(sk, ak, sk+1, θ) = τ2
k [5, 30] and differentiating ψ(sk, ak, sk+1, θ) w.r.t θ

under a semi-gradient (i.e. treating the target L(sk, ak) + γVθ(sk+1)as constant) yields the
parameter update

θ ← θ + ητk∇θQθ(sk, ak), (2-16)

where η is the size of the update step [32, 18, 30].

2-2-3 Computing Sensitivities

To learn the MPC parameters using Q-learning, it is necessary to compute ∇θQθ(sk, ak) in
(2-16), the sensitivities of the MPC solution with respect to θ. To this end, the Lagrangian
of the Qθ(s, a) MPC problem is introduced [18]:

Lθ(s, a, y) = λθ(x0) + γNℓf,θ(xN) + χ⊤
0 (x0 − s) + µ⊤

Nh
f
θ (xN)

+
N−1∑
k=0

χ⊤
k+1

(
fθ(xk, uk)− xk+1

)
+ ν⊤

k gθ(uk)

+ γkℓθ(xk, uk) + µ⊤
k hθ(xk, uk) + ζ⊤(u0 − a),

(2-17)

where χ, µ, ν, ζ are the Lagrange multipliers associated with the constraints of the action-value
function, in equation (2-11) [18]. Let y = (x, u, χ, µ, ν, ζ) denote the collection of primal–dual
variables for the action-value problem. With the Lagrangian in place, the sensitivities of the
action-value function are obtained as [18]:

∇θQθ(s, a) = ∇θLθ(s, a, y⋆), (2-18)

where y⋆ is a primal–dual optimal solution (KKT point).

Additionally, interior-point techniques are adopted for solving the MPCs in (2-10) and (2-11)
to ensure that the gradients of inequality constraints remain well defined [18]. Accordingly,
in this thesis the MPCs are solved using IPOPT, an interior-point optimizer [31].

2-3 Control Barrier Functions

Control Barrier Functions are powerful tools used as safety certificates to ensure that a sys-
tem operates safely, by maintaining specific system states within a set of safe states. This
section develops the CBF framework by first reviewing Nagumo’s theorem, which provides
the boundary condition used to establish forward invariance. Next, Lyapunov and Control
Lyapunov functions (CLFs) are revisited to highlight the parallel with CBFs and to motivate
CBFs as a safety-oriented counterpart to CLFs. With these preliminaries in place, the core
CBF condition is presented together with its integration into CBF-based controllers. Expo-
nential CBFs are introduced next and serve as the primary formulation used for the methods
developed in the thesis. The section concludes with the Optimal-Decay CBF, which is central
to one of the proposed methods. Throughout this section, standard control notation x and u
is used to denote the system state and input, respectively.

Master of Science Thesis Kerim Dzhumageldyev

12 Theoretical Background

2-3-1 Nagumo’s Theorem

The safety guarantee given by the CBF is achieved through the concept of forward invariance
[8, 10]. Forward invariance entails that for a given dynamical system and a set C ⊆ Rn, any
trajectory of the system that starts inside the set C remains within C for all future times. To
illustrate the concept, Figure 2-3 is constructed, depicting a safe set and an unsafe set. For
the former set, forward invariance holds because the system trajectory remains within the
circular set. The latter, unsafe set, clearly shows the trajectories leaving the set, violating
the forward invariance principle [8, 10].

Safe Set Unsafe Set

Figure 2-3: Illustration of a Safe Set and an Unsafe Set.

To enforce forward invariance, barrier functions leverage Nagumo’s theorem [22, 8]. More
precisely, consider the autonomous system

ẋ = f(x), (2-19)

where x ∈ X ⊆ Rn is the state of the system, and f : X → X represents its continuous-
time dynamics. Now, the safe set C can be defined as a superlevel set of a continuously
differentiable function h : X → R, as follows:

C = {x ∈ X | h(x) ≥ 0} . (2-20)

Here, h(·) is a function that encodes safety as a constraint to be satisfied along state trajec-
tories, where h(x) > 0 is a point on the interior of the safe set and h(x) = 0 on the boundary
of the safe set ∂C. In Figure 2-3, the black outline marks ∂C.
To ensure forward invaraince, Nagumo’s theorem states that, for the set C to be invariant,
the derivative of h(x) must be non-negative on the boundary of C:

C is invariant ⇐⇒ ḣ(x) ≥ 0, ∀x ∈ ∂C. (2-21)

Under this condition, trajectories that reach the boundary are either steered along the bound-
ary ∂C when ḣ(x) = 0, or back into C when ḣ(x) > 0. As such, the condition guarantees that
once the systems start within the safe set C it never leaves it, avoiding any unsafe behavior
and enforcing forward invariance.

Kerim Dzhumageldyev Master of Science Thesis

2-3 Control Barrier Functions 13

2-3-2 Control Lyapunov Functions

Lyapunov functions and CLFs play a central role in the stability analysis of nonlinear systems
[19]. Lyapunov functions are scalar certificates of stability and under strict decrease conditions
they also certify convergence to the equilibrium. Specifically, a Lyapunov function V : X → R
is a positive definite function that decreases along system trajectories [19]. The Lyapunov
function must satisfy the following conditions:

V (0) = 0, V (x) > 0, ∀x ̸= 0, V̇ (x) = ∇V ⊤(x)ẋ ≤ 0, ∀x ̸= 0. (2-22)

The non-positivity condition of V̇ (x) implies that V (x) is non-increasing, so every closed
sublevel set of V (x) is forward invariant. When the Lyapunov function is strict (i.e., V̇ (x) < 0
for x ̸= 0), the trajectory then converges to the equilibrium [19].

Building on the concept of Lyapunov functions, CLFs were introduced to extend stability
guarantees to control systems [29, 19]. The idea is to select control actions that can still
enforce the Lyapunov decrease condition and thus preserve stability. More precisely, a CLF
V : X → R ensures that there exists a control input u ∈ U ⊆ Rm such that the derivative of
V (x) can be made negative:

inf
u∈U

V̇ (x, u) ≤ 0, ∀x ̸= 0, (2-23)

where U is the set of feasible control actions. In other words, for every state x ̸= 0, if a valid
CLF that satisfies equation (2-22) is found, it can be leveraged to ensure system stability
[29, 19]. Additionally, a CLF with a decay-rate guarantee can also be imposed:

inf
u∈U

V̇ (x, u) ≤ −γCLF(V (x)), ∀x ̸= 0, (2-24)

where γCLF(·) is a class K1 function.

While CLFs are effective in guaranteeing stability, they do not inherently handle safety con-
straints. The introduction of barrier Lyapunov functions is an attempt to address this gap by
providing invariant level sets that ensure safety. However, the barrier Lyapunov functions are
often overly conservative as they require invariance for every level set of the function. This
requirement limits the flexibility of the control strategy [8]. Such conservatism motivated
the development of CBFs, which focus specifically on maintaining safety in a less restrictive
manner by requiring the invariance only over the safety set [8].

2-3-3 Control Barrier Functions

CBFs provide a safety-oriented counterpart to CLFs by prioritizing safety over stability. In
contrast to CLFs, which aim to drive the system state toward a stable region, CBFs are
designed to ensure that the system state remains within a predefined safe set C [8]. Consider
the continuous-time control-affine system

ẋ = f(x) + g(x)u, (2-25)
1Class K definition: A continuous function α : [0, a) → [0, ∞) is said to belong to class K if it is strictly

increasing and α(0) = 0. [19]

Master of Science Thesis Kerim Dzhumageldyev

14 Theoretical Background

where f : X → X and g : X → Rn×m are locally Lipschitz. The safe set C for this system is
defined as the superlevel set of a continuously differentiable function h : X → R:

C = {x ∈ X | h(x) ≥ 0} . (2-26)

The goal of a CBF is to ensure that the system trajectories do not leave this safe set C. To
achieve this, CBFs impose constraints on how h(x) changes over time as the system evolves.
Specifically, CBFs regulate the time derivative ḣ(x, u) across the safe set so trajectories are not
driven out, and at the boundary the condition forbids outward crossing. The CBF condition
for the continuous-time system is defined as:

sup
u∈U

ḣ(x, u) = sup
u∈U

[
∇h(x)⊤(f(x) + g(x)u)

]
≥ −α(h(x)), ∀x ∈ C, (2-27)

where α is a class K function. The use of a class K function introduces flexibility in how strictly
the safety constraints is enforced [10, 8]. To understand it visually, see Figure 2-4a, where the
blue dotted curve represents the boundary of the CBF condition ḣ(x, u) = −α(h(x)) and the
black curve represents the trajectory of ḣ(x, u). In other words, the blue curve acts as a lower
bound on ḣ(x, u), where the CBF condition ensures that ḣ(x, u) does not drop below this
bound. Far from the boundary, the CBF condition permits larger negative values of ḣ(x, u),
whereas near the boundary, the permissible decrease in of ḣ(x, u) approaches zero. As such,
when the CBF condition is satisfied, there exists a control input that keeps the trajectories
within the safe set C, thereby preserving safety at all times [8].
CBFs are particularly effective in systems where safety is critical but stability to a specific
equilibrium is not necessarily the primary objective. By ensuring forward invariance of the safe
set, CBFs guarantee that the system operates within safe bounds, as such safety is guaranteed
regardless of whether the system reaches a specific stable equilibrium state [10, 8].
To further highlight the difference between CLF and CBF configurations, see Figure 2-4. For
the CLF condition, in Figure 2-4b, the CLF imposes an upper bound on V̇ (x, u) enforcing a
monotonic decrease of V (x) and driving the state towards a target equilibrium or trajectory.
In contrast, Figure 2-4a illustrates the CBF lower bound condition on ḣ(x, u) previously
discussed, which keeps the system within this safe set and prevents outward crossing.

(a) CBF condition visualized (b) CLF conditon visualized

Figure 2-4: CBF and CLF conditions visualized. (a): enforcing ḣ(x, u) ≥ −α(x) keeps the state
within the safe set (safety). (b): enforcing V̇ (x, u) ≤ −γ(x) drives the system toward the target
(stability).

Kerim Dzhumageldyev Master of Science Thesis

2-3 Control Barrier Functions 15

The concept outlined above holds only for continuous-time systems. The previously defined
concept of CBFs can be extended to the discrete-time domain [1]. Now, consider a discrete-
time control system of the form

xk+1 = f(xk, uk), (2-28)

where f : X × U → X is a function representing the discrete-time dynamics. The safe set C
is again defined as the superlevel set of a function h(·):

C = {xk ∈ X | h(xk) ≥ 0}. (2-29)

To ensure that the state remains within the safe set C, the discrete CBF condition is given
by

h(xk+1)− h(xk) ≥ −α(h(xk)) ∀xk ∈ C, (2-30)

where the set C is rendered control invariant as long as there exists a control input uk that
satisfies this inequality. In this condition, α is a class K function that satisfies α(r) < r for
all r > 0. This condition limits the rate at which h(xk) may decrease by lower bounding
the forward difference h(xk+1) − h(xk) rather than the time derivative ḣ(x, u). It avoids
computing ḣ(x, u) and is useful in discrete-time settings, for example when embedding CBFs
in MPC, as will be shown further on. Similarly to the continuous-time case, the class K
function α provides flexibility in enforcing the safety condition [1].

The CBFs explained and studied in this thesis belong to the category of Zeroing CBFs (ZCBF)
[10]. The main idea of a Zeroing CBF, is that as the system trajectory approaches the
boundary of this safe set, the value of the barrier function approaches zero, hence the name
‘zeroing’ function [10]. Moreover, it should be noted that the different types of CBFs covered
in the following sections would be an extension of the ZCBF. However, other types of CBFs
do exist like the Reciprocal CBF, but they will not be handeled in this thesis.

Relative Degree

An important concept within CBFs is relative degree. It is defined as the number of times
you need to differentiate the safety condition before the control input explicitly appears in
the expression. For example, consider a simple system with position x, velocity v, and control
input u acting as acceleration:

ẋ = v, v̇ = u. (2-31)

If the safety condition is defined on the position, for example h(x) = x − xmin ≥ 0, then
differentiating once gives ḣ(x) = v, which does not yet contain u. Differentiating a second
time yields ḧ(x) = u, where the control input finally appears. Thus, this constraint has
relative degree 2. On the other hand, if the safety condition is defined on velocity, for example
h(v) = vmax − v ≥ 0, then differentiating once immediately gives ḣ(v) = −u, so the control
input appears after just one derivative, meaning its of relative degree one.

The proposed methods in this thesis do not employ CBFs with relative degree higher than one.
However, CBFs with higher relative degree are presented here, as the concept is fundamental to

Master of Science Thesis Kerim Dzhumageldyev

16 Theoretical Background

the broader CBF framework and necessary for understanding one of the approaches discussed
in the literature review. To formally present the concept, consider the following control-affine
system

ẋ = f(x) + g(x)u, y = h(x), (2-32)

where y is the output set equal to h(x). The relative degree of h(x), with respect to the given
dynamics in 2-32, is the number of times h(x) must be differentiated with respect to time
until the control input u explicitly appears [24, 8]. Differentiating once gives

ḣ(x) = ∂h

∂x
ẋ = ∂h

∂x
f(x) + ∂h

∂x
g(x)u = Lfh(x) + Lgh(x)u, (2-33)

where Lf and Lg denote the Lie derivatives2. If Lgh(x) ̸= 0, the input appears in the first
derivative and h(x) has relative degree 1. If Lgh(x) = 0, further differentiation is needed. A
second differentiation yields

ḧ(x) = L2
fh(x) + LgLfh(x)u. (2-34)

So if LgLfh(x) ̸= 0, the relative degree is 2. More generally, the relative degree of h(x) is the
smallest r such that

h(r)(x) = Lr
fh(x) + LgL

r−1
f h(x)u, (2-35)

where LgL
r−1
f h(x) ̸= 0 ensures the input u explicitly appears. The barrier function h(x) is

then said to have relative degree r with respect to the system dynamics [24, 8, 33].
This motivates the Higher Order CBF (HOCBF) formulation, which extends standard CBFs
to systems with relative degree r > 1. HOCBFs achieve this by constructing a hierarchy of
auxiliary functions, where each level incorporates a class K function that enforces a stabilizing
condition on the previous derivative. In this way, HOCBFs can be interpreted as a recursive
chain of barrier-like conditions applied to successive derivatives of h(x), ensuring that safety
is preserved until the control input explicitly enters the dynamics.
To define an HOCBF, consider a sequence of auxiliary functions ψi(x) for i ∈ {0, . . . , r}:

ψ0(x) = h(x), (2-36)

ψ1(x) = ψ̇0(x) + α0(ψ0(x)), (2-37)
...

ψi(x) = ψ̇i−1(x) + αi−1(ψi−1(x)), (2-38)
where each αi is a class K function that shapes how aggressively the safety constraint is
enforced at that level.
The HOCBF condition is then given by

Lr
fh(x) + LgL

r−1
f h(x)u+ αr(ψr−1(x)) ≥ 0. (2-39)

The recursive structure ensures that the auxiliary functions ψi(x) remain nonnegative, and
together with the class K functions, this guarantees that the safe set C is rendered control
invariant. Thus, even when the control input u influences h(x) only after multiple differen-
tiations, the system remains within the safe set [33]. An equivalent HOCBF framework for
discrete-time systems is presented in [35].

2Lie derivatives are defined as Lf h(x) = ∂h
∂x

f(x) and Lgh(x) = ∂h
∂x

g(x), which represent the rate of change
of h(x) along the vector fields f(x) and g(x), respectively.

Kerim Dzhumageldyev Master of Science Thesis

2-3 Control Barrier Functions 17

2-3-4 CBF-based Controllers

Having covered the fundamentals of CBFs, their main use cases in control systems will be
explained in this section. CBFs are typically employed in optimization-based controllers. In
literature, this is most commonly seen in the CLF-CBF-QP (Control Lyapunov Function -
Control Barrier Function Quadratic Program) formulation and the MPC-CBF (Model Pre-
dictive Control with Control Barrier Functions) framework discussed below.

CLF-CBF-QP Formulation

The continuous-time CLF-CBF-QP formulation combines stability and safety constraints into
a single optimization problem [8, 10]. The control input u(x) is obtained by minimizing a
quadratic cost function:

min
u ∈ U , σ

1
2 u

⊤H(x)u+ pσ2 (2-40a)

s.t. LfV (x) + LgV (x)u ≤ −γCLF(V (x)) + σ, (2-40b)
Lfh(x) + Lgh(x)u ≥ −α(h(x)) , (2-40c)

where Lf and Lg denote the Lie derivatives.

In the CLF-CBF-QP above, H(x) ≻ 0 weights the control effort and σ is a slack on the CLF
constraint (2-40b) to ensure the condition can be relaxed when safety needs to be guaranteed.
The variable pσ2 penalizes the use of slack variable σ, so it is used only when necessary.
Constraint (2-40c) is the CBF condition enforcing safety safety [8, 10]. An equivalent discrete-
time version is given in [38].

MPC-CBF Formulation

The MPC-CBF formulation integrates the optimal control capabilities of MPC with the safety
guarantees provided by the CBF formulation. The combination ensures that the system
maintains both optimal performance and safety by encoding thr CBF as a constraint within
the MPC framework [38]. Therefore, the optimization problem can be formulated as follows:

min
X,U

ℓf (xN) +
N−1∑
k=0

ℓ(xk, uk) (2-41a)

s.t. xk+1 = f(xk, uk), k = 0, . . . , N − 1, (2-41b)
xk ∈ X , k = 0, . . . , N, (2-41c)
uk ∈ U , k = 0, . . . , N − 1, (2-41d)
x0 = xcurrent, (2-41e)
xN ∈ Xf , (2-41f)
h(xk+1)− h(xk) ≥ −α

(
h(xk)

)
, k = 0, . . . , N − 1. (2-41g)

Master of Science Thesis Kerim Dzhumageldyev

18 Theoretical Background

The discrete-time CBF constraint, in equation (2-41g), ensures that the predicted state at
each time step remains in a safe set over the entire prediction horizon [38].

Since the MPC-CBF scheme predicts the evolution of the dynamics along the horizon, it is
inherently less myopic than the CLF-CBF-QP, which only considers the next time step. This
allows the MPC to possibly find both safer and more performing trajectories. Additionally,
because MPC-CBF enforces the safety condition over a receding horizon, it can improve fea-
sibility by anticipating future violations and selecting trajectories that remain safe, unlike
CLF-CBF-QP which enforces the CBF only at the next step. However, the MPC-CBF for-
mulation often has higher computational complexity than the CLF-CBF-QP due to solving
a receding horizon optimization problem [38].

Input Constraints

Feasibility issues often arise in CBF-based controllers when input constraints are present.
These constraints are typically actuator limits and can be represented as U = {u | umin ≤
u ≤ umax}. Such bounds reduce the admissible control inputs so that, for some states,
no u ∈ U satisfies the CBF inequality, making the problem infeasible. Equivalently, input
constraints shrink the forward invariant safe set by excluding actions that would otherwise
maintain invariance.

2-3-5 Exponential Control Barrier Functions

Exponential Control Barrier Functions (eCBFs) extend CBFs by selecting a linear class K
function, α(h) = kbh, which imposes an exponential-decay bound in the safety constraint
[24, 8]. The scalar gain kb acts as a tunable parameter that determines how fast trajectories
may approach the boundary of the safe set. For a control-affine system, as defined in (2-25),
with a safe set C = {x ∈ X | h(x) ≥ 0}, the eCBF condition is given by

sup
u∈U

(Lfh(x) + Lgh(x)u+ kbh(x)) ≥ 0, (2-42)

where kb > 0. Equivalently, the condition can also be written in the following exponential-
decay form:

h(xt) ≥ h(x0)e−kbt, (2-43)

where h(x0) is the initial CBF value evaluated at the initial state x0 [24, 8].

When extending the framework to discrete-time systems, similar principles apply. For discrete-
time systems of the form (2-28) with a safe set, C = {xk ∈ X | h(xk) ≥ 0}, the eCBF
counterpart is

h(xk+1)− h(xk) ≥ −γh(xk), (2-44)

where γ ∈ (0, 1] is a parameter governing the exponential decay in the discrete-time setting.
This condition ensures that at each time step, the barrier function decreases by a fixed
proportion of its current value. This proportional decrease enforces an exponential decay
over in discrete time, as given by the equation below:

h(xk) ≥ h(x0)(1− γ)k. (2-45)

Kerim Dzhumageldyev Master of Science Thesis

2-3 Control Barrier Functions 19

This discrete-time condition mirrors the exponential decay discussed in the continuous-time
case and ensures that the system state remains within the safe set while decaying at a con-
trolled rate over time [1].

The discrete eCBF condition is central to several methods in this thesis and the parameter
γ (the decay rate) plays a key role. To build intuition about its influence, Figure 2-5 shows
trajectories for several γ values in a simple obstacle-avoidance task with a circular obstacle.
A larger decay rate γ makes the per-step lower bound (1 − γ)h(xk) decay more rapidly. As
a result, a smaller h(xk+1) is admissible at the next time step, leading to less conservative
behavior because the solver can choose values closer to the safety boundary. This can be seen
in Figure 2-5, where with γ = 0.9 the trajectory runs along the boundary of the safe set. A
smaller decay rate γ makes the per-step lower bound (1 − γ)h(xk) decay more slowly. As a
result, h(xk+1) cannot drop as low as it could with a larger γ, leading to more conservative
behavior because the solver must choose values farther from the safety boundary. This can
be seen in Figure 2-5, where with γ = 0.1 the trajectory stays well inside the safe set, far
from the boundary.

Figure 2-5: Different γ (decay rate) values for an MPC-CBF with D-eCBF and horizon N=8.

2-3-6 Optimal Decay CBFs

As discussed earlier, a major limitation of nominal CBFs is their inability to handle infeasibil-
ities caused by input constraints. Optimal Decay Control Barrier Functions (OPTD-CBFs)
address this by optimizing the decay rate γ (or kb in the continuous case) of the eCBF [37].
OPTD-CBF replaces the fixed decay rate with a dynamic decay variable ω leading to

Lfh(x) + Lgh(x) ≥ −ωh(x). (2-46)

Master of Science Thesis Kerim Dzhumageldyev

20 Theoretical Background

The decay term is then optimized within the OPTD-CBF-QP by treating ω as a descion
variable:

min
u ∈ U , ω ∈ (0, 1]

1
2∥u− k(x)∥2 + Pω(ω − ω̄)2 (2-47a)

s.t. Lfh(x) + Lgh(x)u ≥ −ω
(
h(x)

)
, (2-47b)

u ∈ U . (2-47c)

where Pω and ω̄ are scalars used to tune performance [37] and k : X → U is a nominal
controller. Here ω̄ serves as a reference decay rate that guides the value of ω. The weight Pω

regulates how tightly ω is pulled towards ω̄. A smaller Pω reduces the penalty for deviations
of ω from ω̄, making ω more adaptive. Conversely, a larger Pω keeps ω closer to ω̄. Moreover,
as Pω → ∞, ω is forced to always equal ω̄, whereby the formulation becomes equivalent to
the nominal exponential CBF constraint with decay rate given by ω̄ [37]. The choice of Pω

and ω̄ are design decisions made by the the practitioner to balance adaptivity of ω.

Additionally, the concept of optimal decay was extended to the nonlinear MPC (NMPC)
formulation in [36]. In that work, the linear decay rate γk in the exponential CBF is held
fixed rather than treated as a decision variable, as in the QP above (2-47). Instead, the
NMPC formulation introduces additional decision variables Ω = [ω0, . . . , ωMCLF−1]T to relax
the CBF constraint through h

(
xk+1

)
≥ ωk

(
1 − γk

)
h

(
xk

)
. This relaxation enhances both

performance and feasibility by allowing the controller to adapt the safety margin dynamically
across the prediction horizon. To regulate the Ω variables, the objective includes ψ(ωk),which
penalizes deviations of ωk from ω̄ via Pω(ω − ω̄)2. This follows the same explanation as in
(2-47). Furthermore, the NMPC problem also includes slack variables Σ = [σ0, . . . , σMCLF−1]T
to relax the CLF stability conditions when necessary. The CLF constraint includes a linear
decay rate ρk > 0, which serves as the linear class K function in the CLF condition, similar
to the decay rate in the eCBF. The full NMPC is then given as follows [36]:

J(xk) = min
X,U, Ω, Σ

ℓf (xN) +
N−1∑
k=0

ℓ
(
xk+1, uk

)
+ ψ

(
ωk

)
+ ϕ

(
σk

)
(2-48a)

s.t. xk+1 = f
(
xk, uk

)
, k = 0, . . . , N − 1, (2-48b)

uk ∈ U , xk ∈ X , k = 0, . . . , N − 1, (2-48c)
x0 = xcurrent, (2-48d)
h

(
xk+1

)
≥ ωk

(
1− γk

)
h

(
xk

)
, k = 0, . . . ,MCBF − 1, (2-48e)

ωk ≥ 0, k = 0, . . . ,MCBF − 1, (2-48f)
V

(
xk+1

)
≤

(
1− ρk

)
V

(
xk

)
+ σk, k = 0, . . . ,MCLF − 1. (2-48g)

Here, MCBF and MCLF denote the horizon lengths over which the CBF and CLF constraints
are enforced, respectively. These horizons can be set equal to the prediction horizon N or
chosen smaller, depending on whether the constraints should be enforced over the entire
horizon. The objective also includes ϕ(σk) ≥ 0 to penalize the CLF slack variables Σ [36].

Kerim Dzhumageldyev Master of Science Thesis

Chapter 3

Literature Review

With the rise of machine learning, data-driven techniques have enabled the direct synthesis
of CBFs or the adjustment of the CBF condition. Instead of relying solely on explicit models,
these methods use data collected through interactions with a dynamical system. In this
chapter, a literature review is conducted to cover two types of learning-based CBF methods.
The first and the one most relevant to the methods developed in this thesis focuses on using
data-driven approaches to amend the CBF condition for a given and fixed CBF h(x). These
methods learn to adjust the CBF condition either by learning the class K function itself or by
introducing a learnable penalty term. For example, the method presented in the introduction
of this thesis by Sabouni et al. [26] belongs to this category and will be discussed in detail in
this section. The second type briefly considers approaches that learn the CBF h(x) itself from
data. While this lies outside the scope of this thesis, it is included here to provide perspective
on a different way through which data-driven techniques can contribute to safety.

3-1 Data-Driven Shaping of CBF Constraints

3-1-1 Adaptive class K in RL-MPC with CBF

Recall the Sabouni method introduced in Chapter 1. This subsection examines this method
in greater detail. As outlined earlier, the approach combines MPC–CBF with deep RL to
learn a parameterized MPC together with parameterized CBF and CLF constraints that feed
into the MPC [26]. The CBF condition is formulated in continuous time and enforced at

Master of Science Thesis Kerim Dzhumageldyev

22 Literature Review

discrete-time steps within the MPC. The resulting MPC–CBF problem is

min
X,U, σ

ℓf,θo,k
(xN) +

N−1∑
k=0

ℓθo,k

(
xk, uk

)
+ θT

e,kσ
2 (3-1a)

s.t. xk+1 = f
(
xk, uk

)
, k = 0, . . . , N − 1, (3-1b)

uk ∈ U , k = 0, . . . , N − 1, (3-1c)
xk ∈ X , k = 0, . . . , N, (3-1d)
x0 = xcurrent, (3-1e)
LfV (x) + LgV (x)u ≤ −γθc(V (x)) + σ, (3-1f)
Lfh(x) + Lgh(x)u ≥ −αθc(h(x)). (3-1g)

The learnable parameters are grouped as θk = [θo,k, θc,k, θe,k]⊤ where θo,k parameterizes
the MPC stage and terminal costs, θc,k parameterizes the class-K functions in the CBF/CLF
constraints and θe,k ≥ 0 is a parametrized penalty weight on the CLF slack σ to keep the
CLF constraint soft. The class K function can be parameterized by any standard class K
function, as long as the class K properties are satisfied. These two properties are that it
is strictly increasing and equals zero at the origin. In [26], a linear class K function is
used, αθc,k

(y) = θc,ky with θc,k ∈ R>0. The same parametrization also extends naturally to
HOCBFs, with each class K function corresponding to the higher-order derivatives of h(x)
parameterized in the same way (see Section 2-3-3 for a review of relative degree and HOCBFs).

The learning setup in this paper differs from the MPC-based RL method described earlier
in Section 2-2-1. In this method, the RL state is sk = [xk, uk]T and the RL action is the
parameter vector θk. This allows a policy πw : Rn+m → Rnθ to map sk to the parameter
vector θk, whereby, upon deployment, the MPC samples this parameter vector from the policy
at each time step using the environment state xk and the current MPC action uk, as shown
in Figure 3-1. Training follows a deep actor–critic design that uses NNs for both policy and
value function approximations. The policy πw is a network with weights w, while the critic
Qv is a value function network with weights v. The full pipeline is summarized in Figure 3-1
[26].

Since the policy outputs a new parameter vector θk at each time step, the class-K function
becomes time-varying and enables more expressive safety relaxations than a fixed form such
as α(y) = γy. An additional benefit of this method is lower computational cost compared
to MPC-based RL because it avoids backpropagation through the MPC solver. By contrast,
MPC-based RL can be more sample efficient. Differentiating through the MPC yields richer
gradients updates for learning, which can reduce the number of RL iterations. This advantage
becomes even more substantial when second-order updates are used. Lastly, because the safety
parameters are only updated across episodes and remain fixed within each rollout, there is
no guarantee of safety or feasibility during training.

Kerim Dzhumageldyev Master of Science Thesis

3-1 Data-Driven Shaping of CBF Constraints 23

Figure 3-1: RL training pipeline for the MPC-CBF in [26].

3-1-2 Learning class K for CBF

The class-K function in the CBF condition is often manually designed, for example as linear
or quadratic functions, which limits its expressiveness and adaptability. As a result, it cannot
easily capture the range of system dynamics or scenario-specific requirements. To address this
limitation, in [13], Chriat and Sun propose an Adaptive Multi-step Control Barrier Function
(AM-CBF). In their method, the class-K function is parameterized by a neural network and
trained jointly with a reinforcement learning policy. The training is performed over multiple
rolled out QP steps to mitigate the short-sighted behavior of traditional CBF-QPs (see Section
2-3-4), while execution remains efficient through a single-step CBF-QP that projects the policy
action into the set of safe control actions. Gradients are propagated through this QP, which
enables the entire pipeline to be trained end-to-end [13].

To ensure the learned network defines a valid class K function, the paper enforces its re-
quired properties. Here κ(·) denotes the class K function. It must satisfy two properties: it
is monotonically increasing and it is zero at zero, i.e., κ(0) = 0. Monotonicity is enforced by
constraining the network weights (excluding biases) to be non-negative, achieved by param-
eterizing the weights using absolute-value or exponential functions, which ensures that the
network is monotonically increasing. The zero-at-zero condition is enforced by shifting the
neural network output according to κ(z) = κ′(z)− κ′(0). Satisfying both conditions yields a
learned class K function and the architecture is shown in Fig. 2(b) [13].

The class K function κ(·) is incorporated into the CBF condition, which is subsequently
embedded in a QP formulation. The purpose of this formulation is to project the nominal
action from the RL policy, uRL, to a safe action ur:

Master of Science Thesis Kerim Dzhumageldyev

24 Literature Review

arg min
ur

∥ur − uRL∥2 (3-2a)

s.t. umin ≤ ur ≤ umax, (3-2b)
∂h

∂x

(
f(x) + g(x)ur

)
≥ −κ

(
h(x)

)
. (3-2c)

where umin and umax denote the input bounds. The policy of the RL algorithm is approxi-
mated by a deep neural network. The RL policy and the QP with the neural κ(·) are trained
together by differentiating through the QP. More precisely, differentiation is done through
using the KKT conditions, which due to convexity of the QP can guarantee global optimality
[13]. This is analogous to computing sensitivities in MPC-based RL formulations, where they
are obtained by differentiating the Lagrangian at the primal-dual solution, as described in
Section 2-2-3. As a result, both the policy network and the class K network are updated
simultaneously to maximize an expected reward (or minimize an expected cost). To reduce
myopic behavior, obtain more optimal trajectories, and avoid infeasibility caused by input
constraints, the RL agent collects rewards over multiple steps within each rollout, as shown
in Figure 3-2. At deployment only one QP is solved per step, which keeps execution efficient.
This stands in contrast to the method of [26], which relies on repeatedly solving an MPC [13].

Once again, because safety is enforced only one time step ahead and the safety parameters
remain fixed within each rollout, the controller is more prone to infeasibility during exploration
in training, similar to what was noted for [26]. However, this issue is more severe here since
the QP enforces safety only one step ahead, whereas the MPC formulation in [26] provides
some foresight to preserve feasibility.

Figure 3-2: Neural network architecture for learning the class K function in AM-CBF [13].

3-1-3 BarrierNet: Learned Penalty Terms in CBF Constraints

Similar to the previous method [13], the approach in [34] integrates safety constraints into an
end-to-end trainable architecture. Instead of directly learning the class K function, [34] intro-

Kerim Dzhumageldyev Master of Science Thesis

3-1 Data-Driven Shaping of CBF Constraints 25

duces a penalty function p(z) that modulates the CBF conditions as p(z)α(h(x)), providing
a more flexible and adaptive safety layer within the policy network.

The key idea is that multiplying the class K function by a positive penalty function p(z)
still preserves the CBF condition. As long as p(z) > 0 and it is Lipchitz continuous, the
resulting p(z)α(h(x))) remains a valid class K function. The penalty function as a result can
be amended to reduce the conservativeness typically caused by fixed K terms [34].

However, the choice of the penalty function remains arbitrary. To address this, the paper
proposes parameterizing p(z) with a neural network to learn a flexible penalty function. The
inputs z correspond to neural network inputs, which are a design choice and may include
environmental features such as obstacle positions or velocities. In addition, the approach
is combined with HOCBFs (see Section 2-3-3), where the neural network outputs a set of
penalty terms pi(z) that enter directly into the recursive HOCBF condition:

ψi(x, z) := ψ̇i−1(x, z) + pi(z)αi(ψi−1(x, z)), i ∈ {1, . . . ,m}, (3-3)

with ψ0(x, z) = h(x) as the barrier function defining the safe set.

The neural network is then applied in a similar way to the previous method by incorporating
it into a QP to generate safe control actions, whereby the QP can be formulated as follows.

u⋆ = arg min
u

1
2 u

⊤H(z | θh)u+ F (z | θf)⊤ u (3-4a)

s.t.
Lm

f bj(x) +
[
LgL

m−1
f bj(x)

]
u

+O
(
bj(x), z | θp

)
+ pm

(
z | θm

p

)
αm

(
ψm−1(x, z | θp)

)
≥ 0,

j ∈ S, (3-4b)

umin ≤ u ≤ umax. (3-4c)

Here, θh, θf , and θp = (θ1
p, . . . , θ

m
p) are trainable parameters that, among others, parameterize

the matrices H, F , and the penalty terms pi(z). The matrices H, F and the penalty terms
pi(z) are also parameterized. The additional term O

(
bj(x), z | θp

)
represents lower-order com-

ponents from the recursive HOCBF expansion, parameterized by the network and dependent
on both the state x and the neural network input z. To guarantee Lipschitz continuity of
the learned pi(z), the penalty network with parameters θp uses continuously differentiable
activations such as Sigmoid functions. The policy network with parameters θf is not subject
to this restriction [34].

In this setup, F (z | θf) represents the control action proposed by an external (nominal) con-
troller, which the QP then projects onto the safe set to produce the closest control input that
still satisfies the barrier constraints. The matrix H (z | θh) penalizes deviations between the
nominal control action and the projected safe control action. By substituting F = −Hunom(z)
and completing the square, the objective function can be rewritten as

1
2(u− unom(z))⊤H(u− unom(z))− 1

2u
⊤
nom(z)Hunom(z). (3-5)

As such, the key feature is that this QP-based safety filter acts as a modular safety layer
that can be combined with different types of controllers, similar to the previous method. For

Master of Science Thesis Kerim Dzhumageldyev

26 Literature Review

example, it can be attached to a neural network controller parameterized by θf . Since the
QP is differentiable, the entire combined system remains end-to-end trainable with backprop-
agation, which is performed using the Lagrangian and KKT conditions (see Section 2-2-3).

Similar to the previous method [13], this framework benefits from a lightweight learnable
QP that projects unsafe policies from a learnable controller to a safe set of control actions.
This is less computationally intensive than solving an MPC as in [26]. A strong point of this
approach is that it can also handle higher relative degree CBFs, unlike [13], though [26] can
address them as well. However, since only a penalty function is learned while the class K
function remains fixed, the choice of class K function is still arbitrary.

Moreover, in this method, the learnable controller is trained through supervised learning by
generating a set of control actions using a nominal controller and fitting to them. As such,
unlike RL-based methods presented before, which can actively explore and adapt policies
during training, this approach relies entirely on supervised data from a nominal controller. Its
performance is therefore tied to the quality of the nominal controller used for data generation.
Nevertheless, this QP framework remains differentiable and could in principle be integrated
into an RL-based approach in a manner similar to [13].

3-2 Learning CBF From Data

3-2-1 Neural CBFs

Unlike traditional CBFs, where the function h(x) is assumed to be explicitly known or has
a simple closed-form expression, neural CBFs are employed when h(x) is unknown or lacks
a straightforward analytical form. In these cases, a neural network is used to approximate
h(x) [16]. Specifically, h(x) is parametrized, and then trained using randomly sampled data
points that are labeled on the basis of whether they belong to safe or unsafe sets. In [16], the
training of the neural CBF is conducted using the following empirical loss function:

LV = λ1
1

Nsafe

Nsafe∑
i=1

max(h(xi), 0)+λ2
1

Nunsafe

Nunsafe∑
i=1

max(−h(xi), 0)+λ3
1

Ntotal

N∑
i=1

r(xi). (3-6)

In this formulation, Nsafe represents the number of samples labeled as safe, while Nunsafe is
the number of samples labeled as unsafe, and the total number of sampled states is denoted
by Ntotal. The terms λ1, λ2, and λ3 are hyper-parameters that weigh the contributions of
the respective components in the loss function. The first term penalizes safe points for which
h(x) < 0, encouraging h(x) ≥ 0 for all points in the safe set. The second term penalizes
unsafe points for which h(x) ≥ 0, promoting h(x) < 0 for all points in the unsafe set. Lastly,
the third term penalizes slack variables r(x), which are introduced to allow small, controlled
violations of the safety constraints, ensuring feasibility for control tasks [16].

This empirical loss can be minimized using stochastic gradient descent with respect to vari-
ables in the neural network. However, zero empirical loss does not guarantee a valid CBF,
since the neural network is trained on a finite set of sampled points from the state space. As
such, there could be an existing set of points that were not sampled and would violate the
trained neural CBF. To that end, after the convergence of the training process there is a need

Kerim Dzhumageldyev Master of Science Thesis

3-2 Learning CBF From Data 27

for verification of the learned neural CBF [16]. Verification for learned certificates such as
CBFs can be achieved through probabilistic methods based on generalization error bounds,
Lipschitz arguments, and optimization-based methods.

1. Probabilistic Methods: Probabilistic methods based on error bounds sample a subset
of the state space, validate the CBF at these points, and then statistically infer its
validity across the entire space. While straightforward to implement, this approach
is not the most reliable as it does not provide deterministic guarantees; statistically
unlikely points may still fail to satisfy the safety condition [16].

2. Lipschitz Property-Based Methods: An alternative method relies on the Lipschitz
property, defined as |f(x1)− f(x2)| ≤ L · ∥x1 − x2∥, where L is the Lipschitz constant
that bounds the function between two points, based on the worst-case rate of change.
This property limits how much a function can change over an interval. By checking
the safety constraints at sampled grid points, stability can be guaranteed between those
points if the function’s rate of change remains below a given threshold. However, this
approach struggles with high-dimensional systems due to the curse of dimensionality
and is often overly conservative, as it assumes the worst-case variation of the function
[16].

3. Optimization-Based Methods: The optimization-based verification method runs
verification alongside training. When invalid regions are detected, counterexamples are
generated to refine the training process. In other words, a learner is responsible for
learning the CBF itself, while a verifier periodically checks if the current CBF is valid.
If the verifier determines the CBF is valid then the training stops, otherwise it feeds
the learning process a counterexample to improve the learning. The verification itself is
performed through optimization techniques, such as Mixed-Integer Linear Programming
(MILP) or Satisfiability Modulo Theories (SMT), which systematically search the state
space to identify regions where the CBF fails to satisfy the required constraints. This
is effective but computationally expensive, as it requires constant interaction between
the learner and verifier [16].

It is also worth noting, even though there are many other varied ways of verifying learning
certificates that have not been explored in this literature review, these three are the most
notable ones.
Another proposed learning-based framework for CBFs is the Policy Neural CBF (PNCBF),
presented in [28]. The PNCBF constructs a CBF using a policy value function, which can be
defined as V h,π(x0) := supt≥0 h(xπ

t), where π is an arbitrary policy and xπ
t is the state at time

t given by following the policy π [28]. The idea is that the policy value function gives an upper
bound on worst-case constraint violation on h(x). The policy value function can be seen as a
valid CBF since it satisfies the conditions V h,π(x) ≥ h(x) and∇V h,π(x)⊤(f(x)+g(x)π(x)) ≤ 0
[28]. The policy value function is approximated offline using a neural network. This is
done by simulating trajectories using the nominal policy (πnom) to collect data points of
(x0,max0≤t≤Th(xt), xT) [28]. Then, using these data points, the network is optimized through
minimizing the following loss function:

L(θ) =
∑
∥V h,π

θ (x)−max(max
t≤s≤T

h(xs), V h,π
θ (xT))∥2. (3-7)

Master of Science Thesis Kerim Dzhumageldyev

28 Literature Review

Following the convergence of the training process for the approximation of V h,π(x0), a con-
troller based on the following QP optimization problem is set up:

min
u
∥u− πnom(x)∥2, s.t. ∇V h,π(x)⊤(f(x) + g(x)u) ≤ −α(V h,π(x)), (3-8)

where ∇V h,π(x)⊤(f(x) + g(x)u) ≤ −α(V h,π(x)) is the safety condition based on the approx-
imated V h,π(x0) and πnom : Rn → Rm is a nominal policy [28].The QP optimization problem
improves the CBF by using the policy generated by the QP optimization controller as the new
nominal policy for constructing an updated PNCBF. This new nominal policy is then used
to re-train the policy value function, resulting in a refined PNCBF with an enlarged safe set.
The process iterates, alternating between policy improvement through the QP optimization
and policy evaluation through re-training, until the safe set reaches its maximum size or no
further improvement is observed [28]. This allows the PNCBF to achieve a larger safe set
compared to handcrafted CBFs or methods based on HOCBFs. Moreover, since the PNCBF
is also trained using sampled data and minimizes an empirical loss, it shares the same limita-
tion as the neural CBF, as its validity is only guaranteed on the sampled points. Therefore,
post-training verification of the learned PNCBF is required to ensure safety across the entire
state space [28].

Kerim Dzhumageldyev Master of Science Thesis

Chapter 4

Methodology

In this chapter, three novel approaches are presented to address the research question posed
in Chapter 1. Each method leverages MPC-based RL, as outlined in Section 2-2-1, to tune
the parameters of a parameterized MPC. These parameters include those defining the class
K function within the discrete CBF condition of the MPC, which was introduced in Section
2-3-3 and defined in equation (2-30), to guarantee safety. In addition, the methods learn or
shape the class K function of the discrete CBF condition, introduced in Section 2-3-3 and de-
fined in equation (2-30), to guarantee safety. The three methods to be explored are Learnable
Optimal Decay CBF (LOPTD-CBF), Neural Network CBF (NN-CBF) and Recurrent Neu-
ral Network CBF (RNN-CBF). As a general remark, these methods parameterize both the
objective function and the CBF condition in the MPC. However, only the parameterization
of the safety condition is discussed here, since the parameterization of the objective function
for MPC-based RL has already been presented in Section 2-2-1. To avoid confusion, in the
remainder of this thesis the actual system states and actions will follow the RL notation s
and a, while the predicted states and actions within the MPC will be denoted by x and u, re-
spectively (as introduced in Section 2-2-1). In this chapter each method’s parametrized MPC
is presented only as the state-value function Vθ(s) (see (2-10)), since the state–action value
function Qθ(s, a) (see (2-11)) is similar and omitted for conciseness. Within this chapter, the
following two assumptions are considered:

Assumption 1. The prediction model f is known and coincides exactly with the true system
dynamics.

In contrast to standard MPC-based RL, the prediction model is kept fixed to preserve formal
safety guarantees. Under model mismatch the CBF condition may fail. Changing the pre-
diction model could cause violations under the true system dynamics. Learning under model
mismatch requires separate treatment and lies outside the scope of this thesis.

Assumption 2. The CBF is known and its safe set C = {s ∈ S | h(s) ≥ 0} equals the true
safe set.

Methods similair to the ones from Section 3-2-1 are not considered. RL in this chapter does
not learn a CBF. The CBF is known a priori.

Master of Science Thesis Kerim Dzhumageldyev

30 Methodology

4-1 Learnable Optimal Decay CBF

Set of Learnable Parameters: {ω̄k,θ, Pωk,θ, ℓθ, ℓf,θ} . The parameters ω̄ and Pω are the
optimal decay variables used in the OPTD-CBF framework (see Eq. (2-47) and Eq.(2-48))
to control the decay decision variable ω through the objective term Pω(ω− ω̄)2. Here, ω̄ acts
as a reference decay rate while Pω is a penalty weight that regulates how strongly ω is kept
near ω̄. Together, they determine how adaptive and conservative the decay variable ω can
be when shaping the CBF constraint. In practice, a small Pω allows ω to vary more freely.
This can improve feasibility and performance. A large Pω restricts ω to remain closer to ω̄,
resulting in a more rigid controller. The functions ℓθ and ℓf,θ represent the stage cost and
terminal cost in the parametrized MPC objective (see Section 2-1-1).

Single CBF Constraint Formulation

A problem in OPTD CBF framework is the selection of sensible OPTD parameters {ω̄, Pω}.
Since selecting these parameters is somewhat arbitrary and problem dependent, an RL agent
is used to tune these quantities for the specific task, while safety remains enforced by the
CBF constraints. Hence, building on the OPTD CBF framework in Section 2-3-6, an MPC-
based RL formulation is obtained by lifting the OPTD parameters {ω̄, Pω} to time-indexed,
learnable parameters {ω̄k,θ, Pωk,θ} over the MPC prediction horizon. The OPTD framework
is adapted to use these parameters to tune the decay rate in the CBF condition at each
prediction step k, yielding the following parametrized MPC value function Vθ(s):

Vθ(s) = min
X,U,Ω,Σ

ℓf,θ(xN) +
N−1∑
k=0

[
ℓθ

(
xk, uk

)
+ ψk,θ

(
ωk

)]
+ wMPC

N−1∑
k=0

σk (4-1a)

s.t. xk+1 = f
(
xk, uk

)
, k = 0, . . . , N − 1, (4-1b)

xk ∈ S, k = 0, . . . , N, (4-1c)
x0 = s, (4-1d)
h

(
xk+1

)
−

(
1− ωk

)
h

(
xk

)
≥ −σk , k = 0, . . . , N − 1, (4-1e)

uk ∈ A, ωk ≥ 0, σk ≥ 0, k = 0, . . . , N − 1, (4-1f)

where Ω = [ω0, . . . , ωN−1]T collects the decision variables that relax the CBF condition at
each time step. The slack variables Σ = [σ0, . . . , σN−1]T maintain feasibility during training
by permitting temporary CBF violations, with their use penalized in the cost through wMPC.

Unlike the slack variables, the Ω decision variables are shaped via the adjusted OPTD penalty
function ψk,θ(ωk) = Pωk,θ(ωk − ω̄k,θ)2, where Pωk,θ and ω̄k,θ are the RL parameters defined
above that govern the decay rate across the prediction horizon. This penalty function lets
each ωk be adjusted toward a reference decay rate through ω̄k,θ and adjust its adaptivity
through Pωk,θ. In this setting, the RL formulation benefits further, since hand-tuning these
parameters across the horizon is arbitrary and difficult.

Kerim Dzhumageldyev Master of Science Thesis

4-2 Neural Network CBF 31

Multiple CBF Constraints Formulation

Extending the framework to multiple CBF constraints needs to be addressed, as this situation
can arise when the system must satisfy several safety conditions simultaneously. For instance,
in obstacle avoidance scenarios, each obstacle would correspond to its own CBF. Therefore,
extending the framework to multiple CBFs requires introducing a separate constraint for
each CBF at every prediction step. Building on the previous single-CBF formulation, let i =
1, . . . ,O denote the CBF indices. For each CBF i and each prediction step k = 0, . . . , N − 1,
there is a need to introduce a decay-rate reference ω̄k,i,θ a penalty weight Pωk,i,θ and the
optimal decay decision vairables Ω = [ω0,0, . . . , ωN−1,O]T . Accordingly, for each new CBF
constraint, a corresponding slack variable σk,i is added. The parametrized MPC then becomes:

Vθ(s) = min
X,U,Ω,Σ

ℓf,θ(xN) +
N−1∑
k=0

ℓθ
(
xk, uk

)
+

N−1∑
k=0

O∑
i=1

ψk,i,θ

(
ωk,i

)
+ wMPC

N−1∑
k=0

O∑
i=1

σk,i

(4-2a)
s.t. xk+1 = f

(
xk, uk

)
, k = 0, . . . , N − 1, (4-2b)

xk ∈ S, k = 0, . . . , N, (4-2c)
uk ∈ A, k = 0, . . . , N − 1, (4-2d)
x0 = s, (4-2e)

hi(xk+1)− (1− ωk,i)hi(xk) ≥ −σk,i,
k = 0, . . . , N − 1,
i = 1, . . . ,O,

(4-2f)

ωk,i ≥ 0, σk,i ≥ 0,
k = 0, . . . , N − 1,
i = 1, . . . ,O.

(4-2g)

However, the number of learnable parameters grows with both the MPC prediction horizon
and the number of CBF constraints. Each CBF at every prediction step introduces a decay
variable ωk,i together with its corresponding reference ω̄k, i, θ and penalty weight Pωk,i, θ.
Longer horizons therefore increase not only the total number of CBF constraints and the
optimal decay decision variables associated with them, but also the dimensionality of the
parameter space to be tuned. Conversely, if the horizon is too short, the RL agent may
lack sufficient flexibility to obtain a satisfactory solution. This strong dependence on the
horizon is a principal limitation of the method. Nonetheless, the same formulation can also
be applied in settings with time-varying constraints by replacing h(xk) with a time-dependent
barrier function h(xk, k). This extension to time-varying constraints does not mitigate the
dependence on the horizon or the limited expressiveness of the parametrization.

4-2 Neural Network CBF

Set of Learnable Parameters: {Wi, bi, ℓθ, ℓf,θ}. The learnable parameters Wi and bi are
the weight matrices and biases of the neural network NNθ(·) respectively, which outputs the
decay rates γi used in the CBF constraint. The functions ℓθ and ℓf,θ are the stage cost and
terminal cost in the MPC objective (see Section 2-1-1).

Master of Science Thesis Kerim Dzhumageldyev

32 Methodology

Single CBF Constraint Formulation

Even though LOPTD-CBF adapts decay rates online and as such enhances feasibility, perfor-
mance is limited by strong dependence on the MPC horizon and by a restricted parametriza-
tion that cannot capture richer state-dependent safety conditions. An alternative that is less
dependent on the horizon and more expressive removes the optimal-decay decision variable
and uses a neural network to output the decay rate γ in the discrete CBF condition (2-30):

h(xk+1)− h(xk) ≥ − γ h(xk) → h(xk+1)− h(xk) ≥ −NNθ(·)h(xk). (4-3)

The neural network takes as input the current state xk and the CBF value h(xk) at each
time step k, making the decay rate a state dependent function. The network can then be
represented as follows:

z(0) =
[
xk

h(xk)

]
,

z(i) = ReLU
(
Wi z

(i−1) + bi
)
, i = 1, . . . , L,

γ = Sigmoid
(
WL+1 z

(L) + bL+1
)
.

A schematic of this neural network is shown in Figure 4-1 below.

…

Figure 4-1: NN-CBF neural network architecture.

Using this network in the CBF constraint yields the following parameterized MPC value
function Vθ(s):

Kerim Dzhumageldyev Master of Science Thesis

4-2 Neural Network CBF 33

Vθ(s) = min
X,U,Σ

ℓf,θ(xN) +
N−1∑
k=0

ℓθ
(
xk, uk

)
+ wMPC

N−1∑
k=0

σk (4-4a)

s.t. xk+1 = f
(
xk, uk

)
, k = 0, . . . , N − 1, (4-4b)

xk ∈ S, k = 0, . . . , N, (4-4c)
uk ∈ A, k = 0, . . . , N − 1, (4-4d)
x0 = s, (4-4e)
h

(
xk+1

)
−

(
1−NNθ(xk, h(xk)

)
h

(
xk

))
≥ −σk, k = 0, . . . , N − 1,

(4-4f)
σk ≥ 0, k = 0, . . . , N − 1. (4-4g)

Compared with the LOPTD-CBF, this method is less dependent on the MPC horizon. This
reduced dependence is especially useful for short horizons, since RL can still learn effective
policies while keeping MPC computational overhead low. Moreover, the NN further enables
richer nonlinear mappings, allowing finer trade-offs between safety and performance. How-
ever, reliance on a NN typically increases the number of trainable parameters relative to
the optimal-decay method. It also introduces topological and hyperparameter choices that
require tuning.

Multiple CBF Constraints Formulation

Extending this framework to multiple CBFs requires only a minor modification. The input
vector is augmented to include the barrier values of all active CBFs. Let O denote the total
number of CBFs, and let i = 1, . . . ,O index them. Then

z(0) =


xk

h1(xk)
...

hO(xk)

 . (4-5)

The final layer of the network is adjusted to produce one decay rate γi per CBF as follows:

γ1
...
γO

 = Sigmoid
(
WL+1, z

(L) + bL+1
)
. (4-6)

Figure 4-2 depicts this expanded network architecture.

Master of Science Thesis Kerim Dzhumageldyev

34 Methodology

…

…

Figure 4-2: NN-CBF neural network architecture extended to handle multiple CBF constraints.

This formulation can also handle time-varying CBFs h(xk, k), such as those arising from mov-
ing obstacles or other dynamic constraints. In this case, the network input can be augmented
with additional contextual information that may aid decision-making. This information, en-
coded at time step k as the context ci(k) for each CBF i = 1, . . . ,O, can represent any relevant
variable associated with the constraint. The augmented input vector is then defined as

z
(0)
k =

[
xk h1(xk, k) · · ·hO(xk, k) c1(k) · · · cO(k)

]⊤
,

In an obstacle avoidance setting, for instance, the context ci(k) may correspond to the position
of obstacle i, written in 1D as its scalar location or, in 2D, as ci(k) = [xi(k), yi(k)]⊤ and
stacked accordingly in the NN input. This augmentation provides additional directional
or contextual information that the scalar barrier functions hi(xk, k) alone cannot capture,
allowing the network to better distinguish, for example, whether an obstacle lies to the left
or right of the system. Including such context can improve performance, but it comes at the
cost of higher input dimensionality, more trainable parameters, and increased computational
load. The resulting MPC formulation for the NN-CBF is then described as follows.

Vθ(s) = min
X,U,Σ

ℓf,θ(xN) +
N−1∑
k=0

ℓθ
(
xk, uk

)
+ wMPC

N−1∑
k=0

O∑
i=1

σk,i (4-7a)

s.t. xk+1 = f
(
xk, uk

)
, k = 0, . . . , N − 1, (4-7b)

xk ∈ S, k = 0, . . . , N, (4-7c)
uk ∈ A, k = 0, . . . , N − 1, (4-7d)
x0 = s, (4-7e)

h
(
xk+1

)
−

(
1−NNθ(xk, hi(xk), ci(k)

)
h

(
xk

))
≥ −σk,i,

k = 0, . . . , N − 1,
i = 1, . . . ,O,

(4-7f)

σk,i ≥ 0,
k = 0, . . . , N − 1,
i = 1, . . . ,O.

(4-7g)

Kerim Dzhumageldyev Master of Science Thesis

4-3 Recurrent Neural Network CBF 35

4-3 Recurrent Neural Network CBF

Set of Learnable Parameters: {Wi, bi,Wq(i) , ℓθ, ℓf,θ} The learnable parameters are the
weight matrices Wi, the biases bi and the recurrent weights Wq(i) of the RNN. Together they
define RNNθ(·), which outputs the decay rates γi used in the CBF constraints. The functions
ℓθ and ℓf,θ are the stage cost and terminal cost in the MPC objective (see Section 2-1-1).

Building on the previous feedforward formulation, an Elman recurrent neural network (RNN)
[17] is used to generate decay rates over prediction the horizon. The previous NN-based CBF
condition is then reformulated by replacing the NN with an RNN:

hi(xk+1)− hi(xk) ≥ −NNθ(·)hi(xk) → hi(xk+1)− hi(xk) ≥ −RNNθ(·)hi(xk). (4-8)

The RNN is defined by the following equations:

z
(0)
k =

[
xk h1(xk, k) · · ·hO(xk, k) c1(k) · · · cO(k)

]⊤
,

q
(i)
k = ReLU

(
Wi z

(0)
k + bi +Wq(i)q

(i)
k−1

)
, i = 1,

q
(i)
k = ReLU

(
Wi q

(i−1)
k + bi +Wq(i)q

(i)
k−1

)
, i = 2, . . . , L,

γ1
...
γO

 = Sigmoid
(
WL+1 q

(L)
k + bL+1

)
,

where q(i)
k denotes the hidden state of layer i at time step k, and the full recurrent neural

network architecture is shown in Figure 4-3.

The key idea is that RNNs store past information in their hidden state. This allows it to
"remember" recent pieces of context information, something a feedforward network does not
explicitly capture. As a result, the RNN is able to handle time-varying CBFs more effectively,
since its structure is designed to exploit temporal relation. For example, it can potentially
store in memory recent obstacle trajectories and velocities through the hidden state. By
storing temporal information in the hidden state, RNNs can also train more sample-efficiently
than feedforward NNs in tasks involving dynamic systems [11]. A sufficiently large feedforward
NN can, in theory, approximate any mapping, including those that depend on past inputs.
However, achieving this typically requires more training samples and is more difficult than
when such temporal structure is inherently imposed, as in the RNN.

In addition to acting as a memory element, the RNN is rolled out across the MPC horizon
by updating its hidden state at each predicted step with the corresponding predicted input,
as illustrated in Figure 4-3. At every horizon step, the predicted state is fed into the RNN,
which outputs the γ value used in the discrete CBF condition. The hidden state is then
passed recursively through the architecture, so that each future step has access not only to
past trajectory information but also to the sequence of predicted inputs along the horizon. In
this way, a point at horizon step k+ 5 receives information given by the input at k+ 4, k+ 3,
k + 2, and so on, through the evolving hidden state. This ensures that the CBF conditions
at different steps of the horizon are temporally connected through the RNN. Once the MPC

Master of Science Thesis Kerim Dzhumageldyev

36 Methodology

optimization is solved and the first control action u⋆
0 is applied, the RNN hidden state is reset

to its value before the optimization, qk−1. It is then updated using the new actual state sk+1,
so that the hidden state becomes consistent with where the system has truly moved. This
guarantees that the hidden state follows the real trajectory of the system rather than the
predicted one.
The RNN can be similarly embedded into a parametrized MPC Vθ(s), as done for the NN-CBF
(4-7).

Vθ(s) = min
X,U,Σ

ℓf,θ(xN) +
N−1∑
k=0

ℓθ
(
xk, uk

)
+ wMPC

N−1∑
k=0

O∑
i=1

σk,i (4-9a)

s.t. xk+1 = f
(
xk, uk

)
, k = 0, . . . , N − 1, (4-9b)

xk ∈ S, k = 0, . . . , N, (4-9c)
uk ∈ A, k = 0, . . . , N − 1, (4-9d)
x0 = s, (4-9e)

h
(
xk+1

)
−

(
1− RNNθ(xk, hi(xk), ci(k)

)
h

(
xk

))
≥ −σk,i,

k = 0, . . . , N − 1,
i = 1, . . . ,O,

(4-9f)

σk,i ≥ 0,
k = 0, . . . , N − 1,
i = 1, . . . ,O.

(4-9g)

…

…

Figure 4-3: RNN-CBF recurrent neural network architecture.

4-4 Training Architecture

The overall training architecture for the methods in this thesis follows the structure in Al-
gorithm 1, where Nepisodes denotes the total number of training episodes. This RL training

Kerim Dzhumageldyev Master of Science Thesis

4-4 Training Architecture 37

process is structured around three MPCs. The first MPC is Vrand,θ(s, ξ), a state value function
that provides the policy during training. To induce exploration, this MPC adds a pertur-
bation term ξ⊤u0 to its objective, where ξ is drawn from a normal distribution. Injecting
noise through the MPC keeps the constraints satisfied and, hence, is preferred to exploration
methods in which the control action is directly perturbed as a = u0 + ξt, which can lead to
constraints violations. Furthermore, the noise level ξ decays during training so the policy
shifts from exploration to exploitation. Lastly, the second and third MPCs compute Vθ(s)
and Qθ(s, a) used to form the TD error in (2-15).
An integral part of the training architecture is the RL stage cost L(s, a), which encodes the
return of the task at hand as per eq. (2-3). In this training architecture, the stage cost is
augmented to include the effect of the slack variables used by the MPC controller as follows.

Laug(sk, ak,Σ⋆
k) = L

(
sk, ak

)
+ wRL

N−1∑
k=0

O∑
i=1

σ⋆
k,i (4-10)

Here, the RL stage cost L(s, a) and can be chosen to be similar to the MPC stage cost ℓθ(s, a)
so that RL stage cost remains aligned with the MPC objective. The second term aggregates
the optimal slack variables Σ⋆ from the optimal solution of the MPC Vrand,θ(sk, ξ). The
weight wRL sets how strongly violations are penalized during learning. These weights can in
principle be different from the weights introduced in the MPC formulations e.g. (4-4).
Using the previously defined Q-learning update (2-16), a per-step update gi = −τi∇θQθ(si, ai)
is computed and stored in a buffer. Once the buffer is full, the stored updates are averaged
to form

gavg = 1
|B|

|B|∑
i=1

gi, (4-11)

where |B| denotes the buffer cardinality. The parameter update follows an adjusted version
of (2-16) that replaces plain gradient descent with an Adam optimizer

θ ← θ − gAdam, gAdam = Adam(gavg, θ), (4-12)

where the Adam algorithm is described in Appendix B.
However, these parameter updates must also respect parameter bounds when required. For
example, if the MPC stage cost ℓθ(xk, uk) must remain positive definite, the relevant param-
eters must be bounded to preserve this property. To allow both lower and upper bounds, the
update step is cast into the following QP, as done in [5]:

∆θ⋆ = arg min
∆θ

1
2∆θ⊤∆θ + αg⊤

Adam∆θ (4-13a)

s.t. θlb ≤ θ + ∆θ ≤ θub, (4-13b)
∆θlb ≤ ∆θ ≤ ∆θub, (4-13c)

where ∆θ⋆ is the projection of −αg⊤
Adam onto the bounded parameter space. The bounds

in the QP are given by θlb and θub, while ∆θlb and ∆θub limits the rate of change. The
parameter update is then given by θ ← θ + ∆θ⋆. In Algorithm 1 the Adam update together
with the QP projection is represented by one step called AdamQP(θ,gavg). For further details
of the code see the GitHub Repository.

Master of Science Thesis Kerim Dzhumageldyev

https://github.com/kerimd14/thesis_code

38 Methodology

Algorithm 1 RL Training Loop
Require: Learning parameters θ =

[
Pθ, · · ·].

Require: RL hyperparameter (see Appendix A) including learning rate η, discount factor
γRL, noise schedule, buffer size, patience threshold, and update frequency.

1: for episode = 1 to Nepisode do
2: Reset the environment
3: Reset RNN hidden states (if RNN is used)
4: for t = 0 to T − 1 do
5: (a) Exploration
6: Sample noise ξt and solve the noisy policy MPC Vrand,θ(st, ξt) using one of:

• LOPTD–CBF: (4-2), with +ξ⊤
t u0 added to objective,

• SNN–CBF: (4-7), with +ξ⊤
t u0 added to objective,

• SRNN–CBF: (4-9), with +ξ⊤
t u0 added to objective.

7: and obtain the exploratory action at = u⋆
0 and optimal slacks Σ⋆

t

8: (b) System rollout
9: Apply action a and update the system state st+1 ← f(st, at)

10: Observe stage cost Laug(st, at,Σ⋆
t) (4-10)

11: (c) Q-value
12: Solve Qθ(st, at) MPC using one of:

• LOPTD–CBF: (4-2), with the constraint u0 = at added,
• SNN–CBF: (4-7), with the constraint u0 = at added,
• SRNN–CBF: (4-9), with the constraint u0 = at added,

13: and obtain optimal primal-dual variables y⋆

14: (d) V-value
15: Solve Vθ(st+1) MPC using one of:

• LOPTD–CBF: (4-2),
• SNN–CBF: (4-7),
• SRNN–CBF: (4-9).

16: (e) Temporal-difference error
17: Compute τt ← Laug(st, at,Σ⋆

t) + γRLVθ(st+1)−Qθ(st, at)
18: (f) Gradient computation
19: Compute sensitivity ∇θQθ(st, at) using ∇θLθ(st, at, y

⋆) as outlined in section 2-2-3
20: Form the update gt ← −τt∇θQθ(st, at)
21: Store gt in buffer B
22: end for
23: if buffer B is full then
24: Take mean over buffer gavg ← 1

|B|
∑

gt and clear the buffer B
25: Update θ ← AdamQP(θ,gavg)
26: end if
27: Decay exploration noise (ξt)
28: end for

Kerim Dzhumageldyev Master of Science Thesis

Chapter 5

Simulation Results

The results in this chapter are split into two parts. The first part of this chapter reports
the viability of the LOPTD-CBF and NN-CBF methods on a simple example with one static
obstacle. The second part of this chapter explores a more complex environment with multiple
moving obstacles, where the RNN-CBF and NN-CBF are tested against each other to compare
the RNN with the NN in this scenario. Both experiments use the following discrete linear 2D
double-integrator system, the same one as given in [38]:

sk+1 = Ask +Bak, (5-1)

A =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 , B =


1
2 ∆t2 0

0 1
2 ∆t2

∆t 0
0 ∆t

 , (5-2)

where the sampling time ∆t is set to 0.2s.
The system is controlled by an MPC-CBF where the avoidance of these obstacles shares the
following MPC terminal and stage cost

xT
NP xN +

N−1∑
k=0

(
xT

kQxk + uT
kRuk), (5-3)

where Q = 10 · I4, R = I2, P = 100 · I4. Additionally, the system is subject to the following
state and input constraints: S =

{
sk ∈ Rn : smin ≤ sk ≤ smax

}
,A =

{
sk ∈ Rm : smin ≤ sk ≤

with the lower and upper bounds being

smax, smin = ±5 I4×1, smax, smin = ±I2×1. (5-4)

The RL stage cost is chosen as follows, with the same reasoning as outlined earlier in 4-4.

Laug(s, a,Σ⋆) = s⊤Qs+ a⊤Ra+ wRL

N−1∑
k=0

O∑
i=1

σ⋆
k,i. (5-5)

Master of Science Thesis Kerim Dzhumageldyev

40 Simulation Results

Further details of the RL training algorithm parameters for the different experiments and the
bounds of the learnable parameters are provided in Appendix A.

5-1 Static Obstacle

As mentioned before, the experiment for the first part involved avoiding one circular static
obstacle, as shown in Figure 5-1. The obstacle is described by h(s) = (s0−2)2 +(s1−2.25)2−
1.52 , where everything outside of the obstacle is the safe set C = {s ∈ S | h(s) ≥ 0}. Because
the task was relatively simple, the MPC controller was implemented with a prediction horizon
of one. This deliberately myopic design was intended to produce a sub-optimal policy that
could later be improved upon.

6 4 2 0 2 4 6
X

4

2

0

2

4

Y

Start

End

Obstacle
x0, x1 constraint

Figure 5-1: Static Obstacle Experiment Setup

In the results of the static obstacle experiment presented below, the part of the MPC formu-
lation that is parameterized is the terminal cost, excluding the parameters related to the CBF
condition. The terminal cost matrix is constrained to remain positive definite by enforcing
lower bounds greater than zero during the update step, as detailed in Section 4-4. The exact
parameter bounds are listed in Appendix A.

To provide a point of comparison for the learned policies in this subsection, a reference
optimal policy was calculated. This was achieved by using a fixed non-parametrized MPC
which replaced the CBF constraint with h(xk) ≥ 0 and was simulated with a prediction
horizon of N = 100. This resulted in the policy shown in Figure 5-2, which achieves a total
cumulative RL stage cost of 5475, when evaluated with the same RL stage cost function used
throughout (5-5) this chapter.

Kerim Dzhumageldyev Master of Science Thesis

5-1 Static Obstacle 41

Figure 5-2: Reference Optimal Trajectory for the Experiment

5-1-1 Learnable Optimal Decay CBF

Experiments were first conducted with the LOPTD-CBF. Before training, the initial policy
was highly suboptimal, as shown in Figure 5-3a, resulting in a cumulative stage cost of 21712.
The one-step-horizon MPC-CBF makes the policy very myopic, preventing it from accounting
for the obstacle ahead. Consequently, the system trajectory moves diagonally toward the goal
until it reaches the obstacle boundary, at which point it turns and follows the boundary to
maintain safety and satisfy the CBF condition.
The point at which the trajectory reaches the obstacle boundary is also evident in Figure 5-
3b, which shows the evolution of the decision variable ω. The decision variable ω, introduced
in Section 2-3-6, serves as an adaptive decay rate in the discrete eCBF condition, where the
MPC optimizes ω at each step instead of keeping the decay rate fixed. The decay rate is
detailed in Section 2-3-5 and its influence on MPC trajectories is illustrated in Figure 2-5 in
that section. For most of the trajectory, ω remains close to 0.4. A distinct spike appears
once the trajectory encounters the boundary. This spike enables the trajectory to turn left
and follow the obstacle boundary, as a larger ω relaxes the CBF constraint just enough to
keep the condition feasible while permitting a deviation from the straight path. Because the
system velocity is low, the spike is relatively small, meaning the constraint is only slightly
relaxed during the turn. By contrast, at higher system velocities, one would expect larger
changes in h(sk+1)− h(sk), which would necessitate greater spikes in ω values.
After training, Figure 5-3e shows that the cumulative stage cost per episode decreased, with
the final value reduced to 7156. This improvement is also evident in Figure 5-3c, where the
trajectory no longer moves directly toward the goal, but instead anticipates the obstacle and
steers left. The trajectory reaches the target more quickly due to a higher velocity, which was
reflected in the reduced number of iterations required to arrive at the goal. Nevertheless, the
trajectory still incurs a higher cumulative stage cost than the optimal trajectory in Figure
5-2 and requires more iterations to reach the origin.
The effect of the improved policy is also apparent in the ω dynamics. In Figure 5-3d, the
ω value again exhibits a spike, but this time it reaches a substantially higher ω value. The

Master of Science Thesis Kerim Dzhumageldyev

42 Simulation Results

larger spike indicates the need for greater relaxation of the CBF constraint near the obstacle,
since higher velocities lead to larger variations in the CBF h(xk). In other words, because the
MPC now drives the system at higher velocity, maintaining feasibility of the CBF constraint
requires a larger decay rate ω.

(a) LOPTD-CBF initial policy trajectory (b) LOPTD-CBF initial policy ω plot

(c) LOPTD-CBF final policy trajectory (d) LOPTD-CBF final policy ω plot

(e) Cumulative stage cost across train-
ing episodes, with running mean (blue
line) and running standard deviation
(shaded region) computed using a cen-
tered 100-episode window.

Figure 5-3: Policy before and after training

The improved policy can be directly linked to changes in the learned parameters. Figure 5-4c
shows the evolution of the four diagonal entries of the learned terminal cost matrix during
training. This terminal cost matrix P is the same as the one introduced in the MPC objective

Kerim Dzhumageldyev Master of Science Thesis

5-1 Static Obstacle 43

at the start of this chapter (5-3). It defines the terminal cost ℓf , which shapes how terminal
states are weighted and is used in the methods presented in Chapter 4. In the figure, the blue
and orange curves correspond to P1,1 and P2,2, which weight the terminal x and y positions.
The green and red curves correspond to P3,3 and P4,4, which weight the terminal x and y
velocities.
When the position weights P1,1 and P2,2 dominate the velocity weights P3,3 and P4,4, the
resulting trajectories become faster. This is expected, since applying a stronger terminal
penalty on positions than on velocities means positions not at the origin are penalized more
heavily than nonzero velocities. As a result, the MPC favors reaching the target quickly,
accepting higher velocities because they incur smaller penalties, while strongly penalizing
failure to reach the origin. The two velocity weights are also not equal. P3,3 has a higher
value than P4,4, which penalizes x-velocity more than y-velocity. In other words, velocities
along the y-axis are punished less than those along the x-axis. The optimizer therefore prefers
to move along the y-axis to incur lower cost, effectively steering left. This behavior matches
the learned policy.
In addition, the evolution of ω̄ and Pω is shown in Figure 5-4a and Figure 5-4b, respectively.
The role of these variables in the LOPTD-CBF framework is explained and summarized in
Section 4-1. The value of Pω shown in the figure remains largely unchanged, while ω̄ increases
slightly during training. A larger ω̄ value corresponds to a larger decay rate and therefore a
less conservative policy. The initial value Pω = 1000 was selected after experimenting with
nearby values, since smaller initial values caused the RL agent to reduce Pω toward 0. If Pω

becomes too small, ω̄ is no longer restricted by the solver and will likely tend to 1 to make
the CBF condition less conservative. Reducing conservatism too early can backfire, since the
system may approach the obstacle too quickly and later fail to find a feasible action that
guarantees safety.

(a) Evolution of ω̄ during training. (b) Evolution of Pω during training.

(c) Evolution of terminal cost matrix P
during training.

Figure 5-4: Evolution of learned parameters during training. Update number corresponds to one
parameter update every 10 episodes, over a total of 3000 episodes.

Master of Science Thesis Kerim Dzhumageldyev

44 Simulation Results

5-1-2 Neural Network CBF

After evaluating the LOPTD-CBF, experiments were conducted with the NN-CBF. The initial
policy of this MPC was again suboptimal, yielding a cumulative stage cost of 21892, as shown
in Figure 5-5a. The trajectory closely resembles the case discussed in the previous subsection,
where the one-step-horizon MPC-CBF is too myopic to anticipate the obstacle.

Following training, the cumulative stage cost decreased to 6627, as shown in Figure 5-5d.
This value is lower than the cumulative stage cost achieved with the LOPTD-CBF but remains
higher than that of the optimal trajectory. The final improved policy is shown in Figure 5-5b,
where the trajectory turns using the CBF safety condition rather than relying solely on the
terminal cost. To further analyze this behavior, the evolution of the decay rate γ value (the
NN output) is shown in Figure 5-5c.

Initially, γ decreases (purple dots at the beginning), making the policy more conservative
and preventing the system from accelerating too quickly. It then increases, allowing faster
progress toward the target. Near the obstacle, γ decreases again (light blue dot), introducing
conservatism that enables a safe turn around the circle. After passing the obstacle, γ increases
once more to permit faster motion toward the target. Finally, as the system approaches the
goal, γ decreases again, ensuring that the trajectory slows smoothly and avoids overshooting.
Afterward, it stabilizes, allowing the system to settle at the target.

(a) NN-CBF initial policy trajectory. (b) NN-CBF final policy trajectory.

(c) NN-CBF final policy γ plot.

(d) Cumulative stage cost across train-
ing episodes, with running mean (blue
line) and running standard deviation
(shaded region) computed using a cen-
tered 100-episode window.

Figure 5-5: Policy before and after training.

Kerim Dzhumageldyev Master of Science Thesis

5-1 Static Obstacle 45

Looking at the evolution of the terminal cost parameters in Figure 5-6, a decrease in the
velocity weights relative to the position weights allows the system to move faster, similar to
the LOPTD-CBF case. In this case, however, the gap between position and velocity weights
is even larger, which further increases the system’s speed and enables it to reach the target
in fewer iterations. At the same time, the two velocity weights remain close to each other,
unlike in the LOPTD-CBF case where the x-velocity was penalized more than the y-velocity.
This equal penalty on both x and y velocities drives the system to move forward rather than
steer left. Consequently, the turn made by the trajectory is more likely governed by the CBF
condition than by the terminal cost.

Figure 5-6: Evolution of terminal cost matrix P during training. Update number corresponds to
one parameter update every 10 episodes, over a total of 3000 episodes.

5-1-3 Comparison

Both the LOPTD-CBF and the NN-CBF improve over the initial MPC-CBF policy, each
with their own advantages and limitations. Table 5-1 highlights the main trade-offs between
the two approaches.

The LOPTD-CBF requires fewer parameters than the NN-CBF, which makes training gener-
ally faster because there are fewer degrees of freedom for the RL agent to optimize. Further-
more, the parameters over which the LOPTD-CBF learns have more interpretability than the
learned NN parameters. NN interpretability still holds at the output level, since the decay
rate values given by the NN output can be interpreted. Moreover, because the LOPTD-CBF
includes the decay rate ω as a decision variable in the MPC, it can adjust the trajectory and
safety online. This makes the configuration safer during training, with less chance of using
slacks in ways that incur safety violations. However, its performance is strongly dependent
on the MPC horizon and with a short horizon it has limited freedom to balance safety against
performance.

In contrast, the NN-CBF employs a larger number of trainable parameters, which allows the
network to capture more complex safety functions and generate state-dependent decay rates.
Owing to its richer parameterization, the MPC with the NN-CBF is less dependent on the
horizon length for tuning the decay rate compared to the LOPTD-CBF. This combination of
reduced dependence on the horizon and the ability to represent more complex safety functions
is reflected in the results above, where the final cumulative stage cost is smaller than that
achieved with the LOPTD-CBF, indicating better overall performance. However, the NN is

Master of Science Thesis Kerim Dzhumageldyev

46 Simulation Results

less likely to guarantee safety during training. During episode rollouts, the network produces
fixed decay rates determined by its pre-trained parameters, and these cannot be adjusted
online, unlike the LOPTD-CBF, which can adapt its decay rate dynamically within each
rollout. For example, when approaching an obstacle at high velocity, the network cannot
dynamically choose to increase its decay rate but must use the value already given by the
NN. This issue is especially pronounced when the network is poorly initialized.

Property LOPTD-CBF NN-CBF
Fewer parameters X
Interpretability X
Not dependent on MPC horizon X
More degrees of freedom to balance
safety

X

Less chance of safety violations dur-
ing training

X

Final cumulative stage cost 7156 6627

Table 5-1: Comparison of properties between LOPTD-CBF and NN-CBF

Additionally, in this simple example the terminal cost matrix P plays a pivotal role in shaping
the system trajectory. To test its importance, the experiments were repeated without learning
P , with results shown in Appendix C. The results show that in the absence of a learnable
terminal cost matrix, the RL agent does not achieve an improved policy for either method.
Since, the CBF condition by itself cannot accelerate the trajectory toward the target and
therefore the cost does not decrease.

Lastly, even though both methods improved over the initial policy, they were still unable
to recover the optimal policy shown in Figure 5-2. This indicates that there is still room
for improvement, which could potentially be achieved through a richer parametrization, for
example by also parameterizing the Q and R matrices in (5-3).

5-2 Dynamic Obstacles

Extending the framework to account for time-varying obstacles required the design of a new
experiment. The setup of this experiment is shown in Figure 5-7. In this figure, two dynamic
obstacles move horizontally to hinder the system from reaching the target. Their motion
follows the Step Bounce model, which is defined as follows.

At k = 0, each obstacle is initialized with a position cobs
0 ∈ [cmin, cmax] and a direction

d0 ∈ {−1,+1}, where +1 corresponds to motion to the right and −1 to motion to the left.
The initial direction of the obstacle is indicated by the arrow in Figure 5-7. The obstacle
moves with constant speed v > 0, which remains fixed for the entire experiment. At each
sampling step ∆t, the candidate position is updated according to

c̃k+1 = cobs
k + dkv∆t. (5-6)

Kerim Dzhumageldyev Master of Science Thesis

5-2 Dynamic Obstacles 47

If c̃k+1 ∈ [cmin, cmax], then the update is accepted with cobs
k+1 = c̃k+1 and dk+1 = dk. Otherwise,

the position is reflected back into the admissible interval and the direction reverses:

(cobs
k+1, dk+1) =

(2cmax − c̃k+1, −dk), c̃k+1 > cmax,

(2cmin − c̃k+1, −dk), c̃k+1 < cmin.
(5-7)

In addition to these dynamic obstacles, a static obstacle is placed above them, forcing the
system to find a path between the two moving obstacles. This obstacle is represented by the
green circle in Figure 5-7. The complete obstacle configuration is provided in Table A-9 in
the Appendix. Based on this setup, the CBFs for the obstacles are defined as

h(s, k) = (s0 − cobs1
k)2 + (s1 + 1.5)2 − 0.72, cobs1

0 = −2, d0 = 1, v = 2.3,
h(s, k) = (s0 − cobs2

k)2 + (s1 + 3.3)2 − 0.72, cobs2
0 = −3, d0 = −1, v = 2.0,

h(s, k) = (s0 + 2)2 + (s1 − 0)2 − 12.

(5-8)

The first CBF corresponds to the first dynamic obstacle shown in blue in Figure 5-7 and is
described by the Step Bounce model. This obstacle initially moves to the right and has a
higher velocity than the other dynamic obstacle. The second dynamic obstacle, also described
by the Step Bounce model, is shown in orange and corresponds to the second dynamical CBF.
It initially moves in the opposite direction, to the left. The third CBF represents the static
obstacle, indicated in green in the figure.

6 4 2 0 2 4 6
X

4

2

0

2

4

Y

Start

End

x0, x1 constraint
Obstacle 1 Bound [-4.0, 0.0]
Obstacle 1
Obstacle 2 Bound [-4.0, 1.0]
Obstacle 2
Obstacle 3 Static
Initial Direction

Figure 5-7: Dynbamic Obstacles Experiment Setup

The experiments in this section were conducted both with and without the terminal cost
matrix P parameterization. Since the resulting performance and trajectories were highly
similar, the results with the parameterized terminal cost are omitted. The results shown in
this section correspond to the experiments without terminal cost P parameterization. The
similarity between the two configurations is explained later in this thesis.

Master of Science Thesis Kerim Dzhumageldyev

48 Simulation Results

Once again, as in Section 5-1, an optimal policy was computed to provide a point of compar-
ison for the learned policies in this subsection. This policy was obtained using an MPC that
replaced the CBF constraint with h(sk) ≥ 0 and simulated it with a prediction horizon of
N = 100. The resulting trajectory, shown in Figure 5-8, includes snapshots of the system and
the moving obstacle. When evaluated with the same RL stage cost function used throughout
this section, the policy achieves a total cumulative cost of 4933.

−5

−4

−3

−2

−1

0

1

Y

k=5 k=10 k=13

−5

−4

−3

−2

−1

0

1

Y

k=14 k=15 k=16

−5 −4 −3 −2 −1 0 1

X

−5

−4

−3

−2

−1

0

1

Y

k=20

−5 −4 −3 −2 −1 0 1

X

k=25

Last Steps (N=6)

System

Predicted Horizon (N=100)

Obstacle 1

Obstacle 2

Obstacle 3

Obstacle (Predicted, 6)

Figure 5-8: Snapshots of the reference optimal trajectory obtained with MPC (N = 100). The
red dot marks the current system position, the black trail shows the predicted horizon and the
grey line shows the last six steps of the system trajectory. The solid circles indicate the current
positions of the static (green) and dynamic (blue and orange) obstacles, while the dotted circles
indicate their predicted positions six time steps ahead.

Lastly, because the initialization of the networks influences the final learned policy, the weights
of the feed-forward layers in both networks were initialized within a smaller range. This
ensured that the initial output (the decay rate) started close to a flat value of 0.5. Such
initialization provides a fairer basis for comparing the two methods and helps generate a
less-performing initial policy, giving the RL agent the opportunity to learn and improve upon
it.

Kerim Dzhumageldyev Master of Science Thesis

5-2 Dynamic Obstacles 49

5-2-1 Neural Network CBF

Starting with the initial policy before learning, shown in Figure 5-9, the system trajectory
is unsafe, as the system enters the obstacle at k = 16 and k = 17. Moreover, the predicted
steps of the MPC also fail to avoid the predicted obstacles. This behavior results from the
suboptimal γ outputs of the RNN, shown in Figure 5-11a.

−5

−4

−3

−2

−1

0

1

Y

k=6 k=11 k=14

−5

−4

−3

−2

−1

0

1

Y

k=16 k=17 k=18

−5 −4 −3 −2 −1 0 1

X

−5

−4

−3

−2

−1

0

1

Y

k=20

−5 −4 −3 −2 −1 0 1

X

k=26

Last Steps (N=6)

System

Predicted Horizon (N=6)

Obstacle 1

Obstacle 2

Obstacle 3

Obstacle (Predicted, N=6 Ahead)

Figure 5-9: Snapshots of the initial policy before learning. The red dot marks the current system
position, the orange trail shows the predicted horizon and the blue line shows the last six steps
of the system trajectory. The solid circles indicate the current positions of the static (green) and
dynamic (blue and orange) obstacles, while the dotted circles indicate their predicted positions
six time steps ahead.

After training, the improved trajectory is shown in Figure 5-10. The trajectory now slows
down earlier to avoid the first dynamic obstacle (blue). At k = 16, k = 17, and k = 18, the

Master of Science Thesis Kerim Dzhumageldyev

50 Simulation Results

system remains outside this obstacle and maneuvers around it, indicating that it has learned
a safe trajectory. This behavior is also reflected in the predicted horizon, where the predicted
trajectory avoids the future positions of the first dynamic obstacle (blue), demonstrating that
the system plans safely ahead.

−5

−4

−3

−2

−1

0

1

Y

k=6 k=11 k=14

−5

−4

−3

−2

−1

0

1

Y

k=16 k=17 k=18

−5 −4 −3 −2 −1 0 1

X

−5

−4

−3

−2

−1

0

1

Y

k=20

−5 −4 −3 −2 −1 0 1

X

k=26

Last Steps (N=6)

System

Predicted Horizon (N=6)

Obstacle 1

Obstacle 2

Obstacle 3

Obstacle (Predicted, N=6 Ahead)

Figure 5-10: Snapshots of the improved policy after training. The red dot marks the current
system position, the black trail shows the predicted horizon and the grey line shows the last
six steps of the system trajectory. The solid circles indicate the current positions of the static
(green) and dynamic (blue and orange) obstacles, while the dotted circles indicate their predicted
positions six time steps ahead.

This improvement is also reflected in the NN outputs shown in Figure 5-11b. The γ1 values
for the first dynamic obstacle (blue) change the most, which is expected since this was the
obstacle whose constraint was previously violated. The change appears as a decrease in
the decay rate after training, with a lower decay rate corresponding to a more conservative

Kerim Dzhumageldyev Master of Science Thesis

5-2 Dynamic Obstacles 51

approach (see Section 2-3-5 and Figure 2-5 for a detailed explanation of the decay rate). This
added conservativeness allows the system to slow down earlier when approaching the obstacle.
The most pronounced drop in γ1 occurs between k = 8 and k = 15, directly linking to the
behavioral change in the trajectory. At k = 11, for example, the predicted horizon in Figure
5-9 still enters the predicted obstacle, whereas in Figure 5-10 the system slows down much
earlier, enabling it to bypass the obstacle safely.
However, achieving this behavior still requires the use of slack variables, as shown in Figure
5-11c. As explained in Chapter 4, slacks are introduced during training to temporarily allow
constraint violations so that the CBF condition remains feasible. At the same time, penalties
on slack usage encourage the MPC to minimize violations and gradually learn a safe, control-
invariant solution. Ideally, the network would learn a safe policy without relying on slacks,
but this was not achieved. Importantly, in the solution illustrated in Figure 5-10, the slack
variables are not used to permit violations but rather to allow the system to decelerate quickly
enough under bounded control inputs. This becomes especially relevant when obstacles move
at higher velocities or when the control input bounds are tight. While such a policy without
slack usage is theoretically possible, it was not demonstrated in this numerical experiment.
Nevertheless, the results remain valid since the policies, even if not strictly control-invariant,
still yield safe trajectories. The stage cost of the trajectory shown in Figure 5-10 is 6067
when slack penalties are not included and 15194 when they are accounted for, as also shown
in comparison with the RNN results in Table 5-2.

0 10 20 30 40 50

Time Step k

0.490

0.495

0.500

0.505

0.510

γ
 V
a
lu
e
s

γ1
γ2
γ3

(a) γ values of the NN before training
(initial policy).

0 10 20 30 40 50

Time Step k

0.46

0.47

0.48

0.49

0.50

γ
 V
a
lu
e
s

γ1
γ2
γ3

(b) γ values of the NN after training
(final policy).

0 10 20 30 40 50

Time Step k

0.00

0.05

0.10

0.15

0.20

S
la
ck

(
)

σ
k

j,
1

σ1, 1
σ2, 1

σ3, 1
σ4, 1

σ5, 1
σ6, 1

(c) MPC slack variables used across horizon points for Obstacle 1 (blue)

Figure 5-11: NN outputs and MPC slacks over policy iterations. Panels (a) and (b) show NN γ
values before and after training. Panel (c) shows slack variables produced by the MPC.

Master of Science Thesis Kerim Dzhumageldyev

52 Simulation Results

5-2-2 Recurrent Neural Network CBF

The initial policy for the RNN-CBF follows the same pattern as in the NN-CBF case. The
γ outputs start flat at around 0.5, and the trajectory is unsafe at k = 16 and k = 17, where
the system enters the obstacle, as illustrated in Figure 5-12.

−5

−4

−3

−2

−1

0

1

Y

k=6 k=11 k=14

−5

−4

−3

−2

−1

0

1

Y

k=16 k=17 k=18

−5 −4 −3 −2 −1 0 1

X

−5

−4

−3

−2

−1

0

1

Y

k=20

−5 −4 −3 −2 −1 0 1

X

k=26

Last Steps (N=6)

System

Predicted Horizon (N=6)

Obstacle 1

Obstacle 2

Obstacle 3

Obstacle (Predicted, N=6 Ahead)

Figure 5-12: Snapshots of the initial RNN-CBF policy before training. The red dot marks the
current system position, the orange trail shows the predicted horizon and the blue line shows the
last six steps of the system trajectory. The solid circles indicate the current positions of the static
(green) and dynamic (blue and orange) obstacles, while the dotted circles indicate their predicted
positions six time steps ahead.

After training, the improved trajectory is shown in Figure 5-13. A similar safe policy is
achieved as in the NN-CBF case, though it is less conservative, as the trajectory comes closer
to the obstacles at k = 17.

Kerim Dzhumageldyev Master of Science Thesis

5-2 Dynamic Obstacles 53

−5

−4

−3

−2

−1

0

1

Y

k=6 k=11 k=14

−5

−4

−3

−2

−1

0

1

Y

k=16 k=17 k=18

−5 −4 −3 −2 −1 0 1

X

−5

−4

−3

−2

−1

0

1

Y

k=20

−5 −4 −3 −2 −1 0 1

X

k=26

Last Steps (N=6)

System

Predicted Horizon (N=6)

Obstacle 1

Obstacle 2

Obstacle 3

Obstacle (Predicted, N=6 Ahead)

Figure 5-13: Snapshots of the improved RNN-CBF policy after training. The red dot marks the
current system position, the black trail shows the predicted horizon and the grey line shows the
last six steps of the system trajectory. The solid circles indicate the current positions of the static
(green) and dynamic (blue and orange) obstacles, while the dotted circles indicate their predicted
positions six time steps ahead.

The output of the RNN follows the same trend as in the NN case. The γ1 values for the
first dynamic obstacle (blue), shown in Figure 5-13, decrease between k = 8 and k = 15.
This decrease is smaller than in the NN case, meaning the decay rate remains slightly higher
and results in less conservative behavior, as seen in the trajectory at k = 16. However, slack
variables are again required to achieve adequate deceleration, as shown in Figure 5-14c. The
same reasoning applies as in the NN-CBF case. That is, with a richer RNN parametrization,
this behavior could potentially be learned without the use of slacks. The stage cost of the
trajectory in Figure 5-13 is 5923 when slack penalties are omitted and 14026 when they are
included, as shown in comparison with the NN results in Table 5-2. Together, these results

Master of Science Thesis Kerim Dzhumageldyev

54 Simulation Results

indicate that both the NN and the RNN are able to learn comparable policies.

0 10 20 30 40 50

Time Step k

0.500

0.501

0.502

0.503

0.504

γ
 V
a
lu
e
s

γ1
γ2
γ3

(a) γ values before training (initial pol-
icy).

0 10 20 30 40 50

Time Step k

0.470

0.475

0.480

0.485

0.490

0.495

0.500

γ
 V
a
lu
e
s

γ1
γ2
γ3

(b) γ values after training (final policy).

0 10 20 30 40 50 60

Time Step k

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

S
la
ck

(
)

σ
k

j,
1

σ1, 1
σ2, 1

σ3, 1
σ4, 1

σ5, 1
σ6, 1

(c) MPC slack variables used across horizon points for Obstacle 1 (blue).

Figure 5-14: RNN outputs and MPC slacks over policy iterations. Panels (a) and (b) show γ
values before and after training, while panel (c) shows slack variables produced by the MPC for
Obstacle 1.

With extended training, the RNN can learn a policy that avoids both obstacles without
relying on slacks, instead taking a longer trajectory. While this provides a slack-free solution,
it comes at the expense of a higher RL and MPC stage cost when slacks are not considered.
By reducing the learning rate earlier, the slack-using policy can be preserved, whereas further
training enables the RNN to converge to this alternative slack-free solution. This result is
illustrated in Appendix D.

5-2-3 Comparison

Comparing the two policies of the NN-CBF and RNN-CBF, one aspect stands out: the time
required to learn the policy. As shown in Figure 5-15, the RNN achieves the same policy
with about 10 fewer evaluations. This corresponds to roughly 170 fewer training episodes
in total, demonstrating that the RNN requires less training time thanks to its recurrent
structure. Further experiments with different setups and configurations are needed to confirm
this finding, as it has been tested only in this numerical experiment and as such the claim
cannot yet be made conclusively. Nevertheless, the current result indicates that the RNN is
able to learn a policy faster than the NN.

Kerim Dzhumageldyev Master of Science Thesis

5-2 Dynamic Obstacles 55

Figure 5-15: Validation stage cost comparison between NN-CBF and RNN-CBF across evaluation
steps. Evaluations are performed every 50 updates during training, where validation means testing
the policy at that point without the exploratory noise ξ⊤u0.

Additionally, the trajectory of the RNN is more effective, as it follows a policy that comes
closer to the obstacles and therefore achieves a lower stage cost, as seen in Table 5-2. It also
relies slightly less on slack variables, although the overall slack usage remains comparable, as
shown in Figure 5-11c for the NN-CBF and Figure 5-14c for the RNN-CBF.

Final Cumulative Stage Cost NN-CBF RNN-CBF
With Slacks 15194 14026
Without Slacks 6067 5923

Table 5-2: Comparison of results between NN-CBF and RNN-CBF

It is important to note that both the NN-CBF and RNN-CBF are able to find a solution
without using the MPC terminal cost matrix P , as defined in (5-3). Training with a terminal
cost yields a very similar solution, so the corresponding results are omitted, as they closely
resemble those in Figure 5-9 and Figure 5-13 with a comparable RL stage cost. The similar
performance is likely due to the increased prediction horizon, which provides more opportu-
nities for parameter tuning. With a longer horizon, more CBF constraints are introduced
at each step, giving both the NN and RNN additional flexibility to adjust the trajectory by
tuning a larger number of decay rates.

This effect likely has a stronger influence than the presence of multiple obstacles. The ad-
ditional obstacles provide the NN with more CBF constraints, each associated with its own
decay rate, thereby giving the network greater freedom to adjust the trajectory through these
outputs. Nonetheless, this influence is smaller compared to that of a longer prediction hori-
zon. Both a longer horizon and multiple obstacles increase the number of constraints and the

Master of Science Thesis Kerim Dzhumageldyev

56 Simulation Results

overall problem complexity. While a longer horizon introduces stronger temporal coupling
through the system dynamics, additional obstacles add spatial coupling between multiple CBF
constraints. The latter can reduce the feasible space and make optimization more difficult,
whereas a longer horizon generally improves foresight and enables more informed parameter
tuning.

In addition, as the prediction horizon increases, the MPC terminal cost becomes less domi-
nant, since the cumulative stage cost contributes more to the overall objective. These findings
suggest that tuning the CBF alone can ensure safety while also improving performance.

A limitation of both learning methods is that gradient updates with respect to the neural
network parameters occur only when the CBF constraint is active. When the constraint is
inactive, the corresponding dual variable in the Lagrangian of Qθ(s, a), whose role in the
MPC-based RL framework was explained in Section 2-2-3, is zero. As a result, the derivative
of the Lagrangian with respect to the neural network parameters is naturally also zero. To
illustrate this more clearly, consider the Lagrangian of the NN-CBF in (4-7) given below, but
now expressed as Qθ(s, a) with the added constraint u0 = a.

Lθ(s, a, y⋆) = ℓf,θ(xN) +
N−1∑
k=0

ℓθ
(
xk, uk

)
+ wMPC

N−1∑
k=0

O∑
i=1

σk,i

+ · · ·+
N−1∑
k=0

O∑
i=1

λk,i

(
−hi(xk+1) +

(
1−NNθ(·)

)
hi(xk)− σk,i

)

−
N−1∑
k=0

O∑
i=1

ρk,i σk,i + ζ⊤(u0 − a),

(5-9)

where y⋆ denotes the primal-dual variables and λk,i, ρk,i, ζ represent some of the dual variables
corresponding to the constraints shown in the Lagrangian above. Taking the derivative of the
Lagrangian with respect to the neural network parameters gives:

∂Lθ(s, a, y⋆)
∂θNN

= ∂

∂θNN

N−1∑
k=0

O∑
i=1

λk,i

(
−hi(xk+1) +

(
1−NNθ(·)

)
hi(xk)− σk,i

)
. (5-10)

It can be seen that if the constraint is not active and therefore λk,i = 0, then the derivative
is ∂Lθ(s,a,y⋆)

∂θNN
= 0. The same applies to the RNN formulation. This effect is confirmed in

Figure 5-16, which shows the mean NN and RNN gradients across three episodes. Nonzero
gradients appear only between k = 8 and k = 16, precisely when slack variables are active
and the CBF constraints are enforced (see Figures 5-11c and 5-14c). Consequently, learning
in NN-CBF and RNN-CBF occurs mainly in these intervals, while outside them potentially
valuable information for obstacle avoidance is lost.

Kerim Dzhumageldyev Master of Science Thesis

5-2 Dynamic Obstacles 57

0 20 40 60 80 100 120 140

Time Step k

0

500

1000

1500

2000

2500

M
e
a
n
 A

b
so

lu
te

 G
ra

d
ie

n
t

RNN Gradient Mean

(a) Mean absolute gradient of the RNN
parameters

0 20 40 60 80 100 120 140

Time Step k

0

250

500

750

1000

1250

1500

1750

2000

M
e
a
n
 A

b
so

lu
te

 G
ra

d
ie

n
t

NN Gradient Mean

(b) Mean absolute gradient of the NN
parameters

Figure 5-16: Mean absolute gradients of RNN and NN parameters before training across 150
time steps (averaged over 150 episodes). Gradients remain close to zero for most of the episode,
except during the interval where CBF constraints become active.

This principle does not apply to the LOPTD-CBF method, since its learnable parameters
appear directly in the objective function and not in the CBF constraint, as shown in (4-2).
To address the limitations identified for the neural network approaches, an extension to these
methods is proposed in Future works 6-2.

It should be noted that this issue also likely arises due to the use of a value-based reinforce-
ment learning method, namely Q-learning, which estimates the action-value function Q(s, a)
through temporal-difference updates. The convergence speed and learning stability of value-
based methods depend on the magnitude of the experienced returns, since informative (i.e.,
sufficiently large) value estimates are required to drive effective updates. In contrast, policy-
gradient approaches optimize the expected return directly and are therefore potentially less
sensitive to the scaling or sparsity of the value signal. However, alternative policy-gradient
methods have not been investigated in this work and could represent a promising direction
for future research.

Lastly, a major drawback of both neural network-based methods is the substantial nonlin-
earities they introduce into the interior-point solver. Although IPOPT is designed to handle
nonlinear programs, the optimization becomes increasingly challenging as the network size
grows and the MPC horizon lengthens.

Master of Science Thesis Kerim Dzhumageldyev

58 Simulation Results

Kerim Dzhumageldyev Master of Science Thesis

Chapter 6

Conclusions and Future Work

6-1 Conclusion

In this thesis, novel methods for merging MPC, RL and CBFs were proposed. The central
idea was to use parameterized MPC with a CBF constraint as a function approximator to
learn a safe and higher-performing policy. The proposed methods expanded on this idea by
exploring different ways of parameterizing and adapting the class K function in the CBF
condition. The first method, LOPTD-CBF, focused on improving feasibility guarantees while
allowing RL to search for better policies. This was achieved by extending and parameterizing
the OPTD framework. The second method, NN-CBF, introduced a richer parametrization
through a neural network, enabling more expressive safety conditions and yielding policies
with better performance than LOPTD-CBF. Finally, the RNN-CBF extended the NN-CBF
framework with a recurrent structure to better handle moving obstacles by accounting for tem-
poral dependencies. Numerical experiments confirmed that both LOPTD-CBF and NN-CBF
produce safe and improved policies in a simple obstacle avoidance scenario, with NN-CBF
outperforming LOPTD-CBF. In the case of time-varying obstacles, initial findings showed
that RNN-CBF is able to find a safe policy faster than NN-CBF, although this result is
drawn from a single configuration.

Having summarized the main contributions and finding of this thesis the sub-reserach ques-
tions of this thesis are answered below.

1. Which type of CBF formulation yields the best trade-off between safety and performance
in MPC-based RL?
The CBF formulations that provide the best trade-off between safety and performance
among the methods developed are the neural network based approaches NN-CBF and
RNN-CBF. The LOPTD-CBF can adjust the decay rate online during rollout, which
improves feasibility and can ensure safer behavior while learning in theory, but its
parametrization is more limited. In contrast, the NN-CBF and RNN-CBF offer richer,
state dependent parametrizations of the class K function, allowing them to achieve both

Master of Science Thesis Kerim Dzhumageldyev

60 Conclusions and Future Work

safety and higher performance. If trained long enough in time-varying settings both
methods can achieve similair performance, however the RNN-CBF can achieve it faster
based on preliminary results. Lastly, the choice of CBF formulation that provides the
best trade-off between safety and performance also depends on the underlying problem.
Other CBF formulations not covered in this work may be more suitable. For example,
in cases with stochastic dynamics or uncertainty in the model and obstacles, robust or
stochastic CBFs would be required, since the methods developed in this thesis would
not be sufficient. This is discussed further in Section 6-2.

2. How does tuning the CBF condition affect the balance between safety and performance?
To address this question, experiments were conducted in two setups. In one setup both
the terminal cost and the CBF condition were parameterized. In the other setup only
the CBF condition was parameterized in order to isolate its effect on safety and perfor-
mance. The numerical results indicate that parameterizing only the CBF condition can
improve performance while still guaranteeing safety, provided the prediction horizon is
sufficiently long. Learning solely the CBF parameters with a horizon of just one step
was not enough to significantly alter the trajectory and the terminal cost played a more
prominent role in improving performance, as seen in the static obstacle experiments
in 5-1. In contrast, in the dynamic obstacle experiments in 5-2, tuning only the CBF
condition already yielded noticeable improvements. A potential reason is that with a
longer horizon, the number of CBF constraints increases, giving the neural network
more class-K functions to tune and thereby more degrees of freedom to shape the tra-
jectory. At the same time, the influence of the terminal cost diminishes, since with a
longer horizon the stage cost is accumulated over more steps. Therefore, with a suf-
ficiently long horizon, reinforcement learning can improve closed-loop performance by
tuning only the CBF condition.

3. How can MPC-based RL using CBFs guarantee safety in dynamic environments, e.g.,
multiple dynamic obstacles?
MPC-based RL can be extended to handle multiple obstacles by assigning each ob-
stacle its own CBF constraint with a parameterized class K function. Reinforcement
learning can then tune the class K function of each obstacle separately, enabling more
nuanced safety handling. This becomes increasingly important as the number of obsta-
cles grows, since the feasible and control invariant sets shrink. For dynamic obstacles,
the extension remains straightforward because the discrete CBF condition only requires
forward differences. In contrast, a continuous-time CBF condition would require addi-
tional derivative terms when computing ḣ(x, u). Finally, the proposed RNN-CBF can
also account for time-varying obstacles by storing temporal information in its hidden
state, allowing it to anticipate obstacle motion and preserve safety.

Finally, addressing the overarching research question: To what extent can performance
be maximized while still guaranteeing safety in MPC-based Reinforcement Learn-
ing using Control Barrier Functions? The findings of this thesis demonstrate that MPC-
based RL with a parameterized CBF condition can achieve substantial performance improve-
ments while preserving safety. The LOPTD-CBF shows that feasibility can be maintained
even with limited horizons, although performance gains remain moderate. The NN-CBF offers
a richer parameterization that yields more effective policies, while the RNN-CBF extends this

Kerim Dzhumageldyev Master of Science Thesis

6-2 Future Work 61

capability to dynamic settings and ensures faster convergence. Taken together, these results
confirm that RL can substantially enhance performance in safety-critical environments with-
out compromising safety, provided that the MPC and the CBF condition are parameterized
appropriately and sufficiently within the MPC-based RL framework.

6-2 Future Work

Future research can build on the ideas explored in this thesis by addressing a variety of
challenges and extending the framework to different settings. The directions outlined below
highlight promising opportunities for improvement and further investigation.

6-2-1 Improving the proposed NN-based methods.

The results from Section 5-2 show that the RNN and NN are able to find safe trajectories,
but they break the formal safety certification of control invariance by using slack variables.
Furthermore, these methods do not update the neural network parameters unless the CBF
constraint is active, as explained in 5-2-3.
To tackle both issues, an additional decision variable zk,i can be introduced and incorporated
into the CBF constraint as hi(xk+1)−hi(xk)+αi(hi(xk)) ≥ zk,i. This variable also appears in
the MPC cost as a negative term −zk,i scaled by a weight. As a result, since zk,i appears with
a negative weight in the cost, the MPC seeks to maximize its value in order to minimize the
total objective. At the same time, raising zk,i makes the CBF constraint more conservative
by shifting its lower bound upward. This allows the MPC to take more cautious actions in
advance, thereby reducing the likelihood of CBF violations and minimizing reliance on slack
variables later on. Furthermore, the inclusion of zk,i tightens the CBF constraint and promotes
it to remain active. Consequently, when the Lagrangian is constructed for parameter updates,
as described in Section 2-2-3, the dual variables of the CBF constraints are more likely to be
nonzero, unlike the case observed in Section 5-2. This enables more frequent updates of the
neural network parameters since the CBF constraint becomes active more often. The decision
variable can then be incorporated into the MPC as follows

Vθ(s) = min
X,U, S,Σ

ℓf,θ(xN) +
N−1∑
k=0

ℓθ
(
xk, uk

)
+ wMPC

N−1∑
k=0

O∑
i=1

σk,i − ∥x0∥2
N−1∑
k=0

dk
O∑

i=1
βzk,i

(6-1a)
s.t. xk+1 = f

(
xk, uk

)
, k = 0, . . . , N − 1, (6-1b)

xk ∈ S, k = 0, . . . , N, (6-1c)
uk ∈ A, k = 0, . . . , N − 1, (6-1d)
x0 = s, (6-1e)

h
(
xk+1

)
−

(
1−NNθ(·)

)
≥ −σk,i + zk,i,

k = 0, . . . , N − 1,
i = 0, . . . ,O,

(6-1f)

Σk,i ≥ 0,
k = 0, . . . , N − 1,
i = 0, . . . ,O,

(6-1g)

Master of Science Thesis Kerim Dzhumageldyev

62 Conclusions and Future Work

where d ∈ (0, 1) is a decay term and β ∈ R< 0 is a scalar multiplier in the appended cost for the
zk,i decision variable. The new objective term is designed to decrease as the system approaches
the target. Without this decrease, as the system moves closer to the origin, the contribution
of the zk,i term would become dominant in the cost. Very close to the origin, the stage and
terminal costs x⊤Px and x⊤Qx are small, so if the zk,i cost does not decay with the state, it
could outweigh these terms and prevent convergence to the origin. For this reason the term
is scaled with the state. An initial idea was to include a multiplication between the 2-norm
of the predicted states and the decision variable zk,i, expressed as −

∑N−1
k=0

∑O
i=1 βzk,i∥xk∥2.

However, this introduces a bilinear term, since it multiplies two decision variables, which
makes the problem non-convex and more difficult for the solver. As an alternative only the
first state x0 is used, since it represents the current state of the system and is not a decision
variable. The decay factor d then serves to approximate the reduction that would naturally
occur in the predicted states as they move closer to the solution, leading to the formulation
presented above.

However, this method has not yet been explored numerically in detail. Although it enables
gradient updates outside the usual instances, the dual variables associated with the CBF
constraints where the slack variables S are active are typically much larger than the other
dual variables in the Lagrangian. As a result, the gradient updates remain dominated by
constraint violations. This limitation requires further consideration.

6-2-2 Uncertainties and Disturbances

In real-world applications, systems are inevitably subject to model uncertainties and external
disturbances. While these aspects were not explicitly addressed in this thesis, they present
a natural direction for further research. To address them, different types of CBFs can be
employed. The most prominent methods in the literature are robust and stochastic CBFs
[21, 6, 7, 14]. Robust CBFs typically introduce a robustness term into the CBF condition,
which serves as a buffer to account for worst-case uncertainties. This robustness term is
framed in various ways across different formulations, some of which include tunable parame-
ters. It would be interesting to investigate whether these tunable parameters could be learned
alongside the methods in this thesis to account for disturbances or model mismatch. Stochas-
tic CBFs, on the other hand, aim to ensure safety under stochastic uncertainty by employing
probabilistic bounds to define and maintain safe regions. The ideas in this thesis of tuning
a parametrized class K function within the MPC-based RL framework could be applied to
improve the performance of a stochastic CBF. Work in this direction already exists, as shown
in [3]. However, this paper does not employ a neural network-based approach to learn the
class K function, as done in NN-CBF and RNN-CBF.

6-2-3 Higher Relative Degree

Another possible extension of the neural methods (NN-CBF and RNN-CBF) presented in
this thesis would be to account for systems with higher relative degree, which have not been
considered here (see 2-3-3 for a discussion of relative degree). This could be incorporated into
the NN-CBF and RNN-CBF frameworks. In this setting, discrete HOCBFs are defined as

Kerim Dzhumageldyev Master of Science Thesis

6-2 Future Work 63

ψ0(xk) = h(xk), (6-2)

ψ1(xk) = ∆ψ0(xk, uk) + α1(ψ0(xk)), (6-3)

...

ψr(xk) = ∆ψr−1(xk, uk) + αr(ψr−1(xk)), (6-4)

where ∆ψ(xk, uk) = ψ(xk+1)−ψ(xk). This approach could extend this idea by replacing the
class K functions with learnable discrete eCBF parameters:

ψ0(xk) = h(xk), (6-5)

ψ1(xk) = ∆ψ0(xk, uk) + γ1ψ0(xk), (6-6)

...

ψr(xk) = ∆ψr−1(xk, uk) + γrψr−1(xk), (6-7)

with the decay rates γi provided as outputs of the NN or RNN. Exploring the effectiveness of
this extension on higher-order systems would be valuable, since the added outputs per CBF
condition increase training complexity. It would also be interesting to compare the results to
the method in [26], which addresses continuous HOCBFs in a related way.

6-2-4 Comparisons with Other Methods

Even though the methods presented in this thesis show promising results, no direct comparison
with [26] is included. Such an evaluation would be important to confirm the advantages of
learning in this framework and to determine whether the proposed method offers a general
improvement over [26]. Moreover, implementing the proposed method alongside [13] and [34]
on an appropriate example is also of interest. This was not pursued for the numerical example
in Chapter 5 because using a continuous-time CBF for the double integrator would require a
CBF of relative degree two, whereas the discrete CBFs used in this thesis have relative degree
one.

6-2-5 Unknown CBF

When obstacles are not known in advance or the CBF condition is difficult to specify, learn-
ing the CBF itself may be beneficial. Building on Section 3-2-1, one possible direction is to
parameterize the CBF with a neural network and learn it jointly with the MPC, which once
again would serve as the function approximator for RL. However, this introduces challenges,
since learning an unknown CBF is likely to cause safety violations during training. Initial-
ization of the CBF parameters is then critical. A conservative initialization can make the
system overly cautious and weaken exploration, while a less conservative initialization can
cause frequent violations.

Master of Science Thesis Kerim Dzhumageldyev

64 Conclusions and Future Work

6-2-6 Complex Numerical Experiment

So far, the frameworks in the thesis have been implemented on a double integrator system
and extending it to multiple dynamic obstacles has already introduced additional complex-
ity. A natural next step would be to test how the method performs on non-linear and more
complex systems. Such an extension would raise computational challenges and test the learn-
ing capability of the approach in more complex scenarios that are representative of real-life
problems.

6-2-7 Learning a generalizable class K function

The NN-CBF and RNN-CBF methods considered in this thesis rely on neural networks. This
raises the possibility of learning more general class K functions that guarantee safety with
respect to the system itself rather than being tailored to specific scenarios. The objective
would be to extend safety guarantees to unseen situations, including cases that have not
been encountered during training. In practice, this would require exposing the network to a
variety of scenarios during training so that it can capture more general features and account
for obstacles that were not explicitly experienced before. To support this generalization, the
network inputs would need to be adapted. For instance, dependencies on system inputs and
velocities could be preserved, while direct dependence on position might be avoided since
obstacles may appear in varying locations.

Handling multiple obstacles also becomes an important consideration. A larger number of
obstacles implies more outputs and a correspondingly larger network. However, if the aim is
to maintain generality, it may not be feasible to continuously expand the input and output
dimensions of the network after it has been trained. One practical solution is to design the
network and the MPC to account for a fixed number O of obstacles, where only the closest
obstacles are considered. This approach, however, introduces a subjective choice of O and
may fail to capture situations where an obstacle slightly farther away still poses a significant
safety risk.

Kerim Dzhumageldyev Master of Science Thesis

Appendix A

Settings of the Experiments

This Appendix chapter presents all hyperparameters used for training in the experiments of
this thesis, as well as the bounds for the learnable parameters.

Master of Science Thesis Kerim Dzhumageldyev

66 Settings of the Experiments

A-1 LOPTD-CBF Static Obstacle Experiment

Table A-1: Experiment Settings

Name Value Description
Episode Duration 3000 Time steps per episode.
Number of Episodes 3000 Episodes used for the reported run.
Sampling Time 0.2 s Discrete-time step ∆t.
Patience Threshold 10 Episodes without improvement before

LR decay.
Pω 1000 Weighting parameter controlling how

strongly ω is driven toward ω̄.
ω̄ 0.4 Reference decay rate toward which ω is

regulated.
Learning Rate Decay Factor 0.1 Multiplier applied when patience is ex-

ceeded.
Slack Penalty (MPC) 20,000,000.0 Cost weight on slacks in MPC objec-

tive.
Slack Penalty (RL) 1,000.0 Cost weight on slacks in RL stage cost.
Adam β1, β2, ϵ 0.9, 0.999, 10−8 ADAM parameters
Seed 69 Random seed for reproducibility.
Alpha (Learning Rate) 0.5 Base step size for parameter updates.
Gamma RL γRL 0.95 RL Discount factor.
Initial Noise Scale 4 Exploration noise scaling at start.
Noise Variance 5 Variance of exploration noise.
Decay Rate of Noise 0.02276277904418933 Per-update decay factor for noise scale.
Noise Scale at End 0.001 Target exploration scale at end of

training.
Replay Buffer 30000 Number of recent samples used for up-

dates.
Episode Update Frequency 10 Perform updates every 10 episodes.
Per-parameter LR vector [α, α, α, α, α, 0.001α] Full α on P diag; Full α on Pω; α*0.001

on ω̄ .

Table A-2: LOPDT-CBF Learnable Parameter Bounds

Learnable RL Pa-
rameter

θlb θub ∆θlb ∆θub

P 0 ∞ −∞ ∞
Pω 0 ∞ −∞ ∞
ω̄ 10−6 1 −∞ ∞

Table A-3: Obstacle & Environment Configuration

ID Mode Bounds (for mode) Speed Initial
Direc-
tion

Position /
Radius

1 static - 0.0 - (−2.0, −2.25)
/ 1.5

Kerim Dzhumageldyev Master of Science Thesis

A-2 NN-CBF Static Obstacle Experiment 67

A-2 NN-CBF Static Obstacle Experiment

Table A-4: Experiment Settings

Name Value Description
Episode Duration 3000 Time steps per episode.
Number of Episodes 3000 Episodes used for the reported run.
Sampling Time 0.2 s Discrete-time step ∆t.
Layers List [5, 8, 8, 8, 1] RNN-CBF architecture: input, hidden,

hidden, output.
Patience Threshold 10 Episodes without improvement before

LR decay.
Learning Rate Decay Factor 0.1 Multiplier applied when patience is ex-

ceeded.
Slack Penalty (MPC) 20,000,000.0 Cost weight on slacks in MPC objec-

tive.
Slack Penalty (RL) 1,000.0 Cost weight on slacks in RL stage cost.
Adam β1, β2, ϵ 0.9, 0.999, 10−8 ADAM parameters
Seed 69 Random seed for reproducibility.
Alpha (Learning Rate) 0.5 Base step size for parameter updates.
Gamma RL γRL 0.95 RL Discount factor.
Initial Noise Scale 4 Exploration noise scaling at start.
Noise Variance 5 Variance of exploration noise.
Decay Rate of Noise 0.02276277904418933 Per-update decay factor for noise scale.
Noise Scale at End 0.001 Target exploration scale at end of

training.
Replay Buffer 30000 Number of recent samples used for up-

dates.
Episode Update Frequency 10 Perform updates every 10 episodes.
Per-parameter LR vector [α, α, α, α, 0.01α, . . .] Full α on P diag; 0.01α for NN params.

Table A-5: NN-CBF Learnable Parameter Bounds

Learnable RL Parameter θlb θub ∆θlb ∆θub
P 0 ∞ −∞ ∞
NN parameters −∞ ∞ −∞ ∞

Table A-6: Obstacle & Environment Configuration

ID Mode Bounds (for mode) Speed Initial
Direc-
tion

Position /
Radius

1 static - 0.0 - (−2.0, −2.25)
/ 1.5

Master of Science Thesis Kerim Dzhumageldyev

68 Settings of the Experiments

A-3 NN-CBF Dynamic Obstacles Experiment

Table A-7: Experiment Settings

Name Value Description
Episode Duration 150 Time steps per episode.
Number of Episodes 3000 Episodes used for the reported run.
Sampling Time 0.2 s Discrete-time step ∆t.
Layers List [13, 16, 16, 16, 3] RNN-CBF architecture: input, hidden,

hidden, output.
Patience Threshold 20 Episodes without improvement before

LR decay.
Learning Rate Decay Factor 0.1 Multiplier applied when patience is ex-

ceeded.
Slack Penalty (MPC) 20,000,000.0 Cost weight on slacks in MPC objec-

tive.
Slack Penalty (RL) 40,000.0 Cost weight on slacks in RL stage cost.
Adam β1, β2, ϵ 0.9, 0.999, 10−8 ADAM parameters
Seed 69 Random seed for reproducibility.
Alpha (Learning Rate) 0.007 Base step size for parameter updates.
Gamma RL γRL 0.95 RL Discount factor.
Initial Noise Scale 10 Exploration noise scaling at start.
Noise Variance 5 Variance of exploration noise.
Decay Rate of Noise 0.535841116638722 Per-update decay factor for noise scale.
Noise Scale at End 0.01 Target exploration scale at end of

training.
Replay Buffer 750 Number of recent samples used for up-

dates.
Episode Update Frequency 5 Perform updates every 5 episodes.
Per-parameter LR vector [α, α, α, α, 0.01α, . . .] Full α on P diag; 0.01α for NN params.

Table A-8: NN-CBF Learnable Parameter Bounds

Learnable RL Parameter θlb θub ∆θlb ∆θub
NN parameters −∞ ∞ −∞ ∞

Table A-9: Obstacle & Environment Configuration

ID Mode Bounds (for mode) Speed Initial
Direc-
tion

Position /
Radius

1 step_bounce x ∈ (−4.0, 0.0) 2.3 +1 (−2.0, −1.5)
/ 0.7

2 step_bounce x ∈ (−4.0, 1.0) 2.0 −1 (−3.0, −3.3)
/ 0.7

3 static - 0.0 - (−2.0, 0.0) /
1.0

Kerim Dzhumageldyev Master of Science Thesis

A-4 RNN-CBF Dynamic Obstacles Experiment 69

A-4 RNN-CBF Dynamic Obstacles Experiment

Table A-10: Experiment Settings

Name Value Description
Episode Duration 150 Time steps per episode.
Number of Episodes 3000 Episodes used for the reported run.
Sampling Time 0.2 s Discrete-time step ∆t.
Layers List [13, 16, 16, 16, 3] RNN-CBF architecture: input, hid-

den, hidden, output.
Patience Threshold 20 Episodes without improvement be-

fore LR decay.
Learning Rate Decay Fac-
tor

0.1 Multiplier applied when patience is
exceeded.

Slack Penalty (MPC) 20,000,000.0 Cost weight on slacks in MPC ob-
jective.

Slack Penalty (RL) 40,000.0 Cost weight on slacks in RL stage
cost.

Recurrent init Spectral radius target ≈
0.95

Recurrent Whh scaled to ρ(W) ≈
0.95.

Adam β1, β2, ϵ 0.9, 0.999, 10−8 ADAM parameters
Seed 69 Random seed for reproducibility.
Alpha (Learning Rate) 0.007 Base step size for parameter up-

dates.
Gamma RL γRL 0.95 RL Discount factor.
Initial Noise Scale 10 Exploration noise scaling at start.
Noise Variance 5 Variance of exploration noise.
Decay Rate of Noise 0.535841116638722 Per-update decay factor for noise

scale.
Noise Scale at End 0.01 Target exploration scale at end of

training.
Replay Buffer 750 Number of recent samples used for

updates.
Episode Update Freq. 5 Perform updates every 5 episodes.
Per-parameter LR vector [α, α, α, α, 0.01α, . . .] Full α on P diag; 0.01α for RNN

params.
RNN wamrup steps 15 Initial 15 steps allow the hidden

state to converge to a stable value.

Table A-11: RNN-CBF Learnable Parameter Bounds

Learnable RL Parameter θlb θub ∆θlb ∆θub
RNN parameters −∞ ∞ −∞ ∞

Master of Science Thesis Kerim Dzhumageldyev

70 Settings of the Experiments

Table A-12: Obstacle & Environment Configuration

ID Mode Bounds (for mode) Speed Initial
Direc-
tion

Position /
Radius

1 step_bounce x ∈ (−4.0, 0.0) 2.3 +1 (−2.0, −1.5)
/ 0.7

2 step_bounce x ∈ (−4.0, 1.0) 2.0 −1 (−3.0, −3.3)
/ 0.7

3 static - 0.0 - (−2.0, 0.0) /
1.0

Kerim Dzhumageldyev Master of Science Thesis

Appendix B

Adam

Adaptive Moment Estimation also known as Adam, replaces a single global learning rate with
per-parameter adaptation by tracking two exponential moving averages of the gradients [20].
The first moment mt estimates the mean direction of recent gradients and the second moment
vt estimates their uncentered variance. For parameters θ ∈ Rd and gradient gt = ∇θLθ(s, y⋆)
at iteration t≥1, the moments are updated as

mt = β1mt−1 + (1− β1)gt, vt = β2vt−1 + (1− β2) gt ⊙ gt,

with m0 = v0 = 0 and decay rates β1, β2 ∈ (0, 1). Because these moving averages are
initialized at zero, they tend to be biased towards zero, most notably during the first few
steps. To correct for this bias, Adam computes bias-corrected terms of the previous estimates.

m̂t = mt

1− β t
1
, v̂t = vt

1− β t
2
.

The resulting parameter update is then

∆θt = −αt
m̂t√
v̂t + ε

, θt+1 = θt + ∆θt,

where αt > 0 denotes a (possibly elementwise) learning rate, ε > 0 is a small numerical
constant. An equivalent implementation is shown by combining all the terms into one step

∆θt = − αt

1− β t
1

mt

√
vt/

√
1− β t

2 + ε
,

which is algebraically identical to the standard Adam update above.

Master of Science Thesis Kerim Dzhumageldyev

72 Adam

Kerim Dzhumageldyev Master of Science Thesis

Appendix C

Static Obstacle Experiment Without
Terminal Cost Parametrization

This Appendix chapter shows that the RL was unable to learn a good policy when the terminal
cost was not parametrized in the static example. This suggests that having a parameterization
only over the class K function and not the terminal cost is likely insufficient to capture the
optimal value function, and thus also the optimal policy.

C-0-1 LOPTD-CBF

(a) Optimal decay CBF initial policy trajec-
tory (b) Optimal decay CBF initial policy ω plot

Figure C-1: Policy before training

Master of Science Thesis Kerim Dzhumageldyev

74 Static Obstacle Experiment Without Terminal Cost Parametrization

(a) Optimal decay CBF final policy trajectory (b) Optimal decay CBF final policy ω plot

Figure C-2: Policy after training

(a) Evolution of ω̄ during training (b) Evolution of Pω during training

(c) Evolution of terminal cost matrix P dur-
ing training

Figure C-3: Evolution of learned parameters during training

Kerim Dzhumageldyev Master of Science Thesis

75

C-0-2 NN-CBF

Figure C-4: NN-CBF initial policy trajectory

(a) NN-CBF final policy trajectory (b) NN-CBF final policy γ plot

Figure C-5: Policy after training

Figure C-6: Evolution of terminal cost matrix P during training

Master of Science Thesis Kerim Dzhumageldyev

76 Static Obstacle Experiment Without Terminal Cost Parametrization

Kerim Dzhumageldyev Master of Science Thesis

Appendix D

RNN-CBF Alternative Solution

Further training of the RNN-CBF without slowing down the learning earlier yields the solution
shown in Figure D-1, achieving a stage cost of 6734 with a policy that does not use slacks.

Master of Science Thesis Kerim Dzhumageldyev

78 RNN-CBF Alternative Solution

−5

−4

−3

−2

−1

0

1

Y

k=6 k=11 k=14

−5

−4

−3

−2

−1

0

1

Y

k=16 k=17 k=18

−5 −4 −3 −2 −1 0 1

X

−5

−4

−3

−2

−1

0

1

Y

k=20

−5 −4 −3 −2 −1 0 1

X

k=26

Last Steps (N=6)

System

Predicted Horizon (N=6)

Obstacle 1

Obstacle 2

Obstacle 3

Obstacle (Predicted, N=6 Ahead)

Figure D-1: Snapshots of the alternative RNN-CBF policy after training, obtained without slacks.
The red dot marks the current system position, the black trail shows the predicted horizon and
the grey line shows the last six steps of the system trajectory. The solid circles indicate the current
positions of the static (green) and dynamic (blue and orange) obstacles, while the dotted circles
indicate their predicted positions six time steps ahead.

Kerim Dzhumageldyev Master of Science Thesis

Appendix E

Paper Draft

A draft of a paper summarizing the findings of the thesis is given below.

Master of Science Thesis Kerim Dzhumageldyev

Safe model-based Reinforcement Learning via
Model Predictive Control and Control Barrier

Functions
Kerim Dzhumageldyev, Fillipo Airaldi, Azita Dabiri

Abstract—Optimal control strategies are often combined with
safety certificates to ensure both performance and safety in
safety-critical systems. A prominent example is combining Model
Predictive Control (MPC) with Control Barrier Functions (CBF).
Yet, tuning MPC parameters and choosing an appropriate class K
function in the CBF is challenging and problem dependent. This
paper introduces a safe model-based Reinforcement Learning
(RL) framework where a parameterized MPC incorporates a
CBF with a parameterized class K function and serves as a
function approximator to learn improved safe control policies.
Three variations are introduced, distinguished by the way the
class K function is parameterized. The Learnable Optimal Decay
CBF extends the Optimal Decay CBF by allowing RL to tune
the optimal decay parameters, enhancing performance while
preserving feasibility and safety guarantees. The Neural Network
CBF parametrizes the decay term of a discrete exponential
CBF with a neural network, enabling richer state-dependent
safety conditions. Finally, the Recurrent Neural Network CBF
extends the Neural Network CBF with a recurrent architecture
to handle time-varying CBF constraints. Numerical experiments
on a discrete double-integrator with static and dynamic obstacles
demonstrate that the proposed methods improve performance
while ensuring safety, each offering distinct trade-offs in perfor-
mance, feasibility and complexity.

I. INTRODUCTION

Safety is a concern at the core of numerous problems in
control. Over the years, various methodologies have been
developed to ensure safety in control systems. Among these,
Control Barrier Functions (CBFs) have become one of the
most prominent tools in the literature. In particular, they
enforce safety by ensuring that system trajectories remain
within a prescribed safe set [1], [2]. More recently, CBFs
have been combined with Model Predictive Control (MPC),
which provides a predictive framework for optimizing control
performance, while CBFs guarantee forward invariance of a
safe set over the horizon.

The effectiveness of this integration, however, hinges on
a handful of design choices. Among others, weights in the
MPC cost, the prediction horizon and the class K function
in the CBF all shape the resulting controller. Poorly chosen
values can shrink the feasible set, reduce performance or even
render the problem infeasible. Notably, the choice of the class
K function is particularly delicate, as it directly affects how
conservative the safety constraint is and creates a trade-off
between safety and performance.

To address the challenge of selecting a suitable class K
function, several learning-based approaches have been pro-
posed. One line of work models a generic class K function

with a Neural Network (NN) trained jointly with a Rein-
forcement Learning (RL) policy [3]. A Quadratic Program
(QP) formulation with a CBF constraint incorporates this
learned function, ensuring safety, while RL training alleviates
the inherent myopic limitations of the QP. While QP-based
methods enforce safety at each step and RL training helps curb
myopic behavior, they do not propagate safety information
or plan trajectories across the horizon, which can lead to
infeasibility during training before feasible RL policies are
found. By contrast, MPC enforces safety by optimizing over
the entire horizon rather than step-by-step, providing foresight
that preserves feasibility more reliably during training [4].
Lastly, since the class K function is fixed during training, poor
initialization can still lead to infeasibility.

Another approach introduces a learnable penalty term that
scales a user-specified class K function in the CBF condition
[5]. Since the class K function itself is fixed, its choice
remains arbitrary. In this approach, learning is performed
through a differentiable QP with supervised training, which
means performance is dependent on the quality of the nominal
controller used for data generation.

A third direction combines MPC–CBF with deep RL, where
the RL policy outputs the parametrization for both the MPC
controller and CBF constraints [6]. This avoids differentiating
through the optimization problem and reduces computation,
but gradients are not propagated through MPC, making the
method sample-inefficient. Safety and feasibility are also not
guaranteed, as CBF parameters update across episodes rather
than within rollouts.

Though the present work focuses on deterministic formula-
tions, there exist other recent works that integrate probabilistic
or uncertainty-aware formulations into MPC–CBF–RL frame-
works, either for stochastic systems [7] or online parameter
adaptation [8].

As an alternative, we propose using MPC as the function
approximator instead of a NN as in [6], and learning a
parametrized class K function within the CBF constraint. The
advantage of leveraging MPC as approximation instead of an
NN is that it can directly incorporate dynamics, input, and
state constraints, while retaining guarantees such as stability
and recursive feasibility. Compared to [6], our approach is
thus more sample efficient, since gradients are propagated
through the MPC optimization problem rather than via black-
box policy updates. Furthermore, while QP-based methods [3],
[5] remain limited by their step-wise nature and inability to

plan coherent safe trajectories multiple steps ahead, the MPC
scheme is able to yield policies that are optimal and guarantee
safety across a prediction horizon.

The contribution of this paper is to propose three different
methods to parametrize the class K function in the context
of MPC as function approximation for RL, each with its own
distinct trade-offs:

• Learnable Optimal Decay CBF (LOPTD-CBF) ex-
tends the optimal-decay framework from [9] by making
decay parameters learnable, improving feasibility while
maintaining safety guarantees.

• Neural Network CBF (NN-CBF) replaces fixed decay
rates with a feedforward NN that outputs state-dependent
decay functions, removing horizon dependence and en-
abling richer mappings.

• Recurrent Neural Network CBF (RNN-CBF) extends
NN-CBF with a recurrent neural network (RNN) archi-
tecture that incorporates temporal context, improving per-
formance in environments with time-varying constraints.

The paper is structured as follows. Section II gives an an
overview of MPC-based RL, along with discrete CBF, discrete
exponetial CBF and optimal decay CBF. This is used to
motivate Section III. The effectiveness of these methods is
tested in Section IV on two obstacle avoidance tasks with
different numbers of obstacles. Lastly, Section V concludes
the paper and highlights future research directions.

II. BACKGROUND

This chapter details the theoretical background used in the
paper.

A. Control Barrier Functions

Here we review discrete CBFs and their incorporation into
MPC, followed by discrete exponential CBF and optimal
decay CBF, which form the basis of our approaches.

1) Discrete Control Barrier Functions: Consider a discrete-
time system

sk+1 = f(sk, ak), (1)

where sk ∈ S ⊆ Rns is the state and ak ∈ A ⊆ Rna is
the action. Here, S and A denote the state and action spaces.
The safe set is defined as the superlevel set of h : S → R :
C = {s ∈ S | h(s) ≥ 0}. The discrete CBF condition ensures
forward invariance of C at time step k by requiring that there
exists an input ak such that

h(sk+1)− h(sk) ≥ −α(h(sk)), s ∈ C, (2)

where α is a class K function satisfying α(r) < r ∀ r > 0
[10].

Embedding this condition into MPC involves adding the
CBF constraint at each time step in the MPC horizon, along-
side the standard dynamics and input constraints [11]. This
ensures that the trajectory remains safe throughout the horizon
while optimizing performance.

2) Discrete Exponential Control Barrier Functions: Dis-
crete exponential CBFs extend nominal CBFs by selecting
the class K function in (2) as α(r) = γr, with γ ∈ (0, 1]
controlling the decay rate, which imposes an exponential decay
on the safety constraint over time [1], [10], [12].

3) Optimal Decay CBFs: A limitation of nominal and
exponential CBFs is that they may become infeasible under
input constraints, as no admissible action may satisfy the
condition. Optimal Decay CBFs (OPTD CBFs) address this
by making the decay rate γ of the discrete exponential CBF
adjustable [9]. The fixed decay rate is replaced by the decision
variable ω, giving h(sk+1) − h(sk) ≥ −ωh(sk), jointly
optimized with the input in the following QP

min
u ∈ A, ω ∈ (0, 1]

1
2 |u− k(sk)|2 + Pω(ω − ω̄)2 (3a)

s.t. h(f(sk, u))− h(sk) ≥ −ωh(sk), (3b)

where ω̄ is a reference decay rate, Pω is a penalty weight and
k : S → A is a nominal controller. Small Pω values allow ω
to adapt more freely, while large values keep it close to ω̄. In
the limit Pω → ∞ with ω̄ = 1, the constraint reduces to the
nominal CBF [9]. Thus, the practitioner can tune Pω and ω̄ to
balance adaptability of ω against adherence to a desired decay
rate.

B. MPC as function approximator in RL

The objective of the RL agent is to learn a policy π : S →
A, that minimizes the expected discounted return

J(π) :=
T∑

k=0

γk
RLL(sk, π(sk)), (4)

where L : S × A → R is the stage cost, γRL ∈ (0, 1] is
the discount factor and T is the task length [13]. The optimal
policy π⋆ is given then by:

π⋆ = argmin
π

J(π). (5)

In general, the true optimal policy π⋆ and value functions
V ⋆, Q⋆ are difficult to compute exactly. One solution is to
employ function approximation schemes to approximate these.
Among others, such approximation scheme can be delivered
by a parametrized MPC controller [14], whereby the approx-
imate value function Vθ is given by

Vθ(s) = min
X,U,Σ

λθ(x0) + ℓf,θ(xN)

+

N−1∑

k=0

γk
RL

(
ℓθ(xk, uk) + w⊤σk

)
(6a)

s.t. xk+1 = fθ(xk, uk), k = 0, . . . , N − 1, (6b)
x0 = s, (6c)
xk ∈ S, k = 0, . . . , N, (6d)
uk ∈ A, k = 0, . . . , N − 1, (6e)
cθ(xk, uk) ≤ σk, k = 0, . . . , N − 1. (6f)

Primal variables include the state X =
[
x0 . . . xN

]⊤
and

actions U =
[
u0 . . . uN−1

]⊤
. The term λθ : S → R represents

the initial cost, while ℓθ : S×A → R and ℓf,θ : S → R denote

the stage and terminal costs. The system dynamics are given by
the parameterized model fθ : S × A → S. Mixed state–input
constraints are given by cθ : S × A → R, for example the
CBF constraint (2), with slack variables Σ =

[
σ0 . . . σN−1

]⊤
ensuring feasibility. Their penalties w control the trade-off
between rigidity and relaxation. The resulting policy applies
the first optimal control input πθ(s) = u⋆

0. The action-value
function Qθ(s, a) is defined analogously, as follows:

Qθ(s, a) = min
X,U, Σ

(6a) (7a)

s.t. (6b)− (6e) (7b)
u0 = a. (7c)

The MPC-based RL framework can be coupled with dif-
ferent RL algorithms; in this work we focus on Q-
learning. The objective is to minimize the Bellman resid-
ual minθ E

[
∥Q⋆(s, a)−Qθ(s, a)∥2

]
, in order to learn the

optimal action-value function and subsequently recover the
optimal policy from it. In practice, this amounts to driving
the Temporal Difference (TD) error, defined as

τk = L(sk, ak) + γRLVθ(sk+1)−Qθ(sk, ak), (8)

to zero with the parameter update step

θ ← θ + ητk∇θQθ(sk, ak), (9)

where η is the size of the update step [14]–[16].

III. METHODOLOGY

This section introduces the three novel approaches for
parametrizing the class K function of the CBF in MPC-based
RL. As a general remark, the methods below parametrize
both the objective function and the CBF condition in the
MPC. Within these methods, the following two assumptions
are considered.

Assumption 1. The prediction model f is known and coin-
cides exactly with the true system dynamics.

Assumption 2. The CBF is known and its safe set C = {s ∈
S | h(s) ≥ 0} equals the true safe set.

Lastly, for brevity we define

J̃(X,U,Σ) = ℓf,θ(xN)+
N−1∑

k=0

ℓθ(xk, uk)+wMPC

N−1∑

k=0

O∑

i=1

σk,i,

(10)
where the slack variables Σ = [σ0,0 . . . σN−1,O]T for each
constraint i = 1, . . . ,O will be later used to ensure feasibility
by allowing temporary relaxation of the CBF constraint, pe-
nalized in the cost through wMPC. This relaxation is necessary
because, under input constraints, the CBF condition (2) may
not be feasible for all states s, and as such recursive feasibility
cannot be guaranteed. Ensuring recursive feasibility is outside
the scope of this paper. Instead, feasibility is maintained by
allowing temporary relaxation of the CBF constraints, with
violations penalized in the RL stage cost. Moreover, during
RL exploration, the system may visit states where satisfying

the CBF constraint is more likely to be infeasible, highlighting
the need for this relaxation mechanism.

A. Learnable Optimal Decay CBF
A key challenge in the OPTD CBF framework is selecting

suitable parameters ω̄, Pω . Since this selection is somewhat
arbitrary and problem dependent, an RL agent is introduced
to tune these quantities for the specific task. Consider a control
task with O constraints (e.g., obstacles). We enforce each
constraint i = 1, . . . ,O, via a separate CBF, which is in
turn associated to learnable parameters ω̄k,i,θ and Pωk,i,θ. This
leads to the following MPC value function Vθ(s):

min
X, U, Ω, Σ

J̃(X,U,Σ) +

N−1∑

k=0

O∑

i=1

Pωk,i,θ(ωk,i − ω̄k,i,θ)
2

(11a)
s.t. (6a) − (6e), (11b)

hi(xk+1)− (1− ωk,i)hi(xk) ≥ −σk,i,

k = 0, . . . , N−1, i = 1, . . . ,O,

(11c)

ωk,i ≥ 0, σk,i ≥ 0,

k = 0, . . . , N−1, i = 1, . . . ,O.

(11d)

The vector Ω = [ω0,0, . . . , ωN−1,O]T collects the decision
variables that relax the CBF condition at each prediction step
and constraint. The decay variables ωk,i are further shaped by
the quadratic penalty function in the objective, which steers
them toward the task-adapted reference values ω̄k,i,θ while
controlling the strength of the penalty for deviations through
Pωk,i,θ.

By leveraging an RL algorithm, these parameters can be ad-
justed to improve closed-loop performance, while the adaptive
nature of the decay rate ω enhances feasibility and promotes
minimal safety violations throughout the training process.
However, the number of learnable parameters grows with both
the MPC prediction horizon and the number of constraints.
Every constraint-step pair introduces a decay variable ωk,i

along with its own ω̄k,i,θ and Pωk,i,θ. Longer horizons there-
fore increase not only the total number of CBF constraints and
the optimal decay decision variables associated with them, but
also the dimensionality of the parameter space to be tuned.
Conversely, if the horizon is too short, the RL agent may
lack sufficient flexibility to obtain a satisfactory solution. This
strong dependence on the horizon is a principal limitation of
the method. Lastly, the same formulation can also be applied
in settings with time-varying constraints CBFs h(sk, k).

B. NN-CBF

To address these limitations, we propose an alternative
framework that reduces reliance on the horizon length and
provides a richer parametrization of the class K. It removes the
optimal-decay decision variables and instead employs a NN to
directly learn the decay rates γ in the discrete eCBF condition.
The inputs to the neural network are the current state sk and
the CBF values, written as hi(sk) in the time-invariant case
or hi(sk, k) when the CBF is time-varying. We also propose
to provide as additional input any information that can be
beneficial to the decision making, encoded at time step k as
the context ci(k), i = 1, . . . ,O. For instance, in an obstacle

avoidance task the context might consist of the position of each
obstacle. The network output is instead the vector of decay
rates ΓNN

k =
[
γ1 · · · γO

]⊤
, and is computed as follows:

z
(0)
k =

[
xk h1(xk, k) · · ·hO(xk, k) c1(k) · · · cO(k)

]⊤
,

(12)

z
(i)
k = ReLU

(
Wi,θ z

(i−1)
k + bi,θ

)
, i = 1, . . . , L, (13)

ΓNN
k = Sigmoid

(
WL+1,θz

(L)
k + bL+1,θ

)
. (14)

where Wi,θ,WL+1,θ and bi,θ, bL+1,θ denote the RL-learnable
weight matrices and biases, respectively, and L is the number
of hidden layers. Applying the network over the entire pre-
diction horizon provides a sequence of decay rates that are
substituted into the CBF constraints, constraint-wise and step-
wise. Using these outputs in the CBF constraints yields the
following parameterized MPC value function Vθ(s):

min
X,U,Σ

J̃(X,U,Σ) (15a)

s.t. (6a) − (6e), (15b)

hi

(
xk+1

)
−
(
1− γNN

i,k)hi

(
xk

)
≥ −σk,i,

k = 0, . . . , N − 1, i = 1, . . . ,O,

(15c)

σk,i ≥ 0, k = 0, . . . , N − 1, i = 1, . . . ,O. (15d)

Compared with the LOPTD-CBF, this method is independent
of the MPC horizon. This independence is particularly useful
for short horizons, where RL can still learn effective policies
while the MPC maintains low computational overhead. More-
over, the NN provides a richer parametrization, enabling more
expressive nonlinear mappings and finer trade-offs between
safety and performance. However, reliance on a NN increases
the number of trainable parameters relative to the optimal-
decay method and introduces topological and hyperparameter
choices that require tuning.

C. RNN-CBF

Building on the feedforward formulation, we replace the
network with an Elman RNN [17] to similarly generate a
vector of time-correlated decay rates across the prediction
horizon. The RNN is defined by the following equations:

z
(0)
k =

[
xk h1(xk, k) · · ·hO(x, k) c1(k) · · · cO(k)

]⊤
,

(16)

q
(1)
k = ReLU

(
Wi,θ z

(0)
k + bi +Wq(i),θq

(1)
k−1

)
, (17)

q
(i)
k = ReLU

(
Wi,θ q

(i−1)
k + bi +Wq(i),θq

(i)
k−1

)
, i = 2, . . . , L,

(18)

ΓRNN
k = Sigmoid

(
WL+1,θz

(L)
k + bL+1

)
, (19)

where q
(i)
k denotes the hidden state of layer i at time step

k. The weight matrices and biases are also RL-learnable,
similar to the NN-CBF case. Additionally, the recurrent weight
matrices W

(i)

q(i),θ
also become learnable parameters. The RNN

is incorporated into the MPC value function as in (15), by

applying the network over the prediction horizon to obtain a
sequence of decay rates, as follows:

min
X,U,Σ

J̃(X,U,Σ) (20a)

s.t. (6a) − (6e), (20b)

hi

(
xk+1

)
−
(
1− γRNN

i,k)hi

(
xk

)
≥ −σk,i,

k = 0, . . . , N − 1, i = 1, . . . ,O,

(20c)

σk,i ≥ 0, k = 0, . . . , N − 1, i = 1, . . . ,O. (20d)

The key idea is that a RNN can learn to store past information
in its hidden state. This allows it to remember recent pieces
of context information, something a feedforward network does
not explicitly capture. As a result, the RNN is able to handle
time-varying CBFs more effectively, since its structure is de-
signed to exploit temporal relation. By leveraging their hidden
state, RNNs can potentially train more sample-efficiently than
feedforward networks [18]. A sufficiently large feedforward
network can, in theory, approximate any mapping, but doing
so typically requires more training samples than when such
temporal structure is inherently imposed, as in an RNN.

Furthermore, since the RNN is rolled out across the MPC
horizon by updating its hidden state at each predicted step with
the corresponding predicted input. The hidden state is then
passed recursively through the architecture. This means each
future step has access not only to past trajectory information
but also to the sequence of predicted inputs along the horizon.
For example, a point at horizon step k+5 receives information
from the inputs at k + 4, k + 3, k + 2, and so on, through
the evolving hidden state. In this way, the CBF conditions at
different steps of the horizon are temporally connected through
the RNN.

Once the MPC optimization is solved and the first optimal
control action u⋆

0 is applied, the RNN hidden state is reset to its
value before the optimization, qk. It is then updated using the
new actual state sk+1, so the hidden state remains consistent
with the true system trajectory rather than the predicted one.

D. Training Architecture

The overall training architecture is shown in Algorithm 1,
where Nepisodes denotes the total number of training episodes.
This RL training process is built around three MPCs. The
first MPC is based on the value function Vθ(s) and serves
as the behavioral policy for generating online training data.
To promote exploration, a perturbation term ξ⊤u0 is added to
its objective, where ξ is sampled from a normal distribution.
We refer to this modified controller as Vrand,θ(s, ξ). Injecting
noise in this manner preserves constraint satisfaction, unlike
directly perturbing the applied control input as a = u0 + ξt,
which may lead to violations. The noise level decays over
the course of training, allowing the policy to gradually shift
from exploration to exploitation. The second and third MPCs
compute Vθ(s) and Qθ(s, a) based on (11) or (15), depending
on the choice of parametrization, which are used to form the
TD error.

An integral part of the training architecture is the RL stage
cost L(s, a), which encodes the return of the task at hand as

per eq. (4). The stage cost here is augmented to account for
the use of the slack variables as follows.

Laug(sk, ak,Σ
⋆
k) = L

(
sk, ak

)
+ wRL

N−1∑

k=0

O∑

i=1

σ⋆
k,i (21)

Here, L(s, a) is the RL stage cost and can be chosen to be
similar to the MPC stage cost ℓθ(s, a) so that RL stage cost
remains aligned with the MPC objective. The second term
aggregates the optimal slack variables Σ⋆ from the optimal
solution of the MPC Vrand,θ(sk, ξ). The weight wRL controls
how strongly these violations are penalized during learning.

Gradients for the Q-learning update are first accumulated
in a buffer and then averaged before updating the parameters.
The averaged gradient is computed as

gavg = − 1

|B|

|B|∑

i=1

δi∇θQθ(si, ai), (22)

where |B| denotes the buffer cardinality. In place of the plain
gradient descent update (9), we propose to leverage the Adam
optimizer instead, which adaptively rescales learning rates by
maintaining running estimates of first and second moments
of the gradients, often leading to faster and more stable
convergence than plain gradient descent [19]. We refer to this
modified update as gAdam, with the parameter update given by
θ ← θ − gAdam.

To enforce both lower and upper bounds on the RL
parameter updates, the step can be cast as a QP, which
projects the updated parameters into the feasible set, as
proposed in [13]. In Algorithm 1 the Adam update together
with this QP projection is represented by one step called
AdamQP(θ,gadam). For further details of the code see
https://github.com/kerimd14/thesis code.

Algorithm 1 RL Training Loop

1: for episode = 1 to Nepisodes do
2: Reset the environment and RNN hidden states (if used)
3: for t = 0 to T − 1 do
4: Exploration: Solve Vrand,θ(st, ξt) for at and Σ⋆

t

5: System rollout: Update st+1 ← f(st, at)
6: Observe stage cost Laug(st, at,Σ

⋆
t)

7: Q-value: Solve Qθ(st, at)
8: V-value: Solve Vθ(st+1)
9: TD error: Compute TD error (8)

10: Compute Gradient: ∇θQθ(st, at),
11: Form gt ← −τt∇θQθ(st, at)
12: Store gt in buffer B
13: end for
14: if buffer B is full then
15: gavg ← 1

|B|
∑

gt and clear buffer B
16: Update θ ← AdamQP(θ,gavg)
17: end if
18: Decay exploration noise (ξt)
19: end for

IV. RESULTS

We test our proposed methodologies on two obstacle avoid-
ance tasks. The first task evaluates the LOPTD-CBF and
the NN-CBF on a simple example with one static obstacle.
The second part considers a more complex environment with
multiple moving obstacles, where the RNN-CBF and NN-CBF
are compared to analyze their relative performance. Both sets
of experiments use the following discrete linear 2D double-
integrator system as described in [11], with sampling time ∆t
set to 0.2s:

sk+1 = Ask +Bak, (23)

In all the results that follows, the control policy is provided
by an MPC controller with objective

xT
NPθ xN +

N−1∑

k=0

(
xT
kQxk + uT

kRuk), (24)

with Q = 10I4×4, R = I2×2, and a learnable terminal weight
Pθ initialized with 100I4×4, constrained to remain diagonal
and positive definite. The system is subject to the following
state and input constraints: S =

{
sk ∈ Rn : −5 I4×1 ≤

sk ≤ 5 I4×1

}
,A =

{
ak ∈ Rm : −I2×1 ≤ ak ≤ −I2×1

}
.

A generic control barrier function for a circular obstacle
centered at (xo, yo) with radius ro is defined as h(s) =
(s0−xo)

2+(s1−yo)2−r2o , and is used to represent all circular
obstacles considered in these experiments. The RL stage cost
is chosen with the same reasoning as outlined before in III-D.

A. Static Obstacle

The first experiment considers the task of avoiding a single
circular static obstacle. The system starts at the initial point
(−5,−5) and aims to reach the origin while maintaining
safety. The single circular obstacle is defined with a center
at (2, 2.25) and a radius of 1.5. To initialize the learning
from a suboptimal policy and better appreciate the impact
of the RL tuning, the MPC controller is implemented with
a horizon of one. This myopic setup is intended to produce a
suboptimal baseline policy, which can then be improved upon
in subsequent experiments.

1) Learable Optimal Decay CBF: We begin by testing the
LOPTD-CBF. Prior to training, the initial policy is highly
suboptimal, as illustrated in Figure 1a, with a cumulative
stage cost of 21712. Due to the one-horizon MPC-CBF, the
policy is highly myopic and fails to anticipate the obstacle.
Consequently, the system moves diagonally toward the goal
until it reaches the obstacle boundary, after which it follows
the boundary to maintain safety and satisfy the CBF condition.

After training, the cumulative stage cost decreases to 7156.
As shown in Figure 1b, the trajectory no longer moves directly
toward the goal but instead deviates left early to avoid the
obstacle preemptively. The system also reaches the target more
efficiently, achieving a higher velocity and requiring fewer
iterations to converge.

The improved behavior is also evident in the ω dynamics
(Figure 1e). A pronounced spike appears near the obstacle,
reflecting the greater relaxation needed to maintain feasibility

at higher velocity. In other words, as the MPC controller
drives the system more quickly, satisfying the CBF constraint
necessitates a larger decay rate ω.

These changes are directly influenced by the learned ter-
minal cost parameters, shown in Figure 1h. The position
weights (P1,1 and P2,2) dominate the velocity weights (P3,3

and P4,4), encouraging the system to prioritize reaching the
origin quickly. Moreover, since P3,3 is larger than P4,4, motion
in the x-direction is penalized more heavily. As a result,
movement along the y-axis is comparatively cheaper, leading
the system to steer left around the obstacle.

2) Neural Network CBF: For the NN-CBF, the initial
policy is again suboptimal, with a cumulative stage cost of
21892 (Figure 1c), as it remains too myopic to anticipate the
obstacle. After training, the cumulative stage cost decreases to
6627, with the improved policy shown in Figure 1d.

The improved behavior can be explained by Figure 1f,
which shows the evolution of γ, the NN output. At the start, γ
decreases, making the policy more conservative and preventing
rapid acceleration. It then increases, enabling faster progress
toward the goal. Near the obstacle, γ decreases again, introduc-
ing conservatism that facilitates a safe turn around the circle.
After passing the obstacle, γ rises to permit faster motion,
before decreasing once more as the system approaches the
target, ensuring smooth deceleration and preventing overshoot.
Finally, γ stabilizes, allowing the system to settle at the goal.

The terminal cost parameters also influence the outcome.
As shown in Figure 1h, the position weights dominate the
velocity weights, promoting faster motion, while the nearly
equal velocity weights encourage forward rather than leftward
steering. Nevertheless, the trajectory still turns left, indicating
that the deviation is shaped not only by the terminal cost but
also by the CBF constraint.

3) Comparison: Both the LOPTD-CBF and the NN-CBF
improve over the initial MPC-CBF policy, but each has distinct
advantages and limitations. The LOPTD-CBF requires fewer
learnable parameters, which makes training faster since the
RL agent optimizes over a smaller search space. Another
advantage of the LOPTD-CBF is that it introduces a decision
variable for safety directly into the MPC optimization problem.
This allows online adjustment of the trajectory and safety,
reducing the risk of safety violations during training. On the
other hand, its performance is strongly dependent on the MPC
horizon, as a shorter horizon leads to a smaller number of ω
variables, thus restricting the adaptability of the CBF condition
only to imminent states, rendering it more myopic.

The NN-CBF, in contrast, employs more trainable param-
eters, enabling the representation of more complex class K
functions and the generation of state-dependent decay rates.
Owing to its richer parameterization, the NN-CBF is less
dependent on the horizon length for tuning the decay rate
compared to the LOPTD-CBF. The combination of reduced
dependence on the horizon and richer safety representation
leads to lower cumulative stage cost compared to the LOPTD-
CBF. However, while the NN-CBF is evaluated at every
timestep within a rollout, its outputs (decay rates) are de-

(a) LOPTD-CBF initial policy
trajectory

(b) LOPTD-CBF final policy
trajectory

(c) NN-CBF initial policy trajec-
tory

(d) NN-CBF final policy trajec-
tory

(e) LOPTD-CBF final policy ω
output (f) NN-CBF final policy γ

(g) Evolution of terminal
cost matrix P during training
LOPTD-CBF

(h) Evolution of terminal cost
matrix P during training NN-
CBF

Fig. 1: Static Obstacle Experiment Results

termined by the fixed, pre-trained network parameters and
cannot adapt online during an episode. This limitation can
compromise safety when the network is poorly initialized,
unlike the LOPTD-CBF which can adjust its decay rates
adaptively.

B. Dynamic Obstacles

To evaluate the framework in the presence of time-varying
obstacles, an experiment was conducted involving two dy-
namic obstacles and one static obstacle. The system starts at
(−5,−5) and must reach the origin while safely navigating
between the moving obstacles. The two dynamic obstacles
move horizontally along the x-axis within predefined bounds.
The first obstacle moves at yo = −1.5 within xo ∈ [−4.0, 0.0],
and the second moves at yo = −3.3 within xo ∈ [−4.0, 1.0].
Both move back and forth at constant velocity and have a

radius of 0.7. A third static circular obstacle is placed at
(xo, yo) = (−2, 0) with a radius of 1. The two dynamic
obstacles hinder the system as it moves toward the origin,
while the static obstacle discourages it from going around and
forces the controller to find a trajectory that passes between
the moving obstacles.

1) Neural Network CBF: Figure 2 shows snapshots of
the NN-CBF policy before and after training. Initially, the
trajectory is unsafe, entering the first dynamic obstacle at
k = 16 and k = 17, and the MPC predictions also fail to avoid
future obstacle positions. After training, the trajectory slows
earlier, remains outside the obstacle at k = 16 to k = 18,
and maneuvers safely around it. The predicted horizon also
avoids the future positions of the dynamic obstacle, indicating
improved planning.

This improvement is also reflected in the NN outputs shown
in Figure 4a. The largest change occurs in γ1 for the first
dynamic obstacle (blue), whose constraint was previously
violated. After training, γ1 decreases, corresponding to a more
conservative decay rate. This adjustment causes the system
to slow earlier when approaching the obstacle. The sharpest
drop appears between k = 8 and k = 15, aligning with the
trajectory change in Figure 2. For example in Figure 2, at
k = 11 the predicted state trajectory now avoids the predicted
obstacles by slowing down much earlier.

Achieving this behavior still requires slack variables. Slacks
are introduced during training to temporarily allow constraint
violations, while penalties on their use encourage the MPC
to reduce violations and approach a safe, control-invariant
solution. In Figure 2, slacks are not used to bypass constraints
but to enable rapid deceleration under bounded inputs. This be-
comes important when obstacles move faster or input bounds
are tight. The trajectory yields a cumulative stage cost of
6067 when excluding the slack penalty term and 15194 when
including it, as defined by the augmented stage cost in (21).

2) Recurrent Neural Network CBF: Figure 3 shows the
RNN-CBF policy before and after training. Initially the tra-
jectory is once again unsafe, entering the obstacle at k = 16
to k = 17. After training, the policy becomes safe, similar to
the NN-CBF case, though less conservative, as the trajectory
passes closer to the obstacles at k = 17.

The RNN outputs follow the same trend as in the NN case.
The γ1 values for the first dynamic obstacle (blue) decrease
between k = 8 and k = 15, but less sharply than in the NN,
leaving a higher decay rate and producing less conservative
behavior, as seen at k = 16 in Figure 3. As with the NN-
CBF, a richer RNN parametrization could in principle achieve
this without slacks. The trajectory has a cumulative stage cost
of 5923 without slack penalties and 14026 when they are
included, as computed using the augmented stage cost in (21).

3) Comparison: The main difference between the NN-CBF
and RNN-CBF lies in training efficiency. The RNN learns the
same policy with roughly 170 fewer episodes, highlighting
the benefit of its recurrent structure. While further tests are
needed to confirm, these results suggest that the RNN learns

faster than the NN. The RNN trajectory is also more effective,
coming closer to obstacles and achieving a lower stage cost.

A limitation of both methods is that gradient updates occur
only when the CBF constraint is active. When inactive, the
associated dual variable in the Lagrangian of Qθ(s, a) is
zero, so no gradient flows to the network. Combined with
the nonlinearities introduced by the NNs, this increases the
difficulty for the interior-point solver. Although, such solvers
can handle nonlinear problems, larger networks and longer
horizons make the optimization more challenging.

V. CONCLUSION

In this paper we proposed novel methods for merging MPC,
RL and CBFs. The central idea is to use a parameterized MPC
scheme, with CBF constraints, as a function approximator
to learn a safer and more performing policy. The proposed
methods expanded on this idea by exploring different ways
of parameterizing and adapting the class K function in the
CBF condition. The first method, LOPTD-CBF, focused on
improving feasibility guarantees while allowing RL to search
for better policies. This was achieved by extending and
parameterizing the OPTD framework. The second method,
NN-CBF, introduced a richer parametrization through a NN,
enabling more expressive safety conditions and yielding poli-
cies with better performance than LOPTD-CBF. Finally, the
RNN-CBF extended the NN-CBF framework with a recurrent
structure to better handle moving obstacles by accounting for
temporal dependencies. Numerical experiments confirmed that
both LOPTD-CBF and NN-CBF produce safe and improved
policies in a simple obstacle avoidance scenario, with NN-
CBF outperforming LOPTD-CBF. In the case of time-varying
obstacles, additional experiments showed that RNN-CBF is
able to find a safe policy faster than NN-CBF. However, both
solutions required the use of slack variables, even though
a slack-free policy is theoretically attainable but was not
demonstrated in this work. Further research will focus on
addressing the limitations of the current work, particularly
regarding gradient updates and nonlinearities in the MPC
network.

REFERENCES

[1] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath,
and P. Tabuada, “Control barrier functions: Theory and applications,”
in Proceedings of the 18th European Control Conference (ECC), 2019,
pp. 3420–3431.

[2] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier
function based quadratic programs for safety critical systems,” IEEE
Transactions on Automatic Control, vol. 62, no. 8, pp. 3861–3876, 2017.

[3] A. E. Chriat and C. Sun, “On the optimality, stability, and feasibility of
control barrier functions: An adaptive learning-based approach,” IEEE
Robotics and Automation Letters, vol. 8, no. 11, pp. 7865–7872, 2023.

[4] J. Zeng, Z. Li, and K. Sreenath, “Enhancing feasibility and safety of
nonlinear model predictive control with discrete-time control barrier
functions,” in 2021 60th IEEE Conference on Decision and Control
(CDC), 2021, pp. 6137–6144.

[5] W. Xiao, T.-H. Wang, R. Hasani, M. Chahine, A. Amini, X. Li, and
D. Rus, “Barriernet: Differentiable control barrier functions for learning
of safe robot control,” IEEE Transactions on Robotics, vol. 39, no. 3,
pp. 2289–2307, 2023.

5 4 3 2 1
4.5

4.0

3.5

3.0

2.5

2.0
k = 10

5 4 3 2 1

4.0

3.5

3.0

2.5

2.0

1.5 k = 11

5 4 3 2 1 0

3.5

3.0

2.5

2.0

1.5

1.0 k = 14

5 4 3 2 1 0

3.5

3.0

2.5

2.0

1.5

1.0
k = 16

5 4 3 2 1 0

3.5

3.0

2.5

2.0

1.5

1.0
k = 17

4 3 2 1 0

3.5

3.0

2.5

2.0

1.5

1.0
k = 18

4 3 2 1 0
3.5

3.0

2.5

2.0

1.5

1.0

k = 20

3 2 1 0 1 2

2.0

1.5

1.0

0.5

0.0

0.5 k = 26

Before: Last Steps (N=6)
After: Last Steps (N=6)

Before: Predicted Horizon (N=6)
After: Predicted Horizon (N=6)

Before: Current
After: Current

Obstacle 1
Obstacle 2

Obstacle 3
Obstacle (Predicted, N=6 Ahead)

Fig. 2: Snapshots of the NN-CBF policy, where ‘before’ refers to before training and ‘after’ refers to after training.

5 4 3 2 1
4.5

4.0

3.5

3.0

2.5

2.0
k = 10

5 4 3 2 1

4.0

3.5

3.0

2.5

2.0

1.5 k = 11

5 4 3 2 1 0

3.5

3.0

2.5

2.0

1.5

1.0 k = 14

5 4 3 2 1 0
3.5

3.0

2.5

2.0

1.5

1.0
k = 16

5 4 3 2 1 0
3.5

3.0

2.5

2.0

1.5

1.0
k = 17

4 3 2 1 0
3.5

3.0

2.5

2.0

1.5

1.0
k = 18

4 3 2 1 0 1

3.0

2.5

2.0

1.5

1.0

0.5 k = 20

3 2 1 0 1 2

2.0

1.5

1.0

0.5

0.0

0.5 k = 26

Before: Last Steps (N=6)
After: Last Steps (N=6)

Before: Predicted Horizon (N=6)
After: Predicted Horizon (N=6)

Before: Current
After: Current

Obstacle 1
Obstacle 2

Obstacle 3
Obstacle (Predicted, N=6 Ahead)

Fig. 3: Snapshots of the RNN-CBF policy, where ‘before’ refers to before training and ‘after’ refers to after training.

0 10 20 30 40 50
Time Step k

0.46

0.47

0.48

0.49

0.50

 V
al

ue
s

1
2
3

(a) γNN
i values of the NN

0 10 20 30 40 50
Time Step k

0.470

0.475

0.480

0.485

0.490

0.495

0.500

 V
al

ue
s

1
2
3

(b) γRNN
i values of the RNN

Fig. 4: NN and RNN outputs after training

[6] E. Sabouni, H. Sabbir Ahmad, V. Giammarino, C. G. Cassandras,
I. C. Paschalidis, and W. Li, “Reinforcement learning-based receding
horizon control using adaptive control barrier functions for safety-critical
systems*,” in 2024 IEEE 63rd Conference on Decision and Control
(CDC), 2024, pp. 401–406.

[7] F. Airaldi, B. De Schutter, and A. Dabiri, “Probabilistically safe
and efficient model-based reinforcement learning,” arXiv preprint
arXiv:2504.00626, 2025.

[8] T. Kim, R. I. Kee, and D. Panagou, “Learning to refine input constrained
control barrier functions via uncertainty-aware online parameter adap-
tation,” in IEEE International Conference on Robotics and Automation
(ICRA), 2025, pp. 3868–3875.

[9] J. Zeng, B. Zhang, Z. Li, and K. Sreenath, “Safety-critical control
using optimal-decay control barrier function with guaranteed point-wise
feasibility,” in 2021 American Control Conference (ACC), 2021, pp.
3856–3863.

[10] A. Agrawal and K. Sreenath, “Discrete control barrier functions for

safety-critical control of discrete systems with application to bipedal
robot navigation,” in Proceedings of Robotics: Science and Systems,
Cambridge, Massachusetts, July 2017.

[11] J. Zeng, B. Zhang, and K. Sreenath, “Safety-critical model predictive
control with discrete-time control barrier function,” in 2021 American
Control Conference (ACC), 2021, pp. 3882–3889.

[12] Q. Nguyen and K. Sreenath, “Exponential control barrier functions
for enforcing high relative-degree safety-critical constraints,” in 2016
American Control Conference (ACC), 2016, pp. 322–328.

[13] F. Airaldi, B. D. Schutter, and A. Dabiri, “Reinforcement learning with
model predictive control for highway ramp metering,” IEEE Transac-
tions on Intelligent Transportation Systems, vol. 26, no. 5, pp. 5988–
6004, 2025.

[14] S. Gros and M. Zanon, “Data-driven economic NMPC using reinforce-
ment learning,” IEEE Transactions on Automatic Control, vol. 65, no. 2,
pp. 636–648, 2020.

[15] C. J. Watkins, “Learning from delayed rewards,” PhD thesis, King’s
College, Cambridge, 1989.

[16] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
2nd ed. The MIT Press, 2018.

[17] J. L. Elman, “Finding structure in time,” Cognitive Science, vol. 14,
no. 2, pp. 179–211, 1990.

[18] F. Bonassi, M. Farina, J. Xie, and R. Scattolini, “On recurrent neural
networks for learning-based control: Recent results and ideas for future
developments,” Journal of Process Control, vol. 114, pp. 92–104, 2022.

[19] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
International Conference on Learning Representations (ICLR), 2015.

88 Paper Draft

Kerim Dzhumageldyev Master of Science Thesis

Bibliography

[1] Ayush Agrawal and Koushil Sreenath. Discrete control barrier functions for safety-critical
control of discrete systems with application to bipedal robot navigation. In Proceedings
of Robotics: Science and Systems, Cambridge, Massachusetts, July 2017.

[2] Devansh R. Agrawal and Dimitra Panagou. Safe control synthesis via input constrained
control barrier functions. In 2021 60th IEEE Conference on Decision and Control (CDC),
pages 6113–6118, 2021.

[3] Filippo Airaldi, Bart De Schutter, and Azita Dabiri. Probabilistically safe and efficient
model-based reinforcement learning. arXiv preprint arXiv:2504.00626, 2025.

[4] Filippo Airaldi, Bart De Schutter, and Azita Dabiri. Learning safety in model-based
reinforcement learning using MPC and Gaussian Processes. IFAC, 56(2):5759–5764,
2023. 22nd IFAC World Congress.

[5] Filippo Airaldi, Bart De Schutter, and Azita Dabiri. Reinforcement learning with model
predictive control for highway ramp metering. IEEE Transactions on Intelligent Trans-
portation Systems, 26(5):5988–6004, 2025.

[6] Anil Alan, Tamas G. Molnar, Aaron D. Ames, and Gábor Orosz. Parameterized barrier
functions to guarantee safety under uncertainty. IEEE Control Systems Letters, 7:2077–
2082, 2023.

[7] Anil Alan, Andrew J. Taylor, Chaozhe R. He, Aaron D. Ames, and Gábor Orosz. Control
barrier functions and input-to-state safety with application to automated vehicles. IEEE
Transactions on Control Systems Technology, 31(6):2744–2759, 2023.

[8] Aaron D. Ames, Samuel Coogan, Magnus Egerstedt, Gennaro Notomista, Koushil
Sreenath, and Paulo Tabuada. Control barrier functions: Theory and applications. In
Proceedings of the 18th European Control Conference (ECC), pages 3420–3431, 2019.

[9] Aaron D. Ames, Gennaro Notomista, Yorai Wardi, and Magnus Egerstedt. Integral
control barrier functions for dynamically defined control laws. IEEE Control Systems
Letters, 5(3):887–892, 2021.

Master of Science Thesis Kerim Dzhumageldyev

90 Bibliography

[10] Aaron D. Ames, Xiangru Xu, Jessy W. Grizzle, and Paulo Tabuada. Control barrier
function based quadratic programs for safety critical systems. IEEE Transactions on
Automatic Control, 62(8):3861–3876, 2017.

[11] Fabio Bonassi, Marcello Farina, Jing Xie, and Riccardo Scattolini. On recurrent neural
networks for learning-based control: Recent results and ideas for future developments.
Journal of Process Control, 114:92–104, 2022.

[12] L. Busoniu, R. Babuska, B. De Schutter, and D. Ernst. Reinforcement Learning and
Dynamic Programming using Function Approximators. CRC Press, 2017.

[13] Alaa Eddine Chriat and Chuangchuang Sun. On the optimality, stability, and feasibility
of control barrier functions: An adaptive learning-based approach. IEEE Robotics and
Automation Letters, 8(11):7865–7872, 2023.

[14] Andrew Clark. Control barrier functions for stochastic systems. Automatica, 130:109688,
2021.

[15] Ersin Das and Joel W Burdick. Robust control barrier functions using uncertainty esti-
mation with application to mobile robots. arXiv preprint arXiv:2401.01881, 2024.

[16] Charles Dawson, Sicun Gao, and Chuchu Fan. Safe control with learned certificates: A
survey of neural Lyapunov, barrier, and contraction methods for robotics and control.
IEEE Transactions on Robotics, 39(3):1749–1767, 2023.

[17] Jeffrey L. Elman. Finding structure in time. Cognitive Science, 14(2):179–211, 1990.

[18] Sébastien Gros and Mario Zanon. Data-driven economic NMPC using reinforcement
learning. IEEE Transactions on Automatic Control, 65(2):636–648, 2020.

[19] Hassan K. Khalil. Nonlinear Control. Pearson Education Limited, Harlow, England,
global edition, 2014.

[20] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In-
ternational Conference on Learning Representations (ICLR), 2015.

[21] Shishir Kolathaya and Aaron D. Ames. Input-to-state safety with control barrier func-
tions. IEEE Control Systems Letters, 3(1):108–113, 2019.

[22] M. Nagumo. über die lage der integralkurven gewöhnlicher differentialgleichungen. Pro-
ceedings of the Physico-Mathematical Society of Japan. 3rd Series, 24:551–559, 1942.

[23] Allan Andre do Nascimento, Antonis Papachristodoulou, and Kostas Margellos. Proba-
bilistically safe controllers based on control barrier functions and scenario model predic-
tive control. arXiv preprint arXiv:2409.06834, 2024.

[24] Quan Nguyen and Koushil Sreenath. Exponential control barrier functions for enforcing
high relative-degree safety-critical constraints. In 2016 American Control Conference
(ACC), pages 322–328, 2016.

[25] J. Rawlings and D. Mayne. Model Predictive Control: Theory and Design. Nob Hill
Publishing, 2008.

Kerim Dzhumageldyev Master of Science Thesis

91

[26] Ehsan Sabouni, H.M. Sabbir Ahmad, Vittorio Giammarino, Christos G. Cassandras,
Ioannis Ch. Paschalidis, and Wenchao Li. Reinforcement learning-based receding horizon
control using adaptive control barrier functions for safety-critical systems*. In 2024 IEEE
63rd Conference on Decision and Control (CDC), pages 401–406, 2024.

[27] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin
Riedmiller. Deterministic policy gradient algorithms. In Eric P. Xing and Tony Jebara,
editors, Proceedings of the 31st International Conference on Machine Learning (ICML),
volume 32, pages 387–395. PMLR, 2014.

[28] Oswin So, Zachary Serlin, Makai Mann, Jake Gonzales, Kwesi Rutledge, Nicholas Roy,
and Chuchu Fan. How to train your neural control barrier function: Learning safety
filters for complex input-constrained systems. In 2024 IEEE International Conference
on Robotics and Automation (ICRA), pages 11532–11539, 2024.

[29] Eduardo D. Sontag. A ‘universal’ construction of Artstein’s theorem on nonlinear stabi-
lization. Systems Control Letters, 13(2):117–123, 1989.

[30] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The
MIT Press, second edition, 2018.

[31] Andreas Wächter and Lorenz T. Biegler. On the implementation of an interior-point filter
line-search algorithm for large-scale nonlinear programming. Mathematical Programming,
106(1):25–57, 2006. Published online 28 April 2005.

[32] Christopher J.C.H. Watkins. Learning from Delayed Rewards. Phd thesis, King’s College,
Cambridge, 1989.

[33] Wei Xiao and Calin Belta. High-order control barrier functions. IEEE Transactions on
Automatic Control, 67(7):3655–3662, 2022.

[34] Wei Xiao, Tsun-Hsuan Wang, Ramin Hasani, Makram Chahine, Alexander Amini, Xiao
Li, and Daniela Rus. Barriernet: Differentiable control barrier functions for learning of
safe robot control. IEEE Transactions on Robotics, 39(3):2289–2307, 2023.

[35] Yuhan Xiong, Di-Hua Zhai, Mahdi Tavakoli, and Yuanqing Xia. Discrete-time control
barrier function: High-order case and adaptive case. IEEE Transactions on Cybernetics,
53(5):3231–3239, 2023.

[36] Jun Zeng, Zhongyu Li, and Koushil Sreenath. Enhancing feasibility and safety of non-
linear model predictive control with discrete-time control barrier functions. In 2021 60th
IEEE Conference on Decision and Control (CDC), pages 6137–6144, 2021.

[37] Jun Zeng, Bike Zhang, Zhongyu Li, and Koushil Sreenath. Safety-critical control using
optimal-decay control barrier function with guaranteed point-wise feasibility. In 2021
American Control Conference (ACC), pages 3856–3863, 2021.

[38] Jun Zeng, Bike Zhang, and Koushil Sreenath. Safety-critical model predictive control
with discrete-time control barrier function. In 2021 American Control Conference (ACC),
pages 3882–3889, 2021.

Master of Science Thesis Kerim Dzhumageldyev

92 Bibliography

Kerim Dzhumageldyev Master of Science Thesis

Glossary

List of Acronyms

MPC Model Predictive Control

NMPC Nonlinear Model Predictive Control

RL Reinforcement Learning

CBF Control Barrier Function

ZCBF Zeroing Control Barrier Function

CLF Control Lyapunov Function

eCBF Exponential Control Barrier Function

OPTD-CBF Optimal-Decay Control Barrier Function

HOCBF Higher-Order Control Barrier Function

MPC-CBF Model Predictive Control with Control Barrier Functions

CLF-CB-FQP Control Lyapunov Function–Control Barrier Function Quadratic Program

QP Quadratic Program

NN Neural Network

RNN Recurrent Neural Network

NN-CBF Neural Network Control Barrier Function

RNN-CBF Recurrent Neural Network Control Barrier Function

LOPTD-CBF Learnable Optimal Decay Control Barrier Function

ReLU Rectified Linear Unit

TD Temporal-Difference

Master of Science Thesis Kerim Dzhumageldyev

94 Glossary

KKT Karush–Kuhn–Tucker

Adam Adaptive Moment Estimation

IPOPT Interior Point OPTimizer

List of Symbols

α(·) Class K function
ω̄ Reference decay rate (OPTD-CBF)
β1, β2, ε Adam optimizer hyperparameters
χ, µ, ν, ζ Lagrange multipliers
∆t Sampling time
ℓ(x, u) MPC stage cost
ℓθ(x, u), ℓf,θ(x) Parametrized stage/terminal costs
ℓf (xN) Terminal cost
η Learning rate
γk Discrete eCBF decay rate at step k

γRL RL discount factor
m̂t, v̂t Bias-corrected Adam moments
λθ(x0) Initial cost term in parametric MPC
y Primal–dual variable vector (x, u, χ, µ, ν, ζ)
A Action space
Lθ(s, a,y) Lagrangian of the action–value MPC problem
O Number of obstacles
S State space
U Input constraint set
X State constraint set
Xf Terminal constraint set
NNθ(·) Parametrized neural network
ReLU(·) Rectified Linear Unit activation
RNNθ(·) Parametrized recurrent neural network for decay-rate mapping
∇θ(·) Gradient w.r.t. θ
Ω Vector of decay variables over horizon
ω Optimal-decay variable (OPTD-CBF)
∂C Boundary of the safe set
π(s) Policy mapping state to action
π⋆ Optimal policy
ψ(·) Penalty function on decay-variable deviation

Kerim Dzhumageldyev Master of Science Thesis

95

ψi(x) HOCBF auxiliary functions
ρ(W) Spectral radius
σ CLF slack variable
σk CBF slack at step k

σk, σN Slack variables for inequality/terminal constraints
σk,i CBF slack for obstacle i at step k

τk Temporal-difference (TD) error
Sigmoid(·) Sigmoid function
θ Parameter vector
φ(·) Penalty on CLF slack
a Action
a′ Next action
C = {x ∈ Rn | h(x) ≥ 0} Safe set
cθ(x, u), cf

θ (x) Parametrized mixed/terminal constraints
ci(k) Context of CBF i at time k
f(x) Autonomous state dynamics (continuous time)
fθ(x, u) Parametrized dynamics model
g(x) Control input dynamics (continuous time)
h(·) Barrier function/Control barrier function
H(x) QP weight matrix on control effort
hi(xk, k) Time-varying barrier function/ control barrier function
J(xk) MPC objective at time k
k(x) Nominal controller in OPTD-CBF objective
kb eCBF gain in α(h) = kbh

L(s, a) RL stage cost
Lfh(x), Lgh(x) Lie derivatives of h along f and g

LfV (x), LgV (x) Lie derivatives of V along f and g

Lr
fh(x) Higher-order Lie derivative of h

mt, vt Adam first and second moment estimates
MCBF, MCLF Horizon lengths for CBF/CLF constraints
O(·) Higher-order terms used in BarrierNet constraints
P Terminal cost matrix
p Penalty weight on δ2 in QP objective
p(z) BarrierNet penalty function
P [s′ | s, a] State–transition kernel
Pω Penalty on (ω − ω̄)2

Q(s, a) Action–state value function
Q⋆(s, a) Optimal action–state value function
Qθ(s, a), Vθ(s) Parametric value functions
qk RNN hidden state

Master of Science Thesis Kerim Dzhumageldyev

96 Glossary

r Relative degree
s Current state (RL)
s′ Next state
u⋆

0 First optimal control input
uk Control input of MPC
umin, umax Input bounds
uRL, ur RL action and projected safe action
V (s) State–value function
V (x) Lyapunov / CLF candidate
V ⋆(s) Optimal state–value function
w, wf Slack weights for constraint slacks in MPC objective
Wi, bi Layer weights and biases
wMPC Slack penalty weight in MPC objective
xk State vector of MPC
xN Terminal state vector
z(i) Layer activations
zk,i Auxiliary decision variable introduced in the CBF constraint at prediction step k for

constraint i, used to tighten the barrier condition.

Kerim Dzhumageldyev Master of Science Thesis

	Front Matter
	Cover Page
	Title Page
	Acknowledgments
	Table of Contents

	Main Matter
	Introduction
	Problem Statement
	Thesis Outline

	Theoretical Background
	MPC-based RL Framework
	Model Predictive Control

	Reinforcement Learning
	MPC-based RL framework
	Q-learning
	Computing Sensitivities

	Control Barrier Functions
	Nagumo's Theorem
	Control Lyapunov Functions
	Control Barrier Functions
	CBF-based Controllers
	Exponential Control Barrier Functions
	Optimal Decay CBFs

	Literature Review
	Data-Driven Shaping of CBF Constraints
	Adaptive class K in RL-MPC with CBF
	Learning class K for CBF
	BarrierNet: Learned Penalty Terms in CBF Constraints

	Learning CBF From Data
	Neural CBFs

	Methodology
	Learnable Optimal Decay CBF
	Neural Network CBF
	Recurrent Neural Network CBF
	Training Architecture

	Simulation Results
	Static Obstacle
	Learnable Optimal Decay CBF
	Neural Network CBF
	Comparison

	Dynamic Obstacles
	Neural Network CBF
	Recurrent Neural Network CBF
	Comparison

	Conclusions and Future Work
	Conclusion
	Future Work
	Improving the proposed NN-based methods.
	Uncertainties and Disturbances
	Higher Relative Degree
	Comparisons with Other Methods
	Unknown CBF
	Complex Numerical Experiment
	Learning a generalizable class K function

	Appendices
	Settings of the Experiments
	LOPTD-CBF Static Obstacle Experiment
	NN-CBF Static Obstacle Experiment
	NN-CBF Dynamic Obstacles Experiment
	RNN-CBF Dynamic Obstacles Experiment

	Adam
	Static Obstacle Experiment Without Terminal Cost Parametrization
	LOPTD-CBF
	NN-CBF

	RNN-CBF Alternative Solution
	Paper Draft

	Back Matter
	Bibliography
	Glossary
	List of Acronyms
	List of Symbols

