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Collective dynamics of soft active particles
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We present a model of soft active particles that leads to a rich array of collective behavior found also in
dense biological swarms of bacteria and other unicellular organisms. Our model uses only local interactions,
such as Vicsek-type nearest-neighbor alignment, short-range repulsion, and a local boundary term. Changing
the relative strength of these interactions leads to migrating swarms, rotating swarms, and jammed swarms, as
well as swarms that exhibit run-and-tumble motion, alternating between migration and either rotating or jammed
states. Interestingly, although a migrating swarm moves slower than an individual particle, the diffusion constant
can be up to three orders of magnitude larger, suggesting that collective motion can be highly advantageous, for
example, when searching for food.
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I. INTRODUCTION

Collective migration is found throughout the living world.
Examples range from shoals of fish and flocks of birds on the
macroscopic level [1,2] to microswimmers and individual cells
at the micron scale [3–6]. At even smaller scales within the cell,
myosin motors work collectively on actin filaments to achieve
long-range alignment [7]. In such crowded environments, the
simple behavior of individuals results in complex, nontrivial
dynamics of the group. No individual group member can
dictate the collective group behavior or even have anything
close to complete information of the group’s dynamics.
Nonetheless, the emergent collective patterns have a huge
impact on the individuals, and they often depend on them
for their very survival. Therefore, it is an obvious question to
ask how the rules governing the behavior of each individual
relate to the resulting collective behavior of the group.

In their seminal 1995 paper, Vicsek et al. [8] introduced
a model for studying flock behavior based on a few simple
rules for each individual bird. In their model, the individuals
are described as oriented point particles, which exhibit self-
propulsion, nearest-neighbor interactions that result in particle
alignment, and noise. Many variants of the original model
have been studied in the past twenty years [9]. Parallel to the
development of the Vicsek model, much progress has also
been made in the field of granular media, which studies the
collective behavior of collections of large particles. In their
famous 1998 Nature article, Liu and Nagel proposed that the
observed behavior of these systems can be summarized in a
phase diagram. Systems will get jammed at high densities
provided both their effective temperature and the applied load
are low enough, with a sharp phase transition between the
jammed and unjammed state [10].

In recent years, several groups have started combining
ideas from both fields, studying the collective behavior
of finite-sized self-propelled particles. In their 2011 paper,
Henkes et al. [11] showed that for a confined system, with
low self-propulsion velocities (equivalent to low load and
temperature), a sharp transition can also be found between a
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liquid and a solid state as a function of packing density. Models
without confinement often use a long-range attraction to model
collective dynamics. For example Grégoire et al. [4] combined
the Vicsek model with a Lennard-Jones-like potential and
found that this long-range attraction results in a cohesive flock.
More recently d’Orsogna et al. [12] and Nguyen et al. [13]
mapped the phase space for swarms held together by a
long-range Morse potential for two and three dimensions,
respectively. However, Rappel et al. [6] found that long-range
interaction is not a requirement for self-organization, neither
in their simulations, nor in experiments (see also Wang and
Kuspa [14]).

In this paper we describe the results of our study of the
collective dynamics of soft, finite sized, active particles with
short-range orientational interactions, but without confine-
ment. With no extra rules such a system would quickly fall
apart. To prevent this, we assume an effective surface tension
on the boundary of a cluster of particles, created by a local
boundary term that directs the particles towards the cluster (i.e.,
particles want to move into the cluster, where the environment
is usually more friendly). The density of our cluster is therefore
not set by us as an adjustable parameter, but by the system
resulting from a balance between its effective surface tension
and the bulk modulus of the cluster. Nonetheless, we find that
our system exhibits a range of different types of behavior,
depending on cluster size, the particles’ self-propulsion speed,
and the strength of the nearest-neighbor alignment term.
The two dominant types of behavior we find are collective
migration and the formation of a rotational cluster with no
net movement. Both are also frequently found throughout the
living world. Famous examples of migrating systems are herds
of mammals and aggregates of slime molds, while rotating
clusters are well known in schools of fish and the spiral of death
formed by army ants. In fact, most of these systems display
both types of behavior, e.g. fish switch between migration and
rotation (milling) [2,15], and, depending on environmental
conditions, slime molds [6,16,17] and bacteria [18–20] will
migrate or rotate. For example, the slime mold Dictyostelium
discoideum (or Dicty) will collectively migrate if food is
scarce, but transitions to a vortex to form a fruiting body as a
last resort [21]. Individuals in dense, biological swarms often
cannot judge the volume of the swarm, but only observe their
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local environment. Therefore, we consider the local interaction
rules we use in this work to be more realistic for describing
the rules that individuals in actual swarms follow than models
with long-range interactions.

II. METHOD

A. Local interaction model

We study the behavior of a two-dimensional system of
self-propelling, soft, circular particles on an infinite sheet.
In particular, we focus on the effects of the number of
particles, the self-propulsion force, and the torque that aligns
the particles with each other. To prevent crystallization, the
particles have different radii, drawn from a rather narrow
Gaussian distribution, G(μ = ā,σ = ā/10), such that ā is the
average particle radius. The particles interact only locally.
All of them experience repulsive forces when overlapping
(Hookean repulsion) and Vicsek-type alignment interactions
that tend to rotate their orientation to the average of that of their
neighbors. Additionally, particles that are on the boundary of
a particle cluster push inward, resulting in the formation of a
tightly packed disordered cluster. The slight polydispersity of
particle diameters and fluctuations in the strength and direction
that each particle pushes in will lead to rearrangements and
eventually large-scale motion.

We apply this model to densely packed biological systems
in the limit of vanishing Reynolds number. We are therefore
in the regime of overdamped motion, which means that inertia
is unimportant. The equations of motion for a disk in such a
highly viscous fluid are given by [22]

�Fi = 32

3
ηai �vi ≡ αiζ �vi (1)

and

Ti = 4πηRa2
i ωi ≡ α2

i χωi, (2)

with �Fi and Ti the net force and torque acting on particle
i, respectively, ai the particle radius, and αi = ai/ā the
normalized radius. The effective translational and rotational
viscosity are η and ηR , respectively, and �vi and ωi are the
linear and angular velocity of the particle. To simplify our
expressions, we define the rescaled viscosities ζ = (32/3)η
and χ = 4πηR .

We denote the position of particle i by �xi and its orientation
by ψ̂i . Particles are considered neighbors for the purpose of
the orientation interaction if their centers are less than 2.7ā

apart. With this cutoff distance, two touching particles with
radius ai = 1.3ā will still be considered neighbors, but two
small particles (ai = 0.7ā) separated by a third small particle
will not. Because the spread in the radius is σ = ā/10, the
probability of finding even larger or smaller particles together
is negligible.

Instead of an attraction or geometrical confinement, our
model uses a local boundary term to prevent systems from
falling apart. An individual looks at the positions of its
neighbors to determine its position within the cluster. If particle
i has no neighbors over an angle θout,i � π , we consider it to be
on the boundary of the cluster and it exerts an additional torque
and force (see Fig. 1 for relevant quantities). Particles with only
one or two neighbors automatically satisfy this criterion. Let

FIG. 1. (Color online) Visualization of the boundary rule. The
particle at the bottom finds no neighbors over an angle θout > π . It
therefore exerts a torque in order to align its orientation ψ̂i (small
arrow) to the exterior bisector of θout, which is denoted θ̂in (long
arrow). The torque it exerts scales linearly with �θ , the angle between
these two vectors. Simultaneously, the particle exerts an additional
force in the direction of orientation, proportional to θout − π .

Ni denote the set of neighbors of particle i. The net force and
torque on the particle are then given by

�Fi = �Fi,self-propulsion + �Fi,boundary + �Fi,repulsion

= [Fself + (θout,i − π )Fin�(θout,i − π )]ψ̂i − k
∑
j∈Ni

�dij ,

(3)

Ti = Ti,boundary + Ti,noise + Ti,align

= Tin�θi · �(θout,i − π ) + Tnoiseξi + Talign

∑
j∈Ni

�ψij , (4)

where �(θ ) is the Heaviside step function. In Eq. (3), the first
two terms of the force are the self-propulsion and the boundary
force, which act in the direction of orientation ψ̂i . The strength
of these interactions is set by Fself and Fin, respectively. The
last force term is the repulsion between overlapping particles
i and j , where the amount of overlap is given by | �dij | (which,
of course, is zero for nonoverlapping particles). The strength
of the repulsion force is set by the spring constant k. The first
term of the torque in Eq. (4) turns particles on the boundary
inwards. The torque is proportional to a parameter Tin times
the angle between the orientation ψ̂i and the exterior bisector
of θout,i . The second term is responsible for the orientational
noise a particle experiences. We pick ξi randomly from {−1,1},
each time step creating a torque of magnitude Tnoise. The
final term of the torque aligns particles that are neighbors,
where the strength is set by Talign, and �ψij is the mismatch
in orientation between particles i and j . The alignment is
the only interaction which acts between particles (apart from
the passive repulsion) and is therefore ultimately responsible
for collectivity in Vicsek-type models. Note that, in analogy
with the Vicsek model, we only include noise on the torque
and not on the force. With this noise term, the motion of a
single particle becomes a random walk; a single noise term
is thus sufficient to introduce an element of randomness in
each particle’s motion, and additional noise terms do not
qualitatively change our results. Eliminating the noise on the
torque (and hence the orientations), on the other hand, does
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TABLE I. List of characteristic time scales and scaling parameters
for all interactions in our simulations. For the inward force, we used
the approximation that 2 arctan( x

2ā
) ≈ x

ā
. Since self-propulsion is an

active process, it does not have a characteristic relaxation time scale.

Dimensionless
Interaction Time scale scaling parameter

Repulsion τ = ζ/k

Alignment τalign = χ/Talign λa = ζTalign/kχ

Noise τnoise = 2χ 2/T 2
noise�t λn = ζT 2

noise�t/2kχ 2

Inward force τFin = ζ ā/Fin λFin = Fin/kā

Inward torque τTin = χ/Tin λTin = ζTin/kχ

Active force – λs = Fself/kā

(Self-propulsion)

have a strong effect, as this noise term is required to obtain the
rich behavior we observe.

B. Simulations

To characterize the behavior of our system, we introduce
dimensionless scaling parameters that represent the strengths
of the various interactions. We define τ = ζ/k as the char-
acteristic time scale for two overlapping particles to separate
due to their repulsive interaction. For any other interaction X

we define a scaling parameter λX = τ/τX, where τX is the
characteristic time scale of interaction X. The characteristic
time scales and scaling parameters for all interactions in our
model system are given in Table I.

In Table I we denote the duration of one Monte Carlo
simulation step by �t . The self-propulsion has no character-
istic time scale as it corresponds to an external rather than
a restoring force. To arrive at a dimensionless parameter
describing the strength of the self-propulsion, we define
λs ≡ Fself/(kā), in analogy with the inward force exerted by
boundary particles. We choose our unit of length by setting
the average radius of the particles to unity, i.e., ā = 1. We set
the force scale by choosing the repulsion coefficient k = 1.
We fix our unit of time by letting the characteristic time
scale of repulsion be unity: τ = ζ/k = 1. Furthermore, we
may set χ = 1, since we can set the strength of all torques
individually [23].

A direct consequence of the nearest-neighbor alignment
and the presence of a non-negligible inwards torque is that
there will be some alignment mismatches, or defects, inside
the cluster. Topology dictates that a simply connected cluster
must have at least one such defect. We find that these defects
act as organizing centers for the particles. Therefore, multiple
defects either quickly coalesce or cause the cluster to break
up into smaller clusters, each with its own defect. To ensure
that no more than one defect will exist, we initialize our
simulations by placing the particles on a square lattice in a
rectangular shape with a width of ten particles, with a small
deviation from the exact lattice points. Furthermore, we set
the initial direction along the long edge of the rectangle,
with a deviation up to π/4 rad. We then run our model for
108 steps for a total number of N = 1, N = 100, N = 200,
N = 400, N = 800, N = 1000, or N = 1600 particles with

(a) (b)

(c)

FIG. 2. (Color online) Typical snapshots for (a) migrating N =
400, (b) jammed N = 200, and (c) rotating N = 400 clusters. The
color code blue-green-yellow (dark to light) indicates the degree of
overlap with neighboring particles in increasing order. Each particle’s
orientation is shown by a line originating from the particle’s center.
This line is red (light gray) for particles in bulk or blue (dark gray)
for particles on the boundary exerting additional force and torque.

alignment coefficients 0.1 � λa � 1 and 0.04 � λs � 0.08.
We keep the other interactions constant for all simulations,
i.e., λn = 0.03, λFin = 0.3, and λTin = 3. By choosing these
values we ensure that the noise never exceeds the alignment,
the boundary force is small compared to the repulsion, and
particles on the boundary will turn inwards for even the largest
value of the alignment parameter λa .

We find four main types of behavior. The cluster of particles
can remain simply connected and migrate either randomly
[type 1, migrating; see Fig. 2(a)] or ballistically without
internal rearrangements [type 2, jammed; see Fig. 2(b)].
Alternatively, the cluster can change its topology by either
breaking apart [type 3, breakup; not shown] or transforming
into a doughnut shape with a hole in the middle [type 4,
rotating; Fig. 2(c)]. We can distinguish these types of behavior
by looking at the cluster’s orientational order parameter,
defined as

φ ≡ 1

N

∣∣∣∣∣
N∑

i=0

ψ̂i

∣∣∣∣∣ . (5)

A high value of the order parameter tells us that the cluster has
a net migration direction. A low value of the order parameter
means that the individual particle orientations effectively
cancel and the cluster is either jammed or rotating in place. The
latter two types of motion are easily distinguishable visually.

We save the average location of the particles, the location of
the defect, and the value of the order parameter every 128 steps.
If the cluster breaks up, the order parameter will show a slight
drop. We can verify the breakup by plotting the location of the
defect. If we find multiple defects, or we find that the average
position does not follow the defect like a trailer follows a
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car, we conclude that the topology of the cluster has changed.
We find the diffusion coefficient D of the cluster from the
velocity autocorrelation function of the average location of the
particles. To do so reliably, we discard the first 106 simulation
steps to eliminate the effects of the transition from the initial
configuration to the shape the cluster naturally takes when
migrating.

III. RESULTS AND DISCUSSION

A. The order parameter characterizes behavior

We ran ten simulations each for cluster sizes N = 100,
N = 200, N = 400, N = 800, N = 1000, and N = 1600,
seven values of the alignment strength λa , and five values
of the self-propulsion, λs . We found rich state behavior.
A lack of alignment resulted in the cluster breaking up,
whereas very strong alignment in combination with little
activity resulted in a jammed system. In the jammed state,
all particles are oriented towards the center of the cluster and
there are very few rearrangements (see Fig. 2(b) and Movie 1
of the Supplemental Material [24]). For intermediate values of
the alignment strength, the cluster forms an elongated structure
(see Fig. 2(a) and Movie 2 of the Supplemental Material [24]).
This “slug” has its orientational defect close to the leading
edge, dictating more or less the direction of motion. The exact
location of the defect is subject to random fluctuations, because
of the noise on the particle orientations. Hence, the movement
of the slug is a random walk. Finally, for high activity or weak
alignment, the cluster eventually folds onto itself, creating a
vortex state (see Fig. 2(c) and Movie 3 of the Supplemental
Material [24]). In a vortex, all the particles revolve around a
common center such that the net movement is canceled out.
The defect is removed by the creation of a hole in the middle.

We can distinguish between the different states using the
order parameter [Eq. (5)]. Figure 3 displays two examples of
the evolution of the order parameter during the simulation, as
well as their histograms. For the migration state (top panel),
we find only one peak in the histogram. The migration state is
characterized by an order parameter φ > 0.25. In the rotation
state, the histogram also has a single peak, but at lower values
of the order parameter, φ < 0.15. The jammed state can have
a peak at any value of φ, depending on the configuration it
got stuck in. Since jammed states follow straight or circular
paths (in contrast to the random walk of migrating clusters
and stationary position of rotating clusters), distinguishing
between jammed, rotating, and migrating clusters is easy. At
the boundaries between migrating and jamming, and between
migrating and rotating, we find chimeric or mixed states that
perform a kind of run-and-tumble motion (see Movie 4 of the
Supplemental Material [24]). The associated histogram of the
order parameter φ has two peaks, as shown in the bottom panel
of Fig. 3.

B. State diagram

We have captured the various types of behavior in state
diagrams (Fig. 4). For N = 200 particles, most of the state
diagram is occupied by migrating colonies (+). For low
activity, the system jams like passive granular matter at high
density (�). A strong alignment contributes positively towards

FIG. 3. (Color online) Evolution of the order parameter φ for
N = 400, λs = 0.07, and λa = 0.67 (top), and N = 400, λs = 0.07,
and λa = 0.30 (bottom) over time in units of τ . The histogram in
the top panel has one peak at φ ∼ 0.55, which indicates that the
cluster is in the migration state. The global behavior of the cluster
in the bottom panel constantly switches between migration (with
φ ∼ 0.5) and rotation (with φ ∼ 0.1). The right hand panel shows the
associated histogram with a bimodal distribution that represents two
distinct types of behavior.

breakup

migration

run-and-tumble (rotation)

run-and-tumble (jammed)

rotation

jammed

λs

λa λa

λs

φ = 0.29 φ = 0.60

N=200

N=400 N=800

0.08

0.07
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FIG. 4. (Color online) State diagrams of the global behavior for
200, 400, and 800 particles with varying activity per particle λs and
alignment strength λa . The cluster may breakup (×), migrate (+),
form a vortex (©), or jam with all particles facing the center of
the cluster (�). Clusters may also perform run-and-tumble motion,
a chimeric state mixing two types of behavior. These mixed states
are denoted with the chimeric symbols ⊕ and � for migration
with rotation and jamming, respectively. The degree of alignment
is measured by the order parameter φ for migrating clusters.
Yellow (light gray) corresponds to low values of φ; red (dark gray)
corresponds to high values of φ. The green (homogeneously colored)
area corresponds to purely rotating clusters. Lines are guides to
the eye.
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jamming by preventing rearrangements [see Fig. 2(b)]. For
very weak alignment, the cluster is disordered and falls apart
(×). By increasing the number of particles these states shift
towards the bottom right, making room for another state
between breakup and migration. At high activity and weak
alignment, a migrating cluster is likely to fold onto itself. This
creates a vortex state (©) where all particles circle around the
topological defect, which can even be resolved by a gap in
the middle [see Fig. 2(c)]. Increasing the number of particles
further (N = 800) continues the trend of shifting towards
the bottom right. The breakups in the top right corner (high
alignment and high self-propulsion) are caused by particles
falling off the tail of a migrating cluster due to its strongly
elongated structure. Boundary particles literally pinch off
small pieces of the three to four particle wide tail until the
main cluster reaches a stable size.

The most interesting points in the state diagrams are the
points between pure migration and rotation and between
migration and jamming (⊕ and �, respectively). We observed
chimeric states where both types of global behavior are
present. The resulting motion is a run-and-tumble. When
the order parameter has a high value the cluster migrates.
During migration the defect can move towards the middle
of a cluster due to the noise on the individual orientations
and enter the jammed state or the rotation state with a low
order parameter. The same noise is responsible for undoing
this process and allows the cluster to resume migration in
a direction independent of the direction before it went into
the state of low order (see Movie 4 of the Supplemental
Material [24]). The bottom panel of Fig. 3 shows the evolution
of the order parameter and the corresponding histogram for
a chimeric state between migration and rotation. The time
between transitions increased dramatically when we increased
the value of the alignment parameter. For N = 800 particles at
λa = 0.45, the typical time the cluster spends in one of the two
states was of the same order as our default simulation length
(107τ ). The states last long because the transitions happen
when the defect has moved from the boundary to the center
by random fluctuations. A high alignment parameter limits the
mobility of the defect within the cluster.

Note that Fig. 4 shows that the global behavior changes with
the number of particles. For example, an aggregating cluster
can change from migration to run-and-tumble to pure rotation
by collecting more particles on its way. No particle is aware
of the size of the cluster. Consequently, even though the local
interactions remain the same, the global behavior can change
dramatically.

We also constructed state diagrams for N = 100, N =
1000, and N = 1600 particles. The N = 100 diagram showed
many signs of finite size effects. Clusters of only 100 particles
have a large number of particles on the boundary. Statistical
fluctuations on the order parameter became so large that
characterizing the states was far from trivial. Unsurprisingly,
the state diagram for N = 1000 looks very similar to that
for N = 800. Also, the state diagram of N = 1600 shows no
surprises with only breakups and vortex states. Furthermore,
we did some simulations with extreme values for the alignment
and self-propulsion parameters for N = 400 in order to see
where the transition lines are and how they move when
changing the size of the cluster (Fig. 5). We retrieved the

FIG. 5. Zoomed out version of the N = 400 state diagram in
Fig. 4. The dashed rectangle corresponds to the region shown in
Fig. 4. Boundaries between states generally shift towards the bottom
right corner with increasing particle number. Chimeric states form
a bridge between rotation and migration and between migration and
jammed.

jammed state for a high value of the alignment or a low
self-propulsion. We also find chimeric states at higher values
of λa and λs , which suggests that transitions are smooth and we
can easily tune the parameters such that the amount of time the
cluster spends in either state is equal. Finally, there is a small
unlabeled region with low activity and low alignment, where
the self-propulsion is too low to tear the boundary apart. At the
same time, the alignment is too weak to overcome the noise,
such that the particles rotate randomly while hardly moving.

C. Migrating collectively boosts the diffusion constant

A large fraction of our state diagrams is taken up by
migrating clusters (+). These clusters perform random walks
on the infinite plane. The movement of the cluster is guided by
the location of the defect since most particles are pointing
towards it. However, the clusters are very dynamic, and
particles take turns being close to the defect. In the bulk,
particles move towards the defect. At the defect, the pressure
is higher than the surface tension provided by the boundary
particles. This allows particles from the bulk to escape into
the boundary at the leading edge. At the boundary, particles
move towards the trailing end of the cluster since they are now
pointing in a different direction than the cluster’s net motion.
Once they are close to the trailing end, the pressure in the bulk
is lower and the particles can penetrate in to repeat the cycle
(see Movie 2 of the Supplemental Material [24]).

We calculated the diffusion constant D of these migrating
clusters using their velocity auto correlation function and their
mean square displacement. We found a significant increase in
the diffusion constant for clusters compared to single particles.
In Fig. 6 we plot the diffusion constant for migrating clusters
with N = 1 (lines), N = 200 (pluses), N = 400 (crosses),
and N = 800 (triangles). Different colors represent different
values of the strength of the self-propulsion force. We see that
the diffusion constant is larger (up to three orders of magnitude
for strong local alignment) than for a single particle. Hence,
organisms in swarms may follow similar rules as described in
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FIG. 6. (Color online) Diffusion constants of the center of mass
of N particles, in units of ā2/τ , for different values of alignment
strength λa . Lines correspond to N = 1, pluses to N = 200, crosses
to N = 400, and triangles to N = 800 (plotted next to each other
for clarity). Colors (grayscales) correspond to different values of
the self-propulsion strength λs : black (solid line) λs = 0.04, blue
(darkest gray, dotted line) λs = 0.05, red (dark gray, short dashed
line) λs = 0.06, pink (light gray, long dashed line) λs = 0.07, light
green (lightest gray, dot-dashed line) λs = 0.08. Collective migration
can increase the diffusion constant by up to three orders of magnitude.

our model to quickly explore large regions when looking for
resources.

For single particles we verified that the diffusion constant
scales quadratically with the self-propulsion strength, D ∝ λ2

s ,
whereas for large clusters the individual velocities hardly affect
the diffusion constant. Similarly, we find that the persistence
length �p increases with λs for small (N = 1 and N = 200)
clusters, but slightly decreases with λs for larger (N = 400
and N = 800) clusters. In small clusters an increased activity
causes the path length between turns (and thus the persistence
length) to increase. In contrast, larger clusters will turn more
quickly when they become more active. A possible explanation
may be that a higher amount of activity pushes the defect
forward, closer to the boundary. Consequently, the cluster
changes its shape and becomes longer and narrower when
λs increases. With fewer particles at the tip, displacements
of the defect are less damped, resulting in more and sharper
turns. Therefore, both the persistence length decreases, and the
likelihood of the cluster entering the rotation state increases.

To appreciate the relation between the diffusion constant
and the alignment strength, we work out the Green-Kubo
relation in two dimensions [25]. Let �vc be the velocity of the
center of mass of the cluster, �p the persistence length of its
path, and θ (t) the angle between �vc(0) and �vc(t). The diffusion
constant is then given by

D = 1

2

∫ ∞

0
〈�vc(0) · �vc(t)〉 dt = v2

c

2

∫ ∞

0
〈cos [θ (t)]〉 dt

= v2
c

2

∫ ∞

0
e
− vc t

�p (λs ,λa ) dt = 1

2
vc�p(λs,λa), (6)

where we approximated that �(t) ≈ vct , i.e., the length of the
path traveled by the average position of the cluster can be
approximated by the product of the average velocity vc and the

FIG. 7. (Color online) The diffusion coefficient of migrating
clusters, in units of ā2/τ , as a function of �pvc, for N = 200 (red
pluses), N = 400 (blue crosses), and N = 800 (magenta triangles)
particles. The black line is the exact result from Eq. (6). (Inset) The
speed of migrating clusters with self-propulsion strength λs times
order parameter φ. The black line is the exact relation from Eq. (8).

time interval. We see that a more persistent trajectory leads to a
higher diffusion coefficient. The alignment counters the noise
that is responsible for diffusion in the first place. The increased
persistence makes clusters diffuse faster, even though the net
speed of the cluster is less than the self-propulsion speed of
a single particle; that is, clusters are slower than individuals
because the particles are not all perfectly aligned. In fact, we
can use the order parameter φ to derive the velocity of the
cluster:

�vc = 1

N

N∑
i

�vi = 1

N

∑ �Fi

αiζ

= ā

Nτ

⎡
⎣ N∑

i

λsψ̂i

αi

+
N∑

i,j 
=i

�dij

αi ā

+
∑

i∈boundary

λFinψ̂i(θout,i − π )

αi

⎤
⎦ . (7)

The second term in Eq. (7) drops out since dij = −dji , if we
neglect the effects of polydispersity on the velocity by setting
αi = 1. The last term will also be small since the inward force
by particles on opposing sides of the cluster tend to cancel out.
We thus arrive at

|�vc| = āλsφ

τ
. (8)

Because a higher value of the alignment strength λa results in
an increase of the order parameter, both the persistence length
�p and the cluster velocity �vc increase with λa .

To verify that the assumptions made in deriving Eqs. (6)
and (8) are justified, we plot both relations in Fig. 7, together
with our simulation data. The assumptions are that the speed
of the cluster |�vc| is constant in time and that the polydispersity
of the particles has little effect on the magnitude of the
forces. The polydispersity merely serves as a way to prevent
crystallization. From our simulations, we find that the diffusion
constant D depends linearly on �pvc with slope 1

2 for all
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cluster sizes, consistent with Eq. (6). Towards higher values of
�pvc, determining the persistence length and diffusion constant
becomes harder as the simulation is finite. The inset of Fig. 7
shows that Eq. (8) holds for all cluster sizes.

D. Migrating and rotating states in biology

We have shown that simple, and from the perspective of the
individual, sensible rules on local scales lead to various types
of behavior that are relevant for biological organisms. The
fast collective migration state, for example, is useful when
exploring large areas for food. This mechanism is used by
both amoebae [21] and bacteria [20]. The rotation state is
often observed as the onset of the formation of a fruiting body
which are formed by, among others, the amoeba Dictyostelium
discoideum [21] and Myxobacteria [26]. Furthermore we
found a state where the system can switch between collective
migration and stationary rotation. The ratio of time spent in
one of these two types of behavior is quite sensitive to changes
in activity or alignment strength. This sensitivity allows the
system to easily switch between migration and rotation when
the environment changes.

IV. CONCLUSION

We have shown that finite, stable clusters of self-propelled
soft particles can be formed with only local rules. The
boundary rule that we introduced creates an effective surface
tension for our clusters, which prevents their breakup. The
rule also dictates the presence of at least one defect in each
cluster. We found that these defects dominate the clusters’
global dynamics. Elongated, slug-like migrating clusters ex-
hibit enhanced motility with a diffusion constant that can
be up to three orders of magnitude higher than that of an
individual particle. The high diffusion constant demonstrates
how clustering can be a good strategy for organisms in
environments that are hostile or scarce in food. For larger
clusters, there is a spontaneous transition to a topologically
and dynamically different state: a doughnut-shaped rotating

cluster with no net movement. Clusters can be brought from
the moving to the stationary rotating state simply by growing
in size, without the need for an additional decision mechanism.

The vortex and migration state, and the migration and
jammed state, are separated by chimeric states where both
types of behavior are present. The average time the cluster
spends in each state can be controlled by changing the strength
of alignment between particles or the self-propulsion of the
particles. Therefore, in contrast to the jamming transition,
which occurs at a critical density, we find no single critical
value for the strength of alignment or for the self-propulsion.
Instead, we find a gradual transition where both states
(migration and rotation/jammed state) coexist. With our model
the density of our clusters cannot be set a priori, so we
could not verify the observation by Henkes et al. [11], who
saw that the jamming transition is sharp when adjusting the
density.

We found relations [Eqs. (6) and (8)] relating the diffusion
constant, the persistence length, and our order parameter
defined in Eq. (5). The data collapse in Fig. 7 proves that the
assumptions we made to derive these relations are justified.
Moreover, it shows that these relations hold independently
of cluster size, providing a method to determine the values
of the alignment and self-propulsion strength directly from
experiments. Although our model is simple, it describes
features found in biological swarms. Therefore, our results
suggest that similar mechanisms based on local rules may be
found in living systems, even if there are also more long-range
(e.g., signaling-based) biological decision making processes
present.
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