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Abstract
A novel feature mapping topology optimization method is presented, allowing for the creation of features with highly flexible 
shapes. The method easily integrates with conventional density-based formulations. Feature shapes are implicitly described 
by NURBS control points. The feature shape dictates the locations of two sets of projection points to represent the solid 
void boundaries. At these projection points, density values are projected onto a finite element mesh. The method optimizes 
feature shapes in a gradient-based manner, while allowing more specific control of the feature shapes than classical level 
set methods. Several feature fields can be combined to create a final output design. It is found that the eminent flexibility 
of the NURBS-based feature definition is a benefit but also requires additional regularization to guarantee stability of the 
optimization.

Keywords  Topology optimization · Geometry · Accessibility · Milling · Cleaning · Molding

1  Introduction

Topology optimization (TO) is a computational design 
method to determine the distribution of material, such that 
the geometric layouts of components with superior perfor-
mance can be determined. Several distinct TO approaches 
exist, where the most prevalent ones are density-based 
methods (see e.g., Sigmund and Maute 2013) and level-
set (LS) methods (see e.g., Van Dijk et al. 2013). Density 
methods focus on the distribution of material (represented 
by a density field) in a discretized domain, benefiting from 
a of lack of restrictions on design changes throughout 
the design domain, while sensitivity information is avail-
able everywhere in the design domain. In LS methods the 
design is generated by moving the boundary between solid 
and void regions, benefiting from having a clear boundary 
description.

Another more recent category of TO approaches is known 
as feature mapping methods (FMMs), see Wein et al. (2020) 
for an overview. In FMMs, solid (or void) features with 
specified geometric shapes are usually mapped onto a finite 
element mesh. While the shape of the features is often fixed, 
typically with limited options such as (hyper) ellipses or 
rectangles in 2D and their counterparts in 3D (Wein et al. 
2020), their position, orientation, and size are optimized. 
The moving feature boundaries bear similarities to LS meth-
ods with a more strict shape restriction of each feature, such 
that simpler design outcomes are ensured. Final component 
designs are often obtained through combining and overlap-
ping these features.

Several challenges occur in creating components by com-
bining features. First, there is limited to no control over the 
final topology. Since designs in current FMMs are typically 
created with many features, the topology can easily change. 
For specific applications topology control can be required 
or desired, see e.g., He et al. (2023).

Secondly, for designs created with fewer features, the 
design space is limited. One way to allow for complex 
designs with fewer components is to allow some flexibility 
in the feature shape. In the method of moving morphable 
components (MMC) framework, this has been addressed, 
e.g., by Shannon et al. (2022) with curved features with 
varying thickness defined using generalized Bézier curves, 
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or by Zheng and Kim (2020) with NURBS (non-uniform 
rational basis splines) shaped components (although only 
one fixed feature shape is considered). To the best of our 
knowledge, the feature shapes in the aforementioned studies 
are almost unchangeable, limiting the design freedom of the 
resulting layout. An exception is, e.g., Zhang et al. (2017) 
the shape of features is optimized with closed B-splines, 
however only limited shape flexibility is allowed in this 
parameterization. Other examples of limited spline based 
TO include Greifenstein et al. (2023), Guo et al. (2016), and 
Zhu et al. (2021).

Thirdly, it is beneficial if the topology optimized design 
geometry can easily be converted to a common CAD (com-
puter aided design) description, which is often required 
for further processing of the design. For this purpose, TO 
methods have been proposed that are focused on explicit 
output shapes. For instance, Schmidt et al. (2023) consider 
a semi-analytical gradient-based optimization of exact CAD 
models using intermediate field representations, and Yi and 
Kim (2017) identify the boundaries of TO results to extract 
basic parametric features to close the gap with parameter-
ized CAD models.

To address the three aforementioned gaps simultaneously, 
this paper studies and presents a novel FMM framework 
for creating features with flexible shapes using a NURBS 
parameterization, such that feature shapes are adjustable 
during the optimization for more design freedom and con-
venient for post-processing of designs.

The steps of the proposed method starting from design 
variables to a feature geometry are illustrated in Fig. 1. 
First, we define the parameterization of the feature’s 
boundary shape. We opt to use the locations and weights 
of the control points (CPs) as design variables. Next, 
the discretized feature boundary curve defines the first 
set of projection points (PPs), whereas a second set is of 
PPs is located at an offset outside the feature boundary. 
These two sets of PPs are used to project a solid, respec-
tively, void density value onto the the underlying mesh, 

eventually creating an aggregate output density field. This 
use of projection points to relate the NURBS curve to the 
density field is the main novel concept we introduce, and 
allows for a convenient integration with conventional 
density-based TO procedures. The performance of the 
design projected onto the mesh is obtained through finite 
element analysis, and using a gradient-based TO process, 
the design variables are optimized iteratively, so that the 
feature shapes are adapted toward the optimal geometry.

An important benefit of the proposed method is that 
intricate shapes can be attained by each feature, such that 
complex output designs can be created, even when using 
relatively few features. Better control over the topology 
is achievable, and an easier conversion to a useful out-
put design is facilitated through the use of the NURBS 
description. The density field output allows the proposed 
novel method to build on the existing standard density-
based TO, and even can be combined with standard den-
sity fields, where both the standard density field and the 
feature associated density field together describe the com-
ponent. Since the design variables, i.e., the CP locations 
and weights, are mathematically related to element densi-
ties, gradient-based optimization can be used with con-
ventional density-based adjoint sensitivity analysis, build-
ing on density-based TO implementations. Naturally, the 
method can be applied both to solid and void features. An 
opacity design variable is added to allow for features to 
disappear [similar to Norato et al. (2015)].

This paper focuses on the 2D version of the new 
method, both for clarity and because it already presents 
a considerable number of novel aspects to investigate. An 
extension to 3D is out of the scope of the current study, 
but the extension of the method for 3D cases is discussed 
in Sect. 4. Finally, it should be mentioned that the pro-
posed method also poses new challenges related to shape 
restriction, therefore extra shape regularization schemes 
are extensively outlined in this study.

Fig. 1   A schematic illustration of the method, for creating one feature 
in a 2D design domain. First, design variables (control points location 
and weights) represented by green stars are used to create a feature 
shape. Next, the feature shape is discretized, and two sets of projec-

tion points (represented by red and blue stars) are defined. Lastly, 
these two sets of projection points are projected onto the finite ele-
ment mesh to create an output density field
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2 � Method

For a simple and clear description of the method, solid fea-
tures are considered within a design domain discretized 
with a structured mesh. Section 2.1 presents the procedure 
for creating NURBS shapes. Section 2.2 describes how the 
NURBS shapes are projected onto the mesh as a density 
field. Lastly, several regularization schemes are proposed in 
Sect. 2.3 to improve the optimization stability.

2.1 � NURBS with continuous shape functions

This section describes the steps to obtain feature shapes from 
NURBS control points (CPs), defined by design variables. 
NURBS are a generalization of B-splines, while B-splines 
are a generalized form of the Bézier curve. NURBS repre-
sent shapes with great versatility, an example of an open 
NURBS curve is shown in Fig. 2, and an example of a dis-
cretized NURBS curve is shown in Fig. 3. For more back-
ground information on NURBS, the reader is referred to, 
e.g., Piegl and Tiller (1997) and Cottrell et al. (2009).

As outlined in the introduction, the proposed method 
defines feature shapes using CPs. Each CP has a specified 
local influence on the boundary curve. The CP locations 
and weights, together with appropriate basis functions, can 
describe a complex shape. As design variables, we intro-
duce the arrays p(x) , p(y) , and p(w) , which represent x- and 
y-coordinates of the CPs and their weights, respectively.

First, the knot vector is the sequence of parameter values 
that determine where and how the control points affect the 
NURBS curve. In this work, the knot vector is defined as 
U =

[
u1, ..., um

]
 , which is a non-decreasing sequence of real 

numbers. Here, ui are the knots, where i = 1,… ,m is the 

knot index, and the knot vector has length m = k + q + 1 , 
where q is the polynomial order of the basis functions, and 
k is the number of basis functions used to construct the 
NURBS curve. In our application, we will use an unclamped, 
uniform, knot vector, which means that all knot spans are of 
equal length, e.g., U = [0, 1, 2, ..., 8, 9, 10].

Next, the zeroth degree ( q = 0 ) basis function Ni,0 is 
described as a piece-wise function of curve parameter u:

The higher ( q > 0 ) degree basis functions Ni,q are calculated 
by recursion:

In our application, second order ( q = 2 ) basis functions are 
used.

With the basis functions Ni,q , the weight of each con-
trol point p(w)

i
 and its x-coordinates p(x)

i
 , the NURBS curve 

x-coordinates, c(x)(u) , are calculated as follows:

The coordinates in other dimensions (e.g., c(y)(u) ) fol-
low similarly. Finally, we note that assuming a knot vec-
tor beforehand restricts feature shapes. Sharp corners for 
example require repeated knot values. In this study, we do 
not allow repeated knot values and consequently we restrict 
ourselves to features without intrinsic sharp corners.

(1)Ni,0(u) =

{
1 if ui ≤ u < ui+1,

0 otherwise.

(2)

Ni,q(u) =
u − ui

ui+q − ui
Ni,q−1(u)+

ui+q+1 − u

ui+q+1 − ui+1
Ni+1,q−1(u).

(3)c(x)(u) =

∑k

i=1
Ni,q(u)p

(w)

i
p
(x)

i∑k

i=1
Ni,q(u)p

(w)

i

.

Fig. 2   An example of an open NURBS curve (red) created from six 
CPs (green stars)

Fig. 3   A closed boundary curve defining the outline of a feature (red 
stars), created from five CPs (green stars)
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Finally, since the feature shape is defined by a closed 
boundary curve that encloses a finite area, we opt for the 
curve to be second order continuous at the start, which also 
coincides with the end of the curve. This is implemented by 
incorporating three extra CPs, with locations and weights that 
are identical to the first three CPs. For example, for a 5 CP 
feature, p(x)

1
= p

(x)

6
 , p(x)

2
= p

(x)

7
 , and p(x)

3
= p

(x)

8
 , and the same 

holds for p(y) and p(w) . An example of the basis functions is 
shown in Fig. 4a, and the basis function for each unique CP 
is shown in Fig. 4b. The reader is referred to Piegl and Tiller 
(1997) for more examples.

2.2 � Creating features with projection points

It remains to describe the steps to obtain a density field from a 
NURBS curve. First, the continuous NURBS curve is discre-
tized. In our application, this is done by discretizing the basis 
functions Ni,q , with n(CP) points per CP, resulting in a discre-
tized NURBS curve. Next, two sets of projection points (PPs) 
are defined: ‘solid PPs’ which are located on the feature’s 
surface, and ‘void PPs’ located outside of the feature. Conse-
quently, in our application, the solid PP location, 𝐜̇j , coincides 
with the discretized NURBS boundary curve described in Eq. 
(3), where integer j denotes the discretized PP index. The void 
PPs, each denoted with 𝐜̊j , are located at an offset curve with 
respect to 𝐜̇j:

(4)𝐜̊j = 𝐜̇j + rnj,

where r is the offset distance. The calculation of unit out-
ward normal nj is given in Sect. 2.3. An example of the 
calculated void PPs is shown in Fig. 5.

Once all PP coordinates have been calculated using Eqs. 
(3) and (4), the feature density field can be created. Each PP 
projects a specified density value, � , onto several fixed mesh 
elements in its close proximity. The density projection is 
performed similar to the standard convolution filter (Bourdin 
2001; Bruns and Tortorelli 2001), as shown in Fig. 6. How-
ever, note that since the PPs are detached from the mesh, 
they are not restricted to coincide with element centers.

Fig. 4   An example of second order basis functions with five CPs. a 
CP1 is associated to N2 and N7 , CP2 is associated to N3 and N8 , and 
CP3 is associated to N1 and N6 . b The basis functions for the 1 st, 2nd, 
and 3rd basis functions are combined with the 6 th, 7 th, and 8 th basis 
functions, respectively

Fig. 5   An example of the two sets of PPs, with n(CP) = 10 . The solid 
PPs (in red) are located on the curve depicted in Fig. 3. The void PPs 
(in blue) lie on an offset curve with respect to the solid PP curve

Fig. 6   Projection points are used to project a density value onto its 
surrounding elements
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The spatial weights associated with the projection to 
each element are calculated using the proximity of the 
element center ce to PP j as follows:

Here, R is the interpolation radius, and cj and ce are the coor-
dinates of the PP and the centroid of element e, respectively. 
cj represents both solid ( 𝐜̇j ) and void ( ̊𝐜j ) PPs. The calcula-
tion of we,j ensures a gradual transition from solid to void at 
the feature boundary, which allows for sensitivity analysis. 
Note that these weights are related to the density projection, 
and are not linked to the CP weights defining the NURBS 
curve, which are controlled by the optimizer. Also note that 
the subscript e, j refers to element e and PP j, and the comma 
in the subscripts does not denote differentiation in this paper. 
These interpolation weights are subsequently normalized as 
follows:

where Nel is the number of elements in the domain. Next, 
the output value � is projected to element e resulting in a 
projected value:

The solid PPs each project a value of � = 1 , the void PPs 
each project a value of � = 0 . To account for elements get-
ting contributions from multiple PPs, the final output value 
for element e is obtained by dividing the sum of the pro-
jected values by the sum of the normalized weights of the 
contributions:

where nj is the number of PPs that has projected a (solid or 
void) density to element e, and x̌e,j and w̌e,j are the value and 
weight of the individual contributions. Note that this opera-
tion with only one nonzero weight contribution results in 
x̄e = 𝜒 , thus taking exactly the density value from the only 
contributing PP.

An example of solid (red) and void (blue) PPs, and 
the resulting density field projected onto the FE mesh is 
shown in Fig. 7. The elements inside the feature, where 
the element centroid is not close enough to any PPs are 
assigned a density value of x̄e = 1 . The intermediate den-
sity zone across the solid-void interface enables obtaining 
a differentiable boundary motion and is hence required to 
calculate consistent sensitivities for the feature’s boundary 
shape and location.

(5)we,j(cj) = max
�
0,R − ‖cj − ce‖

�
.

(6)w̌e,j(cj) =
we,j(cj)∑Nel

e=1
we,j(cj)

,

(7)x̌e,j = 𝜒w̌e,j.

(8)x̄e =

∑nj

j=1
x̌e,j

∑nj

j=1
w̌e,j

,

The equations used for the steps from the PP locations to 
the output density field 𝐱̄ are shown schematically in Fig. 8. 
The sensitivities �𝐱̄∕�p(x) , �𝐱̄∕�p(y) , and �𝐱̄∕�p(w) follow nat-
urally with the chain rule for each operation in Fig. 8, such 
that the sensitivities of the objective/constraints with respect 
to p(x) , p(y) , and p(w) can be computed. The integration of 
specific constraints is thus convenient if sensitivities with 
respect to a density field can be calculated. Note that only 
elements with intermediate density values have an influence 
on the boundary, and will thus contribute to the sensitivities.

After the density fields for each feature f have been cre-
ated, denoted here as f𝐱̄ , the steps toward the final com-
ponent design can be taken. In order to exclude unneces-
sary features, every f𝐱̄ is multiplied with an opacity design 
variable f� , similar to Norato et al. (2015). Next, multiple 
features can be combined with a smooth maximum opera-
tion over the feature density fields, which will be applied in 
Sect. 3.2. This is done through a P-norm:

Here, P1 > 0 is the aggregation parameter, and Nf  is the 
number of features considered. In this smooth maximum 
operation overlapping features can lead to output values 
higher than 1, these are normalized with a nonsmooth maxi-
mum operation.

It is also possible to combine a feature with a classi-
cal density design variable field x , which will be used in 
Sect. 3.3:

The sensitivities from Eqs. (9) and (10) and follow naturally, 
and with the chain rule the sensitivities with respect to the 
design variables can be obtained.

(9)x̂e =

⎛⎜⎜⎝

Nf�
f=1

(f𝛼 ⋅
f x̄e)

P1

⎞
⎟⎟⎠

1

P1

.

(10)x̂e =
(
fx̄P1

e
+ xP1

e

) 1

P1 .

Fig. 7   Solid (red) and void (blue) projection points are used to project 
density onto the structured mesh, representing a feature. The interme-
diate density region between the solid and void PPs ensures consist-
ent sensitivities for the feature boundary location
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2.3 � Regulation of feature shapes

The method described in Sect. 2.1 and 2.2 succeeds in creating 
features, whose shape can be optimized. However, it was found 
that undesired feature shapes can emerge during the optimiza-
tion process. In this section, we will describe these, and some 
techniques which we use to regulate feature shapes.

Four problems will be addressed: self-intersecting bounda-
ries, uneven PP distribution, proximity of solid and void PPs, 
and initial design influence. Note that, the proposed restric-
tions not always address the fundamental cause of a problem 
and instead restrict it indirectly because of simplicity or associ-
ated computational cost. Also, extra constraints add extra com-
plexity to the optimization problem limiting design freedom. 
Possibly future improvements on the method may make these 
regulations redundant.

The first problem that was tackled, is self-intersecting fea-
ture curves. Self-intersecting feature shapes do not necessar-
ily have the intermediate density region on the outside of the 
feature, while this is crucial for consistent sensitivities. In our 
application, self-intersecting shapes are prevented by adding 
a constraint imposed on the minimum distance between a CP 
and all line segments connecting consecutive CPs. An exam-
ple is shown in Fig. 9. The signed distance d from point a2 to 
the line segment between a1 and a3 is calculated similarly to, 
e.g., Smith and Norato (2020) and Norato et al. (2015), and 
is given by:

Next, each distance di between a CP and all line segments 
connecting the remaining CPs is constrained to stay above a 
threshold value, dmin . First, the distance di is normalized and 
transformed to d̃i = 1 − di∕dmin , such that d̃i > 0 indicates 

(11)
d(a1, a2, a3) ∶=

⎧
⎪⎨⎪⎩

‖b1‖ if h1 ⋅ h2 ≤ 0,

‖b2‖ if 0 < h1 ⋅ h2 < h1 ⋅ h1,

‖b3‖ if h1 ⋅ h2 ≥ h1 ⋅ h1.

with h1 ∶= a2 − a1 and h2 ∶= a3 − a1.

constraint violation, and d̃i < 0 indicates a feasible design. 
Next, a smooth rectifier function is used, which ensures that 
d̃i > 0 values are projected to d̂i > 𝜖 , while d̃i < 0 approach 
to zero, i.e., d̂i → 0 , including a smooth transition required 
for the sensitivity analysis. This function is shown in Fig. 10, 
and it allows for aggregation of all distance constraints 
through summation. Finally, the inequality constraint for 
the optimization problem gd is computed as:

Fig. 8   The flow diagram illustration of the steps from the PP locations and weights to the feature density field. The numbers represents the equa-
tions used for each step. By following the steps backwards, and through the chain rule, the sensitivities follow naturally

Fig. 9   Self-intersecting solid PPs are undesirable. This problem is 
mitigated by constraining a minimum distance between a CP and line 
segments between other CPs. For the marked CP ( a3 ), the distance 
is measured toward all black line segments, with the line segment 
between a1 and a2 highlighted
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Here, we use �1 = 0.2 and �2 = 3 , nd is the number of line 
segments considered, and � = ln

(
e�2 + 1

)
∕�2 ≈ 1.016 is 

used.
In our experience, this method was found to be simple, 

fast, and sufficiently effective. However, one downside is 
that the distance constraint can prevent small features. 
Also, this method does not prevent self-intersection of the 
actual curve, since only the zeroth order NURBS curve is 
constrained, for simplicity. Finally, self-intersection pre-
vention of a zeroth order curve during optimization is also 
not ensured when the optimization movelimits allow big 
CP displacements that might lead to CPs jumping over a 
line segment without violating the constraint.

The second problem that has been tackled, is an uneven 
PP distribution in the void PP offset curve, such as shown 
in Fig. 11. This occurs especially at sharp corners due to 
large CP weights. Increasing the number of PPs would 
mitigate this problem, but with additional computational 
costs.

Sharp corners can be prevented by limiting the range of 
p(w) values. Usually, NURBS weights are allowed within 
the range [0, 1]. In our implementation a smaller range 
of [0.25, 0.75] is imposed. Secondly, the distribution of 
the void PPs is further smoothened through modifying the 
calculation of the offset curve with nj . Instead of using 
the local normal of the NURBS curve, an approximate 

(12)

d̃i = 1 −
di

dmin

d̂i =

ln

(
e

(
𝛽2

𝛽1+d̃i

𝛽1

)
+ 1

)

𝛽2
.

gd =

nd∑
i

d̂i − 𝜖

gd ≤ 0

normal determined by finite difference using a relatively 
large step size leads to a more uniform spacing of void 
PPs. Therefore, in this study, we use a finite difference 
operation involving PPs j + 2 and j − 2:

This is valid for an anticlockwise PP ordering, and since the 
curve is continuous the first PP of the curve uses the next to 
last PP of the curve for the j − 2 , and vice versa.

The third problem is void PPs getting too close to or 
inside of the solid PP curve, caused by sharp inner corners. 

(13)

nj =
h1

‖h1‖ ,
with h1 ∶= h2 × h3,

where h2 ∶= ċj+2 − ċj−2 and h3 ∶=

⎡⎢⎢⎣

0

0

1

⎤
⎥⎥⎦
.

Fig. 10   Input is (scaled) distance, output is a constraint value. By 
adding a maximum constraint value, a minimum distance is ensured 
strictly

Fig. 11   An uneven distribution of void PPs at inner or outer corners 
is undesirable, for the projection to the density field. This problem is 
mitigated by restricting the weights of the CPs, and by smoothening 
of the offset curve calculation

Fig. 12   Sharp inner corners can cause an undesirable distribution 
of void PPs. This problem is mitigated by constraining the angle � 
between connected CPs, with Eq. (14)
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An example of such CP locations is shown in Fig. 12. There-
fore, another constraint is added, limiting the angle between 
two adjacent line segments between CPs. These angles are 
calculated, and constrained with a similar projection and 
summation as used before:

Again, �1 = 0.2 and �2 = 3 are used, n� is the number of 
constrained inner corners, � = ln

(
e�2 + 1

)
∕�2 , and the 

angle � is scaled 𝜃i = 1 − 𝜃i∕𝜃min , such that the constraint 
of becomes active for angles smaller than �min.

The fourth problem that was tackled concerns the influ-
ence of the initial design. It is common in existing LS and 
FFM methods for the initial design state to have a significant 
influence on the outcome. Consequently, convergence to dif-
ferent local optima is observed. In our method with fewer 
features especially, this is relevant. In order to decrease the 
influence of the initial design, the features are therefore 
gradually activated with a continuation scheme, similar to 
the approach presented in van de Ven et al. (2018). In the 
first iterations of the optimization process, we mix the final 
feature density field 𝐱̂ with a classical density field �:

where 0 ≤ � ≤ 1 is the mixing parameter. In this paper � is 
continuously increased from 0 to 1 in the first 20 optimiza-
tion iterations.

3 � Numerical examples

In this section, the numerical examples are presented. 
Section 3.1 presents the optimization formulation and the 
parameters used. Next, a mechanical optimization problem 
with solid features is described and analyzed in Sect. 3.2. 
Subsequently, Sect. 3.3 presents a thermal optimization 
problem with void features.

3.1 � Optimization problem formulation

The first numerical example considers a mechanical optimi-
zation of solid features for minimum compliance as objec-
tive in the presence of a volume constraint:

(14)

𝜃i = 1 −
𝜃i

𝜃min

𝜃̂i =

ln

(
e

(
𝛽2

𝛽1+𝜃i

𝛽1

)
+ 1

)

𝛽2
.

g𝜃 =

n𝜃∑
i

𝜃̂i − 𝜖

g𝜃 ≤ 0

(15)x̆e = (1 − 𝛾)xe + 𝛾 x̂e,

Here, Km , u , and f denote the finite element system stiffness 
matrix, displacement vector, and mechanical load vector. p 
is used to denote the design variables p(x) , p(y) , and p(w) . Note 
that x̆ = x̆(x, p) . The objective is compliance C, the current 
design volume is V, and the maximum allowed volume is 
V∗ = 0.2 of the design domain.

The second numerical example considers a thermal opti-
mization problem with a single void feature, with minimum 
thermal compliance as objective and a volume constraint. 
In this problem, the structure is formed by a density design 
variable field, combined with a void feature that has a mini-
mum volume. This is done with a minimum operation for 
Eq. (10), with P1 = −6 . One application for this problem 
would for example be the placement and shape determina-
tion of a tank with a specified minimum volume in a design 
area. The second optimization problem is given as follows:

Now, Kt , T , and q denote the finite element system conduc-
tivity matrix, temperature vector, and thermal load vector. 
The minimum volume constraint of the void feature is added 
with its current volume denoted by Vf  and its minimum vol-
ume by V∗

f
.

For each element e the Young’s modulus required for the 
calculation of Km in Eq. (16) and the conductivity required 
for the calculation of Kt in Eq. (17), the modified SIMP 
interpolation scheme proposed by Sigmund (2007) is used, 
i.e.,

with p = 3.0 , and Young’s moduli Emin = 10-9 and Emax = 1 
for the mechanical problem. The same interpolation 
scheme is used for the thermal problem, with conductivities 
Emin = 10-3 and Emax = 1 . For the finite element analysis, a 
structured mesh comprising 4-node quadrilateral elements 

(16)

minimize
x,p

∶ C(x̆) = uTKm(x̆)u

subject to ∶ Km(x̆)u − f = 0

V(x̆)

V∗
− 1 ≤ 0

gd ≤ 0

g𝜃 ≤ 0

(17)

minimize
x,p

∶ C(x̆) = TTKt(x̆)T

subject to ∶ Kt(x̆)T − q = 0

V(x̆)

V∗
− 1 ≤ 0

gd ≤ 0

g𝜃 ≤ 0

1 −
Vf

V∗
f

≤ 0

(18)E(x̆e) = Emin + x̆p
e
(Emax − Emin),
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with bilinear shape functions is employed. These aspects of 
the problem are kept relatively simple and standard, as our 
focus is on evaluating the strengths and weaknesses of the 
novel formulation.

The problem is implemented as an extension to the 88 
line MATLAB code by Andreassen et al. (2011), supple-
mented with the MMA optimizer by Svanberg (1987) with 
an additional set of CP design variables. The optimization 
is terminated after 250 iterations, by which a desired level 
of convergence was always reached.

Solid features with 8 CPs were used for the mechanical 
problem, and one void feature with 8, 12, or 16 CPs was 
used in the thermal problem. Second order basis functions 
were used for the NURBS. The knot vector is unclamped 
uniform. The NURBS are discretized with 30 solid PPs per 
CP. The projection radius R is 4.5 times element length lx , 
which is also equal to the separation between solid and void 
PPs, r. The MMA limits for the CP coordinates p(x) and 
p(y) are [0, 1], for a unit square design domain, to keep the 
CPs inside. The MMA limits for the CP weights p(w) are 
[0.25, 0.75] as explained in Sect. 2.3. The minimum distance 
and angle constraints are set at dmin = 4.5lx and �min = 45◦ , 
respectively. An overview of the used parameters is given 
in Table 1.

3.2 � Mechanical problem with solid features

The first numerical example is a cantilever beam case. Since 
this problem has predictable behavior, the performance of 
the proposed method can be easily observed. The loading, 
boundary conditions and a conventional density-based TO 
result are shown in Fig. 13. A discretization of 200×200 
elements is used.

For this load case given in Fig. 13a, the novel method is 
tested with a different number of features. Initially, as many 
as 16 features are introduced, similar to what is typically 
considered in existing FMMs (Wein et al. 2020). Next, the 

number of features is reduced to 4 and 2, to demonstrate the 
full potential of the highly flexible feature shapes. The initial 
feature designs are shown in Figs. 14a, f, and k. Further-
more, optimization with 2 features with another initialization 
is also performed (Fig. 14p). Finally, the 4 feature optimiza-
tion is performed without the distance and angle constraints, 
and without tight movelimits for the CP weights to elimi-
nate sharp corners. However, the mixing of the designs in 
Eq. (15) is still included to diminish the influence of the 
initialization.

Several intermediate designs and the end results of the 
optimizations are shown in Fig. 14. For the first three tests 
with 16, 4, and 2 solid features, a relatively simple cantilever 
beam is created. The case with 16 features is very simi-
lar to classic FFM, where many features are successfully 
combined, however the shapes of the individual features are 
fairly simple. The cases with 4 and 2 features create similar 
designs with fewer features, utilizing the flexibility in the 
feature shape of the proposed method. This simplicity comes 
with only a minor increase in relative compliance, with val-
ues of 1.030, 1.060, and 1.084, for the 16, 4, and 2 features, 
respectively.

The test with an alternative initial design (Fig. 14p-t) 
shows a similar part shape but the hole in the middle of the 
structure is absent, and the relative compliance increases 
considerably to 1.282. The last test shows that, for this load 
case, a design of almost identical performance can be suc-
cessfully obtained even without the regularization schemes 
introduced in Sect. 2.3. However, the proposed regulariza-
tions were generally found to further ensure a stable opti-
mization process and mitigate the risk of undesired designs.

Next, the convergence performance of the method is con-
sidered. Two convergence plots are displayed in Figs. 15 and 
16. Irrespective of the number of features considered, swift 

Table 1   Summary of used parameter values

Parameter Value

Projection radius R 4.5lx
Offset curve distance r 4.5lx
P1 6/−6
SIMP exponent p 3.0
Emin 10-3/10-9

Emax 1
Poisson’s ratio � 0.3
Number of iterations 250
Number of solid PPs per CP n(CP) 30
Minimum distance dmin 4.5lx
Minimum angle �min 45◦

Fig. 13   The cantilever beam compliance problem. a The load and 
boundary conditions are shown. The unit load is applied 5% from 
the right edge, and 50% from the bottom. The fully clamped region 
is located 10% from the left edge, 50% from the bottom, and has a 
width of 2% and a height of 30%. b An optimization result obtained 
using the standard density method is shown
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Fig. 14   Results of the cantilever beam problem, with 16, 4, and 2 fea-
tures given in the first, second, and third row, respectively. The fourth 
row is with 2 features with a different initialization, while the fifth 
row is with 4 features and no regulations. For clarity, only features 

with f𝛼 > 0.5 are shown, void PPs have been omitted from cases with 
more than two features, and CPs have been omitted from the case 
with more than 4 features
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convergence for the objective is observed, in which the fea-
tures quickly connect, and smoothly evolve to an optimized 
shape. Some peaks can be observed until the 20 th iteration, 
during which the features’ density fields are still combined 
with a classical density field, leading to a decrease in the 
objective. However, as the fraction of the classical density 
field is continuously decreased, the objective can increase. In 
these three tests, the features are connected around iteration 
20, but in our experience features could often still connect 
at a later stage if not yet connected at iteration 20.

The constraints also show good convergence behavior. 
The results shown in Fig. 16 for the case with 4 features 
are representative for other cases. The distance constraint is 
active or close to be active, which performs as intended. The 
inner corner angle constraint is not active at any iteration, 
and would thus not be needed in this case.

3.3 � Heat conduction problem with void feature

The second numerical example is the heat sink problem, 
for which the loading condition and a typical conventional 
density-based TO result are shown in Fig. 17. Again, a dis-
cretization of 200×200 is used.

For this case we aim to add a void feature with a speci-
fied minimum area, which could for example represent a 
situation of how and where to locate a (fluid) tank with a 
flexible shape inside a domain. This is similar to a flexible 
void area considered in, e.g., Clausen et al. (2014), however 
with a fixed topology. This design challenge is here com-
bined with the thermal compliance problem, which tends to 
form a branching network of conductive material throughout 
the domain (see Fig. 17b). In this way, the void fluid tank 
represents a conflict for the thermal compliance objective. 
The void feature field has a value of 1 outside of the feature, 
and 0 inside of the feature shape. This field is added with a 
smooth minimum operation to a classical density field. Its 
opacity parameter is fixed at � = 1 , since the only feature 
should not disappear.

First, to study the influence of the number of CPs, the fea-
ture is created with 8, 12, or 16 CPs, and the (asymmetric) 
initial designs can be seen in Fig. 18a, f, and k. Secondly, a 
12 CP feature is considered again, but the angle constraint 
is made more strict to enforce wider inner angles of 70◦ 
specifically.

The results of the optimizations are shown in Fig. 18. 
The novel method allows for the void region have a flexible 
shape, yet it is ensured to keep its topology. The void fea-
tures with 8, 12, or 16 CPs lead to a relative compliance of 
1.429, 1.230, and 1.247, respectively. Increasing the number 
of CPs increases the shape freedom, however as seen in, 
e.g., Figure 18n, the void PPs almost penetrate the solid PP 
curve. This implies the constraints are successful in keeping 
realistic feature shapes. The feature with 16 CPs can still 
create sharp inner corners by putting two CPs close next to 
each other. The minimum distance constraint however still 
ensures that the void PPs do not touch the solid PP curve.

The fourth case, with a more strict angle constraint, for 
which the results can be seen in Fig. 18p–t, shows that 

Fig. 15   Convergence behaviors for the objective, for all mechanical 
problems

Fig. 16   Convergence behavior for the three constraints, for the test 
with 4 features (second row in Fig. 14)

Fig. 17   The heat conduction problem. a The load and boundary con-
ditions are shown. The heat sink region is located 2.5% from the left 
edge, 50% from the bottom, and has a width of 5% and a height of 
20%. b The optimization result without any features is shown as ref-
erence
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the constraints succeed in controlling the feature shape 
and a more rounded void region is obtained albeit with a 
relative compliance of 1.415.

A constraint convergence plot for the thermal prob-
lem problem is given in Fig. 19. As can be seen, all con-
straints except the distance constraint are active or close 
to be active. For this problem all constraints are needed 
in keeping a desired feature shape.

4 � Discussion

As shown in Sect. 3, the proposed method succeeds in opti-
mizing feature shapes with high geometric flexibility. This 
new method offers a combination of flexibility and con-
trol, which is different from more restricted explicit meth-
ods yet more flexible than existing implicit feature-based 

Fig. 18   Results of the thermal problem. The first row is one NURBS feature with 8 CPs, the second row with 12 CPs, the third row with 16 CPs, 
and the fourth row with 12 CPs and an angle constraint of 70◦
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methods. Next to these advantages, the method however 
still has some shortcomings. The nature of the method has 
two major downsides: (i) the high feature flexibility neces-
sitates applying restrictions on flexible shaped features in 
general (ii) our approach for obtaining sensitivities, using 
a void PP offset curve.

First, the feature shape freedom of the novel FFM method 
can be misused to create unrealistic and undesired flexible 
structures, e.g., self-intersection. The restrictions proposed 
in Sect. 2.3 aim to regulate the shape freedom, in order 
to only create realistic features, even though the regula-
tions also limit the design freedom and may prohibit cer-
tain admissible shapes. The problem of how much shape 
restriction is required, is inherent to shaped features, and 
becomes particularly evident with the relatively high shape 
flexibility introduced by our method. While the methods we 
have developed proved effective, it is quite possible that less 
restrictive and less conservative regularization formulations 
are possible. Furthermore, the concept of flexible features 
regulated with various restrictions/constraints also offers 
new opportunities: for specific ranges of shape deforma-
tions specific geometric rules could be imposed, allowing, 
e.g., combining parametric design with TO. Both aspects are 
identified as directions for future research.

Secondly, the void PP offset curve, an essential part for 
the gray boundary, which is crucial for obtaining sensitivi-
ties, introduces challenges. For example, in the presented 
formulation the void PP curve can suffer from uneven PP 
distributions with big gaps or clustering, or void PPs can 
penetrate the solid PP curve. One advantage advocating for 
the offset curve is consistent sensitivities in void regions sur-
rounded by solid regions, such that this location is equally 
close to multiple boundaries/edges.

Next, the feasibility of extending the method to 3D should 
be addressed. For all operations in Sect. 2.1 and 2.2 the 
extensions to a third dimension follow straightforward. How-
ever, the feature shape problems addressed in Sect. 2.3 could 
potentially be more challenging. Naturally, 3D features are 

created with more CPs, which increases the design freedom, 
with potential for unrealistic shapes. Furthermore, the pre-
sented regulation methods do not directly transfer to 3D. The 
minimum distance calculation from Eq. (11) should become 
a distance between a CP and a plane segment. Similarly, the 
angle used in Eq. (14) should potentially be between several 
neighboring CPs, or a different way to smoothen the normals 
should be applied. While these are definitely challenges that 
require further investigation, the concepts introduced by the 
proposed method fundamentally carry over to 3D.

With the expansion to 3D, further research can be done 
on controlling feature sizes. This is a useful property of 
explicit FFMs, and integrating it with the proposed method 
could further benefit practical applications.

In our experience using an unoptimized implementation, 
the computational cost of all feature operations (creation 
and sensitivities) was less than 10% of the FE solve, in the 
studied problems. Feature operation costs scale up linearly 
with the number of features, and the number of PPs, so the 
fraction of the feature operations on the total cost will be 
even lower for problems involving finer meshes. It is impor-
tant to note that our approach requires a limited number of 
control points to describe complex feature shapes which is 
favorable for computational tractability.

Ultimately, FFMs are methods in which feature bounda-
ries move. Just like in LS methods, but with shape restric-
tions to ensure simpler designs. Consequently, design out-
comes are limited to a subset of all possible geometries, 
which likely also implies reduced performance. However, 
the degree of restriction is controlled by the designer. Our 
method provides a new option to control the range from 
full design freedom and potentially complex outcomes, to 
limited design freedom and simple outcomes. For each spe-
cific combination of application demands, manufacturing 
and cost considerations it allows for a desired amount of 
restrictions and regulations.

5 � Conclusion

A new method for feature optimization with flexible feature 
shapes is proposed, through defining feature shapes with 
NURBS. With the NURBS control points and their weights 
as design variables a feature density field is constructed. 
The method builds on conventional density-based TO pro-
cedures. All steps are differentiable, allowing for consistent 
sensitivities to be calculated.

Features can be created with complex shapes, allowing 
for layouts to be represented with a fixed topology, by fewer 
features, and with varying degrees of geometric control. The 
features can be either solid or void, including an opacity 
parameter, and used seamlessly in combination with estab-
lished density methods. As shown by different numerical 

Fig. 19   Convergence behavior for the three constraints, for the ther-
mal test with 12 CPs (second row in Fig. 18)
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examples, the method succeeds in optimizing feature shapes 
with good convergence characteristics, and follows for solv-
ing new problems with a degree of shape control not avail-
able in other approaches.

In several aspects, the proposed method offers potential 
for further development. Firstly, extending its implementa-
tion to 3D is worth exploring. While the concept funda-
mentally remains the same as in the planar case, various 
implementation details may need additional consideration. 
Secondly, to enable specific control of feature shapes, the 
set of regulation schemes proposed and demonstrated in this 
paper could be further refined and extended. Along this path 
the method offers a way to combine parametric design con-
cepts and free-form TO, and provides designers with new 
means to control the computational design process.
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