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Abstract

A novel feature mapping topology optimization method is presented, allowing for the creation of features with highly flexible
shapes. The method easily integrates with conventional density-based formulations. Feature shapes are implicitly described
by NURBS control points. The feature shape dictates the locations of two sets of projection points to represent the solid
void boundaries. At these projection points, density values are projected onto a finite element mesh. The method optimizes
feature shapes in a gradient-based manner, while allowing more specific control of the feature shapes than classical level
set methods. Several feature fields can be combined to create a final output design. It is found that the eminent flexibility
of the NURBS-based feature definition is a benefit but also requires additional regularization to guarantee stability of the

optimization.

Keywords Topology optimization - Geometry - Accessibility - Milling - Cleaning - Molding

1 Introduction

Topology optimization (TO) is a computational design
method to determine the distribution of material, such that
the geometric layouts of components with superior perfor-
mance can be determined. Several distinct TO approaches
exist, where the most prevalent ones are density-based
methods (see e.g., Sigmund and Maute 2013) and level-
set (LS) methods (see e.g., Van Dijk et al. 2013). Density
methods focus on the distribution of material (represented
by a density field) in a discretized domain, benefiting from
a of lack of restrictions on design changes throughout
the design domain, while sensitivity information is avail-
able everywhere in the design domain. In LS methods the
design is generated by moving the boundary between solid
and void regions, benefiting from having a clear boundary
description.
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Another more recent category of TO approaches is known
as feature mapping methods (FMMs), see Wein et al. (2020)
for an overview. In FMMs, solid (or void) features with
specified geometric shapes are usually mapped onto a finite
element mesh. While the shape of the features is often fixed,
typically with limited options such as (hyper) ellipses or
rectangles in 2D and their counterparts in 3D (Wein et al.
2020), their position, orientation, and size are optimized.
The moving feature boundaries bear similarities to LS meth-
ods with a more strict shape restriction of each feature, such
that simpler design outcomes are ensured. Final component
designs are often obtained through combining and overlap-
ping these features.

Several challenges occur in creating components by com-
bining features. First, there is limited to no control over the
final topology. Since designs in current FMMs are typically
created with many features, the topology can easily change.
For specific applications topology control can be required
or desired, see e.g., He et al. (2023).

Secondly, for designs created with fewer features, the
design space is limited. One way to allow for complex
designs with fewer components is to allow some flexibility
in the feature shape. In the method of moving morphable
components (MMC) framework, this has been addressed,
e.g., by Shannon et al. (2022) with curved features with
varying thickness defined using generalized Bézier curves,
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or by Zheng and Kim (2020) with NURBS (non-uniform
rational basis splines) shaped components (although only
one fixed feature shape is considered). To the best of our
knowledge, the feature shapes in the aforementioned studies
are almost unchangeable, limiting the design freedom of the
resulting layout. An exception is, e.g., Zhang et al. (2017)
the shape of features is optimized with closed B-splines,
however only limited shape flexibility is allowed in this
parameterization. Other examples of limited spline based
TO include Greifenstein et al. (2023), Guo et al. (2016), and
Zhu et al. (2021).

Thirdly, it is beneficial if the topology optimized design
geometry can easily be converted to a common CAD (com-
puter aided design) description, which is often required
for further processing of the design. For this purpose, TO
methods have been proposed that are focused on explicit
output shapes. For instance, Schmidt et al. (2023) consider
a semi-analytical gradient-based optimization of exact CAD
models using intermediate field representations, and Yi and
Kim (2017) identify the boundaries of TO results to extract
basic parametric features to close the gap with parameter-
ized CAD models.

To address the three aforementioned gaps simultaneously,
this paper studies and presents a novel FMM framework
for creating features with flexible shapes using a NURBS
parameterization, such that feature shapes are adjustable
during the optimization for more design freedom and con-
venient for post-processing of designs.

The steps of the proposed method starting from design
variables to a feature geometry are illustrated in Fig. 1.
First, we define the parameterization of the feature’s
boundary shape. We opt to use the locations and weights
of the control points (CPs) as design variables. Next,
the discretized feature boundary curve defines the first
set of projection points (PPs), whereas a second set is of
PPs is located at an offset outside the feature boundary.
These two sets of PPs are used to project a solid, respec-
tively, void density value onto the the underlying mesh,

eventually creating an aggregate output density field. This
use of projection points to relate the NURBS curve to the
density field is the main novel concept we introduce, and
allows for a convenient integration with conventional
density-based TO procedures. The performance of the
design projected onto the mesh is obtained through finite
element analysis, and using a gradient-based TO process,
the design variables are optimized iteratively, so that the
feature shapes are adapted toward the optimal geometry.

An important benefit of the proposed method is that
intricate shapes can be attained by each feature, such that
complex output designs can be created, even when using
relatively few features. Better control over the topology
is achievable, and an easier conversion to a useful out-
put design is facilitated through the use of the NURBS
description. The density field output allows the proposed
novel method to build on the existing standard density-
based TO, and even can be combined with standard den-
sity fields, where both the standard density field and the
feature associated density field together describe the com-
ponent. Since the design variables, i.e., the CP locations
and weights, are mathematically related to element densi-
ties, gradient-based optimization can be used with con-
ventional density-based adjoint sensitivity analysis, build-
ing on density-based TO implementations. Naturally, the
method can be applied both to solid and void features. An
opacity design variable is added to allow for features to
disappear [similar to Norato et al. (2015)].

This paper focuses on the 2D version of the new
method, both for clarity and because it already presents
a considerable number of novel aspects to investigate. An
extension to 3D is out of the scope of the current study,
but the extension of the method for 3D cases is discussed
in Sect. 4. Finally, it should be mentioned that the pro-
posed method also poses new challenges related to shape
restriction, therefore extra shape regularization schemes
are extensively outlined in this study.

Fig.1 A schematic illustration of the method, for creating one feature
in a 2D design domain. First, design variables (control points location
and weights) represented by green stars are used to create a feature
shape. Next, the feature shape is discretized, and two sets of projec-

@ Springer

tion points (represented by red and blue stars) are defined. Lastly,
these two sets of projection points are projected onto the finite ele-
ment mesh to create an output density field
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2 Method

For a simple and clear description of the method, solid fea-
tures are considered within a design domain discretized
with a structured mesh. Section 2.1 presents the procedure
for creating NURBS shapes. Section 2.2 describes how the
NURBS shapes are projected onto the mesh as a density
field. Lastly, several regularization schemes are proposed in
Sect. 2.3 to improve the optimization stability.

2.1 NURBS with continuous shape functions

This section describes the steps to obtain feature shapes from
NURBS control points (CPs), defined by design variables.
NURBS are a generalization of B-splines, while B-splines
are a generalized form of the Bézier curve. NURBS repre-
sent shapes with great versatility, an example of an open
NURBS curve is shown in Fig. 2, and an example of a dis-
cretized NURBS curve is shown in Fig. 3. For more back-
ground information on NURBS, the reader is referred to,
e.g., Piegl and Tiller (1997) and Cottrell et al. (2009).

As outlined in the introduction, the proposed method
defines feature shapes using CPs. Each CP has a specified
local influence on the boundary curve. The CP locations
and weights, together with appropriate basis functions, can
describe a complex shape. As design variables, we intro-
duce the arrays p®, p®), and p™, which represent x- and
y-coordinates of the CPs and their weights, respectively.

First, the knot vector is the sequence of parameter values
that determine where and how the control points affect the
NURBS curve. In this work, the knot vector is defined as

U= [u, s eees um], which is a non-decreasing sequence of real
numbers. Here, u; are the knots, where i = 1, ..., m is the
CP2 CP@

CP;
CP4 CP5
CP,

Fig.2 An example of an open NURBS curve (red) created from six
CPs (green stars)

Fig.3 A closed boundary curve defining the outline of a feature (red
stars), created from five CPs (green stars)

knot index, and the knot vector has length m = k+ g + 1,
where ¢ is the polynomial order of the basis functions, and
k is the number of basis functions used to construct the
NURBS curve. In our application, we will use an unclamped,
uniform, knot vector, which means that all knot spans are of
equal length, e.g., 4 = [0, 1,2, ..., 8,9, 10].

Next, the zeroth degree (¢ = 0) basis function N, is
described as a piece-wise function of curve parameter u:

it w fu<ugy,
Nigw) = { 0 otherwise. D

The higher (¢ > 0) degree basis functions N, , are calculated
by recursion:

u—u;
Ni’q(ll) =mNi’q_1 (u)"l‘
i+q i
- 2)
ul+q+1 u (
Ni+1,q—1(“)-

Uirgr1 — Uiyt

In our application, second order (¢ = 2) basis functions are
used.

With the basis functions Ni’q,
trol point pgw) and its x-coordinates pgx) , the NURBS curve

x-coordinates, c® (u), are calculated as follows:

the weight of each con-

k W) (x
Tt Nig@p"p”

) =
25;1 N4 (p;

The coordinates in other dimensions (e.g., ¢ (u)) fol-
low similarly. Finally, we note that assuming a knot vec-
tor beforehand restricts feature shapes. Sharp corners for
example require repeated knot values. In this study, we do
not allow repeated knot values and consequently we restrict
ourselves to features without intrinsic sharp corners.

@ Springer
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Finally, since the feature shape is defined by a closed
boundary curve that encloses a finite area, we opt for the
curve to be second order continuous at the start, which also
coincides with the end of the curve. This is implemented by
incorporating three extra CPs, with locations and weights that
are identical to the first three CPs. For example, for a 5 CP
feature, p(lx) = p(ﬁx), pg‘) = p;x), and pg") = pg‘), and the same
holds for p®’ and p™. An example of the basis functions is
shown in Fig. 4a, and the basis function for each unique CP
is shown in Fig. 4b. The reader is referred to Piegl and Tiller
(1997) for more examples.

2.2 Creating features with projection points

It remains to describe the steps to obtain a density field from a
NURBS curve. First, the continuous NURBS curve is discre-
tized. In our application, this is done by discretizing the basis
functions N, ,, with n‘“" points per CP, resulting in a discre-
tized NURBS curve. Next, two sets of projection points (PPs)
are defined: ‘solid PPs’ which are located on the feature’s
surface, and ‘void PPs’ located outside of the feature. Conse-
quently, in our application, the solid PP location, éj, coincides
with the discretized NURBS boundary curve described in Eq.
(3), where integer j denotes the discretized PP index. The void
PPs, each denoted with éj, are located at an offset curve with
respect to ¢;:

¢ =¢+rmy;, )

0 1 2y 3 4 5 0 1 2y 3 2
<
=~
m
0 1 2 4y 3 4 5 Z-/\—‘
FE N
=z 0 1 2 4y 3 4 5
0 1 2y 3 4 5
° 4/\1
<
= = /\_‘
0 1 2y 3 4 5
~ . 0 1 2y 3 4 5
z_ - ]
0 1 2 3 4 5 "
u " A
© =
z ] ‘
0 1 2y 3 4 5 0 1 2y 3 4 5

(a) 8 basis functions are asso- (b) 5 basis functions are asso-
ciated to 5 CPs. ciated to 5 CPs.

Fig.4 An example of second order basis functions with five CPs. a
CP, is associated to N, and N,, CP, is associated to N3 and Ng, and
CP; is associated to N; and Ng4. b The basis functions for the 1st, 2nd,
and 3rd basis functions are combined with the 6th, 7th, and 8 th basis
functions, respectively

@ Springer

where r is the offset distance. The calculation of unit out-
ward normal n; is given in Sect. 2.3. An example of the
calculated void PPs is shown in Fig. 5.

Once all PP coordinates have been calculated using Eqgs.
(3) and (4), the feature density field can be created. Each PP
projects a specified density value, y, onto several fixed mesh
elements in its close proximity. The density projection is
performed similar to the standard convolution filter (Bourdin
2001; Bruns and Tortorelli 2001), as shown in Fig. 6. How-
ever, note that since the PPs are detached from the mesh,
they are not restricted to coincide with element centers.

Fig.5 An example of the two sets of PPs, with n®» = 10. The solid
PPs (in red) are located on the curve depicted in Fig. 3. The void PPs
(in blue) lie on an offset curve with respect to the solid PP curve

* Projection Point

* Neighbouring element centers

Fig.6 Projection points are used to project a density value onto its
surrounding elements
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The spatial weights associated with the projection to
each element are calculated using the proximity of the
element center ¢, to PP j as follows:

w, (€)= max(0,R — lle; — cll). ©)

Here, R is the interpolation radius, and ¢ and ¢, are the coor-
dinates of the PP and the centroid of element e, respectively.
¢; represents both solid (¢;) and void (éj) PPs. The calcula-
tion of w, ; ensures a gradual transition from solid to void at
the feature boundary, which allows for sensitivity analysis.
Note that these weights are related to the density projection,
and are not linked to the CP weights defining the NURBS
curve, which are controlled by the optimizer. Also note that
the subscript e, j refers to element e and PP j, and the comma
in the subscripts does not denote differentiation in this paper.
These interpolation weights are subsequently normalized as
follows:
w, . (c;

— 6
2ot Wei(e) ©

where N, is the number of elements in the domain. Next,
the output value y is projected to element e resulting in a
projected value:

Xoj = AW, (7
The solid PPs each project a value of y = 1, the void PPs
each project a value of y = 0. To account for elements get-
ting contributions from multiple PPs, the final output value
for element e is obtained by dividing the sum of the pro-
jected values by the sum of the normalized weights of the
contributions:

DI

. j=1"¢J

Xe = Zn’—W ®)
j=1"ej

where n; is the number of PPs that has projected a (solid or

void) density to element e, and X, ; and W, ; are the value and

weight of the individual contributions. Note that this opera-

tion with only one nonzero weight contribution results in

X, = yx, thus taking exactly the density value from the only

contributing PP.

An example of solid (red) and void (blue) PPs, and
the resulting density field projected onto the FE mesh is
shown in Fig. 7. The elements inside the feature, where
the element centroid is not close enough to any PPs are
assigned a density value of X, = 1. The intermediate den-
sity zone across the solid-void interface enables obtaining
a differentiable boundary motion and is hence required to
calculate consistent sensitivities for the feature’s boundary
shape and location.

.,
b
Hpt-
"]
Ealal

bt

bt
et
2t
b
¢

NEME WA

[TITTTTTTITIT
NN
EEEEEEEEEEEE

T T

(b) Projected density field

Fig.7 Solid (red) and void (blue) projection points are used to project
density onto the structured mesh, representing a feature. The interme-
diate density region between the solid and void PPs ensures consist-
ent sensitivities for the feature boundary location

The equations used for the steps from the PP locations to
the output density field X are shown schematically in Fig. 8.
The sensitivities 0% /op™, 0X /dp?, and 0% /op™ follow nat-
urally with the chain rule for each operation in Fig. 8, such
that the sensitivities of the objective/constraints with respect
to p®, p», and p™ can be computed. The integration of
specific constraints is thus convenient if sensitivities with
respect to a density field can be calculated. Note that only
elements with intermediate density values have an influence
on the boundary, and will thus contribute to the sensitivities.

After the density fields for each feature f have been cre-
ated, denoted here as /X, the steps toward the final com-
ponent design can be taken. In order to exclude unneces-
sary features, every /X is multiplied with an opacity design
variable fa, similar to Norato et al. (2015). Next, multiple
features can be combined with a smooth maximum opera-
tion over the feature density fields, which will be applied in
Sect. 3.2. This is done through a P-norm:

1

N, P

go=[ D a5 . ()
f=1

Here, P, > 0 is the aggregation parameter, and N, is the
number of features considered. In this smooth maximum
operation overlapping features can lead to output values
higher than 1, these are normalized with a nonsmooth maxi-
mum operation.

It is also possible to combine a feature with a classi-
cal density design variable field x, which will be used in
Sect. 3.3:

1
%, = (B0 207 (10)
The sensitivities from Egs. (9) and (10) and follow naturally,

and with the chain rule the sensitivities with respect to the
design variables can be obtained.

@ Springer



126 Page6of 15 R. Giele et al.
(1,2)
Basis functions Output density (_75 Projected field
N (4) PP location ){ )\6
o
e
Cf l)ocati((m) (3) PP location ( 5) Weight @ Weight (8) Output field
X . v =
pr.pr = c w w X
CP weight
(w)

4

Fig.8 The flow diagram illustration of the steps from the PP locations and weights to the feature density field. The numbers represents the equa-
tions used for each step. By following the steps backwards, and through the chain rule, the sensitivities follow naturally

2.3 Regulation of feature shapes

The method described in Sect. 2.1 and 2.2 succeeds in creating
features, whose shape can be optimized. However, it was found
that undesired feature shapes can emerge during the optimiza-
tion process. In this section, we will describe these, and some
techniques which we use to regulate feature shapes.

Four problems will be addressed: self-intersecting bounda-
ries, uneven PP distribution, proximity of solid and void PPs,
and initial design influence. Note that, the proposed restric-
tions not always address the fundamental cause of a problem
and instead restrict it indirectly because of simplicity or associ-
ated computational cost. Also, extra constraints add extra com-
plexity to the optimization problem limiting design freedom.
Possibly future improvements on the method may make these
regulations redundant.

The first problem that was tackled, is self-intersecting fea-
ture curves. Self-intersecting feature shapes do not necessar-
ily have the intermediate density region on the outside of the
feature, while this is crucial for consistent sensitivities. In our
application, self-intersecting shapes are prevented by adding
a constraint imposed on the minimum distance between a CP
and all line segments connecting consecutive CPs. An exam-
ple is shown in Fig. 9. The signed distance d from point a, to
the line segment between a, and a, is calculated similarly to,
e.g., Smith and Norato (2020) and Norato et al. (2015), and
is given by:

IIb Il if b, -h, <0,

d(a;,ay,a;) :=1 |by|| if O<h,-hy <h, -h,,
byl if hy -h, >h, -h,. (D
with h; :=a,—a;, and h, :=a;—a,.

Next, each distance d; between a CP and all line segments
connecting the remaining CPs is constrained to stay above a
threshold value, d,;,. First, the distance d, is normalized and

transformed to d; = 1 — d,/d_;,, such that d; > 0 indicates

min>®

@ Springer

Fig.9 Self-intersecting solid PPs are undesirable. This problem is
mitigated by constraining a minimum distance between a CP and line
segments between other CPs. For the marked CP (as), the distance
is measured toward all black line segments, with the line segment
between a, and a, highlighted

constraint violation, and Eil- < 0 indicates a feasible design.
Next, a smooth rectifier function is used, which ensures that
d; > 0 values are projected to Eii > ¢, while d; < 0 approach
to zero, i.e., Zi,» — 0, including a smooth transition required
for the sensitivity analysis. This function is shown in Fig. 10,
and it allows for aggregation of all distance constraints
through summation. Finally, the inequality constraint for
the optimization problem g, is computed as:
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St N /
1 [ =04

0.8

< 0.6
0.4

-1.5 -1 -0.5 0

Fig. 10 Input is (scaled) distance, output is a constraint value. By
adding a maximum constraint value, a minimum distance is ensured
strictly

g=1-"Y
' dmin
1n<e<ﬂ2 ) 4 1>
4= B> ’ (12)
"
84 = zd ‘Ali —€
84<0

Here, we use f; = 0.2 and f, = 3, n, is the number of line
segments considered, and € = ln(eﬂ2 + 1)/,62 ~ 1.016 is
used.

In our experience, this method was found to be simple,
fast, and sufficiently effective. However, one downside is
that the distance constraint can prevent small features.
Also, this method does not prevent self-intersection of the
actual curve, since only the zeroth order NURBS curve is
constrained, for simplicity. Finally, self-intersection pre-
vention of a zeroth order curve during optimization is also
not ensured when the optimization movelimits allow big
CP displacements that might lead to CPs jumping over a
line segment without violating the constraint.

The second problem that has been tackled, is an uneven
PP distribution in the void PP offset curve, such as shown
in Fig. 11. This occurs especially at sharp corners due to
large CP weights. Increasing the number of PPs would
mitigate this problem, but with additional computational
costs.

Sharp corners can be prevented by limiting the range of
p™ values. Usually, NURBS weights are allowed within
the range [0, 1]. In our implementation a smaller range
of [0.25, 0.75] is imposed. Secondly, the distribution of
the void PPs is further smoothened through modifying the
calculation of the offset curve with n;. Instead of using
the local normal of the NURBS curve, an approximate

*
\\‘\\\ *
\\\ \\\ *
\\ \\\\ *
\\\ \\\ *
N \\\ ). ¢
Mg £ X 2, SR O
o Ry, e
* ———————— "f%’; o *

Fig. 11 An uneven distribution of void PPs at inner or outer corners
is undesirable, for the projection to the density field. This problem is
mitigated by restricting the weights of the CPs, and by smoothening
of the offset curve calculation

normal determined by finite difference using a relatively
large step size leads to a more uniform spacing of void
PPs. Therefore, in this study, we use a finite difference
operation involving PPs j + 2 and j — 2:

h]
n: = R
Tyl
with h; :=h, xXh;,

13)

where h, :=¢,,-¢_, and h;:=

- o O

This is valid for an anticlockwise PP ordering, and since the
curve is continuous the first PP of the curve uses the next to
last PP of the curve for the j — 2, and vice versa.

The third problem is void PPs getting too close to or
inside of the solid PP curve, caused by sharp inner corners.

*
**** ¥ Yo ****

Fig. 12 Sharp inner corners can cause an undesirable distribution
of void PPs. This problem is mitigated by constraining the angle 6
between connected CPs, with Eq. (14)

@ Springer
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An example of such CP locations is shown in Fig. 12. There-  mipimize : C(X) = 'K, (X)u
fore, another constraint is added, limiting the angle between xp
two adjacent line segments between CPs. These angles are ~ subjectto : K, (X)u—f=0
calculatF:d, and constrained with a similar projection and VE) 1<0 (16)
summation as used before: V* =
_ 0, 840
eizl_emin gefo
In (e(ﬂz £ ‘,flé" ) 4 1> Here, K,,, u, and f denote the finite element system stiffness
6 = matrix, displacement vector, and mechanical load vector. p
' B, ' (I14) s used to denote the design variables p®, p), and p™). Note
oo that X = X(x, p). The objective is compliance C, the current
89 = Z 0, —e¢ design volume is V, and the maximum allowed volume is
i V* = 0.2 of the design domain.
8 <0 The second numerical example considers a thermal opti-

Again, f; = 0.2 and g, = 3 are used, n, is the number of
constrained inner corners, € = ln(eﬁ2 + 1)/ﬁ2, and the
angle fis scaled §, = 1 — 6,/6, ., such that the constraint
of becomes active for angles smaller than ;...

The fourth problem that was tackled concerns the influ-
ence of the initial design. It is common in existing LS and
FFM methods for the initial design state to have a significant
influence on the outcome. Consequently, convergence to dif-
ferent local optima is observed. In our method with fewer
features especially, this is relevant. In order to decrease the
influence of the initial design, the features are therefore
gradually activated with a continuation scheme, similar to
the approach presented in van de Ven et al. (2018). In the
first iterations of the optimization process, we mix the final
feature density field X with a classical density field x:

X, = —7)x, + vk, (15)

where 0 < y < 1is the mixing parameter. In this paper y is
continuously increased from O to 1 in the first 20 optimiza-
tion iterations.

3 Numerical examples

In this section, the numerical examples are presented.
Section 3.1 presents the optimization formulation and the
parameters used. Next, a mechanical optimization problem
with solid features is described and analyzed in Sect. 3.2.
Subsequently, Sect. 3.3 presents a thermal optimization
problem with void features.

3.1 Optimization problem formulation
The first numerical example considers a mechanical optimi-

zation of solid features for minimum compliance as objec-
tive in the presence of a volume constraint:

@ Springer

mization problem with a single void feature, with minimum
thermal compliance as objective and a volume constraint.
In this problem, the structure is formed by a density design
variable field, combined with a void feature that has a mini-
mum volume. This is done with a minimum operation for
Eq. (10), with P; = —6. One application for this problem
would for example be the placement and shape determina-
tion of a tank with a specified minimum volume in a design
area. The second optimization problem is given as follows:

minimize : C(X) = T'K,(X)T
xp
subjectto : K,XT-q=0
Véf) ~1<0
1
8a<0 an
8 <0
V.
1 - V—’ <0
f

Now, K,, T, and q denote the finite element system conduc-
tivity matrix, temperature vector, and thermal load vector.
The minimum volume constraint of the void feature is added
with its current volume denoted by V; and its minimum vol-
ume by Vf*

For each element e the Young’s modulus required for the
calculation of K,, in Eq. (16) and the conductivity required
for the calculation of K, in Eq. (17), the modified SIMP
interpolation scheme proposed by Sigmund (2007) is used,
1.e.,

E(;Ce) = Emin + x];(Emax - Emin)’ (18)
with p = 3.0, and Young’s moduli E,,;, = 10 and E,,, = 1
for the mechanical problem. The same interpolation
scheme is used for the thermal problem, with conductivities
Ein = 103 and E,,, = 1. For the finite element analysis, a

max
structured mesh comprising 4-node quadrilateral elements
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with bilinear shape functions is employed. These aspects of
the problem are kept relatively simple and standard, as our
focus is on evaluating the strengths and weaknesses of the
novel formulation.

The problem is implemented as an extension to the 88
line MATLAB code by Andreassen et al. (2011), supple-
mented with the MMA optimizer by Svanberg (1987) with
an additional set of CP design variables. The optimization
is terminated after 250 iterations, by which a desired level
of convergence was always reached.

Solid features with 8 CPs were used for the mechanical
problem, and one void feature with 8, 12, or 16 CPs was
used in the thermal problem. Second order basis functions
were used for the NURBS. The knot vector is unclamped
uniform. The NURBS are discretized with 30 solid PPs per
CP. The projection radius R is 4.5 times element length [,
which is also equal to the separation between solid and void
PPs, r. The MMA limits for the CP coordinates p® and
p®Y are [0, 1], for a unit square design domain, to keep the
CPs inside. The MMA limits for the CP weights p™ are
[0.25, 0.75] as explained in Sect. 2.3. The minimum distance
and angle constraints are set at d;, = 4.5/, and 6,,,;, = 45°,
respectively. An overview of the used parameters is given
in Table 1.

3.2 Mechanical problem with solid features

The first numerical example is a cantilever beam case. Since
this problem has predictable behavior, the performance of
the proposed method can be easily observed. The loading,
boundary conditions and a conventional density-based TO
result are shown in Fig. 13. A discretization of 200x200
elements is used.

For this load case given in Fig. 13a, the novel method is
tested with a different number of features. Initially, as many
as 16 features are introduced, similar to what is typically
considered in existing FMMs (Wein et al. 2020). Next, the

Table 1 Summary of used parameter values

Parameter Value
Projection radius R 4.5,
Offset curve distance r 4.5,
P, 6/—6
SIMP exponent p 3.0
Enin 1073107
E ax 1
Poisson’s ratio v 0.3
Number of iterations 250
Number of solid PPs per CP n(“P 30
Minimum distance d,,;, 4.5,
Minimum angle 6, 45°

(a) Problem loading. (b) Reference design.

C:= Cref

Fig. 13 The cantilever beam compliance problem. a The load and
boundary conditions are shown. The unit load is applied 5% from
the right edge, and 50% from the bottom. The fully clamped region
is located 10% from the left edge, 50% from the bottom, and has a
width of 2% and a height of 30%. b An optimization result obtained
using the standard density method is shown

number of features is reduced to 4 and 2, to demonstrate the
full potential of the highly flexible feature shapes. The initial
feature designs are shown in Figs. 14a, f, and k. Further-
more, optimization with 2 features with another initialization
is also performed (Fig. 14p). Finally, the 4 feature optimiza-
tion is performed without the distance and angle constraints,
and without tight movelimits for the CP weights to elimi-
nate sharp corners. However, the mixing of the designs in
Eq. (15) is still included to diminish the influence of the
initialization.

Several intermediate designs and the end results of the
optimizations are shown in Fig. 14. For the first three tests
with 16, 4, and 2 solid features, a relatively simple cantilever
beam is created. The case with 16 features is very simi-
lar to classic FFM, where many features are successfully
combined, however the shapes of the individual features are
fairly simple. The cases with 4 and 2 features create similar
designs with fewer features, utilizing the flexibility in the
feature shape of the proposed method. This simplicity comes
with only a minor increase in relative compliance, with val-
ues of 1.030, 1.060, and 1.084, for the 16, 4, and 2 features,
respectively.

The test with an alternative initial design (Fig. 14p-t)
shows a similar part shape but the hole in the middle of the
structure is absent, and the relative compliance increases
considerably to 1.282. The last test shows that, for this load
case, a design of almost identical performance can be suc-
cessfully obtained even without the regularization schemes
introduced in Sect. 2.3. However, the proposed regulariza-
tions were generally found to further ensure a stable opti-
mization process and mitigate the risk of undesired designs.

Next, the convergence performance of the method is con-
sidered. Two convergence plots are displayed in Figs. 15 and
16. Irrespective of the number of features considered, swift
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O00O.
O0O.
O0OO
O0Oo.

(a) 16 features, itera- (b) 16 features, itera- (c) 16 features, iteration (d) 16 features, itera- (e) 16 features, iteration
tion 1 tion 20 40 tion 250 250, C := 1.030C,e¢

> &>

(f) 4 features, iteration (g) 4 features, iteration (h) 4 features, iteration (i) 4 features, iteration (j) 4 features, iteration
1 20 40 250 250, C := 1.060Cef

(k) 2 features, iteration (1) 2 features, iteration (m) 2 features, iteration (n) 2 features, iteration (o) 2 features, iteration
1 20 40 250 250, C' := 1.084C\ ¢

(p) 2 features, iteration (q) 2 features, iteration (r) 2 features, iteration (s) 2 features, iteration (t) 2 features, iteration
20 40 250 250, C' := 1.282C\ ¢

(u) 4 features, no regu- (v) 4 features, no regu- (w) 4 features, no regu- (x) 4 features, no regu- (y) 4 features, no reg-

lations, iteration 1 lations, iteration 20 lations, iteration 40 lations, iteration 250 ulations, iteration 250,
C :=1.061C%ct

Fig. 14 Results of the cantilever beam problem, with 16, 4, and 2 fea- with fa > 0.5 are shown, void PPs have been omitted from cases with

tures given in the first, second, and third row, respectively. The fourth more than two features, and CPs have been omitted from the case

row is with 2 features with a different initialization, while the fifth with more than 4 features

row is with 4 features and no regulations. For clarity, only features
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Fig. 15 Convergence behaviors for the objective, for all mechanical
problems
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-0.2+
=
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o
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Fig. 16 Convergence behavior for the three constraints, for the test
with 4 features (second row in Fig. 14)

convergence for the objective is observed, in which the fea-
tures quickly connect, and smoothly evolve to an optimized
shape. Some peaks can be observed until the 20 th iteration,
during which the features’ density fields are still combined
with a classical density field, leading to a decrease in the
objective. However, as the fraction of the classical density
field is continuously decreased, the objective can increase. In
these three tests, the features are connected around iteration
20, but in our experience features could often still connect
at a later stage if not yet connected at iteration 20.

The constraints also show good convergence behavior.
The results shown in Fig. 16 for the case with 4 features
are representative for other cases. The distance constraint is
active or close to be active, which performs as intended. The
inner corner angle constraint is not active at any iteration,
and would thus not be needed in this case.

3.3 Heat conduction problem with void feature

The second numerical example is the heat sink problem,
for which the loading condition and a typical conventional
density-based TO result are shown in Fig. 17. Again, a dis-
cretization of 200x200 is used.

Distributed
heating

(a) Problem loading. (b) Reference design.

C:= Cref

Fig. 17 The heat conduction problem. a The load and boundary con-
ditions are shown. The heat sink region is located 2.5% from the left
edge, 50% from the bottom, and has a width of 5% and a height of
20%. b The optimization result without any features is shown as ref-
erence

For this case we aim to add a void feature with a speci-
fied minimum area, which could for example represent a
situation of how and where to locate a (fluid) tank with a
flexible shape inside a domain. This is similar to a flexible
void area considered in, e.g., Clausen et al. (2014), however
with a fixed topology. This design challenge is here com-
bined with the thermal compliance problem, which tends to
form a branching network of conductive material throughout
the domain (see Fig. 17b). In this way, the void fluid tank
represents a conflict for the thermal compliance objective.
The void feature field has a value of 1 outside of the feature,
and 0 inside of the feature shape. This field is added with a
smooth minimum operation to a classical density field. Its
opacity parameter is fixed at a = 1, since the only feature
should not disappear.

First, to study the influence of the number of CPs, the fea-
ture is created with 8, 12, or 16 CPs, and the (asymmetric)
initial designs can be seen in Fig. 18a, f, and k. Secondly, a
12 CP feature is considered again, but the angle constraint
is made more strict to enforce wider inner angles of 70°
specifically.

The results of the optimizations are shown in Fig. 18.
The novel method allows for the void region have a flexible
shape, yet it is ensured to keep its topology. The void fea-
tures with 8, 12, or 16 CPs lead to a relative compliance of
1.429, 1.230, and 1.247, respectively. Increasing the number
of CPs increases the shape freedom, however as seen in,
e.g., Figure 18n, the void PPs almost penetrate the solid PP
curve. This implies the constraints are successful in keeping
realistic feature shapes. The feature with 16 CPs can still
create sharp inner corners by putting two CPs close next to
each other. The minimum distance constraint however still
ensures that the void PPs do not touch the solid PP curve.

The fourth case, with a more strict angle constraint, for
which the results can be seen in Fig. 18p—t, shows that
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O

(a) 8 CPs, iteration 1

(b) 8 CPs, iteration 20

N =
Y -~

(c) 8 CPs, iteration 40 (d) 8 CPs, iteration 250 (e) 8 CPs, iteration 250,
C :=1.429C" ¢

(f) 12 CPs, iteration 1 (g) 12 CPs, iteration 20 (h) 12 CPs, iteration 40 (i) 12 CPs, iteration 250 (j) 12 CPs, iteration 250,

C := 1.230Cer

(k) 16 CPs, iteration 1

O

(1) 16 CPs, iteration 20 (m) 16 CPs, iteration 40 (n) 16 CPs, iteration (o) 16 CPs,

() <=

iteration
250 250, C := 1.247C\ ¢

(p) 12 CPs, 70° con- (q) 12 CPs, 70° con- (r) 12 CPs, 70° con- (s) 12 CPs, 70° con- (t) 12 CPs, 70° con-

straint, iteration 1 straint, iteration 20

straint, iteration 40

straint, iteration 250 straint, iteration 250,

C := 1.415Cet

Fig. 18 Results of the thermal problem. The first row is one NURBS feature with 8 CPs, the second row with 12 CPs, the third row with 16 CPs,

and the fourth row with 12 CPs and an angle constraint of 70°

the constraints succeed in controlling the feature shape
and a more rounded void region is obtained albeit with a
relative compliance of 1.415.

A constraint convergence plot for the thermal prob-
lem problem is given in Fig. 19. As can be seen, all con-
straints except the distance constraint are active or close
to be active. For this problem all constraints are needed
in keeping a desired feature shape.

@ Springer

4 Discussion

As shown in Sect. 3, the proposed method succeeds in opti-
mizing feature shapes with high geometric flexibility. This
new method offers a combination of flexibility and con-
trol, which is different from more restricted explicit meth-
ods yet more flexible than existing implicit feature-based
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Fig. 19 Convergence behavior for the three constraints, for the ther-
mal test with 12 CPs (second row in Fig. 18)

methods. Next to these advantages, the method however
still has some shortcomings. The nature of the method has
two major downsides: (i) the high feature flexibility neces-
sitates applying restrictions on flexible shaped features in
general (ii) our approach for obtaining sensitivities, using
a void PP offset curve.

First, the feature shape freedom of the novel FFM method
can be misused to create unrealistic and undesired flexible
structures, e.g., self-intersection. The restrictions proposed
in Sect. 2.3 aim to regulate the shape freedom, in order
to only create realistic features, even though the regula-
tions also limit the design freedom and may prohibit cer-
tain admissible shapes. The problem of how much shape
restriction is required, is inherent to shaped features, and
becomes particularly evident with the relatively high shape
flexibility introduced by our method. While the methods we
have developed proved effective, it is quite possible that less
restrictive and less conservative regularization formulations
are possible. Furthermore, the concept of flexible features
regulated with various restrictions/constraints also offers
new opportunities: for specific ranges of shape deforma-
tions specific geometric rules could be imposed, allowing,
e.g., combining parametric design with TO. Both aspects are
identified as directions for future research.

Secondly, the void PP offset curve, an essential part for
the gray boundary, which is crucial for obtaining sensitivi-
ties, introduces challenges. For example, in the presented
formulation the void PP curve can suffer from uneven PP
distributions with big gaps or clustering, or void PPs can
penetrate the solid PP curve. One advantage advocating for
the offset curve is consistent sensitivities in void regions sur-
rounded by solid regions, such that this location is equally
close to multiple boundaries/edges.

Next, the feasibility of extending the method to 3D should
be addressed. For all operations in Sect. 2.1 and 2.2 the
extensions to a third dimension follow straightforward. How-
ever, the feature shape problems addressed in Sect. 2.3 could
potentially be more challenging. Naturally, 3D features are

created with more CPs, which increases the design freedom,
with potential for unrealistic shapes. Furthermore, the pre-
sented regulation methods do not directly transfer to 3D. The
minimum distance calculation from Eq. (11) should become
a distance between a CP and a plane segment. Similarly, the
angle used in Eq. (14) should potentially be between several
neighboring CPs, or a different way to smoothen the normals
should be applied. While these are definitely challenges that
require further investigation, the concepts introduced by the
proposed method fundamentally carry over to 3D.

With the expansion to 3D, further research can be done
on controlling feature sizes. This is a useful property of
explicit FFMs, and integrating it with the proposed method
could further benefit practical applications.

In our experience using an unoptimized implementation,
the computational cost of all feature operations (creation
and sensitivities) was less than 10% of the FE solve, in the
studied problems. Feature operation costs scale up linearly
with the number of features, and the number of PPs, so the
fraction of the feature operations on the total cost will be
even lower for problems involving finer meshes. It is impor-
tant to note that our approach requires a limited number of
control points to describe complex feature shapes which is
favorable for computational tractability.

Ultimately, FFMs are methods in which feature bounda-
ries move. Just like in LS methods, but with shape restric-
tions to ensure simpler designs. Consequently, design out-
comes are limited to a subset of all possible geometries,
which likely also implies reduced performance. However,
the degree of restriction is controlled by the designer. Our
method provides a new option to control the range from
full design freedom and potentially complex outcomes, to
limited design freedom and simple outcomes. For each spe-
cific combination of application demands, manufacturing
and cost considerations it allows for a desired amount of
restrictions and regulations.

5 Conclusion

A new method for feature optimization with flexible feature
shapes is proposed, through defining feature shapes with
NURBS. With the NURBS control points and their weights
as design variables a feature density field is constructed.
The method builds on conventional density-based TO pro-
cedures. All steps are differentiable, allowing for consistent
sensitivities to be calculated.

Features can be created with complex shapes, allowing
for layouts to be represented with a fixed topology, by fewer
features, and with varying degrees of geometric control. The
features can be either solid or void, including an opacity
parameter, and used seamlessly in combination with estab-
lished density methods. As shown by different numerical
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examples, the method succeeds in optimizing feature shapes
with good convergence characteristics, and follows for solv-
ing new problems with a degree of shape control not avail-
able in other approaches.

In several aspects, the proposed method offers potential
for further development. Firstly, extending its implementa-
tion to 3D is worth exploring. While the concept funda-
mentally remains the same as in the planar case, various
implementation details may need additional consideration.
Secondly, to enable specific control of feature shapes, the
set of regulation schemes proposed and demonstrated in this
paper could be further refined and extended. Along this path
the method offers a way to combine parametric design con-
cepts and free-form TO, and provides designers with new
means to control the computational design process.
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