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ABSTRACT

This paper proposes a new variant of the task allocation
problem, where the agents are connected in a social network
and tasks arrive at the agents distributed over the network.
We show that the complexity of this problem remains NP-
hard. Moreover, it is not approximable within some factor.
We develop an algorithm based on the contract-net proto-
col. Our algorithm is completely distributed, and it assumes
that agents have only local knowledge about tasks and re-
sources. We conduct a set of experiments to evaluate the
performance and scalability of the proposed algorithm in
terms of solution quality and computation time. Three dif-
ferent types of networks, namely small-world, random and
scale-free networks, are used to represent various social rela-
tionships among agents in realistic applications. The results
demonstrate that our algorithm works well and that it scales
well to large-scale applications.

Categories and Subject Descriptors

I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems

General Terms

Algorithms, Experimentation

Keywords

Task Allocation, Social Networks, Agents, Resources, Com-
putational Complexity

1. INTRODUCTION
Recent years have seen a lot of work on task and re-

source allocation methods, which can potentially be applied
to many real-world applications. However, some interesting
applications where relations between agents play a role re-
quire a slightly more general model. Such situations appear
very frequently in real-world scenarios, and recent techno-
logical developments are bringing more of them within the
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range of task allocation methods. Especially in business ap-
plications, preferential partner selection and interaction is
very common, and this aspect becomes more important for
task allocation research, to the extent that technological de-
velopments need to be able to support it.

For example, the development of semantic web and grid
technologies leads to increased and renewed attention for
the potential of the web to support business processes [7,
15]. As an example, virtual organizations (VOs) are be-
ing re-invented in the context of the grid, where “they are
composed of a number of autonomous entities (representing
different individuals, departments and organizations), each
of which has a range of problem-solving capabilities and re-
sources at its disposal” [15, p. 237]. The question is how VOs
are to be dynamically composed and re-composed from indi-
vidual agents, when different tasks and subtasks need to be
performed. This would be done by allocating them to differ-
ent agents who may each be capable of performing different
subsets of those tasks. Similarly, supply chain formation
(SCF) is concerned with the, possibly ad-hoc, allocation of
services to providers in the supply chain, in such a way that
overall profit is optimized [6, 21].

Traditionally, such allocation decisions have been ana-
lyzed using transaction cost economics (TCE) [4], which
takes the transaction between consecutive stages of devel-
opment as its basic unit of analysis, and considers the firm
and the market as alternative structural forms for organiz-
ing transactions. (Transaction cost) economics has tradi-
tionally built on analysis of comparative statics: the central
problem of economic organization is considered to be the
adaptation of organizational forms to the characteristics of
transactions. More recently, TCE’s founding father, Ronald
Coase, acknowledged that this is too simplistic an approach
[5, p. 245]: “The analysis cannot be confined to what hap-
pens within a single firm. (. . . ) What we are dealing with
is a complex interrelated structure.”

In this paper, we study the problem of task allocation
from the perspective of such a complex interrelated struc-
ture. In particular, ‘the market’ cannot be considered as an
organizational form without considering specific partners to
interact with on the market [11]. Specifically, therefore, we
consider agents to be connected to each other in a social
network. Furthermore, this network is not fully connected:
as informed by the business literature, firms typically have
established working relations with limited numbers of pre-
ferred partners [10]; these are the ones they consider when
new tasks arrive and they have to form supply chains to allo-
cate those tasks [19]. Other than modeling the interrelated
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structure between business partners, the social network in-
troduced in this paper can also be used to represent other
types of connections or constraints among autonomous en-
tities that arise from other application domains.

The next section gives a formal description of the task al-
location problem on social networks. In Section 3, we prove
that the complexity of this problem remains NP-hard. We
then proceed to develop a distributed algorithm in Section 4,
and perform a series of experiments with this algorithm, as
described in Section 5. Section 6 discusses related work, and
Section 7 concludes.

2. PROBLEM DESCRIPTION

We formulate the social task allocation problem in this
section. There is a set A of agents: A = {a1, . . . , am}.
Agents need resources to complete tasks. Let R = {r1, . . . , rk}
denote the collection of the resource types available to the
agents A. Each agent a ∈ A controls a fixed amount of re-
sources for each resource type in R, which is defined by a
resource function: rsc : A × R → N. Moreover, we assume
agents are connected by a social network.

Definition 1 (Social network). An agent social net-
work SN = (A, AE) is an undirected graph, where vertices
A are agents, and each edge (ai, aj) ∈ AE indicates the ex-
istence of a social connection between agents ai and aj.

Suppose a set of tasks T = {t1, t2, . . . , tn} arrives at such
an agent social network. Each task t ∈ T is then defined by
a tuple 〈u(t), rsc(t), loc(t)〉, where u(t) is the utility gained
if task t is accomplished, and the resource function rsc :
T ×R → N specifies the amount of resources required for the
accomplishment of task t. Furthermore, a location function
loc : T → A defines the locations (i.e., agents) at which the
tasks arrive in the social network. An agent a that is the
location of a task t, i.e. loc(t) = a, is called the manager of
this task.

Each task t ∈ T needs some specific resources from the
agents in order to complete the task. The exact assignment
of tasks to agents is defined by a task allocation.

Definition 2 (Task allocation). Given a set of tasks
T = {t1, . . . , tn} and a set of agents A = {a1, . . . , am}
in a social network SN , a task allocation is a mapping
φ : T × A × R → N. A valid task allocation in SN must
satisfy the following constrains:

• A task allocation must be correct. Each agent a ∈ A
cannot use more than its available resources, i.e. for
each r ∈ R,

P
t∈T

φ(t, a, r) ≤ rsc(a, r).

• A task allocation must be complete. For each task t ∈
T , either all allocated agents’ resources are sufficient,
i.e. for each r ∈ R,

P
a∈A

φ(t, a, r) ≥ rsc(t, r), or t is
not allocated, i.e. φ(t, ·, ·) = 0.

• A task allocation must obey the social relationships.
Each task t ∈ T can only be allocated to agents that are
(direct) neighbors of agent loc(t) in the social network
SN . Each such agent that can contribute to a task is
called a contractor.

We write Tφ to represent the tasks that are fully allocated
in φ. The utility of φ is then the summation of the utilities of
each task in Tφ, i.e., Uφ =

P
t∈Tφ

u(t). Using this notation,

we define the efficient task allocation below.

Definition 3 (Efficient task allocation). We say
a task allocation φ is efficient if it is valid and Uφ is max-
imized, i.e., Uφ = max(

P
t∈Tφ

u(t)).

We are now ready to define the task allocation problem
in social network that we study in this paper.

Definition 4 (Social task allocation problem).
Given a set of agents A connected by a social network
SN = (A, AE), and a finite set of tasks T , the social task

allocation problem (or STAP for short) is the problem of
finding the efficient task allocation φ, such that φ is valid
and the social welfare Uφ is maximized.

3. COMPLEXITY RESULTS

The traditional task allocation problem, TAP (without
the condition of the social network SN), is NP-complete [18],
and the complexity comes from the fact that we need to
evaluate the exponential number of subsets of the task set.
Although we may consider the TAP as a special case of the
STAP by assuming agents are fully connected, we cannot
directly use the complexity results from the TAP, since we
study the STAP in an arbitrary social network, which, as we
argued in the introduction, should be partially connected.

We now show that the TAP with an arbitrary social net-
work is also NP-complete, even when the utility of each task
is 1, and the quantity of all required and available resources
is 1.

Theorem 1. Given the social task allocation problem with
an arbitrary social network, as defined in Definition 4, the
problem of deciding whether a task allocation φ with utility
more than k exists is NP-complete.

Proof. We first show that the problem is in NP. Given
an instance of the problem and an integer k, we can verify in
polynomial time whether an allocation φ is a valid allocation
and whether the utility of φ is greater than k.

We now prove that the STAP is NP-hard by showing
that MAXIMUM INDEPENDENT SET ≤P STAP. Given
an undirected graph G = (V, E) and an integer k, we con-
struct a network G′ = (V ′, E′) which has an efficient task
allocation with k tasks of utility 1 allocated if and only if G

has an independent set (IS) of size k.
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Figure 1: The MIS problem can be reduced to the

STAP. The left figure is an undirected graph G, which

has the optimal solution {v1, v4} or {v2, v3}; the right fig-

ure is the constructed instance of the STAP, where the

optimal allocation is {t1, t4} or {t2, t3}.

An instance of the following construction is shown in Fig-

ure 1. For each node v ∈ V and each edge e ∈ E in the graph

G, we create a vertex agent av and an edge agent ae in G
′.
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When v was incident to e in G we correspondingly add an
edge e′ in G′ between av and ae. We assign each agent in G′

one resource, which is related to the node or the edge in the
graph G, i.e., for each v ∈ V , rsc(av) = {v} (here we write
rsc(a) and rsc(t) to represent the set of resources available
to/required by a and t), and for each e ∈ E, rsc(ae) = {e}.
Each vertex agent avi

in G′ has a task ti that requires a
set of neighboring resources ti = {vi} ∪ {e|e = (u, vi) ∈ E}.
There is no task on the edge agents in G′. We define utility 1
for each task, and the quantity of all required and available
resources to be 1.

Taken an instance of the IS problem, suppose there is a
solution of size k, i.e., a subset N ⊆ V such that no two
vertices in N are joined by an edge in E and |N | = k.
N specifies a set of vertex agents AN in the corresponding
graph G′. Given two agents a1, a2 ∈ AN we now know that
there is no edge agent ae connected to both a1 and a2. Thus,
for each agent a ∈ AN , a assigns its task to the edge agents
which are connected to a. All other vertex agents a′ /∈ AN

are not able to assign their tasks, since the required resources
of the edge agents are already used by the agents a ∈ AN .
The set of tasks of the agents AN (|AN | = k) is thus the
maximum set of tasks that can be allocated. The utility of
this allocation is k.

Similarly, if there is a solution for the STAP with the
utility value k, and the allocated task set is N , then for the
IS problem, there exists a maximum independent set N of
size k in G. An example can be found in Figure 1.

We just proved that the STAP is NP-hard for an arbi-
trary graph. In our proof, the complexity comes from the
introduction of a social network. One may expect that the
complexity of this problem can be reduced for some networks
where the number of neighbors of the agents is bounded by
a fixed constant. We now give a complexity result on this
class of networks as follows.

Theorem 2. Let the number of neighbors of each agent

in the social network SN be bounded by Δ for Δ ≥ 3. Com-

puting the efficient task allocation given such a network is

NP-complete. In addition, it is not approximable within Δε

for some ε > 0.

Proof. It has been shown in [2] that the maximum in-
dependent set problem in the case of the degree bounded by
Δ for Δ ≥ 3 is NP-complete and is not approximable within
Δε for some ε > 0. Using the similar reduction from the
proof of Theorem 1, this result also holds for the STAP.

Since our problem is as hard as MIS as shown in Theo-
rem 1, it is not possible to give a worst case bound better
than Δε for any polynomial time algorithm, unless P = NP.

4. ALGORITHMS

To deal with the problem of allocating tasks in a social
network, we present a distributed algorithm. We introduce
this algorithm by describing the protocol for the agents. Af-
ter that we give the optimal, centralized algorithm and an
upper bound algorithm, which we use in Section 5 to bench-
mark the quality of our distributed algorithm.

4.1 Protocol for distributed task allocation

We can summarize the description of the task allocation
problem in social networks from Section 2 as follows. We

Algorithm 1 Greedy distributed allocation protocol
(GDAP).

Each manager a calculates the efficiency e(t) for each of their
tasks t ∈ Ta, and then while Ta �= ∅:

1. Each manager a selects the most efficient task t ∈ Ta

such that for each task t′ ∈ Ta: e(t′) ≤ e(t).

2. Each manager a requests help for t from all its neigh-
bors (of a) by informing these neighbors of the effi-
ciency e(t) and the required resources for t.

3. Contractors receive and store all requests, and then
offer all relevant resources to the manager for the task
with the highest efficiency.

4. The managers that have received sufficient offers al-
locate their tasks, and inform each contractor which
part of the offer is accepted. When a task is allo-
cated, or when a manager has received offers from all
neighbors, but still cannot satisfy its task, the task is
removed from the task list Ta.

5. Contractors update their used resources.

have a (social) network of agents. Each agent has a set of
resources of different types at its disposal. We also have a
set of tasks. Each task requires some resources, has a fixed
benefit, and is located at a certain agent. This agent is called
a manager. We only allow neighboring agents to help with a
task. These agents are called contractors. Agents can fulfill
the role of manager as well as contractor. The problem is
to find out which tasks to execute, and which resources of
which contractors to use for these tasks.

The idea of the protocol is as follows. All manager agents
a ∈ A try to find neighboring contractors to help them with
their task(s) Ta = {ti ∈ T | loc(ti) = a}. They start with
offering the task that is most efficient in terms of the ratio
between benefit and required resources. Out of all tasks of-
fered, contractors select the task with the highest efficiency,
and send a bid to the related manager. A bid consists of all
the resources the agent is able to supply for this task. If suf-
ficient resources have been offered, the manager selects the
required resources and informs all contractors of its choice.
The efficiency of a task is defined as follows:

Definition 5. The efficiency e of a task t ∈ T is defined

by the utility of this task divided by the sum of all required

resources: e(t) = u(t)P
r∈R

rsc(t,r)
.

A more detailed description of this protocol can be found
in Algorithm 1. Here it is also defined how to determine
when a task should not be offered anymore, because it is
impossible to fulfill locally. Obviously, a task is also not
offered anymore when it has been allocated. This protocol
is such that, when no two tasks have exactly the same effi-
ciency, in every iteration at least one task is removed from
a task list.1 From this the computation and communication
property of the algorithm follows.

Proposition 1. For a STAP with n tasks and m agents,

the run time of the distributed algorithm is O(nm), and the

number of communication messages is O(n2m).
1Even when some tasks have the same efficiency, it is
straightforward to make this result work. For example, the
implementation can ensure that the contractors choose the
task with the lowest task-id.
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Algorithm 2 Optimal social task allocation (OPT).

Repeat the following for each combination of tasks:

1. If the total reward for this combination is higher than
any previous combination, test if this combination is
feasible as follows:

2. Create a network flow problem for each resource type
r ∈ R (separately) as follows:

(a) Create a source s and a sink s′.

(b) For each agent a ∈ A create an agent node and
an edge from s to this node with capacity equal
to the amount of resources of type r agent a has.

(c) For each task t ∈ T create a task node and an
edge from this node to s′ with capacity equal to
the amount of resources of type r task T requires.

(d) For each agent a connect the agent node to all
task nodes of neighboring tasks, i.e., t ∈ {t ∈ T |
(a, loc(t)) ∈ AE}. Give this connection unlimited
capacity.

3. Solve the maximum flow problem for the created flow
networks. If the maximum flow in each network is
equal to the total required resources of that type, the
current combination of tasks is feasible. In that case,
this is the current best combination of tasks.

Proof. In the worst case, in each iteration exactly one
task is removed from a task list, so there are n iterations.
In each iteration in the worst case (i.e., a fully connected
network), for each of the O(n) managers, O(m) messages
are sent. Next the task with the highest efficiency can be
selected by each contractor in O(n). Assigning an allocation
can be done in O(m). This leads to a total of O(n + m) op-
erations for each iteration, and thus O(n2 + nm) operations
in total. The number of messages sent is O(n(nm + nm +
nm)) = O(n2m).

We establish the quality of this protocol experimentally
(in Section 5). Preferably, we compare the results to the
optimal solution.

4.2 Optimal social task allocation
The optimal task allocation algorithm should deal with

the restrictions posed by the social network. For this NP-
complete problem we used an exponential brute-force algo-
rithm to consider relevant combinations of tasks to execute.
For each combination we use a maximum-flow algorithm to
check whether the resources are sufficient for the selected
subset of tasks. The flow network describes which resources
can be used for which tasks, depending on the social net-
work. If the maximum flow is equal to the sum of all re-
sources required by the subset of tasks, we know that a fea-
sible solution exists (see Algorithm 2). Clearly, we cannot
expect this optimal algorithm to be able to find solutions
for larger problem sizes. To establish the quality of our pro-
tocol for large instances, we use the following method to
determine an upper bound.

4.3 Upper bound for social task allocation
Given a social task allocation problem, if the number of

resource types for every task t ∈ T is bounded by 1, the

Algorithm 3 An upper bound for social task allocation
(UB).

Create a network flow problem with costs as follows:

1. Create a source s and a sink s′.

2. For each agent a ∈ A and each resource type ri ∈ R,
create an agent-resource node a′

i, and an edge from
s to this node with capacity equal to the amount of
resources of type r agent a has available and with costs
0.

3. For each task t ∈ T and each resource type ri ∈ R, cre-
ate a task-resource node t′i, and an edge from this node
to s′ with capacity equal to the amount of resources of
type r task t requires and costs −e(t).

4. For each resource type ri ∈ R and for each agent a

connect the agent-resource node a′

i to all task-resource
nodes t′i for neighboring tasks t ∈ {t ∈ T | (a, loc(t)) ∈
AE or a = loc(t)}. Give this connection unlimited
capacity and zero costs.

5. Create an edge directly from s to s′ with unlimited
capacity and zero costs.

Solve the minimum cost flow network problem for this net-
work. The costs of the resulting network is an upper bound
for the social task allocation problem.

problem is polynomially solvable by transforming it to a flow
network problem. Our method for efficiently calculating an
upper bound for STAP makes use of this special case by
converting any given STAP instance P into a new problem
P ′ where each task only has one resource type.

More specifically, for every task t ∈ T with utility u(t),
we do the following. Let m be the number of resource types
{r1, . . . , rm} required by t. We then split t into a set of
m tasks T ′ = {t′1, . . . , t

′

m} where each task t′i only has one
unique resource type (of {r1, . . . , rm}) and each task has a
fair share of the utility, i.e., the efficiency of t from Defi-
nition 5 times the amount of this resource type rsc(t′i, ri).
After polynomially performing this conversion for every task
in T , the original problem P becomes the special case P ′.
Note that the set of valid allocations in P is only a subset of
the set of valid allocations in P ′, because it is now possible
to partially allocate a task. From this it is easy to see that
the solution of P ′ gives an upper bound of the solution of
the original problem P .

To compute the optimal solution for P ′, we transform it
to a minimum cost flow problem. We model the “cost” in
the flow network by the negation of the new task’s utility. A
polynomial-time implementation of a scaling minimum cost
flow algorithm [9] is used for the computation. The result-
ing minimum cost flow represents a maximum allocation of
the tasks for P ′. The detailed modeling is described in Al-
gorithm 3. In the next section, we use this upper bound to
estimate the quality of the GDAP for large-scale instances.

5. EXPERIMENTS
We implemented the greedy distributed allocation proto-

col (GDAP), the optimal allocation algorithm (OPT), and
the upper bound algorithm (UB) in Java, and tested them
on a Linux PC. The purpose of these experiments is to study
the performance of the distributed algorithm in different
problem settings using different social networks. The per-
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formance measurements are the solution quality and com-
putation time, where the solution quality (SQ) is computed
as follows. When the number of tasks is small, we compare
the output of the distributed algorithm with the optimal so-
lution, i.e., SQ = GDAP

OPT
, but if it is not feasible to compute

the optimal solution, we use the value returned by the upper
bound algorithm for evaluation, i.e., SQ = GDAP

UB
.

To see whether the latter is a good measure, we also com-
pare the quality of the upper bound to the optimal solution
for smaller problems. In the following, we describe the set-
up of all experiments, and present the results.

5.1 Experimental settings
We consider several experimental environments. In all en-

vironments the agents are connected by a social network. In
the experiments, three different networks are used to simu-
late the social relationships among agents in potential real-
world problems.

Small-world networks are networks where most neighbors
of an agent are also connected to each other. For the exper-
iments we use a method for generating random small-world
networks proposed by Watts et al. [22], with a fixed rewiring
probability p = 0.05.

Scale-free networks have the property that a couple of
nodes have many connections, and many nodes have only
a small number of connections. To generate these we use
the implementation in the JUNG library of the generator
proposed by Barabási and Albert [3].

We also generate random networks as follows. First we

connect each agent to another agent such that all agents are
connected. Next, we randomly add connections until the
desired average degree has been reached.

We now describe the different settings used in our exper-
iments with both small and large-scale problems.

Setting 1. The number of agents is 40, and the number of
tasks is 20. The number of different resource types is
bounded by 5, and the average number of resources re-
quired by a task is 30. Consequently, the total number
of resources required by the tasks is fixed. However,
the resources available to the agents are varied. We
define the resource ratio to refer to the ratio between
the total number of available resources and the total
number of required resources. Resources are allocated
uniformly to the agents. The average degrees of the
networks may also change. In this setting the task
benefits are distributed normally around the number
of resources required.

Setting 2. This setting is similar to Setting 1, but here we
let the benefits of the tasks vary dramatically—40% of
the tasks have around 10 times higher benefit than the
other 60% of the tasks.

Setting 3. This setting is for large-scale problems. The ra-
tio between the number of agents and the number of
tasks is set to 5/3, and the number of agents varies
from 100 to 2000. We also fix the resource ratio to 1.2
and the average degree to 6. The number of different
resource types is 20, and the average resource require-
ment of a tasks is 100. The task benefits are again
normally distributed.

5.2 Experimental results
The experiments are done with the three different settings

in the three different networks mentioned before, where each
recorded data is the average over 20 random instances.

5.2.1 Experiment 1

Experimental setting 1 is used for this set of experiments.
We would like to see how the GDAP behaves in the differ-
ent networks when the number of resources available to the
agents is changing. We also study the behavior of our upper
bound algorithm. For this experiment we fix the average
number of neighbors (degree) in each network type to six.

In Figure 2 we see how the quality of both the upper
bound and the GDAP algorithm depends on the resource
ratio. Remarkably, for lower resource ratios our GDAP is
much closer to the optimal allocation than the upper bound.
When the resource ratio grows above 1.5, the graphs of the
upper bound and the GDAP converge, meaning that both
are really close to the optimal solution. This can be ex-
plained by the fact that when plenty of resources are avail-
able, all tasks can be allocated without any conflicts. How-
ever, when resources are very scarce, the upper bound is
much too optimistic, because it is based on the allocation of
sub-tasks per resource type, and does not reason about how
many of the tasks can actually be allocated completely. We
also notice from the graph that the solution quality of the
GDAP on all three networks is quite high (over 0.8) when
the available resource is very limited (0.3). It drops below
0.8 with the increased ratio and goes up again once there are
plenty of resources available (resource ratio 0.9). Clearly, if
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resources are really scarce, only a few tasks can be success-
fully allocated even by the optimal algorithm. Therefore,
the GDAP is able to give quite a good allocation.

Although the differences are minor, it can also be seen
that the results for the small-world network are consistently
slightly better than those of random networks, which in turn
outperform scale-free networks. This can be understood by
looking at the distribution of the agents’ degree, as shown
in Figure 3. In this experiment, in the small-world network
almost every manager has a degree of six. In random net-
works, the degree varies between one and about ten. How-
ever, in the scale-free network, most nodes have only three
or four connections, and only a very few have up to twenty
connections. As we will see in the next experiment, having
more connections means getting better results.

For the next experiment we fix the resource ratio to 1.0
and study the quality of both the upper bound and the
GDAP algorithm related to the degree of the social net-
work. The result can be found in Figure 4. In this figure
we can see that a high average degree also leads to conver-
gence of the upper bound and the GDAP. Obviously, when
managers have many connections, it becomes easier to allo-
cate tasks. An exception is, similar to what we have seen in
Figure 2, that the solution of the GDAP is also very good
if the connections are extremely limited (degree 2), due to
the fact that the number of possibly allocated tasks is very
small. Again we see that the upper bound is not that good
for problems where resources are hard to reach, i.e. in social
networks with a low average degree.2

Since the solution quality clearly depends on the resource
ratio as well as on the degree of the social network, we study
the effect of changing both, to see whether they influence
each other. Figure 5 shows how the solution quality de-
pends on both the resource ratio and the network degree.
This graph confirms the results that the GDAP performs
better for problems with higher degree and higher resource
ratio. However, it is now also more clear that it performs
better for very low degree and resource availability. For this
experiment with 40 agents and 20 tasks, the worst perfor-
mance is met for instances with degree six and resource ratio
0.6 to instances with degree twelve and resource ratio 0.3.
But even for those instances, the performance lies above 0.7.

2The consistent standard deviation of about 15% over the
20 problem instances is not displayed as error-bars in these
first graphs, because it would obfuscate the interesting cor-
relations that can now be seen.
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Figure 5: The quality of the GDAP depends on both

the resource ratio and the network degree.

5.2.2 Experiment 2

To study the robustness of the GDAP against different
problem settings, we generate instances where the task ben-
efit distribution is different: 40% of the tasks gets a 10 times
higher benefit (as described in Setting 2). The effect of this
different distribution can be seen in Figure 6. These two
graphs show that the results for the “skewed” task benefit
distribution are slightly better on average, both when vary-
ing the resource ratio, and when varying the average degree
of the network. We argue that this can be explained by the
greedy nature of GDAP, which causes the tasks with high
efficiency to be allocated first, and makes the algorithm per-
form better in this heterogeneous setting.

5.2.3 Experiment 3

The purpose of this final experiment is to test whether the
algorithm can be scaled to large problems, like applications
running on the internet. We therefore generate instances
where the number of agents varies from 100 to 2000, and si-
multaneously increase the number of tasks from 166 to 3333
(Setting 3). Figure 7 shows the run time for these instances
on a Linux machine with an AMD Opteron 2.4 GHz pro-
cessor. These graphs confirm the theoretical analysis from
the previous section, saying that both the upper bound and
the GDAP are polynomial. In fact, the graphs show that
the GDAP almost behaves linearly. Here we see that the
locality of the GDAP really helps in reducing the compu-
tation time. Also note that the GDAP requires even less
computation time than the upper bound.

The quality of the GDAP for these large instances cannot
be compared to the optimal solution. Therefore, in Figure 8
the upper bound is used instead. This result shows that
the GDAP behaves stably and consistently well with the
increasing problem size. It also shows once more that the
GDAP performs better in a small-world network.

6. RELATED WORK

Task allocation in multiagent systems has been investi-
gated by many researchers in recent years with different as-
sumptions and emphases. However, most of the research
to date on task allocation does not consider social connec-
tions among agents, and studies the problem in a centralized
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Figure 6: The quality of the GDAP algorithm for a
uniform and a skewed task benefit distribution re-
lated to the resource ratio (the first graph), and the
network degree (the second graph).

setting. For example, Kraus et al. [12] develop an auction
protocol that enables agents to form coalitions with time
constraints. It assumes each agent knows the capabilities
of all others. The proposed protocol is centralized, where
one manager is responsible for allocating the tasks to all
coalitions. Manisterski at al. [14] discuss the possibilities of
achieving efficient allocations in both cooperative and non-
cooperative settings. They propose a centralized algorithm
to find the optimal solution. In contrast to this work, we
introduce also an efficient completely distributed protocol
that takes the social network into account.

Task allocation has also been studied in distributed set-
tings by for example Shehory and Kraus [18] and by Ler-
man and Shehory [13]. They propose distributed algorithms
with low communication complexity for forming coalitions
in large-scale multiagent systems. However, they do not
assume the existence of any agent network. The work of
Sander et al. [16] introduces computational geometry-based
algorithms for distributed task allocation in geographical do-
mains. Agents are then allowed to move and actively search
for tasks, and the capability of agents to perform tasks is ho-
mogeneous. In order to apply their approach, agents need
to have some knowledge about the geographical positions
of tasks and some other agents. Other work [17] proposes
a location mechanism for open multiagent systems to allo-
cate tasks to unknown agents. In this approach each agent
caches a list of agents they know. The analysis of the com-
munication complexity of this method is based on lattice-like
graphs, while we investigate how to efficiently solve task allo-
cation in a social network, whose topology can be arbitrary.

Networks have been employed in the context of task allo-
cation in some other works as well, for example to limit the
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interactions between agents and mediators [1]. Mediators in
this context are agents who receive the task and have connec-
tions to other agents. They break up the task into subtasks,
and negotiate with other agents to obtain commitments to
execute these subtasks. Their focus is on modeling the deci-
sion process of just a single mediator. Another approach is
to partition the network into cliques of nodes, representing
coalitions which the agents involved may use as a coordina-
tion mechanism [20]. The focus of that work is distributed
coalition formation among agents, but in our approach, we
do not need agents to form groups before allocating tasks.

Easwaran and Pitt [6] study ‘complex tasks’ that require
‘services’ for their accomplishment. The problem concerns
the allocation of subtasks to service providers in a supply
chain. Another study of task allocation in supply chains
is [21], where it is argued that the defining characteristic
of Supply Chain Formation is hierarchical subtask decompo-

sition (HSD). HSD is implemented using task dependency
networks (TDN), with agents and goods as nodes, and I/O
relations between them as edges. Here, the network is given,
and the problem is to select a subgraph, for which the au-
thors propose a market-based algorithm, in particular, a se-
ries of auctions. Compared to these works, our approach is
more general in the sense that we are able to model different
types of connections or constraints among agents for differ-
ent problem domains in addition to supply chain formation.

Finally, social networks have been used in the context of
team formation. Previous work has shown how to learn
which relations are more beneficial in the long run [8], and
adapt the social network accordingly. We believe these re-
sults can be transferred to the domain of task allocation as
well, leaving this as a topic for further study.
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7. CONCLUSIONS

In this paper we studied the task allocation problem in a
social network (STAP), which can be seen as a new, more
general, variant of the TAP. We believe it has a great amount
of potential for realistic problems. We provided complexity
results on computing the efficient solution for the STAP, as
well as a bound on possible approximation algorithms. Next,
we presented a distributed protocol, related to the contract-
net protocol. We also introduced an exponential algorithm
to compute the optimal solution, as well as a fast upper-
bound algorithm. Finally, we used the optimal solution and
the upper-bound (for larger instances) to conduct an exten-
sive set of experiments to assess the solution quality and
the computational efficiency of the proposed distributed al-
gorithm in different types of networks, namely, small-world
networks, random networks, and scale-free networks.

The results presented in this paper show that the dis-
tributed algorithm performs well in small-world, scale-free,
and random networks, and for many different settings. Also
other experiments were done (e.g. on grid networks) and
these results held up over a wider range of scenarios. Fur-
thermore, we showed that it scales well to large networks,
both in terms of quality and of required computation time.
The results also suggest that small-world networks are slightly
better suited for local task allocation, because there are no
nodes with very few neighbors.

There are many interesting extensions to our current work.
In this paper, we focus on the computational aspect in the
design of the distributed algorithm. In our future work, we
would also like to address some of the related issues in game
theory, such as strategic agents, and show desirable proper-
ties of a distributed protocol in such a context.

In the current algorithm we assume that agents can only
contact their neighbors to request resources, which may ex-
plain why our algorithm performs not as good in the scale-
free networks as in the small-world networks. Our future
work may allow agents to reallocate (sub)tasks. We are in-
terested in seeing how such interactions will affect the per-
formance of task allocation in different social networks.

A third interesting topic for further work is the addition
of reputation information among the agents. This may help
to model changing business relations and incentivize agents
to follow the protocol.

Finally, it would be interesting to study real-life instances
of the social task allocation problem, and see how they re-
late to the randomly generated networks of different types
studied in this paper.
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