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Abstract
Laminar-to-turbulent boundary layer transition on the wings and stabilizers of aircraft leads to a large
increase in the skin-friction drag they experience during flight. This has motivated prolific research into
understanding and delaying the transition process, in an effort to improve the economic and ecological
impact of air travel. The swept wing poses a particular challenge to this, as the transition scenario
in flight is typically governed by the growth and breakdown of stationary crossflow instabilities (CFI).
These are destabilized by flow conditions that would suppress instabilities on straight wings, such as
Tollmien–Schlichting waves, complicating the use of laminar flow control techniques. Previous research
has shown stationary CFI to be highly receptive to surface roughness, with the use of discrete roughness
elements (DRE) having emerged as a forcing/control strategy. However, the mechanisms behind which
DRE condition the onset of CFI in a swept wing boundary layer are still a topic of ongoing investigations.

The research presented in this Master thesis aims to further characterize the relation between the
DRE forcing configuration and the onset of swept wing boundary layer instabilities, through an inves-
tigation of its wake flowfield. The DRE wake has previously been observed to be highly non-modal in
nature, limiting the use of modal linear stability theory in predicting stationary disturbance evolution
in the element vicinity. To address this, a linear, non-modal, parabolized stability framework is derived,
capable of simulating transient growth within the DRE wake region. The numerical framework is ini-
tialized with experimental DRE wake data from a previous study, for a DRE array of critical forcing
height. The predicted stability characteristics qualitatively agree with experiment, with the numerical
solver successfully evolving the stationary DRE wake structure into stationary CFI downstream of the
array. However, a quantitative match with experiment could not be attained. The results were also
noted to be sensitive to the choice of initial conditions, as well as to the numerical discretization.

In addition to the stationary numerical simulations, hot-wire anemometry measurements are con-
ducted at the TU Delft low turbulence wind tunnel, providing a first-time experimental characterization
of the evolution of unsteady disturbances in the DRE wake for a swept wing boundary layer. Regions of
high fluctuation intensity are observed to be localized around the top and sides of each element in the
DRE array, with their spectral characteristics associated to circular cylinder shedding. For a critical
DRE forcing, the evolution of the wake flow is largely governed by the stationary structures, although
unsteady disturbance energy is observed to undergo a brief period of transient energy amplification.
A super-critical DRE forcing introduces strongly tonal fluctuations into the DRE wake, whose ampli-
fication is enhanced by interaction between the stationary structures. The high fluctuation levels are
sustained and grow to non-linear amplitudes, inhibiting the relaxation of steady disturbance energy.
This leads to rapid, local turbulent breakdown in the vicinity of the elements.
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Introduction

1.1. Background & Motivation
The number of aircraft in the sky has exhibited rapid growth overall since the early 2000s, owing to the
increased accessibility to air travel and its consequent high demand [83]. Carbon dioxide emissions by
airlines have reportedly increased by 32% from 2013 to 2018 [41], and are expected to continue growing
up to 2050. This has driven research into sustainable aviation, with collaborative advances towards the
improved fuel-efficiency and ecological impact of aircraft [114]. One aspect of this is the reduction of the
parasitic drag experienced by an aircraft’s wings and stabilizers, particularly its skin-friction component,
which comprises nearly 50% of the total drag budget [4]. Laminar flow control (LFC) techniques aim to
mitigate the onset of the turbulent boundary layer (BL) that is present on most commercial aircraft in
operation today, by delaying the laminar-to-turbulent transition process. This promotes larger regions
of laminar flow and its inherently lower skin-friction drag penalty.

High-subsonic and transonic commercial aircraft are typically designed with swept wing configura-
tions to increase their critical Mach numbers, postponing shock formation and its accompanying drag
divergence. Despite the large advantage these types of wings offer, the airflow over a swept airfoil is
inherently three-dimensional, characterised by the presence of a crossflow velocity component within
the viscous BL [101, 109]. This complicates the transition process as the BL becomes receptive to
an additional instability mechanism: the crossflow instability (CFI) [70, 5, 101, 109]. In regions of
favourable pressure gradient, the travelling Tollmien-Schilchting (TS) waves [104] that typically lead to
transition in the unswept scenario are damped. The inflected crossflow velocity profile instead condi-
tions the growth of stationary and travelling crossflow waves [28, 10]. In a low turbulence environment
such as that of free-flight, the stationary crossflow waves assume the role of the dominant BL instability
[28, 10, 88]. These take the form of streamwise vortices that strongly distort the BL mean-flow, leading
to an earlier onset of non-linearities and turbulent breakdown as compared to the unswept scenario.

Experiments by Müller & Bippes [80] demonstrated that transition caused by these stationary vor-
tices is highly susceptible to surface roughness. Irregularities that arise from the manufacturing process
in the form of panels, rivets, paint etc. are ubiquitous on aircraft wings and fall into this category. This
has led to over thirty years of research dedicated to understanding how naturally occurring surface
roughness and various types of artificial roughness influence the onset of CFI, and thus transition on
swept wings.

Initial efforts into characterizing roughness-receptivity on swept wings were primarily experimental,
with Radeztsky et. al [88] testing a range of roughness configurations. They noted that transition
was significantly affected by natural surface roughness, by controlling the surface finishing of their
model. Additionally, their use of an isolated 3-D roughness element that did not cause immediate
turbulent breakdown revealed a coupling between the amplitude and spectrum of the observed CFI
and the element height and diameter. Follow-up experiments at the Arizona State University (ASU)
[92] attempted to control the CFI spectrum through the use of an array of periodically spaced, discrete
roughness elements (DRE). This led to the development of spanwise uniform transition fronts, different
to those produced by natural surface roughness. By setting the inter-element spacing equal to the most
amplified crossflow mode predicted by linear stability theory (LST), they observed strong growth and
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non-linear amplitude saturation of the forced mode and its harmonics. Further configurations with
varying forcing wavelengths showed that only the fundamental CFI mode and its super-harmonics were
introduced into the boundary layer, i.e. there was no evidence of wavelength doubling.

The use of DRE became a popular strategy in the decades that followed, both in the study of CFI
and transition prediction methods for swept wings. The ability to artificially introduce an instability
mode into the BL, as well as to improve the spanwise uniformity of the transitional flow, strengthens
the comparisons between experimental and numerical works to be drawn. The growth of CFI has been
characterized through Direct Numerical Simulations (DNS) [12, 127, 121, 62] as well as through Parab-
olized Stability Equations (PSE) (linear (LPSE) and non-linear (NPSE)) [48, 46, 122]. These numerical
investigations are in good agreement with experimental findings. However, receptivity continues to pose
a challenge in fully modelling crossflow-induced transition. Parallel-flow solvers are seen to suffer from
an over-prediction of receptivity amplitudes, as highlighted by Saric et. al [101]. Studies by Tempel-
mann et. al [122] use an adjoint-based PSE framework to estimate the amplitudes of CFI generated by
roughness, albeit being valid only for small roughness heights and limited by the assumptions inherent
to the PSE.

DRE have also been investigated as a passive LFC technique. Numerous studies by Saric and
colleagues [100, 99, 102] attempt to use a DRE configuration that does not contain the most amplified
CFI mode or any of its harmonics. The excitation of a less-unstable, sub-critical mode (i.e. shorter
wavelength mode) inhibits the growth of the most unstable one and delays transition to downstream of
its natural, unforced location. A more recent work by Zoppini et. al [135] uses a series of DRE arrays
in chordwise succession to induce and overlap crossflow waves such that they destructively interfere,
reducing their amplitude and postponing the onset of non-linear breakdown. Despite the effectiveness
of these methods in most scenarios, they remain limited in their application due to sensitivity to
environmental conditions and an incomplete understanding of the receptivity process. This further
highlights a need for a detailing of the initial stages of roughness-induced CFI development.

Zoppini et. al [139] conducted an experimental study on the effect of the DRE height and location on
swept-wing transition caused by stationary CFI, supplemented by NPSE simulations. Their estimation
of initial instability amplitudes suggests that the near-element flow topology is crucial in relating the
external forcing configuration (i.e. DRE geometry) to modal CFI development. Comprehensive DNS
studies by Kurz & Kloker [62], Brynjell & Rahkola [14] reveal the intricate features pertinent to the
near-element flowfield. They report a low-speed wake aft of each roughness element, accompanied by a
horseshoe vortex system. This vortical flow induces a series of low and high speed streaks, similar to
those observed in experiments with roughness in 2-D boundary layers [34, 61, 62]. Recent experimental
work on resolving the DRE wake-flow [136] confirm these DNS findings and highlight non-modal growth
[104, 120, 68] as a mechanism in CFI receptivity to DRE.

While significant advances have been made in understanding the complex flow topology in the vicin-
ity of DRE, the process through which they condition the onset of instability in swept wings is still
not fully understood. State-of-the-art numerical tools such as the PSE suffer from limitations in their
mathematical framework that do not allow for non-modal growth to be analysed. The current study
is an effort to resolve these discrepancies and provide alternative methods to modelling the stationary
perturbation fields generated by DRE. A first time detailed description of unsteady DRE-wake distur-
bances in 3-D boundary layers is also offered, in an effort to fully characterize the receptivity process.
The findings of this work will provide for a better understanding of how roughness conditions CFI,
possible driving the development of more accurate predictive models or more effective LFC techniques.

The remainder of this chapter aims to detail historical work, as well as the latest literature on
swept wing boundary layers, crossflow instabilities and roughness-induced transition (RIT). Section 1.2
provides the reader with a brief introduction to boundary layers, with an emphasis on those pertinent
to swept wings. This is followed by a discussion on boundary layer transition, stability theory and the
features of the crossflow instability (Section 1.3). A comprehensive review of research on roughness
elements in 3-D boundary layers is conducted in Section 1.4, encompassing experimental and numerical
efforts to understand receptivity. Section 1.5 details non-modal growth, highlights advancements in
numerical methods used for its prediction, and emphasizes connections to DRE receptivity in swept
wing boundary layers. Finally, Sections 1.6 and 1.7 identify gaps in the literature discussed and define
the main research questions and objective of this work.
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Figure 1.1: A schematic of the development and transition of a boundary layer.

1.2. The Viscous Boundary Layer
A full mathematical description of the dynamics of fluid flow is given by the famous Navier-Stokes
(NS) equations. However their complex, highly non-linear nature makes both analytical and numerical
analysis extremely challenging. In his 1904 paper [87] Ludwig Prandtl proposed a simplification of these
equations for high Reynolds number (Re), wall-bounded flows, splitting the flowfield into two regions:
the outer inviscid region, where classical potential flow solutions are valid, and the boundary layer
region, where the effects of viscosity are significant. This allowed for the NS equations to be reduced
into the Boundary Layer Equations (BLE), valid in a thin fluid layer adjacent to the wall, and enabled
an analysis of such flowfields without needing to solve the full NS equations.

Physically, the BL represents the region of fluid close to a wall where the velocity relative to the
wall goes to zero. This is due to the no-slip condition, where viscous forces locally act to retard fluid
particles. The variation of velocity from zero at the wall to its freestream magnitude is represented
by the BL velocity profile, with streamwise, wall-normal and spanwise components. The demarcation
between freestream and BL flow is rather ambiguous in definition as the velocity profiles asymptotically
converge to the freestream as one moves away from the wall. Typically, the physical extent of the BL
has been taken to be the height above the wall at which the streamwise profile attains 99% its freestream
magnitude U∞, denoted as δ99.

An important quantity in the analysis of boundary layers is the gradient of the velocity profile at
the wall. This can be related to the shear stress exerted by the fluid on the wall, through its dynamic
viscosity µ, and consequently the coefficient of skin-friction cf :

τwall = µ
∂u

∂y

∣∣∣∣
y=0

, (1.1a)

cf =
τwall
1
2ρU

2
∞
. (1.1b)

As a laminar boundary layer develops, it experiences the onset and growth of instabilities and inevitably
breaks down into chaotic, turbulent BL flow. The process through which these instabilities are intro-
duced, amplify and break down is referred to as boundary layer transition, visualized in Figure 1.1.
The ordered nature of laminar flow sees viscous diffusion as the primary mechanism for wall-normal
momentum transport in the BL. In contrast, a turbulent BL features additional transport through
velocity fluctuations, encouraging the mixing of high and low momentum fluid regions [134]. These
fluctuations sweep higher-momentum fluid toward the wall, leading to fuller velocity profiles and thus,
stronger wall-normal velocity gradients. The direct implication of this is an increase in the wall shear
stress and skin-friction (through equation 1.1) for a turbulent BL, as compared to laminar one.

The static pressure distribution, p, around a body is a significant factor that influences BL devel-
opment. Favourable streamwise pressure gradients (∂p/∂x < 0) lead to accelerated fluid flow, subse-
quently leading to increased streamwise momentum within the BL. The opposite is true for adverse
pressure gradients (∂p/∂x > 0) i.e. decelerated flow. The fluid particles within the boundary layer in-
stead suffer a loss in kinetic energy. For strong adverse pressure gradients, the already low-momentum
fluid close to the wall is unable to overcome the increasing pressure and stagnates, causing a detach-
ment of the BL from the surface [75]. This process of boundary layer separation is accompanied by a
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Figure 1.2: (a) Schematic of the inviscid streamlines at the leading edge of a swept airfoil, adapted from Drela [31],
and (b) 3-D boundary layer profiles at various chordwise stations, from Lucas [68]. The angle between wall and potential
streamlines is denoted by β0.

low-pressure, low-velocity region of reversed flow. For aircraft in high-lift configurations, this causes
a detrimental increase in the pressure drag experienced. It is for this reason that turbulent boundary
layers can be preferred in specific industrial applications, as their higher momentum content enables
greater resistance to separation. However, for example, an aircraft wing in cruise conditions would
benefit more from the reduced skin-friction drag that a laminar BL offers. as flying with a turbulent
BL leads to increased energy consumption, costs, and pollution.

Swept Wing Boundary Layer
While the dynamics of the BL over straight aircraft wings can typically be approximated by 2-D flat-
plate flow, the swept wing features a fundamental difference: its inherent three-dimensionality. For the
case of an infinite swept airfoil the incoming freestream velocity can be decomposed into a chordwise
component, orthogonal to the leading edge, and a spanwise component, parallel to the leading edge.
The analysis of an infinite airfoil implies spanwise invariance i.e. flow quantities are independent of the
spanwise coordinate. This further implies that the pressure distribution over a swept airfoil only varies
in the chordwise direction. Combined with an invariant spanwise velocity, this leads to curved inviscid
streamlines over the wing, as depicted in Figure 1.2a.

The streamline curvature subjects the external fluid particles to centrifugal acceleration, which is
balanced by the chordwise pressure gradient. However, the effects of viscosity within the boundary layer
lead to a reduction in the magnitude of the velocity. This creates an imbalance between the pressure
and centrifugal forces in the BL and causes a secondary movement of fluid particles in a direction
orthogonal to the inviscid streamlines [101, 109]. The result is the generation of a crossflow velocity
profile in accelerated (or decelerated) swept boundary layers (Figure 1.2b). While the BL now features
three velocity components, it remains spanwise invariant and is locally only quasi three-dimensional,
allowing for a simplification in its analysis.

The crossflow velocity profile is constrained by the no-slip condition at the wall and the freestream
matching condition outside the BL, where it must also tend to zero. This leads to it attaining its
maximum at some point within the boundary layer, resulting in a point of inflection in the velocity
profile. An important result from inviscid LST is that the presence of an inflection point allows for
the existence of inviscid instability modes, manifesting in a 3-D BL as co-rotating vortices closely
aligned with the external streamlines [104, 101]. The viscous TS instability is suppressed in regions of
accelerated flow while, in contrast, the crossflow velocity profile is strengthened. This in turn enables
stronger amplification of CFI, complicating the use of natural laminar flow (NLF) airfoils in tackling
transition on swept wings.

1.3. Stability of 3-D Boundary Layers
1.3.1. Transition Pathways
Transition to turbulence occurs through the amplification of perturbations to a laminar basic state of
the fluid. The amplification is due to destabilizing mechanisms inherent to this basic state, either invis-
cid or viscous in nature as previously discussed. The disturbances are introduced into the fluid through
a process known as receptivity, where environmental conditions (such as freestream vorticity, or surface
roughness) are translated into disturbances within the laminar basic state [76, 70]. The process through
which these disturbances are amplified can take multiple forms, depending on their initial amplitude and
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Figure 1.3: The various pathways to turbulence, described by Morkovin et. al [77]. Figure adapted from Lucas [68].

shape when introduced into the BL. Reshotko & Tumin [94], Schmid & Henningson [104] discuss these
pathways to transition for wall-bounded shear flows. In most scenarios, the initial growth of distur-
bances is well predicted by modal linear stability theory, where disturbance amplitudes are assumed to
be sufficiently small. However, some flow scenarios exhibit strong initial amplification of disturbances,
bypassing the linear growth regime. For this reason, Morkovin [76] labelled this scenario bypass transi-
tion, where disturbances were amplified despite the prediction of stable, decaying eigenmodes by LST.
The consensus on the mechanisms behind this form of transition is the presence of transient growth, a
short-scale phenomena that leads to the rapid growth of instability [93, 104]. Mathematically, this is
associated to the superposition of non-orthogonal eigenmodes where individually decaying modes can
have a vectorial sum that exhibits growth [104]. The onset of either modal amplification or bypass
transition is heavily dependent on the external disturbance level, with Morkovin et. al [77] proposing a
series of routes through which disturbances are amplified.

• Path A is the traditional transition scenario, and occurs for low-amplitude external disturbance
levels. Here, disturbances introduced into the BL undergo exponential amplification and include
TS waves, crossflow vortices and Görtler instabilities. In CFI-dominated transition, the primary
modes amplify and saturate at amplitudes of approximately 20% of the local freestream velocity
[28, 92, 101], where the secondary instability manifests over a modulated baseflow and breakdown
into turbulence is imminent. The gap between the onset of disturbances through receptivity and
the development of non-linear, secondary instability is much larger than that between the onset
of the secondary instability and breakdown. It is for these scenarios that LST has been able to
sufficiently predict transition for flows with large linear-amplification regimes, through empirical
correlations such as the eN -method [126, 115].

• As external disturbance levels increase, transient growth takes part in the receptivity process.
Here in path B, non-modal mechanisms leads to an initial growth (or decay) of disturbances
that further downstream attain a modal nature, being exponentially amplified. This has been
investigated numerically in 3-D boundary layers by Tempelmann et. al [120] and Kurz & Kloker
[62] who show that non-modal streaks naturally feed into the modal CFI, and also observed in
experiments by Zoppini et. al [139, 136]. Given its significant role in determining the initial
conditions for modal instability onset, a study of this pathway forms part of the scope of this
work.

• Path C represents a scenario where the external disturbance levels are high enough so that modal
growth is overridden by transient amplification. In 2-D boundary layers Klebanoff et. al [57] have
shown that high freestream turbulence levels induce streamwise vortices into the BL that grow
non-modally. These vortices modulate the baseflow, generating regions of high shear and leading
to the early onset of secondary instability mechanisms.

• Similar to path C, path D represents a scenario where transient growth is the dominant growth
mechanism. However, unlike in path C where transition is caused by the secondary instability
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that results from a BL modulated by streaks, a full spectrum of disturbances is now initiated by
non-modal growth [68]. This was observed in 2-D boundary layers by Ergin & White [34] and in
a swept wing BL by Zoppini et. al [136] where both works use an array of high-amplitude DRE
to trigger this pathway. A strong amplification of the steady velocity streaks is seen followed by
the onset of turbulent wedges. Ergin & White [34] also report the rapid amplification of high-
frequency, unsteady disturbances and detail their interaction with the steady velocity streaks in
leading to transition.

• With path E there exists no regime of linear amplification. The large external disturbance levels
lead to a direct breakdown of the BL into turbulence with a questionable notion of laminarity and
transition [68].

Paths A-C are the most relevant transition scenarios for the low-disturbance environments experi-
enced by aircraft in flight. As both modal and non-modal growth pertinent to these scenarios is initially
linear in nature, the following sections discuss the state-of-the-art in LST and its use in the study of
CFI in swept wing boundary layers.

1.3.2. Modal Analysis
The Navier-Stokes equations form the mathematical basis for stability analysis of fluid flows. They are
a non-linear, coupled system of partial differential equations (PDE) derived from conservation laws for
mass and momentum. For low-speed aerodynamic boundary layer flows the effects of temperature are
irrelevant and incompressibility may be assumed, along with Newtonian-fluid behaviour for the action
of viscous stresses. This leads to a simplification of the governing equations, which in dimensional form
are written as:

∇ · q = 0 , (1.2a)
∂q
∂t

+ (q · ∇)q = −1

ρ
∇p+ ν∇2q , (1.2b)

where q is the velocity vector (u, v, w)T in the Cartesian coordinate system, p is the static pressure and
ν = µ/ρ is the kinematic viscosity. The operator ∇ for three-dimensional, Cartesian vector fields is
defined as ( ∂

∂x ,
∂
∂y ,

∂
∂z )

T .
The crux of fluid stability analysis is the decomposition of the flowfield into a baseflow (Q) and a

disturbance field (q′) [104]. The baseflow is computed as a laminar solution to the steady NS equations
and is the known reference state upon which the disturbance field, also a solution of the NS equations,
acts:

q(x, y, z, t) = Q(x, y, z) + q′(x, y, z, t) , (1.3)

where is noted that the baseflow is time-independent. A similar decomposition is also carried out for the
pressure, such that it may be separated into its baseflow (P )1 and disturbance (p′) components. Upon
substitution into the NS equations and subtraction of the governing equations for the baseflow2, the
non-linear disturbance equations are obtained. These equations describe the evolution of the velocity
and pressure disturbances under the action of the baseflow:

∇ · q′ = 0 , (1.4a)
∂q′

∂t
+ (Q · ∇)q′ + (q′ · ∇)Q + (q′ · ∇)q′ = −1

ρ
∇p′ + ν∇2q′ . (1.4b)

The equations 1.4 retain the mathematical complexity of the full NS equations and are simplified further
based on the type of analysis employed. Linear methods make the assumption of an infinitesimal
disturbance field such that q′ ≪ Q and p′ ≪ P . This allows for a linearisation of the disturbance
equations through an order of magnitude analysis, neglecting the higher-order, multiplicative, non-
linear terms. Henningson [47] shows through an integration of equation 1.4 that the main mechanisms
for total disturbance energy growth are contained within its linear terms, and that the instantaneous
total energy growth rates are independent of disturbance amplitude3. Thus the evolution of sufficiently
small, finite-amplitude disturbances can be analysed through the linearised disturbance equations.

1In this context, P denotes the static pressure of the baseflow, contrary to it being used denote the total pressure.
2The subtraction of the governing equations for the baseflow is a valid operation, as it is a solution to the NS equations.
3The reader is referred to Henningson [47] and Schmid & Henningson [104] for a full derivation of these statements.
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Parallel Flows & Local Stability
The parallel flow assumption implies that the baseflow is only dependent on the wall-normal coordinate
and that the vertical velocity V is equal to zero i.e. Q = (U(y), 0,W (y))T . The streamwise and spanwise
baseflow derivatives can then be eliminated from the linearised disturbance equations. The implication
of this is that the flow stability characteristics are determined locally, at each spatial or temporal station,
independent of the flow quantities at neighbouring locations. Neglecting the wall-normal velocity in
the baseflow also suggests that the boundary layer does not grow spatially, as this would violate the
parallel flow assumption.

The Fourier ansatz is introduced for the disturbance quantities; they exhibit wave-like behaviour in
the streamwise and spanwise directions, and have shape functions that are only dependent on the wall-
normal coordinate. This is equivalent to analysing the linearised disturbance equations in Fourier space.
The disturbance velocities (and pressure) may thus be expressed in the form of complex exponentials:

q′(x, y, z, t) = q̃(y)ei(αx+βz−ωt) , (1.5)

where α and β are spatial wavenumbers and ω is the angular frequency. Inserting this ansatz into
the linearised disturbance equations for 3-D parallel flows and re-arranging to eliminate the distur-
bance pressure leads to the classical, fourth-order4 Orr-Sommerfeld (OS) equation [82, 117] and the
inhomogeneous Squire equation [118]:[

(−iω + iαU + iβW )

(
d2

dy2 − (α2 + β2)

)
−
(
iα

d2U

dy2 + iβ
d2W

dy2

)
− 1

Re

(
d2

dy2 − (α2 + β2)

)2
]
ṽ = 0 ,

(1.6a)[
(−iω + iαU + iβW )− 1

Re

(
d2

dy2 − (α2 + β2)

)]
η̃ =

[
iα

dW
dy − iβ

dU
dy

]
ṽ , (1.6b)

where ṽ and η̃ are the wall-normal velocity and vorticity shape functions respectively. The wall-normal
vorticity is representative of the streamwise and spanwise disturbances through:

η̃(y) = iβũ(y)− iαw̃(y) . (1.7)

The equations of 1.6 constitute an eigenvalue problem for the disturbance quantities and can be analysed
through two related frameworks: the temporal approach and the spatial approach. With the former, the
spatial wavenumbers α and β are assumed real and are prescribed quantities while the angular frequency
ω constitutes the complex eigenvalue in the generalized problem. Similarly, in the spatial approach, ω
is assumed real while the eigenvalue problem is solved for the complex spatial wavenumbers and their
corresponding shape functions. The two approaches are related through Gaster’s transformation [39],
however the spatial approach is more frequently used in the analysis of BL flows and is employed in the
current work. This is done as BL flows develop spatially, and instabilities such as stationary CFI are
more appropriately analysed within the spatial framework5. In either case, the growth rate of a distur-
bance is determined through the imaginary components of the eigenvalue spectrum (−αi,−βi,−ωi). In
the 3-D, spanwise-invariant, spatial framework, ω is real and βi = 06, and so growth is contained solely
within αi. An infinitesimal perturbation is locally stable if αi > 0, neutral if αi = 0 and unstable for
αi < 0.

The stability of parallel flows is governed by the existence of eigenmodes with αi < 0. The isoline
representing αi = 0 can be used to demarcate the spatial boundary between unstable and stable regions
for a series of eigenmodes, the so-called neutral stability curve. This is presented in Figure 1.4 for CFI
in a swept BL. The interior of the neutral curve represents the region of instability, where disturbances
in the wavenumber range bounded by it are amplified. The amplitude growth of disturbances between
two streamwise stations, x0 and x, can be computed through an integration of their corresponding αi

4The equations are fourth-order in the wavenumber α.
5The wavenumbers ω and β are typically known a priori for CFI analyses and α is solved for.
6The assumption that βi = 0 was introduced by Mack [71] for an infinite swept airfoil but is not necessarily verified

for general 3-D flows. The reader is referred to Arnal [3] for a discussion on solutions to this problem.
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Figure 1.4: The neutral stability curves for CFI on an accelerated, swept boundary layer. Figure reproduced from
Tempelmann et. al [120].

along horizontal lines in the stability diagram:

1

A

dA
dx = −αi , (1.8a)

ln
(
A

A0

)
= N = −

∫ x

x0

αi(ξ, β, ω)dξ , (1.8b)

whereA andA0 are the amplitudes at x and x0 respectively, andN is the N-factor. Traditional transition
prediction methods such as eN [115, 126] prescribe transition to occur when the most amplified wave
exponentially grows to 7-10 times its initial amplitude i.e. its N-factor increases to a magnitude of
7-10, an empirical threshold that depends heavily on environmental conditions and the onset of non-
linearities7.

Effects of Non-Parallelism
Simen [113], Bertolotti et. al [7], Herbert [48] propose an alternative spatial analysis method that
accounts for non-parallelism in flows such as a developing BL. Here, the Fourier ansatz used to derive
the Orr-Sommerfeld system is modified to allow for a mild dependency of the shape function and
wavenumber α on the streamwise coordinate.

q′(x, y, z, t) = q̃(x, y)eiΘ(x,z,t) , (1.9a)

Θ(x, z, t) =

∫ x

x0

αi(ξ)dξ + βz − ωt , (1.9b)

where q̃(x, y) is a slowly-varying shape function and Θ(x, z, t) is the oscillatory phase function. The
integration of α in the streamwise direction allows for the flow historicity to be accounted for. On
introducing the modified ansatz into the linearised disturbance equations and retaining the streamwise
derivatives of the baseflow, one obtains an elliptic set of PDE for the disturbance velocities and pressure.
Through the slow-varying assumption, an order of magnitude analysis may be carried out to eliminate
higher-order derivatives of q̃ and α such that the governing equations are made parabolic8 [7, 48]. The
resulting system constitutes an initial-boundary value problem for the spatial evolution of modal dis-
turbances, known as the Linear Parabolized Stability Equations, and can be solved through a marching
technique.

The streamwise dependence of both the shape function and phase function introduces ambiguity
into the PSE, in the sense that disturbance growth and oscillation may be captured by either part of
the ansatz. In order to resolve this and maintain slow variation of the shape function, a normalization
condition is introduced (see Herbert[48]) where residual streamwise growth and oscillation in the shape
function are redirected into the complex exponent α(x) in the phase function:∫ ∞

0

q̃H ∂q̃
∂x

dy = 0 , (1.10)

where q̃H is the complex conjugate transpose of q̃. This condition is enforced at each marching station
and minimizes the growth and phase change present in q̃. The integral in equation 1.10 also eliminates

7Arnal [3] and Reed [91] show that linear methods fall short in correlating crossflow-dominated transition.
8However, it is to be noted the pressure gradient term in the equations, ∂p

∂x
, is a source of residual ellipticity. Thus,

the equations are not fully parabolic [66].
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the wall normal dependency of α and implies that the kinetic energy of the shape function varies
minimally between stations.

Tempelmann et. al [120] highlight differences between the neutral stability curves obtained using
local and non-local analyses (Figure 1.4) although the authors note the mild sensitivity of the PSE-
predicted neutral curve to its position of initialization. The PSE have also been extended to account for
non-linear interactions between modes and the baseflow, making them a popular tool for the analysis
of CFI in swept wing boundary layers [46] due to the presence of a large laminar extent of non-linear
saturation [28, 92, 101]. The inclusion of non-linear terms in the governing equations is out of the scope
of this work, as the focus is mainly on transition path B in Figure 1.3, where these terms do not play
role.

Modal Instabilities on Swept Wings
The swept wing BL is host to four modal instability mechanisms that can lead to laminar-turbulent
transition, based on geometrical features and freestream conditions [9, 101, 99].

The first is the familiar Tollmien-Schlichting instability, that takes the form of viscous, streamwise,
travelling waves within the BL. First observed experimentally by Schubauer & Skramstad [107], TS
waves are associated to natural transition in 2-D boundary layers, growing exponentially until they
reach an amplitude of 1% of the local freestream velocity. A secondary instability then develops which
induces various vortical structures that lead to the onset of turbulence. Highly susceptible to the
external pressure gradient, TS waves are damped in accelerated BL flows and typically occur aft of
the mid-chord in swept wings where the adverse pressure gradient leads to their rapid amplification
[128, 120, 99].

Görtler [43] observed the existence of spatially growing, longitudinal vortices with spanwise period-
icity in laminar boundary layers over concave walls. The instability mechanism was found to be inviscid
in nature [89], and caused due to an imbalance between centrifugal forces and the wall-normal pressure
gradient within the BL. The counter-rotating Görtler vortices manifest in regions of concave curvature,
such as the trailing edge of reflex airfoils, and can lead to transition through secondary instabilities
arising from a distortion of the mean velocity profile. They have a limited influence on the transition
process downstream of the leading edge of swept wings, as the convex curvature present acts to stabilize
these vortices9.

The third source of instability on a swept wing can be due to its attachment line, which is represented
by the locus of points of maximum pressure at its leading edge. Unlike in a 2-D airfoil, the flow at
the leading edge of a swept wing does not fully stagnate and features a spanwise freestream velocity
component, parallel to the leading edge. This can lead to a developing boundary layer along the
attachment line that supports the amplification of viscous, modal instabilities that lead to transition
similarly to those in 2-D flat-plate flows [44, 68]. Alternatively, the attachment line can convect turbulent
structures created at a wing-fuselage junction along the span, contaminating the leading edge BL and
resulting in early transition [90, 9]. Pfenninger [84] developed a criterion based on a Reynolds number,
ReAL , associated to the attachment line, where flow configurations with values of ReAL lower than 250
led to a damping of convected turbulent spots. Saric et. al [99] suggest that an appropriate selection of
wing sweep and leading edge design such that ReAL is sub-critical is sufficient to eliminate attachment
line contamination for a broad range of flow conditions.

Finally, the prevalent instability mechanism in accelerated, swept BL flows is the crossflow instability,
introduced in Section 1.2. Due to its relevance in the current work, it will be discussed separately in
the following section.

1.3.3. The Crossflow Instability
Receptivity & Mode Selection
Crossflow instabilities are initiated by the inflectional nature of the crossflow velocity profile [70], as
discussed in Section 1.2. LST predicts that unstable modes manifest as either stationary (ω = 0)
or travelling (ω = 0) waves, although their introduction into the BL is significantly dependant on
environmental conditions, through receptivity [101].

Extensive experimentation was carried out by Bippes, Müller and co-workers at the Deutsches
Zentrum für Luft-und Raumfahrt (DLR) [80, 28, 10] on mode selection in swept boundary layers. They

9For a full review of the Görtler instability, the reader is referred to Saric [103].
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(a) (b)

Figure 1.5: Spatial growth of stationary (ūs) and travelling (urms) CFI for two freestream turbulence intensity levels
(a) Tu = 0.15% (b) Tu = 0.08%. From Dehyle & Bippes [28].

identified the dominant contributors in the transition process for a variety of environmental disturbance
levels. Specifically, Müller [79] experimentally studied the BL on a swept flat-plate for two levels of
freestream turbulence intensity Tu (Figure 1.5). For the higher level (Tu = 0.15%) he observed that
both stationary and travelling modes were excited within the BL and exhibited almost equal growth, in
contrast to analyses with LST which predicted higher growth rates for travelling modes. On lowering
Tu to 0.08%, the stationary modes were seen to be more amplified than travelling modes, saturating at
much larger amplitudes. Dehyle & Bippes [28] conduct follow up experiments on a swept flat-plate and
studied the effect of varying surface roughness in combination with freestream turbulence levels. They
indicate that the stationary CFI are highly sensitive to surface roughness, increasing in amplitude with
rougher configurations and undergoing earlier non-linear amplitude saturation. For a constant Tu and in
the roughness range considered, the travelling modes were seen to be fairly insensitive to the roughness
level and transition was dominated by the stationary modes. Moderately varying Tu only affected
transition indirectly, attenuating the growth of the stationary vortices. It was only above turbulence
levels of 0.2% that the travelling modes were initiated to sufficiently high amplitudes such that they
dominated the transition process. A further increase in Tu was then seen to accelerate transition. Bippes
[10] later emphasized that transition in low-disturbance environments was primarily due to the growth
of the stationary CFI, initiated by surface roughness, while travelling modes only become relevant for
higher freestream turbulence levels.

The role of low-intensity freestream fluctuations (Tu < 0.2%) on crossflow-dominated transition
was investigated by Downs & White [29] at the Texas A&M University (TAMU) through the use of
turbulence screens, along with the effect of surface roughness. Their findings confirm the hypothesis
by Bippes [10] that stationary modes are initiated by surface roughness, while turbulence levels mostly
provide the initial conditions for the onset of travelling modes. Initial stationary disturbance amplitude
was observed to be largely unaffected by freestream turbulence levels less than 0.19%, while the initial
amplitudes of travelling modes were noted to be sensitive to both Tu as well as surface roughness.
An attenuation of the stationary disturbance saturation amplitude was reported for increasing Tu,
coinciding with observations by Dehyle & Bippes [28]. Nonetheless, transition was still seen to be
dominated by stationary CFI for the Tu range tested, although enhanced turbulence levels advanced
the location of transition.

Primary & Secondary Instabilities
As stationary CFI are the initiators of swept BL transition in the low Tu environments characteristic
of free-flight, a detailing of the mechanisms through which they are introduced into BL, amplify, and
break down becomes of interest.

Stability Experiments conducted at the Arizona State University (ASU) by Reibert et. al [92] at-
tempted to characterize the development of stationary CFI over a 45◦ swept wing model, through a
series of hot-wire scans characterizing the BL velocity fields. They make use of a full-span array of 6
µm high DRE, spaced at 12 mm, to trigger the onset of the most unstable stationary CFI mode. The
resulting spanwise uniformity of the disturbance field allowed for an isolated crossflow vortex to be
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Figure 1.6: (a) Streamwise velocity contours obtained using hot-wire anemometry, depicting a BL modulated by sta-
tionary CFI initiated with a 12 mm spaced DRE array. (b) Spanwise array of BL velocity profiles corresponding to the
velocity field in the left figure. Dots indicate the spanwise-averaged velocity profile. Figure reproduced from Reibert et.
al [92].

analysed and meaningful comparisons with numerical predictions to be drawn. The crossflow vortex
produced regions of upwelling and downwelling fluid, transporting low-momentum fluid away from the
wall and high-momentum fluid toward it. For a sufficiently strong vortex, this leads to a distortion of
the mean-flow and apparent rollover of low-momentum fluid, as seen in (Figure 1.6a). This distorted
basic state features a series of spanwise accelerated, decelerated and doubly-inflected velocity profiles
((Figure 1.6b)) that lead to the onset of a secondary instability [59]. The spanwise spectral content
of the stationary CFI is obtained through a Fourier analysis, and amplitudes of the dominant mode
(with wavelength λ1) and its first two harmonics (with smaller wavelengths λ2 and λ3) are computed
through integration of the spectral peaks at each chordwise location. The first harmonic, λ2, is seen to
be measurable as λ1 undergoes non-linear amplitude saturation, which occurs well before the location
of transition. The experimental observations agree excellently with NPSE simulations conducted by
Haynes & Reed [45] for the primary stationary mode. It is also noted that LPSE solutions qualitatively
predict the initial CFI growth, indicating that non-linear effects initially weak.

Further simulations by Haynes & Reed [46] used an NPSE accounting for streamline curvature,
still correlating well with the measurements by Reibert et. al [92]. In particular, the NPSE solution
highlighted that the CFI development is sensitive to curvature effects, hence its inclusion in the NPSE
is required for the numerical results to adequately match experiment. Additionally, convex surfaces
were seen to have a stabilizing effect on the stationary CFI modes.

Serpieri & Kotsonis [111] carried out detailed spatial measurements of the stationary CFI evolution
on a 45◦ swept wing model through highly-resolved, tomographic Particle Image Velocimetry (PIV),
at the Delft University of Technology. Similarly to previous experimental work on stationary CFI, the
most unstable stationary mode was forced through the use of an array of 9 mm spaced DRE, 10 µm
in height. An overview of the disturbance field is obtained through fluorescent oil visualization (Figure
1.7) where uniformly spaced streaks were observed close to the transition front. These develop with
a spanwise periodicity corresponding to the DRE forcing wavelength and are indicative of the non-
linear, mean-flow deformation associated to the stationary CFI. The streaks were also observed to be
slightly inclined with respect to the inviscid streamline, in agreement with LST predictions. The use of
tomographic PIV enabled the measurement of all three velocity components within a 3-D measurement
domain, characterizing the stationary CFI as a series of co-rotating vortices. The disturbance velocity
component aligned with the vortex axis was noted to be nearly two orders of magnitude larger than
the in-plane components. In spite of this relatively weak in-plane motion, it was seen to be effective in
redistributing BL momentum, distorting the mean-flow and leading to the earlier onset of non-linearities
in CFI-dominated transition (Figure 1.8a).

The mean-flow distorted by the stationary CFI becomes susceptible to unsteady secondary insta-
bilities, superimposed on the stationary (primary) modes. Poll [85] first reported the existence of
high-frequency fluctuations over stationary CFI in experiments with the BL on a swept cylinder. Ko-
hama et. al [59] reported similar findings in a swept wing BL with transition caused by the stationary
crossflow modes.
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Figure 1.7: Fluorescent oil visualisation of CFI development and transition over a swept wing. Flow comes from the
right. Bright streaks represent the imprint of the crossflow vortices (high-shear regions) on the wing surface, with the 9
mm spacing corresponding to the most amplified crossflow mode. The grey lines represent the approximate upstream and
downstream bounds of the transition region. Figure reproduced from Serpieri & Kotsonis [111].

Numerical studies by Malik et. al [73] determined the evolution of primary CFI modes using NPSE
simulations, and used a 2-D temporal eigenvalue framework to analyse the secondary instabilities on
the ASU experimental configurations [92]. With an assumption that the secondary instabilities are
of a convective nature, they used Gaster’s transformation [39] to track its modes’ spatial evolution.
The results show good agreement with experimental findings. They presented a classification of the
secondary instability into two main modes: type I and type II. The first is localised around the outer
upwelling region of the primary CFI and is related to a spanwise gradient in the streamwise velocity
component, for which it is commonly labelled as the z−mode. The type I instability is characterized by
higher energy content and lower frequencies. The second mode, type II, is related to the wall-normal
shear in the streamwise velocity (and hence known as the y−mode) and is located on top of the primary
vortices. The type II modes features higher frequencies and lower energy, with respect to the type I
modes. An estimation for the location of transition was made based on the amplification of secondary
instabilities, and correlates well with transition measurements by Reibert et. al [92].

Further numerical research into the secondary CFI was conducted by various authors through DNS
of swept boundary layers [50, 127, 12]. Högberg and Henningson studied the secondary instability in
a swept Falkner-Skan-Cooke (FSC) BL, applying steady forcing of the primary modes and the use of
volume body forcing to randomly excite the secondary instability. They identified the existence of a
third instability mode, labelled type III, when the unsteady excitation was applied at upstream locations.
These modes are located at the bottom of the primary CFI structure, within its inner-upwelling region,
and are characterized by low frequencies. By shifting the volume forcing to more downstream locations,
close to primary mode saturation, the high-frequency type I modes are triggered. These exhibit much
larger growth rates when compared to the type III instability. Wasserman & Kloker [127] visualized the
type I secondary instability as a sequence of convected, co-rotating helicoidal structures that exist on
top of the outer-upwelling region of the primary stationary vortices. Their DNS study also confirmed the
convective nature of the secondary instabilities, as hypothesized in previous theoretical work [52, 58].
In another study [128], they investigated instability evolution in the presence of pressure gradient
changeover and detailed interactions between CFI and destabilized TS waves. A study conducted by
Bonfigli & Kloker [12] uses DNS in combination with secondary linear stability theory (SLST) [73, 58]
to investigate the secondary instabilities. The two techniques show good agreement in the extracted
eigenfunctions and growth rates when their baseflows are tuned to match each other. The type I and
type III instabilities are captured in both methods, however only SLST can predict the amplification
of the type II mode. No destabilization of the type III instability is reported for solely stationary or
travelling primary modes, which is expected as the type III instability is generated by the interaction
between them [50]. The authors also identified the nature of the type I and type II modes to be of the
Kelvin-Helmholtz (KH) type.

A first detailed experimental investigation regarding secondary CFI was carried out by White &
Saric [132] at the ASU unsteady wind tunnel, on their 45◦ swept wing model. They employed hot-wire
anemometry (HWA) to temporally resolve the velocity fluctuations of the secondary instabilities, under



1.4. Roughness-Induced Transition on Swept Wings 13

z (mm)
1890

1.5

3.0

y  (
m

m
)

10–7

10–4

10–1

101 102 103

(a) (b)

Figure 1.8: Chordwise slices of the stationary crossflow vortices (a) Time-averaged streamwise velocity contours (10
levels, from 0 to 1) with vectors representing the in-plane velocity components. (b) Non-dimensionalized spectra of the
velocity fluctuations at secondary instability locations indicated by correspondingly coloured markers in the inset figure:
light grey - type III, dark grey - type II, black - type I. Inset: Time-average velocity field (black lines) and velocity
fluctuation field (greyscale contours). Figure reproduced from Serpieri & Kotsonis [111].

forcing through a DRE array at a freestream Reynolds number of Re= 2.4 × 106. The type I and
type II modes were identified, with their appearance and explosive growth documented as the cause
of turbulent breakdown. The effect of varying Re, freestream turbulence, and acoustic forcing on the
development of the secondary instability was also investigated. Forcing at a DRE wavelength lower
than the most unstable primary mode (sub-critical) led to increased energy within the type I mode,
while the type II mode was seen to dominate for super-critical forcing.

The study conducted by Serpieri & Kotsonis [111] also provides a dedicated experimental description
of the secondary instabilities through bandpass-filtered hot-wire scans of the unsteady velocity field. All
three secondary instability modes are characterized with their pertinent characteristics (Figure 1.8b),
and compare well with previous experimental and numerical observations [50, 127, 12, 132]. Proper
Orthogonal Decomposition (POD) of the velocity fields obtained using tomographic PIV was carried
out in order to examine the spatial organisation of the secondary instability. The higher energy pair
of POD modes is associated to the type III instability that arises from stationary-travelling primary
mode interaction [50, 12] while the lower energy pair corresponds to the high-frequency type I mode.
The most energetic POD mode identified presents structures aligned with the spanwise shear, and is
attributed to a low-frequency oscillation of the stationary crossflow vortices. While the exact source of
the oscillatory behaviour could not be determined, the high energy of the associated POD mode was
amounted to a mean-flow distortion induced by this oscillation.

1.4. Roughness-Induced Transition on Swept Wings
The experiments conducted by Bippes & colleagues [80, 28, 10], discussed in Section 1.3.3, show that
the receptivity and development of stationary CFI in swept BL flows is highly sensitive to surface
roughness. Numerous studies have thus been dedicated to understanding the role of various types of
roughness in conditioning CFI, broadly categorized into 2-D and 3-D elements. The former includes
spanwise-uniform excrescences such as backward and forward facing steps [95], while the latter may be
further sub-categorized into isolated [88, 60, 138], discrete [92, 100, 62, 139] and distributed (random)
roughness elements [19, 30, 32, 112].

1.4.1. Crossflow Instabilities and Surface Roughness
Initial investigations of the effect of naturally-occurring surface roughness on swept wing BL transition
were carried out experimentally by Radeztsky et. al [88]. The experiments were conducted on the 45◦

swept NLF(2)-0415 airfoil in a region of favourable pressure gradient, where transition is dominated by
the crossflow instability. Naphthalene visualization of the flow over a rough painted (3.3 µm rms) surface
finish revealed a jagged, highly local transition front composed of merging turbulent wedges, whose local
characteristics were fixed in the spanwise coordinate. Using a hand-polished (0.1 µm rms) surface finish
instead dramatically shifted the transition front downstream, although it remained topologically similar
to the painted case. An isolated cylindrical element 6 µm in height was placed on top of the polished
surface, close to the neutral point of the most unstable stationary mode, leading to the formation of
a distinct turbulent wedge upstream of the natural transition front. This indicated that one of the
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(a) (b)

Figure 1.9: (a) Spanwise hot-wire scans showing streamwise vortex growth at a constant wall-normal distance for an
isolated roughness element of height 6 µm. (b) Spanwise power spectrum of streamwise velocity from a hot-wire scan.
Reproduced from Radeztsky et. al [88].

main results with roughness receptivity was a modification the initial amplitudes of the stationary CFI.
Accordingly, transition occurred at lower N-factors as compared to a clean case. The spanwise hot-wire
scans were also subjected to spatial spectral analysis, in order to correlate the roughness forcing to the
emergence and development of the dominant crossflow mode (Figure 1.9). Additionally, transition was
found to be unaffected by acoustic disturbances implying that receptivity to freestream fluctuations
[80, 28] is due to turbulence levels.

These findings were further explored in the non-linear CFI saturation experiments undertaken by
Reibert and colleagues [92] at the ASU, on a 45◦ swept airfoil (Section 1.3.3). Although the wing
was polished to a low background roughness level (0.25 µm rms), the BL spectral content was seen to
feature multiple CFI modes developing simultaneously, dominating the transition process. In an effort
to increase the uniformity of the flow-field, an array of micron-size, cylindrical DRE was introduced with
a spacing equal to the wavelength of the primary stationary CFI mode following Radeztsky et. al [88].
This was seen to concentrate the spectral energy into a single monochromatic mode, λ1. The growth
of the λ2 and λ3 harmonics was also measured, although no larger wavelength modes were detected.
Setting the DRE spacing to 3λ1 generated the corresponding fundamental stationary mode, although
significant disturbance energy was now contained within the λ2, λ3 and λ4 harmonics due to non-linear
interactions. Once more, there was no evidence of subharmonic modes i.e. no wavelength doubling.

Saric et. al [100] capitalized on this to develop a LFC technique applicable to CFI-dominated bound-
ary layers. This is defined as sub-critical forcing, utilizing a 6 µm DRE array with a spanwise spacing
two-thirds that of the most amplified CFI mode. The experimental setup used in this study was iden-
tical to that of Reibert et. al [92]. Naphthalene flow visualization shows that the transition front is
delayed to approximately 80% chord, past the pressure minimum and the location of the natural tran-
sition front. In order to gain a more quantitative description of this process, spanwise hot-wire scans
were acquired within the BL at various chord locations. The flowfield was seen to initially be dominated
by CFI corresponding to the λ2/3 forcing. These vortices exhibited amplitude growth up to x/c = 0.5
before undergoing saturation and strong decay, accompanied by a ”washing-out” of the λ2/3 structures.
At locations beyond x/c = 0.6, the CFI spectrum is dominated by broadband energy distributed in the
longer wavelengths. It was concluded that the sub-critically10 forced 8 mm mode inhibited the growth
of the more unstable 9 mm and 12 mm modes up to the point of its decay. Broadband disturbances
initiated by natural roughness present on the model were then amplified and eventually led to transition.

The sub-critical DRE concept has been thoroughly investigated in subsequent studies by Saric and
colleagues, involving variable roughness actuators [131] and a series of flight tests [99, 102], and has
also been generalized into the numerical upstream flow deformation (UFD) technique [127, 74]. Here,
sub-critical ”control” modes are introduced into the BL to stabilize the naturally most amplified modes.
However, the recent in-flight measurements by Saric et. al [102] highlight the high environmental sensi-
tivity of DRE in practical applications; the sub-critical forcing resulted in significantly increased laminar
flow on the swept wing model for only one in thirty flights. It was suggested that a more complete

10In the context of passive flow control using DRE, ”sub-critical” refers to a forcing DRE wavelength less than the most
unstable crossflow mode predicted by LST.
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understanding of the CFI receptivity process was required, through DNS and lower-Re wind tunnel
experiments, to fully characterize the effect of the roughness configuration and freestream turbulence
on transition in this scenario.

1.4.2. Receptivity to Critical DRE
Early work on roughness-receptivity in swept boundary layers includes studies by Crouch [26], Ng &
Crouch [81], Choudhari [21], who developed a parallel-flow framework to analyse receptivity within
a Falkner-Skan-Cooke BL. The method was employed to model the DRE arrays used in the ASU
experiments by Reibert et. al [92] and receptivity predictions seem to compare generally well with
experiment. However, receptivity is over-predicted for forcing wavelengths longer than the most unstable
primary stationary mode, possibly due to non-linear effects. Subsequent studies [8, 23] have shown that
non-parallelism and curvature play a significant role in amplitude-based transition prediction for CFI.
Collis & Lele [23] solve the steady NS equations for a swept, parabolic forebody and use this solution
as the basic state for linearised receptivity computations including surface roughness. They find that
receptivity for the most unstable CFI mode is under-predicted by nearly 77% when non-parallelism is
neglected, with this error being maximum for roughness located near the first neutral point. As such,
it becomes important for numerical methods used in the study of CFI receptivity to DRE to include
non-parallel effects.

The swept wing configuration from the flight-test experiments by Carpenter et. al [18] and Saric
et. al [102] was investigated numerically using DNS and the NPSE, in a study by Rizzetta et. al [96].
The leading-edge region of the experimental wing was approximated by a swept parabolic cylinder,
over which three DRE array types were simulated: cylindrical, square and parabolic bump. The
resulting flowfields were characterized using contours of the disturbance kinetic energy, which show the
development of steady CFI aft of the roughness elements. Spanwise spectral analysis of the DNS fields
was carried out at a location downstream of the roughness elements where modal behaviour is identified,
and reveals that the initial spectral content is highly dependent on the roughness shape. Furthermore,
the initial modal amplitudes at this location are seen to scale non-linearly with roughness heights ranged
between 10 µm to 30 µm. These amplitudes are fed into an NPSE solver as initial conditions and used
to compute CFI growth on two DNS baseflows: the clean parabolic cylinder and the experimental
wing. The NPSE-computed stability for both cases is seen to agree well with DNS predictions for the
cylindrical elements, although the NPSE and DNS results present a better downstream match when
they share an identical baseflow.

Tempelmann et. al [122] at the KTH Royal Institute also conducted DNS of a swept wing boundary
layer subject to forcing by DRE of various height, spacing, and chordwise placement. The geometrical
configuration investigated was identical to the model used in wind tunnel experiments at the ASU
[92, 100, 88]. The study was an effort to implement a roughness-receptivity model into the PSE frame-
work using direct/adjoint optimization. Non-homogenous wall boundary conditions for the disturbance
velocity was used to simulate the effect of surface roughness which is only valid for low-amplitude con-
figurations i.e. for element heights less than 10% of the local displacement thickness [122]. The wind
tunnel tests conducted by Reibert et. al [92] were in agreement with this condition and were hence used
as additional validation for the proposed PSE receptivity model. Preliminary computations of distur-
bance amplitude evolution of the primary stationary CFI mode using the PSE/Adjoint-PSE method
show excellent correspondence with DNS results, and are robust to the PSE initialization location. How-
ever, disturbance amplitudes were predicted to be 40% that of the experimental ones, possibly due to
residual distributed surface roughness. This hypothesis was tested numerically by introducing a wavy
wall upstream of the DREs to simulate natural roughness. The disturbance amplitudes were seen to
be effectively receptive to the presence of this natural roughness. However, given its inherently random
nature in an experimental framework, it was determined to be unlikely that it leads to a seemingly
uniform discrepancy in the modal amplitudes. The authors concluded that the inability of the PSE-
based receptivity model to match the ASU experiments [92] was most likely due to uncertainties in the
location and size of the DREs on the wind tunnel model.

An experimental investigation into the effect of DRE height and chordwise location on CFI-dominated
transition in a swept wing BL was performed by Zoppini et. al [139], at the Delft University of Tech-
nology. A set-up similar to Serpieri & Kotsonis [111] was used with cylindrical DRE arrays spaced at
8 mm, according to the most amplified crossflow mode predicted by LST. The authors characterize the
roughness configuration through two scaling parameters; the ratio of the element height to the local BL
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Figure 1.10: Initial instability amplitude (A0) estimations obtained by matching NPSE simulations with experimental
measurements, plotted against (a) k/δ∗ (b) Rek. Dashed line is a linear fit of the A0 estimated data. The element heights
k1, k2 and k3 are 0.1 mm, 0.2 mm and 0.3 mm respectively and the colormap corresponds to the chordwise DRE location.
Figure reproduced from Zoppini et. al [139].

displacement thickness (k/δ∗) [106, 122], and the roughness Reynolds number Rek = k×|u(k)|
ν [42, 92, 62]

where |u(k)| is the local BL velocity at the roughness height. Through infrared (IR) thermography mea-
surements, a variation of these parameters was correlated with the location of the transition front,
revealing a monotonic dependence on the forcing configuration. Higher amplitude roughness elements
initiated stronger stationary CFI that advanced transition, while moving the arrays downstream post-
poned it. The experiments were complemented with NPSE simulations, from which the initial modal
amplitude is estimated by matching the downstream amplitudes to that of the experiment. While the
overall influence of the DRE on the initial CFI amplitudes is sufficiently captured through these esti-
mations, inconsistencies with regard to a universal scaling law remain. However Rek was seen to be
more representative of modifications to the DRE amplitude, highlighting the importance of including
the local BL momentum as opposed to using the purely geometrical k/δ∗. This is shown in Figure
1.10. Additionally, the flowfield in the direct vicinity of the elements is investigated using planar PIV.
A momentum deficit region surrounded by higher-speed flow is identified behind each element, evolving
into a high and low speed alternating pattern further downstream, as typical of stationary CFI domi-
nated BLs. An estimation of the disturbance amplitudes through spectral analysis of the DRE wake
suggested non-modal mechanisms affected the development of the near-element flow region, although
this hypothesis could not be confirmed due to limited spatial resolution of the experimental measure-
ments. Furthermore, it was seen that the wake is mostly influenced by blockage caused by the elements,
rather than being affected by the local flow stability characteristics. Thus, the link between the physical
DRE and the initial modal instability amplitudes is contained within the dynamics of the near-element
flowfield, the study of which is key in understanding these intermediate steps in the receptivity process.

1.4.3. Near-Element Flow Features
Research into DRE wakes in swept boundary layers is limited due to the small scales and multiple
parameters involved, and has primarily been through the use of DNS [14, 62]. However there exists a
large body of work, both numerical and experimental, dedicated to understanding DRE wake behaviour
in 2-D boundary layers [34, 61, 37, 20]. A majority of these studies characterize the downstream effect
of the DRE array on the BL through the roughness Reynolds number Rek. Forcing configurations that
trigger transition to turbulence in the vicinity of the DRE array are considered super-critical, while those
that lead to the onset of modal instability are termed critical. This allows for a bypass transition limit
based on Rek to be approximately defined, where a changeover in the dominant transitional mechanism
is evident.

Stationary Flow Topology
DNS investigations by Brynjell & Rahkola [14] and Kurz & Kloker [62] provide and in-depth numerical
characterization of the near-element flow topology for an array of cylindrical DRE. Their studies indicate
the presence of a recirculation region and a horseshoe vortex (HSV) system that develop around each
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Figure 1.11: (a, b): Vorticity iso-surfaces (λ−2 criterion) in the vicinity of the roughness element, from DNS by Kurz &
Kloker [62]. The vorticity iso-surfaces are coloured according its sign. (a) HSV system developing around the roughness
element in a swept BL. (b) Evolution of the DRE wake structures into stationary CFI further downstream for critical
DRE amplitudes. (c, d): 3-D dual pulse PTV measurements of streamwise disturbance velocity in the DRE wake, from
Zoppini et. al [139]. (c) Disturbance velocity contours corresponding to a critical DRE amplitude. Inner (—) and outer (- -
-) high-speed streaks, and outer (-.-) low-speed streak. (d) Disturbance velocity contours corresponding to a super-critical
DRE amplitude. High-speed streaks are stronger and merge downstream of the elements (black vertical line).

element in a DRE array. The horseshoe vortex system consists of two pairs of counter-rotating HSV legs:
an outer pair generated upstream of the element possibly due to the roll-up of streamwise BL vorticity,
and an inner pair that originates aft of the element within its re-circulation region. The inner HSV
legs are likely induced by the outer HSV legs through the lift-up mechanism11 [63] by re-distribution
of momentum within the boundary layer. While the flow features in the vicinity of an element are
similar for both 2-D and 3-D boundary layers, the presence of the crossflow velocity component in the
3-D scenario leads to significant differences in the downstream flowfield topology. The symmetry of the
re-circulation region and HSV system typical of 2-D BL flows is lost in 3-D, where the preferred sense
of rotation is dictated by the crossflow velocity component. Structures co-rotating with the crossflow
are sustained while those that are counter-rotating are damped [62], leading to the retention of only
one HSV leg within each of the two HSV pairs. For a critical Rek, the sustained HSV legs are amplified
and evolve into a stationary CFI further downstream. This is depicted in Figure 1.11. A super-critical
forcing leads to a stronger re-circulation region aft of each element, amplifying unsteady disturbances
initiated by element shedding to non-linear levels and leading to the development of turbulent wedges
in the elements vicinity [14, 62].

The steady near-element features were experimentally described by Zoppini et. al [136], whose
findings are in good agreement with previous DNS investigations [14, 62]. They conducted DRE wake
measurements for critical and super-critical forcing configurations using tomographic particle tracking
velocimetry (PTV). Contours of the streamwise velocity disturbances presented in Figure 1.11 show
streaky structures forming in the vicinity of the element as a result of the developing HSV system.
Both low- and high-speed streaks identified in the DRE wake first amplify before decaying further
downstream. Spectral analysis is used to infer the BL content, allowing for an estimation of amplitude
evolution of the individual spanwise Fourier modes. The total disturbance energy aft of the elements
remains nearly constant, while that associated to the dominant CFI mode is seen to rapidly decay
in this region. On the contrary, the first three harmonics of the dominant mode follow an opposing
trend, first exhibiting algebraic growth followed by exponential decay. The individual Fourier mode

11The details of which are elaborated on in Section 1.5.2.
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(a) (b)

Figure 1.12: Streamwise evolution of disturbance energy aft of a DRE array in a Blasius boundary layer, for varying
Rek. (a) Steady disturbance energy evolution. (b) Unsteady energy contained in a frequency band centred around 650
Hz. Figure from Ergin & White [34].
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Figure 1.13: The wake of an isolated roughness element in a swept wing BL. Standard deviation contours of velocity
acquired within y − z planes using HWA are shown. Mean velocity isolines plotted every 20% of the freestream velocity.
White dashed line indicates the wall-normal location of the BL velocity profile inflection points across the element wake.
Maximum fluctuation locations on the top (+) and side (X) of the element are indicated. Figure reproduced from Zoppini
et. al [138].

behaviour indicates the presence of non-modal mechanisms in the near-element flow region. Specifically,
a comparison of the experimental energy with a model defined by White et. al [133] clearly indicates
that transient growth is the dominant mechanism in the near-element flowfield. For critical DRE
amplitudes, the streaks evolve into CFI downstream whose initial amplitudes are conditioned by the
non-modal processes occurring in the DRE wake. The super-critical case features stronger high-speed
streaks that merge shortly downstream of the elements location [62, 136]. This behaviour is strongly
comparable to the flowfield pertaining to isolated roughness elements in 2-D and 3-D boundary layers
[56, 61, 138]. The streaks merging is associated to the enhancement of the unsteadiness pertaining to
the DRE wake region, eventually leading to the onset of turbulent wedges. The amplification of these
unsteady disturbances plays a vital role in driving turbulent breakdown, however, a full characterization
of their behaviour was not possible due to the lacking temporal resolution of the PTV measurements.

Unsteady Disturbances
While there exists no specific work detailing the spectrum of unsteady instabilities initiated by DREs in
swept wing boundary layers, numerous investigations characterize their behavior in flat-plate boundary
layers. Ergin & White [34] investigate DRE-induced velocity streaks in 2-D Blasius flow, using spanwise
hot-wire scans. They estimate the disturbance energy corresponding to the stationary streaks, as well
as the spatially-integrated unsteady energy contained within frequency bands centred around 650 Hz
and 1300 Hz. Two competing mechanisms are identified: the rapid relaxation of the steady disturbance
energy in the baseflow, and the growth of unsteady fluctuation energy (Figure 1.12). Specifically, for
a critical forcing, the stationary streaks developing in the element wake stabilize before the unsteady
disturbances grow to non-linear amplitudes. This leads to a stable baseflow in which the unsteady
fluctuations decay without causing transition. However, for super-critical cases, the stronger element
wakes and shear-layers lead to an explosive growth of unsteady fluctuations. This is coupled with a
longer streamwise extent of the unstable baseflow, allowing for non-linear effects to set in and rapidly
trigger turbulent breakdown. Furthermore, the authors postulate that the mechanism behind unsteady
DRE-wake disturbances is of the KH-type, as opposed to hairpin vortices. This is drawn from the
correlation between the spatial organisation of the unsteady fluctuations and local inflection points
in the wall-normal and spanwise velocity profiles, as well as the dependence of unsteady disturbance
growth on the Reynolds number.
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t = 0 t > 0

Figure 1.14: An illustration of transient growth using non-orthogonal basis vectors. The vector f is the sum of the
eigenvectors Φ1 and Φ2, and strongly increases in length while both Φ1 and Φ2 decrease, albeit at different rates. Figure
adapted from Schmid & Henningson [104].

A recent study by Zoppini et. al [138] involves the characterization of a high-amplitude isolated
roughness element in a swept wing BL, through hot-wire measurements. The stationary flow features
observed include the high and low-speed streaks developing in the element vicinity, comparably to pre-
vious numerical and experimental observations with roughness arrays [14, 62, 136]. The near-element
flowfield is influenced by the presence of the crossflow velocity profile and loses its symmetry as it devel-
ops downstream. An analysis of the unsteady HWA velocity signals shows regions of high fluctuation
intensity located on the top and sides of the element, corresponding to inflection points in the velocity
profiles (Figure 1.13). In the element vicinity these fluctuations are seen to exhibit tonal behaviour,
peak Strouhal numbers corresponding to the shedding ranges identified by Klebanoff et. al (0.18 - 0.25)
[56]. The intensity of the frequency peaks is also seen to monotonically increase with Rek. The un-
steady disturbance spectrum attains a broadband nature further downstream, as the regions of high
fluctuation intensity coalesce into a turbulent wedge.

The non-modal nature of disturbances in DRE wakes has been well established through these in-
vestigations, however, the large body of work on CFI and DRE has been developed within a modal
framework i.e. exponential growth of unstable eigensolutions to the linear stability problem. The follow-
ing section aims to detail the physics behind non-modally growing disturbances, in order to elucidate
the correlation between the flow topology identified aft of DRE and the onset of primary stationary
CFI.

1.5. Non-Modal Growth
LST has traditionally been used to identify the critical parameters for which infinitesimal perturbations
are amplified in the baseflow, such as the Reynolds number. For values of Re lower than the critical value,
all eigenmodes are predicted to be damped and the flow is considered stable. There however exist certain
shear flows for which modal LST fails to explain experimental observations. In plane Poisueille flow, the
critical Reynolds number according to eigenvalue predictions is well known to be 5772 [104] although
transition can also be observed at Reynolds numbers as low as 1000. Similar findings exist for laminar
Couette flow, which undergoes transition to turbulence despite being predicted to be unconditionally
unstable by linear theory. These anomalies in experimental settings have long been associated to non-
linearities not represented by LST. However, as discussed in Section 1.3.2, Henningson [47] shows that
the growth mechanisms in the non-linear disturbance equations are contained exclusively within its
linear terms. The non-linear terms are conservative in nature and act only to redistribute disturbance
energy. It was thus concluded that a non-modal linear mechanism, independent of the presence of
unstable eigenmodes, is responsible for disturbance growth in flow scenarios that are stable according
to modal LST solutions.

1.5.1. Non-Normal Operators
Schmid & Henningson [104] study a model problem using the OS/Squire system (equation 1.6) for
the evolution of a disturbance in a viscous fluid. They showed that while the eigenmodes of the
system are stable and exponentially decay, a solution to the initial value-problem can exhibit algebraic
amplification for short distances or times. This is possible when the associated set of eigenfunctions
are non-orthogonal to each other, being solutions of a non-normal operator [125, 124]. Even if the
individual, non-orthogonal eigenmodes undergo exponential decay, their superposition can exhibit an
initial, transient growth before exponentially decaying according to the largest eigenfunction component.
This is illustrated vectorially in Figure 1.14.

The non-normality of the linearised NS operator for small perturbations (L) has been discussed by
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Figure 1.15: Transient disturbance energy growth in plane Poisueille flow for Re=1000 and α = 1, reproduced from
Schmid [105]. (a) Temporal evolution of normalised disturbance energy G(t). Coloured lines illustrate the connection
between the spectral variables presented in (b) and the temporal energy growth. (b) Spectral characteristics of the stability
operator. Blue dots are the discrete eigenvalues. The red line and red dot indicate the numerical range and numerical
abscissa respectively. The ϵ−pseudospectrum is represented by contours of the resolvent norm (blue lines), and the black
dot marks the location of the Kriess constant.

Trefethen [125, 124], Schmid & Henningson [104] and Schmid [105] among others. They consider the
temporal initial value problem and find that the maximum disturbance energy growth rate for very
short times (t = 0+) is given by the largest eigenvalue (λmax) of (L + L∗), where L∗ is the adjoint
operator. This eigenvalue is known as the numerical abscissa and coincides with the maximum real
part of the numerical range of (L+L∗). A positive λmax indicates that the numerical range extends into
the unstable part of the complex ω−plane and that transient growth can be expected for short times.
Trefethen [125, 124] introduces the ϵ−pseudospectrum of an operator A to measure the sensitivity of
its eigenvalues to perturbations, with non-normal operators featuring highly sensitive eigenvalues. The
resolvent norm of the operator (

∥∥(zI −A)−1
∥∥), where z ∈ C, is used to define the ϵ−pseudospectrum

as the parametrised set in the complex plane where:∥∥(zI −A)−1
∥∥ ≥ 1/ϵ (1.11)

For ϵ = 0, the spectrum of the operator A is retrieved12, while ϵ−pseudospectra contours for ϵ > 0
are bounded by the curve where the resolvent norm is equal to ϵ−1. A lower bound for the maximum
attainable transient growth in time can be estimated through measuring the extent of the resolvent
norm curves into the unstable domain, represented by the Kreiss constant κ [123]. An analysis of
transient growth in plane Poisueille flow for Re= 1000 is presented by Schmid [105] and is depicted in
Figure 1.15. The blue dots represent the eigenvalues of the operator and indicate modal stability for
t ≫ 0. The red line representing the numerical range is seen to extend into the unstable region of the
ω−plane indicating that transient growth can occur for short times. The maximum initial growth rate
is dictated by the numerical abscissa (red dot). The location of the Kreiss constant is marked by the
black dot in the ϵ−pseudospectrum curves (blue lines), corresponding to the energy amplification peak
for intermediate times.

1.5.2. Transient Growth Mechanisms
The spectral analysis of non-normal operators details the extent to which they may be able to support
non-modal growth. However, the physical mechanisms behind which disturbances may be transiently
amplified are not immediately revealed.

Early experimental work into transient growth in BL flows was by presented Ellingsen & Palm [33],
who observed that low-amplitude, longitudinal vortices grow linearly in time when introduced into a
2-D BL. The vortices lead to the formation of a series of spanwise-alternating low and high velocity
streaks that elongate in the streamwise direction. Landahl [63] proposed a physical explanation for
the formation of these streaks: the wall-normal and spanwise disturbance velocities associated with
the longitudinal vortices interact with the BL shear, causing a redistribution of streamwise momentum.

12As per the definition of the eigenvalue spectrum, |A − λI| = 0. A bounded inverse of (zI −A)−1 thus does not exist,
and the resolvent norm is infinite.
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Figure 1.16: Physical mechanisms for transient growth, reproduced from Lucas [68]. (a) The lift-up effect and the (b)
The Orr mechanism.

Low-momentum fluid close to the wall is lifted up away from it and high-momentum fluid at the edge
of the BL is advected downward, toward the wall. The displaced fluid particles initially retain their
streamwise momentum and manifest as perturbations in the streamwise BL velocity component. This
process is referred to as the lift-up effect and is illustrated in Figure 1.16a. Numerous experiments by
Klebanoff et. al [57, 55] report the presence of velocity streaks in Blasius boundary layers influenced
by freestream turbulence, and highlight their significance in the occurrence of non-modal disturbance
growth. Kendall [53] labels these streaks Klebanoff modes and shows that they are created as a result
of the BL entraining freestream fluctuations and filtering out the high-frequency components.

An additional physical mechanism for transient growth was highlighted by Butler & Farrell [15]
in shear flows, where a disturbance could extract energy from the baseflow through the action of a
perturbation Reynolds stress. This is known as the Orr mechanism [82], depicted in Figure 1.16b.
Disturbances tilted against the mean shear of the baseflow can borrow energy via the Reynolds stress
production term

∫
−uvUydy, where uv is the Reynolds shear stress produced by the streamwise and wall-

normal perturbations and Uy is the wall-normal gradient of the streamwise baseflow velocity component.
The tilted disturbances first grow while being rotated towards an upright position, and then begin to
lose energy to the baseflow as they align with the mean shear. Growth due to the Orr mechanism is
weak in Blasius boundary layers when compared to the lift-up effect [120], but Åkervik et. al [140] note
that it is responsible in optimally exciting TS waves. However, these two effects are often concurrent
in 3D BLs [25, 13].

1.5.3. Numerical Non-Modal Stability
A popular approach to computing transient disturbance growth in shear flows has been through solv-
ing the linearised NS equations as an optimization problem. This allows for the definition of initial
conditions that lead to the maximum amplification of disturbance kinetic energy within a given math-
ematical framework, labelled optimal perturbations by Farrell [36]. Non-modal growth associated to
these disturbances is then defined as optimal growth.

Preliminary work on optimal growth in 3-D boundary layers was carried out by Breuer & Kuraishi
[13], who used the temporal approach and showed that these boundary layers significantly support
transient growth for various combinations of Re, spanwise wavenumber, sweep angle and pressure gra-
dient. This was followed by investigations by Corbett & Bottaro [25], also using the temporal approach,
who computed the characteristic of optimal perturbations in FSC boundary layers. They found that
both modally and non-modally amplified disturbances are of similar structure, and that the optimal
perturbations are initially vortices closely aligned with the external streamline that evolve into streaks
further downstream. This is in contrast to non-modal growth in 2-D boundary layers, where the main
modal instability mechanism (TS waves) bears no resemblance to the non-modal Klebanoff modes.
Based on comparisons between the algebraic growth exhibited by the optimal perturbations and expo-
nential growth of the LST-predicted, unstable crossflow modes, the authors conclude that the former
complements the latter and acts to provide the initial conditions for modal amplification.

Pralits et. al [86] propose the use of a spatial approach to compute optimal perturbations in quasi
3-D boundary layers. Their approach allows for transiently growing disturbances to develop between
regions sub-critical and super-critical to modal instability, which could not be predicted within the
temporal framework. They describe a single-mode spatial approach, and one using the Parabolized
Stability Equations, with the latter being comprehensively investigated by Byström [16].

The PSE are derived using alternative scaling arguments for its terms, proposed by Levin & Hen-
ningson [65], such that they are able to capture algebraic disturbance growth. Byström [16] then makes
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Figure 1.17: (a) Flow over an infinite flat plate with sweep angle Λ representing the PSE coordinate system (xϕ, zϕ)

used by Byström [16]. The wave vector (α, β)T is also shown. Reproduced from Lucas [68]. (b) Vectors of the optimal
perturbation (upper) and contours of its downstream development (lower), projected onto the crossflow plane. Dark and
light contour lines represent positive and negative streamwise disturbance velocities respectively. From Byström [16].

the assumption that the spatial evolution of the disturbances follows the external streamline, and for-
mulates the problem in a non-orthogonal coordinate system aligned with them. This leads to a zero
streamwise wavenumber α and reduces the problem to a two-dimensional flow in the streamwise coordi-
nate. However, this assumption is seen to introduce cumulative integration errors into the disturbance
growth computation, as the disturbance path deviates slightly from the external streamline. Byström
[16] defines a streakline that follows the trajectory of the maximum of the disturbance velocity through
space, determined through an iterative process. A direct/adjoint optimisation technique is used to
compute the optimal disturbance growth, which is in turn used to update the streakline. The process is
re-iterated until both the growth and the streakline converge. This methodology is applied to a FSC BL
with a 45◦ sweep, for Hartree acceleration parameters of βH = 0.1 (accelerated flow) and βH = −0.05
(decelerated flow), depicted in Figure 1.17. The optimal perturbations are seen to be asymmetrical,
counter-rotating vortices that are tilted against the mean crossflow shear, and are noted to evolve into
exponential CFI modes at some downstream location. Similar to the temporal findings by Corbett &
Bottaro [25], the conclusion is made that both modal and non-modal growth in swept BL flows produce
disturbances of similar structure.

Tempelmann et. al [120] adapt the PSE framework described by Byström [16] for use in a Cartesian
coordinate system. They modify the PSE ansatz (equation 1.9) to enforce a real streamwise wave
number α, such that all growth is absorbed by the shape function q̃(x, y). This is important, as the
decoupling of growth for the individual disturbance velocity components is a key feature of non-modal
disturbance evolution. The wavenumber α is iteratively determined through the lines of constant phase
of the velocity component containing the maximum disturbance energy, similar to the streakline concept
proposed by Byström [16]. The authors note that the modified framework is limited to perturbations
exhibiting only moderate streamwise amplification, due to the slow-varying assumption required for
parabolization of the disturbance equations. Spatial optimal growth in accelerated and decelerated
FSC boundary layers is computed for a wide range of parameters, once again through a direct/adjoint
optimization technique. The physical mechanism for non-modal growth in swept boundary layers was
determined to be a combination of both the lift-up effect and the Orr mechanism, with the initial vortices
smoothly evolving into stationary CFI at downstream locations. The initial transient amplification of
modal instabilities was seen to be larger for smaller sweep angles, and for disturbances initiated close
to the region of neutral stability. A method for global optimization is also developed, by combining
the adjoint-based technique with a Newton search line algorithm, to find the maximally amplified
disturbances for all β and ω. As opposed to 2-D boundary layers, the global optimal disturbances are
non-stationary and are 2-3 orders of magnitude more amplified than super-critical modal disturbances13.

13In the context of accelerated FSC boundary layers. For negative Hartree parameters βH , the TS wave is the globally
optimal disturbance but is unable to be predicted by the proposed spatial framework.
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The results presented in these numerical studies highlight the large extent to which non-modal
growth can occur in swept boundary layers, effectively conditioning the onset and downstream devel-
opment of CFI or leading to transitional scenarios. The optimal perturbations computed are expected
to be similar in shape to disturbances introduced by roughness or freestream turbulence [120, 133],
implying that non-modal growth in the vicinity of roughness elements [62, 136] can be modelled within
a numerical framework.

1.6. Discussion & Research Gap
It is evident that DRE are effective initiators of stationary CFI in swept wing boundary layers [92, 100,
139]. However, the complex relationship between the DRE wake and the onset of BL instability is still
not fully understood. Based on the literature discussed, this correlation appears to strongly depend on
the physics of the near-DRE flow.

Previous investigations have shown that the DRE wake is highly non-modal and dominated by
algebraic instability growth [62, 136]. However, the studies that describe these features are limited
to computationally expensive DNS and wind tunnel tests involving hardly measurable scales. While
more efficient numerical methods such as the PSE have been widely used to predict linear and non-
linear modal instability evolution, no attempt has been made in simulating the stationary DRE wake
structure within a comparably efficient, non-modal stability framework. Studies by Byström [16] and
Tempelmann et. al [120] modify the classical, modal PSE to account for transient growth, but employ
their methodology in the context of computing the optimal perturbations for swept boundary layers.

Additionally, Zoppini et. al [136] note that the behaviour of the steady wake features provides only
a partial description of the initial stages of the DRE-receptivity process. Unsteady fluctuations also
play a key role in the evolution of total and modal disturbance energy for high-amplitude DRE arrays,
interacting with the steady structures to initiate either the modal crossflow instability or turbulent
breakdown [34, 138, 139]. These mechanisms have been characterized in 2-D BL flows featuring DRE
[34]; however a detailed experimental description of the unsteady near-element flowfield in swept wing
boundary layers is absent.
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1.7. Research Questions & Outline
A review of the latest advancements in swept wing boundary layer transition has been presented in the
previous sections, along with the identification of gaps in the state-of-the-art. Based on the outlined
considerations, the research questions that define this thesis work can be formulated:

How does the wake of an array of discrete roughness elements condition the onset of
instability in a swept wing boundary layer dominated by crossflow instability?

1. How accurately can the growth of stationary instabilities in the near-element flowfield
be represented in a linear, parabolized stability framework?

(a) How can a linearised parabolic non-modal framework be derived from the NS equations to
describe the evolution of DRE wakes?

(b) To what extent do the assumptions of this framework limit the modelling of non-modal
growth in the DRE wake?

2. How can the structure of an experimentally measured DRE wake be used to initialize
a numerical, linear, non-modal stability solution?

(a) How well do the predicted stability characteristics compare with experimental findings in
literature?

(b) How robust is the numerical solution to variations in the initial condition?

(c) How well do analytic approximations model perturbations induced by the DRE wake?

3. What role do unsteady fluctuations developing in the DRE wake play in the onset of
BL instability?

(a) How are unsteady fluctuations in the DRE wake spatially organized? Can their spatial and
spectral characteristics be associated to those of known instability types?

(b) How do unsteady DRE-wake fluctuations affect the main mechanisms driving CFI receptivity
to critical DRE configurations?

(c) Through what mechanism can unsteady DRE-wake fluctuations lead to turbulent breakdown
for super-critical DRE forcing?

The first and second sub-questions are directed toward the development of an efficient numerical
framework capable of simulating disturbance growth in the vicinity of the DRE array, and its use in
further understanding stationary CFI receptivity in swept wing boundary layers. The third sub-question
addresses the experimental characterization of unsteady disturbances not represented in the numerical
framework, and aims to identify their role in the DRE-receptivity process through HWA measurements
conducted at the TU Delft low-speed facility.

In order to answer these questions, the remainder of this work is structured as follows: Chapter 2
discusses the governing equations used in the modelling of non-modal growth and their implementation
into a numerical framework. A validation study for the developed tools is also presented. This is followed
by a description of the experimental facility and test matrix, as well as the various measurement and
post-processing techniques employed (Chapter 3). The stationary flow topology of the DRE wake
is discussed in Chapter 4, and the results of simulations with initial conditions derived from it are
presented. Chapter 5 outlines the experimental measurements of DRE-wake disturbances and details
their spatial and temporal organisation, as well as the evolution of disturbance energy for critical and
super-critical forcing configurations. Finally, Chapter 6 closes this thesis with a summary of its main
findings, the conclusions drawn from them and recommendations for future work.
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Numerical Methodology

2.1. Boundary Layer Baseflow
The study of fluid stability most commonly involves the decomposition represented by equation 1.3,
where the solution to the NS equations is split into a baseflow, Q, and disturbance field, q′. If both Q
and q′ are themselves solutions to the NS equations, the equations can also be split into two separate sets
governing Q and q′ respectively (see Section 1.3.2). The equations for the baseflow can be independently
solved for its velocity components and pressure, which then comprise the laminar reference state upon
which the disturbance equations 1.4 are solved. The advantage here is that the baseflow and disturbance
equations can be independently treated with simplifications, based on the specific flow configuration
and type of analysis employed. This reduces the complexity in their numerical solution, in turn reducing
the computational effort required as compared to conducting DNS of the full NS equations.

With regard to the baseflow, one such instance of this is in the analysis of high Reynolds number,
wall-bounded flows. The NS equations in these cases can be simplified into Prandtl’s BLE [87], through
the use of scaling arguments to eliminate its higher-order terms. Although solutions of the BLE are
approximations of solutions to the steady NS equations, they remain valid representations of the flowfield
for non-separated boundary layers. For incompressible, 3-D, Newtonian flows, the BLE can be written
as follows:

∂U

∂x
+
∂V

∂y
+
∂W

∂z
= 0 , (2.1a)

U
∂U

∂x
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∂x
+W∞
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∂2U

∂y2
, (2.1b)
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∂W∞

∂x
+W∞

∂W∞

∂z
+ ν

∂2W

∂y2
, (2.1c)

subject to the boundary conditions (BC):

U = V =W = 0, y = 0 , (2.2a)
U → U∞, W →W∞, y → ∞ , (2.2b)

where U, V,W are the baseflow velocity components in a body-fitted coordinate system with x, y, z as the
streamwise, wall-normal and spanwise coordinates respectively. The velocity components U∞ and W∞
correspond to the external, inviscid flowfield and are representative of the external pressure gradient. A
feature of the BLE is the elimination of the static pressure as an unknown from the system of equations.
Instead, the external pressure distribution is impinged onto the BL through the y−momentum equation,
∂p/∂y = 0 [134]. Thus, the static pressure is constant within the BL in the wall-normal direction, equal
to its corresponding magnitude in the freestream. Additionally, the BLE do not feature second-order
spatial derivatives in the streamwise and spanwise coordinates, making them parabolic i.e. information
propagation is one-way with the solution locally dependant on only its upstream state. This allows for
them to be numerically solved using a more computationally-efficient spatial marching scheme.
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Figure 2.1: Schematic of an infinite swept flat-plate with coordinate systems aligned with the leading edge (x, z) and
inviscid streamline (xS , zS). The sweep angle is denoted by Λ.

It is also of interest to mathematically define the BL displacement thickness, δ∗, and momentum
thickness, δθ. The former physically represents the vertical displacement of the inviscid external stream-
lines due to the presence of the viscous BL, and is defined through mass conservation. The latter is
representative of the shear stress exerted by the BL fluid flow on the wall and is defined through mo-
mentum conservation. Both δ∗ and δθ will be used as a quantities for non-dimensionalization and
comparison later in this work and are defined as:

δ∗ =

∫ ∞

0

(
1− U

U∞

)
dy , (2.3a)

δθ =

∫ ∞

0

U

U∞

(
1− U

U∞

)
dy . (2.3b)

Falkner-Skan-Cooke BL
Given an arbitrary external flow configuration, the equations 2.1 can be numerically solved for the
corresponding BL velocity components. However, there exists a class of external flows for which the
spatially developing BL is self-similar i.e. its velocity profiles at various streamwise stations can be
related to each other through a fixed scaling.

Consider the Cartesian coordinate system in equation 2.1 to be representative of an infinite, swept
flat-plate (Figure 2.1). The chordwise coordinate, x, is oriented orthogonal to the leading edge of the
plate, while the spanwise coordinate is parallel to it. The vertical coordinate, y, is normal to the surface
of the flat-plate. The spanwise invariant nature of the flowfield implies that W∞ is constant and also
allows for the spanwise derivatives in 2.1 to be eliminated, reducing the equations to:

∂U

∂x
+
∂V

∂y
= 0 , (2.4a)

U
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∂2U

∂y2
, (2.4b)

U
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+ V

∂W

∂y
= ν

∂2W

∂y2
, (2.4c)

where it is interesting to note that spanwise invariance results in a de-coupling of the z−momentum
equation from the system. This makes the problem quasi 3-D as the equations 2.4a and 2.4b can be
solved independently from equation 2.4c, which itself is now linear. Falkner & Skan [35] show that self-
similar solutions to the equations 2.4 exist for external flows that follow a power law in the chordwise
direction:

U∞(x) = Uref

(
x

xref

)m

, (2.5)

with Uref and xref as reference scales for velocity and length respectively, and m being the Falkner-Skan
(FS) acceleration parameter. Introducing the similarity coordinate η:

η = y

√
m+ 1

2

U∞

νx
, (2.6)
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and the stream function ψ:

ψ = f(η)

√
2

m+ 1
U∞νx , (2.7)

such that U = ∂ψ/∂y and V = − ∂ψ/∂x , with f being some function of η. Furthermore, making the
assumption that W = W∞g(η) for some other function g(η), the spanwise invariant BLE in equation
2.4 can be transformed such that they are solely dependent on the similarity coordinate η. This reduces
the system of PDE into a set of two de-coupled, ordinary differential equations (ODE):

d3f

dη3 + f
d2f

dη2 + βH

(
1−

(
df
dη

)2
)

= 0 , (2.8a)

d2g

dη2 + f
dg
dη = 0 , (2.8b)

subject to transformed boundary conditions:

f =
df
dη = g = 0, η = 0 , (2.9a)

df
dη → 1, g → 1, η → ∞ . (2.9b)

The equations 2.8 and 2.9 are known as the Falkner-Skan-Cooke equations [24] and describe a self-
similar, spanwise invariant BL. The Hartree parameter βH = 2m/(m + 1) in equation 2.8 represents
the influence of the external pressure gradient. Positive and negative values of βH are indicative of
accelerating and decelerating BLs respectively, while 3-D Blasius flow is retrieved for βH = 0. The BL
velocity components can be obtained from the self-similar FSC solution as follows:

U = U∞
df
dη , (2.10a)

V = −1

2

√
2

m+ 1

U∞ν

x

(
(m+ 1)f + (m− 1)η

df
dη

)
. (2.10b)

W =W∞g (2.10c)

The displacement thickness in equation 2.3a can be computed for a FSC BL through:

δ∗ =

√
2νx

(m+ 1)U∞

∫ ∞

0

(
1− df

dη

)
dη . (2.11)

Baseflow Computation
The FSC equations are used to generate baseflows that act as prototype swept wing BLs for 3-D stability
analyses. Their characteristics are largely determined by βH and may be easily manipulated for use
in parametric studies. General conclusions on 3-D BL stability can be drawn from analyses on FSC
baseflows and have been featured in work by Högberg & Henningson [50], Schrader et. al [106] and
Tempelmann et. al [120] among others. The advantage with solving the FSC equations as opposed to
the BLE in equation 2.4 is that they are ODE, where the BL baseflow profiles are only a function of η.
The numerical problem is reduced to only one spatial dimension i.e. the wall-normal coordinate, and the
self-similar solution can then be analytically scaled as per equations 2.10 for the chordwise development
of the BL. For BL baseflows that do exhibit self-similarity, this semi-analytic nature offered by the FSC
equations is rather convenient. In addition to allowing for exact computation of the BL parameters and
growth, the chordwise discretization errors encountered when solving the BLE are eliminated.

The equations 2.8 are solved for f and df/dη using an in-house solver, based on a second-order,
finite difference approach. The baseflow velocity components are then computed according to equation
2.10 on a highly-refined grid within a given computational domain, and interpolated onto the numerical
grid used for stability analyses. A sample computation of the FSC BL profiles is presented in Figure
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Figure 2.2: FSC BL velocity profiles for m = 0.1 with a sweep angle of 45◦, at x = xref. Coordinate system aligned
with (a) the leading edge of the flat-plate and (b) the external streamline. Streamwise (red) and crossflow (blue) velocity
profiles with the wall-shear line (- - -).

2.2a. The wall-tangential profiles can be projected onto a plane aligned with the external streamline
through:

(
US

WS

)
=

(
cosϕS sinϕS
− sinϕS cosϕS

)(
U
W

)
, (2.12)

where US and WS are the streamwise and crossflow velocity components respectively, and ϕS is the angle
between the streamwise and chordwise coordinates. Figure 2.2b depicts the streamwise and crossflow
profiles in the projected coordinate system.

2.2. Non-Modal Parabolized Stability Equations
2.2.1. Governing Equations
A starting point for the derivation of a non-modal, parabolized stability framework is with the non-linear
disturbance equations 1.4 in Section 1.3.2. These were obtained by introducing the decomposition 1.3
into the incompressible NS equations and subtracting the equations for the baseflow. As the mechanisms
for transient growth are linear in nature [104], a linearization of the equations 1.4 can be carried out.
This is done through the assumption that disturbances are of infinitesimally small amplitudes, such
that:

q′ ≪ Q , (2.13a)
p′ ≪ P . (2.13b)

The multiplication of small quantities of O(ϵ), where ϵ≪ 1, results in products of an even lower order
of magnitude, namely O(ϵ2). For the equations 1.4, this means that the non-linear, multiplicative terms
for the disturbance velocities can be neglected. The resulting linear system is then given by:

∇ · q′ = 0 , (2.14a)
∂q′

∂t
+ (Q · ∇)q′ + (q′ · ∇)Q = −1

ρ
∇p′ + ν∇2q′ . (2.14b)

We now introduce the Fourier ansatz 1.9, used in formulating the classical PSE [7, 49], into the linearized
disturbance equations 2.14. The disturbances are thus assumed to exhibit wave-like behavior and are
represented by the product of a shape function q̃(x, y) and phase function Θ(x, z, t). Inserting this
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ansatz into equations 2.14 and assuming a spanwise invariant baseflow, we obtain:
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∂ũ
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∂ũ

∂y
+ ṽ
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(2.15d)

Order of Magnitude Analysis
The classical PSE makes the assumption of a slowly varying shape function q̃(x, y), ensuring that distur-
bance growth and oscillation are mainly absorbed by the complex exponent α(x) in the phase function
Θ(x, z, t). This is enforced through the normalization condition in equation 1.10. The combination
of this strategy with using a local OS eigenmode as the initial condition has primarily been why the
classical PSE is limited to the prediction of modal (exponential) growth. A re-evaluation of these as-
sumptions is required for the development of a non-modal framework. To allow for independent growth
of the disturbance velocity components, the classical normalization condition 1.10 is omitted. Thus, all
disturbance growth is now absorbed by the shape function, while the oscillatory behaviour is retained
by the phase function [120]. The result of this is that the chordwise wavenumber α(x) is now real,
and must be determined through an alternative procedure1. However it is of importance to note that
even with all disturbance growth absorbed by the shape functions, the slow-variance assumption of the
classical PSE must still hold. This is crucial in ensuring that a parabolization the disturbance equations
2.15 can be carried out. As such, the derived framework may not be entirely valid for disturbances
experiencing strong algebraic or exponential growth.

Following this, an evaluation of the relative orders of the terms in equation 2.15 is required. This will
allow for an elimination of the lower-order terms in the system. Two characteristic length scales can be
identified for BL flows, through which the terms of the PSE may be scaled: the chordwise length scale
L and the wall-normal Blasius scale δ =

√
νL/U∞. The characteristic velocity scale is taken to be the

freestream velocity at the BL edge U∞. Andersson [1] and Luchnini [69] study the non-modal growth of
streaks in flat-plate BL through employing a scaling based on the BL approximation. This was extended
to 3-D FSC boundary layers by Levin & Henningson [65], who attempt to appropriately scale the PSE
for non-modal growth. They use two scalings, based on the BL as well as the classical PSE, and include
terms relevant for both non-modal and exponential growth. This was further employed by Bagheri &
Hanifi [6], Byström [16] and Tempelmann et. al [120] in their respective works on non-modal growth.

The scaling used by Tempelmann et. al [120], based on that proposed by Levin & Henningson [65]
is used in the order of magnitude analysis present here. The BL approximation assumes that the wall-
normal velocity component for both, baseflow and disturbance field is of O(δ/L) = O(Reδ−1). The
PSE scaling has the relative orders of the U , W and q̃ as O(1) while the BL component V is assumed
to be O(Reδ−1). These two scalings are presented in Table 2.1, with both inherently featuring slow
variation in the chordwise direction.

If only those terms in equations 2.15 of O(Reδ−2) or lower with respect to both the BL and PSE

1A methodology tested in current work involved employing the classical normalization condition only for the real part
of the chordwise wavenumber, ℜ(α). However a converged solution could not be obtained, necessitating the use of an
alternative procedure to determine α.
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Table 2.1: Scales assumed for the quantities in equation 2.14, based on the BL as well as PSE approximation.

x y U,W V u,w v p α β ω

BL Scaling L δ U∞ U∞δ/L U∞ U∞δ/L ρU∞
2δ/L 1/δ 1/δ U∞/L

PSE Scaling L δ U∞ U∞δ/L U∞ U∞ ρU∞
2 1/δ 1/δ U∞/δ

scaling are retained, the system is reduced to the following:

0 = iαũ+
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The second-order chordwise derivatives of the shape function q̃ are of O(Reδ−3) with respect to both
scalings and are eliminated from the system. Although these derivatives are the main source of ellipticity
in the disturbance equations 2.15, the equations 2.16 remain only quasi-parabolic. Li & Malik [66],
Andersson et. al [2] show the PSE exhibit residual ellipticity through the chordwise disturbance pressure
gradient ∂p̃/∂x , with numerical instability manifesting for small marching steps. The solution to this
problem has been to omit this term from the x−momentum equation 2.16b. However, this is not
justified by the current order of magnitude arguments, as ∂p̃/∂x is O(Reδ−1) with respect to the PSE
scaling. Tempelmann et. al [120] show that non-modal computations within FSC BLs are negligibly
affected by the presence of the pressure gradient term, when compared with results from DNS. It is
thus omitted from the current framework as well, to relax the requirements on the numerical grid and
allow for higher levels of refinement.

Another quantity of interest is the term ũ ∂V /∂x , which is absent from the classical PSE formulation.
This term is O(Reδ−1) with respect to the BL scaling and was concluded to be important for non-
modal growth by Bagheri & Hanifi [6]. The system of equations 2.16 is thus a composite, parabolized2

approximation valid for both modal and non-modal spatial disturbance evolution. This framework will
be referred to as the Non-Modal Parabolized Stability Equations (NmPSE) for the remainder of this
work.

Determination of Chordwise Wavenumber
The parabolized equations 2.16 can be solved using a spatial marching scheme for the shape functions
q̃ and chordwise wavenumber α, given a baseflow and with β and ω as inputs. With the classical PSE,
the normalization condition 1.10 is used to iteratively determine α at each marching station. However,
the non-modal framework omits the use of this condition and instead assumes α to be real function of
x.

The objective is to determine α(x) such that the largest periodic variations in the disturbance
quantities are captured by their respective phase functions. This is done to ensure that the second-order
chordwise derivatives of the shape functions remain negligible with respect to the other terms in 2.16.
Tempelmann et. al [120] propose a methodology based on the lines of constant phase of a disturbance
quantitiy. This is illustrated in Figure 1.17a, where the streaklines represent the disturbance trajectory.

2Excluding the pressure gradient term ∂p̃/∂x
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The chordwise wavenumber α can then be determined through the wavenumber vector k = (α, β)T as:
α = −β tan(ϕ(x)) . (2.17)

However k, and subsequently ϕ(x) are unknowns and must also be computed as part of the solution
procedure. Tempelmann et. al [120] determine these according to the velocity component containing the
maximum disturbance energy, uϕ, when computing the optimal perturbations for FSC BLs. This is done
as the optimal perturbations take the form of velocity streaks, and contain most of their distrubance
energy in the direction perpendicular to k. The lines of constant phase are then determined according
to:

ϕ(x) = tan−1

(
w̃(x, y)

ũ(x, y)

)
, y = max

y
(|uϕ(x, y)|) . (2.18)

An iterative procedure is used to globally determine α(x). The PSE are initially solved up to the end
of the marching domain using the external streamline as a first estimate. The chordwise wavenumber
is then computed globally according to equations 2.17 and 2.18 and the PSE are re-solved with the new
estimate for α. The process is repeated until convergence is attained. It should be noted that the use
of the lines of constant phase for the determination of α is only valid for disturbances closely aligned
with the external streamline, as is the case with CFI.

The current work employs a modified form the methodology in Tempelmann et. al [120], as proposed
by Lucas [68]. This involves determining α(x) locally at each marching station, rather than through
global iterations. The shape functions q̃ can be scaled using a complex amplitude function A(x), such
that:

q̃ = A(x)q̂(x, y) , (2.19)
where q̂ is the normalized shape function vector. As per its definition, α = (1/iq′) ∂q′/∂x [3]. Evaluat-
ing this using the normalized shape function in equation 2.19 at y(q̂ = 1), and with the consideration
that α is real:

ℜ
(

1

iq′
∂q′

∂x

)
= α(x) + ℜ

(
1

iA

∂A

∂x

)
. (2.20)

The first term in equation 2.20 represents oscillatory behaviour captured by the phase function Θ(x, z, t),
while the second term encompasses oscillations in the shape function. Expanding the complex amplitude
as A = |A| exp(iθ), the second term can be written as follows:

ℜ
(

1

iA

∂A

∂x

)
= ℜ

(
1

i|A|
∂|A|
∂x

+
∂θ

∂x

)
=
∂θ

∂x
. (2.21)

To ensure that most of the oscillatory behaviour is captured by the phase function, we redirect the
contribution from the second term in 2.20 into the exponent α(x). This bears some resemblance to the
normalization condition for the classical PSE shape functions, adapted for use in a non-modal context:

ℜ
(

1

iA

∂A

∂x

)
= 0 =⇒ ∂θ

∂x
= 0 . (2.22)

The condition that ∂θ/∂x = 0 implies that the complex phase of the disturbance quantities, at a
y−location determined by A, is held constant i.e. the complex wavenumber α is computed based on
the lines of constant phase. This is a stronger form of the methodology proposed by Tempelmann et.
al [120] and also allows for α to be determined locally.

The complex amplitude A(x) used to normalize the shape functions in 2.19 is taken to be the
maximum of the chordwise disturbance velocity, maxy(ũ(x, y)). At each marching station, an initial
estimate for α(x) is made using the external streamline, as per equation 2.17, and a solution to the
NmPSE is computed. The shape function ũ(x, y) is then used to compute ∂θ/∂x and the normalization
condition 2.22 is enforced iteratively as:

αk+1 = αk +

(
∂θ

∂x

)k

, (2.23)

where k here denotes the current iteration. Convergence is attained when the following criterion is
satisfied:

(αk − αk−1)Reδ∗0 < 10−9 . (2.24)
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2.2.2. Non-Dimensionalization
The NmPSE discussed in the previous section are derived in a dimensional fashion, and are here non-
dimensionalized for use in the numerical solution procedure. This is carried out using the freestream
velocity at the inflow, U0, and the BL inflow displacement thickness, δ∗0 , as the respective reference
velocity and length scales. The relevant quantities in the equations 2.16 are then non-dimensionalized
as follows:

ū =
ũ

U0
, v̄ =

ṽ

U0
, w̄ =

w̃

U0
, Ū =

U

U0
, V̄ =

V

U0
, W̄ =

W

U0
,

p̄ =
p̃

ρU2
0

, x̄ =
x

δ∗0
, ȳ =

y

δ∗0
, ᾱ = αδ∗0 , β̄ = βδ∗0 , ω̄ =

ωδ∗0
U0

.

(2.25)

Substituting the dimensional quantities in equations 2.16 for those in 2.25 leads to:

0 =
U0

δ∗0

(
iᾱū+

∂ū

∂x
+
∂v̄

∂y
+ iβ̄w̄

)
, (2.26a)

0 =
U2
0

δ∗0

(
−iω̄ū+ Ū iᾱū+ Ū

∂ū

∂x̄
+ ū

∂Ū

∂x̄
+ V̄

∂ū

∂ȳ
+ v̄

∂Ū

∂ȳ
+ iβ̄W̄ ū+ iᾱp̄

)
− νU0

δ∗0
2

(
2iᾱ

∂ū

∂x̄
+ iū

∂ᾱ

∂x̄
+
∂2ū

∂ȳ2
− (ᾱ2 + β̄2)ū

)
,

(2.26b)

0 =
U2
0

δ∗0

(
−iω̄v̄ + Ū iᾱv̄ + Ū

∂v̄

∂x̄
+ ū

∂V̄

∂x̄
+ V̄

∂v̄

∂ȳ
+ v̄

∂V̄

∂ȳ
+ iβ̄W̄ v̄ +

∂p̄

∂ȳ

)
− νU0

δ∗0
2

(
2iᾱ

∂v̄

∂x̄
+ iv̄

∂ᾱ

∂x̄
+
∂2v̄

∂ȳ2
− (ᾱ2 + β̄2)v̄

)
,

(2.26c)

0 =
U2
0

δ∗0

(
−iω̄w̄ + Ū iᾱw̄ + Ū

∂w̄

∂x̄
+ ū

∂W̄

∂x̄
+ V̄

∂w̄

∂ȳ
+ v̄

∂W̄

∂ȳ
+ iβ̄W̄ w̄ + iβ̄p̄

)
− νU0

δ∗0
2

(
2iᾱ

∂w̄

∂x̄
+ iw̄

∂ᾱ

∂x̄
+
∂2w̄

∂ȳ2
− (ᾱ2 + β̄2)w̄

)
.

(2.26d)

Multiplying these equations by δ∗0/U2
0 and recognizing the Reynolds number Reδ∗0 = U0δ

∗
0/ν, the equa-

tions 2.26 become:

0 = iᾱū+
∂ū

∂x
+
∂v̄

∂y
+ iβ̄w̄ , (2.27a)

0 = −iω̄ū+ Ū iᾱū+ Ū
∂ū

∂x̄
+ ū

∂Ū

∂x̄
+ V̄

∂ū

∂ȳ
+ v̄

∂Ū

∂ȳ
+ iβ̄W̄ ū+ iᾱp̄

− 1

Reδ∗0

(
2iᾱ

∂ū

∂x̄
+ iū

∂ᾱ

∂x̄
+
∂2ū

∂ȳ2
− (ᾱ2 + β̄2)ū

)
,

(2.27b)

0 = −iω̄v̄ + Ū iᾱv̄ + Ū
∂v̄

∂x̄
+ ū

∂V̄

∂x̄
+ V̄

∂v̄

∂ȳ
+ v̄

∂V̄

∂ȳ
+ iβ̄W̄ v̄ +

∂p̄

∂ȳ

− 1

Reδ∗0

(
2iᾱ

∂v̄

∂x̄
+ iv̄

∂ᾱ

∂x̄
+
∂2v̄

∂ȳ2
− (ᾱ2 + β̄2)v̄

)
,

(2.27c)

0 = −iω̄w̄ + Ū iᾱw̄ + Ū
∂w̄

∂x̄
+ ū

∂W̄

∂x̄
+ V̄

∂w̄

∂ȳ
+ v̄

∂W̄

∂ȳ
+ iβ̄W̄ w̄ + iβ̄p̄

− 1

Reδ∗0

(
2iᾱ

∂w̄

∂x̄
+ iw̄

∂ᾱ

∂x̄
+
∂2w̄

∂ȳ2
− (ᾱ2 + β̄2)w̄

)
.

(2.27d)

These equations 2.27 comprise the non-dimensionalized, non-modal PSE, accompanied by homogeneous
boundary conditions:

ū = v̄ = w̄ = 0, ȳ = 0, (2.28a)
ū→ 0, v̄ → 0, w̄ → 0, ȳ → ∞ . (2.28b)
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As will be discussed in the following section, the BC 2.28b is not prescribed at infinity but rather at
some finite distance H sufficiently away from the wall. If the terms are grouped based on multiplications
with q̄, ∂q̄/∂ȳ , ∂2q̄

/
∂ȳ2 and ∂q̄/∂x̄ , the system of equations 2.27 can be written in matrix form:

Aq̄ + B
∂q̄
∂ȳ

+ C
∂2q̄
∂ȳ2

+ D
∂q̄
∂x̄

= 0 . (2.29)

Additionally, the momentum equations in the matrix A contain a set of common convective-diffusive
terms. These are hereafter represented by C and written as:

C = −iω̄ + iᾱŪ + iβ̄W̄ +
1

Reδ∗0

(
ᾱ2 + β̄2 − i

∂ᾱ

∂x̄

)
. (2.30)

The contents of the matrices A, B, C, D, are presented in Appendix A.1.

2.2.3. Numerical Solution
Spatial Discretization
The NmPSE 2.16 and its boundary conditions 2.28 constitute a spatial initial-boundary value problem,
and are solved using a numerically using a marching scheme. The computational domain is constructed
over a swept, flat-plate, with the coordinate axes oriented parallel and normal to the leading edge of the
plate. The BL baseflow for stability computations is computed as a FSC BL, discussed in Section 2.1.
The stability domain, however, does not begin at the leading edge of the plate. Instead, it starts at a
point downstream of the leading edge, where the BL has attained a finite thickness. The vertical extent
of the domain, H, is constant, and prescribed to be at least five times that of the inflow BL height.
This is done to account for the chordwise development of the BL and disturbance shape functions,
allowing for sufficient distance away from the wall at which the external BCs can be imposed. The BL
and disturbance profiles asymptotically attain their freestream values and so the selection of a larger
vertical extent of the domain reduces numerical errors at the freestream boundary.

The BL baseflow and shape function solutions are computed at discrete points in the computational
domain, depicted in Figure 2.3. As the problem is spanwise invariant, the discrete grid only extends in
the chordwise, x, and wall-normal, y, directions. A Chebyshev pseudo-spectral collocation method is
employed for discretization in the wall-normal direction. Here, the discrete collocation points are gener-
ated as the roots of the nth-order Chebyshev polynomial of the first kind. The order is determined by
the number of nodes in the y−direction, ny. A transformation is then applied such that the Chebyshev
median node is brought to some location near the wall, yi. As the number of nodes on either side of
the median node are equal, this transformation results in a biasing of the y−grid such that there is a
concentration of nodes within the BL. The advantage to this is that shears close to the wall can be
more precisely represented by the finer grid there. Additionally, this reduces the total number of nodes
required and improves computational efficiency. However as the y−discretization is fixed with respect
to the chordwise direction, the value for the parameter yi must be tuned according to the expected
downstream development of the baseflow/disturbances.

The discrete y−derivatives are represented by the Chebyshev pseudo-spectral differentiation matrices
(PSDM). These are full matrices, denoted by D1 and D2 for the first- and second-order derivatives
respectively. The y−discretized PDE system in equation 2.29 is thus written as:

(A+ BD1 + CD2)q̄ + D
∂q̄
∂x̄

= 0 . (2.31)

The numerical grid in the chordwise direction is selected to be of constant spacing, determined
by the number of chordwise points nx. An estimate for nx is derived from the value α, where the
grid spacing is selected so as to sufficiently represent oscillatory behaviour in the chordwise direction.
The derivatives ∂q̄/∂x̄ are discretized based on the marching scheme employed. This work examines
two viable marching schemes: The first-order, implicit backward Euler scheme and the second-order,
implicit trapezoidal scheme. The two schemes are defined as follows:

q̄j+1 − q̄j = ∆x̄F(x̄, q̄)j+1 , (2.32a)

q̄j+1 − q̄j =
∆x̄

2
(F(x̄, q̄)j+1 + F(x̄, q̄)j) , (2.32b)
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Figure 2.3: Schematic of the numerical grid used for stability computations, with nx = 20 and ny = 30 in the current
figure. The location of the Chebyshev median yi is indicated by the red line.

where 2.32a is the backward Euler scheme and 2.32b is the trapezoidal scheme, given ∂q̄/∂x̄ = F(x̄, q̄).
The superscript j denotes quantities at the current marching station and ∆x̄ is the non-dimensional
chordwise grid spacing. The implicit nature of both methods promotes numerical stability in the
marching procedure. The trapezoidal scheme is considered because of its higher order, and hence faster
numerical convergence with refinement in x. The application of both methods to 2.31 allows for the
solution at the x−station j + 1 to be determined as:

q̄j+1 =

[
Aj+1 + Bj+1D1 + Cj+1D2 +

1

∆x̄
Dj+1

]−1[
1

∆x̄
Dj+1q̄j

]
, (2.33a)

q̄j+1 =

[
1

2
(Aj+1 + Bj+1D1 + Cj+1D2) +

1

∆x̄
Dj+1

]−1[(
1

∆x̄
Dj+1 − 1

2
(Aj+1 + Bj+1D1 + Cj+1D2)

)
q̄j

]
.

(2.33b)

The scheme used for solutions of the NmPSE in this work is the backward Euler method 2.33a. This
is due to spurious oscillations that arise in the shape functions when using the trapezoidal scheme,
further elaborated on in Chapter 4. Additionally, the matrix A contains the term i ∂ᾱ/∂x̄ . The
chordwise derivative here is discretized using first-order finite differences and is updated iteratively at
each x−station, as part of the procedure to determine ᾱ.

Initial Conditions
In order for the NmPSE to be marched downstream, initial conditions for the shape functions q̄ and
chordwise wavenumber ᾱ must be provided. The initial conditions used in this work fall under two
broad categories: modal and non-modal.

The former are generated through a solution of the local stability eigenvalue problem. The parallel
flow assumptions used to derive the Orr-Sommerfeld and Squire system in 1.6 are employed; however
rather than formulating the problem in terms of the wall-normal disturbance velocity and vorticity, the
governing equations are instead re-written directly for q̃ and p̃:

iαũ+
∂ṽ

∂y
+ iβw̃ = 0 , (2.34a)

−iωũ+ Uiαũ+ ṽ
∂U

∂y
+ iβWũ = − iα

ρ
p̃+ ν

(
∂2ũ

∂y2
− (α2 + β2)ũ

)
, (2.34b)

−iωṽ + Uiαṽ + iβW ṽ = −1

ρ

∂p̃

∂y
+ ν

(
∂2ṽ

∂y2
− (α2 + β2)ṽ

)
, (2.34c)

−iωw̃ + Uiαw̃ + ṽ
∂W

∂y
+ iβWw̃ = − iβ

ρ
p̃+ ν

(
∂2w̃

∂y2
− (α2 + β2)w̃

)
, (2.34d)

where the equations 2.34 are referred to as Incompressible Local Stability Theory (ILST). For a pre-
scribed β and ω, these constitute a quadratic eigenvalue problem for α and the corresponding shape
functions. A modal initial condition can thus be generated by solving 2.34 at the start of the stability
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Table 2.2: Initial conditions for the NmPSE.

Type β, ω α q̄
Modal User input ILST ILST

Non-Modal User input PTV/User input PTV/Analytic

domain. This is done numerically on the same Chebyshev y−grid as the NmPSE, using a companion
matrix method to find the the roots of the characteristic polynomial containing all powers of α [27]. The
eigenfunction and corresponding eigenvalue used as the initial condition are selected from the computed
spectrum through a filter, see Boersma [11]. The filter selects the solution based on whether the shape
functions decay exponentially into the freestream, at a rate that depends on the mode specifications.

The non-modal initial conditions are generated from the structure of the DRE wake. These are
obtained either directly from PTV measurements by Zoppini et. al [136], or modelled using analytical
functions that resemble the disturbance field in the near-wake region. The generation and use of the non-
modal initial conditions are discussed in detail in Chapter 4. An important point to note is that initial
disturbance amplitudes are irrelevant in a linear framework, due to the assumption of infinitesimally
small disturbances. Normalized shape functions of identical initial structure will grow at the same rate
for a given baseflow and parameter set. A summary of the initialization procedure is presented in Table
2.2.

Solver Algorithm and Limitations
The high-level architecture of the NmPSE solver is presented in Appendix A.2, implemented in MAT-
LAB. This provides an overview of the code structure and its dependencies, and is briefly described
here.

The baseflow velocity components and their derivatives are taken as inputs to the solver, along
with the initial conditions and disturbance frequencies ω̄ and β̄. The Chebyshev y−grid is generated
as defined by the user, and a uniform spacing in the x−direction is assumed. Prescribed non-modal
ICs are interpolated onto the first marching station of the stability grid, while modal ICs are locally
generated at this station using ILST. The solver then enters the outer marching loop, where the local
baseflow quantities are interpolated onto the stability grid. A first estimate for ᾱ is made based on
the external streamline after which the inner wavenumber loop is entered. Here, the coupled NmPSE
system is solved using the backward Euler scheme 2.33a for the first iteration of the shape functions
q̄. A new estimate for ᾱ is then computed according to equations 2.22 and 2.23, and the NmPSE are
re-solved. The inner loop is exited when the convergence criterion 2.24 is met. This process is repeated
at each marching station within the outer loop. Once the solution has been computed at the final
marching station, the function executes a global normalization routine. The condition 2.22 is enforced
globally on the shape functions to re-direct residual growth into the real exponent ᾱ, and the shape
functions themselves are normalized by the local maximum of ū.

The NmPSE framework is derived on the basis of certain assumptions and is thus not without
limitations. It becomes important to identify these so as to prevent improper use of the tool in the
study of spatial, non-modally growing disturbances. The assumptions employed in the derivation of the
NmPSE are thus summarized as follows:

1. The baseflow is steady and known.
2. The disturbance quantities are effectively infinitesimal i.e. q′ ≪ Q, such that problem is linear.
3. The disturbance shape functions are slowly-varying in the chordwise direction, allowing for a

parabolization of the governing equations.
4. The baseflow is spanwise invariant and disturbances do not undergo spanwise amplification.
5. The instabilities in question are of the convective type.
6. Compressibility and temperature effects are negligible.
7. Surface curvature effects are negligible.

Haynes & Reed [46] have shown that curvature effects on modal instability development are, in
general, non-negligible when comparisons with experimental swept wing data are drawn. The region
of interest on the swept wing in the current work features minimal surface curvature, such that the
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swept flat-plate approximation remains valid for modal CFI. However no research has been conducted
on the same for non-modally growing disturbances, such as those found in the DRE wake. It is thus not
possible to quantify how sensitive the DRE wake is to curvature, and whether the use of the flat-plate
approximation is truly justified in this scenario.

The slow-variance assumption used for the shape functions is also a point of ambiguity as unlike
the classical PSE, growth is completely captured by the shape functions. However, transient growth
has typically been characterized as occurring over short temporal or spatial scales. It is thus important
to quantify the extent to which the slow-variance assumption may limit its modelling in the NmPSE
framework, which will be addressed in Chapter 4 of this work.

Finally, it is important to make a distinction between the baseflow and mean-flow. The former is
the basic fluid state upon which the disturbance equations may be solved, here computed as a steady
laminar solution to the BLEs. The latter is a spatial average of the steady, total (disturbance plus
perturbation) velocity field along the spanwise coordinate axis, at each chordwise location. In a linear
framework, the two are indistinguishable. The distinction arises when disturbances begin to exhibit
non-linear behaviour; the baseflow is independent of this and remains unchanged, however the mean-
flow is distorted as a result of non-linear interactions between modes. The NmPSE is a linear framework
and is thus unable to describe non-linearly growing disturbances. It should be noted that the finite-
amplitude disturbance structure extracted from the DRE wake will be treated as infinitesimal, and that
interactions between the dominant mode and its harmonics, if any, are not modelled i.e. the DRE wake
structure is assumed to contain no mean-flow distortion.

2.3. Solver Verification
2.3.1. Harmonic Linearized Navier-Stokes
The parabolization of equations 2.15 rests on the slowly-varying assumption made for the disturbance
shape functions q̃. However, recent work by Sumariva & Hein [119] review and propose extensions to
the PSE methodology, that eliminate the need for this. In particular, Choudhari & Streett [22], Mughal
& Ashworth [78] consider an alternative ansatz for disturbances in quasi 3-D BL flows, in which the
Fourier decomposition 1.9 does not feature a chordwise wavenumber α in the phase function:

q′(x, y, z, t) = q̃(x, y)eiΘ(z,t) , (2.35a)
Θ(z, t) = βz − ωt . (2.35b)

This implies that fast, oscillatory disturbance behaviour in the chordwise direction is captured by the
shape function rather that the phase function. As a result, the higher-order chordwise derivatives of q̃ in
the PSE are significant and cannot be eliminated from the system 2.15. Instead, the problem is solved
in elliptic form similar to DNS. Sumariva & Hein [119] label this framework the Harmonic Linearised
Navier Stokes (HLNS). If the ansatz 2.36 is inserted into the linearised disturbance equations 2.14 for
a spanwise invariant baseflow, we have:

0 =
∂ũ

∂x
+
∂ṽ

∂y
+ iβw̃ , (2.36a)

0 = −iωũ+ U
∂ũ

∂x
+ ũ

∂U

∂x
+ V

∂ũ

∂y
+ ṽ

∂U

∂y
+ iβWũ

+
1

ρ

∂p̃

∂x
− ν

(
∂2ũ

∂y2
− β2ũ+

∂2ũ

∂x2

)
,

(2.36b)

0 = −iωṽ + U
∂ṽ

∂x
+ ũ

∂V

∂x
+ V

∂ṽ

∂y
+ ṽ

∂V

∂y
+ iβW ṽ

+
1

ρ

∂p̃

∂y
− ν

(
∂2ṽ

∂y2
− β2ṽ +

∂2ṽ

∂x2

)
,

(2.36c)

0 = −iωw̃ + U
∂w̃

∂x
+ ũ

∂W

∂x
+ V

∂w̃

∂y
+ ṽ

∂W

∂y
+ iβWw̃

+
iβ

ρ
p̃− ν

(
∂2w̃

∂y2
− β2w̃ +

∂2w̃

∂x2

)
.

(2.36d)

The HLNS equations 2.36 do not feature α nor the normalization condition 1.10 present in the PSE
framework, making them inherently capable of representing both modal and non-modal disturbance
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Figure 2.4: (a) Chordwise variation of the external flow component U∞ (b) Contours of the baseflow velocity component
Ū within the stability domain. Only one-third of the y−extent of the domain is shown.

growth. They are thus employed as a verification tool for results computed with the NmPSE, allowing
for an identification of its limitations. Despite the increased robustness that the HLNS offers in BL
stability analyses, the re-introduction of ellipticity into the problem leads to the familiar computational
drawbacks associated with standard CFD methods: a more resource-intensive solution procedure and
longer computational times.

The equations 2.36 are non-dimensionalized as per Section 2.25 and solved in this form. A Chebyshev
y−discretization scheme identical to that used for NmPSE computations is also used to discretize the
HLNS equations, with homogenous BCs at the wall and freestream. The x−grid is also retained, with
a constant spacing determined by nx. The elliptical nature of the problem indicates that the use of
a marching scheme in x is no longer appropriate. A fourth-order, finite-difference scheme is instead
employed to discretize the chordwise derivatives. Both chordwise BCs must also be prescribed in the
elliptical framework. At the domain inflow this is selected to be the initial conditions for the shape
function, listed in Table 2.2, with the exception of α. The outflow boundary condition is slightly more
complex, as the final state of the evolving disturbances is not typically known.

The ellipticity of the NS equations arises from two sources, the viscous terms and the pressure field.
The outflow BC can interact with incoming velocity perturbations to produce a pressure pulse felt
throughout the domain, possibly negatively affecting the stability results in the interior domain to a
varying degree. This is tackled by smoothly reducing the u′ and w′ disturbance velocity amplitudes to
zero within a buffer region, similar to that proposed by Joslin [51]. This buffer is located at the end of
the computational domain and is represented by the function:

Fbuff =
1

2

(
1 + tanh

{
Kbuff

[
1− 2

x̄− x̄buff
x̄out − x̄buff

]})
, (2.37)

where x̄out and x̄buff are the non-dimensional outflow and buffer start locations respectively. The
parameter Kbuff can be varied to control the strength of the amplitude damping. The outflow BC for
the disturbances is thus prescribed to be homogenous, and the extent of the buffer region is selected
such that the upstream influence of the boundary is adequately nullified.

2.3.2. Test Case
As a preliminary verification strategy, the NmPSE is used to compute modal disturbance growth. The
results are compared with simulations using the classical LPSE as well as the HLNS, for the FSC BL
case presented by Tempelmann et. al [120] and Schrader et. al [106].

Schrader et. al [106] select the FSC baseflow such that it resembles the BL in the ASU swept wing
experiments by Reibert et. al [92]. The best match was obtained for an inflow Reynolds number of
Reδ∗0 = 220, prescribed at the inflow station x̄ = 167, and for the Hartree parameter set to βH = 0.333.
The fluid in consideration is air with a kinematic viscosity of 1.458 × 10−6. The flat-plate is swept at
Λ = 45◦, which leads to the external velocity components being equal at the inflow station. The FSC
equations 2.8 are solved with these parameters and the baseflow velocity components are computed on
the stability grid through 2.10. This is presented in Figure 2.4.
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Table 2.3: Baseflow and NmPSE stability parameters used for the verification test case.

FSC Baseflow Stability
xref |Q∞| Λ m βH H yi ny nx ᾱr∆x̄ β̄ ω̄

0.07 m 10.98 m/s 45◦ 0.2 0.333 0.04 m 0.008 m 100 800 0.463 -0.19 0

Figure 2.5: Stationary crossflow mode evolution, compared with DNS by Schrader et. al [106](◦) and NmPSE simulations
by Tempelmann et. al [120](—). Solid and dashed red lines correspond to the NmPSE and HLNS respectively, solid blue
line represents the classical LPSE. Evolution of (a) disturbance energy and (b) real part of the chordwise wavenumber.

The stability grid extends up to a height of 40mm to sufficiently remove the domain cut-off error.
The Chebyshev y−points are biased such that half of them are located below yi = 8mm, for improved
precision within the BL. Owing to the rapid convergence of pseudo-spectral methods, a y-grid density of
ny = 100 was deemed adequate. The x−spacing was selected such that there exists a sufficient number
of grid points per chordwise wavelength 1/αr

3. Tempelmann et. al [120] analyse a stationary crossflow
mode of wavenumber β̄ = −0.19 corresponding to the λ = 12mm dominant mode in the experiments by
Reibert et. al [92]. The minus sign in the wavenumber is a result of the positive convention for ᾱ and
W∞. A modal initial condition is generated through ILST using the local baseflow state at the inflow
station. A summary of the selected baseflow and stability parameters for the test case are presented in
Table 2.3. Additionally, computations using the HLNS define the buffer region to start at 85% of the
domain length.

To quantitatively describe non-modal disturbance growth, an N-factor NE based on disturbance
energy is defined [120]:

Ēint(x) =

∫ ∞

0

|ũ|2 + |ṽ|2 + |w̃|2dy , (2.38a)

NE = 0.5 log
(
Ēint

Ēint
0

)
, (2.38b)

where E0 is the integrated disturbance energy at the inflow station. Computing the N-factor using
disturbance energy rather than velocity leads to it being multiplied by a factor of 2, due to energy
being equal to the square of the velocity. In order to maintain consistency in using the N-factor, this is
removed by including the factor 0.5 in the definition of NE .

The chordwise evolution of disturbance energy and α are presented in Figure 2.5. As the initial
condition provided is modal, the growth represented by the NE curves is purely exponential. The
disturbance energy initially decays up to the point of neutral stability at x̄ ≈ 230, after which amplifica-
tion occurs. It is evident from Figure 2.5a that the derived NmPSE framework is capable of predicting
modal growth, and agrees well with computations using the LPSE. The NE curve computed using the
HLNS also matches very well with that of the NMPSE and LPSE. All three growth curves are also
in excellent agreement with the DNS and PSE results by Schrader et. al [106] and Tempelmann et. al
[120] respectively. The proposed method to determine α adequately captures the largest disturbance

3Real part of the chordwise wavenumber, shortened for convenience (αr = ℜ(α))
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oscillations, and compares well with α determined through the classical normalization condition for
the LPSE (Figure 2.5b). The HLNS does not determine α as a distinct quantity as the requirement
for slow variation of the shape functions is omitted. It is extracted from the solution for q̃ as per the
definition 2.21, where A is selected to be the same as that in the NmPSE. The α computed from the
HLNS solution coincides with that determined by the NmPSE, as seen in Figure 2.5b. The results for
α exhibit minor differences with the reference computations by Tempelmann et. al [120], although they
capture the overall trend very well. This mismatch could be amounted to differences in the numerical
set-up and solver implementation with respect to the reference case. For example, Tempelmann et. al
[120] retain only the first-order terms in equations 2.15 in their derivation of a non-modal, parabolized
framework, whereas the current work retains the second-order terms as well. Additionally, the specifi-
cations of the numerical grid employed are not discussed and so the discretization used here cannot be
perfectly matched to that of the reference case.

Notwithstanding these deviations, the test case simulations show that both the NmPSE and HLNS
produce verifiable results for modal initial conditions, and are further examined in a non-modal setting
in Chapter 4.
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Figure 3.1: Sketch of the wind tunnel test section and employed set-up. The side walls are not drawn for visualization
clarity. Components corresponding to the various measurements systems are grouped and labelled as follows: (1) Pressure
measurement system. (2) Infrared thermography system. (3) Hot-wire anemometry system.

The steady-state simulations carried out with the numerical tools in Chapter 2 are complemented by
experimental measurements of the unsteady flow phenomena. The measurement campaign is conducted
in the low turbulence tunnel (LTT), an atmospheric, closed return wind tunnel, situated at the Delft
University of Technology.

The LTT facility is constructed over two stories, with the airflow driven by a six-bladed fan located
on the lower floor. The upper floor consists of the contraction, test section, and part of the diffuser.
Turning vanes ensure a smooth redirection of the airflow between the vertical and horizontal tunnel
segments. The wind tunnel is subsonic and can reach a maximum speed of 117 m/s within the test
section. A defining feature is the low turbulence level characterizing the test section flow, which is an
important parameter in ensuring that stationary CFI dominate the transition scenario [80, 28]. Low
turbulence is achieved thanks to the combined presence of a series of purposedly designed anti-turbulence
screens, located in the wind tunnel settling chamber, and a high convergent contraction ratio driving
the flow field in the test section. The current work utilizes all seven available screens, restricting Tu to
less than 0.03% for all measurements [109].

The test section is an octagonal, inter-changeable chamber of length 2.60 m, width 1.80 m and height
1.25 m. Its vertical walls diverge slightly in the downstream direction, accounting for blockage caused
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Figure 3.2: (a) Cross-sectional schematic of the wind tunnel test section, with the M3J swept wing model and DRE array.
Shaded regions indicate the domains imaged by the full and zoomed IR camera configurations, labelled IR-A and IR-B
respectively. (b) Pressure coefficient distribution measured on the wing pressure side, for Re= 2.17× 106. (c) 66018M3J
airfoil section.

by the tunnel-wall BL that develops within the measurement region. The freestream reference velocity
and pressure in the test section are measured by a pitot-static tube located at the end of the contraction,
connected to a Mensor DPG2101 digital pressure gauge. The reference temperature is monitored within
the contraction, using a Pt100 Resistance Temperature Detector. These measured reference quantities
are used to calculate the fluid density ρ∞ and kinematic viscosity ν. Figure 3.1 depicts the test section
and organization of the main measurement systems used in the experimental campaign.

A constant-chord, swept wing model known as the M3J, designed in-house [110], is used as the
test section model in the current work (Figure 3.2a). The wing features a leading-edge sweep of 45◦,
streamwise chord cX = 1.27 m and span b = 1.25 m, and has been used for various swept wing transition
studies at the Delft University of Technology [111, 139, 136]. Two coordinate reference systems are used
to describe quantities measured over the model: one is integral with the wind tunnel floor, with spatial
components X,Y, Z; the second one is integral to the wing model, with z-axis and x-axis respectively
aligned and orthogonal to the leading edge, and spatial components x, y, z.

The M3J airfoil section is a modified NACA 6-series symmetric foil (66018), which features a leading
edge radius of approximately 1%, preventing attachment line instabilities [84, 99] (Figure 3.2c). The
airfoil is designed to promote accelerated flow for up to 70% of the chord length at zero incidence
angle, where the pressure minimum is then encountered. This region of acceleration features minimum
surface curvature, to avoid the amplification of TS waves and Görtler vortices. Additionally, the wing
ensures spanwise invariant conditions in the measurement region, which extends across its midspan.
The measurements in the current work are conducted on the pressure side of the wing, at an incidence
angle α = −3.36◦ and a chord Reynolds number RecX = 2.17× 106. This configuration, in combination
with the design features of the model, enable exclusive amplification of CFI within the pressure side
BL. The BL on the suction side of the wing is forced to turbulence using a strip of turbulator tape, for
experimental repeatability. Finally, the model itself is constructed out of a glass-fiber reinforced epoxy
resin and polished to a surface roughness level of 0.2 µm rms. This is crucial as the background roughness
level must be sufficient lower in amplitude than the DRE array utilized, to prevent it influencing the
development of stationary CFI in forced configurations.

A series of 92 pressure taps are installed on the pressure side of the model surface, divided equally
between the inboard and outboard sides of the wing. They are represented by the grey circles in Figure
3.1, with their exact positioning shown in Figure 3.2. These are used to measure the static pressure
distribution on the wing pressure side in the streamwise X−direction, through a DTC-Initium digital
pressure scanner. The static pressure measurements ps(X) are converted into the pressure coefficient
cp through:

cp =
ps(X)− p∞

1
2ρ∞Q

2
T

, (3.1)
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Table 3.1: Geometric parameters of the DRE arrays.

Case λ (mm) λ/λ1 dD (mm) kD (mm) kD/dD
k3 8 1 1.767 ± 0.004 0.3292 ± 0.0009 0.186
k4 8 1 1.721 ± 0.009 0.4374 ± 0.0035 0.261

where ρ∞ and QT are the freestream density and velocity determined from the tunnel pitot-static tube
system (Figure 3.2b).

Discrete Roughness Elements
The cylindrical DRE arrays used in the experimental studies are selected to emulate the configuration
of Zoppini et. al [136], which acts as reference case for the numerical investigations in Chapter 4.
Comparably to previous research efforts [92, 100], DRE arrays are applied on the wing surface to focus
CFI development into a single monochromatic mode. The inter-element spacing (i.e. the forced mode)
was chosen to coincide with the wavelength of the most amplified CFI mode λ1 = 8 mm for the current
set-up, as predicted by LST [73, 109].

The manufacturing of the DRE arrays was done in-house, through CNC laser-cutting of adhesive
transfer vinyl film. The height of the elements could be controlled through appropriate layering of the
film. The arrays were applied at a fixed chord location of x/c = 0.15 [139], where the unperturbed
experimental BL thickness is δ99 ≃ 1.3 mm. Owing to the increased BL thickness and minimal surface
curvature at this chord location, near-element measurements are more accessible as compared to up-
stream locations. Two forcing configurations are investigated in this work, featuring DRE of nominal
height kD = 0.3 mm or kD = 0.4 mm. These two cases are labelled k3 and k4 respectively for the
remainder of this work. The forcing configurations can be described using the roughness Reynolds num-
ber previously defined, which for the considered cases are computed to be RekD

= 192 and RekD
= 330

respectively. The former falls within the critical-forcing regime, where the DRE array leads to the onset
of stationary CFI. The latter configuration behaves super-critically and introduces near-wake instabil-
ities that rapidly grow and breakdown, causing transition in the element vicinity [139, 136]. These
scenarios were discussed in Section 1.4.3. Both configurations feature cylindrical elements of nominal
diameter dD = 2 mm. However their geometry entails mild deviations due to the manufacturing process.
A statistic investigation has been performed, characterizing the elements shape and height by means of
a laser scanner profilometer, and the resulting geometrical parameters are reported in Table 3.1.

3.2. Measurement Techniques
3.2.1. Infrared Thermography
IR thermography is a non-intrusive measurement technique1 allowing for rapid determination of the near-
wall heat transfer characteristics of the flowfield. Surfaces at ambient temperature emit electromagnetic
radiation primarily within the infrared spectrum, according to Wien’s law. Infrared sensors are used to
detect energy within this wavelength band, from which temperature estimates are made. The relation
between the radiated energy flux and surface temperature is given by the Stefan-Boltzmann law:

qr = ϵrσT
4 , (3.2)

where σ is the Stefan-Boltzmann constant. The coefficient ϵr stems from the grey-body hypothesis,
relating the emissivity of a real emitter to that of a black body, and is dependent on direction and the
temperature itself. Astarita and Carlomagno [17] provide an extensive description of radiation theory
and IR sensors used in IR thermography measurements.

The radiative heat-transfer mechanics are exploited in fluid dynamics applications through the
Reynolds analogy, which relates the surface shear stress to the surface heat transfer in wall-bounded
flow:

St
cf

=
1

2
Pr− 2

3 , (3.3)

1IR thermography is non-intrusive only when temperature differences between the flowfield and surface are low [64].
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Figure 3.3: De-warping of the IR thermography images. (a) Raw calibration target image. (b) De-warped image in the
XY Z wind tunnel coordinate system.

where St, Pr and cf are the Stanton number, Prandtl number and skin-friction coefficient respectively.
The surface shear stress is dependant on the gradient of the velocity profile at the wall, following equation
1.1. Turbulent BLs feature larger velocity gradients close to the wall when compared to laminar BLs,
as a result of momentum redistribution due to turbulent mixing. The implication of this in the context
of the Reynolds analogy (3.3) is that convective heat transfer at the wall is higher for turbulent BLs.
This results in thermal contrast between laminar and turbulent flow regions. Active heating of the
surface may be used to improve this thermal contrast for flows in the incompressible regime, where
temperature variations are small. Thus, the technique can be used for detection and characterization
of the transition front, and of the transitional BL modulation due to stationary CFI development.

Experimental Set-Up
In the current work, IR thermography is employed to gain an overview of the perturbed BL flow in the
wake of the DRE. Stationary vortical structures can induce regions of locally high and low shear, which
manifest as regions of low and high relative temperature respectively as per 3.3. This allows for the
observation of velocity streaks and the imprint of stationary crossflow vortices. The IR acquisitions are
performed with two Optris PI640 IR cameras: one camera is equipped with a wide angle lens, f = 10.5
mm, and images the whole wing chord length with resolution 0.85 mm/px; the second camera features a
zoomed-in lens, f = 18.7 mm, and captures a small domain aligned with the leading edge and centred at
x/c = 0.20 with resolution 0.43 mm/px. The wide-lens configuration provides a global overview of the
developing BL flow, indicating whether laminar-turbulent transition occurs in the element vicinity. The
zoomed-in configuration allows for the preliminary characterization of the near-element flow features.
The positioning of these two cameras and the extent of the regions imaged by them are indicated in
Figure 3.1 and Figure 3.2a respectively.

During the acquisition, five external halogen lamps (3 × 400W and 2 × 500W) actively heat the
model surface, improving the thermal contrast between the high and low shear regions. Acquisitions are
performed collecting 80 images at a frequency of 4 Hz, averaging them to increase the signal-to-noise
ratio. The averaged images are then geometrically mapped to the X,Y, Z Cartesian framework by
applying an in-house calibration procedure [95].

Calibration Procedure
The raw thermal maps acquired using IR thermography are distorted by the surface curvature of the
airfoil, as well as by the positioning of the IR cameras. To correct for this and determine the spatial
location of the images in the XY Z wind tunnel coordinate system, a calibration procedure is conducted.
First, a reference calibration target is applied to the surface of the wing, as shown in Figure 3.3, and is
irradiated by the halogen lamp array. The target consists of a rectangular grid of black dots printed on
a flexible white background, creating points of thermal contrast due to the higher emissivity of black
paint. The captured IR images of the target are averaged and processed using a custom MATLAB
script, where a numerical grid is constructed to correspond to the physical black dots. A polynomial
distortion correction is then applied to de-warp the image [40], after which its pixels are scaled to
physical coordinates. The script returns an object containing the details of the calibration process,
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which is then used to correct subsequent IR measurements. Additionally, a smaller target is used for
calibration of the zoomed-in images, although the correction procedure remains the same.

3.2.2. Hot-Wire Anemometry
Hot-wire anemometry is a well-established technique which allows for point-wise measurements of the
fluid velocity. A heated wire-sensor probe is inserted into the flowfield and used to measure a represen-
tative velocity signal, exploiting the convective heat transfer mechanisms between the wire and the flow.
The dimensions of the wire are typically micron size, to improve the spatial resolution of the technique
and to reduce the thermal inertia of the wire. This also allows for velocity fluctuations much smaller
than the mean flow to be detected, with excellent temporal resolution. The high frequency response of
HWA makes it ideal for the measurement of unsteadiness in the flowfield, such as in turbulent BLs.

HWA is based on a Wheatstone bridge circuit, illustrated in Figure 3.4 . In its simplest form
the circuit consists of four arms, each containing a resistor, with the hot-wire sensor constituting one
of the arms. When the ratio of resistances (a) and (b) is the same as the ratio of (c) and (d), the
bridge is said to be balanced. Throughout this work, the bridge is operated as a Constant Temperature
Anemometer (CTA). With a CTA configuration, the current flowing through the hot-wire probe is
adjusted so that its temperature remains at a prescribed setting. As the hot-wire sensor is immersed in
the flow field, the convective heat exchange modifies its temperature. Specifically, when the flow velocity
increases, the probe experiences more convective cooling and its temperature drops. The resistance of
the probe is a linear function of its temperature and decreases as well, causing the Wheatstone bridge
to be unbalanced. A feedback amplifier in the circuit senses this and signals for an increase in current,
increasing the temperature of the wire. Thus, through varying the voltage of the circuit, the feedback
amplifier maintains the wire at a fixed resistance and temperature so that the bridge is balanced, i.e.
no current flows through the feedback amplifier.

The variation of the voltage is correlated to changes in the flow velocity through a calibration
procedure. The hot-wire is assumed to be in thermal equilibrium with the fluid, with negligible heat
exchange due to conduction and radiation. The electrical heating produced by the Joule-effect is then
only balanced by convection due to the surrounding fluid.

I2wRw = haAw(Tw − Ta) , (3.4)

where Rw is the wire resistance, Iw is the current through the wire, Tw is its temperature and Aw is
the area of wire exposed to the fluid. The temperature of the fluid is denoted by Ta. The convective
heat transfer coefficient ha in equation 3.4 can be replaced by the Nusselt number Nu = hadw/ka, with
dw and ka being the wire diameter and thermal conductivity of the fluid respectively. For the forced
convection regime that the wire operates in, Nu can be expressed as a function of the Reynolds number
Re:

E2
w

Rw
=
kaNu
dw

A(Tw − Ta) =
kaA

dw
f(Re)(Tw − Ta) , (3.5)

where Ew = IwRw is the bridge voltage. The equation 3.5 can be written in the form E2
w = A +

BUn, where A,B, n are constants and U is the flow velocity measured by the hot-wire. The constants
encompass the effect of the ambient flow conditions and properties of the wire, and must be determined
as part of the calibration procedure. The calibration must be performed at appropriate intervals between
measurements, so as to properly account for thermal drift in the system.

Experimental Set-Up
HWA is employed to fully characterize the near-element flow topology, allowing for the local acquisition
of temporally-resolved unsteady velocity signals. The HWA measurement system consists of a single-
wire, ceramic body, BL probe (Dantec Dynamics 55P15). A feature of these probes is that their prongs
extend under the probe mount, facilitating near-wall measurements. The wire-sensor is made out of
tungsten and has a nominal length and diameter of 1.25 mm and 5 µm respectively. The system is
operated using a TSI IFA-300 constant temperature bridge with automatic overheat ratio adjustment.

The hot-wire probe is mounted to a three degree-of-freedom traversing system that operates in
the X,Y, Z wind tunnel coordinate system (Figure 3.1). Given an input file with the measurement
coordinates, the traverse automatically positions the hot-wire probe, with a nominal spatial precision
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digital acquisition system. (b) Boundary layer hot-wire probe, positioned aft of the DRE array. (c) Velocity component
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of 2.5 µm. The use of a single-wire probe allows for only one velocity component to be measured
depending on the orientation of the probe, shown in Figure 3.4b. This is due to directional sensitivity
of the cooling experienced by the wire, which is more responsive to flow normal to the wire than to
tangential flow. For all measurements, the probe is aligned parallel to the Z−axis of the wind tunnel
system, and orthogonal to the X−coordinate. As a result, the wire-sensor measures a projected velocity
whose magnitude can be constructed as:

Q =
√
(u cos(45◦) + w sin(45◦))2 + v2 , (3.6)

where u, v, w are the velocity components in the x, y, z wing coordinate system.
The bridge voltage signal is registered by an NI9234 digital acquisition system, and is converted into

the velocity component Q through the calibration process. This calibration is performed at the start of
each measurement day using a pitot-static tube, connected to a Mensor DPG2101 digital pressure gauge.
The probe and pitot tube are moved to a freestream position where voltage and velocity measurements
are taken for various speeds in the test section. A correlation between the two is then made through a
fourth-order polynomial fit, while correcting for effects due to the ambient temperature and pressure.
The velocity signal sensed by the probe is sampled at a frequency fs = 51.2 kHz for a sampling time of
2 s, to ensure statistical convergence of the measurements.

As a precautionary measure, toroidal magnets are fixed to the cable connecting the HWA probe
to the Wheatstone bridge. This is done to minimize electromagnetic interference between the HWA
system and components such as the traversing system’s motors, or the wind tunnel engine.

Uncertainty Quantification
In order to verify the accuracy of the HWA measurements, it is important to estimate the inherent
measurement uncertainty. Measurement errors can be grouped into two broad categories based on their
origin: random or systematic. Random errors arise from spurious fluctuations in the measurement and
can be minimized through statistical analysis. Systematic errors, also known as bias, originate from
the measurement system itself, the experimental configuration and the wind tunnel user. Sources of
these errors in the context of HWA could be from the calibration process, proximity of the sensor to the
wall, vibration of the probe, misalignment of the traverse system, and ambiguity in regions of reversed
flow, among others. Systematic errors cannot be tackled through statistics, but can be identified and
mitigated through careful design and set-up of measurement systems.
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Figure 3.5: Contours of the percent uncertainty in the HWA mean velocity field. Black lines represent 10 contour levels
of Q, ranging from 0 to 1.

The uncertainty due to random error in the HWA velocity signals can be quantified following Sciac-
chitano & Wienke [108], through the equations:

ϵQ = ± ⟨Q⟩√
Nseff

, (3.7a)

ϵ⟨Q⟩ = ± ⟨Q⟩√
2(Nseff − 1)

, (3.7b)

where Q and ⟨Q⟩ are the temporal mean and standard deviation of the velocity signal respectively. Nseff

is the effective number of samples in the measurement. For samples that are uncorrelated in time, this
is equal to the total number of samples measured i.e. Nseff = Ns. For correlated samples, Smith et. al
[116] determine Nseff based on the integral time scale Ti of the velocity signal, using the autocorrelation
coefficient ρs(τ):

Nseff =
Ns

2Ti/∆t
, (3.8a)

Ti = lim
T→∞

∫ T

0

ρs(τ)dτ , (3.8b)

with ∆t = 1/fs. In most practical scenarios, the integral 3.8b is not evaluated over the full limit
and in instead computed up to the point at which the autocorrelation coefficient first falls to zero
[108]. This approach is valid when the measurement time is greater than 10Ti [116]. It is apparent
from equations 3.7 and 3.8 that uncertainty is high when the ratio 2Ti/∆t ≫ 1. HWA measurements
typically feature high sampling rates and as such lead to the velocity signals being highly correlated.
For BL measurements the largest integral times scales are found in the freestream, although ⟨Q⟩ is
usually low. An estimate for local uncertainty due to random errors is presented in Figure 3.5, for a
measurement plane in the vicinity of the DRE array. The uncertainty increases closer to the wall, being
the largest aft of the roughness elements where spanwise gradients are large.

3.3. Experimental Test Matrix
The measurement campaign was designed to complement the results by Zoppini et. al [136], who em-
ployed 3-D dual pulse PTV to resolve the steady-state features of the DRE wake. As discussed in Section
3.1, two DRE configurations are investigated: a critical forcing array of height kD = 0.3 mm and a
super-critical forcing array of height kD = 0.4 mm. Both arrays are spaced at λ1 = 8 mm corresponding
to the dominant stationary crossflow mode predicted by LST and previous works [139, 136].

HWA is the primary technique used to measure velocity fluctuations in the near-element flow field.
This is done through an ensemble of hot-wire scans, conducted at successive chord locations from
x/c = 0.15 to x/c = 0.17 (Figure 3.6). These scans map out the BL in a wall-normal y − z plane
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Figure 3.6: Chordwise location of the HWA measurement planes aft of the DRE array. Schematic is not to scale.
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Figure 3.7: (a) A schematic of the y − z HWA measurement planes. Blue line indicates the local location of the wall.
Red line is an estimate of the average BL thickness, used to appropriately select the y−distribution of measurement
points. (b) Image captured using the micro-alignment telescope system. Black cross hairs are built-in guides used to
assist positioning of the telescope. The black dot on the far right is the mid-point of the line connecting the HWA probe
to its reflection, providing a visual estimate for the wall location.

at each x/c station, by measuring individual BL velocity profiles over a range of spanwise locations
(Figure 3.7a). The y − z planes consist of 32 measurement points in the y-direction, whose spacing
is progressively increased when moving from the wall toward the freestream. This allows for better
resolution of the near-wall BL features with a lower number of wall-normal points, reducing the overall
measurement time. The vertical extent of the plane is adjusted based on the chordwise development
of the BL thickness, starting from a height of 2.5 mm in the element vicinity. The extent in the
spanwise direction is selected to be 24 mm (3λ1) to include three roughness elements for statistical and
spatial spectral analysis. The spacing between spanwise points is uniform, with a resolution of 0.3 mm.
Additionally, a coarser hot-wire scan is conducted at x/c = 0.2 to characterize downstream instability
development. This plane consists of 27 and 50 points in the y− and z−directions respectively and
extends up to a nominal height of 3.3 mm.

The BL profile scans are scripted to begin at the wall and end in the freestream. However, the hot-
wire probe must be manually positioned at the first measurement point, which corresponds to the lower
bound of the domain. There is a limit to this, due to the physical size of the probe as well as a thermal
wall-effect [97]. At positions very close to the wall, the measurements are affected by spurious heat
transfer between the probe and the wall, and result in tails in the velocity profiles. This is addressed
in Section 3.4.1, where the wall location is determined through linear extrapolation. Considering these
factors, the closest measurement point is selected to be at a location where the BL mean velocity is 15%
of the local freestream velocity. A micro-alignment telescope is used to assist and monitor the near-wall
positioning of the probe, to verify that collisions with the wall are averted (Figure 3.7b). Preliminary
examination of the flow field performed using the IR images also enables precise positioning of each
measurement plane. Three roughness elements from the DRE array are selected to be included in the
measurement domain, located at the mid-span of the swept wing model. The traverse is shifted between
chordwise stations such that successive y − z planes follow the stationary flow features initiated by the
same three elements.
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Figure 3.8: Wall-finding procedure applied to a HWA plane at x/c = 0.156. (a) Linear extrapolation (red line) of the
mean velocity profile (◦-) at z/λ1 = 1.5 toward the wall. (b) Least-squares fit of the wall location (- - -). The three
roughness element centres are located at z/λ1 = −1, 0, 1. Markers (◦) indicate estimations of ywall at locations in-between
the roughness elements where the BL is unperturbed.

3.4. HWA Processing Techniques
3.4.1. Wall-Finding
As discussed in Section 3.3, the lower limit of the HWA measurement planes is the y−location at which
the unperturbed BL velocity is 15% of its local freestream magnitude. Measurement points closer to
the wall suffer from heat transfer between the wire and wall, disrupting the velocity measurements [97].
This leads to the formation of a tail in the local mean velocity profiles, where the velocity magnitude
retains almost constant values.

The result of this is that the actual location of the wall in the acquired velocity fields is unknown
and must be determined in a post-processing procedure. For 2-D BLs, this has typically been done
through a least-squares approach, where the local velocity profile is linearly extrapolated toward the
wall [130]. The wall location, ywall, is determined as the point at which the extrapolated velocity goes
to zero i.e. the profile satisfies the no-slip condition. The zero external pressure gradient for Blasius flow
implies that the curvature of the velocity profile at the wall, ∂2Q

/
∂y2

∣∣
y=0

, is also zero. Thus, linearly
extrapolating the profile is a valid approach and is done using points at which the mean BL velocity
falls below 35% of the local freestream velocity. The velocity profiles tails are omitted from the linear
fit.

The current work features an accelerated, 3-D BL with roughness elements, and linearly extrapolat-
ing the local HWA velocity profiles leads to systematic errors in determining the location of the wall.
As such, the Dice approach proposed by White & Ergin [130] is adopted to minimize this error (Figure
3.8). The approach involves processing the measurement plane as a whole, rather than the local veloc-
ity profiles at each spanwise measurement station. A series of velocity profiles are selectively extracted
from the unperturbed BL region in between roughness elements. Only these profiles are subjected to
the least-squares velocity fit and a representative wall location is determined at each of these spanwise
locations. A second linear fit is then performed to interpolate the obtained wall locations and deter-
mine the effective ywall as a function of the spanwise coordinate z. The local velocity profiles are then
each shifted by an amount determined by the ywall local fit value. This also corrects for misalignment
between the traverse system and the wing surface in the spanwise direction. The advantage to using
only the unperturbed inter-element velocity profiles is that the strongly decelerated regions in the wake
of the DRE are excluded from the wall-finding procedure. This minimizes the error in estimating ywall.
However, it should be noted that this error is not completely eliminated as the unperturbed BL flow
is still mildly accelerated within the measurement domain. As this acceleration is only mild, the linear
least-squares approach can still very well approximate the location of the wall.

3.4.2. Spatial Analysis
An overview of the spatial organization of the DRE wake can be obtained through the temporal mean
and standard deviation of the HWA velocity fields, Q and ⟨Q⟩ respectively. Contours of Q allow for a
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characterization of the stationary flow features within each y − z plane, while ⟨Q⟩ is representative of
unsteadiness in the flowfield. The mean velocity field is spanwise-averaged along the z−coordinate to
obtain the mean BL profile, Qz = mean(Q)z. This mean profile is computed for each chordwise plane
and subtracted from the corresponding Q field to obtain the stationary disturbance velocity field, Qd =
Q−Qz. The wall-normal disturbance profile is computed as the spanwise standard deviation of the mean
velocity field, ⟨Q⟩z , and can be used to gain an insight into the overall stationary disturbance amplitude
evolution. Additionally, a spatial Fast Fourier Transform (FFT) is applied to Qd to investigate the
spanwise spectral content of the disturbances. In this manner, the evolution of the shape function
amplitudes of individual Fourier modes can be tracked. All quantities are non-dimensionalized by the
local freestream velocity in the corresponding y − z plane, Q∞, estimated as the average of Qz for
y > δ99. Spanwise lengths are non-dimensionalized by the DRE forcing wavelength, λ1 = 8 mm, and
wall-normal lengths by the displacement thickness at x/c = 0.165, computed to be δ∗ ≈ 0.46 mm.

In the context of the current work, the stationary disturbance amplitudes are estimated through an
integration of the disturbance profiles along y, from the wall up to δ99 [92, 29]. The profile used is that
of the mean disturbance energy, for which the amplitude is then computed as:

E =
1

δ99

∫ δ99

0

⟨Q⟩2zdy . (3.9)

The effective N-factor, NE [102], is computed as per equation 2.38b where the Ēint
0 is taken to be the

mean disturbance energy amplitude estimated at the first HWA plane.

3.4.3. Welch’s Modified Periodogram
For an analysis of the unsteady fluctuations in the DRE vicinity, it is of interest to investigate the
frequency content of the HWA velocity signals. At each measurement point, the mean velocity is
subtracted from the total signal to isolate the fluctuating component i.e. Q′ = Q−Q, which is then non-
dimensionalized by the freestream velocity of the first measurement plane. An estimate of the power
spectral density (PSD) of Q′ at each point is then made using Welch’s method [129]. The method
involves splitting the entire signal into a finite number of overlapping segments. A windowing function
is applied to each signal segment to enforce periodicity at its extremes, after which a FFT is carried
out. The output of the FFT is squared and then averaged over all segments to obtain an estimate for
the signal PSD. Welch’s method offers reduced noise in the PSD estimate in exchange for frequency
bin resolution. Thus, a trade-off solution to this must be determined based on the type of application
involved. Additionally, the use of overlapping segments is to compensate for the loss in signal power
due to the windowing of each segment. The frequency resolution for temporal analysis was selected to
be 25 Hz, with the corresponding segment length computed to be Ns/25 = 2048 samples. The segment
overlap was set to be 50% of the segment length and a Hamming window was employed as the windowing
function. An estimate for the unsteady disturbance energy contained within a HWA measurement plane
is computed by first spatially integrating the PSD over the plane, followed by multiplication with the
frequency bin size:

E′(x, f) = ∆f

∫∫
yz

PSD(x, y, z, f)dzdy . (3.10)

Similarly, the energy contained within selected frequency bands can be obtained through integration of
the PSD over the plane, as well as within the band:

E′
f1−f2(x) =

∫ f2

f1

∫∫
yz

PSD(x, y, z, f)dzdydf . (3.11)
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Stationary

DRE Wake Analysis
The following chapter discusses the strategies undertaken and results relating to modelling of the station-
ary DRE wake features within a non-modal stability framework, the NmPSE. The reference baseflow
configuration considered was acquired in a previous experimental campaign by Zoppini et. al [136],
providing the structure of the DRE wake. This is used as the basis from which initial conditions for
the NmPSE solver are extracted. Growth of the primary, stationary wake mode is numerically solved
for, and a series of parametric studies are conducted to check the robustness of the NmPSE framework.
This is followed by a full numerical reconstruction of the DRE wake, provided by the analysis of the
harmonic modes. As an alternative to experimental ICs, analytical approximations of the wake struc-
ture are formulated and their validity is investigated for the primary wake mode. Lastly, a convergence
study is performed to quantify the effect of the discretization on the non-modal stability simulations.

4.1. Baseflow Matching
The experimental 3-D dual-pulse PTV investigation conducted by Zoppini et. al [136] forms the basis
for the non-modal stability simulations carried out in this work. Their research involved near-DRE
measurements within the M3J swept wing BL, at a chord Reynolds number of 2.17× 106. The baseflow
employed throughout this thesis is thus constructed to match the reference experimental BL.

The external velocity components, U∞ and W∞, needed to generate the numerical BL flow were
obtained from the experimental data set of Zoppini et. al [136] through two sources: 3-D dual-pulse
PTV measurements, and the pressure coefficient (cp) distribution. With the former, the BL profiles
were obtained by spanwise averaging the velocity fields at successive chordwise locations. The chordwise
development of the external flow was then computed as the respective averages of the U and W profiles
in the freestream. The cp distribution allows for the local BL freestream velocity magnitude, Q∞, to
be determined according to:

Q∞ = QT

√
1− cp , (4.1)

where QT is the freestream velocity in the wind tunnel test section. For a spanwise invariant flowfield
and constant W∞ = QT cos(Λ), the chordwise external velocity distribution can then be obtained
through Pythagoras theorem, U∞ =

√
Q2

∞ −W 2
∞. This approach neglects mild blockage in W∞ due

to the wind tunnel walls. The experimental external velocity components are depicted in Figure 4.1a,
within a domain of interest located in the vicinity of the DRE array (placed at x/c = 0.15). Additionally,
the chordwise external velocity is computed using the FSC power law in equation 2.5, and presented
alongside the experimental distributions. The parameters Uref, xref and m were determined according
to a least-squares fit between the experimental data and the power law. It is seen that the experimental
U∞ closely follows a FSC-type external flow within the region of interest, implying that the BL is self-
similar here. Thus, a solution of the FSC equations 2.8 would be nearly identical to that of the spanwise
invariant BLE 2.4. As per the discussion in Section 2.1, the baseflows for all stability simulations in
this chapter was hence generated through solving the FSC equations.

51
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Figure 4.1: (a) External flow matching within the stability domain (black vertical lines). U∞, W∞ obtained from PTV
measurements [136] (◦, □), experimental cp distribution (solid, dashed red line), FSC power law (solid, dashed blue line).
Blue shaded region represents the extent of the HLNS buffer. (b) Contours of the baseflow velocity component Ū within
the stability domain. The y−extent of the domain shown is 0.06H.

Table 4.1: Baseflow and stability domain parameters used for the non-modal simulations.

FSC Baseflow Stability
xref Uref W∞ m βH H yi ny xin/c xout/c

0.154 m 16.82 m/s 17.81 m/s 0.18 0.305 0.05 m 0.002 m 100 0.154 0.223

Table 4.1 lists the FSC BL and stability domain parameters used to simulate the experimental
set-up of Zoppini et. al [136]. The inflow displacement thickness, δ∗0 , was computed to be 0.433 mm,
corresponding to an inflow Reynolds number of Reδ∗0 = 496, in accordance with the experiment. These
are used to non-dimensionalize the baseflow quantities as well as the stability computations. The
stability domain is selected such that it begins at the chordwise location where the experimental initial
conditions are sampled, being x/c = 0.154 for all simulations. The outflow station is chosen to be
at x/c = 0.223, which lies further downstream than the last station for which experimental data is
available. This is done to allow for a sufficient domain length over which stationary CFI may emerge
in the far-wake, and also to account for the buffer region used with the HLNS.

Similar to the test case set-up in Section 2.3.2, the vertical extent of the stability domain, H,
is set to 50 mm such that the domain cut-off error is negligible. The pseudo-spectral wall-normal
discretization is biased so that half of the Chebyshev collocation points lie below yi = 2 mm, which is
approximately the maximum thickness of the experimental BL in the measurement region. The density
of grid points in the wall-normal direction is ny = 100 for all simulations, considered adequate based
on the rapid convergence of the Chebyshev discretization with refinement. The chordwise grid density,
nx, is selected on the basis of the parameter ᾱr∆x̄, where ᾱr is roughly estimated from a modal LPSE
analysis under the same conditions. This is adjusted depending on the harmonic in question. The
results are noted to be sensitive to the choice of nx, as evidenced by a convergence study presented at
the end of this chapter. Finally, the buffer region was selected to start at 85% of the domain length
for all computations involving the HLNS. Figure 4.1b depicts the chordwise development of the BL
baseflow, within the defined stability domain.

4.2. Experimental Initial Conditions
4.2.1. DRE Wake Structure
The DRE forcing configuration selected for use in numerical stability analyses was that of k3, defined
in Section 3.1, and also investigated by Zoppini et. al [136]. The configuration is characterized by
a roughness Reynolds number of Rek = 192 and lies within the critical regime, where the stationary
DRE-wake features are expected to develop into stationary CFI at downstream locations [62, 136].

Figure 4.2a presents a wall-normal slice of the stationary chordwise velocity disturbance field, u′,
measured using 3-D dual-pulse PTV [136]. This was obtained in a manner similar to that defined for
the spatial analysis of the HWA fields in Section 3.4.2. The key flow features within the DRE-wake
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Figure 4.2: (a) Wall-normal slice of the experimental u′/U0 disturbance field aft of the DRE array at y/δ∗0 = 0.55. Black
dashed line is the location at which the initial conditions are sampled. Contours of (a) u′/U0 (b) 10v′/U0 (c) w′/U0

disturbance fields at the sampling location.

are apparent, as discussed in section 1.4.3 and reported by previous investigations [14, 62, 136]. A
set of low and high-speed velocity streaks induced by the HSV system develops aft of each roughness
element. The strength of the central low speed streak increases rapidly up to x/c = 0.153, after which
it undergoes gradual decay. The high-speed streaks begin to increase in strength shortly after the
low-speed maximum. The outboard high-speed streak peaks in amplitude at x/c = 0.16 after which
it decays, while the inboard streak is sustained to the end of the measurement region. At x/c = 0.18,
the disturbance field begins to resemble that induced by stationary CFI. The asymmetry between the
outboard and inboard streaks can be attributed to the 3-D nature of the flowfield, with structures
co-rotating with the crossflow velocity profile being sustained [62].

The initial plane from which the ICs for the NmPSE are extracted was selected to be at x/c = 0.154.
This is located at approximately where the low-speed streak is at its maximum amplitude, and where
the high-speed streaks begin to amplify. The u′, v′ and w′disturbance fields at the initial plane are
presented in Figure 4.2b-d. Contour lines of the local, steady BL velocity u are superimposed on the
disturbance fields. The central low-speed region aft of each roughness element attains its maximum
at y/δ∗0 ≈ 0.55, after which it decays into the freestream. The DRE-wake is also noted to be highly
localized, with the regions between elements featuring largely unperturbed flow. This is in agreement
with findings by Ergin & White [34], wherein the wake of each element in the DRE array resembles
that of an isolated roughness element for λ1 > 3dD.

4.2.2. Extraction of ICs
Fourier Analysis of Initial Plane
A spanwise FFT is performed on the chordwise disturbance field, ud, at the initial plane (4.2b), in order
to determine its spatial spectral content. Figure 4.3a presents the distribution of Fourier amplitudes
among spanwise modes of wavelength λ. The largest wavelength at which spectral energy is concentrated
is that of the DRE forcing, i.e. λ1 = 8 mm. However, spectral peaks are identified over a wide range
of super-harmonics (smaller wavelengths) of the forced mode. This is a consequence of the highly
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Figure 4.3: (a) Spanwise FFT of the u′ field at the initial plane (x/c = 0.154). (b) ũ shape function amplitudes of the
forced mode and first three harmonics, compared with the experimental velocity standard deviation profile.

localized nature of the near-element flowfield, resulting from the finite diameter, dD, and inter-element
spacing, λ1, of the DRE array [139]. The velocity perturbations aft of the element can thus be considered
pseudo-pulses, containing a wide spectrum of spanwise frequencies. These frequencies do not necessarily
correspond to natural modal instabilities, i.e. eigensolutions of the Orr-Sommerfeld and Squire system
1.6, but are representative of the DRE wake features in Fourier space. It is seen from Figure 4.3a
that spectral energy is nearly equally distributed among the primary mode and its first four harmonics,
which altogether comprise up to 56% of the total disturbance energy in the DRE wake.

The shape function amplitudes corresponding to the first three modes are extracted and shown in
Figure 4.3b, along with the spanwise standard deviation profile, ⟨u′⟩z. The primary mode is labelled as
λ1 and higher harmonics are subscripted to follow this. The amplitude of the λ1 mode falls significantly
below the total disturbance amplitude represented by ⟨u′⟩z, further highlighting the contribution of
the super-harmonics in the elements vicinity. This also implies that their inclusion is necessary in
numerically reconstructing the DRE wake within a non-modal framework. All modes are spatially well-
contained within the BL, peaking in amplitude at a wall-normal distance comparable to the element
height.

Interpolation onto Numerical Stability Grid
The Fourier modes extracted from the DRE wake were each subjected to a pre-processing routine in
order to ensure compatibility with the numerical solvers (Figure 4.4). The complex shape functions,
ũ, ṽ, w̃, were first forced to a value of zero at and beyond a height corresponding to the local BL thickness.
This was done to avoid artefacts in the interpolation of these shape functions onto the stability grid
outside of the BL, as the disturbances are expected to exponentially decay into the freestream. A
value of zero was also prescribed at the wall, to satisfy the no-slip condition. The real and imaginary
components of each shape function were then separately interpolated onto the Chebyshev y−grid at
the initial marching station, using Piecewise Cubic Hermite Interpolating Polynomials (PCHIP) (see
Fritsch & Carlson [38]). The use of PCHIP proved to be more robust to the disturbances affecting the
experimental data set and better interpolated flat regions, as compared to using cubic splines.

The interpolated shape functions were treated with a smoothing filter, in an effort to remove residual
noise that was carried over from the PTV shape functions during interpolation. The smoothing filter
operated by dividing the discrete shape function vectors into windows, over which a linear regression was
performed. The windows were selected to be ten grid elements in length, to best preserve the original
shape of the ICs after smoothing. While the smoothing filter eliminates discontinues arising from the
PCHIP interpolation, allowing for more compatibility with the numerical solvers, it can possibly affect
the results of the non-modal stability analyses. Thus, its effect on the growth of the primary mode, λ1,
is investigated in Section 4.2.3.

4.2.3. Primary Mode Analysis
As the monochromatic CFI mode that emerges downstream of the DRE wake has a wavelength equal to
the inter-element spacing [92, 111, 139], it is of foremost interest to simulate the non-modal evolution
of the primary Fourier mode, λ1 = 8 mm, within the wake.
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Figure 4.4: (a,d) Experimental shape functions extracted from PTV data. (b,e) Shape functions interpolated onto the
stability grid. (c,f) Interpolated shape functions with additional smoothing. Solid, dotted and dashed lines correspond to
ũ, ṽ and w̃ respectively. Blue line indicates the local δ99.

The disturbance velocity ICs for the primary mode were extracted as per the preceding discussion,
and interpolated onto the stability grid at the inflow of the domain (Figure 4.4). The baseflow and
stability grid parameters employed for these simulations were listed in Table 4.1. The chordwise grid
density nx was selected to be 300 points based on LPSE estimates for ᾱr, such that the parameter
ᾱr∆x̄ = 0.146. Further inputs to the NmPSE and HLNS are the non-dimensional spanwise wavenumber,
β̄ = 2πδ∗0/λ1 = −0.316, and the non-dimensional frequency, ω̄ = 0, corresponding to the stationary,
primary CFI mode. Once again, the minus sign in β̄ arises from the positive convention for W∞ and ᾱ.
Figure 4.5a depicts the disturbance velocities at the initial plane, for the λ1 Fourier mode in the DRE
wake.

To complete the system of experimental ICs prescribed at the inflow station, the shape function
for the disturbance pressure, p̄, must also be specified along with the disturbance velocity components.
This however, is not readily available from the PTV data set. As a test, the disturbance pressure was
prescribed in two ways: it was either set to zero at the inflow station or computed as a modal ILST
solution. It was seen that either choice of the initial disturbance pressure did not affect the growth of
the velocity perturbations for both the NmPSE and HLNS. Thus, for the sake of simplicity, the IC for
p̄ was set to zero for all numerical computations.

The NmPSE requires an additional input in the form of the chordwise wavenumber, ᾱ, which is
omitted from the HLNS framework. This is obtained as an approximation from the PTV data using
the chordwise disturbance velocity, u′. The classical definition α = ℜ((1/iu′) ∂u′/∂x ) [3] is employed,
evaluated at the wall-normal location where the PTV shape functions for u′ attain their maximum.
This ensures consistency with the computation method for ᾱ used by the NmPSE (Section 2.2.1). The
experimental ᾱ estimates for the λ1 mode are shown as a scatter plot in Figure 4.5b. The estimates
are rather noisy in the element vicinity, but start to converge at further downstream locations where
the wake begins to take on a modal nature. The initial ᾱ value for the NmPSE is approximated as the
median of the scatter, with the assumption that its variation is low within the DRE wake. For the λ1
mode, this results in ᾱ0 ≈ 0.29.

The evolution of disturbance energy for the λ1 mode is presented in Figure 4.6a. This is quantified
using the N-factor, NE , defined as per equation 2.38. As predicted by the NmPSE, the disturbance
energy first begins to decay strongly, reaching its minima approximately 20δ∗0 lengths downstream of the
initial plane. This is followed by a similarly rapid phase of energy growth up to around 60δ∗0 downstream
lengths, after which the growth rate begins to decrease, resembling that of exponential disturbance
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Figure 4.5: (a) Contours of the disturbance velocity u′ for the primary Fourier mode, at the initial plane. Vectors
represent the vectorial sum of the v′ and w′ components. (b) Experimental estimates for the wavenumber ᾱ (◦) in the
DRE wake region. Solid red line represents the median value of the scatter.

Figure 4.6: (a) Evolution of the λ1 DRE wake mode with the NmPSE (solid red line), HLNS (dashed red line) and from
PTV data [136] (◦). Solid blue line represents a modal LPSE computation. (b) Normalized ũ shape functions for the
NmPSE (solid red line), LPSE (solid blue line) at the outflow station. PTV data (◦) at the last available x−station is
superimposed.

amplification. This behaviour is reproduced by the HLNS, agreeing very well with predictions by the
NmPSE. However, mild deviations between the two are observed during the phases of rapid decay
and growth in the element vicinity. The NmPSE is seen to under-predict the decay phase, while over-
predicting non-modal amplification downstream of the minima. The energy minima itself is slightly
over-predicted by the NmPSE. This could be a result of violation of the slow variance condition for
the NmPSE in these regions of strong growth/decay, which is not the case for the HLNS. A modal
computation using the LPSE is also shown for comparison purposes, initialized with an ILST solution
at the inflow. The pure CFI mode is unstable within the stability domain and undergoes monotonic,
exponential energy growth. Beyond 100δ∗0 downstream lengths, the NE curves for the NmPSE, HLNS
and LPSE are parallel, and energy growth rates are equal. This indicates that the non-modal solvers
correctly predict the emergence and exponential amplification of the stationary CFI mode outside of
the DRE wake. It is also of interest to note the lower outflow N-factor predicted by the non-modal as
compared to the LPSE, aligning with the hypothesis by Zoppini et. al [139] that transient growth/decay
in the DRE wake acts to lower the effective amplitude of the induced CFI.

While the non-modal solvers agree well with each other, there is a distinction between the exper-
imental PTV growth curves and numerical predictions. The PTV disturbance energy decays more
rapidly downstream of the inflow plane and attains its minima at about half the N-factor predicted by
the non-modal solvers. The minima is also reached at half the distance, located at approximately 10δ∗0
lengths downstream of the inflow plane. The energy recovery rate after the minima is close to that
of the non-modal solvers, although still slightly over-predicted numerically. The disturbance is ampli-
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Figure 4.7: (a) Contours of disturbance energy for the λ1 mode. Markers (□) indicate local energy maxima. (b) Shape
functions of the chordwise disturbance velocity, ũ, for the NmPSE (solid red lines), HLNS (dashed red lines) and from
PTV [136] (◦). Dashed black line represents BL δ99.

fied exponentially beyond 50δ∗0 downstream lengths, aligning with the modal LPSE curve at a slightly
lower outflow N-factor. As a result of the lower minima, this slightly larger than the outflow N-factor
predicted by the non-modal solvers. Although the non-modal evolution phase for the experimental λ1
mode occurs over a shorter chordwise scale, the overall trend is well captured by both the NmPSE and
the HLNS. This is in contrast to the LPSE, which is limited to predicting modal growth as per the
ansatz 1.9, where all three velocity components are constrained to grow according to a single ᾱ in the
phase function. Thus, it does not capture the region of transient energy decay/amplification in the
DRE wake.

The shape function amplitudes of the chordwise disturbance velocity component at the outflow
station are presented in Figure 4.6b. The shape functions are normalized by their maxima and the
wall-normal coordinate by the local boundary layer thickness, δ99. The respective predictions by the
LPSE and NmPSE are seen to be nearly identical. This further validates that the NmPSE correctly
evolves the λ1 Fourier mode extracted from the DRE wake into the OS eigenfunction corresponding
to modal CFI. This is also reflected by the experimental PTV data, which is in good agreement with
the numerical shape functions. The mild mismatch could be amounted to the difference in sampling
location between experiment and computations, as the last available experimental station is upstream
of the final marching station.

A deeper insight into non-modal development predicted by the NmPSE can be gained by character-
izing the development of the λ1 shape functions throughout the stability domain. Figure 4.7a presents
the evolution of disturbance energy additionally as a function of the wall-normal coordinate. Here,
Ē(x̄, ȳ) is evaluated as per equation 2.38a although the wall-normal integration is not performed. The
markers (◦) follow the maxima of the disturbance energy profile through its downstream evolution. At
and near the inflow, disturbance energy is largely concentrated around the peak in the non-modal ICs,
but starts to diffuse during the decay phase. The energy peak itself does not vary much as the mode
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decays. However, just upstream of the energy minima at x − x0 = 20δ∗0 , a jump in the disturbance
energy peak is observed. The new maxima is located at y/δ∗0 ≈ 1.7, nearly half of the local BL thickness,
and is remains here during the initial phase of disturbance energy recover. At x − x0 = 40δ∗0 , energy
is seen to spread lower into the BL and the peak experiences a second jump, moving closer to the wall.
Downstream of this location, the disturbance energy profile begins to undergo exponential amplification
while diffusing in the wall-normal direction. The location of the energy peak remains fairly constant
relative to the local BL thickness, shifting in the wall-normal direction as per the BL development.

The peak switching behaviour seen in the disturbance energy profiles is further revealed through the
ũ disturbance shape function evolution in Figure 4.7b. For the NmPSE, the initial peak in the shape
function rapidly decays, resulting the initial non-modal energy decay as seen in Figures 4.7a and 4.6a.
As the energy minima is approached, the secondary upper peak begins to emerge and overtakes the
lower peak in amplitude. The switch in the energy peak is observed around this location. Both peaks
undergo amplification during the transient energy growth phase, although the amplification experienced
by the lower peak is larger. At around 40δ∗0 downstream lengths, the two peaks are of equal amplitude
and merge into a single structure further downstream. The shape function then grows exponentially
and begins to resemble that of the stationary CFI mode. The evolution of ũ predicted by the NmPSE
qualitatively resembles that of the experimental λ1 mode, although there exist some key differences. In
addition to evolving over a short chordwise distance, peak switching does not occur in the experimental
shape function. Although the initial velocity streak undergoes rapid decay and a secondary upper peak
emerges, the lower peak remains dominant. Downstream of the energy minima, the upper peak amplifies
and merges with the lower peak close to x− x0 = 60δ∗0 . The disturbance then evolves as a modal CFI.

The effect of peak-switching is rather crucial with the NmPSE framework, as ᾱ is updated based
on the maxima in the ũ shape function. The locations at where a jump in the energy peak is observed
features a discontinuous change in ᾱ, and a subsequently large ∂ᾱ/∂x̄ . This could possibly result in
some level of error being introduced into the solution at these marching stations. Figure 4.7b also
presents the evolution of ũ predicted by the HLNS for comparison, as ᾱ does not influence its solution.
The shape functions of the non-modal solvers generally agree very well, although mild deviations exist
around their local maxima. It is also noted that these deviations become more apparent at locations
downstream of a jump in the energy peak. However, as previously discussed, the deviations may also
be related to the slow variance assumption for the NmPSE shape functions.

Effect of Marching Scheme
As discussed in section 2.2.3, the NmPSE is marched in the chordwise direction using the first-order
backward Euler scheme 2.33a. In addition to this, a test case was run with the trapezoidal scheme as
shown in 2.33b, to investigate if the use of a higher-order x−discretization might prove beneficial for the
NmPSE. The λ1 mode was simulated, using a setup identical to that in the previous section. However,
a solution could not be obtained using the trapezoidal scheme with the parameter ᾱr∆x̄ = 0.146. In
particular, the inner wavenumber loop for ᾱ was seen unable to converge immediately downstream of
the inflow station. The inability of the trapezoidal NmPSE to converge persisted with refinement of
the x−grid, although a solution could be obtained for a coarser grid with ᾱr∆x̄ = 0.292. To facilitate
comparison with the backward Euler NmPSE, the test was instead performed at this level of refinement.

Figure 4.8a presents the evolution of NE for the backward Euler and trapezoidal NmPSE solvers. It
is seen that two curves disagree significantly, with trapezoidal scheme predicting lower growth rates as
well as a much lower energy minima. The region of exponential growth close to the outflow also features
a lower growth rate as compared to the backward Euler solution, indicating that modal evolution may
be erroneously predicted. While the trapezoidal solution does lie closer to the experimental data set,
this is assumed to be purely coincidental. A standout feature is the appearance of oscillations in the
trapezoidal NmPSE growth curves, which are most prominent in the region of non-modal disturbance
evolution between the inflow and 60δ∗0 lengths downstream. These appear to originate as a result of
spurious oscillations in the λ1 shape function, as can be seen in the the comparison between Figure 4.8b
and Figure 4.8c. With ũ for example, the magnitude of the shape function itself exhibits oscillatory
behaviour, contrary to oscillations typically being represented by the shape function phase, arg(ũ).
Figure 4.8c also reveals that the oscillations are rather uniform throughout the stability domain, with
a wavenumber estimated to be approximately 0.62. It is interesting to note that this is nearly equal to
the first harmonic of the modal ᾱ extracted at the outflow station, as predicted by the NmPSE, HLNS
as well as the LPSE.
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Figure 4.8: (a) Growth of λ1 predicted by the backward Euler NmPSE (dashed red line), trapezoidal NmPSE (solid red
line) and from PTV data [136] (◦). Contours of the ũ shape function amplitude shown for (b) backward Euler NmPSE
and (c) trapezoidal NmPSE.

Figure 4.9: (a) Growth of λ1 computed with the NmPSE for varying IC smoothing. Non-smoothed (solid black line),
smoothing windows of 5 (dashed red line), 10 (solid red line) and 20 grid elements (dotted red line), and PTV data [136]
(◦). (b) Shape function magnitude and (c) phase for the various smoothing windows.

The close agreement between the backward Euler NmPSE and the HLNS in Figure 4.6a implies that
the use of a trapezoidal marching scheme results in erroneous predictions for the non-modal growth
curves. This combined with the presence of spurious oscillations in |q̃| motivated the use of the backward
Euler scheme for all further non-modal computations with the NmPSE.

Effect of IC Smoothing
Noise in the PTV ICs supplied to the NmPSE and HLNS is reduced using the smoothing procedure
described in Section 4.2.2. It is however important to determine whether this smoothing actually affects
the results of the non-modal computations, and if so, quantify by how it does so. The strength of the
smoothing filter is based on the window length selected for the linear regression. Tests with the NmPSE
for the λ1 Fourier mode were run for window lengths of five, ten and twenty y−grid elements, as well
as with no smoothing applied.

From Figure 4.9a it can be seen that the energy N-Factor curves are practically unaffected for the
smoothing windows of five and ten grid elements, as compared to the case with no additional smoothing.
The strongest smooth applied does however cause a noticeable change in the initial, non-modal growth
phase of the mode. The growth rate downstream of the inflow is larger for this case, and a lower energy
minima is attained at a slightly earlier location than with the non-smoothed IC. The cause for this is
possibly revealed in Figures 4.9b and 4.9c. It is seen that the largest smoothing window causes non-
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Table 4.2: Stability parameters for the DRE-wake Fourier harmonics.

Harmonic λ (mm) β̄ nx ᾱr∆x̄
λ2 4 -0.69 600 0.139
λ3 2.667 -1.035 900 0.136
λ4 2 -1.38 1200 0.142
λ5 1.6 -1.725 1500 0.149

negligible alterations in the ũ shape function, which now deviates from what was originally extracted
in the DRE wake. These deviations are sufficient enough such that λ1 mode is no longer correctly
represented in the NmPSE framework and evolves differently as a result. The five and ten grid element
windows retain the mode shape to a much better extent, leading to a match in growth curves for these
cases. It is thus evident that the NmPSE is sensitive to the shape of the IC, and that the smoothed
shape functions must closely follow the mean profile of the raw, interpolated shape functions in order
to ensure repeatable non-modal growth computations. This concept is further explored in Section 4.3,
where the use of analytic approximations of the λ1 shape functions are investigated.

4.2.4. Analysis of Higher Harmonics
Figure 4.3a reveals that spectral energy is not solely concentrated within the primary Fourier mode at
the initial plane, with the first four harmonics of λ1 also being significant contributors. Although these
harmonics are expected to decay downstream of the DRE-wake region as stationary CFI corresponding
to λ1 begin to emerge [62, 136] (Figure 4.2a), it is still of interest to simulate their evolution within
the non-modal framework. The linearisation employed within the NmPSE and HLNS implies that each
spanwise harmonic can be simulated independently, after which the resulting disturbances fields may
simply be subjected to an inverse FFT to numerically reconstruct the DRE wake.

The ICs for the harmonic Fourier modes are extracted from the experimental PTV data [136] through
the procedure discussed in Section 4.2.2, for the λ1 mode, using a PCHIP interpolation with additional
smoothing. The initial valued for ᾱ is also extracted as previously discussed, as the median of its PTV
estimates. All modes are stationary (ω̄ = 0), and their corresponding non-dimensionalized spanwise
wavenumbers are presented in Table 4.2. While the baseflow and wall-normal discretization are not
changed for the stability calculations, the chordwise discretization is adjusted for each harmonic so as
to maintain a similar ᾱr∆x̄ parameter through all computations. This ensures that a sufficient number
of chordwise wavelengths are still represented by the stability grid for higher harmonics.

The chordwise evolution of each wake harmonic is presented in Figure 4.10, for both experimentally-
derived and ILST ICs, quantified throughNE . Close to the initial plane, both the NmPSE and the HLNS
are in good agreement with each other for all harmonic modes. In fact, this agreement remains fairly
good for the second and third harmonics right up to the outflow station for the analysis. Downstream
of x − x0 = 20δ∗0 , disagreement between the two non-modal solvers is evident for the first and fourth
harmonics. This rather inconsistent mismatch among harmonics seems unlikely to stem from rapid
mode decay and violation of slow-variance for the NmPSE, as the third harmonic decays faster than
the first and similarly to the fourth.

The general growth trend for second, third and fourth harmonics is seen to agree well with the
experimental data shortly downstream of the initial plane, with the modes experiencing mild transient
growth followed by strong transient decay. While the decay phase compares well with experiment
initially, the non-modal solvers predict a short stretch of rapid decay beyond x−x0 ≈ 40δ∗0 . This decay
slows as the outflow is approached and begins to resemble that from LPSE predictions. As a result, the
numerically predicted outflow N-factors are significantly lower than those of the experimental dataset.
The situation is largely different for the λ2 harmonic. From Figure 4.10a it is evident that the numerically
predicted growth trend deviates significantly from the experiment, with the mode transiently growing
downstream of the inflow versus the monotonic decay seen in the experimental data. The experimental
energy decays up to approximately 30δ∗0 downstream lengths after which it begins to slowly recover.
This is not predicted by the non-modal solvers, for which the λ2 mode is seen to undergo continuous
decay up to the outflow. The outflow decay rates are seen to closely resemble the exponential decay
predicted by the LPSE, although slightly over-predicted by the NmPSE.
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Figure 4.10: Non-modal growth of the (a) λ2, (b) λ3, (c) λ4 and (d) λ5 DRE wake modes, computed with the NmPSE
(solid red line), HLNS (dashed red line) and from PTV data [136] (◦). Solid blue line represents a modal LPSE computation
(unavailable for λ5).

Numerical Reconstruction of the DRE Wake
The disturbance fields corresponding to the λ1 Fourier mode and its harmonics, computed with the
NmPSE and HLNS, can be superposed to numerically reconstruct the evolution of the DRE wake. This
allows for the overall behaviour of the DRE wake to be compared with the similarly reconstructed
experimental PTV dataset [136]. This reconstruction is performed using an inverse FFT, including the
contributions of the first five Fourier wake modes. As the harmonic disturbance fields were computed
on a finer chordwise grid, these are sub-sampled onto the coarsest grid level (corresponding to λ1) in
order to enable reconstruction.

The evolution of total1 disturbance energy in the DRE wake is computed from the spanwise standard
deviation profiles, ⟨q′⟩z. These profiles are then used to evaluate the total NE through equation 2.38.
Figure 4.11a shows that the initial evolution of total disturbance energy compares quite well between
non-modal solvers and experiment, although this agreement is short-lived. Downstream of x−x0 = 10δ∗0 ,
the numerical energy decays at a higher predicted rate, and attains a lower minimum as compared to the
PTV trend. However, it is noted that both the numerical and experimental N-factor attain their energy
minimum at a similar chordwise station, namely x− x0 = 40δ∗0 . The total energy recovers downstream
of this station and begins to exhibit exponential growth toward the outflow, as compared with the
representative modal LPSE computation. The NmPSE and HLNS curves are largely in agreement with
each other, although slight discrepancies are seen beyond the energy minima.

The reconstructed chordwise disturbance velocity fields allow for a topological characterization of
DRE wake flow as predicted by the NmPSE and HLNS (Figures 4.11b and 4.11c). Qualitatively, both
the NmPSE and HLNS reproduce the evolution of the wake reported by Zoppini et. al [136] quite well.
The central low-speed streak and the accompanying inboard and out-board streaks are predicted as
seen in Figure 4.2a, although distinctions can be made between both non-modal solvers. In particular,
the emergence of stationary CFI from the streaky structures downstream of x− x0 = 40δ∗0 is in better
agreement with experiment for the HLNS. As seen in Figure 4.2a, the inboard streak develops into the
corresponding high-speed region for stationary CFI, while the outboard high- and low-speed streaks have

1The use of total in this context implies that the flowfield is reconstructed using the fundamental Fourier mode and its
first four harmonics (λ1−5). This terminology is maintained for further discussions.
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Figure 4.11: (a) Total energy N-factor for the λ1−5 reconstructed disturbance field computed with the NmPSE (solid
red line), HLNS (dashed red line) and from experiment [136] (◦). Solid blue line is an LPSE computation for the CFI
mode corresponding to λ1. Contours of the chordwise disturbance velocity field reconstructed with the (b) NmPSE and
the (c) HLNS at y/δ∗0 = 0.55.

decayed by x−x0 = 40δ∗0 . The low-speed CFI region then develops from the decaying low-speed streak
expanding into the inter-element flowfield. The NmPSE does predict a similar behaviour, although this
appears to be spanwise phase-shifted beyond the x− x0 = 40δ∗0 point. This is evident on inspection of
the stationary CFI for the NmPSE at the outflow, which are phase-shifted with respect to the HLNS.
The reconstruction of the NmPSE disturbance fields involves the use of ᾱ(x̄), which is absent in the
HLNS framework. The peak-switching described in section 4.2.3 induces a discontinuous change in ᾱ,
which in turn manifests as the phase change seen in 4.11b. This effect seems to be primarily qualitative,
although it is noted that the NmPSE and HLNS N-factors in 4.2a exhibit slight differences after the
switch in the energy peak. This could be due to the same ∂ᾱ/∂x̄ errors hypothesised to occur in section
4.2.3.

Further quantification of the evolution of the total disturbance field is done through the ⟨u′⟩z profiles,
presented in Figure 4.12a. As with the disturbance energy N-factors in Figure 4.11a, the non-modal
solvers and experiment are in good initial agreement. However the numerical ⟨u′⟩z profiles experience a
large decrease in peak amplitude leading up to and downstream of x−x0 = 40δ∗, in correspondence with
the lower energy minima seen in Figure 4.11a. Notwithstanding the amplitude discrepancy, the predicted
overall change in profile shape does resemble the experimental data. The initial peak undergoes decay,
followed by the appearance of a secondary hump at y/δ∗0 ≈ 2. The lower peak and the secondary hump
eventually merge during the energy recover phase, resulting in a profile corresponding to stationary CFI
as the outflow is approached. It is also seen that the profiles corresponding to both the NmPSE and
HLNS are effectively identical throughout the domain. Contours of the reconstructed u′ disturbance
velocity component at the inflow and outflow are shown in Figures 4.12b and 4.12c, computed with the
NmPSE. The outflow features a disturbance pattern characteristic of stationary CFI, having evolved
from the highly localized disturbance field in the DRE wake. The high-speed peaks in the inter-element
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Figure 4.12: (a) Spanwise standard deviation profiles of the chordwise disturbance velocity, ⟨u′⟩z , from the NmPSE (solid
red line), HLNS (dashed red line), and PTV [136] (◦). Black dashed line represents BL δ99. Reconstructed chordwise
disturbance velocity at (b) the initial plane and (c) x− x0 = 120δ∗. Black contour lines of u/U0 are superimposed.

region at the inflow are the result of using a finite number of discrete spanwise modes to reconstruct
the wake.

4.2.5. Intermediate Discussion
The numerical analysis of all contributing Fourier wake modes reveals pertinent differences in the total
and modal disturbance energy between simulation and experiment. Figures 4.11 and 4.12a show that
the non-modal solvers over-predict the decay of total energy in the DRE wake, while the topological
features are well represented numerically. The largest qualitative difference is seen in the evolution of the
first Fourier harmonic in Figure 4.10a, for which predicted behaviour is in opposition to experimental
observations by Zoppini et. al [136]. As the NmPSE and HLNS have largely predict similar disturbance
evolution, it is difficult to pinpoint the exact reason for the discrepancy with experiment at this stage.
Henningson [47] notes that the evolution of total disturbance energy is through purely linear mechanisms,
given the decomposition 1.3. In this light it could be argued that the disagreement seen in Figure 4.12a
is not related to unaccounted-for non-linearity, but possibly due to an imperfect translation of the
experimental ICs into a numerical stability framework. Non-linear behaviour in the individual modes
however could possibly be significant. The ICs extracted from the DRE wake are of finite amplitude,
yet are treated as infinitesimal in a linearised framework. This discrepancy could be the source of the
behaviour exhibited by the first harmonic, and the decay mismatch seen with λ1. The decomposition 1.3
itself is rather questionable in the experimental framework, as there exists large ambiguity in separating
the baseflow and disturbance field given the experimental DRE wake. The assumption of spanwise
invariance for the baseflow thus comes into question. However the qualitative agreement seen with the
numerical predictions, particularly with Figures 4.11b and 4.12b, is more inclined with the baseflow
being spanwise invariant, at least within the stability domain considered.
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Table 4.3: Parameters for the Gaussian analytic shape functions.

Component Aq Hq Φq99

ū 0.06 4.1055× 10−4 π/2
v̄ 0.045 7.6978× 10−4 0
w̄ 0.005 4.1055× 10−4 π/2

Figure 4.13: (a) Amplitude and (b) phase of the λ1 shape functions. Blue lines correspond to analytic ũ (—), ṽ (-.-),
and w̃ (- - - ) while markers correspond to experimental ũ (◦), ṽ (□), and w̃ (△).

4.3. Analytic Initial Conditions
4.3.1. Approximation of the Experimental Wake
The DRE-wake shape functions for the primary mode, λ1, and its harmonics (Figures 4.3b and 4.4) can
be characterized as resembling 3-D velocity streaks, featuring a distinct peak in amplitude close to the
wall for the u′ and w′ disturbance velocities. As these streaks are rather regular in their structure, it is
of interest to instead approximate the PTV-extracted ICs with generalized, analytical functions.

The effect that an analytic approximation of the PTV ICs has on non-modal growth is investigated
for the λ1 Fourier mode. The analytic functions themselves are selected to be linearly-weighted Gaussian
functions, of the form:

q̄ =
√
2

Aq
Hq

ȳe
(0.5− ȳ2

Hq +iΦq) , (4.2)

where Aq = (Au, Av, Aw)
T is an amplitude parameter, Hq = (Hu,Hv,Hw)

T is a height parameter, and
Φq = (Φu,Φv,Φw)

T is used to control the shape function phase. Φq is a function of ȳ that linearly varies
the shape function phase from zero at the wall to a prescribed angle Φq99 at the BL edge. The linear
variation was selected to investigate whether the use of a first-order phase approximation would be able
to sufficiently reproduce the experimental IC results. The values of these parameters were selected so
as to best approximate the PTV shape functions for the λ1 Fourier mode and are listed in Table 4.3,
with the shape functions depicted in Figure 4.13. The BL baseflow, stability grid, and inputs ω̄ and β̄
were defined identically to Section 4.2.3, and the initial value for ᾱ was also extracted from the PTV
data as previously discussed.

Figure 4.14a compares the evolution of λ1 disturbance energy for the experimental ICs and their
analytic approximations, computed with both non-modal solvers. For a rather basic approximation
of the experimental ICs, the growth curves are seen to compare generally well. The initial energy
decay and recovery is predicted with the analytic ICs, as well as the downstream exponential growth.
However while these trends are predicted similar between solvers and IC types, the match between
them is not exact. This is expected to an extent, based on the results shown in Figure 4.9a where the
non-modal growth computations were seen to be affected by noticeable changes in the shape function.
The NmPSE curves for both ICs in Figure 4.14a match well during the initial decay phase, although the
energy minima is over-predicted with the analytic ICs. Subsequent energy recovery is under-predicted,
with the outflow N-factor being slight lower for the analytic case. Similar behaviour is observed with the
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Figure 4.14: (a) Non-modal growth of λ1 with analytic (red) and experimental (black) ICs, computed with the NmPSE
(solid lines) and HLNS (dashed lines). Contours of the ũ shape function amplitude shown for (b) analytic and (c)
experimental ICs computed with the NmPSE.

HLNS, although the outflow N-factor recovers such that both the experimental and analytic IC scenarios
match. While the analytic IC growth curves differ slightly from their experimental IC counterparts, the
NmPSE and HLNS appear to be in better agreement for the former scenario than with the latter.

An examination of the ũ shape function evolution is also carried out with Figures 4.14b and c, being
similarly predicted for both experimental and analytic ICs. However unlike with the experimental ICs,
peak-switching is not observed for the analytic approximation. This is seen close to x − x0 = 20δ∗0 ,
where the lower peak in Figure 4.14b is consistently higher in amplitude than the upper peak.

4.3.2. Parametric Studies
From Figure 4.14, it appears that the use of approximate analytic ICs results in fairly good predictions
for non-modal growth computed with PTV-extracted ICs. However, it is of interest to understand how
sensitive the NmPSE and HLNS are to the structure of these analytic ICs, particularly in the selection
of the shape function amplitude peak and the linearly-varying phase approximation. These parameters
are investigated in the following section for the λ1 Fourier mode, employing the baseflow and stability
grid defined in Table 4.1.

Location of Maximum Disturbance Amplitude
The wall-normal location of the disturbance amplitude peak for the analytic shape functions can be
controlled through the parameter set Hq. For this series of tests, non-modal growth is computed for
0.5Hq, Hq and 2Hq. The parameter Φq is set as per Table 4.3 for the three cases, as is Aq which in any
case has no effect in a linearised framework. Figures 4.15b-d depict the analytic IC for the chordwise
disturbance velocity, for the three Hq cases investigated.

The non-modal evolution of disturbance energy is presented in Figure 4.15a, represented by the
energy N-factor. It is evident that the location of the disturbance amplitude peak quite significantly
affects the extent to which the λ1 mode grows non-modally. The energy corresponding to the distur-
bance located closest to the wall undergoes strong decay immediately downstream of the initial plane,
followed by rapid energy recovery beyond x− x0 = 10δ∗0 . The energy growth rate appears to gradually
relax into an exponential trend as the outflow is reached. The opposite is seen for the disturbance
located furthest from the wall, where growth and decay rates are lower as compared to the originally
positioned disturbance peak. All three cases exhibit exponential growth at the outflow, although the
experimental IC growth curve is best represented using the original Hq analytic IC. It is also noted
that the NmPSE and HLNS predictions are not in perfect agreement, with discrepancies similar to
those seen in the previous sections of this chapter. The two non-modal solvers generally agree well
immediately downstream of the inflow up to the energy minima, after which the disagreement begins
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Figure 4.15: (a) Analytic IC energy growth with the NmPSE (solid lines) and HLNS (dashed lines) for varying Hq. Black
dotted is an NmPSE computation with experimental ICs. Contours of the analytic chordwise disturbance velocity IC for
λ1, for (b) 0.5Hq (c) Hq and (d) 2Hq. Black contour lines represent 5 levels of the chordwise BL velocity.

to manifest. Possible origins for this could be amounted to either the parabolization in the NmPSE,
errors introduced due to discontinuous changes in ᾱ(x̄), or a combination of both.

Effect of Shape Function Phase
The experimental shape function phase is approximated through the linearly varying function Φq, with
a value of zero at the wall to Φq99 at the BL edge. As seen from Figure 4.13 the PTV-extracted shape
function phases can be rather ambiguous, and hence the linear approximation may not be accurately
representative of the experimental trends. Setting the ũ and w̃ phases to vary from zero at the wall to
π/2 at δ99, and the phase for ṽ as zeros leads to a fairly good analytical estimate of non-modal growth
for λ1, previously shown in Figure 4.14. However, it is important to quantify the effect variations in the
prescribed phase may have on predicted non-modal growth, to gauge the validity of employing such an
approximation. Three tests are conducted for Φq99 = −pi/2, 0, π/2, for the original Hq using the same
baseflow and stability grid as the previous disturbance amplitude peak tests. The analytic ICs for the
chordwise disturbance velocity corresponding to these three cases are shown in Figures 4.16b-d.

It is observed from Figure 4.16a that the selected shape function phase does indeed significantly
affect the extent to which the λ1 mode grows non-modally. Selecting Φq to vary to −pi/2 at the BL
edge instead of the original approximation leads to a lower energy minima and downstream recovery
rate. Additionally, the disturbance energy amplifies at a relatively lower exponential rate toward the
outflow. The Φq99 = 0 case appears to lie in the middle in terms of the predicted energy minima,
although all three cases are seen to decay at the same rate immediately downstream of the inflow plane.
Notable discrepancy is observed when comparing the curves corresponding to the NmPSE and HLNS,
with the HLNS predicting slightly larger decay and growth rates during the initial transient phase. This
in turn leads to the corresponding outflow N-factors being larger than NmPSE estimates. While the
effect that an incorrectly-approximated shape function phase has on the λ1 growth is prominent, the
non-modal solvers are seen to be more sensitive to the wall-normal location of the disturbance amplitude
peak (Figure 4.15a). The initial growth trends exhibit large differences between successive values of Hq,
translating into large deviations in the outflow N-factor. This is not as extreme with the range of Φq99 .

The high sensitivity of the non-modal solvers to these changes in the initial conditions is expected,
as the modified IC may be associated to a completely different set of non-normal eigenmodes of the
OS/Squire system. It is thus difficult to parametrize the predicted non-modal growth, as this would
require an unfeasibly large parameter set. This is in agreement with approaches seen in the state-of-the-
art, where the maximally amplified non-modal disturbances are instead obtained through the solution
of an optimization problem [120, 16, 25].
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Figure 4.16: (a) Analytic IC energy growth with the NmPSE (solid lines) and HLNS (dashed lines) for varying Φq99 .
Black dotted is an NmPSE computation with experimental ICs. Contours of the analytic chordwise disturbance velocity
IC for λ1, for (b) Φq99 = −π/2 (c) Φq99 = 0 and (d) Φq99 = π/2. Black contour lines represent 5 levels of the chordwise
BL velocity.

4.4. Convergence Study
The non-modal computations carried out in this chapter were performed on a consistent stability grid,
such that the effects of discretization were eliminated from the analyses. However, an investigation
of these effects is crucial as quantities of varying orders of magnitude and associated length scales are
represented on the same numerical grid. The baseflow is computed on a highly-resolved grid and interpo-
lated onto that used for stability. The refinement level was selected such that the stability computations
attained convergence with regard to the baseflow discretization. As such, the convergence study per-
formed can be solely associated to the convergence of the stability characteristics, given a consistent
baseflow configuration. Furthermore, the wall-normal and chordwise discretization are independent of
each other and are investigated separately within this section.

4.4.1. Wall-Normal Discretization
The wall-normal discretization is a critical parameter, as an accurate representation of the BL and
disturbance profiles, and their associated gradients, is dependent on the number of nodes utilized. This
is particularly important close to the wall, where gradients are large and the disturbance profiles peak
in amplitude. As discussed in Section 2.2.3, a pseudo-spectral differentiation is employed in the wall-
normal direction using a Chebyshev polynomial basis. The collocation points for this are clustered
near the wall via a cosine spacing algorithm [72]. The effect of the number of Chebyshev nodes, ny, on
non-modal growth of the λ1 Fourier mode is investigated in this study, using the smoothed experimental
ICs. The baseflow and stability domain are defined as per Table 4.1, with ny varied between a series of
values.

Figure 4.17 presents the growth curves and outflow shape functions computed for ny equal to 25,
50, 75 and 100, with an x−discretization of nx = 300. It is seen that beyond 50 collocation points in
y the results rapidly converge for both the NmPSE and HLNS, with the NE curves being essentially
identical between 75 and 100 collocation points. The NmPSE outflow shape functions however exhibit
a mild difference in peak amplitude between these two ny levels. This does not appear to influence the
non-modal disturbance growth, as evidenced by Figure 4.17a.

4.4.2. Chordwise Discretization
The chordwise grid features uniform spacing and employs a marching scheme with first-order derivatives
being approximated via a backward Euler approach (Section 2.2.3). For all non-modal computations, the
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Figure 4.17: Convergence study for the y−discretization. Energy N-factors for the (a) NmPSE and (b) HLNS. (c)
NmPSE Chordwise disturbance velocity shape function amplitude at x− x0 = 120δ∗0 .

Figure 4.18: Convergence study for the x−discretization. Energy N-factors for the (a) NmPSE and (b) HLNS.

x−grid was selected based on the parameter ᾱr∆x̄, so as to be able to sufficiently represent disturbance
oscillatory behaviour. The omission of the ∂p̄/∂x̄ term from the NmPSE relaxes its limit for the
minimum step size [66, 120], and allows for finer x−grids to be employed.

The effect of the chordwise discretization on non-modal growth predicted by the NmPSE and HLNS
is studied for nx equal to 300, 600, 900, 1200 and 1500, for the λ1 Fourier mode. This is done with the
baseflow and stability parameters once more selected as per Table 4.1, with ny = 100. Figures 4.18a
and 4.18b present rather interesting results. It is seen that the energy N-factors exhibit visible changes
in their growth trends with x−grid refinement for both non-modal solvers. However both solvers appear
to converge in opposing directions, with their best agreement with each other being at the nx = 300
level. Overall change between levels is not overly large for the NmPSE, although the energy minima
increases to higher N-factors with refinement. Additionally, subtle spurious oscillations begin to become
apparent at the finest level, almost similar to those seen with the trapezoidal marching scheme in Section
4.2.3. This could stem from a violation of the assumptions inherent to the parabolic NmPSE, seeing
that finer grid levels introduce larger error into the domain. The HLNS on the other hand does not
appear to attain convergence in NE with refinement. The growth trends appear to remain relatively
unchanged between nx levels, although a decrease toward lower N-factors is seen in the energy minima.
The location of the minima also shifts slightly downstream with refinement, thought it is not quite
evident why the HLNS exhibits such large variations in its solution for progressively smaller ∆x̄ values.



5
Non-Stationary

DRE Wake Measurements
This chapter discusses the results of the experimental measurements performed to characterize un-
steady phenomena pertinent to the DRE wake region. A qualitative analysis of the global flowfield
is first presented, using IR thermography, followed by the investigation of the local boundary layer
baseflow through hot-wire measurements. The steady features of the HWA-measured DRE wake are
then discussed for critical and super-critical forcing configurations, and the evolution of stationary dis-
turbances is characterized. Finally, a comprehensive description of the unsteady flow phenomena is
provided for both configurations, identifying the dominant spatial structures, temporal spectra and
behaviour of unsteady fluctuation energy in the DRE wake.

5.1. Baseflow Topology & Transitional Behaviour
IR Thermography Characterization
A qualitative overview of the flowfield can be gained from the images captured using IR thermography,
presented in Figure 5.1 for the wing pressure-side. The wide-angle lens configuration (Figures 5.1a
and 5.1c) allows for a global characterization of the BL state, particularly the location and nature of
the transition front. For the critical DRE forcing with RekD

= 192, the BL is largely laminar. The
temperature profile varies uniformly from the leading edge up to X/cX ≈ 0.39, as a result of the surface-
to-flow heat transfer varying with natural BL development. Between X/cX = 0.4−0.45, the emergence
of sawtooth-like patches of low temperature (dark regions) is observed, characteristic of stationary CFI-
induced breakdown into turbulence. Faint, alternating light and dark steaks can be observed in the
bright region upstream of the transition front. These spanwise variations in temperature correspond
to the modulation of the mean-flow due to the presence of non-linear growth of the stationary CFI
[92, 111]. The BL is fully turbulent aft of the mid-chord region, much before the pressure minima is
reached.

The super-critical DRE forcing with RekD
= 330 presents a distinctly different transition scenario.

Here, the modal CFI growth phase is bypassed and transition is seen to occur in the vicinity of the
DRE array. This is attributed to the excessive amplitudes of disturbances induced by the super-critical
DREs, leading to breakdown to turbulence as per path D in Figure 1.3 [76, 34].

The zoomed-lens configuration in Figures 5.1b and 5.1d allows for a description of the near-element
flow topology pertaining to the two transition scenarios. The DRE arrays in the images are seen as low
temperature spots, owing to the higher thermal conductivity of the manufacturing material. The wake
of the RekD

= 192 forcing configuration features a series of faint high and low temperature streaks,
alternating in the spanwise direction. These are indicative of the HSV system developing around and
aft of the elements [14, 62, 136]. The HSV system induces a series of high and low velocity streaks,
perturbing the BL flow by respectively increasing and decreasing the local wall shear stress (as further
discussed in Section 5.2.1). This manifests as variations in the spanwise temperature profile through the
Reynolds analogy (Section 3.2.1). The reduction in contrast toward x/c = 0.18 is indicative of reducing

69
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Figure 5.1: IR thermography fields acquired using the following configurations: Wide-angle lens for (a) RekD
= 192 and

(c) RekD
= 300, and zoom lens for (b) RekD

= 192 and (d) RekD
= 300. The flow enters from the left with the blue,

yellow and red lines representing the leading edge, DRE location and approximate transition front respectively.

streak amplitude, with the wall-shear modulation being of low enough amplitude to not be sensed by
the IR camera.

Stronger thermal modulation, however, is seen with IR images of the the RekD
= 330 forcing

configuration. The imprint of the HSV system is more clearly seen in this scenario, manifesting as
fork-like structures originating from each element in the array. The higher thermal contrast can be
attributed once more to the stronger stationary disturbances induced by the HSV system, resulting in
a more prominent modulation of the local wall shear stress. At x/c ≈ 0.155, the two velocity streaks
originating from each side of the element merge into a single streak, which then locally evolves into a
turbulent wedge after a short distance downstream. The wedge progressively expands in the spanwise
direction and by x/c = 0.18, merges with neighbouring turbulent wedges. The flow is completely
turbulent by x/c = 0.2, as indicated by Figure 5.1c.

Baseflow Velocity Profiles
The stationary near-element flow topology is characterized later in this chapter, through the ensemble
of hot-wire scans carried out within the BL. However, to ensure that the experimental findings in this
work are comparable with existing literature for the cases investigated, a characterization of the steady
BL baseflow is conducted.

Figure 5.2a presents contours of the time-averaged HWA velocity component Q, measured within
the BL, for the k3 (RekD

= 192) forcing configuration. Immediately aft of the DRE array, perturbations
in the BL are highly localized and centred at integer multiples of the forcing wavelength. The inter-
element flowfield pertaining to k3 is seen to be largely unperturbed, and is representative of the laminar
baseflow defined in stability analyses. These regions are indicated by the dashed vertical lines in
Figure 5.2a. The Q fields are spanwise averaged, resulting in a single representative BL profile for each
chordwise measurement station. These HWA BL profiles are compared with a numerical solution of the
laminar, spanwise-invariant BLEs (equations 2.4), computed using an in-house solver. The external flow
conditions for the BLE solver were set to match those of the experimental setup, and the computed
numerical BL components were projected onto the HWA measurement frame through equation 3.6.
Figure 5.2c presents a comparison between the numerical BL profile and that extracted from the HWA
measurements for k3, at x/c = 0.152. The good match confirms that the spanwise-averaged BL profiles
are also representative of the laminar basic state in the element vicinity, enabling comparison of the BL
stability characteristics in the current work with previous findings in literature. This match is seen to
hold for k3 at further downstream locations as well, as shown for x/c = 0.17 in Figure 5.2d.
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Figure 5.2: HWA-measured BL velocity contours for the (a) k3 and (b) k4 forcing configurations, at x/c = 0.152.
Numerical (—) and HWA baseflow profiles for k3 (red ◦) and k4 (blue ◦) at (c) x/c = 0.152 and (d) x/c = 0.17. (e) BL
parameters.

The Q field measured in the element vicinity for the k4 configuration is presented in Figure 5.2b, and
also indicates a localized perturbation field. However, the BL perturbations are of higher amplitude
as compared to the k3 forcing case, and extend further into the unperturbed inter-element region.
Comparison between the spanwise-averaged BL profile from HWA and the numerical BLE solution in
the element vicinity (Figure 5.2c) shows good agreement between the two, indicating that the spanwise-
averaged BL profile here is representative of the laminar basic state for the k4 configuration as well.
However Figure 5.2d shows that spanwise-averaged BL profile for k4 at x/c = 0.17 is instead resemblant
of a turbulent BL profile, thus deviating from the laminar numerical profile. This is expected based
on the preliminary IR diagnostics reported in Figure 5.1d. Velocity disturbances are widespread as
the flowfield has taken on a largely turbulent nature, with merging turbulent wedges expanding in the
spanwise direction.

Finally, Figure 5.1e compares the evolution of the integral parameters, δ∗ and δθ, and the BL thick-
ness, δ99, for the numerical and HWA-extracted BL profiles. The quantities agree well with numerical
computations, further validating the experimental measurements.

5.2. Steady Near-Element Flow Topology
An analysis of the time-averaged velocity fields acquired using HWA is first carried out, so as to quantify
the development of stationary instabilities in the DRE wake. This is done using the steady disturbance
velocity, Qd, defined in Section 3.4.2, extracted for each wall-normal measurement plane.

5.2.1. Critical Forcing
The near-element disturbance field induced by the critical DRE forcing configuration k3 is characterized
in this section, with contours of Qd presented in Figure 5.3. The first measurement plane at x/c = 0.152
reveals a highly localized disturbance field, with a low-speed wake located at integer multiples of the
DRE forcing wavelength, λ1. These strong regions of decelerated flow correspond to the recirculation
regions aft of each element in the DRE array. The central low-speed wakes are each flanked by a high-
speed streak on either side, and a low-speed streak on their outboard sides. These are induced by the
HSV system pertaining to each element in the DRE array, as seen in Figure 5.1b and reported by Kurz
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Figure 5.3: Contours of the steady disturbance velocity measured using HWA, at successive chordwise locations, for
RekD

= 192. Black isolines of the steady BL velocity are superimposed.

& Kloker [62] and Zoppini et. al [136]. The local flow topology aft of each element is similar to that of
an isolated roughness element in a swept BL [14, 138], owing to the inter-element spacing being larger
than 3λ1 [34].

Moving downstream, the high-speed streak is seen to rapidly amplify while both the central low-
speed speed region and outboard streak experience gradual decay. As x/c = 0.16 is reached, a clear
asymmetry in the flowfield is observed. The outboard low-speed streak is damped, while the central
region and the inboard high-speed streak attain comparable amplitudes. This behaviour has been
distinctly reported in previous works [62, 14, 136], where DRE wake structures co-rotating with the
crossflow velocity component are preferentially sustained. Between x/c = 0.16 − 0.164, the central
low-speed streaks have decayed, while the high-speed streak continues to persist, albeit slowing in its
growth. The disturbance field is also seen to be less localized, as structures begin to resemble those
pertaining to modal CFI. This is apparent at x/c = 0.17, where the entire spanwise extent of the BL is
affected by spanwise-alternating velocity (and hence momentum) modulations, typically associated to
the modal development of stationary CFI.

The observed stationary disturbance evolution is largely in agreement with the 3-D dual-pulse PTV
findings of Zoppini et. al [136], who characterized the flowfield into two regions based on disturbance
structure: the near-wake, between x/c = 0.152 − 0.16, where highly localized velocity streaks are
prevalent, and the far-wake region downstream of x/c = 0.164, where disturbance begin to take on a
modal nature. The authors also report the rapid growth and decay of the outboard high-speed streak
in the near-wake region, extending further downstream and dominated by the modal CFI development
(seen in Figures 4.2a and 4.2b). This however is not clearly seen in the HWA measurements, possibly
due to the insufficient spanwise resolution.

Spectral Analysis and Steady Energy Growth
A spanwise FFT is performed at each HWA measurement plane, to characterize the spectral content of
the stationary disturbances induced by the k3 forcing configuration. From Figure 5.4a it is seen that
most of the disturbance energy is concentrated within the λ1 mode at x/c = 0.152, although spectral
peaks are also identified at the higher harmonics of λ1. This corresponds to observations by Zoppini et.
al [136], and is a result of the highly localized nature of the near-wake flow. The wake of each element
effectively acts as a pseudo-pulse, containing all spanwise frequencies. Far downstream at x/c = 0.2,
the harmonic peaks vanish and energy is solely concentrated within the λ1 mode. This is indicative of
modal stationary CFI emerging downstream of the far-wake region.

The wall-normal disturbance profiles in Figure 5.4b also provide an insight into the structure and
evolution of the stationary disturbances. The noticeable contribution of the higher harmonics to the
near-wake disturbance energy is seen in the mismatch between the λ1 and total standard deviation
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Figure 5.4: Spanwise FFT analysis for RekD
= 192 at x/c = 0.152 (blue lines) and x/c = 0.2 (red lines). (a) Spanwise

spectra at the wall-normal location of maximum disturbance amplitude. (b) Standard deviation (-.-) and λ1 (—) distur-
bance profiles. (c) Stationary disturbance energy evolution.

profiles at x/c = 0.152. The amplitude peak is also located in correspondence with the element height,
indicating the presence of strong shear generated by low-speed recirculation region. At x/c = 0.2,
the two disturbances profiles are strongly comparable in wall-normal evolution and amplitude values,
further indicating the onset of modal behaviour. The upward-shift of the disturbance amplitude peak
occurs as a result of the changeover between the streak instability (located close to the wall) in the
near-wake and CFI in the far wake.

The amplitude evolution of the stationary DRE wake features is tracked through the integrated
steady disturbance energy, defined as per equation 3.9. This was computed for the total standard
deviation profiles as well as for the first four Fourier modes, and is presented in Figure 5.4. It is seen
that the total disturbance energy remains nearly constant within the DRE wake, although mild decay
and energy recovery is observed between x/c = 0.156−0.164. The λ1 mode however, is seen to undergo
significant transient decay downstream of the elements, attaining its energy minima at x/c ≈ 0.156. The
energy begins to recover beyond this point and comprises nearly all of the steady disturbance energy
by x/c = 0.17. This corresponds once more to the emergence of naturally unstable CFI in the far-wake.
Disturbance energy in the second and third harmonics appear to undergo mild initial amplification,
followed by decay beyond x/c = 0.16, while the first harmonic is seen to remain at a largely invariant
energy level throughout the measurement region. The behaviour of disturbance energy is in good
agreement with observations by Zoppini et. al [136], who also report transient growth dominating the
stationary near-wake flow development.

5.2.2. Super-critical Forcing
The critical DRE forcing configuration incurs stationary near-element features that evolve into modal
CFI downstream, with transient growth identified as the fundamental disturbance evolution mechanism
[136]. However, the transition scenario for the super-critical k4 configuration involves a bypass of modal
instability growth, with breakdown into turbulence occurring in the vicinity of the DRE array (Figure
5.1d). This behaviour is associated to flow-tripping, and the stationary disturbance topology pertaining
to the DRE wake in this scenario is characterized through the HWA measurements presented in Figure
5.2.2.

Similarly to k3, the disturbance field in the vicinity of the elements (x/c = 0.152) is highly localized,
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Figure 5.5: Contours of the steady disturbance velocity measured using HWA, at successive chordwise locations, for
RekD

= 330. Black isolines of the steady BL velocity are superimposed.

although larger in amplitude. A central low-speed region develops aft of the elements, corresponding
to their recirculation regions, and is flanked by high-speed streaks on either side. The high-speed
streaks themselves are each neighboured by a low-speed streak of magnitude almost comparable to the
central low-speed region. These structures can once more be attributed to the strong HSV system
developing around the high-amplitude elements of the DRE array. In the chordwise extent between
x/c = 0.152 − 0.156, a rapid change in the disturbance topology is observed. The central low-speed
region decays, and is replaced by a merger of the flanking high-speed streaks. Amplification of the
outboard low-speed streak is also observed to occur. This merging of the high-speed streaks was
also seen in preliminary IR characterization of the flowfield (Figure 5.1d), and marks the onset of a
turbulent wedge. Downstream of x/c = 0.16, the central, merged high-speed streak gradually grows
in the spanwise and wall-normal direction, while the outboard low-speed streak expands into the inter-
element region, amplifying mildly. Breakdown is already evident at x/c = 0.17 and the disturbance
field is dominated by the presence of localized turbulent wedges. As with k3, the asymmetry in the
disturbance field is evident, with only the outboard low-speed streak persisting at downstream locations.

The evolution of the stationary disturbance field for k4 reported here corresponds well with ob-
servations by Zoppini et. al [136], who also identify a merging of the two high-speed streaks. They
additionally demarcate the near- and far-wake regions as before and after this merger respectively. Sim-
ilar streak behaviour is also reported for an isolated, super-critical roughness element in 2-D and 3-D
BLs [56, 67, 62, 138].

Spectral Analysis and Steady Energy Growth
In a similar manner to the analysis performed for the critical forcing case, a spanwise FFT is also
performed for each HWA measurement plane for k4. As seen in Figure 5.6a, spectral energy in the
vicinity of the elements at x/c = 0.152 is largely concentrated within the λ1 mode, although spectral
peaks are also evident at the λ3 and λ4 harmonics. These harmonic peaks are still evident at x/c = 0.17
along with a larger peak at the λ2 harmonic. This suggests that the velocity streaks are milder, yet
still identifiable in the far-wake flow, comparable to observations for super-critical, isolated roughness
elements [62, 138]. The disturbance profiles at x/c = 0.152 once again attain their maximum amplitude
in correspondence within the elements height (Figure 5.6b). The amplitudes themselves are larger than
k3, representative of the stronger recirculation region and shears induced by the k4 configuration. At
x/c = 0.17, the streak-like structure of the disturbance profile is retained, with the disturbance maxima
moving closer to the wall, as opposed to the onset of CFI with the critical forcing configuration.

Figure 5.6c depicts the amplitude evolution of the steady disturbance energy, computed for the
whole field and for the first four Fourier modes. Energy in the element vicinity is largely concentrated
within the λ1 mode, which undergoes rapid decay downstream of the elements. This is accompanied
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Figure 5.6: Spanwise FFT analysis for RekD
= 330 at x/c = 0.152 (blue lines) and x/c = 0.17 (red lines). (a)

Spanwise spectra at the wall-normal location of maximum disturbance amplitude. (b) Standard deviation (-.-) and λ1

(—) disturbance profiles. (c) Stationary disturbance energy evolution.

by transient amplification of the first harmonic, which attains its maxima close to x/c = 0.156, cor-
responding to the merging of the stationary high-speed streaks in Figure . The first harmonic decays
downstream of this point while the λ1 mode is amplified, saturating in amplitude towards the end of
the far-wake region. The third harmonic is seen to evolve similarly to the first, although at lower energy
level, while the second harmonic exhibits a monotonic decay in energy.

It is evident from Figure 5.6 that transient growth drives the evolution of the stationary flow features
for the super-critical DRE wake, which is characterised by a series of laminar velocity streaks. Transient
growth in super-critical scenarios typically features the rapid amplification of steady disturbance energy
in the near-wake disturbances, initiating the breakdown of the laminar streak structures into turbulence
[34, 136]. However, as seen in 5.6c, the total steady disturbance energy varies minimally within the
DRE wake. This implies that the stationary transient disturbances are not strong enough to initiate an
explosive growth in steady disturbance energy that results in breakdown into turbulence, as such only
present partial into the transition scenario.

5.3. Unsteady Disturbance Behaviour
The analysis of the stationary disturbance fields presented in the previous section highlights the highly
non-modal nature of the DRE wake for both DRE forcing configurations. While stationary disturbances
are the primary drivers of wake flow evolution for the critical forcing configuration, the strong re-
circulation regions and streak-induced shears imply that unsteadiness in the DRE wake may play a role
in the emergence of CFI. This role would be significantly larger for the super-critical forcing configuration
due to the higher amplitudes involved, with the flow-tripping mechanisms pertinent to it having largely
been associated to unsteady disturbance energy growth in previous work [34, 138, 136]. Thus, in order
to fully characterize the evolution of disturbances in the DRE wake, an investigation of the unsteady
velocity fluctuations measured within each HWA plane is carried out.

5.3.1. Critical Forcing
The spatial organisation of unsteadiness in the DRE wake region for the k3 configuration is quantified
through the velocity standard deviation fields, ⟨Q⟩, in Figure 5.7. Aft of the DRE array, at x/c =
0.152, the standard deviation peaks are located on top of each element, at y/δ∗

Qz

≈ 0.8. This locally
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Figure 5.7: Standard deviation fields of the HWA velocity signal at successive chordwise locations, for RekD
= 192.

Black isolines of the steady BL velocity are superimposed. The black (+) symbols denote the locations at which spectra
are extracted.

corresponds to the strong low-speed recirculation region in the DRE wake, which is accompanied by
locally increased spanwise and wall-normal shear. This topology is resemblant to that observed with
DRE in a 2-D BL [34], further implying that the onset and evolution of unsteady fluctuation regions is
strongly correlated to the shear layers induced by the stationary wake disturbances.

The high fluctuation regions decay downstream of the initial plane, in correspondence with the
decay of the central, low-speed recirculation wake (Figure 5.3). However, beyond x/c = 0.158 it is
observed that these regions begin to amplify, particularly strongly for that associated to the inboard
element. From Figure 5.3, this is seen to occur simultaneously with the rapid amplification of the
inboard high-speed streak. A strong spanwise shear originates between the central low-speed region
and inboard high-speed streak, suggesting that the amplification of the unsteady peaks is enhanced by
the development of this shear layer. Following this rise in local fluctuation intensity, the unsteady peaks
gradually decay toward the end of the domain alongside the emergence of modal CFI. This decay in
local fluctuation intensity could possibly be due to a relaxation of spanwise shears as the stationary
disturbances become less localized. The transition scenario is thus governed by the evolution of modal
CFI downstream of x/c = 0.168, as evidenced by the IR characterization in Figure 5.1a. The plane
at x/c = 0.2 presents a BL perturbed by stationary CFI, with unsteady fluctuations localized around
the downwelling region associated to the crossflow vortices. This locally corresponds to the region of
development of the type III secondary instability, that originates as a result of interaction between
stationary and travelling CFI [50, 12, 111]. However, an investigation of its spectral characteristics
is needed to confirm this. It is also noted from Figure 5.3 that the fluctuation regions corresponding
to the inboard element amplify more strongly as compared to those around the middle and outboard
elements. This could be due to irregularities arising from the DRE manufacturing procedure.

Spectral Characteristics
The high-fluctuation regions in Figure 5.7 can be further characterized through an investigation of
their spectral content. Frequency spectra are extracted at locations marked by the black (+) symbols,
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Figure 5.8: Velocity signal spectra for RekD
= 192, extracted at the points of maximum fluctuation intensity in the ⟨Q⟩

fields, at successive chordwise locations. The red line is a representative velocity spectrum extracted in the freestream.
Each spectrum is offset by a decade for visual clarity. Frequency bands of interest are shown as shaded regions: f1 (grey),
f2 (red), f3 (yellow) and f4 (blue).

corresponding to the local maxima of the high-fluctuation regions. Owing to the flow periodicity, the
unsteady spectra extracted at these locations for the inboard element are considered to be representative
of unsteady disturbance behaviour in corresponding regions for the middle and outboard elements.

Figure 5.8 presents the evolution of the unsteady disturbance spectra for the critical k3 forcing
configuration, quantified using the signal PSD. The high-fluctuation region immediately aft of the DRE
array at x/c = 0.152 features a distinct hump centred around approximately 5 kHz. Energy is nearly
evenly distributed over frequencies larger than this 5 kHz hump, with the exemption of a tonal peak
close to 11 kHz. This peak however is seen to persist in all velocity spectra extracted, and can be
attributed to electronic noise in the HWA bridge rather than physical fluctuations in the flowfield
[109, 98]. A representative spectrum extracted in the freestream is presented in Figure 5.8 to highlight
the persistence of this peak. Between x/c = 0.152 − 0.158, the 5 kHz energy hump amplifies and a
secondary hump is seen to emerge, centred around its first harmonic at 10 kHz. The PSD at the first
harmonic however is affected by the presence of the electronic noise peak at 11 kHz. At x/c = 0.16, a
third energy hump appears at the second harmonic, centred around 15 kHz. As per Figures 5.3 and
5.4c, this location also corresponds to beginning of the region of modal growth. The spectral energy
humps at 5 kHz and its harmonics persist downstream of x/c = 0.16, although they are observed to
widen and merge with each other toward the end of the far-wake.

To allow universal comparison of the frequency spectra associated to k3 with established findings in
literature, a local Strouhal number, Stδ∗ = fδ∗/|Q(kD)| is defined [56, 138]. Here δ∗ is the unperturbed
BL displacement thickness at the DRE location and |Q(kD)| is the unperturbed BL velocity magnitude
extracted at the element height, kD. These are obtained from a corresponding numerical BL solution,
which was previously validated in Section 5.1. From Figure 5.8 it can be seen that the fundamental
energy hump is centred at Stδ∗ = 0.2, with the harmonics humps located at a corresponding Stδ∗ = 0.4
and Stδ∗ = 0.6. This corresponds very well to the shedding range of a circular cylinder (Stδ∗ =
0.18−0.25), as reported by Klebanoff et. al [56] and Kuester & White [60]. While clear tonal behaviour
in the flowfield is not present in Figure 5.8, the existence of the spectral humps and their associated
Stδ∗ suggest that the unsteady instability mechanism can be attributed to cylinder shedding. This is
localized around the top of each element, where the fluctuation intensity attains its maximum.

Disturbance Energy Growth
The evolution of unsteady disturbance energy in the DRE wake can be tracked through a spatial
integration of the velocity spectra within each HWA measurement plane. This is computed as per
equation 3.10 and is shown for the k3 forcing configuration in Figure 5.9a. Furthermore, a second
integration is performed within selected frequency bands, to quantify growth pertaining to unsteady
disturbances within these bands. For k3, these are selected to be 3 kHz wide and centred around the
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Figure 5.9: Chordwise evolution of (a) the spatially integrated energy spectra and (b) the energy integrated within
selected frequency bands, for RekD

= 192.

fundamental frequency, f1 = 5 kHz, and its first three harmonics, f2 = 10 kHz, f3 = 15 kHz and f2 = 20
kHz. The bands were depicted as shaded regions in Figure 5.8, and the energy growth corresponding
to them is shown in Figure 5.9b. To ensure meaningful quantitative comparisons, the electronic peak
at 11 kHz is removed from the f2 frequency band. Additionally, Figure 5.9a indicates a consistent band
of high fluctuation energy, extending up to approximately 500 Hz. The nature of this band implies
that it is very likely due to vibration of the hot-wire probe within the BL, and it is filtered out of the
computation of total energy.

It is seen that the total unsteady disturbance energy, E′
tot, is transiently amplified downstream of

the DRE array, driven by shedding within the E′
f1

frequency band. In the vicinity of the DRE array,
the energy component E′

f1
is observed to experience rapid exponential growth from being the lowest

contributor to E′
tot, to becoming the dominant energy band by x/c = 0.158. This is reflected by the

energy contours in Figure 5.9a, which show that the amplification of E′
f1

is additionally accompanied
by a widening of the f1 energy band. The amplification of E′

f1
continues up to x/c = 0.164 where it

attains is maxima, after which it begins to gradually decay. As the energy peak in E′
f1

is approached,
the energy in band f2 also begins to mildly amplify. Unlike E′

f1
, the growth of E′

f2
is far less extreme,

with energy plateauing at x/c = 0.16 At the end of the measurement domain, the f1 band is still
dominant although a pile-up of spectral energy is observed to occur at frequencies lower than 5 kHz.
The energy contained within the f3 and f4 bands is not seen to notably vary within the DRE wake. A
tonal accumulation of energy is also present close to 10 kHz, which can be amounted to contamination
due to the electronic bridge noise previously discussed.

The growth and decay of E′
f1

and E′
f2

is in good correlation with observations by Ergin & White
[34] for a 2-D BL. This was also shown in Figure 1.12b, where unsteady energy for a critical forcing
configuration is seen to rapidly grow in the immediate vicinity of the DRE array before gradually
decaying downstream. The peak in E′

f1
is attained shortly after the stationary high-speed streak

is amplified to its maximum (Figure 5.3), but still remains relatively low in its amplitude. As the
stationary streaks evolve into modal CFI, the strong shears of the highly-localized near-wake region are
relaxed, which provides a less unstable state for the amplification of unsteady disturbance energy 1.12.
This would correlate with the observed decay in E′

f1
and E′

f2
toward the end of the domain. Although

the unsteady disturbances are seen to undergo large initial transient amplification, the low unsteady
energy levels and stabilization in the far-wake result in the stationary structures largely driving the
evolution of the DRE wake flow for the critical forcing configuration.

5.3.2. Super-critical Forcing
The analysis of unsteady fluctuations in the wake of the super-critical forcing configuration is crucial to
fully characterizing disturbance behaviour in the flowfield. This is due to the fundamentally different
transition scenario encountered with k4, where breakdown into turbulence occurs in the vicinity of the
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Figure 5.10: Standard deviation fields of the HWA velocity signal at successive chordwise locations, for RekD
= 330.

Black isolines of the steady BL velocity are superimposed. The black (+) symbols denote the locations at which spectra
are extracted.

DRE array, preventing the development of modal CFI. This scenario was observed in the initial IR
characterization presented in Figure 5.1a.

Comparably to the critical forcing configuration presented beforehand, the spatial organisation of
the unsteady disturbances is investigated through the velocity standard deviation fields, ⟨Q⟩, shown
in Figure 5.10. Fluctuations immediately aft of the DRE array at x/c = 0.152 are highly localized,
with a high intensity fluctuation region located on top of each element. These locally correspond to
the stationary, low-speed recirculation region developing here, as seen in Figure 5.2.2. Additionally,
lower-intensity fluctuation regions also appear on either side of each element, in the spanwise shear
layer between the pair of stationary high- and low-speed streaks induced by the HSV system [62, 136].
The fluctuation amplitudes for the k4 configuration are noted to be nearly an order of magnitude larger
than those corresponding to k3. This is expected as the higher-amplitude elements in the array induce
stronger stationary disturbances into the flowfield, which in turn lead to larger spanwise and wall-normal
shears [34, 136, 138].

At further downstream locations, the high fluctuation intensity regions on top of the elements begin
to rapidly grow in the spanwise and wall-normal direction, agglomerating with the lower-intensity
regions on the sides of the elements. By x/c = 0.16 a rise in unsteady disturbance amplitude is also
seen close to the wall, directly under the central high-fluctuation region. This can be associated to the
merging of the stationary high-speed streaks into a single, central streak. Unsteadiness in the flowfield
is enhanced aft of this phenomenon, which has been seen to be associated with laminar breakdown and
the onset of turbulent flow within the DRE wake [54, 56]. The localized unsteady fluctuation regions
further expand in the spanwise and wall-normal direction up to x/c = 0.16 where a series of local
turbulent wedges begin to form. The expansion of the wedges induced by the individual elements is
limited by flow periodicity, and they begin to merge into each other by the end of the measurement
domain. A further downstream plane at x/c = 0.2 reveals an unsteady disturbance field resembling that
of a turbulent BL, albeit modulated by residual periodicity induced by the stationary streaks (Figure
5.2.2).
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Figure 5.11: Velocity signal spectra for RekD
= 330, extracted at the points of maximum fluctuation intensity in the ⟨Q⟩

fields, at successive chordwise locations. The red line is a representative velocity spectrum extracted in the freestream.
Each spectrum is offset by a decade for visual clarity. Frequency bands of interest are shown as shaded regions: f1 (grey),
f2 (red), f3 (yellow) and f4 (blue).

Spectral Characteristics
As with k3, velocity spectra are extracted at the maximum fluctuation intensity region identified in each
chordwise HWA plane, denoted by the black (+) symbols in Figure 5.2.2. In contrast to the critical
case, the extracted spectra show strongly tonal behaviour in the vicinity of the elements, at x/c = 0.152.
The fundamental tone is located at around 5.8 kHz, with its harmonics at 11.6 kHz, 17.4 kHz and 23.2
kHz also distinctly present. It is also noted that each of these tones is centred at a spectral hump,
similar to that seen in the velocity spectra of k3. A fifth tone is identified close to 10 kHz, but this is
attributed once more to electronic noise in the HWA bridge, as this tone is ubiquitous in all critical and
super-critical measurements [109, 98].

The spectral peaks quickly vanish when moving downstream, although the humps are still prominent
as spectral energy is re-distributed over a wider range of frequencies. By x/c = 0.6, in correspondence
to the merging of the stationary high-speed streaks, the velocity spectrum acquires a more broadband
character. This can be correlated to enhanced flow unsteadiness and the emergence of the localized
turbulent wedges, which rapidly develop aft of x/c = 0.16. At further downstream locations the spectra
are mainly broadband, indicating that the flowfield is primarily turbulent in these regions.

If the velocity spectra are once again represented by the local Strouhal number, Stδ∗ , comparisons
can be made with the forcing configurations established in literature. The dominant tone is seen to
lie in the Stδ∗ = 0.17 − 0.18 range, close to the Stδ∗ = 0.2 hump for the critical forcing scenario and
at the edge of the cylinder shedding range reported by Klebanoff et. al [56] and Kuester & White
[60] (Stδ∗ = 0.18 − 0.25). Thus the unsteady instability mechanism in the DRE wake is seen to be
consistent between the k3 and k4 cases, associated to cylinder shedding. However, the super-critical
forcing configuration strongly concentrates spectral energy into distinct tones that manifest on top of
each element in the DRE array. At further downstream locations, Stδ∗ loses its significance as the
broadband turbulent spectrum becomes more prevalent.

Disturbance Energy Growth
The unsteady disturbance energy spectra are spatially integrated as per the equations 3.10 and 3.11, to
obtain the integrated fluctuation energy (Figure 5.12a) within each HWA plane, as well as the energy
contained within discrete frequency bands. The selected frequency bands are depicted in Figure 5.11
as shaded regions. These are 1 kHz in width and centred around the fundamental frequency, f1 = 5.8
kHz, and its first three harmonics, f2 = 11.6 kHz, f3 = 17.4 kHz and f2 = 23.2 kHz. The evolution of
integrated disturbance energy energy within these bands is presented in Figure 5.12b.

It can be seen that the total unsteady energy, E′
tot, is over an order of magnitude larger for the

super-critical forcing configuration as compared to the critical case. Additionally, E′
tot experiences

exponential growth throughout the domain, with a slight decrease in its growth rate at the domain
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Figure 5.12: Chordwise evolution of (a) the spatially integrated energy spectra and (b) the energy integrated within
selected frequency bands, for RekD

= 330.

end (x/c = 0.17). In the vicinity of the DRE array the dominant frequency, f1, is seen to be nearly
comparable to E′

tot, implying that most of the unsteady disturbance energy is contained within this
band. A rapid spread of energy from the tonal peaks into neighbouring frequency bands is observed
when moving downstream, as shown in Figure 5.12a. A shallow peak can be seen in the E′

f1
growth

curve, correlating with the merging of the high speed streaks at x/c = 0.156, before the energy decays
to a saturation level. The harmonic band energies E′

f2
- E′

f4
undergo monotonic growth throughout the

domain before saturating along with E′
f1

by x/c = 0.17.
The observed unsteady disturbance energy growth is in good agreement with the findings reported

by Ergin & White [34] for super-critical DRE in 2-D BLs, who also report the rapid amplification and
saturation of the energy levels. The larger element induces initial instabilities with higher (excessive)
initial amplitudes, which rapidly increase the overall level of E′ in the near-wake region. These initiated
near-wake instabilities are subsequently amplified by through cylinder shedding in the presence of the
strong recirculation region forming in the element wake, accompanied by the development of significant
shears. The sustained high fluctuations levels grow to non-linear amplitudes and inhibit the relaxation
of the steady disturbance energy, causing turbulent breakdown in the far-wake region [34].





6
Conclusion & Recommendations

6.1. Conclusions
A series of research questions were defined at the start of this thesis (Section 1.6), in an effort to further
understand how the flow topology of a DRE wake conditions the onset of insatiabilities in a swept wing
BL. The results of the numerical and experimental investigations discussed in the preceding chapters
provide conclusive answers to these questions, which are presented here.

How accurately can the growth of stationary instabilities in the near-element flowfield be
represented in a linear, parabolized stability framework?

Stationary disturbances in the DRE wake have been observed to undergo significant non-modal growth,
as seen in previous studies on swept BL flow [14, 62, 137]. In order to be able to numerically simulate
these stationary disturbances, a parabolized non-modal stability framework was derived in Chapter 2.
The Fourier ansatz for the classical PSE was redefined, such that all disturbance growth was represented
by the mode shape functions. This ansatz was inserted into the linearised disturbance equations, and
an order of magnitude analysis was conducted similarly to Levin & Henningson [65], Tempelmann et.
al [120], using non-modal scaling arguments. The scaling allowed for an elimination of the second-order
streamwise derivatives, which were of O(Re−3

δ∗0
) relative to the other terms. By additionally neglecting

the streamwise disturbance pressure gradient, as per Li & Malik [66], the system of equations was made
fully parabolic and solved using a spatial marching scheme.

The NmPSE framework successfully predicted modal disturbance growth, when initialized with
CFI eigenmodes computed through ILST. Its accuracy in predicting non-modal growth was quantified
through the numerical investigations carried out in Chapter 4. The effect that the assumptions perti-
nent to NmPSE might have on non-modal growth predictions was assessed through comparisons with
the elliptic HLNS framework. The NmPSE and HLNS are seen to generally agree well for all initial
conditions studied, predicting nearly identical shape functions and disturbance energy evolution trends.
It could thus be concluded that the slow-variance assumption, and hence the parabolization of the
NmPSE, is not a major detriment in the prediction of stationary wake evolution, given the physical
scales involved. Rather, the slight mismatch between the NmPSE and HLNS can be amounted to the
need for a chordwise wavenumber for the NmPSE. The determination of this chordwise wavenumber
in a non-modal framework was seen to be ambiguous, and possibly introduces errors into the NmPSE
solution through discontinuous variations. Both the NmPSE and HLNS are also seen to be sensitive to
the choice of streamwise discretization, which is a limiting factor in the accurate quantitative prediction
of stationary DRE wake disturbances.

How can the structure of an experimentally measured DRE wake be used to initialize a
numerical, linear, non-modal stability solution?

The stationary topology of the DRE wake was obtained from the experimental, 3-D dual-pulse PTV
measurements of Zoppini et. al [136]. An initial plane was selected in the vicinity of the elements,
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and a spanwise Fourier analysis was employed to identify the dominant spectral components of the
disturbance velocity field at this location. The complex shape functions corresponding to the dominant
Fourier mode and its higher harmonics were extracted and interpolated onto the inflow station of the
numerical stability grid. A smoothing filter was then applied to the interpolated shape functions, to
remove residual noise carried over from the experimental data.

A series of simulations were run with the NmPSE using experimental ICs extracted for a critical
DRE forcing configuration, for the primary Fourier mode, λ1. Qualitatively, the numerical computations
agree quite well with experiment, with the NmPSE predicting a strong initial phase of transient decay
and growth, followed by exponential amplification. This is in contrast to the classical LPSE, which
predicted only modal amplification. The qualitative agreement is also seen for the evolution of the
harmonic modes and total disturbance energy in the DRE wake, with the exception of the first harmonic.
The DRE wake structure obtained through reconstruction of the NmPSE disturbance velocity fields is
also seen to compare well with experiment, although discrepancies are introduced by discontinuous
variations in the chordwise wavenumber. Nonetheless, the NmPSE correctly predicts the emergence of
stationary CFI downstream of the wake region. Quantitatively, the NmPSE over-predicts the initial
transient decay phase experienced by the primary Fourier mode. The mode also appears to evolve
over a longer chordwise length as compared to experiment, although exhibiting similar shape function
evolution. Growth of the second, third and fourth harmonics initially matches experiment but deviates
significantly at downstream locations, where the harmonics undergo strong decay. The NmPSE also
over-predicts the minima of total energy growth for the reconstructed disturbance velocity fields, though
the spanwise standard deviation profiles are seen to closely resemble those of the experiment.

The robustness of the NmPSE to alterations of the experimental ICs was studied, such as with the
additional smoothing procedure applied to the interpolated shape functions. No noticeable change is
observed in the growth curves of the primary Fourier mode, so long as the smoothed shape functions
closely follow the mean wall-normal profile of the interpolated ICs. The use of heavy smoothing, such
that the ICs are drastically altered, leads to deviations in the computed growth curves. This concept
was further investigated through the use of analytic ICs to approximate the experimental DRE wake
shape functions. Linearly-weighted Gaussian functions were employed, defined such that they could be
parametrically controlled to fit experimental shape function data corresponding to the primary Fourier
mode. The energy growth curves corresponding to the experimental ICs are nearly matched by those
computed with the analytic approximations. However, the NmPSE predicts a slightly lower outflow
N-factor when using analytic ICs. As ambiguity can exist in approximating the experimental ICs, a
parametric study was conducted, varying the wall-normal extent and phase of the analytic shape func-
tions. The growth curves were seen to be significantly altered by the variation of these parameters,
implying that an analytic approximation must be carefully chosen such as to avoid large differences
with respect to the experimental ICs.

What role do unsteady fluctuations developing in the DRE wake play in the onset of BL
instability?

An experimental measurement campaign was conducted at the TU Delft low turbulence wind tunnel
facility using HWA, to characterize the structure and evolution of unsteady DRE wake fluctuations. Two
DRE forcing configurations were investigated, with preliminary qualitative analysis of the respective
flowfields carried out using IR thermography. While the critical DRE forcing is seen to introduce
stationary CFI into the BL, the super-critical forcing configuration leads to rapid turbulent breakdown
in the vicinity of the DRE.

Time-averaged HWA measurements of the critical DRE wake reveals a localized system of stationary
velocity streaks developing aft of each element. These evolve into modal CFI in the far-wake region, in
agreement with observations by Zoppini et. al [136] for an identical critical forcing configuration. Non-
stationary measurements show that unsteadiness in DRE wake is largely localized around each element
in the array, with peaks in the unsteady fluctuation level located on top of each element. Temporal
point spectra, extracted at the locations of maximum fluctuation intensity, reveal the concentration of
spectral energy within a series of broadband humps. The fundamental hump is observed to be centred
around a locally-defined Strouhal number of Stδ∗ = 0.2, corresponding to the shedding range reported
for a circular cylinder [60, 57]. Unsteady disturbance energy in near-wake undergoes strong transient
amplification, driven by cylinder shedding within the fundamental frequency band, before decaying into
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the far-wake. This is correlated with the emergence of stationary CFI and the de-localization of the
DRE wake features, which provides a less unstable state for the amplification of unsteady disturbances.
Unsteady instabilities thus appear to play only a minor role in the evolution of the critical DRE wake,
as it is seen to be largely driven by the stationary flow features.

The super-critical forcing configuration is seen to introduce stronger disturbances into the DRE
wake, as a result of its higher element amplitudes. The flowfield in the element vicinity is also seen to
be localized, with stationary disturbances taking the form of streaky structures. These disturbances
undergo rapid, transient amplification in the near-wake region, downstream of which the laminar streaks
locally break down into turbulent wedges. The stronger shear layers induced by the super-critical DREs
also introduce high-amplitude, unsteady fluctuations into the DRE wake. Regions of high fluctuation
intensity are localized around the top as well as the sides of the elements and merge as the wake evolves,
eventually coalescing into local turbulent wedges. An analysis of temporal spectra extracted at the
fluctuation intensity maxima reveals that the unsteady disturbances are strongly tonal in the immediate
vicinity of the DRE. These tonal peaks are associated once more to cylinder shedding, through the
Strouhal number of the fundamental energy band [60, 57] and undergo rapid decay. Spectral energy
is redistributed among frequencies as the flow evolves, and takes on a broadband character in the far
wake with the onset of turbulent breakdown. The total unsteady disturbance energy, and that contained
within the fundamental frequency band and its harmonics, amplify exponentially and saturate in the far-
wake. Mild transient amplification is also seen in the E′

f1
energy band. Thus, unsteady disturbances

introduced by the super-critical DRE array are initially amplified through cylinder shedding in the
element vicinity. However unlike with the critical forcing configuration, the high unsteadiness level
is sustained by the stronger stationary disturbances and further amplifies to non-linear levels. This
prevents the relaxation of the steady flow features, and transition occurs shortly downstream of the
DRE location.

6.2. Recommendations
While the NmPSE framework used in this thesis was capable of qualitatively simulating DRE wake
evolution, given an experimental set of initial conditions, there is still much left to be desired in terms
of its quantitative performance. To this extent, various improvements could be implemented in future
research, advancing toward an accurate, robust, and computationally efficient method.

• The need for a chordwise wavenumber is a critical disadvantage that the NmPSE faces in non-
modal growth computations, with the error associated to it clearly seen to be non-negligible.
The immediate solution to this is its elimination from the problem, which effectively gravitates
the state-the-art toward the elliptic HLNS. However, the elimination of α comes at the cost
of parabolization and its associated computational benefits. Future research could involve the
investigation of alternative methods to deal with α, should computational efficiency of the non-
modal solver be the main priority. The HLNS too however, is not without its drawbacks, as seen
with its high sensitivity to the numerical grid, and its reliance on a properly defined buffer region
for the outflow boundary conditions. These problems must be addressed in future research, should
working with the HLNS be the preferred direction.

• While the NmPSE and HLNS were not able to quntitatively predict the experimental evolution
of the DRE wake, their results were in close agreement with each other. This could indicate
that there is either a large sensitivity of the non-modal framework to experimentally-derived ICs,
or that an essential part of the flow physics was not modelled. The effect of surface curvature,
for example, might be an important parameter to consider in a non-modal stability solution.
Haynes & Reed [46] show that curvature effects are significant for modal computations with the
PSE, although this has not as of yet been quantified in a non-modal framework (to the author’s
knowledge). While surface curvature of the swept wing within the domain of interest in this work
was low, it is not completely flat. Hence, the validity of the flat plate assumption for non-modal
computations of the DRE wake could be investigated in future work, through derivation of the
equations in a curvilinear coordinate system.

• Only a single DRE forcing configuration was numerically studied in this work. It would be
of interest to quantify how the NmPSE and HLNS perform for ICs associated to other RekD

configurations. This would allows for a better understanding of how the non-modal solvers respond
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to physical variations in the ICs. Research into this could possibly be extended to investigate more
accurate analytic approximations of the DRE wake for use with the non-modal solvers.

In addition to the few suggestions provided for future numerical work, the experimental measure-
ments carried out in this thesis may be extended or improved upon.

• The standard deviation fields obtained for the critical forcing configuration (5.7) indicate aperiod-
icity in the flowfield, where high-fluctuation intensity regions are more prominent on the inboard
element. This was attributed to manufacturing defects as a result of the laser-cutting process.
To mitigate this in future experiments, an alternative manufacturing method can be investigated,
such as using glass-cutters. This would eliminate deformities arising as a result of laser burns.
The flowfield induced by the glass-cut DRE array would have to first be characterized, before a
dedicated measurement campaign is conducted.
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A
Appendix

A.1. Non-Modal PSE System of Equations
The system of equations 2.27 can be written in matrix form:

Aq̄ + B
∂q̄
∂ȳ

+ C
∂2q̄
∂ȳ2

+ D
∂q̄
∂x̄

= 0 (A.1)

The vector q̄ here includes the shape function for the pressure as well, such that q̄ = (ū, v̄, w̄, p̄)T . The
contents of the coefficient matrices A, B, C, D are as follows:

A =


iᾱ 0 iβ̄ 0

C + ∂Ū
∂x̄

∂Ū
∂ȳ 0 iᾱ

∂V̄
∂x̄ C + ∂V̄

∂ȳ 0 1
∂W̄
∂x̄

∂W̄
∂ȳ C iβ̄

 (A.2a)

B =


0 1 0 0
V̄ 0 0 0
0 V̄ 0 1
0 0 V̄ 0

 (A.2b)

C =


0 0 0 0

− 1
Re 0 0 0
0 − 1

Re 0 1
0 0 − 1

Re 0

 (A.2c)

D =


1 0 0 0

Ū − 2iᾱ
Re 0 0 0

0 Ū − 2iᾱ
Re 0 1

0 0 Ū − 2iᾱ
Re 0

 (A.2d)

Where the common convection-diffusion term C is written as:

C = −iω̄ + iᾱŪ + iβ̄W̄ +
1

Reδ∗0

(
ᾱ2 + β̄2 − i

∂ᾱ

∂x̄

)
(A.3)
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A.2. NmPSE High-Level Architecture
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A.3. Code Listing: NmPSE_v2_5.m

1 function [u,v,w,p,alpha,Aq] = NmPSE_v2_5(Re,IC,uIC,vIC,wIC,Ur,Vr,Wr,dxUr,dxVr,dxWr,dyUr,dyVr
,dyWr,x_md,y_md,omega,beta,alf,N,y_max,y_i)

2 % Executes a Non-Modal PSE simulation from min(x_md) to max(x_md(:,M)) at each given x-
3 % station of the given mean flow (Ur,Vr,Wr), assuming it to be given on a
4 % uniform grid. The fields are to be given such as to go from the free-
5 % stream to the wall as the (row-)index increases. Downstream stations
6 % correspond to an increasing column index.
7
8 % The outputs are the complex shape functions of u, v, w and p, along with
9 % the chordwise wavenumber. The shape functions are normalised with the local maximum of u.
10
11 % Chordwise grid density
12 [ � ,nx] = size(Ur);
13
14 %% Spectral Basis Functions
15
16 % Set up Chebyshev grid and associated Pseudo-Spectral Differentiation
17 % Matrices (PSDMs) in the computational domain: i.e. eta in [-1,1]
18 [eta,DM] = chebdif(N,2);
19
20 % Transform the PSDMs to the physical domain: eta |-> y
21 [y,D1,D2] = MappingMalik(y_max,y_i,eta',DM(:,:,1),DM(:,:,2));
22 clear DM eta
23
24 % The PSDMs will generally pop up with the size (N-2)x(N-2), accordingly
25 % define the identity and zero column and row
26 I = eye(N-2);
27 Z = zeros(N-2);
28 Zc = zeros(N-2,1);
29 Zr = zeros(1,N-2);
30
31 %% Initial Condition Assignment (Modal/Non-Modal Velocity, Zero Pressure)
32
33 % Initialize solution vector phi = [u v w p]'(x,y) and alpha = alpha(x)
34 phi = zeros(4*(N-2)+2,nx);
35 alpha = zeros(1,nx);
36
37 if strcmpi(IC,'nonmod')
38
39 % Assign non-modal initial conditions as per user input
40
41 % Set non-modal IC at first phi station
42 phi(1:3*(N-2),1) = [uIC(2:end-1);vIC(2:end-1);wIC(2:end-1)];
43
44 % Prescribe alpha at the first station
45 alpha(1) = alf;
46
47 elseif strcmpi(IC,'mod')
48
49 % Execute ILST analysis for modal initial conditions
50
51 tic
52 fprintf('| Running ILST for inflow conditions...\n')
53 [EVOS,uOS,vOS,wOS,pOS,yOS] = solver_ILST(...
54 Re,Ur(:,1),Wr(:,1),dyUr(:,1),dyWr(:,1),y_md,...
55 omega,beta,N,y_max,y_i);
56 fprintf('\b\b\b\b, finished in %.2f seconds.\n',toc)
57
58 % Filter eigenfunctions for correct eigenvalue
59 [OSeigval,index] = EVfilter(EVOS,vOS,yOS,omega,beta,d99(1));
60
61 % Initialize solution vector phi = [u v w p]'(x,y) and alpha = alpha(x)
62 phi = zeros(4*(N-2)+2,nx);
63 alpha = zeros(1,nx);
64
65 %Set ILST eigenfunction in first phi station
66 phi(:,1) = ([uOS(2:end-1,index);
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67 vOS(2:end-1,index);
68 wOS(2:end-1,index);
69 pOS(:,index)]);
70
71 % Set ILST eigenvalue as alpha for first station
72 alpha(1) = real(OSeigval);
73
74 else
75 fprintf('Invalid initial condition input! \n')
76 end
77
78 %% Execute Marching Algorithm
79
80 % External velocities at the first station
81 Ue = Ur(1,:);
82 We = Wr(1,:);
83
84 Ph = atan(We./Ue); % Determine external streamline inclination
85 yinteg = linspace(0,max(y),4000); % Pre-allocate array for wall-normal interpolation
86 iu = sqrt(-1);
87
88 % Start progress bar
89 percentage = 0;
90 fprintf('| Starting marching method.')
91 fprintf('| Progress: %.0f percent',percentage)
92
93 % Outer marching loop
94 for i=2:nx
95
96 % Determine intial guess for alpha from the local external streamline
97 alpha(i) = -tan(Ph(i))*beta;
98
99 % Interpolate baseflow components and create diagonal matrix form
100 U = diag(interp1(y_md, Ur(:,i),y(2:N-1),'spline'));
101 dxU = diag(interp1(y_md,dxUr(:,i),y(2:N-1),'spline'));
102 dyU = diag(interp1(y_md,dyUr(:,i),y(2:N-1),'spline'));
103
104 V = diag(interp1(y_md, Vr(:,i),y(2:N-1),'spline'));
105 dxV = diag(interp1(y_md,dxVr(:,i),y(2:N-1),'spline')); % Note: Order 1/Re^2
106 dyV = diag(interp1(y_md,dyVr(:,i),y(2:N-1),'spline'));
107
108 W = diag(interp1(y_md, Wr(:,i),y(2:N-1),'spline'));
109 dxW = diag(interp1(y_md,dxWr(:,i),y(2:N-1),'spline'));
110 dyW = diag(interp1(y_md,dyWr(:,i),y(2:N-1),'spline'));
111
112 % Reset convergence measure
113 dal = 1;
114
115 % Inner wavenumber loop
116 while abs(dal)*Re >= 1e-9
117
118 % N o n - m o d a l P S E | Backward Euler
119 %---------------------------------------------
120 % [A + B(d/dy) + C(d2/dy2) + D(d/dx)] q = 0
121
122 % LHS = A + B*Dy1 + C*Dy2 + D/dx;
123 % RHS = D/dx*q_old;
124
125 %------------M A T R I X----C O N S T R U C T I O N------------
126
127 % Determine d(alpha)/dx
128 dx = x_md(1,i) - x_md(1,i-1);
129 dax = (alpha(i) - alpha(i-1))/dx;
130
131 % Define common convection-diffusion terms
132 Cvd = -iu*omega*I + iu*alpha(i)*U + iu*beta*W + ... % Convective
133 I*(alpha(i)^2 + beta^2)/Re - iu*dax*I/Re; % Diffusive
134
135 % Construct wall-normal derivative matrices (Dy1 = d/dy, Dy2 = d2/dy2)
136 Dy1 = blkdiag(D1(2:end-1,2:end-1),D1(2:end-1,2:end-1),D1(2:end-1,2:end-1),D1);
137 Dy2 = blkdiag(D2(2:end-1,2:end-1),D2(:,2:end-1),D2(2:end-1,2:end-1),D2);
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138
139 % Construct A
140 A = [ iu*alpha(i)*I Z iu*beta*I [Zc Z Zc] % Continuity
141 Cvd + dxU dyU Z [Zc iu*alpha(i)*I Zc] % x-Momentum
142 dxW dyW Cvd [Zc iu*beta*I Zc] % z-Momentum
143 Zr Zr Zr [0 Zr 0 ] % |
144 dxV Cvd + dyV Z [Zc Z Zc] % y-Momentum
145 Zr Zr Zr [0 Zr 0 ] ]; % |
146
147 % Construct B
148 B = [ Z I Z [Zc Z Zc] % Continuity
149 V Z Z [Zc Z Zc] % x-Momentum
150 Z Z V [Zc Z Zc] % z-Momentum
151 Zr Zr Zr [1 Zr 0] % |
152 Z V Z [Zc I Zc] % y-Momentum
153 Zr Zr Zr [0 Zr 1] ]; % |
154
155 % Construct C
156 C = [ Z [Zc Z Zc ] Z [Zc Z Zc] % Continuity
157 -1/Re*I [Zc Z Zc ] Z [Zc Z Zc] % x-Momentum
158 Z [Zc Z Zc ] -1/Re*I [Zc Z Zc] % z-Momentum
159 Zr [-1/Re Zr 0 ] Zr [0 Zr 0] % |
160 Z [Zc -1/Re*I Zc ] Z [Zc Z Zc] % y-Momentum
161 Zr [0 Zr -1/Re] Zr [0 Zr 0] ]; % |
162
163 % Construct D
164 D_com = U - 2*iu*alpha(i)*I/Re; % Common Term in the D-Matrix
165 D = [ I Z Z [Zc Z Zc] % Continuity
166 D_com Z Z [Zc Z Zc] % x-Momentum
167 Z Z D_com [Zc Z Zc] % z-Momentum
168 Zr Zr Zr [0 Zr 0] % |
169 Z D_com Z [Zc Z Zc] % y-Momentum
170 Zr Zr Zr [0 Zr 0] ]; % |
171
172 %------------S O L V E------------
173 % Define LHS and RHS
174 Ml = A + B*Dy1 + C*Dy2 + D/dx;
175 Mr = D/dx*phi(:,i-1);
176
177 % Solve linear problem
178 phi(:,i) = Ml\Mr;
179
180 %------------U P D A T E----A L P H A------------
181
182 % Store previous iteration for alpha
183 alphaold = alpha(i);
184
185 % Compute new alpha through the non-modal "normalization condition"
186
187 u = phi(1:N-2,i); % u shape function at current station
188 uold = phi(1:N-2,i-1); % u shape function at previous station
189 dux = (u - uold)/dx; % d(u)/dx
190
191 % Find the wall-normal maxima of the u shape function
192 [ � ,k] = max(abs(interp1(y(2:end-1),u,yinteg,'spline')));
193 umax = interp1(y(2:end-1),u,yinteg(k),'spline');
194 dumax = interp1(y(2:end-1),dux,yinteg(k),'spline');
195
196 % Compute new alpha by absorbing residual phase change in u
197 alphaphi = real((dumax/umax)/iu);
198 alpha(i) = alpha(i) + alphaphi;
199
200 % Check difference wrt previous iteration
201 dal = alpha(i) - alphaold;
202
203 end
204
205 % Notify progress
206 for j = 1:numel(num2str(percentage))+9; fprintf('\b'); end
207 percentage = round(100*i/nx);
208 fprintf('%.0f percent ',percentage)
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209
210 end
211
212 %% Output/Normalization Routine
213
214 % Augment Dirichlet conditions to perturbation velocity components
215 phi = [zeros(1,nx); phi(0*(N-2)+1:1*(N-2) ,:); zeros(1,nx);
216 zeros(1,nx); phi(1*(N-2)+1:2*(N-2) ,:); zeros(1,nx);
217 zeros(1,nx); phi(2*(N-2)+1:3*(N-2) ,:); zeros(1,nx);
218 phi(3*(N-2)+1:4*(N-2)+2,:)];
219
220 % Extract the individual shape functions
221 u = phi(0*N+1:1*N,:);
222 v = phi(1*N+1:2*N,:);
223 w = phi(2*N+1:3*N,:);
224 p = phi(3*N+1:4*N,:);
225
226 % Calculate the residual growth in the eigenfunction
227 dux = -FD1d4o(u,dx);
228 yinteg = linspace(0,max(y),4000);
229 umax = ones(1,nx);
230 alphaphi = zeros(1,nx);
231
232 for i = 2:nx
233 [ � ,k] = max(abs(interp1(y,u(:,i),yinteg,'spline')));
234 umax(i) = interp1(y,u(:,i),yinteg(k),'spline');
235 dumax = interp1(y,dux(:,i),yinteg(k),'spline');
236 alphaphi(i) = (dumax/umax(i))/iu;
237 end
238
239 alpha = alpha + alphaphi;
240
241 % Shape function normalization
242 [ � ,k] = max(abs(interp1(y,u(:,1),yinteg,'spline')));
243 umax(1) = interp1(y,u(:,1),yinteg(k),'spline');
244
245 for i = 1:nx
246 u(:,i) = u(:,i)/abs(umax(i));
247 v(:,i) = v(:,i)/abs(umax(i));
248 w(:,i) = w(:,i)/abs(umax(i));
249 p(:,i) = p(:,i)/abs(umax(i));
250 end
251
252 % Store shape function amplitudes
253 Aq = umax;
254
255 end
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