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A B S T R A C T

The prognostic of the Remaining Useful Life (RUL) of composite structures remains a critical challenge as it 
involves understanding complex degradation behaviors while it is emerging for maintaining the safety and 
reliability of aerospace structures. As damage accumulation is the primary degradation indicator from the 
structural integrity point of view, a methodology that enables monitoring the damage mechanisms contributing 
to the structure’s failure may facilitate a reliable and effective RUL prognosis. Therefore, in this study, an in-
tegrated methodology has been introduced by targeting the RUL and progressive delamination state via Deep 
Neural Network (DNN) trained with Guided wave-based damage indicators (GW-DIs). These GW-DIs are ob-
tained via signal processing, Hilbert transform, and Continuous Wavelet Transform. This work uses GW-DIs to 
train and test the proposed model within two frameworks: one focusing on individual sample analysis to explore 
path dependency in RUL and delamination prognosis and another on an ensembled dataset to propose a generic 
model across varying stress scenarios. Results from the study indicate that proposed DNN frameworks are 
capable of encapsulating fast and slow degradation scenarios to evaluate the RUL prediction with associated 
delamination progress, which could contribute to ensuring the integrity and longevity of critical life-safe 
structures.

1. Introduction

Although composite structures are increasingly integrated into 
aerospace designs due to their high stiffness-to-weight ratio, they are 
susceptible to specific forms of damage, such as impact damage, that 
may compromise their load-bearing capacity substantially. Further-
more, when impacted structures are exposed to fatigue loading condi-
tions, these structures undergo complex damage accumulation 
processes, presenting unique challenges in maintaining airworthiness 
[1–3]. Ensuring airworthiness, composite structures are subject to life-
cycle management procedures based on principles of damage tolerance 
and safe-life. According to the European Union Aviation Safety Agency’s 
(EASA) acceptable means of compliance (AMC), validating the damage 
tolerance characteristics of the structure relies critically on detecting 
and repairing damage before it becomes severe [4]. However, identi-
fying the critical level of the damage severity and foreseeing the 
remaining time that the structure may reach its threshold level introduce 
a significant challenge as a result of the inhomogeneous nature of 
composite structures that create a stochastic degradation phenomenon 

[5,6].
Among the damage types of composite structures, delamination 

induced by an impact event carries a severe threat from the structural 
integrity point of view because of its complex and often hidden nature 
[7,8]. More specifically, under compressive fatigue conditions, delami-
nation can be particularly concerning due to the resulting reduction in 
stiffness, which consequently increases the risk of structural buckling [9,
10] According to the regulations [4], damage severity assessment must 
be performed for the structure by determining possible locations, types, 
and sizes of damage before reaching the critical damage threshold, 
which enables maintenance actions to be taken at planned inspection 
intervals. In delamination progress under compressive loading condi-
tions, quantifying delamination severity is complicated as delamination 
may occur and grow at each layer in different shapes and may present an 
accelerated growth rate after a critical damage severity level. Moreover, 
determining the critical damage level is problematic as well, as varia-
tions in initial damage besides the operational and environmental con-
ditions may lead to degradation scenarios that differ drastically for each 
composite structure. As a result, to avoid reaching a critical threshold 
level, it becomes essential to uncover the delamination growth in 
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real-time, and that necessitates the development of sophisticated prog-
nostic models that reveal the delamination state and the RUL of the 
structure that may enable reliable and effective repair decisions that 
consequently enhance the safety and operational efficiency of composite 
structures.

Structural Health Monitoring (SHM) has emerged to ensure the 
safety and reliability of engineering structures by continuously assessing 
their condition [11,12]. By various sensing technologies and data 
analysis methods, SHM systems enable real-time monitoring of struc-
tural integrity, early damage detection, and informed decision-making 
regarding maintenance and repair activities . The prognosis of RUL is 
considered the final level of SHM as its process involves capturing 
structures’ complex and nonlinear degradation mechanisms, incorpo-
rating uncertainties arising from environmental and operational vari-
ability [13].

In the literature, RUL prognostics have been studied through a va-
riety of SHM techniques tailored to specific applications, including 
Acoustic Emission (AE), Fiber Optic Sensors (FBGs), and Ultrasonic 
Guided Wave/Lamb Wave (GWs), which offer unique capabilities for 
monitoring structural health and detecting the signs of deterioration. In 
the study of [14], AE features have been employed as the input of a 
data-driven prognostic model to predict the RUL of open-hole CFRP 
specimens subjected to tensile fatigue loading. Strain-based health in-
dicators are obtained via FBGs in the study of [15], and RUL is predicted 
for CFRP single-stiffened panels using Gaussian Process Regression. In 
presented RUL prognostic methodologies, models are trained via Health 
Indicators (HIs), which are damage-sensitive features obtained from 
SHM data, targetting the RUL, while the direct and interpretable cor-
relation of HIs with different damage types and states of the structure is 
not clear. However, within the framework of decision-making processes 
take place in maintenance strategies, damage characterization with 
damage severity assessment may enhance and support the RUL 
prognosis.

GW-SHM is one of the strong candidates among various SHM tech-
niques thanks to its strong ability to examine the structure over long 
distances compared to their wavelength [16] and unique advantages for 
detecting and characterizing damage in composite materials, including 
sensitivity to various damage types and the capability to inspect minor 
damages [17,18]. The presence and evolution of damage can be 
potentially monitored through changes in the behavior of GWs, such as 
variations in wave velocity, attenuation, or mode conversion, which 
may indicate the location, existence and severity of damage [19]. GW 

signals can be performed through piezoelectric (PZT) transducers with 
an excitation signal and can be operated in either pitch-catch or 
pulse-echo strategy in chosen intervals [20,21].

GWs have been employed for damage detection and localization for 
composite structures, demonstrating notable capabilities in this regard 
[22]. The research conducted in [23] demonstrates the capability of 
GW-DIs in classifying damage types via Gaussian discriminant analysis 
for CFRP coupons subjected to tensile fatigue loading. Efforts to monitor 
the growth of delamination have been undertaken in study [24] 
employing GW-DIs with the implementation of the experimental study 
given in [25]. Nonetheless, it is crucial to extract DIs from GW signals 
that involve sophisticated advanced signal processing techniques to 
isolate significant features indicative of underlying structural changes. 
Hilbert Transform (HT) is a signal processing technique that estimates 
the signal’s envelope through its analytical representation, allowing DI 
extraction in the time domain [26]. Additionally, given the 
non-stationery and time-varying nature of GWs, Continuous Wavelet 
Transform (CWT) holds relevance for the analysis due to its ability to 
detect localized features that make it well-suited for examining signals 
characterized by abrupt changes or transient events [27,28]

The relation between the acquired GW-DIs with RUL and the 
delamination state may present a complex correlation requiring a model 
to map their interconnection effectively. Besides that, sensors in the 
same network may present some deviation originating from sensor- 
based imperfection or uncertainties due to the sensor attachment and 
the possible effect of the actuator-sensor paths closer to the damaged 
area. This could lead to variability in GW-DIs, making some more sen-
sitive to delamination growth. At the same time, others may convey 
information not only about delamination but also about structural var-
iations in a broader sense. Therefore, prediction models that account for 
complex data patterns and adapt over time are needed for accurate and 
reliable prognostic output. In the literature, data-driven RUL and dam-
age severity prognostic have been implemented through statistical and 
machine-learning-based methods [29]. Among these techniques, DNNs 
are recognized for their capability to effectively capture complex, 
nonlinear relationships hidden in the data, thereby facilitating the 
mapping of complex correlations between GW-DIs and damage char-
acteristics [30,31]. Additionally, their capacity to learn from vast and 
heterogeneous datasets enhances their adaptability to diverse damage 
scenarios, such as sudden growth behavior observed under compressive 
fatigue loading conditions [32,33]. However, DNN models face chal-
lenges such as model generalization, the risk of overfitting, and the 

Nomenclature

CAI Compression After Impact
CBM Condition Based Maintenance
CFRP Carbon Fiber-Reinforced Polymer
CWT Continuous Wavelet Transform
DAQ Data Acquisition
DIC Digital Image Correlation
DIs Damage Indicators
DWT Discrete Wavelet Transform
EMI Electromechanical Impedance
GWs Guided Waves
HT Hilbert Transform
LOOCV Leave-one-out-cross-validation
PZT Piezoelectric Transducer
RUL Remaining Useful Life
SHM Structural Health Monitoring
STFT Short Time Fourier Transform
WAP Windowed Avarage Power
Ncycle Number of cycles

Npath Number of paths
NDI Number of DI
Fmax Maximum applied load
Fmin Minimum applied load
Ψ(t) Wavelet function
al

m Neuron input
fexc Excitation frequency
ν Exponential average of gradients
β Exponential decay control parameter
g Gradient
η Initial learning rate
ω Weight of a neuron
s Exponential average of squares of g
x Damage indicator
Yi,m

d True label of delamination length

Yi,p
d Predicted value of delamination length

Yi,m
R True value of delamination length

Yi,p
R Predicted value of delamination length
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interpretability of the learned representations, which may limit the 
comprehension of the underlying physical processes [34,35].

Although various studies have proposed RUL prognostics for com-
posite structures, more research should address the delamination 
propagation and its correlation with RUL using SHM data in a data- 
driven methodology. Additionally, while data-driven RUL prognostic 
models in the existing literature have infrequently utilized GW-SHM 
data as input, extensive research has been conducted on diagnostics 
with GWs. Considering the effectiveness of GW-DIs in damage charac-
terization, incorporating these indicators into RUL prognostics offers 
considerable potential to enhance the precision and dependability of the 
predictions [36,37]. Moreover, most of these studies mainly focus on 
structural degradation under tensile fatigue conditions, which presents 
an area for further investigation to enhance RUL prognostics’ predictive 
accuracy and applicability in composite structures under varied 
compressive scenarios. Thus, this paper proposes a novel 
GW-SHM-based integrated prognostic approach that targets RUL and 
delamination size in a data-driven framework for woven CFRP samples 
subjected to compressive fatigue loading conditions. In this study, 
delamination is initiated by a low-velocity impact and is considered as 
the dominant damage mechanism that leads to the final failure of the 
samples. The prognostic concept aims to improve the learned repre-
sentations’ interpretability by targeting RUL and delamination size as 
separate outputs in the learning framework. Through advanced signal 
processing, GW-DIs are extracted as high-level features from GW signals, 
aiming for more robust and interpretable prognostic outcomes for RUL 
and delamination size. A DNN model is implemented in this work as the 
prognostic model. Model architecture and hypermeters are adapted and 
tuned according to the input and output sets, focusing on two objectives. 
The first is to investigate the contribution of various paths to the prog-
nostic of RUL and delamination size in each sample domain. The second 
objective is to achieve a more generic prognostic model with ensembled 
GW-DIs from different samples arranged as the DNN model’s input set. 
The proposed methodology enables monitoring the contributing damage 
mechanisms to failure of the structure that results in a reliable and 
effective RUL prognosis.

Within the methodology of this study, GW signals are acquired 
through a surface-bonded PZT network. The damage state is labeled via 
the ultrasonic C-scan technique, and damage size is quantified as the 
maximum measured length, which is applied from the industrial appli-
cation point of view. RUL is determined as the total EoL cycle that occurs 
due to catastrophic failure in all samples and the last prediction step 
indicates the critical damage level for each sample. GW-DIs are esti-
mated via HT and CWT, and particular constraints are assigned for each 
to obtained GW-DIs. Finally, an integrated approach is developed to 
facilitate RUL and delamination state prognostic.

The rest of the paper is organized as follows: The experimental study 
that produced the dataset for this work is described in the following 
section. The third section presents the methodology of GW-based SHM, 
DI extraction, and DNN-based regression models. The fourth section 
presents the prognostic framework, introducing the dataset organization 
and model architecture. In the fifth section, results are presented with 
their discussion Sections. The last chapter includes the conclusion and 
future work.

2. Experimental study

2.1. Compression-compression fatigue experiment

Compression After Impact (CAI) fatigue testing has been designed 
and adapted for samples tailored from a large woven-type CFRP plate 
according to the ASTM D7136 [38]. Each sample has a thickness of 5.5 
mm, with dimensions of 100 mm in width and 150 mm in length. Fig. 1
shows the experimental setup, presenting the impact testing, fatigue 
testing with SHM setup, and the anti-buckling fixture used in testing to 
prevent global buckling. The acquisition step of the experiment is 

achieved through multiple data acquisition (DAQ) systems: GW, elec-
tromechanical impedance (EMI), digital image correlation (DIC), and 
pulse-echo ultrasonic C-scan. The equipment list in the GW & EMI unit 
consists of a signal generator, EMI analyzer, multiplexor, oscilloscope, 
and computer.

In the initial stage of the experiment, data on the undamaged con-
dition of the samples was collected. In the following step, the samples 
were subjected to low-velocity impacts using a drop-weight, followed by 
another data collection step to assess their condition post-impact. While 
healthy state and after-impact state acquisition steps have been done in 
free boundary conditions, this means the sample was not located inside 
the fixture, and no in-plane stress was introduced. Cycle 0 indicates the 
step that data was collected while the samples were clamped with a 
minimum magnitude of stress applied. In later processing, Cycle 0 was 
used as a reference

signal to compare fatigue data, as data acquisition was done under 
the same conditions as Cycle 0 for each sample throughout the fatigue 
testing.

The fatigue testing begins with an initial slow cycle at 1 Hz, followed 
by cycles executed at 5 Hz. Throughout the test, a load ratio of 10 is 
maintained consistently. In the dataset, constant load was applied to five 
samples: Sample 7, 9, 13, 14, and 15. Sample 2 has experienced constant 
loading except for its initial slow loading cycle, where the maximum 
load applied exceeded the defined fatigue force. Sample 10 initially 
experienced a higher load level before gradually decreasing force over 
later cycles. Sample 12 was subjected to a lower load level, and its load 
was gradually increased over the following cycles. Consequently, con-
stant and non-constant fatigue conditions were explored within the 
dataset, and their details are given in Table 1.

2.2. Delamination state labels

Throughout the tests, ultrasonic C-scan measurements were con-
ducted using a Dolphicam 2. The non- destructive test (NDT) kit (facil-
itated by the Dolphitech technology) operates on the pulse-echo 
principle with an excitation center frequency of 8 MHz. It facilitates the 
reconstruction of delamination images through post- processing in two 
methods: one involves amplitude variation and the other utilizes time- 
of-flight information, enabling the acquisition of delamination images 
throughout the thickness.

Fig. 2 shows the maximum measured length of delamination moni-
tored via C-scan for Sample 7. As seen in the figure, a one-dimensional 
quantification method is employed in this study as the maximum 
length of the delamination growth that occurs perpendicular to the di-
rection of the applied load. An equal final length is defined for the EoL of 
all the samples, with the evidence of delamination reaching both edges 
of the sample in the growth direction, which is limited by the width of 
the sample. Among the samples in the dataset, Sample 12 and Sample 13 
are two samples whose damage state was not able to be labeled via C- 
scan because of the high-noise effect in the images; thus, these two 
samples were not involved in the prognostic models that target delam-
ination length as the output. Fig. 3 represents the dataset showing the 

Fig. 1. CAI fatigue testing with SHM setup.
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measured maximum delamination length of the samples during their 
fatigue life, corresponding RULs, assigned threshold, and all samples’ 
measured delamination in their threshold. The term “threshold” level, 
given in Fig. 3, occurs in the cycle step that is followed by a fast 
delamination propagation, resulting in final failure. Therefore, it in-
dicates the last cycle step that allows for data acquisition and the 
damage length measurement. The threshold level is measured as a 

different value for each sample, and it is attributed as the critical damage 
length for the tested samples.

3. Methodology

This section elaborates on the GW-SHM methodology, initially de-
tailing the experimental parameters essential for collecting GW signals. 
In the second Section, DIs obtained from GW signals are introduced. In 
the final sub-section, a prognostic model that is trained with GW-DIs is 
described. The general methodological framework is given in Fig. 4.

3.1. GW-SHM

GWs are elastic waves propagating within plate-like structures, 
comprising longitudinal modes, shear modes, and higher-order combi-
nations. Their dispersive characteristics are influenced by structural 
geometry, ply fiber direction, initial wave entry angle, the excitation 
signal and frequency chosen [39]. The excitation signal and frequency 
are essential parameters for GWs. They can activate wave modes, 

Table 1 
Test parameters and results of samples assigned in proposed methodology.

Samples Impact Energy 
(Joule)

Max/Min 
Force

Max Applied 
Force

EoL 
(Cycles)

Samples Impact Energy 
(Joule)

Max/Min 
Force

Max Applied 
Force

EoL 
(Cycles)

Sample 2 19.45 − 135kN
− 13.5kN

− 140 kN 79,000 Sample 
12

19.45 − 130kN
− 13kN

− 137 kN 38,500

Sample 7 15.35 − 140kN
− 14kN

− 140 kN 40,500 Sample 
13

16.31 − 140kN
− 14kN

− 140 kN 27,900

Sample 9 15.35 − 140kN
− 140kN

− 140 kN 97,000 Sample 
14

15.35 − 140kN
− 140kN

− 140 kN 21,300

Sample 
10

15.35 − 135kN
− 13.5kN

− 150 kN 6600 Sample 
15

16.31 − 135kN
− 13.5kN

− 135 kN 15,500

Fig. 2. Delamination length measurement via C-scan images.

Fig. 3. (. a) Delamination growth until EoL, (b) RUL, (c) Damage threshold, (d) Delamination growth until the threshold level.
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including higher modes, which can provide enhanced resolution but 
may also lead to more complex signal interpretation due to mode con-
version and dispersion [20,40,41]. Therefore, they must be optimized 
according to the structural parameters and damage sensitivity, consid-
ering the structure’s anisotropy and heterogeneity. However, it is 
challenging to induce desired GW modes, especially for composites, due 
to their anisotropic nature. GW signals generated by a 2-cycle tone-burst 
signal with center frequencies of 140 kHz, 160 kHz, and 180 kHz are 
utilized in this work to expand the possibility of achieving better 
signal-damage interaction evident in the acquired GW signal.

GW signals are collected using the pitch-catch mode, wherein each 
PZT alternates between acting as an actuator and a sensor [42]. Spe-
cifically, during data collection, the top array PZTs function as actuators 
while the bottom array serves as receivers, and vice versa. This setup 
results in each PZT having three distinct paths, yielding a total of 18 
paths collected. Fig. 5 illustrates the labels for each actuator-sensor pair 
considered in the pre/post-processing and DI extraction step.

3.2. GW-DIs

GW-DIs are obtained through signal processing techniques to iden-
tify portions of the GW signal that are particularly sensitive to delami-
nation. Table 2 represents the DI definitions with their corresponding 
reference equation. GW-DIs are extracted in both the time domain 
through HT to obtain signal envelope from the analytical presentation of 
the signal and in the time-frequency domain via the CWT method [43]. 
In CWT analyses, wavelets, which are localized functions or waveforms, 
are employed to analyze different signal segments at various scales [44]. 
The wavelet function is denoted as Ψ(t), and the continuous CWT co-
efficients as CWT(a,b) . When a signal segment matches the form or 
pattern of the wavelet, the resulting wavelet coefficients reach their 
maximum value. The Morlet function has been utilized as the wavelet in 
this particular CWT analysis. The Morlet function consists of a sinusoidal 

Fig. 4. General GW-SHM based prognostic framework.

Fig. 5. Surface-attached PZT network and actuator-sensor path labels.

Table 2 
GWs processing reference equations and damage indicators.

Reference Equation Damage Indicator

Hilbert 
Transform H(t) =

1
π

∫+∞

− ∞

x(τ)
t − τ dτz(t) =x(t)+

iH(t)

DI1fexc ,NPZT =
∑Twindow

t H(t)cycles
∑Twindow

t H(t)base

Continuous 
Wavelet 
Transform

CWT (a, b) 

=
∫

ψ
(

t − b
a

)

x(t)dtWAP(t) =

∑b=T
b=t

|CWT(a,b)|

DI 2 fexc ,NPZT =

∑Twindow
t AP(t)cycles

∑Twindow
t AP(t)base 

DI 3 fexc ,NPZT =
∑Ttotal

t AP(t)cycles
∑Ttotal

t AP(t)base
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wave enveloped by a Gaussian and closely resembles the form of a tone 
burst signal. Due to this resemblance in waveform shape, the Morlet 
wavelet is more effective at matching the characteristics of the tone 
burst signal compared to other types of wavelets, which consequently 
may result in improved signal decomposition and analysis, allowing for 
the essential features of the signal to be captured with minimal distor-
tion [45].

A mode-independent approach is conducted in this work with the 
motivation to derive the information that can be obtained from the rest 
of the GW signal, potentially from mixed and higher GW modes. In that 
sense, three DIs have been adopted in this work, which have been 
studied for delamination progress analysis for the samples tested in the 
experiment.

For DI 1, a time window is applied to the residual GW signal in the 
time domain in the ranges of 0–4 μ for 140 kHz, 0–3.5 μ for 160 kHz, and 
0–3 μ for 180 kHz, resulting in a longer time window for 140 kHz lower 
frequency of and a shorter one for 180 kHz. Owing to this approach, 
initially arrived energy packages are captured; thereby, the effects of 
reflections are mitigated.

For the second DI, time windows are designated in the time- 
frequency domain. These windows are centered around the wave 
package with the highest energy in residual signal, aiming to isolate the 
portion of the signal most sensitive to damage.

Finally, the entire spectrum is quantified as the third DI in the time- 
frequency domain, providing a comprehensive overview of the signal’s 
characteristics.

As each fexc frequency contains 3-DIs, the feature extraction step 
results in 9-DIs to investigate each sample at the end. Fig. 6 presents the 
DIs of the same path for each sample in the dataset. It can be seen in the 
figure that not all the DIs have the same characteristics as each other 
even when they belong to the same sample. As the degradation is a 
continuously increasing phenomenon, when no repair/replacement 
takes place, DIs are expected to be monotonic with a similar trend. It can 
be seen in Fig. 6 that DIs from the same actuator-sensor pair display 
variation. At the same time, their damaged progress representation may 
be shadowed by noise, and reflections occur in the signal. While some 

paths present errors by showing a decreased trend, such as in Sample 10, 
damage severity indicated by the DIs for the same sample may differ as 
well. GW signals may not carry only delamination-related information 
but also information from the entire structure, which may include other 
types of damage, such as matrix cracks. Thus, although some DIs from 
the same path may exhibit higher sensitivity to delamination, others 
with severe DIs may indicate structural degradation from a broader 
point of view, conveying effects induced by other damage modes as well. 
Additionally, the variation between the DIs induced by different exci-
tation frequencies may indicate that more delamination-sensitive modes 
might be excited at those signals that generate more monotonic DIs.

Furthermore, there might be higher-mode excitation due to scat-
tering originating from delamination, yet understanding the complex 
interplay of factors influencing GW signals is highly challenging. 
Through the selected signal processing steps, while the delamination- 
related part of the signal might be better captured for specific fre-
quencies and paths, others might overlook this information. On the 
other hand, using multiple excitation frequencies and DIs could enhance 
this hurdle by enabling information fusion for a better prognosis. 
Moreover, considering that the delamination is the major yet not the 
only effect that stimulates degradation of the structure, it is likely 
effective to fuse those DIs for more accurate prognostic that are 
comprehensive for both the structural degradation and delamination 
specifically.

3.3. Deep neural networks

DNNs have emerged as powerful tools for regression tasks because 
they can model complex relationships between input and output vari-
ables. Unlike traditional regression methods, DNNs can automatically 
learn hierarchical representations from data, and they are well-suited for 
tasks with high-dimensional inputs and nonlinear relationships. The 
basic building blocks of a DNN are neurons, organized into layers. In a 
typical DNN architecture for regression, multiple hidden layers are 
interleaved between the input and output layers. Fig. 7 represents the 
learning scheme for neuron I in hidden layer l. The term al

m 

Fig. 6. GW-DIs for path no 5.
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demonstrates the input that arrives from connected neurons of the 
previous layer while m is the number of neurons and w stands for the 
weight with bias term b. The term σ is the activation function, which can 
be either linear or nonlinear, that enables DNNs to capture complex 
patterns in the data. Commonly used activation functions include the 
rectified linear unit (ReLU), sigmoid, and hyperbolic tangent (tanh) 
[46]. Upon experimenting with various activation functions to map DI 
sets, ReLU and tanh are mainly used in the proposed model due to their 
effectiveness in producing output with higher accuracy.

Training a DNN for regression involves adjusting the weights and 
biases of the neurons to minimize a loss function that quantifies the 
difference between the predicted outputs and the labels. This is typically 
done using optimization algorithms such as stochastic gradient descent 
(SGD) or its variants. One of them is Adam, an adaptive optimization 
algorithm that maintains two moving averages of the gradients [47]. By 
adapting the learning rates for different parameters based on their his-
torical gradients, Adam often converges faster and is more robust to 
noisy gradients than traditional SGD methods . Mean squared error 
(MSE) has been chosen as the loss function and accuracy metric during 
the training and testing. The Adam’s optimization strategy is given in 
the following equations: 

νt = β1 ∗ νt− 1 − (1 − β1) ∗ gt (1) 

st = β2 ∗ st− 1 − (1 − β2) ∗ g2
t (2) 

Δω = − η vt
̅̅̅̅̅̅̅̅̅̅̅̅
st + ε

√ ∗ gt (3) 

ωt+1 = ωt + Δωt (4) 

where η is the initial learning rate, gt is the gradient at t each feedfro-
ward iteration along ωt, νt is the exponential average of gradients along 
ωt, st is the exponential average of squares of gradients along ωt and β1,β2 
are hyperparameters to control the exponential decay rates of the 
moving averages. In addition, among various regularization techniques 
can be applied to DNNs for regression to prevent overfitting and 
encourage them to learn more robust representations, dropout layers are 
assigned to the proposed model as the regularization technique to 
enhance the model in the sense of its generalization capability [48]. 

Table 3 presents the hyperparameters of DNN models trained for each 
framework proposed in this study.

4. Prognostic framework

4.1. Input organization

GW-DIs were extracted for each of the ten samples, resulting in 10 
samples x 9; for instance, considering Sample 2, there are 9 DIs collected 
across 18 paths and eight cycle steps. However, it is essential to note that 
the number of total cycle intervals that GWs are collected varies for each 
sample due to the differences in their end-of-life spans, which range 
from 6600 to 97,000 cycles. At the same time, the data acquisition steps 
are determined prior to the fatigue test; according to the delamination 
propagation in the first 1000th and 10,000th cycle, it is re-defined 
accordingly. To create data steps with constant intervals for each sam-
ple, missing values are filled by interpolation after the DI extraction step 
for samples 7, 10, 12, and 15.

As two different approaches have been investigated for the prognosis 
of delamination growth and RUL in this work, the datasets are organized 
in two ways. For the first dataset type, data has been prepared for 
training considering the model’s input size equals the number of DIs, 
NDIs, and the number of frequencies, Nf. Paths are divided into two 
groups for training and testing purposes. For each sample, a total of 18 
paths have been separated in terms of the actuator-sensor path, resulting 
in 15 paths for training and three paths for testing considering leave- 
one-out-cross-validation (LOOCV) that allows for the evaluation of the 
model’s performance using data that was not previously introduced 
during training, thereby assessing their effectiveness in handling unseen 
data. More detail, paths from five actuators to each three sensors are 
assigned to the training set, while one actuator to three sensor paths are 
reserved for the testing set. This arrangement facilitates a comprehen-
sive evaluation of the performance of DIs based on specific testing paths. 
Outputs are quantified delamination length and RUL with a threshold 
that is indicated individually for ten samples, except Sample 12 and 
Sample 13, as they do not have an accurate damage quantification; 
therefore, their output is only defined as yRUL.

The dataset has been organized for Framework 2 so that the training 
set contains DIs from each sample, and the number of neurons in the 
input layer was allocated considering the number of paths in addition to 
Nf and NDI. This approach results in a total neuron number of 9 × 18 =
162 in the input layer. While the data organization remains the same, 
RUL and delamination length prediction models used different sample 
sets; for the RUL prediction, Sample 2, Sample 7, Sample 9, Sample 13, 
Sample 14, and Sample 15 are merged considering the prognosability, 
which means the distribution of samples end-of-life merit. Conversely, 
for the delamination length prediction, Sample 2, Sample 7, Sample 9, 
Sample 10, Sample 14, and Sample 15 pooled, as Sample 12 and 13 have 
no complete damage state labels.

The final steps in the data organization procedure for Frameworks 1 
and 2 involve normalization and standardization, which are crucial for 
enabling the model to learn effectively, leading to better generalization 
and improved performance when making predictions on new data. 
Normalization involves scaling the data to a range between 0 and 1, 
ensuring consistency and preventing any feature dominating the 
model’s learning process. This is particularly useful when dealing with 
features of varying magnitudes, ensuring each feature contributes 

Fig. 7. Neuron input-output relation.

Table 3 
Hyperparameters of the DNN model.

Type Number of Neurons Initial Learning Rate Batch Size

L 1 Act. Func. L 2 Act. Func. L 3 Act. Func. L 4 Act. Func. L 5 Act. Func.

1 240 ReLU 120 ReLU 60 ReLU 30 ReLU 1 Linear 0.0001 Ls
c

2 A 240 ReLU 120 ReLU 60 ReLU 30 ReLU 1 Linear 0.001 4
​ B 240 tanh 120 tanh 60 ReLU 30 ReLU 1 Linear 0.001 4
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proportionally to the model’s training. For framework 1, the input data 
in the sample domain considers each path independently for a 0 to 1 
normalization. Standardization involves transforming the data to have a 
mean of 0 and a standard deviation of 1. This process ensures that the 
features are centered around zero and have a consistent scale, making it 
easier for the model to converge during training. Framework 2 uses the 
standardized dataset, considering each specific path of each sample 
separately to ensure that varying magnitudes are retained to maintain 
the uniqueness of each data point in the input set. Any data leakage is 
prevented as the training and testing data are standardized in their own 
domain.

4.2. Model architectures

The DNN model has five layers for regression tasks, with the last 
layer having one output for each learning phase, RUL and damage 
length. The complete learning scheme is illustrated in Fig. 8. In the case 
of Framework 1, the DNN model is re-trained for both RUL and damage 
length targets each time the training-testing sets are shuffled, and this 
process is repeated such that each path in the dataset is used once as the 
test set. In this framework, training and testing are achieved in the one- 
sample domain. The path sensitivity is investigated as each actuator- 
sensor path is involved/excluded one after another, and the same pro-
cedure is repeated for each sample in the dataset in LOOCV manner. In 
the second framework, multiple samples are collected in training, and 
one sample not included in the training is used in the testing phase 
following the LOOCV as well.

Hyperparameters are optimized experimentally by surveying the 
training loss in terms of the MSE value, and they are chosen once the 
model becomes stable and has the highest accuracy. Table 2 gives the 
hyperparameter values that are tuned for each framework. For type 1, 
batch size Ls

c denotes the max value of Ncycle for each sample and takes 
the values of 8, 9, 10, 5, 5, 8, 6, 5, 10 in the training phase of the cor-
responding sample. The model characteristics were applied in the same 
way for the RUL target and delamination length. In type 2, the model has 
two sub-types; type A is trained according to the target of delamination 
length, and type B is tuned for RUL prediction. For both types, batch 
sizes remain constant, and the activation function is adapted as tanh for 
the first two layers’ outputs, while type A has ReLU as its activation 
function. Dropout regularization layers are used after layer 1 and layer 2 
with a value of 0.2. Finally, to generate confidence bounds for the pre-
dictions, the model was re-initiated and re-trained ten times with 
different initial weights, yielding varied predictions each time. This 
approach demonstrated the stability of the proposed model by illus-
trating how predictions consistently fell within a specific range, con-
firming the robustness of the model across initializations.

5. Results

5.1. Framework 1

5.1.1. Prediction results
This section presents and discusses prediction results according to 

Framework 1. As the model is re-trained separately for each output set of 
delamination length and RUL, the performance of each path from each 
sample is investigated in a comparative way for the samples shared 
between damage size and RUL prediction training stack. Errors of pre-
dictions are given by the metric of Mean Absolute Relative Error (MARE) 
[49], given in equation 1, while Yi,m

d denotes the true label for delami-

nation length, Yi,m
R is the true label for RUL. Yi,p

d refers the predicted 

delamination length at ith cycle and Yi,p
R is for the predicted value of RUL. 

In Fig. 9, errors based on MARE is presented for each path for delami-
nation length prediction. In contrast, the correct figure presents the 
average error of each path per cycle. The figure indicates error values for 
RUL prediction based on each testing path and the path average error 
per cycle. According to the obtained error values, it is evident that paths 
with higher accuracy vary for each sample.

Furthermore, less effective paths in predicting delamination length 
may not necessarily yield poor outcomes for RUL prediction. However, a 
correlation can be captured in the case of Sample 7, Sample 14, and 
Sample 15, where the lowest MARE for delamination length prediction 
exhibits high accuracy in RUL prediction. In the case of Sample 7, path 8 
has a high prediction error for delamination length prediction, and it 
holds the same behavior for RUL prediction as well. As the predictions 
are GW-DIs based, this correlation can be considered as the sensitivity of 
these DIs to delamination.

Another aspect requiring attention in the error values given in Fig. 9
is that the errors for RUL prediction appear to be generally higher than 
delamination length prediction. This can be attributed to the nature of 
the RUL target values, which typically have a higher range, often in the 
order of 10,000 cycles. In contrast, delamination length targets exhibit 
smaller intervals; for instance, Sample 2 indicates a prediction range of 
25 to 33.6 mm. Consequently, if the model incorrectly predicts the final 
cycle, for example, estimating 30,000 instead of 1000, the resulting 
error is significantly amplified, overshadowing the accuracy of pre-
dictions made for earlier cycles, which is apparent in Fig. 9 in cycle- 
based results, in Figure b and d.. 

MAREpathd =
1

Ncycle

∑Ncycle

i=1

⃒
⃒
⃒
⃒
⃒

Yi,m
d − Yi,p

d

Yi,m
d

⃒
⃒
⃒
⃒
⃒
, MAREcycle d=

1
Npath

∑Npath

i=1

⃒
⃒
⃒
⃒
⃒

Yi,m
d − Yi,p

d

Yi,m
d

⃒
⃒
⃒
⃒
⃒

(5) 

Fig. 8. Representation of learning frameworks.
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MAREpathR =
1

Ncycle

∑Ncycle

i=1

⃒
⃒
⃒
⃒
⃒

Yi,m
R − Yi,p

R

Yi,m
R

⃒
⃒
⃒
⃒
⃒
, MAREcycle R=

1
Npath

∑Npath

i=1

⃒
⃒
⃒
⃒
⃒

Yi,m
R − Yi,p

R

Yi,m
R

⃒
⃒
⃒
⃒
⃒

(6) 

According to Fig. 9, cycle-based error representation, both figures 
reveal that model predictions exhibit lower accuracy for the latest cycle 
step across all RUL and delamination length prediction samples, except 
for Sample 15, where the lowest accuracy occurs one step before the 
final cycle step. Conversely, predictions for damage length still exhibit 
some error, although not as pronounced as for the final cycle step; the 
error is likely distributed across each cycle step. In contrast, RUL pre-
dictions show a more drastic variation in accuracy, with significant 
decreases observed for the final cycle step compared to earlier cycles. To 
investigate the results better, DIs’ sensitivity to delamination accumu-
lation should be considered. In contrast to the others, in terms of the 
delamination in the threshold level, the less sensitive paths might have 
less confidence and accuracy, which may bring higher errors in the re-
sults for the final step prediction. This lower accuracy at the threshold 
level for specific paths might result from high scattering and reflection in 
the signal induced by larger delamination.

To compare the performance of testing paths on each trained model, 
the path with the highest accuracy for delamination length prediction is 
selected for each sample. Subsequently, the results of the same path for 
RUL and delamination length prediction are presented together in 
Fig. 10. In Fig. 11, on the other hand, the paths with the highest accuracy 
for RUL predictions are selected, and their performance is also demon-
strated for delamination length predictions together. The figures indi-
cate that paths performing well on delamination prediction yield RUL 
prediction almost as good as delamination length prediction. Samples 10 
and 15 exhibit considerably good accuracy for both targets in terms of 

their convergence in the final cycle. In the context of delamination 
length prediction, the target presents a significant increase in the later 
cycles. Although the model can generally capture this trend in most 
samples, it tends to underestimate the maximum delamination length, 
and this underestimation becomes the primary source of average error.

Besides, it should be highlighted that, even if the accuracy is lower in 
final cycles, the coherence between the delamination and RUL pre-
dictions is visible. In the case of Sample 2, as the model predicts that 
delamination is growing, the RUL prediction at the same cycle step is 
decreasing, indicating severe damage accumulation. This pattern is 
observed in almost all samples, demonstrating the reliability and con-
sistency of the model and the input DI data. However, it may not 
accurately reflect the actual conditions in every case.

Moreover, when comparing Figs. 10 and 11, it becomes evident that 
while paths yielding the best predictions for delamination length still 
maintain acceptable accuracy for RUL prediction, the opposite is not 
valid for all the samples. Paths resulting in the highest accuracy for RUL 
prediction do not exhibit the same level of performance for delamination 
length predictions for all samples. For example, Sample 9, apart from the 
lower accuracy, the confidence bounds are also larger, indicating lower 
confidence in the predictions for delamination length for the path pro-
duce most accurate RUL prediction.

5.1.2. Discussion
Prediction results based on a one-sample-domain have been pre-

sented in this section by investigating each path’s contribution to RUL 
and delamination length prediction. As mentioned in the previous sec-
tion, for some samples, while the predictions both perform well for 
delamination prediction and RUL prediction, some may exhibit differ-
ently from each other. To understand the underlying reasons for this 

Fig. 9. Error values for (a) delamination length prediction of each path (b) each cycle and for c) RUL prediction of each path d) each cycle.
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discrepancy, it is important to discuss possible factors that may 
contribute to these results.

Firstly, the focus can be given to DIs and the information in which 
they excel. DI extraction step was carried out specifically to isolate the 
delamination-related portion of the GW signal, which enables the 
investigation of the contribution of delamination growth to the end-of- 
life of the samples. This is a challenging task to achieve, and for some 
DIs, delamination information might be limited, or information from 
other damage types might co-exist. Hence, it would be logical to observe 
that paths that are more sensitive to delamination growth result in 
higher accuracy in predicting maximum delamination length and still 
perform well on RUL prediction. On the other hand, paths demon-
strating higher accuracy in RUL prediction are likely to encapsulate 
information from the entire structure, potentially encompassing other 
types of damage that contribute to the assessment of delamination 
propagation, and these paths may operate not only for delamination but 
still play a role in determining the overall health state of the sample.

As mentioned earlier, the primary source of error in many pre-
dictions lies in the final prediction step. For instance, in the case of 
Sample 7, the model’s overall performance is not poor; however, it ex-
hibits moderate accuracy until the 35000th cycle high error occurs at the 
final cycle step. The issue arises from the faster growth of delamination 
length, measured at its maximum length, a trend that the model failed to 

capture from the data indicating a potential difference in the input DIs 
and their ability to reflect damage evaluation for each sample.

5.2. Framework 2

5.2.1. Prediction results
In this section, the second framework proposed in this work is pre-

sented. In Framework 2, the training set is determined in combination 
with multiple samples and paths tested in Framework 1 and assigned as 
features aiming that the model will capture the information most rele-
vant to the targeted output. This model has two sub- types to obtain the 
most accurate and stable model for each target. Subtype A targets the 
delamination length values as output, and subtype B is trained using the 
RUL target. Chosen samples to be merged for LOOCV folds are created 
differently for both sub-types. The delamination length prediction 
model is trained based on Sample 2, Sample 7, Sample 9, Sample 10, 
Sample 14, and Sample 15. The RUL model is constructed based on 
Sample 2, Sample 7, Sample 9, Sample 12, Sample 13, Sample 14, and 
Sample 15, considering their closer prognosability.

Fig. 12 presents prediction results based on the delamination length 
prediction. Among the results, the best convergence is observed for 
Sample 7, while poor coherence is evident for Sample 2 and Sample 10. 
Sample 9 gradually performs better after the 50000th cycle. Despite the 

Fig. 10. Comparison of the best results of delamination length prediction with the RUL predictions of the same path.
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Fig. 11. Comparison of the best results of RUL prediction with the delamination length predictions of the same path.

Fig. 12. Test results of delamination length predictions.
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poor convergence in earlier cycles, the model could converge in the last 
cycle differently than the results in Framework 1. In Fig. 13, the analysis 
suggests that the model exhibits a promising ability to approximate the 
monotonic behavior of RUL with relatively more robust performance 
observed in the predictions for Sample 7, Sample 12, and Sample 15. 
However, the relatively better accuracy of Sample 7 is not maintained 
after the 30000th cycle. Except for Sample 14 and Sample 7, RUL pre-
dictions are converging toward the final step. Sample 9 demonstrates an 
early prediction throughout the fatigue life of the sample. Sample 14 
accurately predicts the RUL before the mid-life of the sample while still 
overestimating the final remaining time.

5.2.2. Discussion
In this section, damage propagation and RUL prognostics have been 

conducted within Framework 2, which ensembles samples from the 
dataset to create a more generic prediction model. For this purpose, 
samples with appropriate target characteristics are selected. While sub- 
type A requires a complete label set for the delamination length pre-
diction, sub-type B aims for closer prognosability for the samples. As a 
result, six samples are assigned for type A, samples with numbers 2, 7, 9, 
10, 14, and 15, and type B is trained and tested with Samples 2, 7, 9, 12, 
13, 14, and 15 interchangeable for LOOCV folds.

It is observed for the RUL prediction that the distribution of the 
targets plays an important role in making efficient predictions, which 
refers to the overall prognosability of the training set. In the case of 
Sample 14 and Sample 15, their first cycle predictions are very high 
compared to the other samples in the dataset, which are the samples 
with a lower EoL. Once they are excluded from the training, the model’s 
capability to predict lower values in the initial RUL step becomes less 
accurate.

In addition to model-based constraints, the DIs in the input data that 
play a significant role in the performance and can be the origin of less 
effective testing results. The possible noise and errors in acquired GW 

signals can be transferred to DI extraction, which may limit the model’s 
learning capability. This effect might be mitigated in some ways, such as 
training the model with the raw signal in a supervised manner to 
eliminate DI extraction-based errors. However, adopting such an 
approach necessitates using more complex and deep learning architec-
tures, which could decrease the explainability of the model. Another 
approach could involve increasing the number of samples in the dataset 
to encompass a broader range of damage and EoL scenarios. This would 
enhance the generalization capability of the model. On the other hand, 
creating such a dataset is highly challenging and resource-intensive, 
requiring significant experimental effort. Consequently, despite the 
constraints and the limited number of samples in the dataset, the results 
show promise in providing efficient and interpretable data- driven RUL 
and progressive damage prognostics.

6. Conclusion

This study presents a novel methodology to address RUL and 
delamination growth prognostic based on GW- SHM for CFRP samples 
subject to compressive fatigue loading after impact. Considering the 
proposed methodology, two main challenges have been aimed to be 
answered. To reveal the delamination state together with EoL of struc-
ture that possibly pave the way for reliable efficient RUL prognostic 
framework for the composite structures the prediction of delamination 
growth until a threshold level is included in a RUL prognostic framework 
to improve the reliability and effectiveness of the RUL prognosis. By 
adapting GW-DIs within a DNN- based regression model, a robust 
prognostic methodology is achieved, which enhances the explainability 
of RUL predictions, providing insights into the progression of delami-
nation. Secondly, two frameworks are adapted to investigate various 
aspects of prognostics, one in an individual sample domain to reveal 
path dependency in RUL and delamination length prognosis and the 
second in an ensembled dataset domain proposing a more generic model 

Fig. 13. Test results of RUL predictions.
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for RUL and delamination growth prediction.
In the domain of one sample-based analysis, results reveal that the 

actuator-sensor paths that demonstrate optimal performance in RUL 
prediction do not consistently coincide with those more sensitive to 
delamination. However, based on the results, the paths that indicate the 
highest accuracy for delamination growth prediction also tend to 
perform well for RUL prognostic. This may indicate for these samples 
that the corresponding GW- DIs might be more representative of the 
overall structural health state and perform better in the RUL prediction 
of the sample. Although the study notes variations in the sensitivity of 
different actuator-sensor paths to damage, it ultimately demonstrates 
the positive correlation between paths and their predictive capability in 
RUL and delaminations state.

As the second approach, the dataset is created with samples sub-
jected to varied stress levels during their fatigue life, and the models 
account for multiple scenarios that have been achieved separately for 
RUL and delamination growth prognostic. Model performance for 
delamination and RUL predictions exhibit promising capability in 
capturing both targets through given GW-DIs. Furthermore, developing 
ensemble dataset-based DNN model demonstrate the methodology’s 
robustness and adaptability across different stress scenarios and struc-
tural conditions.

Future work may focus on expanding the diversity and complexity of 
the dataset, incorporating real-world operational conditions, and 
exploring the potential of emerging deep-learning architectures for even 
more accurate and robust prognostic models. Extending this methodol-
ogy to other composite materials and damage mechanisms could 
broaden its applicability, contributing to the need for effective prog-
nostics that ensure the integrity and longevity of critical structures in a 
safe life.
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