
ENHANCING ISSUE TRACKING
EFFICIENCY WITH AI-DRIVEN

NATURAL LANGUAGE PROCESSING:
IMPROVING CLASSIFICATION,

ASSOCIATION AND RESOLUTION

V E N E L I N A P O C H E V A

M A S T E R T H E S I S B Y

Enhancing Issue Tracking Efficiency
with AI-Driven Natural Language

Processing: Improving Classification,
Association and Resolution

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Venelina Pocheva
born in Ruse, Bulgaria

Software Engineering Research Group
Department of Software Technology
Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

NXP Semiconductors B.V.
High Tech Campus 60, 5656 AG

Eindhoven, the Netherlands
https://www.nxp.com/

www.ewi.tudelft.nl
https://www.nxp.com/

Enhancing Issue Tracking Efficiency
with AI-Driven Natural Language

Processing: Improving Classification,
Association and Resolution

Author: Venelina Pocheva
Student id: 5093570

Abstract

In large-scale engineering environments, efficient issue tracking is essential for
timely problem resolution and knowledge reuse. However, the manual classification
and association of issue reports present scalability challenges, further complicated by
inconsistent annotations and the absence of semantic linking mechanisms. This project
investigates the application of Natural Language Processing and Artificial Intelligence
to automate multi-label classification and discover meaningful semantic associations
between technical issues. Over 70 model configurations were evaluated on a real-
world industrial dataset, comparing classical models with transformer-based and deep
learning approaches. DistilBERT achieved the highest Recall@5 (0.93), indicating
strong performance in identifying relevant categories. Classical methods, such as TF-
IDF combined with Logistic Regression, also performed well, offering a computation-
ally efficient and interpretable option. For association discovery, approaches includ-
ing lexical retrieval, embedding-based similarity, clustering-based filtering, and topic
modelling were assessed using both quantitative metrics and expert review. Lexical
(BM25) and embedding-based (SBERT + Cosine Similarity) methods offer comple-
mentary strengths, retrieving overlapping yet distinct sets of associations. Associa-
tions identified by both models were rated as useful in over 70% of cases by domain
experts, suggesting that agreement between methods may serve as an indicator of rele-
vance. While Copilot provided consistent relevance assessments, its ratings were often
higher than those provided by human evaluators and did not always reflect their de-
tailed assessments. These findings highlight the potential of combining lexical and
semantic methods with human-in-the-loop validation to support scalable and accurate
industrial applicability.

V.A.Pocheva@student.tudelft.nl

Thesis Committee:

Chair: Dr. Neil Yorke-Smith
University supervisor: Dr. Maliheh Izadi
Company supervisor: René van den Berg
Committee Member: Dr. Andreea Costea

ii

Preface

This thesis marks the final step in my Master’s in Computer Science, and I would like to
express my sincere appreciation to everyone who supported me during this journey.
I am grateful to the academic staff and supervisors at Delft University of Technology for
their guidance, feedback, and encouragement throughout the project. I also extend my
thanks to the colleagues and mentors at NXP Semiconductors, whose input and support
were instrumental in shaping the direction and relevance of this work.
I am especially thankful for the opportunities to learn from experts across both academic
and industrial settings. Their support and feedback were invaluable throughout the process.
I would like to thank my friends for their encouragement along the way. I am also thankful
to my boyfriend for his understanding, support and for being both a welcome distraction
and a source of motivation throughout this journey. Most of all, I am deeply grateful to my
family for their unconditional love, unwavering belief in me, and constant support through
every step of this path.

Venelina Pocheva
Delft, the Netherlands

July 16, 2025

iii

Contents

Preface iii

Contents v

List of Figures vii

List of Tables ix

List of Acronyms xi

1 Introduction 1
1.1 Overview . 1
1.2 Problem Statement . 2
1.3 Objective . 3
1.4 Research Process . 3
1.5 Contributions . 4
1.6 Thesis Structure . 4

2 Related Work and Background 5
2.1 Classification . 5
2.2 Association . 10
2.3 LLMs as Evaluators . 12
2.4 Summary and Research Gap . 13

3 Methodology 15

4 Classification 17
4.1 Problem definition . 17
4.2 Methodology . 18
4.3 Results . 32
4.4 Discussion . 36

v

CONTENTS

5 Association 45
5.1 Problem definition . 45
5.2 Methodology . 46
5.3 Results . 53
5.4 Discussion . 65

6 Conclusions and Future Work 75
6.1 Conclusion . 75
6.2 Threats to Validity . 76
6.3 Future Work . 78

Bibliography 81

A Classification Results 87

B Association Results 91

vi

List of Figures

3.1 CRISP-DM Process Overview . 15

4.1 Multi-label Classification Pipeline . 19
4.2 Word Count Distribution: Raw Description Field 20
4.3 Word Count Distribution: Cleaned Descriptions 20
4.4 Distribution of Title + Description Lengths 21
4.5 Word Count Distribution: Title Field . 21
4.6 Category Distribution Across the Final Dataset 22
4.7 Distribution of Number of Categories Assigned per Multi-Label Issue 22
4.8 Classification Modelling and Evaluation Pipeline 25
4.9 Recall vs. Label Frequency (TF-IDF + OvR + LR) 38
4.10 Recall vs. Label Frequency (DistilBERT) . 39
4.11 Confusion Matrix for Single-Label Samples 40
4.12 Precision vs. Recall at Top-K for DistilBERT 41
4.13 Label Co-Occurrence Heatmap (Training Data). 42

5.1 Association Discovery Pipeline . 48
5.2 Association Evaluation and Recommendation Workflow 50
5.3 Rating Distribution including and excluding Copilot 56
5.4 Normalised Rating Distribution by Rater . 57
5.5 Engineer-only Model Rating Distribution . 57
5.6 Copilot Model Rating Distribution . 58
5.7 Copilot vs. Average Human Ratings . 59
5.8 Average Rating by Prediction Rank . 60
5.9 Average Usefulness Score per Evaluator . 62
5.10 Venn Diagram of Overlapping Predictions . 64
5.11 Comparison of Overall and Overlapping Ratings 65

A.1 Full Confusion Matrix for Single-Label Samples (DistilBERT) 88

vii

List of Tables

2.1 Comparison of Multi-Label Classification Approaches 9
2.2 Comparison of Association Discovery Methods 11

4.1 Vectorisation Methods Overview . 27
4.2 Prediction Performance Across Models . 32
4.3 Recall at Different Cut-off Values . 33
4.4 Additional Evaluation Metrics for Multi-Label Classification 33

5.1 Top-10 Association Retrieval Performance Across Methods 54
5.2 Usefulness Rating Distribution by Rrediction Rank 60
5.3 Summary of Kruskal-Wallis Tests . 61
5.4 Majority Agreement Rating Distribution per Model 63
5.5 Evaluator Ratings for Commonly Retrieved Associations 64

A.1 Multi-label Classification All Results . 89

B.1 Rating Distributions per Rank per Model . 91

ix

List of Acronyms

AI Artificial Intelligence

ANN Artificial Neural Network

BERT Bidirectional Encoder Representations from Transformers

BiLSTM Bidirectional Long Short-Term Memory

BM25 Best Matching 25

BoW Bag-of-Words

BR Binary Relevance

CC Classifier Chain

CNN Convolutional Neural Network

CRISP-DM Cross-Industry Standard Process for Data Mining

CV Count Vectorizer

DBSCAN Density-Based Spatial Clustering of Applications with Noise

DistilBERT Distilled BERT

EDA Exploratory Data Analysis

F1 Harmonic mean of precision and recall

GNB Gaussian Naive Bayes

IoT Internet of Things

kNN k-Nearest Neighbour

LDA Latent Dirichlet Allocation

xi

LIST OF TABLES

LLM Large Language Model

LinearSVC Linear Support Vector Classification

LP Label Powerset

LR Logistic Regression

MAP Mean Average Precision

ML Machine Learning

ML-kNN Multi-Label k-Nearest Neighbours

MLC Multi-label Classification

MLP Multilayer Perceptron

MNB Multinomial Naive Bayes

MMP Multiclass Multilabel Perceptron

MPP Mean Proportion of Properly Predicted Labels

NLP Natural Language Processing

OvR One-vs-Rest

RC Ridge Classifier

RF Random Forest

RNN Recurrent Neural Network

RQ Research Question

RankSVM Ranking Support Vector Machine

RoBERTa Robustly Optimised BERT Approach

SBERT Sentence Bidirectional Encoder Representations from Transformers

SMOTE Synthetic Minority Over-sampling Technique

SVM Support Vector Machine

TF-IDF Term Frequency-Inverse Document Frequency

TN/FN True Negative/False Negative

TP/FP True Positive/False Positive

XGBoost Extreme Gradient Boosting

xii

Chapter 1

Introduction

1.1 Overview

In an era where data is frequently described as “the new oil”, the principal challenge lies
not in its acquisition but rather in its interpretation, comprehension, and effective utili-
sation [56]. Engineering environments, particularly engineering issue tracking systems,
exemplify this challenge significantly. The rapid advancement of technology has led to
an overwhelming volume of unstructured data, generated during engineering workflows,
through issue logs, defect reports, and project documentation. These textual data records
are essential for capturing technical problems, their analyses, and the corresponding solu-
tions [66]. However, their unstructured nature makes it difficult to systematically extract
actionable insights, leading to a growing gap between data availability and its effective
use [36].

At NXP Semiconductors, a global leader in embedded systems and secure connectivity that
operates across industries including automotive, industrial automation, and the Internet of
Things (IoT) [41], this challenge is particularly pronounced. As software and hardware
development workflows grow in scale and complexity, the company faces challenges in
efficiently managing its large-scale issue tracking systems. Traditional management ap-
proaches rely heavily on manual operations. Engineers are required to classify and asso-
ciate issues manually, a process that becomes increasingly unsustainable as the volume and
complexity of data expand [3]. Moreover, manual classification introduces inconsistency,
is prone to human error, and often fails to capture complex relationships between issues,
particularly in interdisciplinary projects [1]. Furthermore, engineers often rely on past ex-
perience to detect recurring patterns or link related issues, leading to duplicated efforts and
missed opportunities for early problem detection. These challenges underscore the necessity
for scalable, automated solutions capable of augmenting or replacing manual interventions.

To address these inefficiencies, Machine Learning (ML) techniques – particularly those in
the area of Natural Language Processing (NLP) – have emerged as promising solutions
within the broader field of Artificial Intelligence (AI). NLP techniques are designed to ex-
tract structured information from unstructured text and have been successfully applied to
tasks such as classification, association discovery, and information retrieval [14, 16, 45]. In

1

1. INTRODUCTION

engineering contexts, these applications can reduce manual effort, minimise errors, enhance
productivity and support improved knowledge reuse [59].
In this context, the present study focuses on exploring how NLP and ML can be leveraged
to address these problems in the current issue management practices 1. By implementing
and evaluating AI-driven techniques tailored to engineering workflows, the research seeks
to enhance the scalability, efficiency, and usability of issue tracking system. Ultimately, this
work aims to contribute to more effective knowledge management, faster problem resolu-
tion, and improved engineering outcomes.

1.2 Problem Statement

Effective issue tracking is a critical component in managing large-scale engineering projects,
particularly in high-tech industries such as semiconductors [46]. The current issue man-
agement system faces limitations that hinder both efficiency and knowledge reuse across
engineering teams and different projects. While the existing process supports structured
documentation and traceability, it lacks automation in key areas, which affects the quality
and speed of issue handling.
One major inefficiency concerns the classification of newly logged issues. In the current
workflow, each issue is manually assigned a single category corresponding to the team re-
sponsible for addressing it. As the issue resolution progresses, the category is overwritten
to reflect the next team involved; however, the system does not maintain a complete record
of the resolution path. Consequently, historical traceability is lost, and it becomes difficult
to understand how issues move through the organisation. Additionally, there is no stan-
dardised taxonomy across teams – each team defines categories independently, resulting in
inconsistencies in spelling, abbreviations, and formatting. These inconsistencies, combined
with the one-category limitation, prevent multiple relevant teams from being notified early
in the process about the issue and hinder opportunities for possible parallel problem-solving.
As a result, the classification data becomes less useful for coordination, trend analysis, and
automated routing.
Another key inefficiency is related to association discovery. Relationships between issues,
such as recurring faults and related problems, are not systematically identified. Manual
linking is possible, but often reflects procedural connections, such as demonstration-related
tasks or follow-up actions, rather than deeper semantic relationships that could support
problem-solving and continuous improvement. As a result, opportunities for reusing his-
torical information and knowledge, clustering of similar issues, or early identification of
patterns are frequently missed.
These limitations pose several risks: delays in resolution, unnecessary duplication of effort,
and reduced visibility into systemic engineering problems. To address these challenges,
this study investigates techniques to automate classification and discover meaningful asso-

1This research focuses only on textual data from the issue tracking system Collabnet (titles, descriptions,
and manually assigned metadata); it does not cover the analysis of non-textual data sources such as sensor
logs or code repositories. The scope is limited to the investigation and evaluation of ML/AI techniques; full
deployment and integration into production systems are considered out of scope for this project.

2

1.3. Objective

ciations within industrial issue reports, ultimately aiming to improve the speed, accuracy,
and scalability of the issue tracking processes.

1.3 Objective

The primary objective of this research is to design and implement solutions driven by AI to
enhance the issue tracking system. The study specifically focuses on automating the classi-
fication of issues through multi-label learning and introducing a mechanism for discovering
semantic associations between related reports. By achieving these objectives, the research
aims to increase the efficiency, accuracy, and scalability of issue management within the
engineering workflows.

1.3.1 Research Questions

The research questions investigated in this project are:

RQ: How can AI-driven techniques be leveraged to automate and enhance the classi-
fication and association of industrial issue reports?

RQ1: How can multi-label classification techniques be effectively applied to cate-
gorise industrial issue reports across a large and diverse set of categories?

RQ2: How can semantic associations between issue reports be identified using NLP
techniques, and how can the most relevant related issues be retrieved for a given
report?

1.4 Research Process

To answer these research questions, the following tasks have been completed:

1. First, a comprehensive literature review was conducted to examine existing NLP tech-
niques and broader ML/AI methods, with a particular focus on their applicability to
engineering issue tracking systems.

2. Following this, data was collected and preprocessed from the issue tracking database,
in compliance with data privacy and confidentiality requirements.

3. Exploratory data analysis (EDA) was performed to identify patterns, trends, and cor-
relations within the dataset.

4. Several models for issue classification were developed and evaluated using appropri-
ate performance metrics to assess their effectiveness.

5. Techniques for association discovery were implemented to identify semantic relation-
ships between related issues.

6. Finally, the performance of the implemented models and techniques was compared,
and insights were used to support recommendations for potential integration into the
issue management system.

3

1. INTRODUCTION

1.5 Contributions

The following contributions have been made as part of this thesis:

1. Design and evaluation of a multi-label classification pipeline for engineering issue
reports, comparing classical models with transformer-based models, and highlighting
trade-offs in performance, complexity, and deployment feasibility.

2. Evaluation of association discovery methods, including semantic similarity, topic
modelling, lexical retrieval, and scoring-based approaches, applied to a large-scale
industrial dataset.

3. Design of a human evaluation framework for association relevance, involving the
generation of top-5 recommendations for each method and expert-based scoring, al-
lowing comparison despite the absence of a complete ground truth.

4. Empirical analysis of inter-rater agreement and model performance, based on
expert-based evaluations and statistical testing, to assess consistency across raters,
significance of performance differences, and robustness of association ranking re-
sults.

5. Direct comparison between Large Language Model (LLM) and expert evalu-
ations, quantifying agreement, highlighting divergence patterns, and assessing the
reliability of LLMs as evaluators in industrial NLP applications.

6. Practical recommendations for the deployment of NLP solutions in industrial
issue tracking systems, based on performance trends, human evaluations, and con-
siderations such as scalability, interpretability, and integration constraints.

7. Applied research contribution through a systematic evaluation of existing NLP and
ML techniques on large-scale industrial issue tracking data. While this thesis does
not propose novel algorithms, it examines the practical applicability and limitations
of these techniques.

1.6 Thesis Structure

This thesis is structured into six chapters, each addressing a key component of the research.
Chapter 2 presents the background and related work relevant to this thesis, organised around
its two primary tasks: multi-label classification and association discovery. Chapter 3 out-
lines the research methodology, which was based on the CRISP-DM (Cross Industry Stan-
dard Process for Data Mining) framework to guide the systematic exploration and evaluation
of the proposed techniques. Chapters 4 and 5 detail the experimental work conducted, fo-
cusing, respectively, on automating classification and association discovery. Each of these
chapters follows a consistent structure, including a problem definition, methodology, re-
sults, and discussion. Finally, Chapter 6 concludes the thesis by summarising the main
findings and contributions, and by providing recommendations for future research direc-
tions.

4

Chapter 2

Related Work and Background

This chapter reviews the methodologies relevant to this study, focusing on two primary
tasks: multi-label issue classification and association discovery. For each task, foundational
principles are introduced, followed by an overview of recent approaches commonly used in
academic and applied settings. The chapter concludes with a summary of key insights and
identification of research gaps that motivate this thesis.

2.1 Classification

Text classification is a fundamental task in NLP, typically involving the assignment of one
or more predefined categories to a given text. While traditional classification assumes that
each document belongs to a single category, many real-world tasks involve multiple relevant
labels. This setting is modelled as a multi-label classification (MLC) problem, where each
instance can be associated with a subset of categories from a larger label space [21]. This
becomes especially important in industrial domains, such as engineering issue tracking,
where issues often belong to multiple categories simultaneously. In the context of this
study, MLC provides a more realistic modelling approach for classifying engineering issues
that span multiple teams, subsystems, or problem types.
Compared to single-label classification, MLC introduces several unique challenges that sig-
nificantly impact model design and performance. First, label imbalance is common – some
categories are heavily underrepresented in the training data. This can lead to biased mod-
els that overfit to frequent labels and neglect rare but important ones. Second, label co-
occurrence sparsity arises because not all combinations of labels appear in the training set,
especially in high-dimensional label spaces. This limits a model’s ability to generalise to
unseen label combinations. Third, models must account for label dependencies: some la-
bels tend to occur together, and treating labels as independent can lead to inconsistent or
unrealistic predictions. Finally, evaluation in MLC is more complex than in the single-label
setting, as performance must reflect both exact and partial correctness of predictions. Met-
rics like Hamming loss, F1-score, Precision@k, Recall@k and ranking-based measures are
commonly used to capture different aspects of performance [15, 57].
Together, these challenges motivate the use of dedicated MLC approaches that can model

5

2. RELATED WORK AND BACKGROUND

label dependencies, handle class imbalance, and adapt to partial or sparse supervision.
Broadly, the literature organises such methods into two main categories: problem trans-
formation techniques, which reformulate MLC as multiple simpler learning tasks, and al-
gorithm adaptation methods, which extend base learning algorithms to handle multi-label
data natively. The following sections review both categories in more detail.

2.1.1 Problem Transformation

Problem transformation methods tackle multi-label classification by breaking it down into
simpler tasks. Rather than predicting multiple labels all at once, they transform the problem
into several single-label or binary classification tasks, each handled by a standard machine
learning model. These methods are attractive because they allow the use of standard clas-
sifiers with minimal modification. However, they may struggle to capture complex interde-
pendencies between labels [5, 21].
In practice, problem transformation methods are often implemented using classical machine
learning models such as Logistic Regression, SVM, Ridge Classifier, Random Forest, and
XGBoost. These models are favoured for their computational efficiency and compatibility
with sparse feature vectors like TF-IDF or Bag-of-Words [21].
The most basic problem transformation strategy is Binary Relevance (BR), which treats
each label as an independent binary classification problem. A separate classifier is trained
for each label, predicting its presence or absence for a given instance. Although BR is
conceptually simple and computationally efficient, it does not account for label correlations,
which may result in incoherent label sets for interdependent categories [21, 57].
A related method is One-vs-Rest (OvR), often used when base classifiers (e.g., SVM) are
inherently multi-class. Like BR, OvR does not model label dependencies but can be more
effective when label-specific decision boundaries are well separated [57].
To address the lack of label dependency modelling, Classifier Chains (CC) have been
proposed. In CC, classifiers are arranged in a sequence, and each classifier receives the
predicted labels of previous classifiers as additional input features. This allows the model
to learn conditional dependencies between labels. However, the performance of CC is sen-
sitive to the chain order and is susceptible to error propagation if early classifiers make
incorrect predictions [21].
Another widely used approach is Label Powerset (LP), which transforms the MLC prob-
lem into a single multi-class classification task by treating each unique combination of labels
as a separate class. LP captures label dependencies effectively but becomes computation-
ally infeasible when the number of distinct label combinations grows, which is common in
high-dimensional label spaces [21].
Arslan and Cruz [4] demonstrate that even simple problem transformation methods like
Binary Relevance can be effective in real-world scenarios, outperforming more complex
approaches such as Classifier Chains and Label Powerset on imbalanced business datasets
with moderately large label spaces. Their findings suggest that when label dependencies are
limited, the simplicity and scalability of BR can be advantageous. Bogatinovski et al. [5] re-
port that CC and LP outperform BR in datasets with strong label interdependencies, while
Chalkidis et al. [8] demonstrate the effectiveness of LP-based deep models in large-scale

6

2.1. Classification

legal text classification. Han et al. [21] provide theoretical support for these results, em-
phasising that modelling label correlations improves predictive performance. Moreover,
Tarekegn et al. [57] highlight that transformation methods remain effective even under class
imbalance, particularly when combined with resampling strategies. Veeranki et al. [59]
further validate the practical utility of CC in clinical multi-label classification tasks. Col-
lectively, these studies suggest that problem transformation methods remain versatile and
competitive across a range of domains, with their success depending on the structure of the
label space and task complexity.

2.1.2 Algorithm Adaptation

Instead of decomposing the multi-label classification problem into multiple single-label
tasks, algorithm adaptation methods modify learning algorithms to natively handle multi-
label outputs. These techniques are especially useful when dealing with large output spaces
or when greater expressiveness is needed from the classifier.

One widely used method is ML-kNN, a learning algorithm that extends the traditional k-
nearest neighbours by estimating label relevance based on frequency counts among neigh-
bouring instances [67]. Han et al. [21] show that ML-kNN achieves strong performance
on benchmark datasets like Yeast and Scene, often outperforming BR due to its ability to
consider joint label distributions. A recent comparison by Xu et al. [65] further confirms
ML-kNN’s comparative performance, especially on datasets with a moderate number of
labels and limited training data, where instance-based reasoning remains effective.

Another influential adaptation is RankSVM, which frames MLC as a ranking problem and
optimises the margin between relevant and irrelevant labels. Joachims [23] originally pro-
posed this approach for information retrieval, and subsequent adaptations have shown it to
be effective for MLC tasks, especially where label importance or priority matters. Despite
its computational cost, RankSVM performs well in cases where ranking between labels is
critical. In a comparative evaluation by Han et al. [21], RankSVM demonstrates favourable
ranking performance, although its scalability is more limited than other methods.

An important direction in algorithm adaptation is the use of margin-based structured predic-
tion for multi-label ranking. Ghamrawi and McCallum [18] first introduced the concept of
Multiclass Multilabel Perceptron (MMP), modelling label dependencies using structured
features and optimising the joint prediction margin across label combinations. Expanding
on this framework, Mencı́a and Furnkranz [38] developed a pairwise multilabel percep-
tron that efficiently handles large-scale problems by updating only when label rankings are
incorrect. Empirical results demonstrate competitive ranking performance, particularly in
terms of label ranking loss and precision at top-k, outperforming traditional baselines such
as BR and LP.

In summary, algorithm adaptation methods offer a direct and expressive approach to multi-
label prediction. When applied appropriately, they can match or exceed the performance of
problem transformation techniques, particularly in domains requiring nuanced modelling of
label dependencies or where integrated learning architectures are preferred.

7

2. RELATED WORK AND BACKGROUND

2.1.3 Deep Learning for Multi-Label Classification

Modern deep learning architectures naturally support multi-label classification by using sig-
moid activation functions in the output layer, allowing independent probability estimation
for each label. This contrasts with the softmax activation used in single-label classification
and enables flexible modelling of label combinations. Deep learning models also offer pow-
erful feature extraction capabilities, learning dense representations of input text that capture
both local and long-range dependencies [8, 15].
Different neural network architectures have been adapted for MLC. Convolutional Neural
Networks (CNNs) excel at detecting local n-gram patterns, while Recurrent Neural Net-
works (RNNs), particularly LSTMs and BiLSTMs, capture sequential dependencies across
tokens [8, 24]. Multilayer Perceptrons (MLPs) are often used in the output layer, applying
sigmoid activation for multi-label prediction [15].
Empirical results support the effectiveness of these models across domains. Johnson et al.
[24] use a BiLSTM with attention for clinical text classification, significantly outperforming
traditional baselines such as ML-kNN and BR. Chalkidis et al. [8] demonstrate the scala-
bility of deep sigmoid-based models for legal document classification, handling nearly 200
labels and tens of thousands of documents with strong results. Veeranki et al. [59] report that
deep models with sigmoid outputs outperform classical baselines like Logistic Regression
and Naive Bayes in multi-label clinical settings. Xu et al. [65] show that deep architectures,
particularly recurrent and convolutional models, generally outperform traditional methods
on large datasets. However, they say that deep learning models demand extensive hyper-
parameter tuning, large labelled datasets, and GPU acceleration, which can be prohibitive
in low-resource environments such as engineering issue logs or specialised domains with
limited data.
Overall, while deep neural networks achieve state-of-the-art performance in multi-label
tasks with sufficient training data, simpler methods may be more suitable in data-scarce
scenarios due to their lower computational and data requirements. Hence, model selection
for MLC in industrial environments should weigh performance benefits against computa-
tional cost and data availability.

2.1.4 Transformer-Based Models

Transformer-based models [58] have reshaped natural language processing (NLP) by intro-
ducing architectures that effectively model long-range dependencies through self-attention
mechanisms. Unlike traditional deep learning models such as CNNs or RNNs, which pro-
cess input sequentially or in local windows, transformers capture global context in a single
pass. This capacity is particularly beneficial for multi-label classification, where semantic
overlap, long input sequences, and complex label dependencies are common.
A key breakthrough was the introduction of BERT (Bidirectional Encoder Represen-
tations from Transformers) by Devlin et al. [13]. Pretrained using masked language
modelling on large corpora, BERT enables bidirectional contextual encoding that gener-
alises well across tasks. Its suitability for MLC has been confirmed in numerous studies.
Chalkidis et al. [8] reported that BERT-based models achieved strong performance in large-

8

2.1. Classification

Method Label
Dependency Scalability Small Data

Friendly
Inter-

pretability
Inference

Speed
Incremental

Learning Ref.

Problem Transformation
Binary Relevance (BR) ✗ High High High High Yes [21, 4]
One-vs-Rest (OvR) ✗ Moderate Moderate High High Yes [57]
Classifier Chains (CC) Partial (sequential) Moderate Moderate Moderate Moderate No [21, 59]
Label Powerset (LP) High (joint) Low Low Low Low No [8, 21]
Algorithm Adaptation
ML-kNN Partial (local) Moderate High Moderate Moderate No [67]
RankSVM High (ranking) Low Moderate Low Low No [23]
MMP / Perceptron High (structured) Moderate Moderate Low Moderate No [18, 38]
Neural Models
RNN / CNN / BiLSTM / MLP Partial Moderate Low Low Moderate No [24]
Transformer (BERT) High (contextual) Moderate Low Low Low No [13, 8]
Transformer (RoBERTa) High (contextual) High Low Low Low No [68, 31]
Transformer (DistilBERT) High (contextual) High Low Low High No [68, 50]

Table 2.1: Comparison of multi-label classification methods based on label dependency
modelling, scalability, interpretability, and deployment suitability. Note: “Partial” = weak
or implicit label dependency modelling. Inference speed and scalability are approximate
and depend on implementation. “Incremental Learning” indicates support for online up-
dates without retraining from scratch.

scale legal classification, demonstrating their effectiveness in handling tens of thousands of
documents and nearly 200 distinct labels. More recently, studies by Schonlau et al. [51]
have further confirmed BERT’s efficacy, showing it achieved the smallest loss compared to
other methods in multi-label classification of open-ended questions.
Building on BERT, RoBERTa [34] refines the pretraining process by removing the next
sentence prediction objective, applying dynamic masking, and training on more data with
larger batches. These improvements enable RoBERTa to learn richer contextual represen-
tations. Recent articles provide strong evidence for RoBERTa’s enhanced performance in
MLC. For instance, Zhang and Xu [68] highlight RoBERTa’s stronger performance and
its ability to effectively handle challenges like small sample datasets and unbalanced la-
bels in multi-label text classification. Furthermore, in hybrid architectures for automatic
multi-label classification, RoBERTa serves as a robust core language model, outperforming
baselines like BERT and LSTM in complex setups [31].
For applications requiring low-latency inference or operating under hardware constraints,
DistilBERT [50] offers a compelling alternative. Created through knowledge distillation,
it retains approximately 97% of BERT’s performance on the GLUE benchmark while be-
ing 40% smaller and 60% faster. Its effectiveness in multi-label tasks is increasingly being
documented in research. For example, in competitive settings like the EXIST2024 shared
task on sexism categorisation, DistilBERT variants were directly applied and demonstrated
strong performance in multi-label classification scenarios [44]. Furthermore, DistilBERT’s
competitive performance has been observed in practical settings such as Hugging Face
pipelines and Kaggle challenges. Veeranki et al. [59] confirmed that fine-tuned BERT and
its variants consistently outperform classical baselines like Logistic Regression and Naive
Bayes, especially in tasks involving sparse, overlapping label sets.

9

2. RELATED WORK AND BACKGROUND

Despite their empirical success, transformers come with notable challenges. Fine-tuning
requires significant computational resources, including GPU memory, and can be sensitive
to hyperparameter settings [32]. Moreover, in domains with limited labelled data or highly
imbalanced classes, their performance may degrade, and simpler models such as Ridge
Classifiers or XGBoost may offer more robust and interpretable alternatives [60].
Nonetheless, transformer-based models represent the current state of the art in multi-label
classification. By offering a unified framework for capturing complex language patterns
and label interactions, they enable substantial performance gains across diverse domains,
including healthcare, legal text, and software engineering. In this work, we comparatively
evaluate BERT, RoBERTa, and DistilBERT to identify effective trade-offs between predic-
tive performance and practical constraints in industrial multi-label classification tasks.
Table 2.1 summarises the reviewed multi-label classification methods based on their capa-

bilities and practical considerations for deployment in real-world settings.

2.2 Association

Identifying associations between similar issues is a key task in engineering settings, where
knowledge reuse and early recognition of recurring problems can reduce resolution time
and improve development processes. The primary challenges in issue association discovery
stem from the lack of structured linking mechanisms, meaning issues are typically stored
as individual reports without systematic connections to similar or previously resolved ones.
Furthermore, the high volume and diversity of reports in engineering databases make man-
ual association impractical. Semantic complexity, where different teams use varying termi-
nologies for similar issues, also hinders simple keyword-based approaches.
To address these challenges, Natural Language Processing (NLP) techniques are applied to
automate association discovery by identifying semantic similarities between reports, link-
ing related issues, and recommending relevant cases for engineers. To automate semantic
association discovery, the literature proposes a variety of NLP-based strategies, including
retrieval-based models, embedding-based approaches, clustering, and topic modelling.

2.2.1 Classical Information Retrieval Methods

Traditional information retrieval techniques have been widely adopted for issue and docu-
ment similarity tasks. Among these, the BM25 ranking function has remained a standard
due to its effectiveness in handling term frequency and document length variations. The
comprehensive survey by Robertson et al. [49] delves into the probabilistic relevance frame-
work, including BM25 and its extensions, highlighting its foundational role and continued
relevance in information retrieval applications. Its application to short-text matching and
document retrieval tasks has made it a strong baseline in various recommendation scenar-
ios, including issue and bug tracking systems.
BM25 is often favoured for its computational efficiency and interpretability, providing a
strong baseline for comparison against more complex, modern approaches in various rec-
ommendation tasks. Despite its strengths, BM25 relies primarily on lexical overlap, limiting
its effectiveness in cases with synonymy, paraphrasing, or domain-specific terminology. To

10

2.2. Association

address these limitations, more recent methods based on semantic embeddings and deep
learning have been proposed.

2.2.2 Semantic Embeddings for Similarity

To capture the deeper contextual meaning of text, semantic embeddings have been increas-
ingly utilised for association discovery. Models such as Word2Vec [39], GloVe [43],
FastText [6] and, more recently, Sentence-BERT (SBERT) [47] are used to encode is-
sue descriptions into dense vector representations. These representations enable similarity
to be computed via cosine distance, supporting the recommendation of semantically re-
lated issues even in the presence of lexical variation. Semantic embedding-based similarity
is especially valuable in engineering settings where semantically related issues may use
domain-specific phrasing but share underlying structure.
The work by Reimers and Gurevych [47] introduced SBERT, demonstrating its ability to
generate highly effective sentence embeddings for tasks like semantic textual similarity. Be-
yond general document similarity, studies like Ostendorff et al. [42] have evaluated various
document representations, including those derived from methods like FastText, for content-
based recommendations, specifically in legal literature, showcasing their applicability to
broader document recommendation tasks.
These embedding-based approaches are known for their ability to capture nuanced seman-
tic relationships beyond lexical overlap, making them effective for tasks where synonyms,
paraphrases, or related concepts are important for identifying associations.

Method Semantic
Understanding Scalability Interpretability Requires

Labels References

IR-based
BM25 ✗ High High ✗ [49]
Embedding-based
TF-IDF + Cosine ✗(lexical) High High ✗ [62]
Word2Vec / GloVe + Cosine ✓(shallow) High Moderate ✗ [39, 43]
FastText + Cosine ✓✓(subword-aware) High Moderate ✗ [6]
SBERT + Cosine ✓✓(contextual) Moderate Moderate ✗ [47]
Topic Modelling
BERTopic / LDA ✓(abstract) Moderate High ✗ [20, 2]
Clustering-based
k-Means / DBSCAN / HDBSCAN Depends on representation Moderate Moderate ✗ [54, 12, 37]

Table 2.2: Comparison of methods used for association discovery based on semantic ca-
pabilities, scalability, interpretability, and data requirements. Note: ✓= shallow semantics,
✓✓= contextual semantics, ✓✓✓= deep semantics. “Requires Labels” indicates if super-
vised training data is needed.

2.2.3 Topic Modelling and Clustering

To uncover patterns in large sets of textual data, topic modelling has been applied in the
context of issue clustering and exploration for association discovery. BERTopic, which
combines transformer-based embeddings with class-based TF-IDF, has demonstrated the

11

2. RELATED WORK AND BACKGROUND

ability to form interpretable and coherent topic groups [20]. Such methods can be used
to support thematic recommendations by associating new issues with existing topic-based
clusters.
While BERTopic builds on deep contextual embeddings, traditional topic modelling tech-
niques also remain valuable for unsupervised issue grouping. Latent Dirichlet Allocation
(LDA) has been widely applied to categorise and group documents. For instance, Aljedaani
et al. [2] utilised LDA for the categorisation of security bug reports in Chromium Projects,
demonstrating its utility in organising and identifying themes within software engineering
issues. More broadly, a common approach involves combining TF-IDF representations with
clustering algorithms such as k-Means [54] or DBSCAN [12], followed by cosine similarity
for grouping similar documents. Furthermore, the effectiveness of TF-IDF based represen-
tations combined with cosine similarity for document similarity has been detailed in recent
work [62]. For density-based clustering, a state-of-the-art survey on semantic similarity
for document clustering using GloVe and density-based algorithms [40] further discusses
methods like DBSCAN for document clustering with cosine similarity.
Topic modelling and clustering approaches provide a way to identify underlying themes
within a collection of documents, which can then be leveraged to group or associate similar
concepts – even if they do not share exact keywords, making them well-suited for domains
like engineering where terminology can vary across teams and subsystems.
A structured comparison of association discovery methods is presented in Table 2.2, high-
lighting their semantic capabilities and suitability for engineering issue retrieval.

2.3 LLMs as Evaluators

While traditional evaluation of NLP models often relies on human annotation or automated
metrics (e.g., accuracy, precision, recall), recent research has explored the use of LLMs as
surrogate evaluators. These models, such as GPT-4 and Claude, have demonstrated impres-
sive performance in following instructions, making them suitable for tasks like judging the
quality of generated content, summarisation, or ranking [33, 61].
In particular, LLMs have been proposed as scalable alternatives to human annotators in set-
tings where manual evaluation is expensive or infeasible. Liu et al. [33] introduce GPTE-
VAL, a framework for evaluating natural language generation (NLG) outputs using GPT-4
with structured prompts, and show that LLM-based judgments align closely with human
preferences in summarisation and dialogue evaluation. Similarly, Wang et al. [61] inves-
tigate the fairness and consistency of LLMs as judges and highlight their potential when
carefully prompted, while also cautioning against over-reliance in high-stakes or nuanced
tasks.
Despite their promise, LLM-based evaluation is still an emerging area with open challenges.
These include sensitivity to prompt phrasing, lack of domain-specific knowledge, and po-
tential inconsistencies when evaluating borderline or ambiguous cases [61]. Moreover, most
existing studies focus on general-domain tasks; few have rigorously evaluated LLMs as
judges in technical or specialised domains, such as engineering or issue tracking.

12

2.4. Summary and Research Gap

Motivated by this gap, this thesis incorporates an LLM-based evaluation component as part
of the association discovery task. By comparing LLM-generated relevance scores with
human expert annotations, this work contributes to the growing body of research on LLMs
as evaluators – offering new insights into their reliability and limitations in industrial NLP
settings.

2.4 Summary and Research Gap

This chapter reviewed the literature on multi-label classification and issue association dis-
covery. While a wide variety of approaches have been proposed across domains – rang-
ing from classical machine learning to transformer-based models and semantic similarity
methods – most are developed and evaluated on benchmark datasets with well-structured,
balanced labels. In contrast, real-world issue tracking systems present challenges such as
evolving data, noisy input, sparse or missing labels, domain-specific terminology, and over-
lapping categories.
In the classification domain, classical methods like Binary Relevance and Logistic Regres-
sion remain effective for high-dimensional, sparse datasets, especially when computational
efficiency and interpretability are priorities. Deep learning models, including CNNs, BiL-
STMs, and transformer-based architectures like BERT and RoBERTa, have demonstrated
superior performance when sufficient training data and compute resources are available.
However, few studies have systematically evaluated these models on noisy, domain-specific
engineering data.
Similarly, existing research on semantic association discovery primarily focuses on docu-
ment similarity or open-domain recommendation. Approaches such as BM25, word em-
beddings, and topic modelling have shown strong results in general settings but are rarely
validated within engineering workflows. Moreover, evaluation is often limited to automated
metrics, with limited involvement of domain experts to assess real-world relevance.
Recent advances in LLMs have introduced new opportunities for scalable evaluation. Yet,
their reliability in specialised domains like engineering – particularly when compared to
expert judgments – remains an open research question.
This thesis addresses these gaps by: (1) systematically evaluating classical and deep learn-
ing transformer-based models for multi-label classification on real-world engineering is-
sues; (2) comparing multiple methods for semantic association discovery; and (3) assessing
the reliability of LLM-based evaluation by comparing model-generated scores with expert
annotations. These contributions offer both empirical evidence and practical guidance for
deploying NLP solutions in complex industrial environments.

13

Chapter 3

Methodology

To systematically analyse and improve issue tracking in an engineering context, this re-
search follows the Cross-Industry Standard Process for Data Mining (CRISP-DM) frame-
work [63], illustrated in Figure 3.1. CRISP-DM provides a structured and iterative approach
for data-driven projects, ensuring that business objectives are aligned with data modelling
efforts. The methodology consists of six interconnected phases: Business Understanding,
Data Understanding, Data Preparation, Modelling, Evaluation, and Deployment.

Business
Understanding

Data
Understanding

Data
Preparation

Evaluation Modelling

Deployment Data

Figure 3.1: Overview of the CRISP-DM framework used to guide the research methodol-
ogy. The process is cyclical and includes six phases.

1. Business Understanding: The first phase focuses on defining project objectives and
aligning them with the organizational needs. The issue tracking system contains thou-
sands of reports, making manual classification, association, and resolution slow and

15

3. METHODOLOGY

error-prone. To address this, the research applies NLP and ML techniques to auto-
mate multi-label issue classification and discover meaningful associations between
reports, with the goal of enhancing the efficiency and scalability of issue tracking in
engineering workflows.

2. Data Understanding: This phase focuses on exploring data from the issue track-
ing system, assessing its structure, and ensuring data quality. It aims to establish
a comprehensive understanding of the dataset’s characteristics and domain-specific
challenges, such as label sparsity and domain-specific vocabulary, ensuring a solid
foundation for subsequent analyses.

3. Data Preparation: This phase involves preprocessing and transforming data to en-
sure consistency and suitability for analysis. Key steps include text cleaning, tokeni-
sation, lemmatisation, and feature extraction to standardise text representations and
support effective model training.

4. Modelling: This phase focuses on implementing multiple AI/ML approaches tailored
to the classification and association tasks. Various techniques are applied to develop
models that automate issue classification and identify report associations.

5. Evaluation: This phase involves systematically evaluating model performance using
task-appropriate evaluation metrics that align with the business objectives of the issue
tracking system. The choice of metrics is guided by the specific requirements of
each task, ensuring that models prioritise relevant aspects such as recall to enhance
classification effectiveness and overall system efficiency.

6. Deployment: While full deployment is beyond the scope of this project, this phase
provides recommendations for integrating AI models into the organization’s issue
tracking system. The findings are analysed to ensure practical applicability, and sug-
gestions are made for implementation strategies that enhance issue classification and
report association.

This structured approach ensures reproducibility and alignment with business objectives
across each CRISP-DM phase, addressing key challenges in issue tracking within complex
engineering environments. By systematically applying NLP and AI/ML techniques, this
research enhances issue classification and report association. The following chapters will
provide a detailed examination of these phases, with a particular focus on data preparation,
modelling strategies, and evaluation.

16

Chapter 4

Classification

Accurate and efficient classification of issue reports is essential for managing technical
problems in large-scale engineering projects. This chapter presents the classification com-
ponent of the research, which focuses on automatically assigning multiple relevant cate-
gories to engineering issues using artificial intelligence methods, including machine learn-
ing and natural language processing. The following sections outline the problem context,
describe the methodology, and present the key results.

4.1 Problem definition

In large-scale engineering projects, issue tracking systems serve as essential tools for docu-
menting, analysing, and resolving technical problems [1]. However, manually categorising
these issues into categories remains a significant challenge due to the volume, variability,
and complexity of issue descriptions. Misclassifications and inconsistencies in labelling can
lead to delays in resolution, inefficient resource allocation, and difficulty in tracking recur-
ring issues across projects [28]. As engineering teams work on diverse systems spanning
software, hardware, and design domains, the need for an automated classification system
becomes increasingly critical.
The classification of issue reports is inherently complex due to several key challenges. First,
multi-label classification is often required since a single issue may belong to multiple cat-
egories (e.g., software and verification). However, current classification mechanisms typ-
ically assign one label per issue, failing to capture its multi-dimensional nature. A key
challenge is that the current database predominantly contains single-label assignments, as
the capability to assign multiple labels was only recently introduced. Consequently, the
limited availability of multi-labelled data may hinder model training, potentially affecting
performance in learning accurate label associations. Additionally, the class distribution is
highly imbalanced, with certain categories appearing more frequently than others, making
it difficult for models to achieve balanced performance across all issue types.
To address these challenges, this research explores ML and NLP techniques to automate
issue classification. The goal is to develop a system that can:

1. Automatically categorise issues, improving consistency and reducing manual effort.

17

4. CLASSIFICATION

2. Handle multi-label classification, ensuring that issues spanning multiple domains are
correctly identified.

By implementing and evaluating AI-driven classification models, this research aims to en-
hance the efficiency of issue management, ensuring that engineering teams receive faster
and more accurate insights into problem categorisation.

4.2 Methodology

This section outlines the methodology developed to address the problem of automated
multi-label classification of engineering issues in large-scale projects. The approach inte-
grates data collection, data preprocessing, data cleaning, feature engineering, and evaluation
of diverse classification strategies, ranging from classical machine learning to transformer-
based deep learning. Given the presence of incomplete label annotations and the multi-label
nature of the task, model selection and evaluation were designed to prioritise recall over pre-
cision to maximise the likelihood of retrieving relevant categories.
An overview of the full classification methodology pipeline is illustrated in Figure 4.1
and Figure 4.8. The first diagram outlines the business understanding and data prepara-
tion steps, while the second depicts the modelling, evaluation, and recommendation phases.

4.2.1 Dataset Construction

The raw dataset was compiled from 31 engineering projects, resulting in an initial corpus
of 63,329 issue reports described by 352 attributes. To tailor the dataset to the classification
task, only the Title, Description, and Category fields were retained. While the raw
dataset contained over 350 attributes, most of these represented metadata generated during
or after the issue resolution process (e.g., priority, resolution date, assigned engineer). In
contrast, the Title and Description are available at the very beginning of the issue life-
cycle, precisely when classification is most valuable to direct the issue toward the correct
team or workflow. Although incorporating additional metadata could potentially improve
model performance, it would not reflect the real-world deployment scenario, where classi-
fication needs to occur immediately after issue creation. Thus, restricting inputs to Title
and Description not only reduces complexity and noise but also ensures that the model
remains practical and applicable to realistic industrial workflows. These data filtering and
preprocessing steps are summarised in the first part of the pipeline (Figure 4.1).
Next, records with missing values in any of these fields were excluded, reducing the dataset
to 26,998 entries. This step ensures input completeness and prevents introducing bias or
errors during model training. Duplicate records – defined as entries with identical Title and
Description – were also removed to avoid overfitting and inflating performance metrics
from redundant samples [35].
To mitigate noise and improve model robustness, records with exceptionally long descrip-
tions (above the 99th percentile in word count) were filtered out, as these often contained
verbose notes or irrelevant logs that were not suitable for generalisation. This effect can
be seen in Figure 4.2, where the distribution of raw description lengths is highly skewed,

18

4.2. Methodology

Multi-label Classification Pipeline
B

us
in

es
s

U
n

de
rs

ta
nd

in
g

D
at

a
U

n
de

rs
ta

nd
in

g
D

at
a

Pr
ep

ar
at

io
n

Start Define business
objectves

Assess the
situation and

available resources

Produce project
plan

Collect Data Collabnet
Select relevant

projects

Integrate data from
multiple sources/

projects

Keep only relevant
columns

Describe DataExplore Data

Standardise labels
Remove rows with

missing data
Remove duplicated

rows
Drop too log or too

short texts

Class imbalance
analysis

Drop rows that
belong to a minority

class

Format data for
modelling

Split the data to
train and test set

Expand
contractions (only

Classical ML)

Normalisation (only
Classical ML)

Lowercase
conversion (only

Classical ML)

Remove
punctuation and

special characters
(only Classical ML)

Remove extra
spaces (both

Classical and Deep
Learning)

Remove URLs,
HTML tags, emails
(both Classical ML

and Deep Learning)

Apply SMOTE to the
train set (only
Classical ML)

Keep only English
words (only

Classical ML)

Lemmatisation
(only Classical ML)

Stopword removal
(only Classical ML)

Tokenisation (only
Classical ML)

Cleaned
data

Figure 4.1: Overview of the multi-label classification pipeline developed for this study.
The process includes business understanding, data understanding, and a detailed data
preparation stage, followed by specific preprocessing pipelines tailored for classical and
transformer-based machine learning models.

19

4. CLASSIFICATION

0 2000 4000 6000 8000
Word Count

0

5000

10000

15000

20000

25000

Fr
eq

ue
nc

y

Word Count Distribution: Description

Figure 4.2: Word Count Distribution: Raw Description Field

with a long tail extending beyond 2000 words. After filtering out extreme outliers, the
cleaned description length distribution (Figure 4.3) shows a much more manageable range,
facilitating generalisation for downstream models.

0 100 200 300 400
Word Count

0

2000

4000

6000

8000

10000

Fr
eq

ue
nc

y

Word Count Distribution: Description

Figure 4.3: Word Count Distribution: Cleaned Descriptions

Additionally, entries in which the combined Title and Description contained fewer than
20 words (the fifth percentile of the length distribution) were excluded, as such short inputs
typically lacked sufficient semantic content for reliable label prediction [1]. Figure 4.4
shows the distribution of combined input lengths, with a vertical red line marking the fifth
percentile threshold. These filtering steps collectively refined the dataset to 23,621 high-
quality, information-rich issue reports.
To further illustrate the nature of inputs, Figure 4.5 displays the distribution of title lengths,
showing that most titles are concise (10–15 words), consistent with expectations for brief

20

4.2. Methodology

0 100 200 300 400 500
Number of Words

0

500

1000

1500

2000

2500
Nu

m
be

r o
f I

ss
ue

s
Distribution of Title + Description Lengths

5th Percentile

Figure 4.4: Distribution of Title + Description Lengths

0 5 10 15 20 25 30 35 40
Word Count

0

2000

4000

6000

8000

Fr
eq

ue
nc

y

Word Count Distribution: Title

Figure 4.5: Word Count Distribution: Title Field

issue summaries.
Since multi-label classification was only recently introduced in the system, the dataset was
significantly skewed toward single-label entries. To ensure reliable learning across cate-
gories and avoid sparsity, rare categories occurring fewer than 50 times were removed [57].
The resulting dataset (Figure 4.6 and Figure 4.7) consists of 23,534 issues spanning 30
categories, each associated with between 1 and 10 labels. This step was essential to en-
able meaningful model learning and fair evaluation across labels. As visible in Figure 4.6,
the category distribution remains highly imbalanced, with a few dominant labels such as
ipdesign, v&v and software accounting for a large portion of the data. Similarly, Figure 4.7
shows that most multi-label issues are annotated with only two categories, underscoring

21

4. CLASSIFICATION

ipd
esi

gnv&
v

sof
tw

are
de

sig
n

sw
im

ple
men

tat
ion

pro
jm

an
ag

em
en

t

arc
hit

ect
ure

req
man

ag
em

en
t

man
ufa

ctu
rin

g

au
dio

pro
ces

s

ha
rdw

are

do
cm

an
ag

em
en

t

con
fig

man
ag

em
en

t

ph
ysi

cal

ap
p&

de
sig

n
rul

es

dft
&dfx

po
rta

l

au
toh

old
&pa

t
too

ls

up
gra

de

rad
arp

roc
ess

sec
uri

ty
saf

ety

po
werb

i

sta
tic

tim
ing

inn
ov

ati
on
qu

alit
y

tes
tst

an
d

pro
du

ctc
rea

tio
n

0

500

1000

1500

2000

2500

3000

3500

Co
un

t

Category Distribution

Figure 4.6: Category Distribution Across the Final Dataset

the skew toward low label cardinality. This distribution reflects the relatively recent adop-
tion of multi-label annotation practices and highlights the challenge of learning from limited
multi-label examples, further justifying the need for label-aware stratification and balancing
techniques during training.

2 4 6 8 10
Number of Categories

0

100

200

300

400

500

Nu
m

be
r o

f I
ss

ue
s

509

45 23 8 5 1 1 1

Distribution of Number of Categories

Figure 4.7: Distribution of Number of Categories Assigned per Multi-Label Issue

22

4.2. Methodology

For downstream experimentation, the dataset was further stratified to support comparative
evaluation [5]:

• A single-label dataset of 22,941 records was extracted and stratified into training
(80%, 18,352 records) and test (20%, 4,589 records) subsets.

• A multi-label dataset of 543 records was split into training and test sets using la-
bel distribution-preserving stratification. Among 1,000 stratified random splits, the
one minimizing deviation from the overall label frequency distribution was chosen,
producing 475 training and 118 test samples.

The final training and testing datasets, totalling 18,827 and 4,707 issues respectively, form
the basis for all classification experiments. These preprocessing steps were crucial for re-
ducing noise, ensuring class representation, and enabling scalable, fair evaluation of classi-
cal and transformer-based multi-label classification models.
After stratified splitting, separate preprocessing pipelines were applied to the training and
test sets. To address class imbalance in the training set, the Synthetic Minority Over-
sampling Technique (SMOTE) was applied only to the training portion of the dataset.
SMOTE creates synthetic examples of minority classes by interpolating between existing
samples, improving classifier robustness on underrepresented categories [9]. This step was
deliberately applied after the train/test split to prevent data leakage, and was used exclu-
sively for classical machine learning models. Transformer-based models rely on alternative
mechanisms (e.g., contextual embeddings or class weighting) to manage class imbalance
and therefore do not use oversampling.

4.2.2 Data Cleaning

Two separate text cleaning pipelines were applied to the dataset, each tailored to the require-
ments and assumptions of the downstream models. These preprocessing strategies aimed to
ensure data consistency, reduce noise, and preserve semantic content for effective classifi-
cation [30]. The full set of data cleaning operations, grouped by model type, is visualised
in Figure 4.1.

Classical Machine Learning Pipeline

For classical ML models, a more aggressive normalisation approach was adopted to re-
duce vocabulary size and eliminate irrelevant variability. Such models typically operate on
sparse, frequency-based representations (e.g., TF-IDF), which are highly sensitive to incon-
sistent formatting or rare tokens. Therefore, standardisation was critical to improve model
generalizability and reduce overfitting [30].
The following steps were applied to the combined Title and Description fields:

• Contraction Expansion: Common English contractions (e.g., can’t → cannot) were
expanded using the contractions library.

• Unicode Normalization: Accented or non-ASCII characters were normalized via
unicodedata to their ASCII equivalents.

23

4. CLASSIFICATION

• Lowercasing: All text was converted to lowercase to reduce token sparsity.
• Punctuation Removal: Special characters and punctuation were removed using reg-

ular expressions, except hyphens and alphanumeric terms.
• Whitespace Normalisation: Tabs, newlines, and redundant spaces were standard-

ised.
• Tokenization: Text was split into individual words using NLTK’s word tokenize.
• Stopword Removal: Standard English stopwords were removed to retain only infor-

mative terms.
• Lemmatisation: Words were reduced to their base form using WordNet lemmatiser

to unify morphological variants.
• Noise Removal: URLs, HTML tags, and email addresses were removed with regex

filters.
• Dictionary Filtering: Non-alphabetic tokens and out-of-vocabulary words were fil-

tered.

This multi-stage cleaning process standardised the input text, reduced dimensionality, and
improved the suitability of the data for classical vectorisation techniques.

Transformer-Friendly Pipeline

In contrast, transformer-based models such as BERT rely on pre-trained tokenisers and
contextual embeddings that are sensitive to linguistic structure, punctuation, and word order.
As such, the cleaning process was intentionally conservative in order in order to preserve
the syntactic and semantic richness of the input [13].
The following minimal steps were applied:

• HTML Tag Removal: Embedded HTML content was removed.
• URL and Email Removal: Links and email addresses were removed to avoid irrele-

vant information.
• Whitespace Normalization: Extra spaces and formatting inconsistencies were stan-

dardized.

This lighter cleaning approach aimed to retain context-relevant structures and punctua-
tion that transformers use to infer meaning through attention mechanisms. No lowercas-
ing or lemmatisation was applied, as transformer tokenisers are trained on case-sensitive,
subword-based vocabularies.

4.2.3 Feature Engineering

For the multi-label text classification task, the combined Title and Description fields
were transformed into numerical representations suitable for machine learning models. A
variety of vectorisation techniques were evaluated, including both sparse and dense rep-
resentations. These methods were selected based on their widespread use in text clas-
sification tasks, compatibility with classical models, and their ability to capture different
linguistic features. The final representation techniques covered both frequency-based and

24

4.2. Methodology

Multi-label Classification Pipeline

M
od

el
lin

g
Ev

al
ua

tio
n

R
ec

om
m

en
da

tio
n

Discuss trade-offs End

Select evaluation
metrics

Evaluate on the
train set

Evaluate on the
test set

Check for
overfitting

Error analysisCompare models

Feature
Extraction:

TF-IDF,
TF-IDF + (n-

grams),
CountVectorizer,

Word2Vec,
GloVe,

FastText,
SentenceBERT

Problem
Transformation:

One-vs-Rest,
Binary Relevance,
Classifier Chain,
Label Powerset

Classifier:
Logistic

Regression,
Ridge Classifier,
Multinomial NB,

Gaussian NB,
Random Forest,

kNN,
SVM, LinearSVC

XGBoost

Algorithm Adaptation:
ML-KNN, MMP, Rank SVM

Models: MLP, ANN, CNN, RNN, BiLSTM,
BERT, RoBERTa, DistilBERT

Predict Label

Recommend a
model

Figure 4.8: Overview of the modelling, evaluation, and model recommendation phases of
the multi-label classification pipeline. This diagram illustrates the progression from feature
extraction, problem transformation, algorithm adaptation to model training and evaluation.
A range of classical and deep learning models, including transformer-based architectures,
are assessed. The final step involves model comparison and recommendation.

25

4. CLASSIFICATION

embedding-based approaches. The feature engineering step, including vectorisation tech-
niques explored, is shown in Figure 4.8.

Frequency-Based Representations

Frequency-based methods represent text using counts or weighted frequencies of individ-
ual words [55, 30]. In this study, two such techniques were employed: the Count Vec-
torizer (Bag-of-Words), which transforms text into sparse vectors by counting raw word
occurrences [55], and Term Frequency–Inverse Document Frequency (TF-IDF), which
assigns weights to words based on their importance across the corpus [48]. Both unigrams
and bigrams were included in the TF-IDF n-gram variant to capture limited contextual in-
formation without significantly increasing dimensionality. These sparse representations are
particularly well suited for structured and domain-specific texts [30].

Embedding-Based Representations

Embedding-based methods generate dense, continuous vector representations that capture
semantic relationships between words or sentences [39]. In this study, several embedding
techniques were evaluated: Word2Vec [39], FastText [6], GloVe [43], and Sentence-
BERT (SBERT) [47]. These methods are widely used in modern NLP applications and
provide pre-trained or trainable embeddings that can be integrated into machine learning
pipelines [30]. Unlike frequency-based approaches, embeddings encode contextual or dis-
tributional meaning, which can improve performance on tasks involving more abstract or
nuanced language [47].
Table 4.1 summarises all vectorisation techniques considered in this study.

4.2.4 Classification Strategies

To effectively address the multi-label classification problem, a diverse set of modelling
strategies was explored. These were chosen to balance interpretability, scalability, and per-
formance under the constraints of noisy, domain-specific textual input. Three main groups
of approaches were considered: problem transformation methods, algorithm adaptation
methods, and various base learners ranging from classical models to transformer-based deep
learning. All classification strategies are visualised in the modelling phase of Figure 4.8.

Problem Transformation Approaches

Since most conventional classifiers are inherently designed for single-label classification
tasks, the multi-label nature of the problem requires transformation strategies to adapt the
dataset and modelling pipeline [21]. Four widely used problem transformation methods
were selected based on their prevalence in the literature, conceptual variety, and compati-
bility with classical machine learning models.

• One-vs-Rest (OvR) [5]: This method trains a separate binary classifier for each la-
bel. It assumes label independence and allows the use of any base learner. Its inter-
pretability and simplicity make it a strong baseline in multi-label classification tasks.

26

4.2. Methodology

Method Short Description Vector Size Reference
TF-IDF Assigns weights to terms based on their fre-

quency in a document and rarity across the cor-
pus. Includes unigrams and bigrams.

Variable [48]

Count Vectorizer Converts text into sparse vectors by counting
raw word frequencies. Effective for short and
structured technical text.

Variable [55]

Word2Vec Learns distributed word representations using
a shallow neural network trained on context
prediction (Google News).

300 [39]

FastText Extends Word2Vec by including subword in-
formation, enabling better handling of rare and
out-of-vocabulary words.

300 [6]

GloVe Generates word vectors using global word co-
occurrence statistics. Trained on Wikipedia
and Gigaword.

300 [43]

SBERT Produces contextual sentence embeddings us-
ing a BERT-based Siamese architecture. Opti-
mised for semantic similarity tasks.

768 [47]

Table 4.1: Summary of the text vectorisation methods used in the multi-label classification
task. The table describes approaches, ranging from sparse representations like TF-IDF and
Count Vectorizer to dense embeddings such as Word2Vec, FastText, GloVe, and SBERT.
Each method differs in dimensionality and semantic richness, contributing distinct strengths
to downstream model performance.

It originates from multi-class classification but is commonly adapted for multi-label
tasks.

• Binary Relevance (BR) [5]: Each label is treated as an independent binary clas-
sification problem. While it does not model any inter-label correlations, it is com-
putationally efficient and often surprisingly effective for problems with weak label
dependencies. Unlike OvR, BR is specifically designed for multi-label classification
and handles multiple binary predictions per instance by default.

• Classifier Chains (CC) [5]: Unlike OvR and BR, this method accounts for label de-
pendencies by passing predicted labels as input features to subsequent classifiers in a
chain. This approach was chosen to explore whether modelling label interdependence
would improve predictive accuracy.

• Label Powerset (LP) [5]: This method transforms the multi-label problem into a
multi-class one by treating each unique label combination as a single class. Although
powerful in theory, it often struggles with label sparsity and scalability when many
label combinations exist.

These techniques provide a modular and comparative framework for reusing classical mod-
els in a multi-label setting, allowing systematic evaluation across different assumptions of
label independence, dependency, and class distribution [21]. They were chosen to span a
range of modelling strategies – from fully independent (Binary Relevance) to fully joint

27

4. CLASSIFICATION

(Label Powerset) – to better understand which approaches align best with the structure of
the task.

Algorithm Adaptation Techniques

In addition to transformation-based approaches, several algorithm adaptation techniques
were evaluated. Unlike transformation methods, which reformulate the task to suit stan-
dard classifiers, these methods are specifically designed to handle multi-label learning na-
tively [5]. They were selected based on their theoretical relevance to the task, particularly
their ability to model label correlations or rank label relevance directly.

• ML-KNN [67]: An extension of the standard k-nearest neighbours algorithm, ML-
KNN estimates the probability of each label being relevant based on label frequencies
among the nearest neighbours. It is well-suited for small datasets and offers an inter-
pretable, instance-based approach. However, it can struggle with high-dimensional
or noisy data due to its reliance on local similarity.

• RankSVM [23]: This method frames multi-label classification as a label ranking
problem. It learns a pairwise preference function over label pairs using a support vec-
tor machine. RankSVM was included to explore whether ranking-based formulations
could better capture partial relevance among labels, which is often useful in noisy or
weakly labelled environments.

• Multiclass Multilabel Perceptron (MMP) [18]: MMP optimises a margin-based
objective function to predict a ranked list of labels per instance. It integrates collective
inference to exploit label dependencies, aiming to balance precision and recall in
the predicted label sets. The method was included to evaluate structured prediction
capabilities, particularly in scenarios with overlapping label semantics.

These methods were selected to evaluate whether algorithmic adaptations that model la-
bel correlations or relevance rankings directly offer advantages over transformation-based
approaches in this context.

Base Learners: Classical Models, Deep Learning Models and Transformers

Each transformation strategy was paired with a variety of base classifiers to explore differ-
ences in generalisation ability, computational efficiency, and interpretability across models:

Classical Models. A diverse set of classical machine learning algorithms was evaluated
for their efficiency, interpretability, and established effectiveness in text classification tasks.
These included linear models, tree-based ensembles, probabilistic approaches, and instance-
based methods:

• Logistic Regression: A linear model that estimates the probability of each label using
the logistic function [29].

• Ridge Classifier: A regularized linear classifier that applies L2 penalty to prevent
overfitting [5].

28

4.2. Methodology

• Support Vector Machine (LinearSVC): A margin-based classifier that finds an op-
timal separating hyperplane in high-dimensional space [69].

• Random Forest: An ensemble of decision trees that performs classification through
majority voting across randomly constructed trees [7].

• XGBoost: A gradient boosting framework that builds decision trees sequentially to
correct previous errors and minimise classification loss [10].

• Naive Bayes (Multinomial and Gaussian): Probabilistic classifiers based on Bayes’
theorem with strong (naive) independence assumptions among features [21].

• k-Nearest Neighbours (kNN): A non-parametric method that assigns labels based
on the majority class among the k most similar training instances [21].

These classical classifiers were selected due to their extensive application and evaluation in
multi-label learning literature. As noted in [21, 57], kNN and Naive Bayes remain popular
for their simplicity and resilience to data imbalance; SVMs offer strong margin-based gen-
eralization despite scalability issues; logistic regression and its regularized variants (e.g.,
ridge) are valued for interpretability and robustness; ensemble methods like Random For-
est and boosting approaches like XGBoost are widely adopted for their ability to model
complex label dependencies and improve predictive performance.

Neural Networks. Both shallow and deep neural architectures were explored to assess
their ability to model non-linear patterns and hierarchical representations in text. These
included feed-forward and sequence-based models:

• Artificial Neural Networks (ANN): General feed-forward networks composed of
one or more hidden layers with non-linear activation functions [70].

• Multi-layer Perceptrons (MLP): A specific class of ANN with fully connected lay-
ers, typically used as a baseline for non-linear classification tasks [17].

• Convolutional Neural Networks (CNN): Networks that apply convolutional filters
over input sequences to capture local n-gram patterns and spatial hierarchies [64].

• Recurrent Neural Networks (RNN): Sequence models that process input tokens
sequentially, maintaining hidden states to capture temporal or contextual dependen-
cies [53].

Transformer-based Models. Pretrained transformer architectures were incorporated to
evaluate their ability to capture deep contextual semantics and model complex label depen-
dencies in text. The selected models were fine-tuned locally for the multi-label classification
task:

• BERT (Bidirectional Encoder Representations from Transformers): A deep trans-
former model that uses bidirectional self-attention to learn context-aware word rep-
resentations [13].

• RoBERTa (Robustly Optimised BERT Pretraining Approach): An improved vari-
ant of BERT trained with more data and optimised hyperparameters, yielding stronger
performance across NLP tasks [34].

29

4. CLASSIFICATION

• DistilBERT: A lightweight, distilled version of BERT that retains much of its perfor-
mance while significantly reducing model size and inference time [50].

4.2.5 Evaluation Metrics

To rigorously assess the performance of the classification models, a comprehensive set of
evaluation metrics was employed. Given the multi-label nature of the task, where each issue
report may belong to multiple categories, traditional single-label metrics are insufficient.
Instead, this study adopts metrics that account for partial correctness, label ranking, and
prediction coverage. Furthermore, given the problem’s nature, the business case and the
existence of missing labels in the training set, priority was given to recall over precision to
minimise the risk of under-predicting valid categories. The following subsections describe
each metric in detail, including its mathematical formulation and interpretive value.

Correct Label Count (Relaxed Match)
This metric counts the total number of correctly predicted labels across all instances. For
each instance, it computes how many of the ground truth labels are present in the predicted
label set. The computation logic is consistent across both single-label and multi-label cases.

CorrectLabelCount =
N

∑
i=1

|ŷi ∩ yi| (4.1)

where N is the total number of instances (single-label or multi-label), yi is the set of ground
truth labels for instance i, ŷi is the set of predicted labels for instance i, |ŷi∩yi| is the number
of correctly predicted labels for instance i.
Single-label case: Each yi contains exactly one label. The metric counts how many of
these labels are present in the predicted sets ŷi. This relaxed version of accuracy considers a
prediction correct if the model includes the correct ground truth label among its predictions,
even if additional labels are also predicted.
Multi-label case: Each yi contains multiple labels. For each instance, the metric counts
how many of the ground truth labels are present in the predicted label set. The final score is
the total number of correctly predicted labels across all multi-label instances.
This unified formulation ensures consistency in evaluation and allows for direct comparison
between model performance on different subsets of the data.

Recall@k
Recall@k evaluates the proportion of true labels that appear within the top-k predicted
labels for each instance. It is particularly relevant in practical settings where only the top
few predictions are presented to users.

Recall@k =
1
N

N

∑
i=1

|Top-k(ŷi)∩ yi|
|yi|

=
T P

T P+FN
(4.2)

30

4.2. Methodology

where Top-k(ŷi) denotes the top-k predicted labels for instance i, T P (True Positives): Num-
ber of correctly predicted positive labels,FN (False Negatives): Number of actual positive
labels that were not predicted.
A higher Recall@k indicates that the model is effective at prioritising relevant labels near
the top of its predictions.

F1-Score (Macro-Averaged)
The F1-score is the harmonic mean of precision and recall. In multi-label settings, the
macro-averaged F1-score is computed by averaging the F1-scores across all labels, treating
each label equally regardless of its frequency.

F1macro =
1
L

L

∑
j=1

2 ·Precision j ·Recall j

Precision j +Recall j
(4.3)

where L is the number of labels.

Mean Proportion of Properly Predicted Labels (MPP)
MPP measures the proportion of true labels that are correctly predicted for each instance
and then averages this proportion across all instances.

MPP =
1
N

N

∑
i=1

|ŷi ∩ yi|
|yi|

(4.4)

Mean Average Precision (MAP)
MAP evaluates the quality of the label ranking by measuring how well the model ranks
relevant labels above irrelevant ones. It is computed as the average precision across all
relevant labels for each instance.

MAP =
1
N

N

∑
i=1

1
|yi| ∑

j∈yi

|{k ∈ yi : ranki(k)≤ ranki(j)}|
ranki(j)

(4.5)

where ranki(j) is the rank of label j in the predicted list for instance i.

Coverage Error
Coverage error measures how many top-ranked labels need to be considered to include all
the true labels for an instance. It reflects the depth of prediction required to fully capture
the ground truth.

Coverage Error =
1
N

N

∑
i=1

(
max
j∈yi

ranki(j)
)

(4.6)

Lower coverage error values are desirable, indicating that fewer predictions are needed to
cover all correct labels.

31

4. CLASSIFICATION

Vectorizer Transformation Classifier
Single label

Correct
(4589)

Multi-label
Correct
(270)

Total
Correct
(4859)

BERT 4240 (92.39) 212 (78.52) 4452 (91.62)
RoBERTa 4205 (91.63) 216 (80.00) 4421 (90.99)
DistilBERT 4260 (92.83) 221 (81.85) 4481 (92.22)

TF-IDF One-vs-Rest Logistic Regression 3991 (86.97) 179 (66.30) 4170 (85.82)
TF-IDF Label Powerset Logistic Regression 3906 (85.12) 212 (78.52) 4118 (84.75)
TF-IDF (n-grams) One-vs-Rest Logistic Regression 4012 (87.43) 172 (63.70) 4184 (86.11)

Count Vectorizer One-vs-Rest Multinomial NB 4014 (87.47) 166 (61.48) 4180 (86.03)
TF-IDF One-vs-Rest Multinomial NB 3965 (86.40) 162 (60.00) 4127 (84.94)
TF-IDF (n-grams) One-vs-Rest Multinomial NB 3972 (86.55) 168 (62.22) 4140 (85.20)

Table 4.2: Correctly predicted single-label and multi-label issues for various classification
pipelines. DistilBERT achieved the highest overall accuracy, while classical models also
demonstrated competitive performance. Notably, the Label Powerset approach with Logis-
tic Regression achieved multi-label accuracy comparable to BERT, highlighting its effec-
tiveness despite lower overall accuracy.

Hamming Loss
Hamming loss quantifies the fraction of labels that are incorrectly predicted, either as false
positives or false negatives, normalised over all labels and instances.

Hamming Loss =
1

N ·L

N

∑
i=1

L

∑
j=1

δ(yi j ̸= ŷi j) (4.7)

where yi j and ŷi j are the true and predicted binary values for label j of instance i.

4.3 Results

This section presents the empirical results of the multi-label classification experiments. The
performance of the proposed classification pipelines was systematically evaluated using the
experimental setup described in the previous section. Multiple combinations of vectorisa-
tion methods, transformation strategies, and classifiers were tested to identify the most ef-
fective configurations for multi-label issue categorization. As established before, the dataset
is inherently incomplete – many relevant labels are missing from the ground truth, which
substantially limits the reliability of precision-based metrics. Therefore, Recall@5 and Re-
call@7 are emphasised throughout this section as primary indicators of model performance.
Table 4.3 reports Recall@k scores (k = 1, 3, 5, 7, 10) for all evaluated models. For complete-
ness, additional metrics such as total correct predictions (Table 4.2) and ranking/error-based
scores (Table 4.4) are also presented and discussed in the relevant subsections.

4.3.1 Transformer-Based Models

Transformer-based models significantly outperformed traditional methods across all ma-
jor metrics, with particularly strong gains in Recall@5 and Recall@7. Among the three

32

4.3. Results

Vectorizer Transformation Classifier Recall@1 Recall@3 Recall@5 Recall@7 Recall@10

BERT 0.63 0.86 0.92 0.96 0.98
RoBERTa 0.60 0.83 0.91 0.94 0.97
DistilBERT 0.63 0.86 0.93 0.96 0.98

TF-IDF One-vs-Rest Logistic Regression 0.47 0.76 0.86 0.91 0.96
TF-IDF Label Powerset Logistic Regression 0.44 0.73 0.85 0.90 0.95
TF-IDF (n-grams) One-vs-Rest Logistic Regression 0.48 0.77 0.87 0.93 0.97

Count Vectorizer One-vs-Rest Multinomial NB 0.47 0.76 0.86 0.92 0.96
TF-IDF One-vs-Rest Multinomial NB 0.44 0.73 0.86 0.92 0.96
TF-IDF (n-grams) One-vs-Rest Multinomial NB 0.44 0.74 0.86 0.91 0.96

Table 4.3: Recall@k scores (for k = 1, 3, 5, 7, 10) across classification pipelines. Distil-
BERT achieved the highest Recall@5 (0.93) and Recall@7 (0.96), confirming its strength
in ranking relevant labels. Among classical models, TF-IDF with Logistic Regression and
n-gram features performed competitively, underscoring their effectiveness despite lower
complexity.

Vectorizer Transformation Classifier MPP MAP
Coverage

Error
F1-Score

Hamming
Loss

BERT 0.19 0.76 2.22 0.31 0.14
RoBERTa 0.19 0.74 2.37 0.31 0.14
DistilBERT 0.19 0.76 2.21 0.31 0.14

TF-IDF One-vs-Rest Logistic Regression 0.18 0.64 3.07 0.30 0.14
TF-IDF Label Powerset Logistic Regression 0.17 0.62 3.21 0.29 0.14
TF-IDF (n-grams) One-vs-Rest Logistic Regression 0.18 0.65 2.99 0.29 0.14

Count Vectorizer One-vs-Rest Multinomial NB 0.18 0.64 2.98 0.29 0.14
TF-IDF One-vs-Rest Multinomial NB 0.18 0.61 3.17 0.29 0.14
TF-IDF (n-grams) One-vs-Rest Multinomial NB 0.17 0.62 3.11 0.29 0.14

Table 4.4: Performance of classification pipelines on additional evaluation metrics, includ-
ing Mean Average Precision (MAP), Coverage Error, F1-Score, and Hamming Loss.

transformer architectures evaluated – BERT, RoBERTa, and DistilBERT – DistilBERT,
despite being a compressed version of BERT, achieved the highest Recall@5 (0.93) and
Recall@7 (0.96), outperforming both BERT and RoBERTa (see Table 4.3). These results
indicate that DistilBERT is not only computationally more efficient than the other two meth-
ods but also highly effective for multi-label classification in this domain. BERT followed
closely with Recall@5 = 0.92 and Recall@7 = 0.96, while RoBERTa trailed slightly (Re-
call@5 = 0.91; Recall@7 = 0.94).
Beyond Recall@5 and @7, DistilBERT also achieved a Recall@1 of 0.63, Recall@3 of
0.86, and Recall@10 of 0.98 – demonstrating that a large proportion of relevant labels were
retrieved early in the ranked prediction list. BERT and RoBERTa produced comparable
Recall@10 scores of 0.98 and 0.97, respectively. The ability of these models to rank relevant
labels near the top is critical, as selecting too few labels would miss relevant associations,
while selecting too many could introduce irrelevant noise, both undesirable in operational
settings.

33

4. CLASSIFICATION

With regard to accuracy on labelled examples, DistilBERT correctly predicted 221 out of
270 multi-label examples (81.85%) and achieved a single-label classification accuracy of
4260/4589 (92.83%). This results in a combined total accuracy of 4481/4859 (92.22%),
the highest among all evaluated models. In comparison, BERT and RoBERTa attained
total correctness rates of 91.62% and 90.99%, respectively, with slightly fewer multi-label
matches 212/270 and 216/270 (see Table 4.2).
In terms of ranking quality both DistilBERT and BERT achieved a Mean Average Preci-
sion (MAP) score of 0.76, whereas RoBERTa performed slightly lower with a score of 0.74
(Table 4.4). These high MAP values confirm that the most relevant labels tend to appear
earlier in the prediction list, aligning well with the intended use of the system.
Though F1-scores across all three models remained modest (0.31), this was expected given
the label incompleteness in the training data, which penalises models for predicting labels
that may be correct but are unobserved in the ground truth. Hamming Loss, which mea-
sures the fraction of misclassified labels (both false positives and false negatives) over the
total number of labels, provides a view of prediction quality across all labels. Lower values
here (DistilBERT: 0.1376; BERT: 0.1380; RoBERTa: 0.1385) suggest that the models make
relatively few errors per label, even if not all correct labels are captured. Additionally, Cov-
erage Error – which reflects the number of top-ranked labels needed to cover all true labels
– was also lowest for DistilBERT (2.21), closely followed by BERT (2.22), and higher for
RoBERTa (2.37). This further supports the ranking efficiency of DistilBERT in covering
the full set of ground-truth labels with minimal over-prediction.
Taken together, these results underscore the superior performance of transformer-based
models, particularly DistilBERT, in handling sparse and incomplete multi-label annota-
tions. Their strong showing across both ranking-sensitive and label-wise metrics affirms
their suitability for real-world deployment engineering environments.

4.3.2 Classical Machine Learning

In contrast to the high-performing transformer models, classical machine learning methods
based on sparse lexical representations, such as TF-IDF and CountVectorizer, demonstrated
lower effectiveness across most evaluation metrics. Nevertheless, some configurations pro-
duced competitive scores, prompting further examination due to their computational sim-
plicity and interpretability.
Among the classical pipelines, the best-performing approach in terms of recall was the
Logistic Regression classifier trained on TF-IDF with n-gram features using a One-
vs-Rest transformation. This model achieved a Recall@5 of 0.87 and Recall@7 of 0.93,
coming relatively close to DistilBERT (Recall@5 = 0.93; Recall@7 = 0.96). Other recall
scores for this model included Recall@1 = 0.48, Recall@3 = 0.77, and Recall@10 = 0.97
(see Table 4.3), indicating reasonable performance in early label retrieval. As it can be seen
in Table 4.2, this model predicted 172 out of 270 multi-label examples (63.70%), and had
a single-label accuracy of 4012/4589 (87.43%), leading to a total accuracy of 4184/4859
(86.11%). The Coverage Error was 2.99 (Table 4.4)- nearly one full label higher than
DistilBERT (2.22), which suggests the model needed to predict more labels on average
to cover the full ground truth. The MAP score was 0.65 – higher than all other classical

34

4.3. Results

alternatives but still behind transformers – and the F1-score was 0.29. The Hamming Loss
of 0.14 indicates a modest rate of label-level prediction errors, where the model makes some
false positive or false negative predictions per label.
Another strong classical baseline was the Multinomial Naive Bayes model with CountVec-
torizer features and a One-vs-Rest strategy, which achieved Recall@5 = 0.86, Recall@7
= 0.92, and Coverage Error = 2.98. It correctly predicted 166 multi-label examples
(61.48%) and 4014 (87.47%) single-label samples – just two more than the TF-IDF + Lo-
gistic Regression model (4012), which led to a total accuracy of 4180/4859 (86.03%).
Moreover, it matched the Logistic Regression model in both F1-score (0.29) and Ham-
ming Loss (0.14).
A noteworthy observation was the Label Powerset on combination with Logistic Regres-
sion pipeline, which achieved 212 out of 270 multi-label predictions correct (78.52%)
– equal to BERT (see Table 4.2) – despite its lower Recall@K scores (Recall@5 = 0.85,
Recall@7 = 0.90) and higher Coverage Error (3.21). This result suggests that, although
Label Powerset models may underperform in ranking-based metrics, they are capable of
predicting label combinations that align well with the annotated data.
Additional classical configurations such as Binary Relevance and One-vs-Rest with Lo-
gistic Regression or Naive Bayes yielded slightly lower performance, as it can be seen in
Table 4.4, with F1-scores of 0.29 and MAP consistently below 0.65. These models also had
higher Coverage Errors (above 3.00) and marginally worse Hamming Loss scores, confirm-
ing the trade-off between simplicity and retrieval quality.
In summary, classical approaches using TF-IDF or CountVectorizer features, combined with
Logistic Regression or Naive Bayes, offer efficient and interpretable baselines, particularly
in low-resource environments. While their performance in ranking-based metrics and early
recall is generally below that of transformer models, the differences are often moderate
rather than critical. Some configurations – such as Label Powerset with Logistic Regression
– show notable alignment with the annotated label sets, suggesting potential value in scenar-
ios where model simplicity, speed, and transparency are prioritised. These methods remain
relevant in practical settings, especially when resource constraints, ease of retraining, or
explainability are important considerations.

4.3.3 Additional Models

In addition to the configurations discussed in detail above, several other modelling strategies
were explored during the experimental phase. These included classical machine learning
models such as Support Vector Machines (LinearSVC), Ridge Classifier, Random Forest,
XGBoost, and k-Nearest Neighbours (kNN). While widely used in text classification, these
models consistently underperformed across key evaluation metrics such as Recall@5, Re-
call@7 and Coverage Error, and did not surpass the performance of simpler baselines like
Logistic Regression and Naive Bayes.
Algorithm adaptation techniques – including ML-KNN, RankSVM, and MMP – were also
evaluated but yielded lower predictive performance in this setting. Similarly, deep learn-
ing architectures such as Multi-layer Perceptrons (MLP), Convolutional Neural Networks
(CNN), and Recurrent Neural Networks (RNN) failed to outperform the best classical or

35

4. CLASSIFICATION

transformer-based models. Dense embedding representations – Word2Vec, GloVe, Fast-
Text – were tested in combination with these models, but did not lead to improvements over
sparse lexical features.
These approaches are not discussed in further detail here due to their lower effectiveness on
this dataset. However, full evaluation results for all models and configurations are available
in Appendix A.

4.4 Discussion

This study evaluated a diverse set of multi-label classification pipelines to assess their ef-
fectiveness in categorising engineering issue description within a complex industrial setting.
The industrial setting is characterised by incomplete annotations, class imbalance, and sig-
nificant semantic overlap between categories. The evaluated methods spanned from simple
frequency-based classifiers to advanced transformer-based architectures, offering a compre-
hensive view of their respective strengths, limitations, and trade-offs.

4.4.1 Model Comparison and Performance Insights

Transformer-based models (BERT, RoBERTa, DistilBERT) demonstrated strong and con-
sistent performance across both single-label and multi-label cases. They effectively disam-
biguated overlapping technical categories and handled incomplete annotations with robust-
ness. This was reflected in their high Recall@K values, low Hamming Loss and Coverage
Error, and strong MAP scores. These outcomes align with findings in recent literature,
which report that transformer architectures often outperform classical models on imbal-
anced and semantically complex datasets [8]. The present study confirms this trend in the
context of industrial issue tracking, where label sparsity, semantic overlap, and structured
input formats are common.
Among the three transformer models evaluated, DistilBERT consistently outperformed
both BERT and RoBERTa across most evaluation metrics, despite being a smaller and
compressed variant of BERT. DistilBERT achieved the best ranking performance with a
Recall@5 of 0.93, Recall@7 of 0.96, and a Coverage Error of 2.21. These results in-
dicate that DistilBERT successfully captures the semantic nuances of engineering-related
language and retrieves a high proportion of relevant labels early in the ranked prediction list
– a critical capability in tasks with incomplete ground truth.
Several factors may explain DistilBERT’s superior performance. First, its smaller size
(fewer layers and parameters) makes it inherently less prone to overfitting, which is advan-
tageous in low-resource settings or when the training data contains missing or noisy labels.
In such cases, larger models like BERT may overfit to noise, while DistilBERT generalises
more effectively. Second, DistilBERT typically converges faster and more stably dur-
ing fine-tuning. When training time or compute budgets are limited, this allows for more
effective optimisation compared to larger models that may require additional training or
regularisation to perform well. Third, DistilBERT benefits from the knowledge distillation
process, which transfers smoothed decision boundaries from its larger teacher model. This
often improves generalisation, especially in domain-specific tasks with structured inputs.

36

4.4. Discussion

In this study, the combined Title + Description inputs were relatively short and tech-
nical, likely not requiring the full capacity of BERT or RoBERTa. DistilBERT’s distilled
architecture was thus better aligned with the task’s complexity and constraints.
Taken together, these factors help explain why DistilBERT achieved the strongest perfor-
mance across both ranking-based and label-wise metrics. Its balance of semantic precision,
computational efficiency, and robustness makes it particularly well-suited for real-world
engineering issue-tracking scenarios, where scalability, noise tolerance, and deployment
feasibility are essential.
In contrast, classical pipelines – particularly TF-IDF (n-grams) + One-vs-Rest + Logis-
tic Regression – demonstrated surprisingly strong performance, achieving a Recall@5 of
0.87, Recall@7 of 0.93, and a single-label accuracy of 87.43%. While slightly behind trans-
former models on key ranking metrics, these approaches were significantly faster to train
and required substantially fewer computational resources. Their simplicity, transparency,
and compatibility with CPU-only environments make them appealing for real-world de-
ployment, especially in scenarios where interpretability, reproducibility, or infrastructure
constraints are critical.
The strong performance of Logistic Regression with TF-IDF can be attributed to the align-
ment between the model’s linear nature and the sparse, high-dimensional feature space gen-
erated by TF-IDF. In this representation, each term carries interpretable and informative
weight, which Logistic Regression leverages to learn robust decision boundaries. The use
of n-grams further enhanced performance by capturing short technical phrases (e.g., “timing
error”, “power loss”) that are predictive of specific issue categories. This tight alignment
between feature design and model capacity likely contributed to effective generalisation,
even in the presence of incomplete label annotations.
Notably, the performance gap between the top classical pipeline and DistilBERT was mod-
erate – approximately 5.8% lower on Recall@5 and 2.7% lower on Recall@7. While such
differences may be critical in certain high-stakes applications, in this context they suggest
that well-engineered lexical features can still enable classical models to uncover meaningful
patterns in domain-specific technical texts. These results are consistent with recent findings
by Veeranki et al. [59], who showed that traditional pipelines can remain competitive with
transformers in structured, non-open-domain classification tasks.
Several factors likely contributed to the classical model’s strong results in general. First, the
structured and concise nature of the input (titles and descriptions) is well suited to sparse
lexical representations. In such cases, the added complexity of deep contextual models may
offer limited additional benefit. Second, the lower risk of overfitting, faster inference, and
ease of maintenance make these models strong candidates for deployment in production
environments where model efficiency and explainability are prioritised.
In summary, while transformer-based models offer superior semantic understanding and
top-tier recall, classical pipelines such as TF-IDF combined with Logistic Regression re-
main practical and robust alternatives. They provide a valuable balance between perfor-
mance, interpretability, and deployability, particularly in industrial settings where retraining
speed, resource efficiency, and transparency are essential considerations.
In contrast, classical pipelines - particularly TF-IDF (n-grams) + One-vs-Rest + Logistic
Regression – offered competitive performance with a Recall@5 of 0.87 and single-label

37

4. CLASSIFICATION

0 100 200 300 400 500 600 700
Label Frequency

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Re
ca

ll
pe

r L
ab

el
Recall per Label vs Label Frequency

Figure 4.9: Per-label Recall plotted against label frequency TF-IDF vectorisation + One-
vs-Rest + Logistic Regression. The plot shows a clear positive trend, with high-frequency
labels achieving higher recall. However, several low-frequency labels still yield competitive
recall, indicating that the model generalises reasonably well despite label imbalance.

accuracy of 87.43%. Their major advantage lies in training efficiency, interpretability, and
deployability in CPU-only environments. These models remain suitable for use in resource-
constrained or latency-sensitive settings. Interestingly, their performance was found to be
comparable to that of transformer models. This observation aligns with recent work (Veer-
anki et al., 2024), where it was shown that classical models can remain competitive when
supported by well-engineered feature extraction methods.
However, both categories of models revealed several systemic challenges.

• Label Frequency Imbalance: The scatter plots in Figure 4.9 and Figure 4.10
show a moderate positive correlation between label frequency and recall for both
the best-performing classical model (TF-IDF + OvR + Logistic Regression) and the
top transformer-based model (DistilBERT). As expected, frequent labels are gener-
ally recalled more reliably, while rare or long-tail labels are often underpredicted.
However, several exceptions exist: a number of infrequent labels still achieve rela-
tively high recall. This suggests that while label frequency is an important factor,
it is not sufficient to determine recall performance on its own. Instead, factors such
as label distinctiveness, contextual clarity, and semantic uniqueness of the associated
text likely play a crucial role in improving retrieval performance for these rare but
well-separated classes. Therefore, both frequency and semantic characteristics must
be taken into account when interpreting or improving label-wise performance in these
multi-label classification tasks.

• Label Confusion and Semantic Overlap: The confusion matrix for single-label pre-
dictions (Figure 4.11) reveals that frequent misclassifications occurred among certain

38

4.4. Discussion

0 100 200 300 400 500 600 700
Label Frequency

0.5

0.6

0.7

0.8

0.9

1.0
Re

ca
ll

pe
r L

ab
el

Recall per Label vs Label Frequency

Figure 4.10: Per-label Recall plotted against label frequency for the DistilBERT model.
The plot shows consistently high recall across both frequent and rare labels, with several
low-frequency labels achieving recall above 0.8. This indicates DistilBERT’s strong gener-
alisation capacity in the presence of label imbalance.

categories, such as software, architecture, and design. These labels appear to be espe-
cially prone to confusion, likely due to overlapping terminology or similar contexts in
the input text. Although this matrix is based on predictions from the best-performing
classical pipeline (TF-IDF + OvR + Logistic Regression), a nearly identical pattern
was observed with the DistilBERT model (see Appendix A). This suggests that these
misclassification patterns are not specific to one architecture but rather stem from
inherent ambiguity or semantic proximity between the labels themselves.
Figure 4.11 provides a heatmap visualisation of the model’s predictions versus the

true labels for single-label samples. Each row represents the true label, and each col-
umn shows the predicted label. The diagonal represents correct predictions, while
off-diagonal cells indicate misclassifications. Darker cells reflect higher misclassifi-
cation frequency. Notably, we observe recurring confusion between adjacent techni-
cal domains, such as software and architecture, or design and ipdesign, indicating that
models occasionally struggle to separate conceptually close categories – especially in
the absence of distinct language cues.

• Incomplete Ground Truth and Metric Sensitivity: Due to the known issue of in-
complete multi-label annotations, precision and F1-scores were disproportionately
low for all models, despite high recall. For example, DistilBERT achieved a macro
F1 of only 0.3145, which does not fully reflect the model’s practical effectiveness in
retrieving relevant labels. As seen in Figure 4.12, while Recall@K increases steadily,
Precision@K declines with larger K, emphasising the trade-off between comprehen-
sive label recovery and prediction specificity.

• Label Dependencies: Figure 4.13 shows the label co-occurrence heatmap based

39

4. CLASSIFICATION

Figure 4.11: Confusion matrix for single-label samples (TF-IDF + Logistic Regression).

on multi-label samples from the training data. Each cell indicates how many times
two labels appeared together in the same issue. While most label pairs co-occur
infrequently, there are a few notable cases with higher co-occurrence counts – such
as dft&dxfx with radarprocess, and configmanagement with software – which may
reflect recurring relationships between certain engineering domains. These patterns
suggest the presence of mild label dependencies that could be leveraged by models
capable of capturing contextual or semantic co-labelling tendencies.

4.4.2 Explaining Unexpected Results

Several empirical outcomes diverged from initial expectations and merit deeper interpreta-
tion:

• TF-IDF + Label Powerset + Logistic Regression achieved the highest multi-label
match score (78.52%) but the lowest single-label accuracy (85.12%). This discrep-
ancy likely stems from Label Powerset’s tendency to overfit to the specific label com-
binations seen during training. While it can precisely memorise known multi-label
patterns, it struggles to generalise to new or unseen combinations – a limitation that
is particularly problematic in evolving taxonomies or open-domain deployments.

40

4.4. Discussion

2 4 6 8 10
K

0.2

0.4

0.6

0.8

1.0

Sc
or

e

Precision vs Recall at Top-K

Recall@K
Precision@K

Figure 4.12: Precision and Recall at different top-K values (K = 1, 3, 5, 7, 10) for the
DistilBERT model. As K increases, recall improves significantly, nearing 1.0 at K=10,
while precision decreases due to incomplete ground truth. This trade-off highlights the
importance of selecting an appropriate K based on application-specific tolerance for false
positives versus missed relevant labels.

• The addition of n-grams generally improved ranking performance (e.g., MAP) but
did not consistently lead to gains in overall accuracy. This was particularly evident
in the TF-IDF + OvR + Logistic Regression pipelines, where the n-gram variant
achieved the highest MAP score (0.6448) due to its ability to capture short, domain-
specific phrases that are highly predictive of certain labels. However, this gain in
ranking came at the cost of slightly reduced multi-label accuracy compared to the
unigram-only variant. The n-gram model performed better on single-label exam-
ples, suggesting improved lexical precision in simpler cases. In contrast, the uni-
gram model generalised better in multi-label scenarios, likely due to reduced sparsity
and lower risk of overfitting. These results highlight a trade-off: while n-grams en-
hance discriminative power in phrase-level matching, they may introduce brittleness
in sparse or noisy settings.

• Naive Bayes + CountVectorizer consistently outperformed its TF-IDF counterpart.
This is somewhat unexpected, as TF-IDF is often more effective with linear models.
However, Naive Bayes assumes feature independence and relies on raw term counts
rather than relative weighting – assumptions that align better with CountVectorizer’s
output. This pairing may thus preserve term frequency signals that are more informa-
tive for NB than TF-IDF’s normalised scores.

• Multinomial Naive Bayes + One-vs-Rest yielded the strongest results among NB
configurations, which confirms the benefit of decomposing multi-label classification
into binary subproblems when using probabilistic classifiers. The OvR strategy al-

41

4. CLASSIFICATION

Figure 4.13: Label Co-Occurrence Heatmap (Training Data).

lows Naive Bayes to focus on isolated label-specific distributions, avoiding combi-
natorial complexity and label interaction effects that Naive Bayes struggles to handle
effectively.

• Minimal performance gains from more complex classical models: Models such as
Support Vector Machines (LinearSVC), Ridge Classifier, Random Forest, XGBoost,
and k-Nearest Neighbours performed noticeably worse than simpler baselines like
Logistic Regression and Naive Bayes. This is somewhat unexpected and suggests
that the engineered features (TF-IDF, CountVectorizer) are already linearly separable,
rendering additional model complexity unnecessary or even detrimental.

• Recall@1 vs. Recall@10: Classical models showed significantly lower Recall@1
compared to transformers, suggesting they are less precise in ranking the single most
relevant label. However, Recall@10 scores across many models were similar, indi-
cating that classical methods can still retrieve the most relevant labels but rank them
less effectively. This highlights the value of transformers in tasks that require high
precision at the top of the list, such as decision support, while classical models may
suffice for exploratory or bulk tagging.

42

4.4. Discussion

• Deep learning (ANN, MLP, CNN, RNN) models performed worse than expected
despite being paired with dense embeddings like Word2Vec and FastText. This may
be due to a mismatch between model complexity and dataset size. These architectures
typically require large, diverse datasets and extensive tuning conditions not met in this
use case. Moreover, without significant sequence-level dependencies in the data (i.e.,
long contextual flow), these models may have failed to exploit their full capacity.

• Embedding-based features underperformed sparse representations: Word2Vec,
FastText, GloVe, and SBERT embeddings generally produced weaker results than
TF-IDF or CountVectorizer. This could be due to domain mismatch (pretrained em-
beddings not optimised for technical language) or the lack of sequence-level supervi-
sion needed to fully exploit these dense vectors. Additionally, sparse representations
preserve explicit lexical signals, which appear to be more informative in this struc-
tured, domain-specific task.

In summary, while transformer models delivered state-of-the-art results, several unexpected
findings reinforce the enduring relevance of simple yet well-matched classical approaches.
Careful attention to problem transformation strategies, feature-model compatibility, and
data characteristics proved more important than model complexity in many cases—offering
key insights for practical deployment in industrial settings.

4.4.3 Model Trade-offs and Deployment Implications

While DistilBERT is clearly the best-performing model across ranking and multi-label ac-
curacy metrics, it comes with higher computational cost and increased deployment com-
plexity. Fine-tuning and inference with transformer-based models require GPU resources
for acceptable latency, and memory consumption can be substantial, making real-time or
large-scale deployment more challenging without dedicated infrastructure. Furthermore,
transformer predictions are often less interpretable, which may hinder adoption in safety-
critical or regulated engineering environments where traceability and model reasoning are
important.
In contrast, classical models such as TF-IDF + Logistic Regression offer a favourable bal-
ance between recall and coverage while maintaining much lower computational demands.
These models can be trained and deployed entirely on CPU, making them suitable for inte-
gration into existing systems without requiring hardware upgrades. Their transparency also
allows for easier explanation of predictions based on term-level contributions, which can
support auditing, debugging, or user-facing justification of results.
Additionally, the choice of classification strategy impacts practical trade-offs. One-vs-Rest
(OvR) classifiers treat each label independently, enabling modular training and easier scal-
ability to new or updated labels, but they may fail to capture relationships between co-
occurring categories. In contrast, Label Powerset (LP) approaches treat each unique label
combination as a single class, enabling better modelling of co-labelling patterns. In this
study, LP achieved the highest exact multi-label match score (78.52%) among classical con-
figurations. However, LP models are less flexible: they cannot generalise to unseen label
combinations during inference and require retraining when new combinations emerge. This

43

4. CLASSIFICATION

rigidity, combined with higher training complexity, makes them more difficult to maintain
in dynamic production environments.
For industrial use cases, the choice of model should therefore consider not only predic-
tive performance but also inference time, infrastructure constraints, ease of integration, and
maintainability. In settings where real-time predictions, explainability, and low-cost de-
ployment are priorities, classical models remain a strong and practical option despite their
slightly lower top-K recall scores.

4.4.4 Practical Implications and Deployment Relevance

The findings carry several important implications for deployment in industrial systems:

• Trade-offs matter: Industrial model selection must balance accuracy with integra-
tion cost, retraining overhead, explainability, and infrastructure compatibility – espe-
cially in dynamic, resource-sensitive engineering environments.

• DistilBERT is the strongest candidate when predictive performance is critical. Its
high Recall@K and robust ranking ability make it ideal for batch annotation, issue
triaging, or downstream recommendation tasks.

• TF-IDF + Logistic Regression offers a practical, interpretable, and low-cost solu-
tion. It is especially suitable for real-time systems, CPU-only environments, or em-
bedded tools where explainability and latency are crucial.

• Naive Bayes with CountVectorizer delivers respectable performance with virtually
no inference time, making it a strong baseline for CPU-constrained deployments or
as part of an ensemble.

4.4.5 Conclusion and Answer to the Research Question

RQ: How can multi-label classification techniques be effectively applied to categorise
engineering issue descriptions in a real-world industrial setting?
This study demonstrates that multi-label classification can be successfully applied to engi-
neering issue tracking, provided that model selection is guided by both performance met-
rics and industrial constraints. Transformer-based models, particularly fine-tuned versions
such as DistilBERT, showed strong results in terms of semantic relevance and top-K recall.
These models are well-suited for handling rich and complex textual data, especially when
high predictive accuracy is required.
At the same time, classical models – such as TF-IDF combined with Logistic Regression
– proved to be competitive across multiple evaluation metrics. They offer advantages in
terms of computational efficiency and interpretability, which are particularly important in
resource-constrained or transparency-critical environments.
Overall, effective deployment of multi-label classifiers in industrial settings requires a care-
ful balance between model complexity, accuracy, and operational feasibility. Evaluation
frameworks must also account for domain-specific challenges such as label sparsity, co-
occurring categories, and semantic ambiguity. By aligning model capabilities with real-
world requirements, this work provides practical guidance for scalable, interpretable, and
effective categorisation of technical issues in engineering workflows.

44

Chapter 5

Association

Engineering issue tracking systems hold valuable historical knowledge that, when effec-
tively leveraged, can reveal recurring patterns, support faster resolution, and enhance knowl-
edge reuse. One way to achieve this is by automatically discovering associations between
semantically related issues. This chapter addresses the second core task of the research:
identifying meaningful associations using NLP techniques. It defines the problem, outlines
the methodology, and presents the implemented models. Two complementary evaluation
strategies are described, and the results are analysed to compare model performance, assess
expert and LLM agreement, and discuss practical implications for industrial deployment.

5.1 Problem definition

In engineering issue tracking systems, different reports often share similarities-whether in
root causes, affected components, or resolution strategies. However, these relationships are
rarely identified systematically, resulting in redundant reports, duplicated troubleshooting
efforts, and inefficient resolution workflows. Engineers frequently encounter recurring is-
sues across projects, but without automated tools for discovering such connections, they
must rely on manual searches and personal experience.
The key challenges in discovering associations between issues include:

• Lack of structured linking mechanisms: Issue tracking platforms often store each
ticket independently, without consistent cross-referencing to semantically related or
historically similar issues.

• High volume and diversity of reports: Large engineering databases contain thou-
sands of reports with varying levels of detail and structure, making manual association
infeasible.

• Semantic complexity: Teams may use different terminologies or phrasing to describe
similar issues, reducing the effectiveness of simple keyword-based matching.

• Scalability concerns: Traditional search and retrieval methods degrade in perfor-
mance as the dataset grows, necessitating more intelligent, scalable approaches.

• Subjective relevance criteria: The definition of what constitutes a “similar” issue
varies between teams and tasks, complicating both model design and evaluation.

45

5. ASSOCIATION

In an industrial context, these challenges are particularly acute. As engineering workflows
grow more complex and interdisciplinary, the lack of reliable association discovery hinders
knowledge sharing and slows down the resolution. Effective association discovery can re-
duce duplicated engineering efforts, support faster resolution of recurring problems, and
enhance the reusability of insights embedded in historical issue data.
Currently, issue associations are added manually by engineers, but these links often re-
flect procedural steps (e.g., follow-up actions, demo preparation) rather than semantically
related content. Consequently, the association field in the issue tracking system remains
underutilised and does not support systematic retrieval of similar cases. Without automated
support, engineers must rely on memory or manual keyword search, both of which are in-
efficient at scale.
To address these limitations, Natural Language Processing (NLP) offer a promising direc-
tion by enabling semantic comparison of issue descriptions. By identifying latent similar-
ities between new and historical reports, NLP-based models can recommend relevant past
tickets, uncover hidden relationships, and assist engineers in reusing knowledge more ef-
fectively.
This research focuses on designing and evaluating models for automated association dis-
covery in issue tracking systems. Specifically, the models aim to:

1. Automatically suggest previously reported issues that are relevant to new tickets.
2. Support engineering workflows by providing quick access to historical resolutions,

thereby reducing duplicated reports and effort.

This section addresses the second research question introduced in Chapter 1, which in-
vestigates how semantic associations between issue reports can be identified using NLP
techniques and how the most relevant related issues can be retrieved for a given report.

5.2 Methodology

This section outlines the methodology developed to address the problem of automated dis-
covery of semantically related engineering issues in large-scale industrial datasets. The
approach integrates data collection, preprocessing, validation of association labels, and im-
plementation of a diverse set of similarity-based and clustering-based methods. Given the
absence of complete association annotations and the subjective nature of similarity, the eval-
uation framework combines both automatic metrics and qualitative assessment by domain
experts and an LLM-based assistant. The primary goal is to maximise the retrieval of rel-
evant associations while ensuring that the results are useful in practice and consistent with
expert evaluations.

5.2.1 Dataset

The initial dataset consists of 63,329 engineering issue reports. Each record includes an
Artifact ID, a short Title, a detailed Description, and optionally a list of manually
curated Associations. Only these four fields were retained for the association task. This

46

5.2. Methodology

choice reflects the real-world constraints of the intended use case, where automatic recom-
mendations must rely solely on textual information typically available at the time of issue
creation. No structured metadata or resolution history was used to ensure the approach
remains broadly applicable and practically deployable.
A data cleaning pipeline consistent with the classification task (Section 4.2.2) was applied.
Of the 63,329 issues, 7,735 contained at least one manually assigned association. Each
association was validated to ensure that it referenced another issue within the dataset. As-
sociations pointing to external or missing records were discarded. This resulted in a final
set of 6,378 valid associations.

5.2.2 Implemented Techniques

Different techniques were implemented to explore diverse paradigms for identifying seman-
tically related issues. These methods were grouped into three broad categories: lexical re-
trieval, embedding-based similarity, and clustering-based filtering. Each method produced
a ranked list of candidate associations for a given issue, based on textual similarity, shared
topic membership, or spatial proximity in vector space.
An overview of the data preparation and modelling stages, including the validation of as-
sociation labels and retrieval of top-K predictions using various techniques, is illustrated
in Figure 5.1.

Lexical retrieval methods
Lexical retrieval methods rely on exact or weighted word overlaps between issue texts.
Three approaches were used in this category. The first, BM25, is a probabilistic ranking
function that scores candidate issues based on the frequency and rarity of terms in the query
and the candidate document. The second, TF-IDF + cosine similarity, constructs sparse
vector representations of each issue using term frequency-inverse document frequency and
compares them via cosine similarity. These methods prioritise surface-level lexical matches
and are often effective for capturing terminology-based similarity. The third, CountVec-
torizer + cosine similarity, uses raw token frequency counts instead of TF-IDF weights for
vector construction.
For both TF-IDF and CountVectorizer, n-gram ranges (unigrams and bigrams) were in-
cluded to capture short multi-word expressions commonly used in engineering contexts.
These methods prioritise surface-level lexical matches and are particularly effective for de-
tecting terminology-based similarity, especially when technical phrasing is consistent across
issues.

Embedding-based similarity methods
Embedding-based similarity methods aim to capture semantic relationships by projecting
issue texts into dense vector spaces where semantically similar texts are close together. Four
word embedding techniques were explored: SBERT [47], Word2Vec [39], FastText [6], and
GloVe [43].

47

5. ASSOCIATION

Association Discovery Pipeline

D
at

a
Pr

ep
ar

at
io

n
M

od
el

lin
g

Identify issues with
at least one

manually defined
association

Validate each
association

Cleaned
data

Remove Invalid
associations

Ground
Truth

Valid? N

Keep as ground
truth

Y

All associations
checked?

Y

N

Feature extraction
Define candidate

issues
Apply retrieval

method
Compute similarity

Select Top-K
associations

List with
predicted

associations

Figure 5.1: Overview of the association discovery pipeline. The process consists of two
stages: (1) Data Preparation, where manually defined associations are validated and fil-
tered to form a ground truth set, and (2) Modelling, where candidate associations are gener-
ated using similarity-based retrieval methods and the top-K most similar items are selected
as predictions.

SBERT + cosine similarity uses the Sentence-BERT model to encode each issue (title +
description) into a fixed-size sentence embedding. These embeddings capture contextual
and syntactic information and are compared using cosine similarity.
In contrast, Word2Vec, FastText, and GloVe rely on static word embeddings and provide
a more lightweight alternative. These methods are less sensitive to word order but remain
effective at capturing core semantic content. Cosine similarity was used to compare the
resulting vectors and rank candidate issues accordingly.
These embedding-based methods are generally more robust than lexical approaches to syn-
onymy, morphological variation, and paraphrasing, making them well-suited for noisy or
inconsistently worded engineering data.

Clustering-based filtering methods
Clustering-based filtering methods aim to narrow down the search space by first group-
ing issues based on textual similarity and then ranking candidates within the same cluster.

48

5.2. Methodology

Multiple clustering techniques were employed. TF-IDF representations were clustered us-
ing DBSCAN and k-Means, with cosine similarity applied within clusters to select the top
candidates. A similar strategy was followed for Word2Vec + k-Means, which used dense
embeddings for clustering. In addition, two topic modelling approaches were explored:
Latent Dirichlet Allocation (LDA), which assigns issues to latent topics based on word dis-
tributions, and BERTopic, which applies topic modelling on SBERT embeddings. These
methods are designed to filter recommendations to semantically coherent subgroups before
applying finer-grained similarity scoring.
All methods returned a fixed number of top-k candidate issues per query (with k typically
set to 10 during evaluation). The goal was to assess how effectively each technique could
recover known associations among a large corpus of issues using only their title and de-
scription fields.

5.2.3 Evaluation

To assess the effectiveness of the implemented methods for association discovery, a two-
phase evaluation strategy was employed: (1) a quantitative evaluation against ground-truth
links, and (2) a qualitative evaluation based on domain expert assessments and LLM-based
scoring of semantic relevance.
The evaluation strategy and subsequent recommendation workflow are summarised in Fig-
ure 5.2. It illustrates the two-phase evaluation framework, quantitative and qualitative, as
well as the decision-making steps leading to model selection.

Quantitative Evaluation

The quantitative evaluation assessed each method’s ability to retrieve known associations
from a labelled set of 6,378 validated issue links. For every issue, the top-10 predicted
associations were generated and compared to the ground-truth link(s). The following metric
was used to measure performance:

Hit@k
Hit@k measures the proportion of issues for which the ground-truth associated issue ap-
pears in the top-k predicted results.

Hit@k =
1
N

N

∑
i=1

hiti (5.1)

where hiti = 1 if the ground-truth association for issue i is among the top-k predictions, and
0 otherwise.
Hit@k is a widely used and interpretable metric in ranking-based evaluations, particularly
suited for scenarios like issue recommendation, where the task is to retrieve relevant asso-
ciations from a large candidate pool. In this context, each issue has exactly one associated
issue, and the goal is to determine whether this correct association appears among the top-k
suggestions. This makes Hit@k especially appropriate, as it directly reflects the system’s
ability to surface the correct result. A higher Hit@k score indicates that the method more

49

5. ASSOCIATION

Association Discovery Pipeline

Ev
al

ua
tio

n
R

ec
om

m
en

da
tio

n

Discuss trade-offs End
Recommend a

model

Start Evaluation for
Method X

Record Miss

Record Hit
Is ground truth in top-

10 predictions?

Compute Hit@10
across all issues

Randomly sample
100 issues from

the dataset

Select top-3
performing
methods

Re-run Modelling to
generate top-5
predictions per

model

3 domain experts
rate each

recommended
issue using ordinal

relevance scale

Copilot rates each
recommended

issue using ordinal
relevance scale

Empirical AnalysisCompare models

Y

N

List with
predicted

associations

Figure 5.2: Extension of the association discovery pipeline focused on Evaluation and
Recommendation. The top section shows the quantitative evaluation, which computes
Hit@10 by checking whether ground truth associations are ranked among the top-10 pre-
dictions. The middle section outlines the qualitative evaluation, where the top-3 perform-
ing methods are re-evaluated by three domain experts and an AI assistant (Copilot). The
final section presents the recommendation process, comparing model performances and
discussing trade-offs to select a preferred method for deployment.

50

5.2. Methodology

frequently ranks the correct association within the top-k recommendations. In this study,
k = 10 was selected to reflect realistic retrieval scenarios where engineers are presented
with a shortlist of similar issues.

Sample Selection for Qualitative Evaluation

To conduct a deeper semantic evaluation, a statistically representative sample of 100 issues
was drawn from the labelled dataset using simple random sampling. The required sam-
ple size was computed with a 95% confidence level and a 10% margin of error using the
standard formula for estimating proportions [25]:

n =
Z2 · p · (1− p)

e2 =
1.962 ·0.5 · (1−0.5)

0.12 =
3.8416 ·0.25

0.01
= 96.04 (5.2)

where:

• Z is the z-score for a 95% confidence level (1.96),
• p is the estimated proportion of relevant results (conservatively set to 0.5 to assume

maximum variability),
• e is the margin of error (set to 0.1).

Since the population is finite (N = 6,378), a finite population correction (FPC) was applied:

n f =
n

1+ n−1
N

=
96.04

1+ 95.04
6378

≈ 96.04
1.0149

≈ 94.58 (5.3)

To ensure robustness and account for possible anomalies, the sample size was rounded up
to 100 issues.

Qualitative Evaluation

To complement the automated metrics, qualitative assessments were conducted on the top-
3 performing models. Each model produced top-5 ranked recommendations for the 100
sampled issues. These were then evaluated by three human experts and an LLM-based
system.

Expert-Based Relevance Rating
Three domain experts independently rated each recommended issue on a 4-point ordinal
scale:

• 2 – Useful: Clear semantic or technical similarity.
• 1 – Partially Useful: Some shared context or components.
• 0 – Not Useful: No semantic or technical connection.
• -1 – Not Enough Information: The issue description lacks sufficient detail to make

a relevance judgment.

The average relevance score was computed for each method to facilitate direct comparison
of perceived semantic quality. To further analyse the consistency of expert assessments,
inter-rater agreement was evaluated using established reliability metrics.

51

5. ASSOCIATION

LLM-Based Evaluation
A large language model (Copilot1) was used to rate the same set of top-5 recommendations
for the top-3 methods as the human experts. The model was accessed via its online chatbot
interface and instructed through structured prompts to assess semantic relevance on the
same 4-point scale.
The prompt described the task and the rating categories as follows: “You are given a source
issue (title and description) and a list of 15 recommended issues (each with a title and de-
scription). Your task is to assess how relevant each recommended issue is to the source
issue. The goal is to support engineers in identifying past issues whose solutions may help
resolve the current one. For each recommendation, choose one of the following labels: Use-
ful – clearly relevant and likely to help resolve the current issue; Maybe useful – possibly
relevant but uncertain or only partially helpful; Not useful – unrelated or unlikely to help;
I don’t know – not enough context or unfamiliar topic to decide.”
This evaluation offered an additional, automated perspective on semantic similarity and
tested the feasibility of using LLMs as scalable evaluators in an industrial context. Agree-
ment between Copilot and the expert engineers was measured by comparing rating distri-
butions, average relevance scores, and overlaps in top-ranked recommendations.
Agreement between Copilot and the expert engineers was measured by comparing rating
distributions, average relevance scores, and overlaps in top-ranked recommendations.

Inter-Rater Agreement: Krippendorff’s Alpha

Krippendorff’s Alpha (α) is a statistical measure of inter-rater reliability that accounts for
chance agreement and supports multiple raters, different data types (nominal, ordinal, inter-
val), and missing values. It is particularly well-suited for ordinal-scale relevance judgments,
as in this study. The metric is defined as:

α = 1− Do

De
(5.4)

where Do is the observed disagreement among raters, and De is the expected disagreement
by chance. An α value of 1 indicates perfect agreement, while 0 indicates agreement no
better than random chance. In practice, the interpretation scale for Krippendorff’s Alpha
is as follows: α ≥ 0.80 indicates strong agreement; 0.67 ≤ α < 0.80 suggests substantial
or tentative agreement; 0.40 ≤ α < 0.67 indicates moderate agreement; 0.20 ≤ α < 0.40
reflects slight agreement; and α < 0.20 is considered poor or no agreement. These thresh-
olds help contextualise the level of consistency among raters and inform the reliability of
subjective evaluations [26].

Statistical Comparison and Correlation Analysis
While these average scores already indicate preference variations across models and evalu-
ators, it is important to assess whether these differences are statistically meaningful. To as-
sess statistical differences between the relevance ratings of different methods, the Kruskal-

1https://copilot.microsoft.com/ The evaluation was conducted in June 2025, and due to the evolving nature
of LLMs, future versions of Copilot may produce different results

52

5.3. Results

Wallis H test was applied [27]. This non-parametric test evaluates whether the distributions
of scores differ significantly across multiple groups, without assuming normality.
To explore correlations between human ratings, LLM scores, and model rankings, two cor-
relation coefficients were used: Pearson’s r and Spearman’s ρ. Pearson’s r measures lin-
ear correlation between continuous variables [11], while Spearman’s ρ captures monotonic
relationships by ranking the data [52]. Both coefficients range from -1 (perfect negative cor-
relation) to +1 (perfect positive correlation), with values near 0 indicating no correlation.
Additionally, Jaccard similarity was used to quantify the degree of overlap between the
sets of associations retrieved by different models. It is defined as the size of the intersection
divided by the size of the union of two sets [22], providing a measure of how similar two
models’ outputs are in terms of shared recommendations.

5.3 Results

This section presents the results of both the automatic and human-in-the-loop evaluations
used to assess the effectiveness of the proposed association discovery methods. We begin
with a quantitative analysis based on the retrieval performance over known associations,
followed by a detailed qualitative evaluation based on expert ratings and comparisons with
a large language model. The results are further examined in terms of inter-rater agreement,
rank relevance, model output diversity, and prediction overlap to provide a comprehensive
understanding of model behaviour and retrieval quality.

5.3.1 Automatic Evaluation

The performance of each method was quantitatively evaluated based on its ability to recover
known associations from the labelled dataset. Specifically, for each issue with a valid asso-
ciated issue, it was verified whether the correct association appeared within the top-10 most
similar results produced by the method. Table 5.1 summarises the number and percentage
of successful retrievals for each method.
The best-performing method was the classical information retrieval model BM25, which
successfully retrieved 3,277 out of 6,378 known associations, achieving a Hit@10 score of
51.4%. Close behind were two semantically-informed methods: SBERT + Cosine Similar-
ity (48.1%) and SBERT + BERTopic (47.6%). These models leverage transformer-based
embeddings to capture contextual meaning in issue descriptions, enabling more accurate
identification of semantically related reports.
The clustering-based approach TF-IDF + DBSCAN + Cosine Similarity also demon-
strated competitive performance, retrieving 3,004 associations (47.1%). Several other embedding-
and clustering-based methods yielded moderate results, with accuracy ranging between 37%
and 43%.
At the lower end of the performance spectrum, simpler methods such as Word2Vec + Co-
sine Similarity (36.0%) and TF-IDF + Cosine Similarity (37.0%) underperformed, in-
dicating that shallow lexical similarity models are less effective in capturing the nuanced
relationships present in engineering issue descriptions.

53

5. ASSOCIATION

Method Associations Found (Top-10)
BM25 3277 / 6378 (51.4%)
SBERT + Cosine Similarity 3069 / 6378 (48.1%)
SBERT + BERTopic 3035 / 6378 (47.6%)
TF-IDF + DBSCAN + Cosine Similarity 3004 / 6378 (47.1%)
TF-IDF + k-Means + Cosine Similarity 2707 / 6378 (42.4%)
FastText + Cosine Similarity 2588 / 6378 (40.6%)
FastText + DBSCAN + Cosine Similarity 2582 / 6378 (40.5%)
GloVe + Cosine Similarity 2514 / 6378 (39.4%)
LDA 2472 / 6378 (38.8%)
TF-IDF (n-grams) + Cosine Similarity 2454 / 6378 (38.5%)
Word2Vec + k-Means + Cosine Similarity 2403 / 6378 (37.7%)
TF-IDF + Cosine Similarity 2360 / 6378 (37.0%)
Count Vectorizer (n-grams) + Cosine Similarity 2347 / 6378 (36.8%)
Count Vectorizer + Cosine Similarity 2283 / 6378 (35.8%)
Word2Vec + Cosine Similarity 2294 / 6378 (36.0%)

Table 5.1: Top-10 association retrieval performance across different methods. The table
reports the number and percentage of correct associations retrieved within the top-10 pre-
dictions out of 6378 total ground-truth associations.

Overall, these results highlight the effectiveness of embedding-based and retrieval-driven
methods over traditional lexical similarity approaches. However, even the strongest model
retrieved just over half of the known associations, underscoring the difficulty of the task and
motivating the need for further evaluation.

A post-hoc analysis revealed that 2,077 of the 6,378 valid associations were not retrieved
by any method, suggesting that a substantial portion of ground-truth links remain chal-
lenging to detect using current methods. Upon closer inspection of a sample of these cases
– manually reviewed by an engineer – many of the unretrieved links were identified as
procedural associations. These are associations that arise not from shared terminology or
content similarity, but from procedural dependencies in the engineering process, such as
issues being linked because they belong to the same test flow, product release, or design
milestone. Such relationships are often implicit and context-driven, and may not be explic-
itly reflected in the textual descriptions. This finding highlights a key limitation of content-
based retrieval methods and underscores the need for complementary evaluation strategies
that integrate human judgment and context-aware interpretation, as further explored in the
qualitative evaluation.

5.3.2 Qualitative Evaluation

To complement the automatic evaluation, a qualitative review was conducted to assess the
semantic quality and practical relevance of the top-ranked associations. This phase involved

54

5.3. Results

domain experts2 as well as a large language model (Copilot), offering a human-in-the-loop
perspective on model output quality. High textual similarity scores do not necessarily trans-
late into usefulness from an engineering perspective – many top-ranked associations, while
lexically or semantically similar, may be irrelevant in practice. This reinforces the impor-
tance of human evaluation and context-sensitive analysis in assessing the real-world appli-
cability of retrieval methods. The qualitative analysis focused on the three best-performing
methods from the quantitative phase – BM25, SBERT + Cosine Similarity, and SBERT
+ BERTopic. These models not only achieved the highest scores but also represent a di-
verse range of retrieval paradigms: lexical, embedding-based, and topic-aware semantic
approaches.

Annotation Coverage and Sample Size

Three engineers participated in the manual evaluation, but annotation coverage varied across
individuals. Engineer 1 and Engineer 3 each reviewed the complete set of 1,500 suggestions
(500 per model), whereas Engineer 2 assessed a smaller subset of 790 associations – com-
prising 280 suggestions from BM25, and 255 each from Cosine Similarity and BERTopic.
This uneven distribution introduces a potential source of bias, particularly when comparing
rating distributions, computing inter-rater agreement, or averaging scores across raters. As
such, results involving Engineer 2 should be interpreted with caution, as the reduced sample
size may affect the reliability of the results.

Rating Distributions Across All Evaluators

The overall distribution of ratings from all human evaluators and Copilot is shown in Fig-
ure 5.3. When including Copilot, 39% of recommendations were rated as not useful, 23%
as partially useful, and 35% as useful. The remaining 3% received a score of not enough
information, indicating uncertainty.
When Copilot scores are excluded, the proportion of not useful ratings increases to 45%,
while partially useful drops to 17%, with the useful category remaining relatively stable.
The low frequency of not enough information responses (< 4%) across both human and
LLM evaluations suggests that the vast majority of recommended associations were inter-
pretable and assessable by both humans and the language model.
Figure 5.4 illustrates the normalised rating distributions across the three engineers and the
Copilot. Engineer 1 consistently provided more favourable evaluations, rating 46% of sug-
gestions as useful and assigning only 2% as not enough information. In contrast, Engineer 2
exhibited a broader spread, with 28% marked as useful, 14% as not enough information, in-
dicating a more cautious or uncertain evaluation pattern. Engineer 3 applied the most strict
criteria, assigning the highest proportion of not useful ratings (56%), along with 18% for
maybe useful and only 0.3% not enough information, suggesting a more decisive but critical
evaluation style.

2This evaluation involved a small number of professional engineers from the industry who voluntarily
assessed the output of automated models in the context of their domain expertise. No personal or sensitive data
was collected, and participants were not subjected to any form of intervention or manipulation. As such, formal
ethics approval was not required in accordance with TU Delft’s research ethics policy for low-risk studies.

55

5. ASSOCIATION

Not enough info. Not useful Partially useful Useful
Rating

0

10

20

30

40

Di
st

rib
ut

io
n

(%
)

(C
ou

nt
s s

ho
wn

 o
n

ba
rs

)

152

2064

1225

1849

149

1697

655

1289

Rating Distribution: With vs Without Copilot
Condition
With Copilot
Without Copilot

Figure 5.3: Distribution of usefulness ratings for association suggestions, shown separately
for conditions including and excluding Copilot. The bars display percentage distributions
with raw counts annotated.

Copilot, by comparison, demonstrated the most balanced rating distribution: 38% of sug-
gestions were rated as maybe useful, 37% as useful, 24% as not useful, and only 0.2% as
not enough information. These trends reveal substantial inter-rater variability, which plays
a key role in interpreting model performance and evaluating consistency across human and
automated assessments.

Rating Distributions by Model

Figure 5.5 and Figure 5.9 provide a comparative overview of the rating behaviour across
the three evaluated models, as judged by the engineers and Copilot.
Among the human evaluators (Figure 5.5), BM25 received the highest proportion of useful
labels (36%), followed by SBERT (34%) and BERTopic (32%). Conversely, BERTopic
had the highest share of not useful ratings (48%), suggesting that its recommendations were
more frequently judged irrelevant. The share of not enough information responses remained
low across all models (below 4%), indicating that engineers were generally confident in
making judgments.
Copilot’s ratings, shown in Figure 5.9, followed a different pattern. While its useful ratings
remained high (between 34.8% and 40.2%), the maybe useful label was its most common
rating, exceeding 39% for BM25 and BERTopic. Unlike human evaluators, Copilot issued
virtually no not enough information responses, reflecting a tendency to always assign inter-
pretive value, even in ambiguous cases.
Taken together, these patterns suggest that BM25 was slightly better received by human
evaluators, while Copilot exhibited a preference for more moderate judgments.

56

5.3. Results

Engineer 1 Engineer 2 Engineer 3 Copilot
0

10

20

30

40

50

60

Pe
rc

en
ta

ge
 (%

)
Normalized Rating Distribution per Engineer

Rating
Not enough info.
Not useful
Partially useful
Useful

Figure 5.4: Normalised distribution of usefulness ratings per Engineer and Copilot. The
plot shows percentage breakdowns for each rating category: Not enough information, Not
useful, Partially useful, and Useful.

Not enough info. Not useful Partially useful Useful
Rating

0

10

20

30

40

50

Pe
rc

en
ta

ge
 (%

)
(E

xa
ct

 c
ou

nt
s s

ho
wn

 o
n

ba
rs

)

52

554

211

463

50

543

234

428

47

600

210

398

Rating Distribution per Model (Engineers Only)
Model

BM25
Cosine Similarity
BERTopic

Figure 5.5: Distribution of usefulness ratings provided by engineers for the three models
(BM25, Cosine Similarity, BERTopic). Ratings are categorised as Not enough information,
Not useful, Partially useful, and Useful.

57

5. ASSOCIATION

Not enough info. Not useful Partially useful Useful
Rating

0

5

10

15

20

25

30

35

40

Pe
rc

en
ta

ge
 (%

)
(E

xa
ct

 c
ou

nt
s s

ho
wn

 o
n

ba
rs

)

0

127

199

174

2

123

174

201

1

117

197
185

Copilot Rating Distribution per Model
Model

BM25
Cosine Similarity
BERTopic

Figure 5.6: Distribution of usefulness ratings provided by Copilot for the three models.
Ratings are grouped as Not enough information, Not useful, Partially useful, and Useful.

Inter-Rater Agreement and Correlation Analysis

Inter-rater reliability was assessed using Krippendorff’s Alpha (α). Agreement among the
three engineers yielded α= 0.53, which corresponds to moderate agreement3. When Copi-
lot ratings were included, the overall agreement decreased slightly to α = 0.51.

When broken down by model, BERTopic achieved the highest agreement among human
raters (α = 0.58), followed by Cosine Similarity (α = 0.54) and BM25 (α = 0.47). Inter-
estingly, adding Copilot ratings increased α for BM25, while slightly decreasing agreement
for Cosine Similarity and BERTopic. This suggests that Copilot was more aligned with
human ratings for BM25 compared to the other models.

Pairwise comparisons between Copilot and individual engineers revealed variation in align-
ment. Copilot showed the highest agreement with Engineer 1 (α = 0.58), and the lowest
with Engineer 3 (α = 0.40). This reinforces the notion that Copilot tends to align more
closely with lenient raters, particularly in cases involving borderline relevance.

Additionally, Figure 5.7 presents the relationship between Copilot and average human rat-
ings. Pearson’s correlation coefficient was r = 0.609 and Spearman’s rank correlation
ρ = 0.614, indicating a moderate-to-strong association. Notably, green data points – rep-
resenting instances where all three engineers agreed – cluster along the diagonal, whereas
blue and orange points (indicating partial or no agreement) show greater deviation. This
suggests that Copilot’s ratings are more reliable in cases where human consensus is high.

3The standard interpretation scale for Krippendorff’s Alpha is: α ≥ 0.80 = strong agreement; 0.67 ≤ α <
0.80 = substantial or tentative agreement; 0.40 ≤ α < 0.67 = moderate agreement; 0.20 ≤ α < 0.40 = slight
agreement; α < 0.20 = poor or no agreement [26].

58

5.3. Results

Not useful Partially useful Useful
Average Human Rating

Not useful

Partially useful

Useful

Co
pi

lo
t R

at
in

g
Copilot vs. Average Human Rating

Legend
High
Medium
Low
y = x (Perfect)

Figure 5.7: Comparison of Copilot ratings versus the average of engineer ratings for the
same associations. Each point represents one association, with marker shape and colour
indicating the prediction rank group: high (circle), medium (square), and low (triangle).
The diagonal y = x line indicates perfect agreement between Copilot and human ratings.

Prediction Rank and Relevance

Beyond overall scores, we also examined how the position of each prediction in the ranked
list correlates with its perceived usefulness. Figure 5.8 and Table 5.2 collectively illustrate
a strong relationship between the rank position of a predicted association and its perceived
usefulness, as rated by both engineers and Copilot. Ratings range from not enough infor-
mation to useful, and a clear downward trend in perceived relevance is observed as the rank
increases.
The top-ranked predictions (Rank 1) were rated as useful in 62.5% of cases, with relatively
few not useful (16.9%) or not enough information (2.7%) responses. This suggests that the
first suggestion returned by a model is frequently judged as highly relevant. However, as
rank position increases, perceived usefulness consistently declines. By Rank 5, only 20.5%
of suggestions were labelled as useful, while not useful ratings rose to over 51%.
This trend is consistently observed across all human evaluators, as shown in Figure 5.8,
where average rating scores decrease sharply from Rank 1 to Rank 5. Copilot exhibits a
slightly more favourable rating pattern but follows the same declining trajectory, indicating
a similar sensitivity to rank position.
A more detailed breakdown of rating distributions per rank is provided in Appendix B Ta-
ble B.1, which reports position-wise relevance scores for each model. These findings further
validate the effectiveness of rank-based prioritisation across all retrieval approaches.

Average Ratings

Average ratings per model and evaluator, summarised in Figure 5.9, reveal consistent pat-
terns in perceived usefulness across the engineers and the Copilot. Copilot provides high

59

5. ASSOCIATION

1 2 3 4 5
Prediction Rank

0.4

0.6

0.8

1.0

1.2

1.4

Av
er

ag
e

Ra
tin

g

Average Rating by Prediction Rank per Engineer
Rater
Copilot
Engineer 1
Engineer 2
Engineer 3

Figure 5.8: Average rating of top-5 predictions per evaluator, based on the scale: 0 = Not
useful, 1 = Partially useful, 2 = Useful. Usefulness tends to decrease with lower-ranked
predictions.

Not enough info Not useful Partially useful Useful

Prediction 1 2.7% 16.9% 17.9% 62.5%
Prediction 2 2.4% 34.3% 23.1% 40.3%
Prediction 3 3.1% 42.6% 25.5% 28.7%
Prediction 4 2.8% 50.3% 24.2% 22.7%
Prediction 5 3.4% 51.1% 24.9% 20.5%

Table 5.2: Distribution of usefulness ratings across prediction ranks 1 to 5. Higher-ranked
predictions tend to receive higher proportions of useful ratings, with a notable decline in
usefulness and an increase in not useful ratings at lower ranks.

and stable scores across all three models, ranging from 1.09 to 1.15, with a slight prefer-
ence for Cosine Similarity (1.15). Among the human evaluators, Engineer 1 and Engineer 2
both rate BM25 the highest, with average scores of 1.13 and 0.74, respectively. This sug-
gests a shared preference for classical retrieval techniques. In contrast, Engineer 3 assigns
the highest score to Cosine Similarity (0.75), reflecting different retrieval expectations or
subjective evaluation tendencies. These inter-rater variations underscore the diversity of
judgment criteria, even within a standardised annotation task.
However, it is worth noting that even the highest average scores from the engineers remain
relatively low on the scale from -1 to 2, where -1 corresponds to not enough information, 0
corresponds to not useful, 1 to partially useful, and 2 to useful. For instance, Engineer 2’s
highest score of 0.74 still falls below the partially useful midpoint, indicating that most
suggestions were judged to be of limited practical relevance.

60

5.3. Results

Comparison Type Description Kruskal-Wallis p-value

Between models (Engineer 1) Individual model ratings by Engineer 1 0.0029**

Between models (Engineer 2) Individual model ratings by Engineer 2 0.2274
Between models (Engineer 3) Individual model ratings by Engineer 3 0.0358*

Between models (Copilot) Model ratings assigned by Copilot 0.4580

Between evaluators (BM25) Ratings of BM25 by all evaluators < 0.001***

Between evaluators (Cosine Similarity) Ratings of Cosine Similarity by all evaluators < 0.001***

Between evaluators (BERTopic) Ratings of BERTopic by all evaluators < 0.001***

Between models (All engineers, excl. Copilot) Aggregated model ratings (Eng. 1–3) 0.0639

Table 5.3: Summary of Kruskal–Wallis tests assessing differences in model ratings across
evaluators and vice versa. Significance levels: * p < 0.05, ** p < 0.01, *** p < 0.001.

To assess the statistical significance of the differences in the ratings, we conducted Kruskal-
Wallis tests – a non-parametric alternative to one-way ANOVA – appropriate for our ordinal,
non-normally distributed 4-point rating scale. The tests were applied in two settings:

1. Comparing average ratings across models within each evaluator.
2. Comparing average ratings across evaluators within each model.

A summary of all Kruskal–Wallis test results is provided in Table 5.3. Results indicate
statistically significant differences in model ratings for Engineer 1 (p = 0.0029) and En-
gineer 3 (p = 0.036), but no significant differences for Engineer 2 (p = 0.227) or Copilot
(p = 0.458). These findings suggest that Engineers 1 and 3 exhibit stronger model prefer-
ences, whereas Engineer 2 and Copilot provide more uniform ratings across models.
When examining inter-evaluator differences for each model, the Kruskal-Wallis test yielded
p < 0.001 for all three models, indicating highly significant variability across human raters.
This reinforces earlier observations of evaluator-specific biases and highlights the impor-
tance of accounting for such variation in downstream analyses.
Finally, we examined overall model performance by aggregating scores across all human
evaluators. The mean scores for BM25, Cosine Similarity, and BERTopic were 0.85, 0.83,
and 0.76, respectively. The Kruskal-Wallis test yielded p = 0.064, indicating that although
BM25 shows a modest performance advantage, the differences among models are not sta-
tistically significant at the conventional 0.05 threshold.

Agreement Patterns and Edge Cases

Agreement patterns between engineers and between engineers and Copilot offer critical
insights into the consistency and reliability of the annotation process. Out of the 790 asso-
ciations evaluated by all three engineers, full consensus, where all three assigned the same
label, was reached in 305 cases. An additional 345 associations showed partial consensus,
with two engineers agreeing and one differing. This results in 650 out of 790 cases (82.3%)
exhibiting majority agreement, suggesting strong overall alignment among human evalua-
tors. In the subset evaluated by only two engineers, consensus was observed in 434 out of
710 cases.

61

5. ASSOCIATION

Engineer 1 Engineer 2 Engineer 3 Copilot
Engineer

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Sc
or

e

Score Comparison per Engineer by Model

1.13

0.74
0.62

1.09
1.00

0.64
0.75

1.15

0.93

0.60
0.68

1.13

Model
BM25
Cosine Similarity
BERTopic

Figure 5.9: Average usefulness scores assigned by each engineer and Copilot for the three
evaluated models. Higher scores indicate a higher perceived usefulness of the model’s out-
puts.

Table 5.4 details the number of consensus cases per rating across models. Notably, most
human agreement occurred at the lower end of the scale, particularly for rating not useful,
which had the highest number of consensus cases: 173 for BM25, 180 for Cosine Similarity,
and 213 for BERTopic. In contrast, consensus for rating useful was consistently lower,
indicating that judgments of usefulness are more subjective and context-dependent, while
judgments of irrelevance are more consistent.
Regarding Copilot’s alignment with human evaluators, the model fully agreed with all three
engineers in 225 cases overall (BM25: 81, Cosine Similarity: 72, BERTopic: 72). In
cases with only two human annotations, Copilot matched both in 267 instances (BM25: 77,
Cosine Similarity: 97, BERTopic: 93). Moreover, Copilot agreed with majority of engineers
in 653 cases. However, complete disagreement between Copilot and all three human raters
occurred in 186 cases (BM25: 64, Cosine Similarity: 57, BERTopic: 65). Similarly, in
the two-annotator setting, Copilot assigned a different label than both engineers in 250
instances (BM25: 80, Cosine Similarity: 75, BERTopic: 95). These results indicate that
while Copilot often aligns with human consensus, significant discrepancies still persist.
A closer analysis of rating divergence reveals further nuance. In 148 of the 790 cases,
ratings ranged from not useful to useful, reflecting strong disagreement. Interestingly, 72
cases contained all three ratings, illustrating maximal subjectivity. In the two-rater subset,
106 samples had disagreements between not useful and useful. These distributions suggest
that Copilot is more likely to diverge when human raters themselves exhibit disagreement,

62

5.3. Results

Not enough info Not useful Partially useful Useful

BM25 3 173 37 139
Cosine Similarity 4 180 40 132
BERTopic 3 213 39 121

Table 5.4: Distribution of majority agreement ratings for each model. Each cell indicates
the number of predictions where the majority of engineers assigned the same usefulness
rating.

especially when relevance is ambiguous.
As further illustrated in Figure 5.7, Copilot’s agreement with human evaluators improves
as the level of human consensus increases, reinforcing the importance of rater alignment in
evaluating model reliability.

Prediction Overlap and Model Output Diversity

To assess the degree of content overlap among the three association discovery models, we
analysed the top-5 ranked outputs produced for each issue and computed both the absolute
overlap in predictions and Jaccard similarity scores. This analysis helps determine whether
the models tend to retrieve the same associations or identify distinct candidates, which is
critical for understanding redundancy and complementarity across methods.
Among the evaluated methods, BM25 generated the largest number of unique suggestions,
with 313 associations retrieved exclusively by this model. In comparison, Cosine Similar-
ity and BERTopic produced 107 and 129 unique associations, respectively. These figures
suggest that BM25 explores a broader or more distinct semantic space, while the other two
models have greater overlap.
Pairwise comparison of model outputs reveals further insights into shared retrieval be-
haviour. BM25 and Cosine Similarity overlapped on 173 associations, while BM25 and
BERTopic shared 151. The highest overlap was observed between Cosine Similarity and
BERTopic, which shared 357 predictions. Additionally, 137 associations were retrieved by
all three models, forming the core consensus subset among retrieval strategies. The distri-
bution of overlaps is visualised in Figure 5.10.
Jaccard similarity scores reinforce these findings. The strongest similarity is between Co-
sine Similarity and BERTopic (J = 0.555)4, consistent with their shared reliance on SBERT
embeddings. In contrast, BM25 demonstrates lower similarity with both Cosine Similarity
(J = 0.209) and BERTopic (J = 0.178), indicating that BM25 contributes greater diversity
to the overall candidate pool.
Table 5.5 presents evaluator ratings for the 137 associations retrieved by all three mod-
els. This subset, representing the most consistently identified suggestions, received notably
higher usefulness ratings across evaluators. Engineer 1 labelled 81.5% of these associations

4Jaccard similarity ranges from 0 to 1, where 0 indicates no overlap and 1 indicates complete overlap
between two sets. In this context, higher scores imply greater overlap in the top-5 predicted associations.

63

5. ASSOCIATION

313

107

36

129

14

220
137

BM25 Cosine Similarity

BERTopic

Overlap of Predictions Across Models

Figure 5.10: Overlap of predicted associations generated by BM25, Cosine Similarity, and
BERTopic retrieval models. The diagram illustrates how many predictions are unique to
each model and how many are shared across models.

Not enough info Not useful Partially useful Useful

Engineer 1 1.9% 7.1% 9.5% 81.5%
Engineer 2 7.9% 5.8% 18.6% 67.7%
Engineer 3 0% 25.8% 13.6% 60.6%
Copilot 0% 6.6% 29.2% 64.2%

Table 5.5: Distribution of evaluator ratings for the 137 associations retrieved by all three
models. This subset received higher usefulness ratings across all evaluators.

as useful, while Engineer 3 – typically the strictest – assigned useful ratings in 60.6% of the
cases. Copilot rated 64.2% of these associations as useful.
Figure 5.11 provides a visual comparison between the usefulness ratings for this overlap-

ping subset and the full set of evaluated predictions. The group of overlapping associations
(blue bars) received a much higher percentage of useful ratings (69.9%) compared to the
overall pool (34.0%), while also showing a sharp decrease in not useful ratings. These
results indicate that inter-model consensus is positively correlated with perceived utility.
While the comparison is not perfectly balanced – 137 overlapping associations are con-
trasted against over 1,500 overall predictions – the observed trend remains meaningful. The
sharp contrast in ratings supports the idea that predictions identified by multiple methods
are more likely to be judged as useful by human experts.
This finding supports the potential of hybrid or ensemble approaches that prioritise associa-
tions identified by multiple methods. Incorporating such strategies may enhance the quality
and reliability of semantic association recommendations in industrial engineering contexts.
Taken together, these results suggest that while Cosine Similarity and BERTopic tend to

64

5.4. Discussion

Not enough info. Not useful Partially useful Useful
Rating

0

10

20

30

40

50

60

70

Pe
rc

en
ta

ge
 (%

)
Rating Distribution

3.3%

12.9% 13.9%

69.9%

3.9%

44.8%

17.3%

34.0%

Group
Overlapping
Overall

Figure 5.11: Evaluator rating distribution for all evaluated associations (Overall) vs. asso-
ciations retrieved by all three models (Overlapping).

identify similar associations, BM25 offers a complementary perspective by surfacing dis-
tinct candidates. This diversity in model outputs highlights the potential for ensemble or
hybrid approaches that integrate retrieval strategies to improve coverage and robustness in
automated association discovery.

5.4 Discussion

5.4.1 Retrieval Performance and Model Trade-Offs

Among the implemented models, BM25 emerged as the top-performing method in the
quantitative evaluation, successfully retrieving 3,277 of the 6,378 ground-truth associations
(Hit@10 = 51.4%). This performance is notable considering BM25’s simplicity and purely
lexical nature. Its strength likely stems from how engineering issue descriptions are written:
with relatively consistent and domain-specific terminology. In many cases, engineers use
standard phrases or repeat specific keywords when describing recurring problems, compo-
nent names, or root causes. BM25 is well-suited to capture this kind of frequency-weighted
term overlap, giving it a practical edge in contexts where vocabulary repetition is common
and meaningful.
In contrast, embedding-based models such as SBERT + Cosine Similarity (48.1%) and
SBERT + BERTopic (47.6%) encode richer semantic information, capturing latent simi-
larities between descriptions with different wording. However, their advantage over BM25

65

5. ASSOCIATION

was marginal. One reason may be that engineering texts, though noisy, tend to use fixed
expressions and acronyms, which embeddings may underrepresent or average out. More-
over, domain-specific terms frequently fall outside the distribution of the training data used
by general-purpose embedding models. When such terms are unseen or rare in the model’s
training corpus, their embeddings may not accurately reflect their technical meaning – un-
like lexical models such as BM25, which operate purely on term overlap and are unaffected
by semantics or vocabulary mismatch. Additionally, while SBERT models excel at cap-
turing general semantic similarity, they may struggle to distinguish fine-grained technical
details.
Clustering-based models like TF-IDF + DBSCAN (47.1%) and TF-IDF + k-Means (42.4%)
attempted to group semantically similar issues before narrowing the candidate pool, but re-
sults were inconsistent. Clustering may help reduce noise and improve precision when
issue descriptions are long and rich in context. However, many engineering tickets are
short or sparsely worded, which can lead to brittle cluster boundaries and poor topic separa-
tion. Methods using Word2Vec, FastText, and LDA performed worst overall (mostly under
41%), likely due to their reliance on either static embeddings or bag-of-words assumptions
that do not capture context or syntax well.
Furthermore, a detailed post-hoc analysis revealed that 2,077 of the 6,378 ground-truth
associations – approximately one-third – were procedural rather than semantic in nature.
These links were typically added by engineers for workflow continuity, such as follow-up
actions, test coordination, or documentation references. While such links are meaningful in
operational contexts, they do not reflect true semantic similarity between issue descriptions
and thus lie outside the scope of this study. From the perspective of semantic association
discovery, they function as label noise, undermining the reliability of the evaluation and
lowering the apparent performance of content-based methods.
This limitation exposes a critical tension in the task design: while models are evaluated on
their ability to retrieve ground-truth associations, a substantial portion of those associations
are not semantically justified. Consequently, true model performance on the intended task,
identifying meaningful textual similarity, is likely higher than quantitative metrics suggest.
In parallel, the qualitative evaluation further underscores the distinction between semantic
similarity and practical relevance. Even among top-ranked predictions with high similarity
scores, human experts often rated suggestions as only partially useful or not useful at all.
This reveals a second challenge: semantic proximity at the text level does not guarantee
contextual or functional usefulness in engineering workflows. Descriptions that share
vocabulary or phrasing may still differ in purpose, context, or technical scope, limiting their
value for knowledge reuse.

5.4.2 Variability in Human Judgment and Evaluation Challenges

The evaluation revealed substantial inter-rater variability among the three participating en-
gineers. Engineer 1 consistently assigned higher scores, labelling 46% of associations as
useful, while Engineer 3 applied stricter criteria, rating over half of the suggestions as not
useful. Engineer 2 showed a more balanced rating distribution but evaluated only a subset
of the dataset (790 out of 1,500 predictions), which limits comparability and introduces

66

5.4. Discussion

potential sampling bias in the aggregated scores and agreement calculations. This uneven
coverage, combined with differing annotation styles, contributed to the moderate inter-rater
agreement (Krippendorff’s α ≈ 0.53), reflecting the inherently subjective and nuanced na-
ture of judging semantic similarity in technical texts.
Several factors contribute to this variability. First, engineers differ in how they interpret
usefulness. Second, the level of domain familiarity and recent exposure to specific issue
types likely shapes judgment. Engineers with deep experience in a particular subsystem may
spot meaningful links that are not apparent from surface-level text alone, while others may
exercise caution in the absence of explicit signals. Third, the annotation task is cognitively
demanding: evaluating 500 associations across three different models requires sustained
focus and consistent decision-making, which can vary across individuals and over time.
The lack of a shared annotation rubric or calibration session further amplifies these effects.
Notably, consensus was more frequent on clearly unhelpful associations (rating 0), whereas
positive judgments were more varied. This suggests that engineers share a consistent un-
derstanding of irrelevance, but differ in their thresholds for what constitutes a useful or
partially useful recommendation – likely influenced by personal experience, expectations,
and project-specific context.
Direct feedback from the evaluators further illustrates the sources of disagreement and prac-
tical challenges they encountered:

• Semantic Disconnection and Dataset Diversity: Engineers noted that many issue
reports were not semantically related, in part due to the intentional inclusion of a wide
range of projects and systems. While this diversity was necessary to ensure represen-
tativeness and test the scalability of association methods, it also made it more difficult
to apply consistent relevance criteria and contributed to inter-rater disagreement.

• Sufficiency of Title and Description: Despite the evaluation challenges, annotators
agreed that the Title and Description fields were generally sufficient for judging
semantic relevance. Structured fields such as component labels or keywords were not
necessary. However, one annotator noted that including basic contextual cues, such
as the project or system name, could further aid interpretation, especially in cases
involving ambiguous terminology or cross-domain issues. This reinforces the value
of focusing on unstructured text while acknowledging the potential benefit of minimal
contextual metadata.

• Ambiguity in Entity References: Annotators observed that the models failed to
distinguish between identical terms referring to different entities (e.g., “Stingray”
used both as a project name and a tool). The issue reflects a limitation in the models’
ability to resolve entity ambiguity from context, highlighting the potential value of
incorporating disambiguation mechanisms.

These findings highlight the complexity of evaluating semantic associations in industrial
issue tracking. While human judgment offers valuable domain expertise, it is inherently
subjective and varies across annotators. Differences in expectations, domain familiarity, and
interpretation of usefulness contribute to inconsistent ratings. This variability underscores
the need for complementary evaluation strategies that can provide scalable, consistent, and

67

5. ASSOCIATION

repeatable assessments. To address this, we introduced a large language model (Copilot)
as an additional evaluator. The following sections examine how Copilot’s ratings compare
to human annotations, and whether it can serve as a reliable proxy for expert judgment in
semantic relevance evaluation.

Evaluation Patterns Across Human Annotators and Copilot

The differences in how Copilot and the human annotators rated the same set of associations
reveal meaningful contrasts in evaluation style and underlying reasoning. Compared to
the engineers – particularly the stricter Engineer 3 – Copilot showed a marked tendency
to avoid extreme judgments. It assigned significantly fewer not useful labels and almost
never selected not enough information, instead clustering its responses around the middle
category of maybe useful. This middle-ground behaviour suggests that Copilot is more
tolerant of weak or ambiguous associations, where a human might apply a stricter threshold
for usefulness or decline to rate altogether.
This moderation likely stems from its nature as a general-purpose language model: trained
to predict plausible continuations and identify semantic patterns, rather than to make high-
stakes, domain-specific relevance decisions. Without awareness of the practical implica-
tions of surfacing irrelevant associations, such as wasted engineer time or confusion, Copilot
leans toward inclusive scoring, often treating surface-level semantic similarity as sufficient.
By contrast, engineers are less forgiving of superficial overlaps and more aware of subtle
contextual mismatches that can render two issues unrelated despite sharing terminology.
Another notable behaviour is Copilot’s reluctance to express uncertainty. While Engineer 2
made liberal use of the not enough information label in cases of ambiguity or underspecified
context, Copilot almost never used it. This suggests a form of overconfidence or a limita-
tion in the model’s ability to recognise when it lacks sufficient information. Prior research
has documented similar behaviour in LLMs, demonstrating that they often produce high-
confidence judgments even when incorrect, a known challenge in calibrating large language
models [19]. Without explicit prompting to reason about uncertainty or defer judgment,
Copilot tends to assign confident scores, even when a human would hesitate.
One possible factor contributing to Copilot’s relative leniency is the absence of task-specific
optimisation, constraints or cost function for over-inclusion. Unlike human annotators, who
may consciously avoid recommending irrelevant associations due to their potential to mis-
lead users, Copilot was not explicitly trained for this evaluation task and likely lacks a
domain-specific penalty for over-inclusion. As a result, it appears more inclined to as-
sign partial credit in ambiguous cases, where an expert might apply stricter criteria. This
tendency aligns it more closely with the most permissive human rater (Engineer 1), and
contributes to its divergence from more conservative evaluators like Engineer 3. However,
given the limited transparency into Copilot’s training data and objectives, these interpreta-
tions remain speculative and should be treated as empirical observations rather than defini-
tive explanations.
These patterns highlight both the promise and limitations of using LLMs in semantic as-
sociation evaluation. On one hand, Copilot’s consistency and balanced rating distribution
make it a potentially useful tool for scaling annotation tasks or acting as a “second opinion”

68

5.4. Discussion

in ambiguous cases. On the other hand, its lack of domain sensitivity, cautious judgment,
and ability to express uncertainty limits its reliability as a standalone evaluator, particularly
in high-precision or safety-critical applications.
For future use, Copilot may still offer value as a scalable screening tool. Its tendency to
avoid strong rejections and hedge toward partial relevance makes it suitable for narrowing
down large pools of candidate associations before expert review. In this hybrid workflow,
Copilot could reduce human workload while deferring final judgment to domain experts.
Enhancing its utility may involve domain-specific prompt tuning, integrating confidence es-
timation, or exposing it to task-specific training examples that teach the distinction between
truly relevant and merely similar associations.
Ultimately, while Copilot demonstrates some alignment with human annotators, it cannot
fully replace expert judgment, especially in contexts that require nuanced, cautious interpre-
tation. Its role is best seen as complementary, not substitutive—offering scalable support for
semantic evaluation while preserving the critical role of human expertise in final decision-
making.

5.4.3 Model-Specific Evaluation Patterns

The model-specific rating distributions in Figure 5.5 and Figure 5.9 offer a more granular
view of how association quality varies across BM25, Cosine Similarity, and BERTopic.
Among human annotators, BM25 received the highest proportion of useful ratings (36%),
suggesting that lexical matching still offers strong signal strength in this domain. SBERT
closely followed, while BERTopic lagged slightly and drew the highest share of not use-
ful labels (48%). This indicates that topic-based clustering may introduce more irrelevant
or loosely related links, likely due to coarse-grained groupings or overlapping topics that
obscure precise semantic boundaries.
The differences across models are meaningful: even though absolute performance gaps
are not large, consistent trends across annotators suggest that BM25 was more reliably
aligned with engineer expectations. SBERT’s comparable performance reflects its ability
to capture broader semantic similarity, but also highlights the challenge of distinguishing
useful from merely related issues. BERTopic’s lower ratings may stem from instability in
topic granularity or insufficient discrimination within technical vocabulary.
In contrast, Copilot’s ratings (shown in Figure 5.9) reveal less variation across models. Its
evaluations were dominated by maybe useful labels, with relatively small differences in use-
ful or not useful proportions between methods. This flattening effect suggests that Copilot is
less sensitive to method-specific quality differences. As a result, it may be less reliable for
comparing models directly, especially in tasks where subtle distinctions in relevance matter.
Overall, these findings reaffirm that:

• BM25 outperforms other models in human judgment, despite its simplicity.
• BERTopic underperforms, likely due to limitations in topic coherence or specificity.
• Copilot does not clearly differentiate between models, which limits its utility as a

benchmarking tool unless paired with stricter evaluative criteria.

69

5. ASSOCIATION

5.4.4 Inter-Rater Agreement and Copilot Alignment

The agreement scores reported in this section provide a more rigorous, quantitative per-
spective on the variability in annotation behavior discussed earlier. The moderate inter-rater
agreement among engineers (α = 0.53) confirms that semantic relevance judgments are in-
herently subjective, even among domain experts. That Copilot’s inclusion slightly lowers
this agreement (α = 0.51) reflects its partial misalignment with stricter human evaluators,
particularly Engineer 3.
Interestingly, BERTopic achieved the highest agreement among the models, despite receiv-
ing lower absolute usefulness ratings. This suggests that while annotators more consistently
agreed on its predictions, often labelling them as irrelevant, the model failed to generate
high-value associations. In contrast, BM25 showed the lowest human agreement, indicating
that while it retrieved many relevant items, the judgments were more contentious, perhaps
due to its inclusion of borderline or superficial matches.
Copilot’s agreement pattern reinforces its alignment with more lenient evaluators, partic-
ularly Engineer1 (α = 0.5805), while diverging most from the strictest rater, Engineer3
(α = 0.4017). This aligns with previous findings on Copilot’s moderation and inclusivity.
The correlation analysis (Figure 5.7) adds a valuable dimension. With Pearson r = 0.609
and Spearman ρ = 0.614, Copilot shows moderate-to-strong alignment with average human
ratings. Crucially, agreement strengthens when human consensus is high (green points
clustering along the diagonal). This implies that Copilot is most trustworthy when humans
agree, but less reliable in ambiguous or contentious cases.
These insights underscore a practical takeaway: Copilot is not a replacement for expert
judgment, but it can serve as a scalable proxy in cases of clear semantic overlap. Where
human disagreement is high, its reliability diminishes, highlighting the need for human
oversight or hybrid evaluation strategies.

5.4.5 Prediction Rank as an Indicator of Semantic Relevance

The consistent decline in perceived usefulness from Rank 1 to Rank 5 across both engineers
and Copilot evaluations highlights that the ranking order produced by retrieval models car-
ries meaningful semantic information. However, the steep drop-off, particularly after the top
two positions, also reveals the difficulty of maintaining relevance further into the ranking.
While over 60% of top-ranked predictions were rated as useful, by Rank 3 this had dropped
below 30%, with more than half of Rank 5 suggestions rated not useful. This sharp gradient
suggests that most models can confidently identify one or two strong candidates, but strug-
gle to reliably extend relevance further, likely due to limited semantic signals, noisy text,
or embedding drift. This drop in performance is often linked to how retrieval models oper-
ate: top results typically benefit from clear lexical overlap or strong contextual alignment,
but lower-ranked suggestions rely on weaker or more generic signals. In embedding-based
approaches, especially those that average representations over long descriptions, important
task-specific cues may be overshadowed by less relevant content, reducing the effectiveness
of deeper results. The fact that Copilot mirrored this trend, despite its more moderate scor-
ing style, further supports the idea that rank order reflects semantic proximity. Yet, Copilot’s

70

5.4. Discussion

slightly more favourable view of lower-ranked predictions also reinforces its leniency bias
discussed earlier.

5.4.6 Interpreting Average Ratings and Statistical Variation

The average rating analysis reveals key differences in how semantic relevance is judged.
Copilot scored consistently across models (range 1.09–1.15) and rarely gave low ratings,
suggesting a high-recall, low-penalty approach. While this consistency may be useful in
coverage-focused tasks, it risks overlooking meaningful differences between models.
Human evaluators, by contrast, provided more varied and generally lower ratings – espe-
cially Engineers 2 and 3, whose scores were consistently below the partially useful mid-
point. Engineer 1 favoured BM25, while Engineer 3 preferred Cosine Similarity, reflecting
subjective differences in what each considered useful. However, strong disagreement be-
tween raters (p < 0.001 across models) and Engineer 2’s lack of preference highlight the
need to involve multiple experts to reduce individual bias and strengthen evaluation robust-
ness. This can be achieved through majority voting, consensus scoring, or weighting areas
of agreement more heavily.
Although model differences were not statistically significant (p = 0.064), BM25 showed a
slight edge in average usefulness. In practical settings, such small advantages – especially
when paired with interpretability or speed – can still justify model selection.
Overall, these results highlight a core tension: automated tools offer consistency, while
human experts offer nuance. Effective evaluation may require combining both, especially
when model deployment involves subjective or domain-specific relevance judgments.

5.4.7 Agreement Patterns and Edge Cases

Agreement patterns reveal distinct dynamics in how humans and Copilot judge semantic as-
sociations. Among 790 triply-annotated associations, 82.3% reached majority agreement,
primarily on not useful labels, highlighting a shared human intuition for rejecting irrele-
vant associations. This likely stems from negative signals being more salient: engineers
confidently dismiss links that span unrelated domains, terminologies, or intent.
In contrast, consensus on useful associations was lower, with frequent disagreement across
all three labels. Positive judgments demand deeper contextual interpretation, shaped by
each annotator’s expectations and understanding of utility. This highlights the inherently
subjective nature of semantic relevance, especially in borderline cases where surface simi-
larity alone is insufficient.
Copilot matched human ratings well in clear-cut cases but diverged often when engineers
disagreed. This suggests that while Copilot can capture general similarity, it lacks the con-
textual understanding needed for more nuanced judgments. Its disagreement in these cases
is not necessarily a mistake – it can serve as a signal that an association is ambiguous and
may require further review.
The frequent occurrence of partial agreement between engineers also highlights the value
of majority voting in evaluation. High-agreement cases provide reliable supervision, while
low-agreement examples expose areas of uncertainty that are useful for model improvement.

71

5. ASSOCIATION

Overall, disagreement should not be seen as noise, but as a meaningful signal. Evaluation
pipelines should include ways to detect and learn from these edge cases to build more robust
and adaptable systems.

5.4.8 Model Diversity, Overlap, and Complementarity

The overlap analysis reveals how the three models contribute differently to semantic asso-
ciation, shedding light on whether they offer complementary value or redundancy. BM25
produced 313 unique associations – far more than Cosine Similarity (107) or BERTopic
(129). This reflects its reliance on lexical matching, which allows it to retrieve relevant
items that embedding-based models may overlook. Its lower overlap with SBERT-based
methods (Jaccard < 0.21) highlights its role in capturing vocabulary-driven associations,
including rare terms or edge cases. Cosine Similarity and BERTopic, both SBERT-based,
shared over 350 predictions (J = 0.555). Despite different mechanisms – direct similarity
vs. topic clustering – their shared embedding space leads to similar outputs.
The 137 associations retrieved by all three models received notably higher usefulness ratings
across all evaluators. This suggests that when diverse retrieval strategies converge – lexical,
semantic, and topical – the result is more robust and contextually appropriate. Such overlap
can serve as a reliable signal for prioritising recommendations. While this subset represents
only a fraction of the total predictions, its consistently strong ratings across multiple raters
support its value as a high-confidence zone. These cases may not cover the full diversity of
issue types, but they offer a practical foundation for trust-based filtering or model calibration
in operational deployments. These findings support the use of hybrid retrieval pipelines that
exploit both overlap (for precision) and diversity (for coverage). Consensus predictions can
be elevated as “high confidence” outputs, while model-specific results expand discovery. In
practical settings, this balance improves both trust and utility in recommendation systems.

5.4.9 Conclusion and Answer to the Research Question

RQ: How can semantic association techniques be used to automatically recommend
related engineering issues in real-world settings?
This project shows that automated semantic association techniques can be used to rec-
ommend related issues, especially when grounded in high-quality text representations and
aligned with domain-specific evaluation. Across multiple retrieval strategies, we find that
models like BM25, Cosine Similarity, and BERTopic each offer distinct advantages – lexical
coverage, semantic closeness, and topic coherence, respectively. Their consensus strongly
correlates with human-judged usefulness, suggesting ensemble approaches can improve re-
liability.
However, the task is inherently subjective. Human evaluators disagreed often – especially
on borderline or partially relevant cases – highlighting that context, expectations, and user
intent all shape the perception of “usefulness.” While Copilot offers stable and high-recall
assessments, its divergence on edge cases suggests it is best used as a supporting tool, not a
replacement for expert judgment.

72

5.4. Discussion

Effective deployment of association systems thus requires hybrid evaluation strategies, care-
ful integration of diverse retrieval signals, and mechanisms to flag low-confidence or dis-
puted cases. This work offers practical insights into building such pipelines, showing how
human-in-the-loop feedback, model consensus, and evaluator agreement patterns can jointly
improve semantic recommendation quality in industrial issue tracking.

73

Chapter 6

Conclusions and Future Work

This chapter summarises the key contributions of the thesis, reflects on the main findings
in relation to the research questions, and highlights the broader implications of the work.
It concludes with a discussion of identified limitations and outlines directions for future
research and development.

6.1 Conclusion

This thesis examined the application of Natural Language Processing and Machine Learning
techniques to support the classification and association of engineering issue reports. In
response to the main research question – how AI-driven techniques can be leveraged to
automate and enhance the classification and association of industrial issue reports –
this work implemented and systematically evaluated a wide range of models under real-
world constraints.
RQ1 examined how multi-label classification techniques can be effectively applied to
categorise industrial issue reports across a large and diverse set of categories. Over 70
model configurations were evaluated on 23,534 issues across 30 categories. Transformer-
based models, particularly DistilBERT, demonstrated strong top-k performance (Recall@5
= 0.93, Recall@7 = 0.96), despite data sparsity and class imbalance. Classical models
such as TF-IDF (n-grams) + Logistic Regression (OvR) offered a competitive alternative
(Recall@5 = 0.84, Recall@7 = 0.93), with advantages in deployment and interpretability.
These findings confirm that while deep models offer superior predictive accuracy, classical
pipelines remain valuable, especially where transparency or resource efficiency is critical.
RQ2 addressed the challenge of semantic association discovery, focusing on how simi-
lar or related issues can be identified automatically. Lexical (BM25), semantic (SBERT
+ cosine similarity), and topic-based (BERTopic) methods produced overlapping top-5
recommendations, and the associations identified by these approaches were rated as useful
in over 70% of the cases by engineers. Interestingly, this suggests that agreement between
fundamentally different retrieval methods may serve as a proxy for relevance. The inclusion
of Copilot as an automated evaluator showed systematic overestimation of relevance scores
compared to expert ratings, and limited agreement in borderline cases. These findings sug-

75

6. CONCLUSIONS AND FUTURE WORK

gest that while LLM-based evaluators can provide consistent judgments, they may not yet
be reliable substitutes for domain experts in specialised industrial contexts.
In response to the main research question, the findings demonstrate that AI-based techniques
can support more consistent, scalable, and semantically aware issue tracking. While no sin-
gle method dominated across all dimensions, the combination of classical machine learning,
transformer-based classification, lexical-semantic retrieval, and human-in-the-loop evalua-
tion produced actionable results. The comparative analysis across model families, the in-
clusion of expert evaluation, and the attention to domain-specific constraints contribute to
a more grounded understanding of how NLP methods can be applied in engineering issue
management.
Several insights emerged from this work. First, the performance of classical models ex-
ceeded expectations, especially given the noisy and incomplete labels – suggesting that
simple, interpretable methods should not be overlooked in industrial settings, where the
frequent mention of specific technical terms or keywords can often provide sufficient sig-
nal for effective classification. Second, the human evaluation revealed nuances that metrics
alone could not capture, highlighting the importance of incorporating expert feedback even
in highly automated pipelines.
For industry, the key lesson is that AI-based classification and retrieval can provide mean-
ingful support even when trained on imperfect data – provided models are carefully selected
and evaluated with real-world constraints in mind. For academia, this study provides a
grounded case for moving beyond clean benchmark datasets and testing models in applied,
noisy, and high-impact environments. Future work will benefit from continuing to bridge
this gap between theoretical performance and operational feasibility.

6.2 Threats to Validity

Despite the breadth of experiments and analyses conducted in this thesis, several threats to
validity should be acknowledged:

Model and Technical Constraints:
• Computational Constraints: The lack of access to GPUs and scalable cloud infrastruc-

ture limited the depth of transformer fine-tuning and hyperparameter optimisation.
This constraint was accepted due to company security policies and time restrictions.
To mitigate its effect, lightweight models were selected, and training pipelines were
optimised for local execution. Despite these limits, strong performance was achieved,
showing that even constrained transformer variants can be viable in practical indus-
trial contexts.

• Lack of Access to Proprietary LLM APIs: Due to strict network restrictions and
data privacy policies in the organisation, the study could not utilise proprietary large
language models for inference or training. This excluded the use of advanced LLM-
based techniques, including zero-shot or few-shot prompting and fine-tuning on in-
ternal issue report data, methods that are increasingly prominent in academic and
applied NLP research. The exclusion was necessary to comply with industrial confi-
dentiality standards and prevent any external data transmission. As a result, the study

76

6.2. Threats to Validity

focused on open-source and locally deployable models to ensure both reproducibility
and data security within the existing engineering infrastructure. To still investigate
the potential role of LLMs in the issue tracking pipeline, Copilot was experimentally
introduced as an automated evaluator, rather than as a modelling approach. Specif-
ically, Copilot was tasked with assessing the usefulness of model-predicted associ-
ations, acting as a proxy for human judgment. This allowed for a limited, indirect
exploration of LLM capabilities without violating data policies, while also revealing
challenges around LLM-based evaluation reliability in domain-specific settings.

Data and Evaluation Limitations:

• Restricted Dataset Size, Quality and Coverage: The classification and association
tasks were based on a relatively small and imperfectly labelled dataset. For classi-
fication, category labels were often incomplete, inconsistently applied, and not fully
aligned with how engineers use them in practice. For association, only a limited
number of gold-standard links were available. These conditions introduced poten-
tial biases in both training and evaluation, particularly where correct but unannotated
predictions may have been unfairly penalised. This risk was accepted to preserve the
realism of the study, as such noise and sparsity are common in industrial datasets.
To mitigate the impact, the evaluation relied on top-k metrics (e.g., Recall@5 and
Recall@7), multi-label-aware measures and expert evaluation, which are more ap-
propriate for assessing model performance when ground truth labels are incomplete
or partially missing. These constraints may limit the generalizability of the findings
to more diverse issue types or other engineering domains.

• Bias in Expert Evaluation: The expert evaluation of associations may be affected by
two types of bias: sampling bias, since the evaluated subset may not fully reflect
the dataset’s diversity (e.g., rare or complex cases); and evaluator bias, as individual
interpretations of “usefulness” varied across engineers. These risks were accepted
due to resource constraints and the need for domain-specific insight. To reduce their
impact, issues were sampled across multiple categories, rated independently by mul-
tiple experts, and assessed using inter-rater agreement metrics and complementary
automatic evaluations.

Generalizability and External Validity:

• Limited Number of Expert Evaluators: Only three domain experts were available to
evaluate the recommended associations. This introduces subjectivity and potential
bias in the assessment of relevance and usefulness. The limited number was due to
the highly specialised nature of the task: domain-specific engineers with relevant ex-
pertise are scarce, and their time is exceptionally valuable. This evaluation was only
made possible because dedicated expert time was explicitly allocated to the project,
which is not typically feasible at scale. To mitigate the impact of this constraint, inter-
rater agreement metrics (e.g., Krippendorff’s Alpha) were calculated, and statistical
comparisons across models were conducted using overlapping prediction sets and
significance testing. While broader validation would strengthen the generalisability

77

6. CONCLUSIONS AND FUTURE WORK

of the findings, the focused evaluation already yielded actionable insights into model
performance, practical relevance, and expert-model agreement patterns.

• Limited Generalizability Across Companies and Domains: This study was conducted
using internal issue report data from a single organisation which operates within a
specific engineering domain and workflow structure. While the dataset is represen-
tative of real-world industrial challenges, the findings may not directly generalise
to other companies, especially those in different sectors or with alternative issue-
tracking systems. The domain-specific vocabulary, reporting style, and annotation
practices likely influenced both model performance and evaluation outcomes. This
threat to external validity was accepted to maintain focus and depth within a well-
scoped industrial context. To mitigate it, the thesis emphasises methods that are mod-
ular, interpretable, and adaptable, enabling future studies to explore whether these
methods can be adapted and applied effectively in other organisational or industrial
contexts.

6.3 Future Work

This study opens several directions for further investigation and system development:

• Incorporate Real-Time Feedback Loops: Develop systems that allow engineers
to provide in-context feedback on classification or association suggestions, enabling
adaptive learning and continuous improvement.

• Expand and Diversify Human Evaluation: Engage a broader pool of annotators,
potentially across multiple teams or sites, and introduce calibration sessions to align
the interpretation of usefulness. Crowdsourcing or expert panel reviews could im-
prove annotation consistency.

• Explore LLM-based Models: Future work should test LLM models on both classifi-
cation and association tasks, leveraging few-shot capabilities and better generalisation
for edge cases.

• Conduct Calibration Studies on Acceptable Performance Thresholds: While
current models demonstrate strong performance on automated metrics, it remains un-
clear what level of accuracy or recall is sufficient for real-world adoption. Future
studies should involve engineers directly to identify the minimum acceptable perfor-
mance needed to trust and integrate such models into their workflow.

• Improve Label Quality via Semi-Automated Curation: The multi-label classifi-
cation task was limited by noisy and incomplete labels. Future work could explore
semi-supervised, active learning or unsupervised strategies where the model high-
lights uncertain predictions and engineers confirm or correct them. This would im-
prove label quality iteratively while reducing annotation burden.

• Analyse Failure Cases and Interpretability: Future work could focus on system-
atic analysis of high-confidence false positives/negatives to better understand failure
modes. This could lead to improvements in preprocessing, category definitions, or
model confidence calibration. Model explainability methods could also be integrated
to aid engineers’ trust.

78

6.3. Future Work

• Optimize Model Architectures and Hyperparameters: The models in this study
were trained using default or minimally tuned hyperparameters due to computational
constraints. Future work could involve systematic hyperparameter optimization and
architecture tuning – for example, adjusting learning rates, batch sizes, regularization,
or model depth – to improve performance.

79

Bibliography

[1] Petar Afric, Davor Vukadin, Marin Silic, and Goran Delac. Empirical study: How
issue classification influences software defect prediction. IEEE access, 11:11732–
11748, 2023.

[2] Wajdi Aljedaani, Yasir Javed, and Mamdouh Alenezi. Lda categorization of security
bug reports in chromium projects. In Proceedings of the 2020 European symposium
on software engineering, pages 154–161, 2020.

[3] Gabriel Aracena, Kyle Luster, Fabio Santos, Igor Steinmacher, and Marco Aurelio
Gerosa. Applying large language models to issue classification. In Proceedings of the
Third ACM/IEEE International Workshop on NL-based Software Engineering, pages
57–60, 2024.

[4] Muhammad Arslan and Christophe Cruz. Business text classification with imbalanced
data and moderately large label spaces for digital transformation. Applied Network
Science, 9(1):11, 2024.

[5] Jasmin Bogatinovski, Ljupčo Todorovski, Sašo Džeroski, and Dragi Kocev. Com-
prehensive comparative study of multi-label classification methods. arXiv preprint
arXiv:2102.07113, 2021.

[6] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching
word vectors with subword information. Transactions of the association for computa-
tional linguistics, 5:135–146, 2017.

[7] Leo Breiman. Random forests. Machine learning, 45:5–32, 2001.

[8] Ilias Chalkidis, Manos Fergadiotis, Prodromos Malakasiotis, and Ion Androutsopou-
los. Large-scale multi-label text classification on eu legislation. arXiv preprint
arXiv:1906.02192, 2019.

[9] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer.
Smote: Synthetic minority over-sampling technique. In Journal of Artificial Intelli-
gence Research, volume 16, pages 321–357, 2002.

81

BIBLIOGRAPHY

[10] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In
Proceedings of the 22nd acm sigkdd international conference on knowledge discovery
and data mining, pages 785–794, 2016.

[11] Israel Cohen, Yiteng Huang, Jingdong Chen, Jacob Benesty, Jacob Benesty, Jingdong
Chen, Yiteng Huang, and Israel Cohen. Pearson correlation coefficient. Noise reduc-
tion in speech processing, pages 1–4, 2009.

[12] Dingsheng Deng. Dbscan clustering algorithm based on density. In 2020 7th inter-
national forum on electrical engineering and automation (IFEEA), pages 949–953.
IEEE, 2020.

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. In Proceedings
of the 2019 conference of the North American chapter of the association for compu-
tational linguistics: human language technologies, volume 1 (long and short papers),
pages 4171–4186, 2019.

[14] Roman Egger and Enes Gokce. Natural language processing (nlp): An introduction:
making sense of textual data. In Applied data science in tourism: Interdisciplinary
approaches, methodologies, and applications, pages 307–334. Springer, 2022.

[15] Haytame Fallah, Patrice Bellot, Emmanuel Bruno, and Elisabeth Murisasco. Adapting
transformers for multi-label text classification. In CIRCLE (Joint Conference of the
Information Retrieval Communities in Europe) 2022, 2022.

[16] Wenqi Fan, Yujuan Ding, Liangbo Ning, Shijie Wang, Hengyun Li, Dawei Yin, Tat-
Seng Chua, and Qing Li. A survey on rag meeting llms: Towards retrieval-augmented
large language models. In Proceedings of the 30th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pages 6491–6501, 2024.

[17] Matt W Gardner and Stephen R Dorling. Artificial neural networks (the multilayer
perceptron)—a review of applications in the atmospheric sciences. Atmospheric envi-
ronment, 32(14-15):2627–2636, 1998.

[18] Nadia Ghamrawi and Andrew McCallum. Collective multi-label classification. In
Proceedings of the 14th ACM international conference on Information and knowledge
management, pages 195–200, 2005.

[19] Tobias Groot and Matias Valdenegro-Toro. Overconfidence is key: Verbalized un-
certainty evaluation in large language and vision-language models. arXiv preprint
arXiv:2405.02917, 2024.

[20] Maarten Grootendorst. Bertopic: Neural topic modeling with a class-based tf-idf pro-
cedure. arXiv preprint arXiv:2203.05794, 2022.

82

Bibliography

[21] Meng Han, Hongxin Wu, Zhiqiang Chen, Muhang Li, and Xilong Zhang. A survey of
multi-label classification based on supervised and semi-supervised learning. Interna-
tional Journal of Machine Learning and Cybernetics, 14(3):697–724, 2023.

[22] GI Ivchenko and SA Honov. On the jaccard similarity test. Journal of Mathematical
Sciences, 88:789–794, 1998.

[23] Thorsten Joachims. Optimizing search engines using clickthrough data. In Proceed-
ings of the eighth ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 133–142, 2002.

[24] Shardrom Johnson, Sherlock Shen, and Yuanchen Liu. Cwpc biatt: character–word–
position combined bilstm-attention for chinese named entity recognition. Information,
11(1):45, 2020.

[25] Robert V Krejcie and Daryle W Morgan. Determining sample size for research activ-
ities. Educational and psychological measurement, 30(3):607–610, 1970.

[26] Klaus Krippendorff. Computing krippendorff’s alpha-reliability, 2011.

[27] William H Kruskal and W Allen Wallis. Use of ranks in one-criterion variance analy-
sis. Journal of the American statistical Association, 47(260):583–621, 1952.

[28] Muhammad Laiq. An intelligent tool for classifying issue reports. In 2023
IEEE/ACM 2nd International Workshop on Natural Language-Based Software En-
gineering (NLBSE), pages 13–15. IEEE, 2023.

[29] Michael P LaValley. Logistic regression. Circulation, 117(18):2395–2399, 2008.

[30] Qian Li, Hao Peng, Jianxin Li, Congying Xia, Renyu Yang, Lichao Sun, Philip S Yu,
and Lifang He. A survey on text classification: From traditional to deep learning.
ACM Transactions on Intelligent Systems and Technology (TIST), 13(2):1–41, 2022.

[31] Zejian Liang, Yunxiang Zhao, Mengyuan Wang, Hong Huang, and Haiwen Xu. Re-
search on the automatic multi-label classification of flight instructor comments based
on transformer and graph neural networks. Aerospace, 12(5):407, 2025.

[32] Xueqing Liu and Chi Wang. An empirical study on hyperparameter optimization for
fine-tuning pre-trained language models. arXiv preprint arXiv:2106.09204, 2021.

[33] Ying Liu, Zhenhao Lin, Da Yin, Yanan Gao, Yining Zhang, Qing Lyu, Yizhong Xie,
Binyang Zhang, Zhenzhong Yang, Yining Wang, et al. Gpteval: Nlg evaluation using
gpt-4 with better human alignment. arXiv preprint arXiv:2305.14175, 2023.

[34] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly
optimized bert pretraining approach. arXiv preprint arXiv:1907.11692, 2019.

83

BIBLIOGRAPHY

[35] Hongxia Lu, Louis Ehwerhemuepha, and Cyril Rakovski. A comparative study on
deep learning models for text classification of unstructured medical notes with various
levels of class imbalance. BMC medical research methodology, 22(1):181, 2022.

[36] Jyotsna Kumar Mandal and Debika Bhattacharya. Emerging technology in modelling
and graphics, volume 937. Springer, 2020.

[37] Leland McInnes, John Healy, Steve Astels, et al. hdbscan: Hierarchical density based
clustering. J. Open Source Softw., 2(11):205, 2017.

[38] Eneldo Loza Mencı́a and Johannes Furnkranz. Pairwise learning of multilabel clas-
sifications with perceptrons. In 2008 IEEE International Joint Conference on Neural
Networks (IEEE World Congress on Computational Intelligence), pages 2899–2906.
IEEE, 2008.

[39] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of
word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[40] Shapol M Mohammed, Karwan Jacksi, and S Zeebaree. A state-of-the-art survey on
semantic similarity for document clustering using glove and density-based algorithms.
Indonesian Journal of Electrical Engineering and Computer Science, 22(1):552–562,
2021.

[41] NXP Semiconductors. Nxp official website, 2025. URL https://www.nxp.com/.

[42] Malte Ostendorff, Elliott Ash, Terry Ruas, Bela Gipp, Julian Moreno-Schneider, and
Georg Rehm. Evaluating document representations for content-based legal literature
recommendations. In Proceedings of the eighteenth international conference on arti-
ficial intelligence and law, pages 109–118, 2021.

[43] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vec-
tors for word representation. In Proceedings of the 2014 conference on empirical
methods in natural language processing (EMNLP), pages 1532–1543, 2014.

[44] Alexandru Petrescu, Ciprian-Octavian Truică, and Elena-Simona Apostol. Language-
based mixture of transformers for exist2024. Working Notes of CLEF, 2024.

[45] Katarzyna Poczeta, Mirosław Płaza, Tomasz Michno, Maria Krechowicz, and Michał
Zawadzki. A multi-label text message classification method designed for applications
in call/contact centre systems. Applied Soft Computing, 145:110562, 2023.

[46] Mikko Raatikainen, Quim Motger, Clara Marie Lüders, Xavier Franch, Lalli
Myllyaho, Elina Kettunen, Jordi Marco, Juha Tiihonen, Mikko Halonen, and Tomi
Männistö. Improved management of issue dependencies in issue trackers of large col-
laborative projects. IEEE Transactions on Software Engineering, 49(4):2128–2148,
2022.

[47] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese
bert-networks. arXiv preprint arXiv:1908.10084, 2019.

84

https://www.nxp.com/

Bibliography

[48] Stephen Robertson. Understanding inverse document frequency: on theoretical argu-
ments for idf. Journal of documentation, 60(5):503–520, 2004.

[49] Stephen Robertson, Hugo Zaragoza, et al. The probabilistic relevance framework:
Bm25 and beyond. Foundations and Trends® in Information Retrieval, 3(4):333–389,
2009.

[50] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert,
a distilled version of bert: smaller, faster, cheaper and lighter. arXiv preprint
arXiv:1910.01108, 2019.

[51] Matthias Schonlau, Julia Weiß, and Jan Marquardt. Multi-label classification of open-
ended questions with bert. In 2023 Big Data Meets Survey Science (BigSurv), pages
1–8. IEEE, 2023.

[52] Philip Sedgwick. Spearman’s rank correlation coefficient. Bmj, 349, 2014.

[53] Alex Sherstinsky. Fundamentals of recurrent neural network (rnn) and long short-term
memory (lstm) network. Physica D: Nonlinear Phenomena, 404:132306, 2020.

[54] Kristina P Sinaga and Miin-Shen Yang. Unsupervised k-means clustering algorithm.
IEEE access, 8:80716–80727, 2020.

[55] Karen Sparck Jones. A statistical interpretation of term specificity and its application
in retrieval. Journal of documentation, 28(1):11–21, 1972.

[56] Christoph Stach. Data is the new oil–sort of: a view on why this comparison is mis-
leading and its implications for modern data administration. Future Internet, 15(2):
71, 2023.

[57] Adane Nega Tarekegn, Mario Giacobini, and Krzysztof Michalak. A review of meth-
ods for imbalanced multi-label classification. Pattern Recognition, 118:107965, 2021.

[58] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in
neural information processing systems, 30, 2017.

[59] Sai Pavan Kumar Veeranki, Akhila Abdulnazar, Diether Kramer, Markus Kreuzthaler,
and David Benjamin Lumenta. Multi-label text classification via secondary use of
large clinical real-world data sets. Scientific Reports, 14(1):26972, 2024.

[60] Gissel Velarde, Anindya Sudhir, Sanjay Deshmane, Anuj Deshmunkh, Khushboo
Sharma, and Vaibhav Joshi. Evaluating xgboost for balanced and imbalanced data:
application to fraud detection. arXiv preprint arXiv:2303.15218, 2023.

[61] Bailin Wang, Lin Qiu, Shomir Choudhury, H. Andrew Zhang, and Michael C. Hughes.
Are large language models fair judges? arXiv preprint arXiv:2305.19397, 2023.

85

BIBLIOGRAPHY

[62] Adi Widianto, Eka Pebriyanto, Fitriyanti Fitriyanti, and Marna Marna. Document
similarity using term frequency-inverse document frequency representation and co-
sine similarity. Journal of Dinda: Data Science, Information Technology, and Data
Analytics, 4(2):149–153, 2024.

[63] Rüdiger Wirth and Jochen Hipp. Crisp-dm: Towards a standard process model for data
mining. In Proceedings of the 4th international conference on the practical applica-
tions of knowledge discovery and data mining, volume 1, pages 29–39. Manchester,
2000.

[64] Jianxin Wu. Introduction to convolutional neural networks. National Key Lab for
Novel Software Technology. Nanjing University. China, 5(23):495, 2017.

[65] Shuo Xu, Yuefu Zhang, Xin An, and Sainan Pi. Performance evaluation of seven
multi-label classification methods on real-world patent and publication datasets. Jour-
nal of Data and Information Science Vol, 9(2), 2024.

[66] Hang Yan, Mingxue Ma, Ying Wu, Hongqin Fan, and Chao Dong. Overview and
analysis of the text mining applications in the construction industry. Heliyon, 8(12),
2022.

[67] Min-Ling Zhang and Zhi-Hua Zhou. A k-nearest neighbor based algorithm for multi-
label classification. In 2005 IEEE international conference on granular computing,
volume 2, pages 718–721. IEEE, 2005.

[68] Shengnan Zhang and Huiyang Xu. Multi-label text classification method based on
reberta-textcnn. In Fourth International Conference on Computer Vision, Application,
and Algorithm (CVAA 2024), volume 13486, pages 599–604. SPIE, 2025.

[69] Xian-Da Zhang and Xian-Da Zhang. Support vector machines. A Matrix Algebra
Approach to Artificial Intelligence, pages 617–679, 2020.

[70] Jure Zupan. Introduction to artificial neural network (ann) methods: what they are and
how to use them. Acta Chimica Slovenica, 41(3):327, 1994.

86

Appendix A

Classification Results

This appendix presents the full classification results obtained during the evaluation of the
different models, vectorization methods, and classification strategies. The table summa-
rizes the performance metrics across all tested configurations, including accuracy, recall,
precision, F1-score, and additional multi-label evaluation metrics. These results support the
performance comparison discussed in Section 4.

87

A. CLASSIFICATION RESULTS

Figure A.1: Confusion matrix for single-label samples (DistilBERT).

88

Vectorizer Transformation Classifier Single Labels Correct (4589) Multi-labels Correct (270) MPP MAP Coverage Error Recall@3 Recall@5 Recall@7 Recall@10 F1-Score Hamming Loss

BERT 4240 (92.39) 212 (78.52) 0.1892 0.7621 2.2197 0.8599 0.9209 0.9580 0.9800 0.3125 0.1380
RoBERTa 4205 (91.63) 216 (80.00) 0.1878 0.7368 2.3745 0.8347 0.9139 0.9443 0.9730 0.3103 0.1385
DistilBERT 4260 (92.83) 221 (81.85) 0.1904 0.7601 2.2122 0.8572 0.9261 0.9556 0.9778 0.3145 0.1376

TF-IDF OvR Logistic Regression 3991 (86.97) 179 (66.30) 0.1772 0.6384 3.0673 0.7597 0.8647 0.9138 0.9560 0.2959 0.1420
TF-IDF BR Logistic Regression 4005 (87.27) 180 (66.67) 0.1778 0.6374 3.0667 0.7575 0.8677 0.9155 0.9553 0.2940 0.1418
TF-IDF CC Logistic Regression 3262 (71.08) 148 (54.81) 0.1449 0.5085 5.1538 0.5804 0.7068 0.7841 0.8604 0.2395 0.1528
TF-IDF LP Logistic Regression 3906 (85.12) 212 (78.52) 0.1740 0.6173 3.2054 0.7273 0.8500 0.9034 0.9464 0.2889 0.1428
TF-IDF OvR Ridge Classifier 3759 (81.91) 174(64.44) 0.1671 0.5974 4.1528 0.7041 0.8151 0.8656 0.9062 0.2762 0.1454
TF-IDF CC Ridge Classifier 3118 (67.95) 169 (62.59) 0.1397 0.4912 6.7451 0.5703 0.6783 0.7399 0.7923 0.2305 0.1545
TF-IDF LP Ridge Classifier 2369 (51.62) 135 (50.00) 0.1064 0.3816 18.9930 0.4791 0.5163 0.6001 0.6179 0.1756 0.1656
TF-IDF OvR Multinomial NB 3965 (86.40) 162 (60.00) 0.1754 0.6124 3.1676 0.7266 0.8576 0.9151 0.9592 0.2901 0.1426
TF-IDF LP Gaussian NB 1872 (40.79) 85 (31.48) 0.0832 0.2603 23.0750 0.3538 0.4059 0.5097 0.5488 0.1375 0.1734
TF-IDF OvR Random Forest 3989 (86.93) 174 (64.44) 0.1769 0.6542 3.3161 0.7692 0.8637 0.9147 0.9521 0.2925 0.1421
TF-IDF LP kNN 2497 (54.41) 112 (41.48) 0.1109 0.3679 16.7674 0.4915 0.5410 0.6364 0.6709 0.1833 0.1641
TF-IDF CC XGBoost 3691 (80.43) 147 (54.44) 0.1631 0.5644 3.8460 0.6864 0.7978 0.8710 0.9309 0.2698 0.1467
TF-IDF LP XGBoost 3786 (82.50) 163 (60.37) 0.1678 0.5923 3.6605 0.7071 0.8196 0.8781 0.9309 0.2775 0.1451
TF-IDF OvR MLP 3888 (84.72) 183 (67.78) 0.1730 0.6429 3.6112 0.7403 0.8435 0.8871 0.9266 0.2859 0.1434
TF-IDF CC MLP 3582 (78.06) 167 (61.85) 0.1593 0.6015 4.7818 0.6839 0.7767 0.8268 0.8718 0.2633 0.1480
TF-IDF CC LinearSVC 3567 (77.73) 163 (60.37) 0.1585 0.5858 4.4769 0.6711 0.7731 0.8360 0.8881 0.2620 0.1482
TF-IDF OvR SVM 3733 (81.35) 181 (67.04) 0.1663 0.6018 3.8974 0.6965 0.8104 0.8704 0.9150 0.2749 0.1456
TF-IDF (n-grams) OvR Logistic Regression 4012 (87.43) 172 (63.70) 0.1778 0.6458 2.9911 0.7685 0.8684 0.9293 0.9698 0.2940 0.1418
TF-IDF (n-grams) OvR Ridge Classifier 3785 (82.48) 178 (65.93) 0.1684 0.6196 4.1309 0.7276 0.8209 0.8680 0.9062 0.2783 0.1449
TF-IDF (n-grams) CC Ridge Classifier 3385 (73.76) 167 (61.85) 0.1509 0.5552 5.8230 0.6414 0.7352 0.7862 0.8316 0.2494 0.1508
TF-IDF (n-grams) LP Ridge Classifier 2551 (55.59) 133 (49.26) 0.1140 0.4386 17.5562 0.5231 0.5546 0.6280 0.6444 0.1883 0.1631
TF-IDF (n-grams) OvR Multinomial NB 3972 (86.55) 168 (62.22) 0.1739 0.6205 3.1141 0.7403 0.8597 0.9144 0.9599 0.2910 0.1424
TF-IDF (n-grams) CC Multinomial NB 3893 (84.83) 177 (65.56) 0.1729 0.6180 3.3038 0.7294 0.8438 0.9027 0.9450 0.2859 0.1434
TF-IDF (n-grams) LP Multinomial NB 3980 (86.73) 159 (58.89) 0.1759 0.6250 3.1438 0.7429 0.8605 0.9145 0.9576 0.2910 0.1425
TF-IDF (n-grams) CC XGBoost 3704 (80.71) 151 (55.93) 0.1638 0.5686 3.8039 0.6878 0.8011 0.8705 0.9293 0.2710 0.1465
TF-IDF (n-grams) LP XGBoost 3767 (82.09) 175 (64.81) 0.1675 0.5938 3.6851 0.7098 0.8167 0.8792 0.9297 0.2768 0.1452
TF-IDF (n-grams) OvR MLP 3862 (84.16) 182 (67.41) 0.1718 0.6426 3.6344 0.7413 0.8379 0.8878 0.9241 0.2840 0.1438
TF-IDF (n-grams) CC MLP 3573 (77.86) 164 (60.74) 0.1588 0.6046 4.8222 0.6842 0.7745 0.8225 0.8686 0.2625 0.1481
TF-IDF (n-grams) OvR SVM 3726 (81.19) 175 (65.81) 0.1658 0.6227 3.8950 0.7188 0.8083 0.8630 0.9062 0.2740 0.1458
TF-IDF (n-grams) CC LinearSVC 3623 (78.95) 165 (61.11) 0.1610 0.6093 4.4600 0.6934 0.7852 0.8375 0.8848 0.2661 0.1474
TF-IDF (n-grams) LP LinearSVC 2757 (60.08) 108 (40.00) 0.1217 0.4985 16.1850 0.5669 0.5961 0.6508 0.6674 0.2015 0.1605
Count Vectorizer OvR Logistic Regression 3749 (81.70) 165 (61.11) 0.1663 0.5848 3.6172 0.6847 0.8121 0.8851 0.9396 0.2750 0.1456
Count Vectorizer OvR Ridge Classifier 2865 (62.43) 127 (47.04) 0.1271 0.4407 6.8150 0.5136 0.6211 0.7003 0.7791 0.2103 0.1587
Count Vectorizer OvR Multinomial NB 4014 (87.47) 166 (61.48) 0.1777 0.6370 2.9807 0.7613 0.8637 0.9230 0.9616 0.2939 0.1418
Count Vectorizer CC XGBoost 3665 (79.86) 146 (54.07) 0.1619 0.5697 3.8506 0.6863 0.7921 0.8664 0.9306 0.2679 0.1471
Count Vectorizer OvR LinearSVC 3610 (78.67) 166 (61.48) 0.1604 0.5578 4.0665 0.6582 0.7825 0.8556 0.9138 0.2652 0.1476
Sentence-BERT OvR Logistic Regression 3795 (82.70) 171 (63.33) 0.1685 0.5888 3.4657 0.6922 0.8224 0.8910 0.9452 0.2786 0.1449
Sentence-BERT CC Logistic Regression 3552 (77.40) 153 (56.67) 0.1574 0.5548 4.0374 0.6402 0.7691 0.8453 0.9157 0.2604 0.1486
Sentence-BERT OvR Ridge Classifier 3791 (82.61) 169 (62.59) 0.1683 0.5831 3.6779 0.6951 0.8214 0.8799 0.9327 0.2782 0.1450
Sentence-BERT CC Random Forest 3780 (82.37) 147 (54.44) 0.1669 0.5902 3.9620 0.7057 0.8166 0.8811 0.9295 0.2761 0.1455
Sentence-BERT LP Random Forest 3624 (78.97) 139 (51.48) 0.1599 0.5511 4.5254 0.6631 0.7829 0.8535 0.9062 0.2646 0.1478
Sentence-BERT LP kNN 2875 (62.65) 137 (50.74) 0.1280 0.4434 13.9592 0.5863 0.6237 0.6924 0.7177 0.2115 0.1584
Sentence-BERT CC XGBoost 3907 (85.14) 152 (56.30) 0.1725 0.5752 3.3461 0.7193 0.8444 0.9048 0.9520 0.2853 0.1436
Sentence-BERT LP XGBoost 3804 (82.89) 157 (58.15) 0.1683 0.5655 3.6433 0.6879 0.8229 0.8908 0.9372 0.2784 0.1450
Sentence-BERT CC MLP 3744 (81.59) 195 (72.22) 0.1674 0.6567 3.6153 0.7207 0.8138 0.8703 0.9225 0.2764 0.1453
Sentence-BERT OvR LinearSVC 3761 (81.96) 166 (61.48) 0.1669 0.5726 3.5237 0.6792 0.8147 0.8906 0.9474 0.2759 0.1455
Word2Vec OvR Logistic Regression 3220 (70.17) 146 (54.07) 0.1430 0.4768 4.9382 0.5546 0.6979 0.7937 0.8784 0.2364 0.1534
Word2Vec OvR Ridge Classifier 3349 (72.98) 141 (52.22) 0.1483 0.4699 4.8317 0.5657 0.7249 0.8083 0.8881 0.2453 0.1616
Word2Vec LP Gaussian NB 2496 (54.39) 150 (55.56) 0.1124 0.3645 7.6027 0.4118 0.5449 0.6399 0.7442 0.1855 0.1636

Table A.1: Multi-label Classification All Result

89

A
.

C
L

A
S

S
IFIC

A
T

IO
N

R
E

S
U

LT
S

Vectorizer Transformation Classifier Single Labels Correct (4589) Multi-labels Correct (270) MPP MAP Coverage Error Recall@3 Recall@5 Recall@7 Recall@10 F1-Score Hamming Loss

Word2Vec CC Random Forest 3414 (74.40) 129 (47.78) 0.1505 0.5047 5.1100 0.6115 0.7373 0.8225 0.8884 0.2491 0.1509
Word2Vec LP Random Forest 3180 (69.30) 123 (45.56) 0.1403 0.4475 5.9004 0.5568 0.6869 0.7732 0.8553 0.2322 0.1543
Word2Vec LP kNN 2306 (50.25) 120 (44.44) 0.1031 0.3085 18.2477 0.4389 0.5014 0.5989 0.6409 0.1702 0.1667
Word2Vec CC XGBoost 3541 (77.16) 128 (47.41) 0.1559 0.4978 4.1861 0.6178 0.7638 0.8552 0.9247 0.2580 0.1491
Word2Vec LP XGBoost 3491 (76.07) 136 (50.37) 0.1541 0.4935 4.4056 0.6062 0.7543 0.8414 0.9098 0.2550 0.1497
Word2Vec CC MLP 3232 (70.43) 173 (64.07) 0.1447 0.5318 5.0710 0.5918 0.7030 0.7766 0.8532 0.2389 0.1529
Word2Vec LP MLP 3698 (80.58) 178 (65.93) 0.1647 0.5520 3.9369 0.6684 0.8023 0.8691 0.9211 0.2721 0.1462
Word2Vec OvR LinearSVC 3265 (71.15) 138 (51.11) 0.1446 0.4624 4.7200 0.5413 0.7066 0.8105 0.9043 0.2391 0.1529
GloVe OvR Logistic Regression 3035 (66.14) 124 (45.93) 0.1342 0.4380 5.4024 0.5092 0.6565 0.7617 0.8605 0.2221 0.1563
GloVe OvR Ridge Classifier 3094 (67.42) 131 (48.52) 0.1370 0.4310 5.3399 0.5214 0.6697 0.7787 0.8651 0.2267 0.1554
GloVe LP Gaussian NB 2260 (49.25) 127 (47.04) 0.1014 0.3307 9.0958 0.3756 0.4927 0.5775 0.6754 0.1675 0.1673
GloVe CC Random Forest 3241 (70.63) 115 (42.59) 0.1426 0.4607 5.8413 0.5568 0.6992 0.7817 0.8596 0.2361 0.1535
GloVe LP Random Forest 2997 (65.31) 110 (40.74) 0.1320 0.4223 6.6365 0.5169 0.6469 0.7344 0.8179 0.2185 0.1571
GloVe LP kNN 2029 (44.21) 95 (35.19) 0.0902 0.2606 20.0716 0.3676 0.4401 0.5454 0.6013 0.1492 0.1710
GloVe CC XGBoost 3387 (73.81) 118 (43.70) 0.1489 0.4654 4.6703 0.5776 0.7305 0.8262 0.9040 0.2466 0.1514
GloVe LP XGBoost 3372 (73.48) 135 (50.00) 0.1490 0.4724 4.7300 0.5689 0.7290 0.8208 0.8964 0.2465 0.1514
GloVe CC MLP 3122 (68.03) 147 (54.44) 0.1389 0.5001 5.5904 0.5568 0.6768 0.7590 0.8349 0.2295 0.1548
GloVe LP MLP 3534 (77.01) 167 (61.85) 0.1573 0.5146 4.4481 0.6311 0.7666 0.8430 0.8999 0.2599 0.1487
GloVe OvR LinearSVC 3084 (67.20) 123 (45.56) 0.1363 0.4183 5.2484 0.4957 0.6669 0.7730 0.8802 0.2255 0.1557
FastText OvR Logistic Regression 3070 (66.90) 138 (51.11) 0.1363 0.4486 5.303 0.5208 0.6653 0.7603 0.8592 0.2254 0.1556
FastText OvR Ridge Classifier 3417 (74.46) 153 (56.67) 0.1517 0.4792 4.5791 0.5904 0.7404 0.8201 0.8979 0.2508 0.1505
FastText LP Gaussian NB 2187 (47.66) 135 (50.00) 0.0987 0.3148 9.6431 0.3533 0.4776 0.5685 0.6594 0.1627 0.1682
FastText CC Random Forest 3444 (75.05) 121 (44.81) 0.1515 0.5112 5.0612 0.6177 0.7428 0.8256 0.8900 0.2508 0.1506
FastText LP Random Forest 3247 (70.76) 106 (39.26) 0.1425 0.4689 5.7446 0.5734 0.6998 0.7805 0.8552 0.2360 0.1536
FastText LP kNN 2048 (44.63) 98 (36.30) 0.0912 0.2699 19.5163 0.3861 0.4440 0.5529 0.5934 0.1507 0.1707
FastText CC XGBoost 3614 (78.75) 132 (48.89) 0.1592 0.5115 4.0954 0.6341 0.7798 0.8623 0.9242 0.2634 0.1480
FastText LP XGBoost 3581 (78.03) 133 (49.26) 0.1578 0.5142 4.2569 0.6254 0.7731 0.8517 0.9171 0.2612 0.1485
FastText CC MLP 3276 (71.39) 165 (61.11) 0.1462 0.5433 5.0276 0.6042 0.7116 0.7818 0.8586 0.2415 0.1523
FastText LP MLP 3778 (82.33) 168 (62.22) 0.1677 0.5646 3.7516 0.6915 0.8185 0.8818 0.9309 0.2772 0.1452
FastText OvR Linear SVC 3241 (70.63) 150 (55.56) 0.1441 0.4635 4.7308 0.5420 0.7028 0.8012 0.9010 0.2382 0.1530
Word2Vec + FastText OvR Logistic Regression 3596 (78.36) 150 (55.56) 0.1592 0.5069 3.9938 0.6186 0.7781 0.8662 0.9330 0.2633 0.1480
Word2Vec + FastText OvR Ridge Classifier 3646 (79.45) 155 (57.41) 0.1615 0.5320 4.0142 0.6364 0.7894 0.8651 0.9237 0.2672 0.1472
Word2Vec + FastText OvR Multinomial NB 3040 (66.25) 140 (51.85) 0.1351 0.4184 5.6554 0.5065 0.6592 0.7473 0.8407 0.2234 0.1560
Word2Vec + FastText LP Gaussian NB 3200 (69.73) 190 (70.37) 0.1440 0.4534 4.9486 0.5457 0.6978 0.7907 0.8753 0.2376 0.1531
Word2Vec + FastText CC Random Forest 3818 (83.20) 160 (59.26) 0.1690 0.5906 3.9649 0.7162 0.8263 0.8910 0.9380 0.2796 0.1447
Word2Vec + FastText LP XGBoost 3744 (81.59) 157 (58.15) 0.1658 0.5559 3.7661 0.6730 0.8103 0.8822 0.9380 0.2742 0.1458
Word2Vec + FastText LP MLP 3886 (84.68) 179 (66.30) 0.1727 0.5828 3.4262 0.7105 0.8425 0.9016 0.9434 0.2855 0.1435
Word2Vec + FastText OvR LinearSVC 3639 (79.30) 156 (57.78) 0.1612 0.5360 3.7856 0.6512 0.7877 0.8792 0.9394 0.2667 0.1473
Word2Vec + FastText ML-kNN 3499 (76.25) 156 (57.78) 0.1553 0.5207 4.6966 0.6208 0.7578 0.8416 0.8862 0.2566 0.1493
Word2Vec + FastText RankSVM 3657 (79.69) 139 (51.48) 0.1613 0.5219 3.9191 0.6434 0.7927 0.8769 0.9378 0.2679 0.1471
Word2Vec + FastText MMP 3850 (83.90) 152 (56.30) 0.1700 0.5597 3.464 0.6781 0.8304 0.8960 0.9536 0.2809 0.1445
Sentence-BERT ML-kNN 3733 (81.35) 169 (62.59) 0.1658 0.5986 3.9405 0.6822 0.8088 0.8784 0.9114 0.2740 0.1458
Sentence-BERT RankSVM 3461 (75.42) 119 (44.07) 0.1521 0.4801 4.3750 0.5876 0.7462 0.8430 0.9201 0.2519 0.1504
Sentence-BERT MMP 3913 (85.27) 168 (62.22) 0.1734 0.5981 3.3325 0.7267 0.8474 0.9044 0.9482 0.2868 0.1433
TF-IDF RankSVM 3370 (73.44) 101 (37.41) 0.1475 0.5121 4.4725 0.6019 0.7249 0.8235 0.9135 0.2443 0.1519
TF-IDF MMP 3909 (85.18) 186 (68.89) 0.1747 0.6330 3.3200 0.7452 0.8470 0.9000 0.9419 0.2871 0.1432

ANN 3053 (66.53) 100 (37.04) 0.1340 0.4438 5.8211 0.5482 0.6575 0.7379 0.8320 0.2218 0.1564
RNN 2886 (62.89) 99 (36.67) 0.1268 0.3509 6.4408 0.4453 0.6220 0.7217 0.8107 0.2100 0.1588
CNN 3799 (82.78) 141 (52.22) 0.1674 0.6191 3.6170 0.7282 0.8203 0.8729 0.9224 0.2771 0.1453
CNN-RNN 3771 (82.17) 119 (44.07) 0.1653 0.6094 3.7642 0.7142 0.8119 0.8723 0.9224 0.2738 0.1460
BiLSTM 3809 (83.00) 120 (44.44) 0.1669 0.6104 3.7313 0.7243 0.8202 0.8697 0.9155 0.2766 0.1454
CNN-BiLSTM 3736 (81.41) 112 (41.48) 0.1635 0.5998 3.9401 0.7059 0.8040 0.8575 0.9081 0.2709 0.1466

90

Appendix B

Association Results

Not enough info. Not useful Partially useful Useful

BM25

Prediction 1 3.12% 17.19% 14.84% 64.84%
Prediction 2 3.91% 36.72% 19.53% 39.84%
Prediction 3 4.30% 49.22% 15.23% 31.25%
Prediction 4 4.69% 57.03% 14.45% 23.83%
Prediction 5 4.35% 56.92% 18.18% 20.55%

Cosine Similarity

Prediction 1 4.38% 21.91% 13.55% 60.16%
Prediction 2 3.19% 38.65% 17.53% 40.64%
Prediction 3 3.59% 45.42% 21.51% 29.48%
Prediction 4 4.38% 53.39% 20.72% 21.51%
Prediction 5 4.38% 56.97% 19.92% 18.73%

BERTopic

Prediction 1 3.19% 21.12% 13.55% 62.15%
Prediction 2 2.79% 43.82% 17.93% 35.46%
Prediction 3 5.18% 49.80% 19.52% 25.50%
Prediction 4 2.79% 60.96% 16.73% 19.52%
Prediction 5 4.78% 63.35% 15.94% 15.94%

Table B.1: Rating Distributions per Rank per Model

91

	Preface
	Contents
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Overview
	Problem Statement
	Objective
	Research Process
	Contributions
	Thesis Structure

	Related Work and Background
	Classification
	Association
	LLMs as Evaluators
	Summary and Research Gap

	Methodology
	Classification
	Problem definition
	Methodology
	Results
	Discussion

	Association
	Problem definition
	Methodology
	Results
	Discussion

	Conclusions and Future Work
	Conclusion
	Threats to Validity
	Future Work

	Bibliography
	Classification Results
	Association Results

