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Abstract

In response to the urgent need for sustainable energy solutions and climate change mitigation, in-
ternational agreements such as the Paris Agreement have been instrumental in advocating reduced
greenhouse gas emissions. As the world shifts towards renewable energy sources and electrification,
there arises a heightened challenge of increased congestion and a greater demand for flexibility within
electrical networks. Batteries emerge as a crucial source of added flexibility and congestion relief.
However, these commercially owned batteries are not obliged to assist with grid congestion, possibly
focusing solely on energy arbitrage pursuits for example.

This thesis undertakes an exploration of optimizing the efficiency of energy arbitrage batteries by
repositioning them to alleviate congestion. Additionally, it delves into the divergence between preferred
battery locations for grid operators and battery owners. A comparative analysis is performed among
energy arbitrage batteries, congestion relief batteries, and traditional reinforcements. These aspects
are evaluated in terms of their contribution to grid flexibility, congestion relief, and load curtailment re-
quirements. The study is conducted using a medium voltage network of a region in the North Rotterdam
as a case study.

The investigation involves the creation of a linear programming day-ahead market model and a
linear programming energy arbitrage battery model. The day-ahead market model generates a price
signal that guides the energy arbitrage battery’s charging and discharging decisions for profit maximiza-
tion. Load and generation forecasts are provided by Stedin for the case study. A Powerfactory model
simulates the effect of a congestion relief battery capacity on congestion. Through a heuristic algorithm,
the optimal location and size of the energy arbitrage battery capacity are determined.

By analyzing these scenarios, the study unveils the positive impact of strategically positioned en-
ergy arbitrage batteries that align discharge timing with congestion patterns. The study also highlights
the significance of positioning batteries at the deepest points of radial lines to maximize benefits, even
though these locations may diverge from battery owner preferences, such as solar farm sites. Interest-
ingly, the addition of energy arbitrage batteries to these solar farm sites can exacerbate congestion due
to their relatively low congestion levels. A comparative evaluation reveals that batteries surpass tradi-
tional grid reinforcement in enhancing flexibility, with congestion relief batteries outperforming energy
arbitrage batteries in alleviating congestion. With the energy arbitrage battery being able to reduce
congestion by 27% and the congestion relief batteries being able to reduce it by 94% with the same
amount of installed capacity. Energy arbitrage scenarios may necessitate load curtailment to address
congestion challenges, they may not independently resolve all congestion.

In conclusion, while energy arbitrage batteries show promise in addressing congestion, their effec-
tiveness depends on synergistic technologies and further refinement. Future research avenues may
explore enhancedmarket models, extended predictive analyses, and intricate hybrid strategies to tackle
congestion relief, considering the intricate complexities introduced by diverse network topologies.
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1
Introduction

1.1. General background
In 2015 The Paris Agreement was signed. It was adopted by 196 countries at the 21st Conference Of
Parties (COP21) and entered into force in late 2016. The goal of this agreement was to limit global
warming to a maximum of 2 °C by reducing greenhouse gas emission, compared to pre-industrial levels.
[1]. To attain this objective, the 195 signatory countries of the agreement are working towards an an-
nual reduction in global greenhouse gas emissions, with the ultimate aim of achieving a climate-neutral
world by the middle of the century.

Greenhouse gasses are emitted when fossil fuels are burned in generators, which support the en-
ergy need of society. An alternative to this is using renewable energy sources, such as solar and wind
power. Stedin and other Distribution Grid Operators (DSOs) will need an added level of flexibility in
order to handle the volatility of renewable energy generation in their networkds. This flexibility can be
achieved with, for example, the use of storage systems. This is an alternative to the standard option
for DSOs, which is traditional reinforcement of the network.

Batteries are of particular interest for distribution system flexibility at the moment. Energy system
flexibility is the ability to adjust supply and demand to achieve the matching of supply and demand.
After Tennet announced future congestion in Limburg and Noord-Brabant [2], the amount of grid-tied
battery connection applications quadrupled with in total 10 times the normal capacity. This is a problem
because currently the battery owners are not obligated to contribute to reducing congestion in the
network and simply prioritize profit. This could possibly result in the batteries creating more congestion.
Legally DSOs are not allowed to be selective in their granting permission of access to their systems
of certain battery owners. This means that it will be valuable to look into how these non cooperative
batteries are able to be connected to the grid in such a way, that they relieve congestion instead of
causing or worsening it [3].

1.2. State of the art
Many papers look into the optimal location and size for batteries in networks that do congestion relief.
These are usually pertaining congestion relief batteries such as reviewed in [4], [5] and [6]. Batteries
that provide the energy arbitrage service are also researched, but the main goal of that research is on
how to maximize profit based on location in the grid [7]. There is yet to be a direct comparison between
the congestion relief batteries, energy arbitrage batteries and traditional reinforcement with their effect
on congestion. The comparison between the congestion relief and energy arbitrage batteries and tra-
ditional reinforcement will be researched in this paper.

The research gap that this paper tries to fill is, how useful an energy arbitrage battery is at relieving
congestion in a network. It answers this by using an optimally placed energy arbitrage battery in a case
study where in congestion occurs. It is possible that batteries alone will not be enough so the remaining

1



1.3. Research questions 2

congestion can be taken care of by load curtailment.

1.3. Research questions
With the use of Powerfactory and Python a simulation is created. With this, insight into the effectiveness
of batteries in fixing congestion is found. The results for combating congestion with cooperative and
non-cooperative batteries will be compared to traditional grid reinforcement. The grid that is modeled
in Powerfactory is a Medium Voltage (MV) network in the North of Rotterdam. The input data for this
is provided by Stedin.

The objective of this thesis is to answer the following research questions:

1. How can a strategically placed battery that uses energy arbitrage be used to relief congestion?
2. What is the most effective location to add a battery in order to relieve congestion?
3. How do the most preferred location for the grid operator and the battery owner differ?
4. How does battery storage compare to reinforcement of the grid when it comes to adding flexibility

to the grid?
5. How much better is a congestion relief service providing battery at relieving congestion compared

to the battery that uses energy arbitrage?
6. To what extent will load curtailment be needed, when batteries are introduced to the system

instead of reinforcing the grid?

1.4. Structure of the thesis
The remainder of this report is structured as follows. Chapter 2 will start with introducing methods of
network reinforcement and ends with introducing the case study that is used for this thesis. Chapter 3
explores the optimal location and size of energy arbitrage batteries for mitigating network congestion
in the case study. It will start with describing the methods and steps that are used in order to create
a forecasted price signal and it ends with the creation of the algorithm that is tasked with finding the
optimal location and size of the energy arbitrage battery. Then in Chapter 4 the congestion relief battery
is introduced. In this chapter the process of altering an existing Powerfactory model into amodel that fits
the requirements of this thesis is described. The congestion relief capabilities of these three options will
be compared with each other in Chapter 5. Finally in Chapter 6 a comprehensive conclusion is drawn.
The research questions are summarized and recommendations for future research are provided.



2
Reinforcement

This chapter describes the traditional reinforcement of the grid. First it will be explained what reinforce-
ment entails and what kind of methods are possible to be used in Section 2.1. After that the different
cable types that could be used as replacements, are described in Section 2.2. Next the pricing method
of the reinforcement will be described in Section 2.3. Lastly the method of determining which cables of
the case study will need to be reinforced shall be discussed in Section 2.4.

2.1. Tradition Reinforcements
Traditional grid reinforcement refers to the process of upgrading or expanding the existing electrical
grid infrastructure to accommodate increased demand, improve reliability, and ensure stable electricity
supply. It involves various measures and investments aimed at enhancing the capacity, efficiency, and
resilience of the grid. The goal of these improvements is to increase the operational window wherein
the grid is able to operate within its limits.

2.1.1. Grid limits
Distribution grids, despite operating at lower voltage levels compared to transmission grids, also have
operational limits that need to be considered. These limits arise due to various factors and constraints
within the distribution system. The operational limits that occur in distribution grids include:

• Voltage Limits: Distribution grids have upper and lower voltage limits that need to be maintained
to ensure reliable and safe operation. Exceeding these voltage limits can result in equipment
damage, decreased power quality, and potential hazards to connected devices.

• Thermal Limits: Distribution grids have thermal limits on conductors, transformers, and other
equipment. These limits define the maximum current-carrying capacity or load that equipment
can sustain without overheating. Exceeding these limits can lead to equipment failure, increased
losses, and potential outages.

• Power Quality Limits: Power quality parameters such as voltage fluctuations, harmonics, and
voltage imbalance have limits defined by industry standards and regulations. Excessive varia-
tions in voltage or the presence of harmonics can affect the performance of sensitive electronic
equipment, cause malfunctions and result in data loss or operational issues for customers.

• Protection Coordination: Distribution grids employ protective devices such as fuses, circuit break-
ers, and relays to detect and isolate faults. These devices need to be coordinated to ensure that
only the faulty portion of the grid is isolated, while minimizing the impact on the rest of the system.
Proper coordination of protection devices helps maintain the reliability and availability of power
supply in the distribution grid.

The DSO needs to maintain all these limits in order to ensure reliable operation of the grid and its
connected costumers.

3
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Voltage variation limits
In the MV networks of Stedin there is a limit to how much the voltage may vary between two points of
a MV network. These limits are visually shown in Figure 2.1.

Figure 2.1: Allowed voltage swing inside of the MV network [8]
.

The figure shows that the maximum allowed voltage variation for the HV/MV transformers is 1%.
For the total group of loads the maximum allowed voltage variation is 4%. Lastly for clients that are
directly connected to the transformer station, the maximum allowed variation during normal operation
is 9%.

2.1.2. Traditional reinforcement methods
In order to ensure the continued operational efficiency of distribution grids amidst anticipated future
increases in demand, a range of traditional grid reinforcement methods are available. The traditional
grid reinforcement methods for a medium voltage distribution grid:

• Distribution Line Upgrades: Increasing the capacity of distribution lines by upgrading conductors
with higher ampacity ratings. This involves replacing existing lines with larger gauge conductors
or utilizing compact conductors that can carry more current. This also lowers voltage deviations
due to the lower

• Transformer Upgrades: Upgrading distribution transformers to higher capacity units to accommo-
date increased load demand. This may involve replacing older transformers with more efficient
and higher-rated transformers or adding additional transformers to existing substations.

• Capacitor Banks: Installing capacitor banks at strategic locations in the distribution network to
improve power factor and voltage regulation. Capacitor banks help reduce line losses, improve
voltage stability, and increase the overall capacity of the grid.

Stedin currently looks mainly into the distribution line and transformer upgrades. Capacitor Banks
are not used by Stedin, because of the lack of overhead lines in their networks. Overhead lines have
a higher amount of reactance compared to underground cables. Capacitor banks regulate voltage by
providing reactive power, which interact with the reactance in the network, to counteract voltage drops.
Due to the low reactance of underground cables the effectiveness of the capacitor bank is low.

The problem with a voltage variation that is too large is that the promised voltage level for the
end user will be affected. In order to fix this, Stedin is able to change the voltage step of the MV/LV
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transformers in such a manner, that the resulting voltage at the Low Voltage (LV) side has the required
level. Or if the problem is occurring at a few loads in series, a step transformer could be placed in
front of the loads at the MV level, in order to keep the voltage at the required level for the loads. At
Stedin there are also talks about looking into how much reinforcement investment could be deferred
by upgrading the protection infrastructure and protection scheme instead. This would be paired with
the closing of the down the line circuit breakers, such as the open circuit breaker shown in Figure 2.1.
This is called network reconfiguration: Optimizing the layout and configuration of distribution networks
to improve reliability and load balancing. This will change the MV networks of Stedin into either into
ring or meshed networks instead of radial networks. This will lead to a more evenly distributed load
over the power lines that are closer to the external grids, which would lower the congestion on heavily
encumbered power lines. Whether the part network is operated in a radial, meshed or ring layout has
influence on the protection scheme that is needed to isolate faults in case they occur.

2.2. Cable types
Stedin currently utilizes two types of cables, namely Cross-Linked Polyethylene (XLPE) and Paper-
Insulated Lead-Covered (PILC) cables, within its MV networks. The XLPE cables are of a newer gen-
eration, while the PILC cables are considered older. In accordance with their age and performance
characteristics, the XLPE cables are permitted to operate at full capacity (100%), whereas the GPLK
cables are restricted to a maximum capacity of 70% [8].

As per Stedin directives, the replacement of power cables exclusively entails the installation of
XLPE cables. This choice is motivated by the fact that PILC cables used lead which is not good for
the environment in case damage to the insulation of the cable occurs. Another improvement is the
higher current rating exhibited by XLPE cables compared to PILC cables for the same conductor size.
Specifically, the conductor diameter for the replacement cables must be either 400mm2 or 240mm2, as
other sizes are incompatible with Ring Main Units (RMUs). Another aspect considered during the cable
selection process is whether to employ the trefoil or flat formation of the cables.

Stedin maintains a comprehensive database encompassing various cable types within their inven-
tory. Within this database, the nominal current of each cable is associated with the thermal resistance
of the surrounding soil. The thermal resistance, denoting the measure of a material or object’s resis-
tance to heat flow, is categorized into three levels in the database: G1 (0.5 [km/W]), G2 (0.75 [km/W]),
and G3 (1 [km/W]).

The website cited as [9] provides information on how different types of soil correlate with specific
thermal resistances. For instance, wet sand exhibits a thermal resistance of 1, while dry clay has a
thermal resistance of 0.75, and wet clay possesses a thermal resistance of 0.5. When the decision
is made to replace a particular cable, the geology tool DINO Locket [10] can be utilized to determine
the ground type in which the original cable is located. Additionally, the ground water level website of
Rotterdam [11] can be consulted to ascertain the cable’s year-round moisture conditions.

2.3. Pricing
According to Stedin the price per meter for the cables is 350 €/m. This does not change between what
type of cable is used, because the price per meter of the cable is only a negligible part of the total costs
of placing a cable underground.

2.4. Network model data
This section begins by presenting the case study, followed by an explanation of the network analy-
sis method employed by Stedin. Next, the process of acquiring future data is outlined. Finally, the
extraction of relevant data from the network is described.

2.4.1. Case study
The chosen part network for this thesis is a network in the North of Rotterdam, which operates as a
MV network. It operates at 23 kV and consists of 2 traditional generators, 1 wind farm, 2 solar fields,
95 loads, 2 transformers, and 2 external grids. While the network layout is meshed, the practical
implementation follows a configuration of 5 radial lines due to multiple circuit breakers being open by
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default. This decision is based on the limitations of the outdated protection scheme, which cannot
handle bi-directional faults. However, these connections are retained because, following a fault, the
downstream loads on the radial network can bypass the faulty line by closing the circuit breaker. The
schematic of the network is shown in Figure 2.2.

Figure 2.2: Case study network.
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2.4.2. Network analysis application
The power system analysis application that Stedin uses for its MV networks is Powerfactory. Pow-
erFactory is a leading power system analysis software application for use in analyzing generation,
transmission, distribution and industrial systems. It covers the full range of functionality from standard
features to highly sophisticated and advanced applications including wind power, distributed genera-
tion, real-time simulation and performance monitoring for system testing and supervision [12].

Powerfactory functions
Powerfactory provides the Quasi Dynamic Simulation (QDS) feature for conducting medium to long
term simulations. This involves performing multiple load flow calculations with user-defined time steps.
This tool is especially suitable for planning studies that involve defining long term load and generation
profiles, as well as modeling network development with variations and expansion stages. It is a perfect
fit for the objectives of this thesis [12]. By analyzing the results obtained from QDS, it becomes possible
to determine network congestion.

The QDS function requires a decision on whether to use DC or AC load flow calculations. The
determination of the battery’s optimal location and voltage level within the grid is important. Taking line
losses into consideration is essential for identifying the best grid location for the battery. As a result, AC
load flow calculations were chosen because they account for line losses and voltage changes, whereas
DC load flow calculations neglect these factors.

Additionally, Powerfactory includes the Sensitivities / Distribution Factors tool. This tool allows users
to identify critical points in the network and assess how these points are influenced by changes in
system conditions, based on a static voltage stability calculation. It calculates a range of sensitivity
factors, including standard distribution factors like Power Transfer Distribution Factors (PTDF) and
Outage Transfer Distribution Factor OTDF [12]. The PTDF function provides a matrix that indicates the
impact on power flow through all other lines and transformers when 1 MW is injected into a specific
node. This feature is particularly valuable when assessing the influence of introducing batteries on grid
congestion.

The calculation method of the PTDF will be AC instead of DC, because the AC method takes line
losses into account [13]. If line losses are not taken into account, it will be impossible to find the optimal
location, because all loads in series will have the same effect on congestion and thus the optimal loca-
tion finder will not be able to differentiate between the different locations if the locations are connected
in series.

2.4.3. Future data - SETIAM
There needs to be future data for the QDS to work with. This data is provided by SETIAM. SETIAM
stands for Stedin Energy Transition Impact Assessment Model. It was created to assess the effect of
the energy transition on the grids of Stedin.

SETIAM utilizes various inputs such as scenarios (in the case of this thesis the KA scenario from
Section 3.1.4), grid topology, asset data, measurement data, client requests (for new battery instal-
lations), and weather data. By leveraging this data, SETIAM can generate load and generation fore-
casts up to the year 2050 [14]. These load and generation forecasts serve as crucial inputs for the
QDS analysis. Due to complications the only years that were able to be extracted from SETIAM were:
2022,2025,2027,2030, 2035, 2036, 2038, 2040, 2042, 2045, 2050. In the case study the congestion
starts to occur from 2036 onwards and thus it is chosen to only look into 2036 and the following years.
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Energy arbitrage

In this chapter the congestion relief capabilities of energy arbitrage batteries will be explored.
First is Section 3.1. In this section the creation of the market model for the future is described. The

market model will take various inputs that are based on research backed predictions and it outputs a
price time series signal.In Section 3.2 the design of the energy arbitrage battery will be explained. The
depth of simulation, storage technology and the model design will be described and lastly the model
will be verified. Finally, Section 3.3 describes how the Power Transfer Distribution Factor (PTDF) and
Quasi Dynamic Simulation (QDS) are used in combination with the battery dispatch time series, that
was created in Section 3.2, to find the optimal location and size for the energy arbitrage battery.

3.1. Energy market modelling
Batteries, like other agents connected to the grid, try to achieve profit while operating. Thus in order to
model the behaviour of batteries in an electricity grid, a price signal will be needed. In this chapter the
creation of this price signal from 2022 until 2050 will be described.

3.1.1. Market options
First the type of energy market that is modelled needs to be determined. Currently there are different
kinds of energy markets in The Netherlands. These are the wholesale markets and balancing markets.
In this section these markets will be described.

The wholesale markets
The wholesale market has two parts, the Day-Ahead Market (DAM) and the intra-day market. For the
whole of the Netherlands this is the EPEX SPOT (formerly APX) market [15]. On the DAM participants
buy and sell energy on a pan-European auction for the 24 hours of the next day in blocks of 1 hour. At
12:00 the auction is closed and the prices per 1 hour block are determined.

The DAM pricing algorithm is visualized as presented in Figure 3.1a. The merit curves of the de-
mand and supply bits of the auction are put in the same graph. As can be seen in Figure 3.1. For
the demand curve the most willing to pay consumers are put in the left of the curve and for the supply
curve, the cheapest generation is put to the left of the graph.

This distribution of the consumers and producers results in the most willing to pay consumers and
cheap producers bids will be cleared first. The objective of the market is to maximize the total social
welfare of the consumers and producers. Social welfare for consumers pertains to how much less
the supplied consumers paid for the energy in total, compared to what they were willing to pay. For
producers it means how much more is paid for the total generated energy compared to what they
offered to generate energy for. The greatest welfare is achieved when the sum of the consumer and
generator surpluses are maximized. The price where the two curves meet is the point where the social
welfare will be greatest. This is shown in Figure 3.1b.

8
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Figure 3.1: DAM market clearing price [16]

The prediction that is made by the DAM will inevitably have some prediction error. The discrepancy
between the real-time demand and predicted demand is resolved on the intra-day market. On the
intra-day market energy can be traded up until 5 minutes before delivery and the time resolution of
the delivery is 15 minutes. The goal of the intra-day market is to rectify incorrect predictions that were
present on the DAM.

Congestion management GOPACS is the congestion management platform of the Dutch DSOs
and transmission system operators (TSOs). It uses existing market platforms to find combinations
of buy and sell orders that will reduce congestion of the grid. Currently this is used by the ETPA
(Energy Trading Platform Amsterdam) [17], which is a Dutch energy exchange that has received a
Pan-European intra-day market license [18].

The Balancing Markets
Power fluctuations happen in time periods lower then 15 minutes. This means after the intra-day mar-
ket correction there will still be some mismatch between generation and demand. This difference is
resolved by the balancing markets.
The Balancing markets consist of the FCR market and the FRR market. The FCR market is used for
primary control of frequency in the grid. This means that this market is used to catch/stop frequency
changes from happening or worsening and the FRR market is used to bring the frequency back to its
preferred frequency [19]. In The Netherlands this frequency is 50Hz [20].

3.1.2. Role of BESS in the energy market
Battery Energy Storage Systems (BESS) play a significant role in the energy market. The battery
systems provide multiple services to the grid. Three of these services are closely tied to the markets
that were explained in Section 3.1.1. These services are: Arbitrage, Congestion relief and Ancillary
services [21].

Arbitrage
The main goal of energy arbitrage is profit maximization. Energy arbitrage is the practice of buying
electricity at low prices and storing it, then selling it back to the grid or consumers at higher prices. It
involves taking advantage of price differences over time to generate profits and optimize profit.

Energy arbitrage is best suited for the wholesale electricity market. In the wholesale market, elec-
tricity prices fluctuate based on supply and demand dynamics. These dynamic behaviours can be
predicted. These price variations create opportunities for energy arbitrage.

In the future renewable energy usage will continue to increase. Consequently, the difficulty of pre-
dicting the available generation will be increased. The percentage of the energy that was predicted
incorrectly on the DAM and will be cleared on the intra-day market instead will increase as well [22].
This will result in bigger volatility in the price signal and thus a larger profit for BESS. This is supported
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by the paper [21] where it was determined that wholesale markets will become viable sources of profits
for batteries from 2030 onwards.

Ancillary
Ancillary services refer to additional support services that help maintain the stability, reliability and qual-
ity of the electrical grid. The balance market facilitates the ancillary services of frequency control.

Due to the increase in renewable energy production the number of mismatches between supply and
demand will increase. If there is more demand than supply, the frequency of the energy will lower and
vice versa. Traditionally, frequency control services have been provided by large-scale power plants
with the capability to rapidly adjust their generation output.

However, with the increasing integration of renewable energy sources like solar and wind, which
are intermittent in nature, alternative solutions are needed to maintain frequency stability. Batteries are
beneficial for frequency control services, because of their fast response time[23].

Congestion relief
The congestion relief service aims to alleviate congestion on the electrical grid by strategically managing
the flow of electricity. For this service the battery will store excess electricity during periods of low
demand and release it during peak demand hours. By shifting the timing of electricity consumption, the
battery helps reduce the strain on congested grid infrastructure during peak periods. GOPACS will be
able to facilitate this service.

3.1.3. Market design
The data that is used for simulating the power flow through the network is given in time steps of 1 hour.
This means that the behaviour of the energy arbitrage battery that is to be added needs to have a time
resolution of 1 hour as well. The behaviour of the battery is also dependent on the price signal of the
market.

If all markets are to be used for the market model, the markets with shorter time steps will need to be
translated to determine what their effect will be on larger time scales. The DAM has a time resolution
of 1 hour. This means that the modelling of this market will not need to be changed in order to take
the simulation time steps of the network into account. As mentioned in Subsection 3.1.1 the intra-day
market works with 15 minute time periods. Thus the intra-day market will be cleared 4 times in the time
it takes the DAM to be cleared once.

The energy that is traded on the balancing markets is used on a timescale of seconds to minutes
[24], which is significantly smaller than the 1 hour time resolution of the power flow data. Modeling the
vast complexity and variability of the balancing markets is outside of the scope of this thesis and thus
the balancing markets will be neglected. This is equivalent to assuming that the system will have no
balancing issues during operation.

This means that only the wholesale markets are to be simulated. As explained in Subsection 3.1.1
the wholesale market consists of 2 markets, the intra-day market and the DAM. In order to simulate the
2 markets as close to reality as possible a two-stage process needs to be implemented. Where first
the DAM is cleared and after that the intra-day market is cleared.

intra-day market
There are 3 classes of intra-day market price forecasting. These are: Statistical, machine learning and
deep learning [25].

The statistical class uses stationary data where the mean and variance are constant over time. A
well known example of the stationary class of a statistical forecasting model is the ARIMA model. The
data for this thesis will change over time and thus models of this class cannot be used.

The machine learning (Regression) based models use supervised learning [26], [27] to learn the
connection between the intra-day price, the predicted generation, demand and DAM price.
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The deep learning class uses deep neural networks [28] in place of the regression model. In or-
der to use these machine learning methods (regression and neural networks) there needs to be a test
set of the output (intra-day market clearing price) data, which is used to validate the model. For The
Netherlands there is no information about the intra-day energy price and volume per 15 minute period
of the past [29]. Thus, the use of machine learning is not possible for intra-day market price of The
Netherlands. The countries of which the intra-day energy price was predicted in the earlier cited papers
were Turkey and Germany. Turkey’s and Germany’s past intra-day energy prices are available on the
Entsoe Transparency platform [29].

The intra-day market price is influenced by the changing solar and wind power, the generators and
congestion that are present in the grid and the layout of the grid. All these variables change between
networks, thus the data from other countries is not applicable to The Netherlands. For this reason, it
was chosen to only simulate the DAM for this thesis.

This assumes that the DAM predictions are 100 % correct. This is of course not completely realistic
because, in reality, it is impossible for the prediction of the DAM to be perfect. This is because of the
unpredictability of variable renewable energy generators or unexpected contingencies in generators for
example.

3.1.4. Energy mix trend
In order to be able to clear the market price the supply and demand curves need to be made for every
hour for the years 2022 until 2050.

Scenarios
Netbeheer Nederland has created development scenarios for how The Netherlands is able to become
climate neutral by 2050. These scenarios are shown in Figure 3.2. As can be seen in the figure the
scenario first splits into 3 scenarios. These are the National drivers (ND), Climate Ambitions (KA) and
International Ambitions (IA). The KA scenario is the baseline scenario that the Dutch government is
following [30]. The ND and IA are derivations of the KA scenario. The ND scenario looks more into
how the Netherlands is able to reach the expected 70% CO2 emissions on its own, by implementing
more electrification and using more renewable energies. The IA scenario looks more into the option of
more international cooperation and trade in hydrogen and green gas. All three scenarios are made to
be able to reach the 70% CO2 emission reduction target by 2035.

It was chosen to use the KA scenario for 2022 until 2035 in this study, because this is most likely
the scenario that is implemented in real life because of its governmental support.

Figure 3.2: Overview of scenarios [31]

After 2035 the scenarios are split into 4 scenarios. As can be seen in Figure 3.2 the KA sce-
nario continues into either the National Leadership scenario or the European Integration scenario. The
Netherlands has been increasing its cooperation between itself and other EU members when it comes
to the energy transition [32], [33] and [34]. For this reason, it was decided to use the European Integra-
tion scenario.
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Demand
To accurately model the DAM, the demand curve needs to be accurate also. The problem is that the
willingness to pay for power of consumers is not available to the public. This is because it could give
an unfair advantage for certain agents on the market that could game the system for their own profit.
Another option is to create an inflexible demand. The demand is based on an already occurred de-
mand profile which is being scaled, based on the expected demand scaling in the future. By doing this
it is important that the solar and wind profiles correspond to this demand profile correctly. As if they
are from the same year. The base demand profile is the demand profile of 2018, which is taken from
the ENTSO-E Transparency Platform [29]. The reason why 2018 is chosen, because it is the most
recent year, where no major world event occurred that influenced the electricity market for example the
Covid-19 pandemic and Russo-Ukrainian war. Another reason is that it is the most recent year of the
MERRA-2 data set[35], which is used for the profiles of the renewable energies.

The 2018 demand profile was used as the base profile for all the years from 2022 to 2050 and they
were scaled based on the scenario data [31]. This can be seen in Figure 3.3

Figure 3.3: Base demand throughout the years

Household PV As shown in the future scenario, the amount of rooftop mounted PV panels will in-
crease in the future. These panels will not play a role on the market, but they will influence the total
demand that is requested on the market. The solar profile of the household PV is also from 2018 and
was sourced from Renewables.ninja [36], which uses the MERRA-2 dataset [35].

Figure 3.4 shows the base demand when household PV is included

Capacity The starting capacity for all the generation types were sourced for the Entsoe Transparency
platform [29]. The expected installed capacity of the nuclear power plants is certain, since the govern-
ment has made concrete plans with the use of legislation for what to do with nuclear energy [37] and
coal energy [38] [39]. These expected changes in capacity are shown in Table 3.1.

Gen Type 2020 2021 2024 2025 2030 2030 2035 2050
Nuclear 486 486 486 486 486 486 3786 3786
Coal 4662 4012 4012 2767 2767 0 0 0

Table 3.1: Capacity [MW] changes throughout the years.

Netbeheer Nederland is the association of all electricity and gas network operators in the Nether-
lands. The energy network operators contribute to the transition to a sustainable energy supply. One



3.1. Energy market modelling 13

Figure 3.4: Base demand including household PV throughout the years

of the key responsibilities of Netbeheer Nederland is to ensure the security and continuity of the energy
supply. The association also supports the implementation of innovative technologies and solutions that
contribute to the energy transition and the integration of renewable energy sources [40]. Part of this
cooperation entails making future predictions of the energy grid and its supply and demand. Netbeheer
Nederland has made the Integral Infrastructure-outlook 2030-2050 (II3050), which is the outlook on the
future development of the energy system until 2050 for the 3 scenarios explained in Section 3.1.4. As
mentioned, the KA scenario was selected and the corresponding values for the capacity per generation
type are shown in Table 3.2.

Gen Type 2020 2025 2030 2035 2040 2050
Gas (aggregated) 15496 - - - - 31800
Biomass 490 - - - - 1100
Solar_field_buildings 4817 28750 48750 67500 82500 113750
Solar_households 2409 16250 26250 31250 45000 59375
Wind_onshore 3527 7273 10000 11364 16364 20909
Wind offshore 957 6364 22727 29091 43636 54545

Table 3.2: Capacity [MW] changes throughout the years.

A graphical representation is shown in Figure 3.5

Wind and solar profiles For the supply side, the wind and solar profiles are sourced from Renew-
ables.ninja [36] for the year 2018. The Wind profile is also included in the MERRA-2 dataset. The
magnitude of the profiles will be scaled by the total installed capacity mentioned in Table 3.2.

Supply
For the supply curve, the curve was split in blocks. Each block consists of a grouping of a generation
type. Such as Nuclear, Coal, Gas, Biomass, Wind and Solar. For each block the capacity trend and
Levelized Cost of Energy (LCOE) are needed as input data for the market model.

Import element Due to the demand being inflexible it is not possible to reduce the demand in case
there is not enough supply to meet the demand. This problem does occur in the later years of the
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(a) (b)

Figure 3.5: Trend of the capacity from 2020 until 2050. a) Shows all generation types in the same plot. b) shows a zoomed in
view of the graph in order to high light the smaller capacities. Note that the gas graph is the aggregated capacity of all the gas

groups.

simulation. In the future this problem can be fixed with the use of batteries and aggregators that par-
ticipate on the market or by trading in energy with other countries. The battery installations can decide
to start discharging when there is too little supply and aggregators can use load curtailment on its own
demand in order to help with matching the supply and demand. But including new kinds of elements
in the energy market is outside of the scope of this thesis, thus it is decided to only consider the added
supply with the use of an import element.

This problem is fixed by adding an import element to the supply. Electricity trading between coun-
tries is a common practice in Europe and around the world, and it helps balance supply and demand,
optimize energy resources, and improve energy security. The Netherlands is part of the European elec-
tricity market and is connected to its neighboring countries through various interconnectors. For exam-
ple, the Netherlands has interconnections with Belgium, Germany, Denmark, Norway and The United
Kingdom. These interconnectors allow electricity to flow between countries, enabling the Netherlands
to import or export electricity based on market conditions, demand, and availability of renewable energy
sources like wind and solar[41]. Determining the energy mix and expected LCOE for the future of all
these connections is outside the scope of this thesis and therefore it is assumed that the energy mix
and LCOE prices of the other countries will be the same as The Netherlands. The size of this import
element will be 60% of the size of the supply of The Netherlands, because that is the minimum needed
for the supply to always meet the demand in The Netherlands.

Levelized Cost of Energy LCOE is a metric used to assess the cost of generating electricity over the
lifetime of a power plant. The LCOE takes into account all the costs involved in the development, con-
struction, operation, and maintenance of a power generation project, as well as the expected electricity
output over its lifetime.

LCOE =
I0 ∗

∑n
t=1

It+Mt+Ft

(1+r)t∑n
t=1

Et

(1+r)t

[€/MWh] (3.1)

The meaning of the variables is explained below:

• I0: initial investment expenditures
• It: Investment expenditures in year t
• Mt: Operations and maintenance expenditures in the year t
• Ft: Fuel expenditures in the year t
• Et: Electrical energy generated in the year t
• r: Weighted average cost of capital (WACC)/ discount rate
• n: Expected economic lifetime of the power plant (expressed in years)
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The terms 1
(1+r)t in the summation is used to take into account the devaluation of currency or inter-

est on loans over the years of operation.

If a generator sells energy solely at the Levelized Cost of Electricity (LCOE) level, it would precisely
recoup its initial investment, assuming no unaccounted events occur in its runtime. In this thesis, the
projected LCOEs for different types of generators are utilized as the energy cost for the market. How-
ever, employing LCOE as the energy cost poses a challenge, as it would always be lower than the
energy cost considered by the generators in their energy bids to the market. Utilizing the LCOE would
eliminate the possibility of expecting any profit, as it would only allow breaking even on their invest-
ments. Consequently, the actual energy costs used for energy bids by the generators will exceed the
LCOE. This will not have an effect on the energy mix of the model, assuming that all generators aim
for the same profit margin.

Figure 3.6: Day-ahead market

The precise energy prices or price bids per generator are not publicly known. If such information is
disclosed, competitors could manipulate the system by setting their prices and capacities in a manner
that maximizes their profits at the expense of consumers. For example, generator 3 (Gen 3) in Figure
3.6 could slightly reduce the capacity of its bid, resulting in an increase in the market clearing price or
energy price to match that of Generator 4 (Gen 4). As a result, the profits of Generator 3 would be
enhanced, but the energy price that consumers must pay would also rise.

The LCOE and energy bid price of a given generator, although not identical, are expected to be
similar. Moreover, in the market context, the underlying objective is to employ arbitrage batteries to
determine the optimal moments for discharging or charging based on fluctuations in price. This deter-
mination is predicated on identifying periods of low and high prices, rather than relying on precise price
values. Therefore, the focus lies on price differentials rather than exact prices. Because of this it was
decided that LCOE is a realistic approximation of the energy bid prices.

Table 3.3 shows the trend of the LCOE values of all the generator types from 2020 until 2050. It
is important to note that precise data regarding the intermediate time periods between the specified
data points is unavailable. For this reason, the price in between the data points is assumed to be lin-
ear. Nuclear energy is the exception to this. The Netherlands is beginning on the construction of two
new nuclear generators and the current nuclear power plant in Borssele will be refurbished in 2035
[37]. The new and refurbished nuclear power plants will have more efficient power generation. This
means that they will have a lower fuel cost as mentioned in the LCOE equation 3.1, which will result in



3.1. Energy market modelling 16

Gen Type 2020 2030 2040 2050 Reference
Nuclear 80 - - 80 [42]
Coal 80 - - 65.55 [43]
Gas 50,60,70,80,90,100 - - 50,60,70,80,90,100 [44]
Biomass 107 - - 81 [42]
Solar 70 - - 24 [45]
Wind onshore 59 - - 35 [46]
Wind offshore 84 55 45 40 [46]

Table 3.3: LCOE [€/MWh] changes throughout the years.

a lower LCOE. The new generators are to be put into action around the same time. This causes the
instantaneous drop at 2035.

A graphical representation of the LCOE trend is shown in Figure 3.7.

Figure 3.7: Trend of the LCOE from 2020 until 2050. Note that of the 6 price levels of the gas generation type only the lowest
price (50 €/MWh) was plotted in order to keep the graph clear.

The capacity of the gas generation type was percentage wise large. This caused the price signal to
not be volatile. With the price signal staying at the gas price level for multiple years. This is illustrated
by Figure 3.8a. It shows that gas power will be the main source of non variable energy and thus will be
the generation type that determines the price.

A solution to this is dividing the price signal of the gas generation type into multiple parts. The price
range of the gas groups are as shown in Table 3.3 and are based on the data sourced from the Inter-
national Energy Agency - Levelized Cost of Electricity Calculator [44]. With this method the price will
become more volatile, because the demand will move between multiple price levels as can be seen in
Figure 3.8.

3.1.5. Energy market optimization model
In order to determine the market clearing price (MCP) the market needed to be modelled.

optimization solver
For this model there needs to be a solver in order to clear this market model. The objective function
that the solver needs to solve is shown in Equation 3.2 and the constraints are shown below it. The
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Figure 3.8: a) Non variable renewable price levels with only 1 gas group, b) nonvariable renewable price levels with 6 gas
groups

objective function and the constraints are all linear. This means it will be possible to use linear pro-
gramming (LP). There are multiple possible solvers that could be used for LP, such as Optimization
Toolbox (MATLAB), Gurobi and CPLEX. The optimization problem will have multiple periods over which
the objective function and its constraints will need to be solved. Optimization Toolbox (MATLAB) does
not facilitate multi-period optimization problems well, because every single period of every constraint
needs to be put inside of a matrix by hand. While in Gurobi and CPLEX all the periods of a single con-
straint are able to be formulated in one line. While both Gurobi and CPLEX have similar performance
and features, there are some differences between them. In general, Gurobi is known to be faster and
more efficient than CPLEX, particularly for large-scale optimization problems. Gurobi also has more
advanced features for parallel computing and optimization modeling. For this reason, Gurobi was used
for this thesis. This solver is capable of calculating LP and Mixed Integer Linear Programming (MILP)
models at a fast speed, multiple periods are easy to implement and it is free for university students [47].

Model Design
The model that clears the DAM price for a single period (1 hour) will be a LP model. The objective of
the optimization is the maximization of social welfare as shown below.

Max SW =

ND∑
j=1

λDj ∗ PDj −
NG∑
i=1

λGi ∗ PGi (3.2)

As explained in Section 3.1.1 the demand and supply curves are needed for this.
This objective function is subjected to the following constraints:

0 ≤ PDj ≤ Pmax
Dj ∀j (3.3)

0 ≤ PGi ≤ Pmax
Gi ∀i (3.4)

ND∑
j=1

PDj =

NG∑
i=1

PGi (3.5)

Note that the congestion constraints for the network are ignored, because the DAM does not take
congestion into account when clearing the market [48].

As explained in Section 3.1.4 the demand that is used for this thesis is an inflexible demand, which
means that the objective function will become:

Max SW =

NG∑
i=1

λGi ∗ PGi (3.6)
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The constraint shown in Equation 3.3 will be removed because the demand is not variable anymore.
The equality constraint shown in Equation 3.5 will become:

PD =

NG∑
i=1

PGi (3.7)

The meaning of the variables is explained below:

• SW : the single-period social welfare (objective function),
• PD : The inflexible power (constant, given),
• PDj : the power bid by demand j (optimization variable),
• PGi : the power offered by generating unit i (optimization variable),
• Pmax

Dj : the MW size bid by demand j (constant, given),
• Pmax

Gi : the MW size offered by generating unit i (constant, given),
• λDj : the price ($/MWh) bid by demand j (constant, given),
• λGi : the price ($/MWh) offered by generating unit i (constant, given),
• ND : the number of demands,
• NG : the number of generating units.

The price signal per hour was determined by determining what the price of the most expensive
dispatched generation type was per hour.

3.1.6. Verification
In order to verify if the market model operates correctly, Figure 3.9 was created. The selected date for
analysis was March 11th, 2035. This particular day was chosen to demonstrate the impact of reduced
energy prices resulting from renewable sources while highlighting the ongoing necessity of traditional
generation methods. The LCOE of the dispatch generator groups are shown in Table 3.4.

Generator type LCOE [€/MWh]
Onshore wind 38
Solar 47.5
Offshore wind 49.5
Gas 1 50
Gas 2 60
Nuclear 60
Gas3 70

Table 3.4: LCOE of dispatched generator groups on March 11th 2035.

In Figure 3.9a it can be seen that the generation groups are dispatched in order of lower price to
higher price. It can also be seen that when another generation group becomes the new highest prices
dispatched generator group, the price signal in Figure 3.9b changes accordingly to the prices set in
Table 3.4.

It is also interesting to note that, because of the large amount of wind energy at the start of the day,
the price is kept low at the start of the day compared to the evening.
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Figure 3.9: a) Dispatched capacity per generation type, b) Price signal. Both graphs where made with the data for 11th of
March 2035

3.2. Energy arbitrage battery model
As explained in Section 3.1.2, the goal of the energy arbitrage is to maximize the profit of the battery.
In this section the energy arbitrage battery model is designed. The model has the price signal of the
market as an input and outputs the dispatch time series signals of the battery.

3.2.1. Depth of simulation
When modelling a battery the first step is to determine what level of depth the model requires. These
models can be categorized into three levels based on the degree of physical insight they offer:

• White box model: These models go to the deepest depth. Electrochemical modeling provides a
comprehensive description of battery chemistry, ensuring precise representation. These models
heavily rely on the electrochemical reactions occurring within the electrodes and electrolyte. By
utilizing a set of non-linear differential equations [49], they effectively capture the diverse chemical
reactions taking place inside the battery. These methods are accurate but also computational
intensive.

• Grey box model: Circuit oriented models represent batteries using an electrical circuit with dis-
crete components such as resistors, capacitors, and voltage sources. These models can capture
some dynamic behavior and are commonly used for system-level simulations. However, circuit
oriented models may not accurately capture all the internal electrochemical processes of the bat-
tery. This results in a lower accuracy but fast computation of results compared to the white box
model [49].

• Black box model: These models are based on experimental data and empirical relationships.
They typically involve simple equations or look-up tables to estimate the battery behavior. Em-
pirical models are relatively easy to implement but may lack accuracy and may not capture the
underlying physics of the battery. Mathematical modelling is primarily used to depict system-level
behaviour [49].

Due to the large time frame (30 years with a time resolution of 1 hour is 30 * 8760 = 262800 hours)
that is simulated for this thesis it was chosen to use a mathematical model/ black box model depth for
the battery model.

3.2.2. Data slicing
The input of the battery model is a price signal time series. The model will determine the discharging
and charging times in such a way that it maximizes profit while keeping the constraints of the battery
into account. This will be further explained in Section 3.2.4.

It is impossible for the battery model to use the entire price signal as its input, because the arbitrage
optimization-problem is NP-hard. An NP-hard optimization problem refers to a class of computational
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problems that are known to be challenging to solve efficiently. The term ”NP” stands for nondeterministic
polynomial time, which represents a set of problems that can be verified in polynomial time [50].
This model will be NP-hard because the optimal charge/discharge decision for a battery relies on its
state of charge at consecutive time steps, necessitating a full-time horizon scheduling for obtaining
the best solution. However, this leads to an increase in the time complexity of the scheduling of the
dispatch of the battery, rendering it an NP-hard problem.

In the context of optimization, an NP-hard problem is one where finding the optimal solution requires
examining all possible solutions, which grows exponentially with the problem size. In other words, there
is no known algorithm that can solve NP-hard problems in polynomial time. However, once a solution
is proposed, its correctness can be verified in polynomial time.

The largest time set that was able to be cleared by the battery model that is described in Section
3.2.4 was 5 weeks. In practice the battery owner will not be able to accurately predict the behaviour
of the DAM that far into the future. Through contact with a company in the industry it was found that
battery owners schedule their operations based on the predicted data from the DAM of the next day.
This means that the energy arbitrage batteries optimize their behaviour, based on one day of the DAM
forecast. For this reason the battery input data is sliced in groups of 24 each representing 1 hour.

3.2.3. Storage technology
There are multiple energy storage types. These are electrical, electrochemical, thermal, mechanical
and hydrogen-related [51]. Of these types, the electrochemical storage systems are used for ancillary
systems [52]. Of the electrochemical storage systems, lithium-ion batteries are becoming increasingly
cost-competitive. The continued decrease in prices for lithium-ion batteries will make lithium-ion batter-
ies important parts of future grids. For example, [53] predicts that after 2030, lithium-ion batteries will
be the most competitive energy storage for: energy arbitrage, power quality, grid investment deferral
and congestion management. This claim is reinforced by [54], claiming that batteries that using energy
arbitrage next to the balancing services will become profitable on the energy arbitrage market from
2030 onwards.

Figure 3.10: Trend of 4-hour lithium-ion battery capital costs [55]

Figure 3.10 shows the capital costs trend from 2020 until 2050. As shown the price will decrease
from 400 $/kWh to 150 $/kWh. Which is 365.30 and 136.99 €/kWh when converted to Euros with the
exchange rate of 2020.

As mentioned in Section 3.2.1, the battery model that is used for this thesis is a mathematical model.
Thus, the important properties of the battery need to be included in the model. These properties are:
Total capacity, the charging and discharging rate limits and the charging and discharging efficiencies.

3.2.4. Energy arbitrage battery model design
There are multiple ways to model a mathematical battery model. One of the important behaviours that
the battery needs to be able to model correctly is the fact that discharging and charging does not occur
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at the same time.
In order to stop this from occurring, integers could be used. This would make the problem a MILP

model. The problem with this is that using integers makes the model much slower. It was mentioned
in [56] that the integer constraint could be left out of the model in case the round-trip efficiency property
of the battery is included. This however does not always hold true as is explained by two counterex-
amples [57].

Another option is by using a constraint that is similar but uses amore relaxed constraint as explained
in [58]. By relaxing this constraint it is possible that the result will lose some of its accuracy. These two
possible models are formulated in Figure 3.11.

Figure 3.11: Constraints of two battery model options, adapted from [58]

After both models were implemented it was found that the relaxed formulation was effective in mak-
ing sure the battery does not charge and discharge simultaneously. It was also much quicker than the
exact formulation model, with the relaxed model taking 3 minutes compared to the 10 minutes of the
exact formulation. This is because of the less strict constraint of the relaxed formulation. Therefore it
was decided to use the relaxed formulation for this thesis.

The objective function for both the battery models will need to facilitate energy arbitrage:

Max Profit =

T∑
t=1

(Pricet ∗ (P d
t )− (P c

t )) (3.8)

The variables of the models are explained below:

• e : Energy level of the battery storage at the end of period,
• E0 : Initial energy level at the start of the period,
• pc : Power that is charged in one period [MWh],
• pd : Power that is discharged in one period [MWh],
• z and y : z and y represent the binary charging state (z= 1,y= 0), the discharging state (z= 0,y= 1)
or idle time (z= 0,y= 0). These variables will become continuous in case of the relaxed LP model,

• ηc : charging efficiency,
• ηd : discharging efficiency,
• P c : Maximum charging limit [MW],
• P d : Maximum discharging limit [MW].
• E : Maximum energy storage capacity [MWh],
• E : Minimum energy storage capacity [MWh].

The round-trip efficiency of lithium-ion batteries are around 90% [59]. Assuming the efficiency of
charging and discharging to be equal, this would result in ηc and ηd being equal to 95%. The optimal
State Of Charge (SOC) range for a lithium battery is between 20-80% [60]. Thus E will be at 80% of
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the total capacity of the battery and E will be at 20% capacity of the battery.

Next to the operating range of the SOC there is another SOC constraint. This constraint is about
what the level of the SOC is at the end of the optimization. Through contact with a company in the in-
dustry it was found that there are two options. For the first option the SOC level is set to 50% capacity
at the end and start of every day. This coming back to 50% every night is used so ensure the battery is
resilient to changes in energy price at the start of the next day. The alternative is having no constraint
that dictates the end of day SOC level. Thus, using the last SOC level of the previous day as the initial
SOC level of the next day.

For the energy arbitrage battery, the profit maximization has the highest priority. Table 3.5 shows
the effect of the SOC setpoint on the profit of a battery with the capacity of 1 MWh. It’s important to note
that the profits presented in the table are not entirely precise due to their reliance on forecasted LCOE
values. However, considering that LCOE provides an approximate future value and the primary aim of
the table is to facilitate result comparison rather than showcasing absolute values, it was determined
that these values suffice for the comparative analysis.

SOC setpoint Profit [€/MWh]
20 (unconstrained) 119259
35 115207
50 109508
65 101551
80 91732.2

Table 3.5: Profit per installed MWh for the different SOC setpoints.

The profit is also calculated for when the SOC end point at the end of the day, is unconstrained. In
this case the scheduling of the charging and discharging of the battery is identical to, when the SOC has
a setpoint constraint, where it always returns to 20% SOC at the end of the day. The reason why the
case of a SOC setpoint of 20% and the unconstrained case are equivalent is, because every day the
demand in the system peaks between 16:00 until 20:00 o’clock. The average prices signal trend over
the day is shown in Figure 3.12. During this time the battery has enough time to completely discharge
its contents, after which the price will continue on a downward trend until 24:00 o’clock. Thus, after
becoming completely empty, it will need to charge first before it will be able to discharge. This means
that the battery will have to charge during high prices and discharge during relatively lower prices which
would cost more money than it would gain. Consequently, the battery is empty and it will not charge
again, because it would reduce its profit for the day. In the end it will end up empty and thus at 20%SOC.

In Chapter 5 the effect of the 50% SOC setpoint constraint and unconstrained cases on the conges-
tion relief will be shown.

3.2.5. Verification
In order to verify the correct operation of the following data needs to be checked: The battery dispatch
optimizes profit and SOC limits are held. For this verification the battery with the 50% SOC setpoint
was used.

Figure 3.13 shows the demand and the modelled price on March 11th 2035. This the same day that
was used in Section 3.1.6.

Figure 3.14 shows the dispatch of the battery and Figure 3.15 shows the corresponding SOC. As
can be seen the battery discharges at times of high price and it charges when the price is relatively
higher. The goal of the SOC starting and ending at 50% of the total capacity has also verified. The
battery also keeps within the SOC limits.
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Figure 3.12: Average price at different hours of the day of the period 2020 until 2050.

Figure 3.13: Demand and Price time series on March 11th 2035

3.3. Location and size optimization
In this section the location and size optimization algorithm will be described.

3.3.1. location and size optimization algorithm
There are two main groups of methods for sizing and siting of energy storage: mathematical program-
ming and heuristic methods. This thesis deals with a large amount of data and thus the algorithm
should not be computationally demanding. Of the two options, the mathematical programming option
is more computational intensive compared to heuristic methods. Mathematical programming requires
an explicit analytical formulation of the objective function and the constraints. Heuristic methods do
not require explicit mathematical formulations and, for this reason, they are suitable for multi-objective
optimization [59]. The algorithm is tasked with optimizing 2 things: the size and the location of the bat-
tery. Due to the problem being multi-objective and computationally intensive, it was chosen to create
a heuristic algorithm.

For this thesis a greedy search algorithm was selected to find the optimal location and size. The
greedy search algorithm makes use of the problem solving heuristic: choose the locally optimal choice
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Figure 3.14: Battery dispatch on March 11th 2035

Figure 3.15: SOC on March 11th 2035

at each stage. This optimal choice is the option where the highest amount of congestion is reduced.
With greedy search algorithms it is possible that its solution is a local optimum.

In Figure 3.16 the greedy solution and the optimal solution are shown. Both start at the top and try
to walk the path with the highest value. The path that they take is depicted in grey. The greedy search
algorithm only considers the next possible options and chooses the best from the set to walk towards.
This leads to a local optimum, because the greedy search algorithm first chooses to go down the right
towards the node with value 10 and this causes it to miss out on the node with the 100. The optimal
solution is reached by first going to the node with the value of 3 and then towards the node with a value
of 100.

With this example it is shown that the greedy search algorithm fails in finding the global optimum
if the optimal solution is a path where earlier nodes might have a worse value than later nodes. The
only way the greedy search algorithm reaches a global optimum is when the optimal solution path only
holds the optimal option for every step.
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Figure 3.16: It is possible that a greedy algorithm fails to maximize the sum of nodes along a path from the top to the bottom,
because it lacks the foresight to choose sub optimal solutions in the current iteration that will allow for better solutions later

(adapted from [61]).

Model Flowchart
The flowchart of the whole model, including the greedy search algorithm, is shown in Figure 3.17. On
top is the market model. This takes the needed data from online databases and papers to create future
time series data for the load demand, capacity and prices of different generation types. This data is
converted into a price signal with the use of the market model. Before this data is send to the battery
model the data is sliced into slices with the size of 1 day (24 data points for 1 hour each). The energy
arbitrage battery model uses this data with the parameter data that was sourced out of papers to create
the scheduling of the charging and discharging of the battery in order to maximize profit.

After that, the implemented greedy search algorithm is shown. The goal of the algorithm is to add a
battery of the size of 0.05MWh iteratively at the location in the grid, where it will cause the most amount
of congestion relief.

First the PTDF data of the case study network is loaded in and the load flow without any added
batteries (initial load flow) is loaded in. The battery dispatch (discharge and charge) data is combined
with the PTDF data and multiplied by the size of the added battery (0.05MWh). The created matrix
is a 3-dimensional matrix. The first dimension is a list of all the different bus bars in the network, the
second is a list of all the power lines and transformers and the third is a time series with the change in
power flow in every power line if the battery is added at bus bar x.

By adding the initial load flow to this, all the possible new load flows are determined. Then with the
use of the Power limits of the lines data, the new amount of congestion in the system is determined
for every possible load flow. Then the load flow with the lowest congestion is chosen. The algorithm
will run for 240 iterations. 240 was chosen, because the algorithm was not able to further reduce con-
gestion after 240 iterations. After every iteration the installed battery capacity, its location and total
congestion is logged and the next iteration will start. If the congestion level does not improve after an
iteration it means there is no longer any congestion that the energy arbitrage is able to improve upon
and the battery is placed in the HV/MV transformer station. The charging and discharging that occur
there are completely counteracted by the external grid, which acts as a slack and the power lines that
are between the HV/MV transformer station and the external grid have enough capacity to not become
congested. After all iterations are done the logged data is printed and the simulation is stopped.

Viability assessment of algorithm
The greedy search algorithm is able to approach the global optimum for the case study that is used
for this thesis. This is due to two factors: the topography of the grid as shown in Figure 2.2 and the
independence of dispatch scheduling of the energy arbitrage battery.

The power flow consistently moves in the same direction, originating from the external grids and
supplying the loads. This is because the network is radial and the generation capacity within the case
study network is not sufficient to surpass the local load demand. Consequently, the role of the battery
discharge is always focused on relieving congestion, while the battery charging increases the load on



3.3. Location and size optimization 26

Efffect of the battery
on the Load Flow per

busbar time series

Compare all options and
choose which possible

Load Flow results in lowest
congestion

P limit of every
power line and
transformers is

calculated

Create all Possible Load
Flows for next iteration

Extract Initial Load
Flow data

Start

Calculate the congestion
for every possible Load

Flow

Is there less congestion
compared to the last

iteration?Yes

No

End

Create future time
series for the

demand, capacity and
prices

Dutch Network 2018
data

Dutch Renewables
profiles 2018 data

Prediction data of
future capacity trends

of power sources

Prediction data of
future price trends of

power sources

Create a Price signal
with use of market

model

Battery Charge Time
Series

Battery Discharge
Time Series PTDF QDS load flow data

Log installed battery
capacity and total

congestion

Slice data with every
slice being the size of

1 day

Create Battery
dispatch data with

use of battery model

Market

Energy
Arbitrage Battery

Greedy search
algorithm

Make lowest congestion
option the initial load flow

for next iteration

Output the logged data

Battery parameter
data

Figure 3.17: Flowchart of whole model. On the top is the market flowchart in the middle the battery flowchart model and below
the greedy search algorithm flowchart.

the power lines.

The algorithm tries to optimize two things: the location and the size of the battery. For this case
study there is only one type of location that is the best location for the battery and that is the deepest
part of the radial line. This is because of the losses that occur over the power lines. Equation 6.1
shows a general equation for the power flow through a radial line in case the power always flows from
the outside grid towards the radial grid.

Powerflow = (1− FractionLine_loss) ∗ (DemandRadial − SupplyRadial) (3.9)
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• Powerflow: The amount of power that flows from the outside grid towards the radial line.
• FractionLine_loss: Fraction of power that is lost while the power is flowing from the external grid
towards the radial loads.

• DemandRadial: The demand of the loads in the radial line.
• SupplyRadial: The supply of the generator in the radial line.

The equation shows that the power flow decreases in case of higher line losses and when the sup-
ply on the radial line increases. The location with the highest amount of losses is the deepest parts of
the radial line, because the power needs to travel the furthest.
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Figure 3.18: Effect of greedy search algorithm iterations on congestion (Iter #, stands for iteration number #)

Figure 3.18 shows a simplified version of the effect multiple iteration of adding a battery on the
congestion of the network of the case study. To the left the effect of charging of the battery on the
congestion is shown and to the right the effect of discharging is shown. As explained earlier the dis-
charging of the battery has a positive effect on congestion, because it reduces the power flow through
the power line. As can be seen in the first iteration, the discharging battery reduces congestion and
the moment when the battery charges it does not cause congestion. In iteration 2 the charging causes
and the discharging relieves congestion. In this cause there is more relief of congestion compared to
caused congestion. In Iteration 3 the discharging does not relieve congestion and the charging only
causes congestion. In this case the algorithm would put the battery in the HV/MV transformer station
and it would not be taken into account for the end results. The scheduling of the discharging and charg-
ing of the battery does not change throughout the iterations. The effect of the battery on the power
flow also does not change if the battery capacity is placed in the same spot. This means that the algo-
rithm will always approach the optimum solution, because the algorithm will continue to add capacity
to the optimum locations until it does not help relieve congestion anymore. The solution will have a
0.05MWhmargin of error due to the size of the battery capacity that is added to the grid every iteration.

3.3.2. Reducing computation time
The algorithm encounters a significant amount of data, resulting in a slow performance (approximately
30minutes without reducing computational complexity for every year of the simulation). With 6 separate
years to look into this simulation, it would take 3 hours to obtain a set of results. This is especially too
long if the parameters are changed and the simulation needs to be done again.

The computation time increases as the algorithm incorporates more variables or encounters greater
complexity in the model. To mitigate this, it is necessary to streamline the computation process by fil-
tering the data. Specifically, data that is irrelevant to the objectives of this thesis such as data where
congestion is unlikely or non-existent, should be excluded. Only data points where the power is either
above or slightly below the power limit, indicating the potential for congestion, should be retained. In
cases where there is no power dispatched by the energy arbitrage battery, data points where the power
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is just below the power limit can also be filtered out. This results in the data set to become smaller.

Another variable that can be filtered is the potential locations for the placement of the battery. If it
considers all locations, it will also have to calculate the effect for battery placement for those locations.
As the network has radial lines, the changes in load flow that occur in one radial line has no effect on
other radial lines. Thus, the locations on radial lines with no occurrence of congestion are also not
considered for battery placement. Since there are only 2 of the radial lines with congestion, this leaves
only 2 radial lines.
In order to optimize the placement strategy, the algorithm selects positions that are farthest from the
external grids within the radial grid structure. As explained in the previous section, this is because
the grid is radial and the model takes line losses into account. When the demand is situated further
away from the external grid, more power needs to be injected into the radial network by the external
grid. By alleviating the load in distant areas, the external grid is required to supply less power to the
radial network compared to reducing demand in close proximity to the external grid. This means that
only considering nodes located at the end of a radial branch can further reduce computational time
while maintaining effective optimization. After filtering the input data and the considered locations, the
runtime of the algorithm was reduced to 3 minutes per year of simulation and thus its takes 18 minutes
instead of 3 hours to find the exact same set of results.



4
Congestion battery

For the congestion battery there is a congestion battery model that is modified in order to meet the
requirements for this thesis. First a short background on congestion relief batteries will be given in
Section 4.1. In Section 4.2 an example congestion relief battery is described. The way this example
congestion relief battery is altered in order to fit the requirements for this thesis is shown in Section 4.3.

4.1. Congestion relief background
As mentioned in Section 3.1.2, the battery will store excess electricity during periods of low demand
and release it during peak demand hours. By shifting the timing of electricity consumption, the battery
helps reduce the strain on congested grid infrastructure during peak periods.

The deployment of congestion relief batteries offers several benefits. First, it enhances grid reliability
and stability by alleviating bottlenecks and reducing the risk of voltage instability. Second, it promotes
the integration of renewable energy sources by storing excess energy generated during periods of high
renewable generation and releasing it when needed, effectively mitigating the intermittency of renew-
ables. Lastly, it enables more efficient utilization of existing grid infrastructure, potentially deferring
costly grid expansion or upgrades [62].

4.2. Powerfactory example model
In the Powerfactory manual there is an example of a congestion relief battery [63]. It measures the
power over a line and tries to reduce the power through the line when it exceeds a pre set level and
when the power through the line becomes lower than a certain level, the battery will start to store power.

In Figure 4.1 the control strategy of the generic battery is shown and in Figure 4.1 the related param-
eters of the model are shown. This battery is easily changed to a congestion relief battery by altering
the model.

The battery measures the amount of energy that moves in the opposite direction of the battery, over
the power line when the power of the battery is neglected. This is the Pline / red line. The Pline/ green
line shows the battery power that moves over a selected line in the direction away from the battery. As
can be seen in Figure 4.1 when the red line exceeds PStartStore the battery starts to store energy. The
amount that it stores is determined by how far along the value is between PStartStore and PFullStore

proportionally to how much the red line exceeds the PStartStore value. The opposite of this happens
when the red line goes lower than the PStartFeed value. Figure 4.1 also shows that when the red line
exceeds the PFullStore or PFullFeed values, the battery will hit its rated power limit and will cap its power.
In this case the battery will not be able to fully lower the congestion.

The flowchart of this battery as described in the Powerfactory manual is shown in Figure 4.2. First
the maximum available power for feeding (discharging), PFeed_limit, and storing (charging), PStore_limit,
is determined which are based on the available room inside of the battery.

29
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Figure 4.1: generic battery control strategy [63].

Table 4.1: Parameters of the congestion battery from the Powerfactory manual [63].

Then the operating region (feeding, storing or inactive) is decided with the use of decision blocks.
After which the corresponding PBatt is calculated. Subsequently it is checked if the PBatt exceeds the
maximum available power for feeding or storing. The lowest of the two will be set as the new PBatt.
This way the battery will not exceed the SOCmin and SOCmax limits. Finally, the new SOC value is
calculated by converting the PBatt value into the amount of SOC change the battery will cause and
adding it to the previous SOC value.

The power in the case study network flows only in one direction. This is in the direction towards the
congestion battery. In order to lower the maximum amount of congestion it should always be ready to
discharge and should fill its battery whenever is possible while not causing congestion. This means
it should try to increase the power through the line when there is no congestion up to the congestion
amount. Thus, the inactive region from the battery should be removed. Also, the battery model as-
sumes that the battery has 100% efficiency, that there are no line losses and that it is located directly
next to the congestion causing line.

4.3. Final congestion relief battery
Figure 4.3 shows the flowchart of the altered version of the congestion relief battery. As can be seen the
inactive region part of the flowchart is removed. Also instead of using PStartStore, PStartFeed, PFullFeed

and StartStore, only Pcongestion_limit is used as a coordinate in order to make it more easy to read.
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Figure 4.2: Flowchart of how PBatt and the SOC value are determined for one time slot by the battery model described in the
Powerfactory manual

In addition to that, the direction of the power flow is assumed to go towards the battery, which is
in line with the case study. Lastly, the efficiency of the battery and the PTDF value are included. The
efficiency is the ability to convert power into stored energy and vice versa.

The battery is sized and located the same as the energy arbitrage battery, while also having the
same parameters as the energy arbitrage battery. This way the two services will be able to be com-
pared.
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Figure 4.3: Flowchart of the improved congestion relief batter of how PBatt and the SOC value are determined for one time
slot.



5
Results

In this chapter the results of the simulations are explained. First the case study is explained in Section
5.1. Secondly the results for the traditional reinforcement is shown in Section 5.2. Next the results of the
energy arbitrage battery cases are shown in Section 5.3 and after that the results for the congestion
battery are shown in Section 5.4. Lastly, the research questions will be answered and discussed in
Section 6.1.

5.1. Case Study
In order to determine the effectiveness of energy arbitrage batteries a case study had to be chosen.
The case study had to have its own congestion that was high enough to warrant traditional reinforce-
ment as well. With this the energy arbitrage battery effectiveness in congestion relief will be able to be
compared to traditional grid reinforcement.

The location that was chosen was a MV grid in North Rotterdam, a Medium Voltage (MV) network,
operating at 23 kV and consisting of various components, including traditional generators, renewable
energy sources such as wind farms and solar fields, multiple transformers, external grids, and numer-
ous loads. While the network layout appears meshed, the presence of multiple open circuit breakers
in Figure 5.1 indicates a practical configuration of five radial lines. Congestion will start to occur in the
network from 2036 onward.

5.2. Traditional reinforcement
For the traditional reinforcement only, the lines need to be replaced with new ones. The full QDS needs
to be run in order to find the location of the congestion. Normally replacing a power line would cause a
change in the load flow, which could cause new congestion in another part of the network. This is not
the case for this network, because this network is radial. In total there are 3 lines where congestion
occurs, which are shown red in Figure 5.1. As can be seen there is one congested line in Radial line 2
and two in Radial line 3. All three are old PILC cables. Their geographical locations are shown in Figure
5.2. Figure 5.2a being the geographical location of the red congested lines to Radial line 3 in Figure 5.1
and Figure 5.2b is the congested line of Radial line 2. For the other cables there is no reinforcement
needed. In Radial line 4 and 5 the congestion peaks at 6% of total capacity and for Radial line 1 it is
30%. The non congested cables in Radial lines 2 and 3 peak at 60% and 65% respectively in 2050.

The lines of Figure 5.2a have a power limit of 7.6 MW and its peak load is 8.355 MW (0.775 MW
overshoot). The two congested lines combined are 2.186 km long. With 350 €/m this results in an
investment cost of 0.765 million Euros. The other congested cable has a max power limit of 8.142 MW
and a peak load of 11.4 MW (3.258 MW overshoot) and is 6.4 km long, which results in an investment
cost of 2.24 million Euros. This results in a total of 3.005 million Euros.

By investing in this reinforcement of the grid, the power through the lines will not reach congestion
limits in 2050. This means there will be no need for reducing the load with the use of curtailment or
other methods. Flexibility will therefore be less needed inside the case study network.

33
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Figure 5.1: Case study network

Figure 5.2: Geographical representation of congested lines [10].

5.2.1. Ground data
The ground in which all the power lines lay is the same. Figure 5.3 shows the ground data profile of
the region. The dark blue and orange layers are clay regions and the yellow and light blue are sand
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layers. As explained in Chapter 2 it is preferable that the congestion line is put in a clay layer because
of its heat diffusing properties. These heat diffusing properties become even better when the wire is
submerged in water/wet soil.

Figure 5.3: Ground data profile of the case study region [10].

While the ground type does not change in the region, the ground water level does change. With the
data obtained from Geographic Information Rotterdam (GIS) [11] it was found that north of the highway
the water level was 1.8 m below the ground minimum and south of the high way the water level never
goes under 1.1 m. The locations of the water depth meters in the region are shown in Figure 5.4.

Figure 5.4: Location of Water depth meters [11].

Table 5.1 shows that the 3x1*400 AL XLPE 18/30 trefoil will give the highest possible power limit.
This can be achieved for both lines by putting the wires in the clay layer at 1.8 meters deep. Since the
price of the individual cables does not affect the total price of reinforcing the cables, the 3x1*400 AL
XLPE 18/30 trefoil was chosen as best cable to reinforce the network with.

5.3. Energy arbitrage battery
The energy arbitrage battery will be applied to two different cases. First the optimally located and sized
battery installation will be applied and that will be compared with the case where the optimal size of
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Replacement cable candidate P limit in wet clay P_limit in dry clay
3x1*240 AL XLPE 18/30 trefoil 10465 8740
3x1*240 AL XLPE 18/30 flat 10810 8855
3x1*400 AL XLPE 18/30 trefoil 13110 10810
3x1*400 AL XLPE 18/30 flat 12880 10465

Table 5.1: Power limits of candidates for upgrading the congested lines.

the battery of the previous case is distributed evenly over the solar farms inside of the grid. Radial
line 1 and 2 have 1 solar farm each, Radial line 3 has 14 solar farms and Radial lines 4 and 5 have 2
solar farms each. The total installed capacity for every case will be the same as the size of the optimal
solution of the Optimal Location and Size case. This is in order to compare the effects of the different
battery and localization strategies.

5.3.1. Case: Optimal Location and Size
In this case the algorithm has decided where to place the battery capacity and also how much. Each
step of the algorithm was 0.05 MWh capacity. Thus, the resulting capacities on the locations have a
0.05 MWh margin of error. The results of the optimal location and size case are given for the 50 % and
no SOC setpoint constraint cases. As shown in Section 3.2.4, the constraint case will yield a higher
profit compared to the 50% SOC setpoint constraint. Table 5.2 shows the results for the unconstrained
case and Table 5.3 shows the results of the 50% SOC setpoint constraint. Both tables are structured
the same:

• Initial Congestion: This is the congestion in the network without the introduction of a battery.
• New Congestion: This is the congestion after the battery has been placed inside of the network.
• Percentage reduced congestion: This is the percentage of congestion that has been lowered. For
example, if the initial congestion is 4 MWh and the new congestion is 3 MWh then the Percentage
reduce congestion will be 25%.

• The 3 rows below that hold the same type of data except it is for the number of hours where
congestion occurs.

• Radial line 2 battery size: This shows the amount of battery capacity installed on the end of radial
line 2. This location is the right most light blue block in Figure 5.1.

• Radial line 3 battery size: This shows the amount of battery capacity installed on the end of radial
line 3. This location is the left most light blue block in Figure 5.1.

• Total price of battery: Costs of the total installation of the battery capacity.
• Curtailment costs: This is the amount of money it would cost to reimburse consumers in case load
shedding is applied in order to eliminate the remaining congestion after the battery placement.
The cost is determined by multiplying the remaining congestion with its correlating energy price.
Thus the curtailment cost is the monetary value of the congestion causing energy.

From Tables 5.2 and 5.3 it is clear that the no constraint case is the better option. The percentage
of congestion that is lowered is always higher for the no SOC setpoint constraint case. Only in 2036
the level of congestion reduction is higher for the 50% SOC setpoint constraint case. This can be ex-
plained by the fact that there is very little congestion in 2036, thus the scheduling of the battery has
an increased importance. So the high percentage reduce congestion value for 2036 occurs, because
of coincidence. This problem does not occur in later years, because of the increase in hours when
congestion occurs and the law of large numbers.

The algorithms goal is to reduce the amount of congestion and not the number of times congestion
occurs in the system. As explained in Figure 3.18 during its iterations the algorithm is capable of reduc-
ing the number of times congestion occurs, but it is also possible it will increase it instead. As shown in
Tables 5.2 and 5.3, the hours when congestion occurs also lowers with the use of the energy arbitrage
battery for both cases. While the 50% SOC setpoint constraint starts off with relieving 30% hours of
congestion in 2036, it lowers through the years until it reaches 10 % in 2050. The hours of congestions
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Year 2036 2038 2040 2042 2045 2050
Initial Congestion [MW] 5.84 95.71 244.08 395.27 525.20 716.52
New Congestion [MW] 3.54 77.57 193.95 331.12 436.65 605.3
Percentage reduced congestion [%] 39 19 21 16 17 15
Initial hours of congestion [h] 24 204 343 442 494 596
New hours of congestion [h] 17 156 280 378 428 537
percentage hours less [%] 29 24 18 14 13 10
Radial line 2 battery size [MWh] 4.25 4.25 6.5 6.5 6.8 7.5
Radial line 3 battery size [MWh] 0 0 0 0 0 1.15
Total price of battery [€] 807,500 807,500 1,223,750 1,223,750 1,274,750 1,515,000
Yearly curtailment costs [€] 267.62 5,212.7 12,858.89 21,688.36 28,513.25 39,465.56

Table 5.2: Results of the Optimal location and sizing. For the case when the battery uses the 50% end of day setpoint
constraint which was discussed in Section 3.2.4

Year 2036 2038 2040 2042 2045 2050
Initial Congestion [MW] 5.84 96 244.08 395.27 525.2 716.52
New Congestion [MW] 4.66 75.3 186.7 292 384 522
Percentage reduced congestion [%] 20 21 24 26 27 27
Initial hours of congestion [h] 24 204 343 442 494 596
New hours of congestion [h] 17 147 245 312 346 433
percentage hours less [%] 29 28 29 29 30 27
Radial line 2 battery size [MWh] 2 4.15 6.95 8.05 10 10.65
Radial line 3 battery size [MWh] 0 0 0 0 0 1.15
Total price of battery [€] 380,000 777,750 1,281,750 1,479,750 1,711,250 1,829,000
Yearly curtailment costs [€] 352.3 5,060.16 12,378.21 19,126 25,075.2 34,034.4

Table 5.3: Results of the Optimal location and sizing. For the case when the battery has no SOC end of day setpoint constraint,
which was discussed in Section 3.2.4

in the unconstrained case stay relatively stable around 29%.

This does come at a cost, because the amount of battery capacity that needs to be added to the
network in order to hit the maximum congestion relief for the unconstrained case is higher than the
constrained case. The unconstrained case has around 30% more battery capacity for most years, but
it has 50% better performance in reducing congestion. This means that the extra investment is worth
it.

(a) (b)

Figure 5.5: a) Shows the average distribution of battery and congestion of the time period 2020 - 2050 on a single day for the
50% SOC setpoint constraint. b) Shows the same, but for the unconstrained case.

Figure 5.5 shows the distribution of the charge and discharge scheduling of the battery and the
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congestion. The two sub figures are very similar. To the left is the constrained case and to the right is
the unconstrained case. Due to the 50% SOC setpoint the battery sometimes needs to make last hour
corrections in order to reach the 50% SOC value at 24:00 o’clock. This results in the mixed charge
and discharge amount at the last hour in Figure 5.5a. And because it starts at 50% SOC it is able to
immediately discharge in case the early hours have cheap energy, which is also easy to see in the left
of the figure. The unconstrained case is able to prioritize discharging all of its stored energy during the
high demand times (16:00 - 22:00 o’clock). This explains why the unconstrained case preforms better.

Sensitivity analysis
Figure 5.6 shows how the congestion changes as the amount of installed battery capacity of the algo-
rithm changes for both cases. As can be seen, the congestion reduces as more battery capacity is
added. After it found its optimal solution the congestion did not change anymore, because when the
algorithm is not able to find a congestion reducing choice it will place battery capacity at the HV/MV
substation, because there the charging and discharging will be absorbed by the external network, thus
it will not cause any congestion. The installed battery capacity where the lowest amount of congestion
is found, is represented in Figure 5.6 by blue dots. Also in Figures 5.6a&b it is easy to see that the
unconstrained case has better results.

(a) (b)

Figure 5.6: Figures a and b are both plots showing the effect of increasing the amount of installed battery capacity. The battery
capacity is placed according to the algorithm. a) 50% SOC setpoint constraint case. b) unconstrained case.

(a) (b)

Figure 5.7: Sensitivity of the total congestion to changes in timing of the charging and discharging. In the positive direction it
means that the charging and discharging happens one hour later, than the battery model decided. a) 50% SOC setpoint

constraint case. b) unconstrained case.

Figure 5.7 shows, that when the scheduling of the energy arbitrage battery is changed, the conges-
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tion is changed as well. It is interesting to note that the level of congestion relief is similar to the non
changed case if the scheduling is changed by 12 hours. This can be explained by looking at Figure
5.5. For both cases there is a peak in discharge power between 17h and 21h and the other peak is
between 5h and 9h. Between these two peaks there is exactly 12 hours and thus this secondary peak
of discharging is reason for the relatively low congestion level on the sides of Figures 5.7a& b. The
congestion level does not become lower than the congestion level in the middle of the figures. In this
section it was shown that the 50% SOC setpoint constraint causes the congestion to worsen. So for
the next cases, only the unconstrained results will be shown, but for those interested, the 50% SOC
setpoint constraint cases of the Solar farm batteries and congestion relief cases are shown in Appendix
A.

5.3.2. Case: Solar farm batteries
In this case the same total battery capacity that was determined by the energy arbitrage algorithm was
evenly distributed over the solar farms. This way the Solar farm batteries case can be easily compared
to the Optimal Location and Size case. The rationale behind distributing battery capacity among so-
lar farms is rooted in their suitability as potential battery installation sites. Solar farms are a probable
choice due to their inherent volatility in energy production. Batteries can effectively store surplus en-
ergy generated by solar farms and release it when needed, thereby enhancing the overall efficiency of
solar installations.

When the battery capacity from the optimal battery size is distributed over the solar farms, it is shown
that the effect of the energy arbitrage is ineffective for this case study. This is because the batteries
are mainly placed in radial lines that have no congestion as can be seen in Figure 5.1. For the solar
farm installations inside of the grid. Radial line 1 and 2 have 1 solar farm each, Radial line 3 has 14
solar farms and Radial lines 4 and 5 have 2 solar farms each. The congestion mainly occurs on Radial
line 2 and not on Radial line 3. The congestion in Radial line 3 only occurs in 2050. This means that
unlike in the previous case, the battery installations will almost solely cause congestion.

Year 2036 2038 2040 2042 2045 2050
Initial Congestion [MW] 5.84 96 244.08 395.27 525.2 716.52
New Congestion [MW] 5.67 93.2 236.64 382.57 510.32 716
Percentage reduced congestion [%] 2.77 2.6 3 3.2 2.8 0.03
Initial hours of congestion [h] 24 204 343 442 494 596
New hours of congestion [h] 24 199 331 433 486 590
Percentage hours less [%] 0 2.51 3.32 2.08 1.65 0.85
Radial line 2 battery size [MWh] 0.11 0.22 0.37 0.42 0.53 0.62
Radial line 3 battery size [MWh] 1.47 3.06 5.12 5.93 7.37 8.69
Total price of battery [€] 380,000 777,750 1,281,750 1,479,750 1,711,250 1,829,000
Yearly curtailment costs [€] 441.5 6,444.48 16,148.69 25,901.32 34,295.56 51,534.08

Table 5.4: Results when battery capacity is evenly distributed over all solar farm locations. No SOC setpoint constraint

Table 5.4 shows that in 2036, 2038, 2040 and 2045 the total congestion and total hours of conges-
tion both are reduced by around 3 percent. From 2050 onward the helpfulness of the battery installation
is reduced. This is because, the increased load flow, that is caused by the charging of the batteries on
Radial line 3, did not exceed the congestion limits until then. In the years before that, the only battery
that had an effect was the single battery on Radial line 2.

Sensitivity analysis
Figure 5.8a shows the sensitivity of the congestion to changes in the installed battery capacity. The
blue circles show the chosen data points for the data from Table 5.4. The orange circles represent the
maximum useful capacity for each respective year. If the installed capacity surpasses this threshold,
the cumulative installations would exacerbate congestion instead of alleviating it. As can be seen the
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(a) (b)

Figure 5.8: a) Sensitivity of the congestion to changes in the installed battery capacity. The blue circles show the chosen data
points for the data from Table 5.4. The orange circles represent the maximum useful capacity for each respective year. If the
installed capacity surpasses this threshold, the cumulative installations would exacerbate congestion instead of alleviating it. b)

Sensitivity of the congestion to changes in the scheduling of the discharging and charging.

Year Maximum useful
capacity limit

2036 13.8
2038 16.6
2040 16.7
2042 15.8
2045 14.3
2050 11.9

Table 5.5: Maximum useful capacity per year

result of 2050 is very close causing congestion, due to its proximity of the blue and orange circles.
It is interesting to note that the maximum useful capacity becomes smaller as time goes on. The in-
creasing demand throughout the years causes the power flow to come closer to the congestion limit.
Thus, the threshold of charging power that is needed to reach the congestion limit is decreased as well.

In the years 2036 and 2038, the maximum useful capacity value is lower compared to that of 2040.
This can be seen in Table 5.5. This disparity arises due to the greater influence of the battery on Radial
line 2 during the earlier years. As this battery reaches its maximum useful capacity earlier than the
batteries on Radial line 3, it leads to a reduction in the overall maximum useful capacity. However, in
subsequent years, the impact of the single battery on Radial line 2 becomes less significant.

Figure 5.8b shows that changing the scheduling of discharging and charging will have a much lower
effect compared to the optimal location and size case. From this it can be determined that by evenly
distributing the battery capacity over the solar farms, the battery installation has an negligible effect on
congestion, if its capacity is lower than the maximum useful capacity limit and if the capacity is higher
than that it will start to cause congestion.

5.4. Congestion relief battery
The congestion relief battery is effective in reducing the congestion in the network. It retains this ef-
fectiveness from 2036 (99.6% congestion relief) up to 2050 (94% congestion relief) as can be seen in
Table A.2. It is also more effective at reducing the number of hours where congestion occurs compared
to the last two cases. This is because the congestion relief battery is not bound to a strict schedule
for when to start discharging or charging. Due to this it is possible for the congestion relief battery to
evade charging its battery in case its charging could cause congestion.
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Year 2036 2038 2040 2042 2045 2050
Initial Congestion [MW] 5.84 96 244.08 395.27 525.2 716.52
New Congestion [MW] 0.03 5.7 6.93 18.69 19.07 41.5
Percentage reduced congestion [%] 99.6 94 97 95 96 94
Initial hours of congestion [h] 24 204 343 442 494 596
New hours of congestion [h] 2 21 26 45 42 63
Percentage hours less [%] 92 90 92 90 91 90
Radial line 2 battery size [MWh] 2 4.15 6.95 8.05 10 10.65
Radial line 3 battery size [MWh] 0 0 0 0 0 1.15
Total price of battery [€] 380,000 777,750 1,281,750 1,479,750 1,711,250 1,829,000
Yearly curtailment costs [€] 2.27 383.12 459.54 1,223.59 1,245.62 2,705.68

Table 5.6: Results for congestion relief

5.4.1. Sensitivity analysis
Figure 5.9 shows the sensitivity of the effectiveness of the congestion relief battery to the amount of its
installed capacity. It shows that through the years it keeps taking more capacity in order to reduce the
congestion to 0. Which is to be expected because of the increasing congestion through the years.

Figure 5.9: Sensitivity of congestion to installed congestion relief battery capacity.

5.5. Comparison
Figure 5.10a shows two important comparisons between the 3 cases. The installed capacity for these
cases are equal to the optimally sized and located arbitrage battery. This way the different battery
services are easy to compare.

Figure 5.10a & b show the difference in effectiveness in reduced congestion between the 3 cases.
As can be seen the congestion relief battery is very effective and its results stay relatively stable at
around 95%. The results for the arbitrage solar farm case show that it only has a small positibe effect
on the congestion until the last year where it slightly worsens. This is due the energy arbitrage battery
approaching the maximum useful capacity limit. Lastly the energy arbitrage that is optimally sized and
located. This case increases in effectiveness as the years go on. This is caused by the increasing
congestion. The congestion peak shown in Figure 5.5b will increase in size. Not only in amplitude, but
also in its wideness. Consequently, the likelihood of congestion arising while the battery is discharging
increases.
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(a) (b)

Figure 5.10: a) Percentage of congestion relief over the years. b) Amount of energy that is remaining the congestion limit after
the batteries have been introduced and thus this needs to be curtailed.



6
Conclusion and future work

Within this chapter, conclusions are derived from both the case study findings and the conducted re-
search, thereby providing insights to address the research questions. After that, possible future work
will be discussed.

6.1. Research questions
RQ1 - How can a strategically placed battery that uses energy arbitrage be used to relief conges-
tion?
An energy arbitrage battery discharges when there is a high price and charges when there is a lower
energy price. The price fluctuates throughout the day, but it has a repeating pattern. The congestion
inside of the grid also follows a pattern. These patterns are shown in Figure 6.1.

Figure 6.1: Comparison of discharge and charge scheduling distribution with the Congestion distribution.

As can be seen the congestion overlaps with the discharge times of the energy arbitrage battery. By
placing the batteries in a location where, when the battery discharges, the congestion on a congested
line reduces, it will result in the energy arbitrage battery having a net positive effect. For the case
study, the congestion is reduced by 20% in 2036 and this beneficial effect progressively amplifies over
the years, culminating in a 27% reduction in congestion relief by the final year, 2050. This increase
in effectiveness is causes by the increase in congestion. As illustrated in Figure 6.1, the congestion
peak expands not only in magnitude but also in duration. Consequently, the probability of congestion
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coinciding with battery discharges rises..

RQ2 - What is the most effective location to add a battery in order to relieve congestion?
For this case study there is only one type of location that is the best location for the battery and that is the
deepest part of the radial line. This is because of the losses that occur over the power lines. Equation
6.1 shows a general equation for the power flow through a radial line in case the power always flows
from the outside grid towards the radial grid.

Powerflow = (1− FractionLine_loss) ∗ (DemandRadial − SupplyRadial) (6.1)

• Powerflow: The amount of power that flows from the outside grid towards the radial line.
• FractionLine_loss: Fraction of power that is lost while the power is flowing from the external grid
towards the radial loads.

• DemandRadial: The demand of the loads in the radial line.
• SupplyRadial: The supply of the generator in the radial line.

The equation shows that the power flow decreases in case of higher line losses and when the sup-
ply on the radial line increases. The location with the highest amount of losses is the deepest parts of
the radial line, because the power needs to travel the furthest.

RQ3 - How do the most preferred location for the grid operator and the battery owner differ?
The grid operator prefers placing batteries at the end points of radial lines, while solar farm owners are
the probable candidates for battery ownership. Given the volatility of solar farm energy production, it’s
highly likely that solar farm owners would possess batteries as well. These batteries are then placed
next to or on the solar farm. This allows them to store excess energy generated by their solar farms for
later use, leading to improved efficiency in their energy systems. As can been seen in Table 5.4, the
energy arbitrage service is very ineffective in relieving congestion if the capacity is spread out over the
solar farms.

RQ4 - How does battery storage compare to reinforcement of the grid when it comes to adding
flexibility to the grid?
Energy system flexibility is the ability to adjust supply and demand to achieve the matching of supply
and demand. Through the implementation of traditional grid reinforcement, the power cables’ limits will
not be reached within the simulated timeframe. The three outdated congested PILC cables in the case
study network will be replaced with modern XLPE cables, leading to the peak power flow only reaching
87% of the congestion limit. Consequently, there is no longer need for quick reaction in order to reduce
congestion inside of the grid. This means that the further need for flexibility is reduced in the case study
network until 2050 at least. However it is not eliminated, because of the increase in solar power in the
grid. This will introduce quick changing power flow. The increase in capacity of the power cables will
not help in handling quickly changing supply and demand.

Both supply and demand can be adjusted with the help of batteries with the use of discharging and
charging of the battery. Figure 5.9 shows that with the use of the congestion relief battery it is possible
to completely eliminate the congestion in every year, if it has enough capacity installed. This means
that the congestion relief battery is able to perform the flexibility task of the reinforcement option and
because it is a battery, it is able to quickly react to power changes on solar farms. Hence, batteries
offer greater flexibility to the grid compared to traditional reinforcement methods. However, to fully
capitalize on this advantage, the battery’s positioning and capacity are crucial. An ideal location should
be chosen, and an appropriate capacity must be allocated for a significant impact. For instance, in the
solar farm battery case, improper battery placement lead to congestion if the capacity became to big,
while an inadequate capacity might result in negligible effects, as seen with the small battery in Radial
line 2 in the solar farm batteries case.
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RQ5 - How much better is a congestion relief service providing battery at relieving congestion
compared to the battery that uses energy arbitrage.
In order to make an equal comparison the total capacities of all battery options are kept the same as
the Optimal location and size case with the unconstrained SOC setpoint of the energy arbitrage option.

Figure 5.10a shows the difference in congestion relief. It is clear that the congestion relief battery
performs around 4 times better compared to the optimally located and sized version of the energy
arbitrage battery. For the solar farm batteries case the results show that it is ineffective at reducing
congestion.

RQ6 - To what extent will load curtailment be needed, when batteries are introduced to the sys-
tem instead of reinforcing the grid?
Curtailment will be needed in case energy arbitrage batteries are used. This is due to the batteries not
prioritizing lower congestion. While it is able to reduce congestion on certain hours of the day, namely
the hours when it is decided that it will start to discharge. For this case, load curtailment becomes
necessary to reduce congestion to the cable’s limit. In the case of the optimally sized and located
option, in 2036, a curtailment of 80% of the initial congestion is required. This curtailment decreases
over the years, reaching 73% by 2050. In contrast, for the solar farm battery case, curtailment of 97%
is necessary, with the exception of 2050 where it reaches 99%.

In contrast to energy arbitrage batteries, congestion relief batteries possess the potential to com-
pletely eradicate congestion when equipped with sufficient capacity. If the total installed capacity
matches that of the optimally sized and located energy arbitrage battery, the congestion relief battery
only needs to curtail approximately 5% of the initial congestion.

6.2. Final thoughts
Through this research it is possible to say that energy arbitrage batteries are able to be used in a net
positive way. The most important part for this is the location. In the case of the radial grid, the con-
gestion causing cable should be in between the energy arbitrage battery and the external grid and the
congestion should be large enough. If the congestion in the line is very small, it could result in more
congestion when the energy arbitrage battery is large enough as could be seen in the solar farm case.

However, while energy arbitrage batteries can offer a positive impact, relying solely on them as a
solution is insufficient; they necessitate support from complementary technologies such as load curtail-
ment, for instance.

6.3. Future work
While this study has provided valuable insights into the effectiveness of energy arbitrage batteries as
congestion relief batteries, several openings for future research remain unexplored.

Due to a lack of data it was not possible to model the intra-day market. This resulted in a relatively
simple market model, that could be improved upon in order to make it more realistic. With the current
market model the price could stay constant for multiple hours in a row, which is not representative of
the real energy market.

As explained in Section 5.5 the effectiveness of the energy arbitrage battery increases throughout
the years due to the increasing congestion. If the simulation data goes further into the future, it can be
found how much more effective the battery can become or if the effectiveness starts to degrade early
after the year 2050.

In this thesis, multiple different options for congestion relief are looked into and compared. An inter-
esting possible future research direction will be researching what the optimal mix will be of traditional
reinforcement, energy arbitrage, congestion relief or curtailment.
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The network of the case study is fully radial. This made finding the optimal location in the network
simple. It will be interesting to look into how the results will change if the network were to be meshed.
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A
50% SOC setpoint constraints cases

results

A.1. Case: Solar farm batteries

Year 2036 2038 2040 2042 2045 2050
Initial Congestion [MW] 5.84 96 244.08 395.27 525.2 716.52
New Congestion [MW] 5.8 95.8 243.93 395.08 525.1 724.68
Percentage reduced congestion [%] 0.7 0.1 0.06 0.05 0.01 -1.14
Initial hours of congestion [h] 24 204 343 442 494 596
New hours of congestion [h] 23 200 336 438 492 592
Percentage hours less [%] 4.35 2 1.79 0.9 0.4 0.5
Radial line 2 battery size [MWh] 0.22 0.22 0.34 0.34 0.36 0.46
Radial line 3 battery size [MWh] 3.08 3.08 4.76 4.76 5.04 6.37
Total price of battery [€] 807,500 807,500 1,223,750 1,223,750 1,274,750 1,515,000
Yearly curtailment costs [€] 438.48 6,410.88 16,165.27 25,861.37 34,285.77 46,661.03

Table A.1: Results when battery capacity is evenly distributed over all solar farm locations. 50% SOC setpoint constraint

A.2. Case: Congestion relief battery

Year 2036 2038 2040 2042 2045 2050
Initial Congestion [MW] 5.84 96 244.08 395.27 525.2 716.52
New Congestion [MW] 0 7 10 40 70 130
Percentage reduced congestion [%] 100 92 96 90 87 82
Initial hours of congestion [h] 24 204 343 442 494 596
New hours of congestion [h] 0 25 35 81 130 214
percentage hours less [%] 100 88 90 82 74 65
Radial line 2 battery size [MWh] 4.25 3.9 6.5 6.4 6.8 7.5
Radial line 3 battery size [MWh] 0 0 0 0 0 1.15
Total price of battery [€] 807,500 807,500 1,223,750 1,223,750 1,274,750 1,515,000
Yearly curtailment costs [€] 0 470.4 663 2,620 4,571 8,476

Table A.2: Results when battery is a congestion relief battery and uses the battery distribution of the Case: Optimal Location
and Size
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