
SURFACE CODE ERROR CORRECTION DURING
LOGICAL OPERATIONS

SURFACE CODE ERROR CORRECTION DURING
LOGICAL OPERATIONS

Master’s Thesis

To obtain the degree of Master’s in Science
at the Delft University of Technology, the Netherlands

by

Zherui WANG

Student Number: 5570352

Thesis Committee: Dr. Barbara M. Terhal, Thesis Supervisor

Dr. David Elkouss Coronas

Dr. Maximilian Rimbach-Russ

ABSTRACT

Surface codes have become a leading method for quantum error correction (QEC) and
play a pivotal role in the realization of fault-tolerant quantum computing. However,
while the execution of more quantum error correction cycles can potentially protect
the quantum information for longer time, an excess can potentially slow down com-
putation and increase errors in idling logical qubits. This dissertation addresses this
challenge by focusing on the optimization of rounds of QEC cycles for two important
scenarios: lattice surgery and moving logical qubits. Theoretical upper bounds for de-
coding failure are derived for these settings, providing insights into the required number
of QEC cycles for successful decoding. Numerical experiments are conducted to support
and validate these theoretical findings, emphasizing the necessity of additional QEC cy-
cles to ensure reliable stabilizer measurement outcomes, particularly in lattice surgery
and logical qubit movement. Furthermore, the research investigates the fault-tolerant
and proper order of syndrome measurements within each QEC cycle for square surface
codes. The order of these measurements is shown to have a significant impact on logical
error rates. Additionally, methods for constructing detectors under code and stabilizer
deformation are introduced, facilitating accurate tracking of error syndromes.

v

ACKNOWLEDGEMENTS

I feel incredibly fortunate to have spent my years as a master’s student at TU Delft sur-
rounded by such remarkable individuals. I would like to express my sincere appreciation
to all the wonderful people who have contributed to my learning and personal growth
during this time, particularly those I mention here.

First and foremost, I would like to express my deepest gratitude to my supervisor,
Barbara M. Terhal. Every discussion with her has been incredibly valuable and inspiring.
I am grateful for her unwavering dedication to academia, her patience, and her insightful
perspectives. I also appreciate the time and effort she spent in my thesis project, as well
as her guidance in both academic and personal matters. I would also like to thank David
Elkouss Coronas and Maximilian Rimbach-Russ for being my committee.

Being a part of the Terhal Group has been an extraordinary experience, and I am
grateful to everyone in the group. Thank you, Yaroslav, Mac, Maarten, Boris, Yang, and
Marc, for your help and stimulating discussions related to my thesis. I am also apprecia-
tive of the wonderful talks you delivered during our journal club meetings. Our memo-
rable hiking adventures will always hold a special place in my heart.

I would like to express my gratitude to Jordi Tura i Brugués for being as my supervisor
for the Casimir project. I am thankful for the guidance and support provided throughout
the project. I would also like to thank Yash and David for the fruitful meetings we had.
The discussions and insights shared during those meetings were valuable in shaping my
research. My time in Leiden has brought me great joy, and I am grateful for the expe-
riences and opportunities I had during that period. I would like to extend my thanks
once again to David Elkouss Coronas for providing me with the opportunity to have an
internship in Japan. I am now very excited about our future project.

I would like to express my gratitude to my friends from the basically group: Adria,
Alvaro, Casper, Cornelius, Jane, Katerina, Ksusha, Liselotte, Marc, Mare, Matteo, Mick,
Monika, Wouter, and Zarije. Your friendships have been a source of joy, and I cherish
every moment we have spent together. I am grateful for the positive and energetic at-
mosphere you have all brought into my life, and I have learned a great deal from each of
you.

I would also like to extend my thanks to my roommates at Prof. Schermerhornstraat
93: Haitao, Yitong, Yuxing, Ketong, and Yifei. Your accompany and the delicious home-
made Chinese food we shared during every Chinese festival have been greatly appreci-
ated.

To my fellow peers in the Applied Physics Master program at TU Delft, including
Bokai, Dingshan, Duiquan, Jianyao, Jinlun, Luozhen, Mingshen, Siyu, Tianyin, Xiaoxian,
Xiaoyu, Xinru, Yining, Yunzhe, Yuejie, Yudi, Yuning, Yaozu, and Zenghui, I extend my
gratitude. Our time together, whether it was on trips or gathering at Chinese restaurants,
has been memorable. I am thankful for the fruitful scientific discussions we have had
throughout these two years.

vii

viii ABSTRACT

Finally, I would like to express my heartfelt appreciation to my family. Your unwaver-
ing support and love have been the foundation of my journey. I am also deeply grateful
to my girlfriend, Jinlun, for her love and encouragement. Without you, I would not have
had the opportunity to accomplish what I have. I am at a loss for words to express my
love and gratitude to all of you.

CONTENTS

Abstract v

Acknowledgements vii

1 Introduction 1
1.1 Quantum error correction. 1

1.1.1 Modelling quantum noise . 1
1.1.2 Stabilizer formalism . 4

1.2 Surface code . 6
1.2.1 Definition . 6
1.2.2 Error detection. 7
1.2.3 Quantum error correction cycles. 8
1.2.4 Creating logical qubits . 8
1.2.5 Logical qubit initialization and measurement 8

1.3 Research motivation . 9

2 Decoding the surface code 11
2.1 Decoding problem . 11

2.1.1 Detectors and syndrome defects 11
2.1.2 Defects and error edges in spacetime 13

2.2 Decoding algorithms . 14
2.2.1 Minimum-Weight Perfect Matching 15

2.3 Improved stabilizer measurement circuits 17
2.3.1 Proper stabilizer measurement circuits 17
2.3.2 Fault-tolerant stabilizer measurement circuits 19
2.3.3 Comparative analysis of two syndrome measurement types 23

3 Fault tolerant universal quantum computing 25
3.1 Lattice surgery . 25

3.1.1 Standard lattice surgery . 26
3.1.2 Universal gate with lattice surgery 28
3.1.3 Plain surgery . 28

3.2 Magic state . 29
3.3 Transversal logical S gate . 30

4 Optimizing rounds of quantum error correction cycles 33
4.1 Constructing detectors under code and stabilizer deformation 33

4.1.1 Code deformation . 33
4.1.2 Stabilizer deformation . 35

ix

x CONTENTS

4.2 Decoding lattice surgery . 36
4.2.1 Theory . 37
4.2.2 Simulation . 40

4.3 Decoding logical qubit movement . 43

5 Conclusion 47

Bibliography 51

6 Appendix 53

1
INTRODUCTION

1.1. QUANTUM ERROR CORRECTION
Quantum computing holds great promise, but a key challenge stands in its way: quan-
tum systems are remarkably sensitive to errors. These errors could be triggered by var-
ious factors, like environmental noise or inaccuracies in the execution of quantum op-
erations. To protect quantum information and ensure accurate calculations, we need
strategies for identifying and correcting these errors.

Quantum Error Correction (QEC) offers a solution. It is a set of techniques that safe-
guard quantum information by embedding it in a larger space, so that errors can be
detected and corrected. As long as errors on the physical qubits of the code stay rare
enough, we can maintain the integrity of our quantum information, despite the chal-
lenges presented by noise and imperfections.

1.1.1. MODELLING QUANTUM NOISE
The mechanisms that introduce noise in quantum information processing are manifold,
ranging from imperfect classical control to interaction with the surrounding environ-
ment. Practically, any qubit is susceptible to an variety of errors. In order to properly
characterize these qubit errors engendered by noise, we present several specific error
models in this section, which serve to delineate the potential errors that may occur.

INDEPENDENT NOISE MODEL

Potential obstacle to the idea of error correction in the quantum computing is that noise
can induce continuous state deformations. However, this problem can be readily ad-
dressed by recognizing that all quantum errors can actually be decomposed into merely
two independent error types: bit-flip (X), phase-flip (Z) errors, which are independent
with each other. The bit-flip and phase-flip channel can be mathematically described as
follows:

EX (ρ, pX) = (
1−pX

)
ρ+pX (XρX) (1.1)

EZ (ρ, pZ) = (
1−pZ

)
ρ+pZ (ZρZ) (1.2)

1

1

2 1. INTRODUCTION

In these equations, pX and pZ represent the respective probabilities of bit-flip or phase-
flip error events occurring. We also note that the combination of a bit-flip and a phase-
flip error is a bit-phase flip (Y) error, since Y = i X Z . Similarly, the bit-phase flip channel
can be described as:

EY (ρ, pY) = (
1−pY

)
ρ+pY (Y ρY) (1.3)

DEPOLARIZING NOISE MODEL

The depolarizing noise channel is another model that inflicts random Pauli errors on the
original state, distributing the probabilities equally. For a single qubit, the depolarizing
model can be expressed as:

D1(ρ, p1) = (
1−p1

)
ρ+ p1

3
(XρX +Y ρY +ZρZ), (1.4)

where p1 represents the probability of applying a Pauli X , Y , or Z operator to the qubit,
respectively. For a two-qubit scenario, the model takes the following form:

D2(ρ, p2) = (
1−p2

)
ρ+ p2

15

3∑
i , j=0

Ki jρK †
i j (1.5)

Here, each Ki j represents the tensor product of two Pauli matrices, defined as Ki j =σi ⊗
σ j . The Pauli matrices σ0,1,2,3 correspond to the identity and the three Pauli matrices,
specifically σ0,1,2,3 = I , X ,Y , Z , respectively.

DECORRELATE THE DEPOLARIZING MODEL

In contrast to the independent noise model, depolarizing errors are defined using a set
of disjoint individual error cases. This interdependence among various cases can com-
plicate the analysis of depolarizing noise effects on quantum circuits. Consequently, it is
crucial to redefine the depolarizing error in terms of independent error cases, that is, to
decorrelate the depolarizing noise channel [1].

For the single-qubit scenario, we aim to model a depolarizing error that is going to to
occur with a probability p1. To achieve this, we employ independent random Pauli X ,Y ,
and Z errors each occurring with probabilities pX = pY = pZ = p. More explicitly, we
seek to express

D1(ρ, p1) = EX ◦EY ◦EZ (ρ, p), (1.6)

which indicates that the effect of the depolarizing channel with parameter p1 onρ equates
to the aggregate effect of the independent Pauli X , Z ,Y noise channels each with param-
eter p on ρ. Upon examining Eq. (1.6), the equation holds if

p(1−p)2 +p2(1−p) = p1/3 (1.7)

From this, we can solve for p, yielding:

p = 1

2
± 1

2

√
1− 4

3
p1 (1.8)

We can disregard the solution larger than 1
2 as we assume that the error probability does

not exceed 50%. It is important to observe that this solution is applicable only when

1.1. QUANTUM ERROR CORRECTION

1

3

p1 É 3
4 . This restriction aligns intuitively with the understanding that p1 = 3/4 marks the

threshold at which a depolarizing error maximally mixes a qubit.
When considering a two-qubit scenario, similarly, we can establish the decorrelation

by setting:
D2(ρ, p2) =EI X ◦EI Y ◦EI Z ◦

EX I ◦EX X ◦EX Y ◦EX Z ◦
EY I ◦EY X ◦EY Y ◦EY Z ◦
EZ I ◦EZ X ◦EZ Y ◦EZ Z (ρ, p ′),

(1.9)

One plausible solution of Eq. (1.9) is found to be [1]:

p ′ = 1

2
− 1

2

(
1− 16

15
p2

)1/8

, (1.10)

which is only applicable if p2 É 15
16 .

It is worth noting that in all simulations incorporated in this thesis, we always trans-
formed depolarizing noise channels, as detailed in Section 1.1.1, into a series of inde-
pendent error cases, by applying the method specified above.

CIRCUIT-LEVEL NOISE MODEL

In the circuit-level noise model, depolarizing channels are introduced following each
physical gate to simulate imperfections in their implementation. Additionally, depolar-
izing channels are added to the qubits during idle periods to simulate their decoherence.

For a single qubit undergoing decoherence during an idle period of time ∆t ≪ T1,2,
its behavior can be phenomenologically characterized by a density matrix transforma-
tion model. In this model, the density matrix ρ(t) at time t evolves to ρ(t+∆t) as follows:

ρ(t) =
[

a(t) b(t)
b∗(t) 1−a(t)

]
→ ρ(t+∆t) =

[
(a(t)−a0)e

−∆t
T1 +a0 b(t)e

−∆t
T2

b∗(t)e
−∆t
T2 (a0 −a(t))e

−∆t
T1 +1−a0

]
(1.11)

where T1 and T2 are the relaxation time and dephasing time, respectively, and a0 char-
acterizes the thermal equilibrium state. Assuming a0 = 1

2 as an approximation, which
corresponds to the maximally mixed state, and considering ∆t ≪ T1,2, we can simplify
the expression of ρ(t +∆t) as:

ρ(t +∆t) ≈
 a(t)

(
1− ∆t

T1

)
+ ∆t

2T1
b(t)

(
1− ∆t

T2

)
b∗(t)

(
1− ∆t

T2

)
−a(t)

(
1− ∆t

T1

)
+1− ∆t

2T1

 (1.12)

On the other hand, the single-qubit depolarizing channel introduced in Section 1.1.1
can be alternatively expressed as:

D1(ρ, p1) =
(
1− 4

3
p1

)
ρ+ 2p1

3
I (1.13)

where we have used the fact that

I = ρ+XρX +Y ρY +ZρZ

2
(1.14)

1

4 1. INTRODUCTION

for arbitrary ρ. Hence, the transformation of a single-qubit density matrix under a de-
polarizing channel D1(ρ, p1) can be written as:

ρ(t) =
[

a(t) b(t)
b∗(t) 1−a(t)

]
D1−−→

[
a(t)

(
1− 4

3 p1
)+ 2

3 p1 b(t)
(
1− 4

3 p1
)

b∗(t)
(
1− 4

3 p1
) −a(t)

(
1− 4

3 p1
)+1− 2

3 p1

]
(1.15)

To approximate qubit decoherence using depolarizing channels, we compare Eq.
(1.12) and Eq. (1.15), which yields:

p1 = 3

4

∆t

T1
= 3

4

∆t

T2
(1.16)

indicating that for a qubit with coherence time T1 = T2 idling for a duration ∆t , we can
use a single-qubit depolarizing channel with a parameter p1 = 3

4
∆t
T1

= 3
4
∆t
T2

to approxi-
mate its decoherence behavior.

The circuit-level noise model effectively approximates the imperfections inherent in
real-world quantum computing processes. Throughout the simulations presented in
this thesis, we adopt this noise model to more realistically represent the noise in the
circuit.

PHENOMENOLOGICAL NOISE MODEL

The Phenomenological noise model combines the independent noise model, delineated
in Section 1.1.1, with the effects of noisy measurements. This model is often employed
in theoretical analysis and illustrative figures for the sake of simplicity and clarity.

1.1.2. STABILIZER FORMALISM
To describe the concept of stabilizer codes, we introduce the stabilizer formalism, a
highly potent technique delineated in [2]. Stabilizer codes leverage parity check mea-
surements to accumulate error information. Each stabilizer code can be characterized
by an Abelian subgroup S generated by linearly independent generators s1, ..., sm with
−I ∉S :

S = 〈s1, ..., sm〉 (1.17)

The logical qubit states are the +1 eigenstates of each individual stabilizer S ∈ S . The
code space T (S) of a given stabilizer code corresponds to the shared +1 eigenspace of
every element within S . This is formally expressed as:

T (S) := {|ψ〉 | S |ψ〉 = |ψ〉 ∀S ∈S } (1.18)

This definition essentially means that any state |ψ〉 within the code space T (S) remains
invariant under the application of any stabilizer S from the stabilizer group S .

Let us denote U(2n) as the group of unitary matrices acting on n qubits, and Cn as
the Clifford group on n qubits, which is defined as:

Cn =
{

U ∈ U(2n) |UPnU † =Pn

}
(1.19)

where Pn is the n-qubit Pauli group, representing the n-fold tensor products of Pauli
operators found in P1. Here, P1 is the Pauli group on a single qubit, comprising 16
elements:

P1 =: {±I ,±i I ,±X ,±i X ,±Y ,±i Y ,±Z ,±i Z } ≡ 〈X ,Y , Z 〉 (1.20)

1.1. QUANTUM ERROR CORRECTION

1

5

Figure 1.1: Venn diagram illustrating different groups of operators in quantum computation. Gray: Unitary
operators U(2n). Green: Clifford group Cn . Blue: n-qubit Pauli group Pn . Red: Stabilizer group S . Yellow:
Centralizer group C (S) of S . Purple: Normalizer group N (S) of S . This diagram depicts the relationships
between these groups of operators.

The centralizer group C (S) of the stabilizer group S comprises all Pauli operators in
Pn that commute with every element of S , defined as:

C (S) = {P ∈Pn | PS = SP ∀S ∈S }. (1.21)

On the other hand, the normalizer group N (S) of the stabilizer group S consists of
unitary operators, which may not necessarily be Pauli operators, that normalize the sta-
bilizer group S , formally defined as:

N (S) = {U ∈ U(2n) |US U † =S }. (1.22)

It is worth noting that if the normalizer group N (S) of the stabilizer group S is defined
as the group that consists of Pauli operators that normalize the stabilizer group S , then
we have:

N (S) = {U ∈Pn |US U † =S } =C (S). (1.23)

The definition given by Eq. (1.22) highlights the set of unitary operators U that, when
applied to each element of S , preserves the stabilizer group S .

An error E ∈Pn is classified as follows:

• It is detectable if E ∈Pn\C (S) (meaning that E is in Pn but not C (S)), implying
that the error E anti-commutes with at least one element of S .

• It is an undetectable logical error if E ∈C (S)\S .

1

6 1. INTRODUCTION

• It is considered a trivial error if E ∈S .

The code distance d is defined as the minimum weight |P | of any operator P ∈C (S)\S :

d := min
P∈C (S)\S

|P | (1.24)

Here, the weight |P | refers to the number of qubits on which P acts non-trivially. The
code distance provides an important measure of the error resistance of a quantum code.

Logical operators, which can be created by single Pauli operators acting on data
qubits, are contained within the centralizer group C (S). Since these logical operations
commute with all stabilizers, the logical qubit remains within the code space under their
transformation. However, commuting with all stabilizers is not a necessary condition
for logical operators in a more general sense. Rather, logical operators reside in the nor-
malizer group N (S), meaning a valid logical operation U must preserve the stabilizer
group S :

N (S) =
{

U ∈ U(2n) | ∀S ∈S , ∃S′ ∈S s.t. U S′U † = S
}

(1.25)

Thus, for |ψ〉 ∈ T (S) and U ∈ N (S), it follows that SU |ψ〉 =U S′ |ψ〉 =U |ψ〉 ∀S ∈ S .
This indicates that U |ψ〉 remains a +1 eigenstate of all stabilizers, thus verifying U as a
legitimate logical operation that transforms an encoded codeword |ψ〉 to another valid
codeword U |ψ〉.

1.2. SURFACE CODE
We now turn our attention to the surface code, a member of the stabilizer code family,
first introduced by Bravyi and Kitaev [3].

This thesis primarily concerns itself with the planar code, a variant of the surface
code that foregoes the periodic boundary conditions of toric code. This modification al-
lows physical qubits to realistically interact within the system, enhancing the applicabil-
ity of the planar code for practical fault-tolerant quantum computing implementations.

1.2.1. DEFINITION
In the construction of the planar code, physical qubits occupy positions along the edges
of a two-dimensional lattice. The lattice is populated by two kinds of qubits: data qubits
and ancilla qubits, distinguished solely by the distinct roles they play within the code.

Figure 1.2 depicts a representative lattice. It is evident that there are two varieties of
stabilizer generators: the X -type and the Z -type. The X -type stabilizer generators (illus-
trated in red) are obtained from the product of X operators on the data qubits adjacent
to X -type ancilla qubits. Similarly, the Z -type stabilizer generators (delineated in blue)
are formed by the product of Z operators on the data qubits neighbouring the Z -type
ancilla qubits. Thus, we can represent these stabilizer generators as follows:

Sv
x = ∏

i∈Q(v)
Xi , S f

z = ∏
k∈Q(f)

Zk (1.26)

In these equations, Q(v),Q(f) denote the sets of qubits neighbouring the ancilla qubits
v, f on the lattice grid, respectively. All these generators commute with each other, con-
sidering that either zero or two X and Z operators intersect between two different types

1.2. SURFACE CODE

1

7

Figure 1.2: (a) A qubit lattice with boundary. Three types of qubits are shown, with data qubits in white, X -type
ancilla qubits in red, and Z -type ancilla qubits in blue. The X -type and Z -type parity checks are shown in red
and blue square tiles, respectively. (b) A distance-4 square surface code. Data qubits are depicted in white on
the vertices, and the X -type and Z -type parity checks are represented by blue and red square tiles, respectively.

of stabilizers. Consequently, the data qubits can be put in a simultaneous eigenstate of
all X and Z -type stabilizers.

In the operational cycle of the planar code, ancilla qubits are continuously interacted
with neighbouring data qubits and their states repeatedly measured to probe for error
occurrences. On the other hand, data qubits are measured primarily to carry out logical
operations necessary for computation.

Throughout the remainder of this thesis, we will adopt the planar code representa-
tion as depicted in Figure 1.2 (b). In this notation, data qubits are designated by white
dots, while red and blue squares represent X and Z -type stabilizers, respectively.

1.2.2. ERROR DETECTION
Let us now investigate the consequences of a Pauli error denoted as E ∈Pn when it af-
fects a state within the codespace with all stabilizers have eigenvalues of +1. The impact
of such an error can be discerned by evaluating its commutation relation with a given
stabilizer S. Specifically, if the error E commutes with S, we obtain

SE |ψ〉 = ES |ψ〉 = E |ψ〉 , (1.27)

indicating that the measurement outcome will correspond to a +1 eigenvalue. Con-
versely, if the error E anti-commutes with S, we find

SE |ψ〉 =−ES |ψ〉 =−E |ψ〉 , (1.28)

signifying that the measurement outcome will result in a −1 eigenvalue.

1

8 1. INTRODUCTION

Consequently, errors impacting stabilizer codes are discernible by taking measure-
ments of the stabilizers, which yield what is known as the syndrome, σ(E). In the event
that no errors have occurred, all stabilizer measurements will produce a +1 eigenvalue.
Any deviation from this, manifested as a −1 outcome, alerts us to the presence of errors.
The code distance d is defined as the minimum number of independent errors required
to change the state of the logical qubits without being detected. To correct the detectable
errors, the employment of a decoder becomes necessary, which is used to determine the
location and nature of the errors, based on the given syndrome.

1.2.3. QUANTUM ERROR CORRECTION CYCLES
In the context of surface codes, quantum error correction cycles refer to a series of opera-
tions performed on the qubits of the code to detect errors. These cycles typically involve
resetting the ancilla qubits, executing the stabilizer circuit, and measuring the ancilla
qubits to obtain the syndrome. Throughout the rest of the thesis, the terms QEC cycle is
used to refer to these error correction cycles.

1.2.4. CREATING LOGICAL QUBITS
Numerous approaches exist for constructing logically well-defined qubits on planar sur-
face codes. One such technique entails encoding multiple qubits into a large surface
code region using defects, and executing logical operations by braiding these defects [4].
However, this method imposes a substantial overhead in terms of the number of qubits
and physical operations required. For comparison, a planar qubit of distance d is typi-
cally around three times smaller than a defect-based qubit with the same distance. Fur-
thermore, it has been demonstrated that defects and braids in the surface code should
be deprecated due to their significant overhead [5]. A more resource-efficient alternative
is to encode logical qubits using a twist defect [6]. This method requires fewer physical
qubits per logical qubit, while also facilitating the implementation of a full set of Clifford
gates without the need for state distillation [7].

In this thesis, our focus is on the standard planar surface code due to its inherent
simplicity and efficiency. The stabilizer group S leaves two unconstrained degrees of
freedom in the Hilbert space of all data qubits, defined as the codespace T (S). The
logical qubit resides within this codespace, and the orientations of the logical |0〉 and |1〉
states are determined by a pair of logical operators that anticommute with each other,
defined as XL and ZL , respectively, see Figure 1.3.

The logical operator ZL = Z1Z2Z3Z4 forms a Z -chain connecting two Z -type bound-
aries. Similarly, the logical operator XL = X1X5X6X7 forms a X -chain connecting two X -
type boundaries. It is important to note that any Z chain connecting two Z -type bound-
aries and commuting with all stabilizers can be considered a valid logical operator ẐL ,
and the same applies for X chains in relation to XL .

1.2.5. LOGICAL QUBIT INITIALIZATION AND MEASUREMENT
The logical qubits can be fault-tolerantly initialized and measured in the logical X and Z
basis, respectively. However, initialization and measurement of the surface code in the
Y basis, although achievable through the distillation of the logical |+i 〉 state, demand
considerable resources [8, 9].

1.3. RESEARCH MOTIVATION

1

9

Figure 1.3: Logical operations of the square surface code. (a) An example of a logical operator ẐL , which is
implemented by applying physical Z gates on a chain of data qubits that connects two Z -type boundaries. (b)
An example of a logical operator X̂L , which is implemented by applying physical X gates on a chain of data
qubits that connects two X -type boundaries.

To initialize the logical qubit to |0̄〉, we start by resetting all the data qubits to the state
|0〉, and subsequently performing all parity checks. The measurement outcome for the
Z stabilizers should remain trivial, i.e., +1, whereas the outcomes for the X stabilizers
will be random. The resulting logical state is then defined as |0̄〉, as it is an eigenstate of
any ZL operators. Similarly, to initialize the logical qubit to |+̄〉, we begin by resetting all
the data qubits to the state |+〉, followed by performing all parity checks. In this scenario,
the measurement outcome for the X stabilizers should remain trivial, i.e., +1, while the
outcomes for the Z stabilizers will be random. The resulting logical state is then defined
as |+̄〉, since it is an eigenstate of any XL operators.

The process of measuring a logical qubit is essentially the converse of initialization.
When conducting a measurement in the logical X (Z) basis, we perform physical X (Z)
basis measurements on all data qubits. The outcome of the logical measurement is de-
termined by the product of the measurement results of the data qubits on which a XL

(ZL) gate operates. It is expected that the product of the measurements of each X (Z)
stabilizer and its neighboring data qubits results in a trivial outcome. Any non-trivial
product is a clear sign of error events, warranting the deployment of a decoder for recti-
fication. This check is crucial to the assurance of fault-tolerant logical measurements.

1.3. RESEARCH MOTIVATION

Quantum computing has the potential for solving problems that are computationally in-
feasible for classical computers. However, the realization of this technology is hindered
by significant obstacles, primarily the susceptibility of quantum systems to errors due to
its unavoidable coupling with the environment and imperfect operations. Surface code
quantum computation has emerged as one of the most promising paths to achieve fault-

1

10 1. INTRODUCTION

tolerant quantum computing. However, several critical challenges need to be addressed
to realize the full potential of this technology, which serves as the primary motivation for
our research.

The primary aim of our research is to optimize the required number of QEC cycles to
reach a desirable logical error rate . While QEC is crucial to maintaining the integrity of
quantum information, excessive QEC cycles can slow down computation and increase
the chances of errors in idle logical qubits. Therefore, finding when and how many
rounds of QEC are necessary is important.

In addition, the order of syndrome measurements within each QEC cycle for the
square surface code can also impact the logical error rates. This motivates our explo-
ration into identifying the optimal fault-tolerant order of syndrome measurements for
square surface code for different scenarios.

The road to practical quantum computing is fraught with challenges, but by address-
ing these key issues in surface code quantum computation, we aim to contribute to the
advancement of this promising technology.

2
DECODING THE SURFACE CODE

2.1. DECODING PROBLEM

2.1.1. DETECTORS AND SYNDROME DEFECTS
In stabilizer circuits, errors are detected by monitoring deviations from the behavior of
noiseless circuits. This means that any divergence from the ideal outcome of the corre-
sponding noiseless circuit should be flagged as a potential error. Specifically, in circuits,
there are often small sets of measurements that are expected to exhibit deterministic
parity when executed without any noise. The parities of these sets of measurement out-
comes are referred to as detectors. When the observed parity deviates from the expected
parity, we denote the observed parity as nontrivial. Conversely, if the observed parity
aligns with the expected one, it is labeled as trivial. The nontrivial parity triggers a "click"
in the detector, leading to a syndrome defect. To represent this, detectors with nontrivial
and trivial parities are respectively assigned values of 1 and 0. Upon examining the lat-
tice of detectors, we observe that the 1 values appear as sparse anomalies amidst the 0
values, which is why these occurrences are referred to as defects.

The syndrome defects are determined by the module-2 addition of two consecutive
ancilla measurement outcomes if we reset the ancilla qubits to |0〉 at the start of each
QEC cycle. Let mS,r represent the measurement outcome of stabilizer generator S in the
r -th round. Note that here we define the measurement outcome mS,r = 0 if S |ψ〉 = |ψ〉
and to mS,r = 1 if S |ψ〉 = −|ψ〉. The syndrome defect for stabilizer S at the r -th round
can be expressed as:

σS,r = mS,r ⊕mS,r−1 (2.1)

This is because the measurement outcomes of a specific ancilla qubit remain consistent
in the absence of noise. However, it is important to note that syndrome defects may not
always be simply described by Eq. (2.1). For example, when code or stabilizer deforma-
tion is performed, care must be taken when configuring the detectors. We will discuss
this in Chapter 4.

In the surface code, it is common to assume that qubit errors, which are typically
represented by Pauli operators, can occur at various locations within the circuit, such

11

2

12 2. DECODING THE SURFACE CODE

as single-qubit gates, two-qubit gates, idle locations, measurements, and resets. How-
ever, it is important to note that measurement errors are generally non-Pauli. A general
measurement error can be thought of as a combination of a classical readout error and
a after-measurement qubit error. The classical readout errors flip the measurement out-
come, and we can disregard the after-measurement qubit error when the ancilla qubits
are reset between QEC rounds. (It’s worth noting that in DiCarlo Lab, they typically do
not reset ancilla qubits between QEC rounds). We assume that errors can be represented
as events with associated probabilities. In the following contexts, the probability pmeas

associated with a measurement error refers specifically to the probability of the classical
readout outcome being flipped.

In an ideal scenario without error events, no syndrome defects would be observed for
all stabilizers, denoted as σS,r = 0 for all ∀S ∈ S and r ∈ Z+. This is due to the fact that
mS,r = 0 for all S ∈S and r ∈Z+, given that the logical qubit resides in the +1 eigenstate
of all stabilizers.

Now, let’s examine the situation when qubit errors occur. It has been demonstrated
that a single Pauli qubit error event can generate at most two X -type defects and two
Z -type defects for the surface code [10]. If the error takes place on one of the data qubits
located at the boundary of the code, it is possible that the error leads to only one defect.
In such cases, we can associate the defects generated by the same single error with an
error edge, as depicted in Figure 2.1, where we display only X -type defects. For errors
that result in just one defect, we can pair this defect with a virtual node.

Figure 2.1: Pair of defects. (a) X -type of defects on the lattice of X -stabilizers (in red). (b) A distance-6
square surface code, with Pauli qubit errors occurring on data qubits. (c) Z -type of defects on the lattice of
Z -stabilizers (in blue). When the probability of qubit errors is low, the error edges, which represent locations
where errors occur, appear sparsely on the lattice. In such scenarios, it becomes relatively easy to pair the de-
fects with error.

However, a measurement error on an ancilla qubit can flip the measurement out-
come. Therefore, a measurement error will indicate a defect where there shouldn’t have
been one, and eliminate a defect where there should have been one. To conceptually
distinguish the defects caused by qubit errors and measurement errors, we adopt the
terminology "genuine defects" and "ghost defects" introduced in [11]. Genuine defects
are caused by qubit errors and have strongly correlated positions on the lattice, while

2.1. DECODING PROBLEM

2

13

ghost defects are caused by measurement errors and generally appear randomly if we
assume measurements are independent, as shown in Figure 2.2.

Figure 2.2: Genuine defects and ghost defects. The light blue dots represent the lattice of the Z -stabilizer
graph. Darkly shaded circles denote genuine defects caused by single qubit errors, while lightly shaded circles
indicate ghost defects resulting from measurement errors. Typically, genuine defects appear in pairs, except at
boundaries where they can appear singly. In these instances, we pair the solitary genuine defect with a virtual
defect, as depicted in Figure 2.5 (a). Conversely, ghost defects usually appear individually on the lattice.

Ghost defects causes a challenge in decoding for quantum memory, as they cannot
be distinguished from genuine defects in real-world experiments when one round of
quantum error correction is performed. This complicates the process of accurately de-
termining the location and nature of the qubit errors experienced by the data qubits
within the code.

2.1.2. DEFECTS AND ERROR EDGES IN SPACETIME
One approach to addressing faulty measurements is to repeat the measurement process,
thereby increasing our confidence in the outcome. However, this method can introduce
new errors during the repeated measurements. To address this issue, one approach is to
perform multiple rounds of quantum error correction (QEC), effectively providing more
syndrome information for decoding. This issue will be discussed in more detail in Chap-
ter 4.

In a standard QEC experiment, a logical state encoded by the code is prepared, and
QEC rounds are performed repeatedly for r rounds. The stabilizers that are measured
repeatedly, and the final measurements on data qubits provide information about where
and when errors occurred. This information is used by the decoder to determine whether
the logical measurement outcome should be flipped or not. To effectively analyze the
syndrome information, it is helpful to introduce a three-dimensional spacetime lattice
of the stabilizers, with the third dimension representing integer-valued time and syn-
drome measurements occurring between each t and t + 1, as shown in Figure 2.3. We
introduce two fundamental error edges on the lattice:

• Space-like edges: error edges that connect defects that occur at the same time but
at different spatial locations on the lattice. Space-like edges correspond to single
errors on qubits and are typically horizontal connections on the lattice.

2

14 2. DECODING THE SURFACE CODE

• Time-like edges: error edges that connect defects that occur at different times but
at the same spatial location. Time-like edges correspond to measurement errors,
and are typically represented as vertical connections on the lattice.

The spacetime lattice depicted in Figure 2.3 is plotted under the effects of the phenomeno-
logical noise model, as discussed in Chapter 1.1.1. It is important to note that under a
more realistic circuit-level noise model, additional spacetime-like diagonal edges can be
observed on the spacetime lattice.

Figure 2.3: Defects and error edges in a three-dimensional spacetime volume of Z -type stabilizers under phe-
nomenological noise model (see Chapter 1.1.1). A distance-3 square surface code undergoes repeated quan-
tum error correction for several rounds. Each blue node represents a specific X stabilizer at a particular time.
Vertical gray lines connecting ghost defects represent time-like error edges, while horizontal dark lines con-
necting genuine defects represent space-like error edges.

Consider a qubit error series E = (E1,E2, . . . ,Et , . . . ,ET), where each element Et ∈Pn

represents qubit errors occurring at time t . Furthermore, let us define a measurement
error series M = (M1, M2, . . . , Mt , . . . , MT), with each element Mt being a binary vector,
whose i -th element set to 1 if a measurement error occurs in the i -th stabilizer and 0
otherwise. These qubit and measurement error series collectively result in syndrome
defects σ(E,M) throughout the spacetime volume.

2.2. DECODING ALGORITHMS
The aim of decoding quantum error correction codes is the restoration of the logical
state of the code, predicated on a provided syndromeσ(E,M), via the implementation of
specific operators on the spacetime lattice. To illustrate the fundamentals of decoding,
consider Figure 2.4. Within (a), a Pauli error, denoted as E ∈ Pn , with its correspond-
ing syndrome σ(E), leads to the corruption of the logical state from |φ〉 to E |φ〉. Sub-
sequently, a decoding algorithm leverages the syndrome σ(E) to select an appropriate
correction operator, Ec ∈ Pn , as shown in (b). This operator transforms the state from
E |φ〉 to Ec E |φ〉. It is important to notice that applying a correction on a different string
is permissible, as long as the resulting loop is homologically trivial (as demonstrated by

2.2. DECODING ALGORITHMS

2

15

the right loop in Figure 2.4 (c)). This implies that Ec E ∈ S , meaning the overall opera-
tion of the correction and the error is equivalent to the product of the encircled stabilizer
operators. However, if the error and its correction collectively form a logical operator (as
illustrated by the left path in Figure 2.4 (c)), represented as Ec E ∈ C (S)\S , an unde-
tectable logical error may potentially be introduced.

Figure 2.4: A decoding algorithm receives a syndrome σ(E) as input and outputs a correction operator Ec on
the Z -stabilizer lattice. (a) presents the syndrome defects induced by a qubit Pauli error E ∈ Pn on the Z -
graph of a distance-10 square surface code. Error edges connecting to the boundary are indicated by dotted
lines. (b) showcases the correction operator Ec ∈Pn determined by the decoder, which is represented by red
edges. (c) The correction operator is combined with the errors, yielding two types of outcomes: a trivial loop
and a path that connects two boundaries. The path connecting the boundaries can potentially lead to a logical
error.

In real-world scenarios, the process is considerably more complex. The presence of
multi-qubit correlated errors can give rise to space-like error hyperedges (a hyperedge is
a generalization of an edge that can connect more than two vertices), which is in contrast
to the space-like error edge produced by a single qubit error. Additionally, a given pair
of defects can potentially be generated by multiple error strings, further complicating
the decoding process. While an optimal algorithm, the Maximum Likelihood Decoder
(MLD), does exists to simply correct the most-likely errors, its application is not straight-
forward. The MLD operates on the principle of identifying and finding the error E com-
patible with the syndrome σ that holds the highest probability of occurrence. However,
the required computational resource of the MLD grows exponentially with respect to the
number of qubits, making it impractical for large-scale systems [12, 13]. Therefore, the
heart of designing decoding algorithms for quantum error correction is to find a balance
between the its accuracy and computational complexity.

2.2.1. MINIMUM-WEIGHT PERFECT MATCHING
The Minimum-Weight Perfect Matching (MWPM) formulation of decoding addresses
the task of pairing defects and has been developed based on two fundamental assump-
tions [11, 4]:

• A single error event results in at most two defects on the X -graph or Z -graph, re-
spectively (We note that a single error event can be also be a two-qubit error).
These errors are uncorrelated, and thus they can be treated as independent events.

2

16 2. DECODING THE SURFACE CODE

• The optimal pairing is the one that minimizes the total error weight.

In light of these assumptions, the MWPM decoding problem can be seen as a graph prob-
lem. Specifically, we construct a matching graph G = (V ,E), as depicted in Figure 2.5 (a),
where each vertex v ∈V represents a detector and each edge e ∈ E signifies a single Pauli
error event. On the boundary, where single errors anti-commute with only one stabilizer,
we incorporate additional boundary nodes (illustrated as hollow squares). All boundary
nodes are connected by zero-weight edges, and for simplicity, they can be merged into a
single node, as shown on the left side of the lattice in Figure 2.5 (a). This setup ensures
that the single defects on the boundary can be paired with a virtual defect located on the
boundary node.

Figure 2.5: This figure is reproduced from [14]. Stages of the MWPM decoder for a distance-10 surface code. (a)
Matching graph, with each dark node denotes a detector and boundary nodes denoted with hollow squares.
Each edge represent a single error event. Note that a single error event can also be a two-qubit error. (b)
Errors are denoted by red edges, and blue stars represents the corresponding defects caused by the error. (c)
Syndrome graph which has a node for each defect. (d) The MWPM of the syndrome graph. (e) The correction
output by the MWPM decoder.

Each edge e ∈ E is assigned a weight we = log
(

1−pe
pe

)
, where pe < 1

2 represents the

probability of a single error event. As pe diminishes, the weight we increases signifi-
cantly, and as pe approaches 1

2 , the weight we converges to zero. This therefore indicates
that errors with higher probabilities are attributed lower weights.

Figure 2.5 (b) shows an example of an error (red edges) and the corresponding defects
(blue stars). After the syndrome measurements, a syndrome graph S can be constructed
(see 2.5 (c)), where each vertex corresponds to a defect. For a given qubit error Eq ∈Pn ,
which is associated with a subset of edges R ∈ E , its probability of occurrence can be

2.3. IMPROVED STABILIZER MEASUREMENT CIRCUITS

2

17

represented as:

p(Eq) = ∏
e∈E\R

(
1−pe

) ∏
e∈R

pe =
∏
e∈E

(
1−pe

) ∏
e∈R

(
pe

1−pe

)
(2.2)

The weight of Eq can then be derived as follows:

w(Eq) = log
(
p(Eq)

)= ∑
e∈E

log(1−pe)− ∑
e∈R

we (2.3)

Within the syndrome graph S, if pe is same for all edges, the weight assigned to each
edge between two defect nodes is determined by the length of the shortest path between
the associated detectors in the original matching graph G , which can be identified using
Dijkstra’s algorithm [15].

The subsequent stage involves perfectly matching all the nodes in S, such that the
sum of the weights of all edges is minimized. This optimization task, referred to as
the minimum-weight perfect matching problem (MWPM), can be resolved using the
Blossom algorithm [16]. The worst-case computational complexity of this algorithm is
O(N 3), where N denotes the number of physical qubits.

2.3. IMPROVED STABILIZER MEASUREMENT CIRCUITS

2.3.1. PROPER STABILIZER MEASUREMENT CIRCUITS
The optimization of QEC cycle times can be approached through the simultaneous ex-
ecution of X -type and Z -type stabilizer measurements. However, this methodology de-
mands meticulous attention to the sequence in which the CZ gates are applied within
each parity check. This is because the outcomes of the two types of ancilla qubits can
be randomized, when the measured X -stabilizer does not commute with the measured
Z -stabilizers anymore. Such non-commutation undermines the properness of this spe-
cific stabilizer measurement circuit. In this context, a stabilizer measurement circuit is
considered proper when the measurement of the ancilla qubits is in fact equivalent to
the measurement of the corresponding stabilizer.

Figure 2.6: (a) depicts a pair of data qubits a and b (represented by white circles) along with an X -type ancilla
qubit (blue circle) and a Z -type ancilla qubit (red circle). These ancilla qubits are utilized to measure the
Xa Xb and Za Zb stabilizers, as indicated by the red and blue patches, respectively. (b) An example of a proper
stabilizer measurement circuit. The data qubits a and b interact first with the Z -type ancilla qubit, respectively.
Subsequently, the data qubits a and b interact with the X -type ancilla qubit, respectively. (c) An example of an
improper stabilizer measurement circuit.

2

18 2. DECODING THE SURFACE CODE

Let’s consider an example of proper and improper stabilizer measurement circuits
shown in Figure 2.6 (b) and (c), respectively. These circuits are designed to measure the
stabilizers Xa Xb and Za Zb in Figure 2.6 (a). To illustrate this concept, we are going to use
the stabilizers of a 4-qubit system to identify the state of the qubits in Figure 2.6 (a), and
we track the evolution of these qubit state by examining the evolution of their stabilizers
in the Heisenberg picture [17].

AN EXAMPLE OF PROPER STABILIZER MEASUREMENT CIRCUIT

For the proper stabilizer measurement circuit shown in Figure 2.6 (b), let’s examine the
evolution of the stabilizers: First, we focus on the X -type ancilla qubit. It is initially
prepared in the state |+〉, implying that the initial state of the system is an eigenstate of
the stabilizer Xx Ia Ib Iz . The evolution of this stabilizer is as follows:

Xx Ia Ib Iz
C NOTb,z−−−−−−→ Xx Ia Ib Iz

C NOTa,z−−−−−−→ Xx Ia Ib Iz
C NOTx,a−−−−−−→ Xx Xa Ib Iz

C NOTx,b−−−−−−→ Xx Xa Xb Iz

(2.4)
Next, the X -type ancilla qubit is measured in the X basis. Since the X -type ancilla qubit
was prepared in the state |+〉, its measurement is equivalent to measuring Xa Xb Iz .

Similarly, let’s analyze the Z -type ancilla qubit in the proper stabilizer measurement
circuit. It is prepared in the state |0〉, indicating that the initial state of the system is an
eigenstate of the stabilizer Ix Ia Ib Zz . The evolution of this stabilizer is as follows:

Ix Ia Ib Zz
C NOTb,z−−−−−−→ Ix Ia Zb Zz

C NOTa,z−−−−−−→ Ix Za Zb Zz
C NOTx,a−−−−−−→ Ix Za Zb Zz

C NOTx,b−−−−−−→ Ix Za Zb Zz

(2.5)
The Z -type ancilla qubit is then measured in the Z basis. Since the Z -type ancilla qubit
was prepared in the state |0〉, its measurement is equivalent to measuring Ix Za Zb .

AN EXAMPLE OF IMPROPER STABILIZER MEASUREMENT CIRCUIT

However, for the improper stabilizer measurement circuit shown in Figure 2.6 (c), we
observe that the final measurement outcomes of the ancilla qubits can be random.

Let’s examine the evolution of the stabilizers. For the X -type ancilla qubit:

Xx Ia Ib Iz
C NOTa,z−−−−−−→ Xx Ia Ib Iz

C NOTx,a−−−−−−→ Xx Xa Ib Iz
C NOTx,b−−−−−−→ Xx Xa Xb Iz

C NOTb,z−−−−−−→ Xx Xa Xb Xz

(2.6)
The X -type ancilla qubit is then measured in the X basis. Since the X -type ancilla qubit
is prepared in the state |+〉, its measurement is equivalent to measuring Xa Xb Xz . This
measurement outcome can be interpreted as: the expectation value of the X -type ancilla
qubit’s measurement depends on the expectation value of X on the Z -type ancilla qubit,
which is prepared in the state |0〉.

Similarly, let’s examine the evolution of the stabilizers for the Z -type ancilla qubit in
the improper stabilizer measurement circuit:

Ix Ia Ib Zz
C NOTa,z−−−−−−→ Ix Za Ib Zz

C NOTx,a−−−−−−→ Zx Za Ib Zz
C NOTx,b−−−−−−→ Zx Za Ib Zz

C NOTb,z−−−−−−→ Zx Za Zb Zz

(2.7)
The Z -type ancilla qubit is then measured in the Z basis. Since the Z -type ancilla qubit
is prepared in the state |0〉, its measurement is equivalent to measuring Zx Za Zb . This

2.3. IMPROVED STABILIZER MEASUREMENT CIRCUITS

2

19

measurement outcome can be interpreted as: the expectation value of the Z -type ancilla
qubit’s measurement depends on the expectation value of Z on the X -type ancilla qubit,
which is prepared in the state |+〉.

Therefore, in this case the measurement outcomes of the two ancilla qubits can be
random, hence the measurements are improper.

2.3.2. FAULT-TOLERANT STABILIZER MEASUREMENT CIRCUITS
The issue of proper fault-tolerant stabilizer measurement has been rigorously explored
for the rotated surface code [18, 19], both theoretically and experimentally. Nonethe-
less, there is a lack of research addressing this problem in the context of the square sur-
face code, which, unlike the rotate-symmetric rotated surface code, is characterized by
mirror-dual symmetry. That is, by folding the surface code along the diagonal of the
square code, we can pair an X -type stabilizer with a corresponding Z -type stabilizer. The
disparate symmetry properties inherent to the rotated and square surface codes make it
imperative to extend investigations to elucidate the nature of proper stabilizer measure-
ment for the square surface code.

Figure 2.7: Illustration of the lattice of data qubits in a distance-5 square surface code, highlighting the distinc-
tion between good and bad sites. Bad sites are represented by black circles, while good sites are depicted as
white circles. The blow-up symbol denotes X or Z errors. (a) X errors on bad sites have a more detrimental
impact than those on good sites in terms of inducing a logical X error. When an X error occurs on a bad site
(as shown in the blow-up symbol above), it necessitates the presence of d −1 additional X errors or correction
operators to form a logical X chain. Conversely, for X errors occurring on good sites (as shown in the blow-up
symbol below), there will always be a requirement for d additional X errors or correction operators to form a
logical X chain. (b) Similarly, Z errors on bad sites have a greater detrimental effect than those on good sites
in terms of resulting in a logical Z error. When a Z error occurs on a bad site (as indicated by the right blow-up
symbol), it necessitates the presence of d − 1 additional Z errors or correction operators to form a logical Z
chain. In contrast, for Z errors occurring on good sites (as indicated by the left blow-up symbols), there will
always be a need for d additional Z errors or correction operators to form a logical Z chain.

As shown in Figure 2.7, data qubits of square surface code can sit on either good

2

20 2. DECODING THE SURFACE CODE

site (white circles) or bad site (black circles) of the lattice. In the context of inducing a
logical X error, physical X errors on bad sites have a more detrimental impact compared
to those on good sites (see Figure 2.7 (a)). Specifically, when an X error occurs on a bad
site, it requires the presence of d−1 additional X errors or correction operators to form a
logical X chain. On the other hand, for X errors occurring on good sites, there will always
be a requirement for d additional X errors or correction operators to form a logical X
chain. Similarly, in terms of inducing a logical Z error, physical Z errors on bad sites have
a greater detrimental effect compared to those on good sites (see Figure 2.7 (b)). When
a Z error occurs on a bad site, it necessitates the presence of d −1 additional Z errors
or correction operators to form a logical Z chain. Conversely, for Z errors occurring on
good sites, there will always be a need for d additional Z errors or correction operators
to form a logical Z chain.

Hence, when designing the fault-tolerant order of stabilizer measurement, it is im-
portant to minimize the probability of encountering X or Z errors on data qubits located
at bad sites. This can help mitigate the detrimental effects associated with these errors
and improve the overall fault-tolerance of the code.

Figure 2.8: (a) The sequence of CZ gates for Z -type stabilizers, resulting in a Z error on a bad site. (b) The
sequence of CZ gates for X -type stabilizers, resulting in an X error on a good site. (c) The sequence of CZ gates
for Z -type stabilizers, resulting in a Z error on a good site.

The prescribed order of CZ gates for each type of stabilizer, represented as N-like in
Figure 2.8 (a-c), ensures that these circuits maintain fault-tolerance while only inducing
at most two defects on the Z or X graph [18]. In Figure 2.8 (a), we observe that a Z error
on a Z -type ancilla qubit, following the third CZ gates, propagates onto one data qubit
that lied on a bad site. Similarly, as shown in Figure 2.8 (b) (and (c)), a Z (X) error on a
Z -type (X -type) ancilla qubit post the third CZ gates impacts one data qubit that lies on
a good site.

2.3. IMPROVED STABILIZER MEASUREMENT CIRCUITS

2

21

In an attempt to avert the occurrence of logical errors, we incline towards adopting
the order of CZ gates as displayed in Figure 2.8 (b) and (c) for the X -type and Z -type
syndrome measurements, respectively. However, the circuit is improper if the CZ gates
of X -stabilizer and Z -stabilizer are executed in parallel since the measured X -stabilizer
does not commute with the measured Z -stabilizers in this case. Conversely, parallel
operation of the CZ gates of X -stabilizer and Z -stabilizer is feasible since the resulting
circuit is proper if we adhere to the CZ gates’ order presented in Figure 2.8 (a) and (b)
for the X -type and Z -type syndrome measurements, respectively. It should be noted
that this methodology, although facilitating parallel execution, renders the code more
susceptible to logical Z errors. This is because data qubits on bad sites are more likely
undergoing Z errors as shown in Figure 2.8.

We categorize these two distinct choices as Type-I and Type-II syndrome measure-
ments, illustrated in Figure 2.9.

Figure 2.9: Two types of order of syndrome measurement. (a) Type-I: Z -type parity checks could potentially
lead to Z errors along the direction of the ZL chain, but X -type parity checks do not induce X errors parallel
with the direction of XL chain. (b) Type-II: X -type (Z -type) parity checks do not induce X (Z) errors parallel
with the direction of XL (ZL) chain.

The temporal profiles of each QEC cycle utilizing Type-I and Type-II syndrome mea-
surements are depicted in Figure 2.10 and 2.11, respectively. Under the Type-I scheme,
the CZ gates for both X - and Z -stabilizers can be executed simultaneously, culminat-
ing in a depth-9 circuit for each QEC cycle. On the other hand, to make sure the circuit
is proper, the Type-II approach mandates separate execution of CZ gates for X - and Z -
stabilizers, which extends the circuit to a depth of 12 for each QEC cycle. Although the
Type-II syndrome measurement confers an advantage in terms of fault-tolerance, it im-
poses more potential error events on physical qubits due to the extended time each QEC
cycle takes and the increased number of required H gates.

2

22 2. DECODING THE SURFACE CODE

Figure 2.10: Depiction of a depth-9 quantum circuit for Type-I stabilizer measurement in the surface code
employing CZ gates. The CZ gates inside each gray box are executed simultaneously. Typical durations for gate
operation, readout, and reset procedures are indicated at the top.

Figure 2.11: Depiction of a depth-12 quantum circuit for Type-II stabilizer measurement in the surface code
employing CZ gates. The CZ gates inside each gray box are executed simultaneously. Typical durations for gate
operation, readout, and reset procedures are indicated at the top.

In each QEC cycle, we adhere to typical parameters consistent with scalable super-
conducting quantum hardware [20, 19, 21, 22, 23]. The measurement duration is set to
500ns while the reset duration takes 160ns. We further adopt a CZ gate duration of 40ns

2.3. IMPROVED STABILIZER MEASUREMENT CIRCUITS

2

23

and a single-qubit gate duration of 20ns.

2.3.3. COMPARATIVE ANALYSIS OF TWO SYNDROME MEASUREMENT TYPES

Two distinct quantum memory experiments are conducted, simulating both Type-I and
Type-II orderings of the CZ gates within parity checks, with the results presented in Fig-
ure 2.12. The code for the simulation can be found in Chapter 6 (Appendix).

The surface code is initialized into perfect logical states |0〉 and |+〉, represented by
the orange and blue curves, respectively. In each experiment, the codes underwent d
rounds of quantum error correction, followed by logical measurements in the logical Z
and X basis, respectively. Python package Stim [1] is used to generate the circuits. We
decode the syndrome information with the MWPM decoder [14] introduced in Section
2.2.1. In our simulations, the single-qubit gate error rate is assumed to be a tenth of the
CZ gate error rate. Furthermore, we integrated the consideration of circuit-level noise
(see Chapter 1.1.1). The idle qubits within each QEC cycle were associated with a depo-
larization channel whose parameter p reflects a coherence time of T1 = T2 = 60µs. An
assignment error rate of 1% for the readout of physical qubits is also taken into account.

Figure 2.12 (a) illustrates that the logical error rate for the logical |+〉 state exceeds
that of the logical |0〉 state in standard quantum memory experiments, signifying a greater
likelihood for logical Z errors. This phenomenon is attributable to the order of CZ gates
for Z -type stabilizers, which can create Z errors on data qubits along the ZL chain. Fur-
thermore, the observed thresholds of the code are approximately 0.78% and 0.90% for
initialization to logical |+〉 and |0〉 states, respectively. These findings elucidate the asym-
metric robustness against X and Z errors when employing the Type-I order. Conversely,

Figure 2.12: Numerical simulations of quantum memory error rates for the square surface code under two
different scenarios: Type-I (a) and Type-II (b) orders of CZ gates within parity checks. The code is initialized in
logical |0〉 and |+〉 states, respectively.

Figure 2.12 (b) demonstrates a comparable logical error rate for both logical |+〉 and |0〉
states under the Type-II order of syndrome measurements. Correspondingly, the thresh-
old of the code for both initial logical states, |+〉 and |0〉, is approximately at 0.80%.

To evaluate the relative performance of Type-I and Type-II syndrome measurements,
we calculate the average of the logical X and Z error rates, denoted as rI and rII, respec-

2

24 2. DECODING THE SURFACE CODE

tively. The relative difference in average logical error rates is then computed as:

rII − rI

rI
(2.8)

Both circuits are simulated using a circuit-level noise model (see Chapter 1.1.1), main-
taining a CZ gate error rate of 0.5% and a measurement error rate of 1%. The results are
depicted in Figure 2.13.

Figure 2.13: Heatmap displaying the relative average logical error rate difference,
rII−rI

rI
, in relation to H gate

error and coherence time for square surface codes of distance 3,5, and 7. The CZ gate error rate is set at 0.5%,
and the measurement error rate at 1%.

The performance disparity between Type-I and Type-II syndrome measurements
manifests in different areas of the heat map. Type-II yields superior performance in re-
gions characterized by larger coherence times and smaller H gate error rates, depicted
as blue regions on the heat map. Conversely, Type-I performs better in areas indicated
in red.

The superior performance of Type-II in these conditions can be attributed to its in-
clusion of more H gates within its more complex QEC circuit. Consequently, it expe-
riences less decoherence and fewer single qubit errors in the lower-right corner of the
heat map. Further, as the code distance increases, the advantage of Type-II over Type-I
becomes increasingly pronounced.

3
FAULT TOLERANT UNIVERSAL

QUANTUM COMPUTING

Practical universal quantum computation demands the fault-tolerant execution of a com-
prehensive set of gates on encoded qubits. An example of a universal gate set is the
Clifford+T set, encompassing the Hadamard H , C NOT , S, and T gates. Notably, the
Hadamard (H), C NOT , and S gates comprise the subset known as Clifford gates. The
combination of logical qubit initialization, logical measurement, and this universal gate
set enables the representation of any arbitrary quantum gate via a finite sequence of
operations. Transversal logical gates provide a straightforward construction of fault-
tolerant logical gates. However, it has been shown that no quantum stabilizer code that
permits the transversal realization of a universal set of gates exists [24, 25].

This chapter concentrates on universal computation using patches of the planar code.
Logical Pauli gates are managed entirely by classical control software, thereby eliminat-
ing the need for physical quantum operations. Execution of the logical H gate is achiev-
able by applying a transversal H gate to data qubits, succeeded by a lattice transfor-
mation and error syndrome measurements to restore the code to its original orienta-
tion [26]. Section 3.1 introduces lattice surgery, a technique for performing joint log-
ical measurements, aiding in the implementation of logical C NOT gates. Section 3.2
highlights the utility of magic states for implementing logical S gates and non-Clifford
T = diag(1,e iπ/4) gates. Lastly, Section 3.3 presents a transversal method for implement-
ing logical S = diag(1,e iπ/2) gates [27], employing long-range CZ physical gates.

3.1. LATTICE SURGERY
Lattice surgery is a method employed for non-destructive X X and Z Z measurements
on logical qubits encoded by the planar code. This technique facilitates the execution of
two-qubit gates between separate sheets of the surface code. Remarkably, lattice surgery
only requires standard nearest-neighbour physical interactions while preserving com-
plete fault tolerance [28].

25

3

26 3. FAULT TOLERANT UNIVERSAL QUANTUM COMPUTING

3.1.1. STANDARD LATTICE SURGERY

Lattice surgery essentially consists of the merging and splitting operations applied to
patches of code, as illustrated in Figure 3.1. The merging operation combines two code
surfaces into a single, larger code surface, while the splitting operation partitions a single
code surface into two smaller surfaces.

Figure 3.1: Lattice surgery for measurement of X 1
L X 2

L . The procedure leverages merging and splitting opera-
tions between two sheets of code. The blue and red tiles are Z - and X -type parity checks, respectively. (a) Two
distance-3 square surface codes, facing each other with X boundaries. The intermediate data qubits (grey)
are initialized to |0〉. (b) The merging operation introduces intermediate data qubits (grey) and X -type ancilla
qubits (red), facilitating the fusion of two smaller codes into one larger entity. (c) The large code is subse-
quently divided back into two smaller codes through the measurement of intermediate data qubits (grey).

MERGING OPERATION

The square surface code encompasses two distinctive types of boundaries, namely, X
and Z boundaries. The X boundaries are defined as the boundaries where Z -string can
terminate, and the Z boundaries are defined as the boundaries where X -string can ter-
minate. Consequently, two different procedures for merging code surfaces arise: one
involves merging the X boundaries of two sheets with the introduction of new X stabi-
lizer generators, and the other merges Z boundaries of two sheets by introducing new Z
stabilizer generators. In this discussion, we primarily focus on the X merge method.

The merge procedure is initiated by preparing the intermediate data qubits, denoted
in grey, in the |0〉 state, as illustrated in Figure 3.1 (a). Following this, several rounds of
quantum error correction cycles are executed on both the original and the newly intro-
duced X stabilizers in Figure 3.1 (b). Here, three X -type stabilizers are newly introduced,
represented as light pink tiles. In the merge procedure, the original Z -type stabilizer on
the X boundary undergoes a transformation from a weight-3 stabilizer in Figure 3.1 (a)

3.1. LATTICE SURGERY

3

27

to a corresponding weight-4 stabilizer in Figure (b) 3.1 by incorporating one intermedi-
ate data qubit. The values of the weight-4 Z -type stabilizer will be the same as the values
of the weight-3 stabilizer, as the intermediate data qubits are initialized to the |0〉 state,
which is the +1 eigenstate of the Z operator. Notably, initializing the intermediate data
qubits to |0〉 ensures the construction of detectors for the Z stabilizer during the merging
operation. This is because it guarantees that the values of the weight-4 Z -type stabilizer
are determined within a noiseless circuit. In contrast, if the intermediate data qubits
were not initialized to the eigenstates of the Z operator, the values would be random.
Throughout this process, the entire system is treated as a unified surface code. The spe-
cific number of QEC rounds required for the merge procedure will be discussed in more
detail in Chapter 4. Interestingly, the three new X stabilizers, represented in light red
and spanning the boundary, generate random measurement outcomes. However, the
product of these outcomes is the eigenvalue of the product of these X stabilizers, which
corresponds to the operator X̂ 1

L X̂ 2
L . This means that measuring these three new X sta-

bilizers and computing their parity is equivalent to measuring X̂ 1
L ⊗ X̂ 2

L , thus performing
non-destructive X X measurements.

Conversely, in a Z merge scenario, the intermediate qubits are initially prepared in
the |+〉 state before measuring the new joint operator. Owing to symmetry, a Z merge is
equivalent to the measurement of Ẑ 1

L ⊗ Ẑ 2
L .

SPLITTING OPERATION

Similarly, the process of splitting a code surface comes in two distinct forms: the X split
and the Z split. The X split involves dividing a single logical qubit surface in two by con-
ducting a series of measurements on intermediate data qubits in Z basis. This method
effectively removes data qubits from the lattice. Alternatively, the Z split slices a single
logical qubit surface in half by carrying out a sequence of measurements on intermedi-
ate data qubits in X basis, also leading to the elimination of data qubits from the lattice.
After executing the splitting operation, quantum error correction cycles are performed
on the two separate surfaces, focusing on the original stabilizers. In this study, we pri-
marily focus on the X splitting operation.

The outcomes of measurements on intermediate data qubits will come out as 0 or 1
at random. Each of these measurements subsequently leaves weight-3 Z -type stabilizers
on either side of the split. The parity of these weight-3 Z -type stabilizers, in tandem with
the measurement outcome of the fourth data qubit, is expected to be 0. Specifically,
we anticipate a 1 (or 0) for the left weight-3 Z -type stabilizers if the corresponding data
qubit’s measurement outcome is 1 (or 0).

We now analyze the transformation of the individual states of the two surfaces fol-
lowing the measurement of the row of intermediate data qubits. Following the splitting
operation, the two logical states will be in an eigenstate of the joint logical operators
X̂ 1

L ⊗ X̂ 2
L . Consequently, the joint state should inhabit the Hilbert space spanned by ei-

ther |++〉L , |−−〉L or |+−〉L , |−+〉L , depending on the measurement result MX X from
the non-destructive X X measurement. Additionally, the logical ẐL operator is preserved
by the X split, namely it possesses the capability to flip logical qubits 1 and 2 as well as
the entirety of a single logical qubit. Therefore, we can conclude that the splitting oper-

3

28 3. FAULT TOLERANT UNIVERSAL QUANTUM COMPUTING

ation transforms logical states in the following manner:

α|0〉L +β|1〉L −→α|00〉L +β|11〉L, (3.1)

a|+〉L +b|−〉L −→ a|++〉L +b|−−〉L. (3.2)

It is important to note that unlike the merging process, logical level information is not
lost or gained during a split. The original state of a single qubit can be logically retrieved
by performing a reverse merge operation following the split.

3.1.2. UNIVERSAL GATE WITH LATTICE SURGERY
In the context of defect-based surface codes, logical two-qubit gates, predominantly the
C NOT operation, are commonly implemented via braiding. However, this method has
more qubit overhead. This is where the concept of lattice surgery comes into play. As in-
dicated in Ref.[5], lattice surgery offers a significant reduction in storage overhead, mak-
ing it a more efficient alternative for performing two-qubit gate operations in surface
codes.

Figure 3.2: Implementation of the C NOT operation employing lattice surgery: Utilization of non-destructive
X X and Z Z measurements on the control and target qubits, with the inclusion of an ancillary qubit. The
measurement box denotes a measurement in Z basis.

As depicted in Figure 3.2, a C NOT gate can be realized on control and target qubits
through the employment of an ancillary qubit, utilizing non-destructive X X and Z Z
measurements. The method of lattice surgery facilitates the execution of this measurement-
based C NOT gate within a 2D layout, leveraging only local operations, as described in
Ref.[28]. Furthermore, significant research has been conducted on the architectural con-
siderations of the surface code, focusing particularly on the balance between space and
time requirements, as detailed in works such as Ref.[29, 30]. These studies provide valu-
able insights into optimizing the surface code setup for quantum computations.

3.1.3. PLAIN SURGERY
Plain surgery provides an alternative approach for performing joint measurements of
logical operators [31], offering a trade-off between time overhead and space (qubit) over-
head compared to standard lattice surgery. It requires more space overhead but results
in reduced time overhead. In plain surgery, the measurement results of the joint logi-
cal observable are determined directly by the measurement outcomes of a set of data

3.2. MAGIC STATE

3

29

qubits. On the other hand, in standard lattice surgery, the measurement results of the
joint logical observable depend on the measurement outcomes of a set of ancilla qubits.
Consequently, as we will discuss in Chapter 4.2, standard lattice surgery necessitates
multiple rounds of quantum error correction to ensure accurate measurements.

Figure 3.3: Procedures of lattice surgery for measurements of Z 1
L Z 2

L or X 1
L X 2

L . (a) Two distance-6 square sur-

face code patches are positioned with an overlap of approximately 2
3 d , the X -boundary of one facing the Z -

boundary of the other. (b) The qubit layout after the merging operation. An example of the joint logical Z 1
L Z 2

L
and X 1

L X 2
L operators are depicted. (c) Data qubits marked in black are measured fault-tolerantly in the X basis

to evaluate X 1
L X 2

L instead of individual X 1
L or X 2

L .

The plain surgery procedure encompasses two distinct steps: plain merge and mea-
surement. The plain merge step begins with the arrangement of two patches, overlap-
ping approximately by 2

3 d . One patch’s X -boundary is juxtaposed with the Z -boundary
of the other, as depicted in Figure 3.3 (a). This operation deforms the two separate sheets
into a single code block, characterized by three X -boundaries and three Z -boundaries,
effectively encapsulating two logical qubits. In the unified code, the logical operator
X 1

L X 2
L is defined by a string originating from the top boundary of the upper patch and

concluding at the right boundary of the lower patch, as illustrated in Figure 3.3 (b). Thus,
by performing measurements on qubits in the X basis in a region distanced from the
third X -boundary as shown in Figure 3.3 (c), the X 1

L X 2
L can be determined, which closely

resembles the conventional logical measurement in a surface code block.

3.2. MAGIC STATE
While the surface code offers a relatively efficient fault-tolerant implementation of log-
ical Clifford gates, it is worth noting that a quantum circuit composed solely of these
gates is not universal and presents no quantum computational advantage over classical
computing [17, 32, 33, 2]. In order to expand this limited set of computations to a uni-
versal set, the non-Clifford gate T = diag(1,e iπ/4) is necessary. However, this gate cannot
be implemented transversally for the surface code.

The solution for achieving universality with the surface code is to utilize ancillary

3

30 3. FAULT TOLERANT UNIVERSAL QUANTUM COMPUTING

magic states. Logical T operators can be implemented by consuming the T magic state
|A〉 = T H |0〉, as illustrated in Figure 3.4 (a). Similarly, logical S operators can be realized
using the |Y 〉 = SH |0〉 magic state, as shown in Figure 3.4 (b). It should be noted that
the logical C NOT gate in the circuits can be implemented using the lattice surgery tech-
nique. Magic states are typically prepared using state injection. However, existing state

Figure 3.4: (a) Implementation of a T gate via magic state |A〉 = T H |0〉. (b) Implementation of a S gate via
magic state |Y 〉 = SH |0〉. The measurement box denotes a measurement in Z basis.

injection protocols, such as those mentioned in Ref. [4, 28], are not fault-tolerant, and
hence the prepared states are often noisy. When a new magic state is initially injected, its
fidelity sometimes can be so low that it can not be used in computation. As a solution,
magic state distillation [34, 35] is used to transform numerous low-fidelity magic states
into fewer, higher-fidelity states. This process continues until the magic states achieve
acceptable fidelity. Notably, experiments demonstrating the preparation of logical magic
states with fidelity beyond the distillation threshold have been conducted using super-
conducting devices [36].

Minimizing the significant overhead associated with preparing a large number of
magic states necessitates the creation of magic states with high initial fidelity. Ref.[37]
introduces a novel protocol using post-selection that demonstrates the infidelity in the
encoded magic state can be less than half of the infidelity of a single C NOT gate, assum-
ing the error rate for single-qubit gates is considerably lower than for two-qubit gates.
The protocol begins by initializing a single physical qubit to a magic state and encoding
it into a surface code. If no error syndrome is found in this first phase, the protocol pro-
ceeds to the second phase. During the second phase, the code distance is increased to
the target code distance to complete the encoding.

3.3. TRANSVERSAL LOGICAL S GATE

Implementing logical S gates on surface code can be accomplished through the use of
magic states, as outlined in Section 3.2. However, this approach can be costly due to the
need for both the preparation and distillation of magic states. An alternative approach
for implementing logical S gates on surface code involves the use of non-local CZ gates
between physical data qubits [27]. The key advantage of this method is its ability to
be implemented transversally, which simplifies the process and reduces the associated
overhead.

In this study, we focus on square surface codes. Figure 3.5 presents a code defined
by a stabilizer group S , which is generated by the following set of linearly independent

3.3. TRANSVERSAL LOGICAL S GATE

3

31

Figure 3.5: Transversal implementation of logical S gates for folded square surface codes. (a) To execute a
logical S gate, data qubits situated on the yellow dashed diagonal line are interactively subjected to S or S†
operations. Furthermore, each pair of data qubits, symmetric in relation to the diagonal line, undergo a CZ
gate. (b) Assign each data qubit on the lattice a unique number.

generators:

S := 〈X1X2X4, X2X3X5, X4X6X7X9, X5X7X8X10, X9X11X12, X10X12X13,

Z1Z4Z6, Z6Z9Z11, Z2Z4Z5Z7, Z7Z9Z10Z12, Z3Z5Z8, Z8Z10Z13〉.

The logical S operation, denoted as S̄, is expressed as:

S̄ = S1S†
4S7S†

10S13C Z2,6C Z3,11C Z5,9C Z8,12 (3.3)

In this logical operation, S and S† gates are applied to the data qubits situated on the
yellow dashed diagonal line, while CZ gates are performed on pairs of data qubits. The
pairs of qubits are symmetrically positioned with respect to the diagonal line, indicated
in yellow in Figure 3.5(a).

To affirm that this construction of S̄ is indeed a legitimate logical operation, we must
demonstrate that this operation S̄ preserves the stabilizer group S . This requires check-
ing whether the statement ∀G ∈ S , ∃G ′ ∈ S s.t. U †GU = G ′ is valid or not. Through
verification, we find that:

S̄†(X1X2X4)S̄ = X1X2X4 ⊗Z1Z4Z6

S̄†(X2X3X5)S̄ = X2X3X5 ⊗Z6Z9Z11

S̄†(X4X6X7X9)S̄ = X4X6X7X9 ⊗Z2Z4Z5Z7

S̄†(X5X7X8X10)S̄ = X5X7X8X10 ⊗Z7Z9Z10Z12

S̄†(X9X11X12)S̄ = X9X11X12 ⊗Z3Z5Z8

S̄†(X10X12X13)S̄ = X10X12X13 ⊗Z8Z10Z13,

(3.4)

3

32 3. FAULT TOLERANT UNIVERSAL QUANTUM COMPUTING

and
S̄†(Z1Z4Z6)S̄ = Z1Z4Z6

S̄†(Z6Z9Z11)S̄ = Z6Z9Z11

S̄†(Z2Z4Z5Z7)S̄ = Z2Z4Z5Z7

S̄†(Z7Z9Z10Z12)S̄ = Z7Z9Z10Z12

S̄†(Z3Z5Z8)S̄ = Z3Z5Z8

S̄†(Z8Z10Z13)S̄ = Z8Z10Z13

(3.5)

Hence, we can confidently conclude that S̄ is a valid logical operation.
To ensure that S̄ effectively performs the logical equivalent of the S gate operation,

we need to confirm that the conditions S̄† X̄ S̄ =−Ȳ , S̄†Ȳ S̄ = X̄ , S̄† Z̄ S̄ = Z̄ are all satisfied.
Since SX S = i X , SY S = i Y , SZ S = I for the standard quantum gate operations, we would
expect that S̄ X̄ S̄ = i X̄ , S̄Ȳ S̄ = i Ȳ , S̄ Z̄ S̄ = Ī for their logical counterparts. Indeed, we find
that these relations hold:

S̄ X̄ S̄ = S̄(X2X7X12)S̄ = i X̄ ⊗ (Z1Z4Z6)⊗ (Z8Z10Z13), (3.6)

S̄ Z̄ S̄ = S̄(Z1Z2Z3)S̄ = (Z2Z4Z5Z7)⊗ (Z3Z5Z8)⊗ (Z8Z10Z13) (3.7)

Thus, it’s validated that S̄ successfully performs the S gate operation at the logical level.
We note that the existence of mirror-dual symmetry with respect to the diagonal line

in square surface codes enables the transversal construction of the logical S gate. That is,
by folding the surface code along the diagonal line, we can pair an X -type stabilizer with
a corresponding Z -type stabilizer. However, the logical S gate transforms the generators,
which necessitates a careful design of detectors, which we will discuss in more depth in
Chapter 4.1.2.

4
OPTIMIZING ROUNDS OF QUANTUM

ERROR CORRECTION CYCLES

4.1. CONSTRUCTING DETECTORS UNDER CODE AND STABILIZER

DEFORMATION
In Chapter 2, we introduced the concept of constructing detectors when there are no
stabilizers deformations or code deformations in play. However, it is crucial to carefully
identify syndrome detectors under these deformations.

4.1.1. CODE DEFORMATION
The technique of code deformation is a tool often employed in the fault-tolerant exe-
cution of logical gates. Code deformation involves transforming one quantum error-
correcting code into another, and this process can mainly be undertaken in two ways:

1. By making a series of changes on the set of stabilizer generators that need to be
measured

2. By carrying out unitary transformations that change the code space

Examples of the first method include expanding or shrinking code patches, and merging
or splitting them. These transformations involve adding or deleting stabilizer generators
to alter the stabilizer group. The second method involves transforming the existing sta-
bilizer group into a new one via unitary operations, that is, Snew = Ū †SoldŪ . An exem-
plary demonstration of this transformation process occurs during the implementation
of a logical Hadamard gate. In this scenario, physical H gates are applied to each indi-
vidual data qubit, resulting in a transformation of the stabilizer group. Specifically, the
operation H̄ transforms the initial stabilizer group, denoted Sold, into a new configura-
tion, expressed as Snew = H̄ †SoldH̄ . In this instance, the code lattice specified by S new
is the dual of the lattice defined by S old, that is X and Z checks have interchanged with

33

4

34 4. OPTIMIZING ROUNDS OF QUANTUM ERROR CORRECTION CYCLES

each other. This duality emerges due to the inherent properties of Hadamard transfor-
mations, i.e., H †X H = Z and H †Z H = X . Thus, we observe a systematic swap in the
nature of stabilizers: each X -type stabilizer in the old lattice transitions into a Z -type
stabilizer in the new lattice, and reciprocally, every Z -type stabilizer in the old lattice
transforms into an X -type stabilizer in the new lattice. This leaves the planar surface at
a different orientation from the original.

The first way of code deformations entails alterations to the original set of stabilizer
generators, specifically through their addition or removal. Figure 4.1 provides an illustra-
tive example of this process, showcasing the addition or deletion of stabilizer generators
along the X boundary.

Figure 4.1: Code deformation by adding or deleting stabilizer generators. (a) Expansion of the original
distance-4 surface code is achieved through the introduction of new stabilizer generators, which are lightly
drawn in the figure. Data qubits, depicted in gray, are initialized in the |+〉 state, after which quantum error
correction rounds are performed for all stabilizers. (b) The process of stabilizer deletion is achieved by mea-
suring the gray-highlighted data qubits in the X basis.

When new stabilizer generators are added, as illustrated in Figure 4.1 (a), the data
qubits introduced are in the |+〉 state. As such, the measurement outcome of the X sta-
bilizers on the boundary remains unchanged in the absence of noise, even though each
of them transitions from a weight-3 stabilizer to a weight-4 stabilizer during the addi-
tion process. Consequently, the syndrome detector for all X -type stabilizers SX after the
expansion is defined as:

σafter
SX

= mbefore
SX

⊕mafter
SX

(4.1)

Here, mbefore
SX

and mafter
SX

denote the measurement results of the X -type stabilizer of in-
terest in the QEC cycle prior to and following the expansion, respectively. Specifically,
on the boundary being expanded, mbefore

SX
corresponds to the measurement result of the

weight-3 X -type stabilizer generators before the expansion, while mafter
SX

corresponds to
the measurement outcome of the weight-4 X -type stabilizer generators after the expan-
sion. The measurement results of the newly introduced Z -type stabilizers are random,
meaning that their values cannot be determined beforehand. As a result, the construc-
tion of syndrome detectors for these new Z -type stabilizers can only be constructed af-
ter the first round of QEC following the expansion. For the original Z -type stabilizers SZ ,

4.1. CONSTRUCTING DETECTORS UNDER CODE AND STABILIZER DEFORMATION

4

35

however, the syndrome detector after the expansion can be constructed as:

σafter
SZ

= mbefore
SZ

⊕mafter
SZ

(4.2)

On the other hand, constructing the detectors when deleting stabilizer generators
is not as straightforward as when adding them. The process of contracting or extract-
ing a surface code, as depicted in Figure 4.1 (b), is carried out by measuring the gray-
highlighted data qubits in the X basis. Each of these measurements subsequently leaves
behind weight-3 X -type stabilizers on the X boundary. It is crucial to note that the out-
comes of these data qubit measurements are random. Consequently, in an ideal sce-
nario, the remaining data qubits are randomly in the +1 or −1 eigenstate of each weight-
3 X -type stabilizer on the contracting boundary, depending on the measurement result
of the data qubit which the weight-3 X -type stabilizer touches (denoted as data qubit
D and represented in gray in the figure). The detector for the weight-3 X -type stabilizer
post-contraction is thus defined as:

σafter
SX

= mbefore
SX

⊕mafter
SX

⊕mD (4.3)

where mbefore
SX

and mafter
SX

denote the measurement results of the X -type stabilizer on the
contracting boundary in the QEC cycle prior to and following the contraction, respec-
tively. mD represents the measurement result of the data qubit D . The construction of
syndrome detectors for the X -type stabilizer generators that are not on the boundary to
be constructed, as well as all Z -type stabilizer generators after the contraction, follows a
straightforward process. These detectors can be constructed using the same principles
described in Eq. (4.1) for X -type stabilizers and Eq. (4.2) for Z -type stabilizers.

4.1.2. STABILIZER DEFORMATION

Logical operations Ū ∈N (S) =:
{
Ū ∈ U(2n) | ∀S ∈S , ∃S′ ∈S s.t.S′ = Ū †SŪ

}
can some-

times transform one stabilizer generator to another one in Heisenberg picture, but al-
ways keep the stabilizer group unchanged. In this case, the construction of syndrome
detectors has to be carefully designed, too. For a surface code defined by S = 〈G1,G2, ...,GK 〉
with K the number of stabilizer generators of the code, let the measurement results of G
in the QEC cycle before and after the application of Ū be:

mG ,before = 〈ψ|G |ψ〉→ 〈ψ|Ū †GŪ |ψ〉 = mG ,after (4.4)

Note that here we define the measurement outcome 〈ψ|G |ψ〉 = 0 if G |ψ〉 = |ψ〉 and to 1
if G |ψ〉 =−|ψ〉. Since Ū †GŪ ∈S , we can always write it as a product of generators:

Ū †GŪ =
K⊗

i=1
Gpi

i (4.5)

Here, pi are integers, which are either 0 or 1. The power pi is 0 if the generator Gi is
not part of the product, and it is 1 if the generator Gi is part of the product. Therefore,
mG ,after can be rewritten as:

mG ,after =
K⊗

i=1
〈ψ|Gpi

i |ψ〉 =
K⊕

i=1
pi mGi ,before (4.6)

4

36 4. OPTIMIZING ROUNDS OF QUANTUM ERROR CORRECTION CYCLES

Therefore, once a logical operation, denoted as Ū , has been performed, we can track
the syndrome (error information) on stabilizer generator G during the subsequent QEC
cycle using the following formula:

σafter
G =

(
K⊕

i=1
pi mGi ,before

)
⊕mafter

G (4.7)

This equation defines the syndrome detector to accurately identify and track error syn-
dromes across stabilizer generator transformations.

As an example, we consider the construction of syndrome detectors under stabilizer
deformation due to the implementation of the transversal S̄ operation. As discussed in
Chapter 3, the application of a transversal logical S gate transforms each X -type stabi-
lizer into the product of itself and the Z -type stabilizer that is mirror-symmetric to it
with respect to the diagonal line, which is depicted in Eq. (3.4) and . We represent this
transformation as:

S̄†Sv
X S̄ = Sv

X ⊗Ssym(v)
Z (4.8)

In this expression, Sv
X refers to the X -type stabilizer at site v on the lattice, while sym(v)

indicates the site mirror-symmetrical to v with respect to the diagonal line, as shown in

Figure 3.5. Consequently, Ssym(v)
Z signifies the Z -type stabilizer at the site sym(v) on the

lattice.

Given this transformation, the syndrome detector on the stabilizer Sv
X in the QEC

cycle following the execution of the logical operation S̄ becomes:

σafter
Sv

X
= mSv

X ,before ⊕m
S

sym(v)
Z ,before

⊕mSv
X ,after (4.9)

Here, mSv
X ,before and mSv

X ,after denote the measurement outcomes of the X -type stabi-

lizer at site v , before and after the implementation of the S̄ operation, respectively. Sim-
ilarly, m

S
sym(v)
Z ,before

stands for the measurement result of the Z -type stabilizer at the site

sym(v).

4.2. DECODING LATTICE SURGERY
As we introduced in Chapter 3.1, lattice surgery serves as a critical technique in sur-
face code quantum computation. It is used to execute logical two-qubit gates and the
non-Clifford logical T gate with a logical magic state. Numerous resources [28, 30, 29]
propose that d rounds of QEC must be undertaken to achieve sufficiently low fidelity
in the logical joint measurement during the merging operation of lattice surgery. While
this supposition aligns intuitively with our understanding, it demands a more rigorous
theoretical backing. It is equally important to consider additional parameters, such as
the qubit error probability and the qubit measurement probability. In this section, we
aim to provide both theoretical and simulation-based evidence to elucidate this issue.
We endeavor to create a comprehensive and precise understanding of the relationship
between rounds of QEC and the resulting fidelity in lattice surgery operations.

4.2. DECODING LATTICE SURGERY

4

37

4.2.1. THEORY
In this section, we provide a theoretical determination of the requisite number of QEC
cycles needed for lattice surgery when the circuit is under phenomenological noise model
(see Chapter 1.1.1). This is to ensure a sufficiently low probability of a fault occurring
during a logical joint measurement.

IDENTIFY HARMFUL LOOPS FOR LATTICE SURGERY

In quantum memory experiments, the combination of errors with the correction can
result in nontrivial paths across the whole spacetime lattice or trivial loops in the space-
time lattice. Similarly, in the context of decoding the outcome of logical joint mea-
surements using lattice surgery, two types of overall operations (errors and corrections)
emerge as potentially harmful:

1. paths originating from the newly introduced stabilizers at the past-time boundary
and ending at the future-time boundary,

2. paths starting from the newly introduced stabilizers at the past-time boundary and
terminating at the spatial boundary.

Examples for these paths when measuring logical X X of two distance-5 square surface
codes are illustrated in Figure 4.2. The X boundaries of two patches of code are merged
by introducing new X stabilizer generators in the middle. The purple solid lines denote
error edges within the spacetime volume (shown in yellow), and the dashed purple lines
indicate error edges that across either the temporal or spatial boundary of the spacetime
volume.

It is important to recognize that all such harmful overall operations begin from the
newly introduced X -type stabilizer generators at the past-time boundary. This is be-
cause the result of the joint measurement is determined by the parity of the outcomes of
the newly-introduced stabilizer generators during the first round of QEC after the merg-
ing operation, as introduced in Chapter 3.1.1. As a consequence, even if there are non-
trivial loops of overall operation present, as long as they do not interact with the newly
added ancilla qubits, these overall operations will not affect the value of the logical joint
measurement outcome.

Figure 4.2 illustrates two fundamentally distinct categories of homologically nontriv-
ial overall operation (error and correction) chains within the three-dimensional space-
time lattice. Each of these chains originates from the past-time boundary, and ends ei-
ther at a spatial boundary or at the future-time boundary. Of these chains, one is purely
space-like, another purely time-like, and the third one is comprised of both space-like
and time-like error edges.

BOUND ON NONTRIVIAL LOOP PROBABILITIES

Having identified the homologically nontrivial chains formed by errors and corrections
in lattice surgery, we may inquire about their probability of occurrence, which is the
probability of failure of the logical joint measurement by lattice surgery. To approach
this question, we first consider the probability Prob(H ,V) that a given path, with (H ,V)
horizontal (time-like) and vertical (space-like) edges, is contained within the overall op-
eration (errors and corrections) Ee+Ec. As we discussed in Chapter 2.1.2, horizontal and

4

38 4. OPTIMIZING ROUNDS OF QUANTUM ERROR CORRECTION CYCLES

Figure 4.2: Homologically nontrivial chains on the lattice formed by errors and corrections for lattice surgery
decoding in the spacetime volume. Two distance-5 square surface codes with X boundaries are merged
through the introduction of new data and X -type ancilla qubits in between them. The spacetime volume is
represented by the yellow cuboid. Error edges within the spacetime volume are depicted as solid purple lines.
Error edges that cross the boundaries of the spacetime volume connect one defect on the boundary with a
virtual defect (recall Figure 2.4). These error edges are represented by dashed purple lines.

vertical edges correspond to single errors on qubits and measurement errors, respec-
tively. For simplicity, diagonal (space-time-like) edges are not taken into consideration
since we are considering phenomenological noise model.

Consider a specific path (which could be homologically trivial) within the spacetime
volume, composed of H horizontal edges and V vertical edges. Let (He ,Ve) denote the
number of those edges that are contained by the errors Ee, and (Hc ,Vc) represent the
number of those links that are contained by the correction Ec. That is to say:

H = He +Hc , V =Ve +Vc (4.10)

There are 2H+V ways to distribute error edges (He ,Ve) along the specified path, where
each link could either contain an error or not. Once the locations for these errors have
been determined, the probability p0(H ,V) of errors appearing at those particular sites is
given by:

p0(H ,V) =p He
q (1−pq)Hc pVe

meas(1−pmeas)Vc

=(1−pq)H (1−pmeas)V
(

pq

1−pq

)He
(

pmeas

1−pmeas

)Ve (4.11)

4.2. DECODING LATTICE SURGERY

4

39

The minimum-weight decoder is designed to determine Ec in a way such that(
pq

1−pq

)He
(

pmeas

1−pmeas

)Ve

≤
(

pq

1−pq

)Hc
(

pmeas

1−pmeas

)Vc

. (4.12)

Hence, combining Eq. (4.10), (4.11), and (4.12), we conclude that p0(H ,V) ≤
(
p̃ H

q p̃V
meas

)1/2

if the path is contained in Ee +Ec where

p̃q = pq(1−pq), p̃meas = pmeas(1−pmeas) (4.13)

As a result, the probability Prob(H ,V) that a particular path with (H ,V) horizontal
and vertical edges is contained in Ee +Ec can be bounded as follows:

Prob(H ,V) ≤ 2H+V
(
p̃ H

q p̃V
meas

)1/2
(4.14)

We can set a boundary on the probability that Ee +Ec encompasses any connected
path with (H ,V) edges by enumerating such paths. Taking a cue from Ref. [11], we treat
the path as a walk on the three-dimensional lattice. Our primary interest pertains to
self-avoiding walks (SAWs) — those that visit any given node in the spacetime volume
no more than once (or in the context of a loop, only return to the start and end point).
This is because for any open error walk connecting two nodes, a SAW can always be
derived by eliminating certain closed loops of links from the original walk.

To assess the number of QEC cycles necessary for lattice surgery decoding, we need
to consider Self-Avoiding Walks (SAWs) lying between the past-time boundary at t = 0
and the future-time boundary at t = T . As discussed in Section 4.2.1, such an SAW could
commence at any one of the d newly-introduced X stabilizers at t = 0. If nSAW(H ,V)
represents the number of SAWs with (H ,V) edges and a specified starting site, then the
probability ProbSAW(H ,V) that Ee +Ec encompasses at least one SAW with (H ,V) edges
can be expressed as:

ProbSAW(H ,V) ≤ d ·nSAW(H ,V) ·2H+V
(
p̃ H

q p̃V
meas

)1/2
(4.15)

This upper bound, which is obtained from Ref. [11], forms the basis for the ensuing
results.

BOUND ON FAILURE PROBABILITY OF LATTICE SURGERY

The encoded information relating to the joint measurement outcome of two logical qubits
will be lost if Ee +Ec incorporates homologically nontrivial paths. For lattice surgery, the
first type of homologically nontrivial path must contain at a minimum, T vertical edges,
while the second type of homologically nontrivial path needs to encompass at least d
horizontal edges. Therefore, we can express the failure probability as:

Probfail ≤
∑

V ≥0

∑
H≥d

ProbSAW(H ,V)+ ∑
V ≥T

∑
H≥0

ProbSAW(H ,V) (4.16)

The number of self-avoiding walks (SAWs) in a three-dimensional spacetime volume,
given a specific number of horizontal and vertical edges, can be upper bounded as fol-
lows [38]:

n(3)
SAW(ℓ) ≤ P3(ℓ)

(
µ3

)ℓ (4.17)

4

40 4. OPTIMIZING ROUNDS OF QUANTUM ERROR CORRECTION CYCLES

where ℓ = H +V , P3(ℓ) is a polynomial, and µ3 is a constant. Therefore, by combining
equations (4.15), (4.16) and (4.17), we can derive an upper bound for Probfail

Probfail ≤d

(∑
V ≥0

∑
H≥d

P3(H +V) · (4µ2
3p̃q

)H/2 (
4µ2

3p̃meas
)V /2

)

+d

(∑
V ≥T

∑
H≥0

P3(H +V) · (4µ2
3p̃q

)H/2 (
4µ2

3p̃meas
)V /2

)
.

(4.18)

Assuming that

p̃q < (
4µ2

3

)−1
, p̃meas <

(
4µ2

3

)−1
(4.19)

we obtain (
4µ2

3p̃q
)H/2 · (4µ2

3p̃meas
)V /2 ≤ (

4µ2
3p̃q

)d/2
(4.20)

for every term in the first sum, and(
4µ2

3p̃
)H/2 · (4µ2

3p̃meas
)V /2 ≤ (

4µ2
3p̃meas

)T /2
(4.21)

for every term in the second sum. With a total of 4d 2T horizontal links and 2d 2T vertical
links, we can deduce that:

Probfail ≤Q1(d ,T) · (4µ2
3p̃q)d/2 +Q2(d ,T) · (4µ2

3p̃meas)T /2 (4.22)

where Q1,2(d ,T) are polynomials of d and T .
Since this upper bound is analyzed under a phenomenological noise model, it is im-

portant to note that the constant µ3 may differ in real-world experiments due to vari-
ations in nontrivial path counting. Thus, in a more general context, we can state the
following:

Probfail ≤Q1(d ,T) · (C1p̃q)d/2 +Q2(d ,T) · (C2p̃meas)T /2 (4.23)

where C1 and C2 are constants.
Increasing T will initially cause the logical error to decrease exponentially relative

to T , but ultimately, the logical error rate will reach a plateau that scales exponentially
with the code distance d (we will discuss this again in Figure 4.4). To achieve optimal
performance given the code distance d , the value of the second term should be much
smaller than that of the first term. This can be ensured when:

T ≫ d
log

(
C1p̃q

)−1

log
(
C2p̃meas

)−1 ≡ d ·C (p̃q, p̃meas) (4.24)

4.2.2. SIMULATION
To verify our theoretical findings, we perform a simulation of a simplified lattice surgery
experiment, as depicted in Figure 4.3. We initialize two logical qubits, encoded by the
square surface code, to the state |+̄〉. Subsequently, we perform lattice surgery to merge
their X boundaries together, enabling the measurement of the logical observable X̄ X̄ .
We note that splitting operation is not performed in this experiment as it does not affect
the joint measurement outcome. After the merging operation, we conducted T rounds of

4.2. DECODING LATTICE SURGERY

4

41

QEC on the combined patch of code. After these rounds, defect information is collected
and the MWPM decoder [14] introduced in Chapter 2.2.1 is utilized for decoding. Python
package Stim [1] is used to generate the circuits. The code for the simulation can be
found in Chapter 6 (Appendix).

Figure 4.3: The setup for the lattice surgery experiments. Two logical qubits, encoded by the square surface
code, are each initialized to the state |+̄〉. Using lattice surgery techniques, a joint logical measurement, de-
noted as MX X , is carried out. Following the merging operation, QEC is performed for a total of T rounds.

In all the simulations conducted for this work, we use a circuit-level noise model,
as described in Chapter 1. This model simulates physical gate errors by incorporating
a one-qubit depolarization channel following each physical single-qubit gate operation,
and a two-qubit depolarization channel after each physical two-qubit gate execution.
Moreover, a depolarization channel is also added for each idling qubit to account for
decoherence, using the method introduced in Chapter 1.1.1. The coherence times for
the qubits are established at T1 = T2 = 60µs. The other parameters used in this model
are as follows: the error rate for the two-qubit gate is set to 0.5%, while the error rate for
the single-qubit gate is kept at one-tenth of this value, that is, 0.05%. The measurement
error rate varies and is set differently for individual experiments.

Figure 4.4 displays the results of an experiment examining the logical error rate of
MX X measurement outcomes in relation to the number of QEC cycles (T) following the
merging operation for lattice surgery. The experiment involved the merging of two logi-
cal qubits encoded by square surface codes with varying code distances (d), specifically
d = 3,5,7,9,11,13,15. The classical read-out error rate was set to pmeas = 1.0%. The re-
sults demonstrate a distinct trend: as the number of QEC cycles T increases, the logical
MX X error rate initially decreases exponentially before eventually reaching a plateau.
Moreover, the value of the plateau decreases exponentially with respect to the code dis-
tance d . We note that the logical error of MX X should not increase with T since our
primary concern is not the preservation of the qubit state over time, but rather the error
probability associated with the joint measurement.

This observation aligns with our theoretical findings. The second term in the up-
per bound expression for Probfail (see Eq. (4.23)), denoted as Q2(d ,T) · (C2p̃meas)T /2,
decreases exponentially as T increases, explaining the initial exponential decrease in
the error rate observed in Figure 4.4. However, as T continues to increase, Q2(d ,T) ·
(C2p̃meas)T /2 becomes sufficiently small and negligible compared to the first term Q1(d ,T)·
(C1p̃q)d/2, which is dominated by the code distance d . Consequently, every curve even-
tually reaches a plateau whose value is exponentially dependent on the code distance d ,
as the contribution from the second term becomes negligible.

4

42 4. OPTIMIZING ROUNDS OF QUANTUM ERROR CORRECTION CYCLES

5 10 15 20 25 30
Number of QEC rounds in merging operation T

10 3

10 2

10 1

Lo
gi

ca
l M

XX
 e

rro
r r

at
e

pmeas = 1.0%

d = 3
d = 5
d = 7
d = 9
d = 11
d = 13
d = 15

Figure 4.4: The logical joint measurement MX X as a function of the number of QEC cycles, denoted by T ,
carried out during the merging operation. The simulations are executed for square surface codes of distance
d = 3,5,7,9,11,13,15, respectively. Under a circuit-level noise model, the error rate is fixed at 0.5% for the
two-qubit gate, while the single-qubit gate has an error rate of one tenth of this. The measurement error rate,
pmeas, is set at 1%, and the qubit coherence times are T1 = T2 = 60µs.

We also observe that the starting point of each plateau, where the logical error rate
levels off and remains relatively constant, exhibits a proportional relationship with the
code distance d . This finding aligns with the relationship described in Eq. (4.24). Fur-
thermore, it is important to note that performing only d rounds of QEC is insufficient to
reach the plateau of the logical error rate, as one can see in Figure 4.4 .

As highlighted in Eq. (4.24), the number of QEC cycles necessary to determine the
results of MX X with optimal confidence depends not only on the code distance d , but
also on the qubit error probability pq and measurement error probability pmeas.

To illustrate this more explicitly, we conduct an additional experiment examining
the logical error rate of MX X and T for two logical qubits encoded by a distance-7 square
surface code. We varied the measurement error probability pmeas, setting it to 0.5%,
1.0%, 1.5%, 2.0%, 2.5%, and 3.0% respectively, as illustrated in Figure 4.5.

In Figure 4.5, the curves representing different values of pmeas clearly demonstrate
that a higher measurement error probability pmeas requires a larger number of QEC cy-
cles to reach the plateau of the logical error rate for MX X . This observation aligns with
the relationship described in Eq. (4.24), that is, the larger the measurement error rate,
the more rounds of QEC required.

In summary, the numerical results presented in this study offer empirical evidence
that supports our theoretical understanding of the necessary number of QEC cycles for
effective decoding. One crucial aspect to note is that the joint logical observable of in-
terest can be expressed as a product of stabilizer measurement results. To confidently
determine the sign of these stabilizer measurement results, it is imperative to perform
decoding over a larger spacetime volume, which corresponds to longer time intervals.
This minimizes the probability of nontrivial overall operation paths occurring, which in

4.3. DECODING LOGICAL QUBIT MOVEMENT

4

43

5 10 15 20 25
Number of QEC rounds in merging operation T

10 2

10 1

Lo
gi

ca
l M

XX
 e

rro
r r

at
e

d = 7
pmeas = 0.5%
pmeas = 1.0%
pmeas = 1.5%
pmeas = 2.0%
pmeas = 2.5%
pmeas = 3.0%

Figure 4.5: The logical joint measurement MX X in relation to the number of QEC cycles, represented as T ,
implemented during the merging operation. The simulations are carried out for square surface codes of dis-
tance d = 7 under different measurement error rates pmeas—specifically, 0.5%,1.0%,1.5%,2.0%,2.5%,3.0%. In
this circuit-level noise model, the two-qubit gate has an error rate of 0.5%, while the single-qubit gate has a
reduced error rate of just one tenth of this. Additionally, the qubit coherence times are fixed at T1 = T2 = 60µs.

turn improves the accuracy of the decoding process.

4.3. DECODING LOGICAL QUBIT MOVEMENT
Moving logical qubits on the lattice is a crucial technique in surface code quantum com-
putation. It serves various purposes, such as adjusting the orientation of the code and
enabling the entanglement of remote logical qubits.

The essence of moving an encoded logical qubit involves relocating its logical ob-
servables through space. Figure 4.6 illustrates an example of moving a distance-4 square
surface code along the direction of its logical X chain. Specifically, the logical observ-
ables Ẑ old

L and X̂ old
L are transformed into Ẑ new

L and X̂ new
L , respectively.

In Figure 4.6 (a), we begin with a distance-4 square surface code on the left, associ-
ated with Ẑ old

L and X̂ old
L . The data qubits on the right-hand side of the code are initialized

to the |+〉 state. In Figure 4.6 (b), quantum error correction cycles are performed on all
the stabilizers. The measurement outcomes of the newly introduced Z -type stabilizers
{Snew

Z ,i }K
i=1 (shown in the legend) are random. It is crucial to accurately infer their mea-

surement outcomes since they determine the relationship between Ẑ old
L and Ẑ new

L as
follows:

Ẑ new
L = Ẑ old

L

(
K⊗

i=1
Snew

Z ,i

)
(4.25)

Therefore, if any odd number of these stabilizer measurements are incorrect, it will lead
to an incorrect sign for the moved logical observable. For example, if the product of
the measurement outcomes of all the newly introduced stabilizers is +1, we know that
Ẑ new

L = Ẑ old
L . Conversely, if the product is −1, we know that Ẑ new

L = −Ẑ old
L . In other

4

44 4. OPTIMIZING ROUNDS OF QUANTUM ERROR CORRECTION CYCLES

words, the value of
⊗K

i=1 Snew
Z ,i indicates how to express the logical observable Ẑ new

L in

terms of Ẑ old
L and {Snew

Z ,i }K
i=1. Consequently, faulty decoding of the measurement out-

comes of these newly introduced Z -type stabilizers generators can potentially lead to an
incorrect observable Ẑ new

L . To complete the movement, the data qubits, represented by
the lightly shaded area, are measured in the X basis, as depicted in Figure 4.6 (c). Dur-
ing this process, the logical observable Ẑ new

L remains unchanged, preserving its original
state.

Figure 4.6: Transition of one logical qubit on the lattice. (a) The original distance-4 square surface code, il-
lustrated with Z old

L and X old
L operations. New data qubits are initialized to the |+〉 state. (b) QEC cycles are

executed on all stabilizers of the expanded code, with operations Z new
L and X middle

L . The newly incorporated
Z -type stabilizers are depicted in the legend. (c) Data qubits to be removed are measured in the X basis. This
results in a new distance-4 square surface code with operations Z new

L and X new
L .

In contrast to the movement of the logical Z observable, the movement of the logical
X observable is straightforward. This is due to the fact that all new data qubits were
initialized to the |+〉 state, resulting in a product of all new X -type stabilizers being +1.
Consequently, we can confidently assert that X̂ middle

L = X̂ old
L prior to decoding. When

4.3. DECODING LOGICAL QUBIT MOVEMENT

4

45

contracting, however, it turns out that:

X̂ middle
L = X̂ new

L ·M (4.26)

where M is the product of the measurement results of the data qubits (shown in red dots
in Figure 4.6 (c)). This line of data qubits are removed from X̂ middle

L and thus we are left
with X̂ new

L . The measurements results of these data qubits can be fault-tolerantly deter-
mined, similarly as how we measure a logical observable of a logical qubit (as described
in Chapter 1.2.5).

Figure 4.7: Spacetime volume and nontrivial chains of overall operations (errors and corrections) in the de-
coding process of moving a logical qubit. The error edges, indicated in purple, can lead to an incorrect sign for
the moved logical observable. Solid lines represent edges connecting two nodes in the decoding graph, while
dashed lines represent edges connecting a node to the boundary. The required number of QEC cycles needed
for decoding the movement of a logical qubit after expanding the original code is shown on the right of the
figure.

The figure presented in Figure 4.7 illustrates the spacetime volume and examples of
nontrivial chains of overall operations (errors and correction) involved in the decoding
process of moving a logical qubit. The purple lines indicate chains of overall operations
that can result in an incorrect sign for the moved logical observable. Solid lines represent
edges connecting two nodes in the spacetime lattice, while dashed lines connect a node
to the boundary. Additionally, the figure demonstrates the required number of QEC cy-
cles necessary for decoding the movement of a logical qubit after expanding the original
code.

To accurately determine the number of QEC cycles needed to achieve a desired level
of certainty in the correct movement of a logical qubit, it is crucial to ascertain the value
of every Snew

Z ,i in this case. Examples of nontrivial chains of overall operations formed by
errors and corrections that can lead to faulty decoding is highlighted in purple within
the spacetime volume.

Similar to lattice surgery decoding, two types of harmful paths can result in failure
during the movement of the logical qubit. The first type involves a path of overall opera-
tions, including errors and corrections, that connects the past- and future-time bound-
aries. This path contains at least T vertical (time-like) edges within the spacetime vol-

4

46 4. OPTIMIZING ROUNDS OF QUANTUM ERROR CORRECTION CYCLES

ume, where T corresponds to the number of QEC cycles performed after expanding the
original code. The second type of path connects spatial boundaries and represents a po-
tential logical error. This path contains at least d horizontal (space-like) edges within the
spacetime volume. Both types of paths can lead to the failure of the logical qubit move-
ment, resulting in an incorrect sign for the new logical observable or a logical error on
the logical qubit. Hence, we obtain a similar result as with lattice surgery decoding. The
probability of failure can be bounded by the expression:

Probfail ≤Q ′
1(d ,T) · (C ′

1p̃q)d/2 +Q ′
2(d ,T) · (C ′

2p̃meas)T /2 (4.27)

where Q ′
1,2(d ,T) are polynomials of d and T , and C ′

1 and C ′
2 are constants.

Furthermore, we observe a similar result as with lattice surgery decoding, stating that
the required number of QEC cycles:

T ≫ d ·C ′(p̃q, p̃meas) (4.28)

5
CONCLUSION

In the field of surface code quantum computation, repeatedly performing quantum er-
ror correction (QEC) cycles is crucial due to the high susceptibility of our quantum sys-
tems to errors. Conversely, excessive rounds of QEC cycles following one logical opera-
tion can impede the computation speed and subject idling logical qubits to additional
errors. Hence, determining when and how many rounds of QEC cycles needed to attain a
desirable decoding success rate is significant. This thesis has yielded several noteworthy
results towards this goal.

Firstly, we elucidated the fault-tolerant and proper orders of syndrome measurement
within each QEC cycle for the square surface code. We assessed two types of syndrome
measurement orders. The Type-I order, despite necessitating fewer physical single-qubit
H gates and reducing implementation duration, displays asymmetric resistance to logi-
cal X and Z errors due to the mirror-dual symmetry of the square surface code. In con-
trast, the Type-II order not only maintains a same level of logical X and Z error rates in
quantum memory experiments, but also presents an advantage in terms of the averaged
logical X and Z error rates over Type-I, particularly when the qubit coherence times and
the single-qubit gate error rate fall below a specific threshold. These findings offer cru-
cial guidance for the selection of syndrome measurement orders in future square surface
code quantum computation experiments.

Secondly, this thesis provides a method for constructing detectors under code and
stabilizer deformation. This method is instrumental for the precise identification and
tracking of error syndromes, ensuring that decoders are provided with accurate infor-
mation for decoding.

Thirdly, we have provided a theoretical explanation for the need to conduct more
QEC cycles to achieve a longer spacetime volume for decoding when reliable stabilizer
measurement outcomes are desired. We demonstrated two situations in which the knowl-
edge of stabilizer measurement outcomes is crucial to proceed computation: lattice
surgery and the movement of a logical qubit. Numerical experiments are conducted
for measuring a joint logical observable of two surface codes using lattice surgery, and
the results are consistent with our theoretical findings.

47

48 5. CONCLUSION

While these findings contribute significantly to the field, there are still areas requiring
further exploration. The optimization of QEC cycles remains an open issue. Factors such
as the type of code, methods of constructing the universal set of logical operations, hard-
ware control, and noise in real-world experiments, among others, complicate this prob-
lem. However, addressing this issue promises to greatly benefit universal fault-tolerant
quantum computation. This thesis stands as a valuable step towards resolving these
challenges and advancing the field of surface code quantum computation.

BIBLIOGRAPHY

[1] Craig Gidney. “Stim: a fast stabilizer circuit simulator”. In: Quantum 5 (2021), p. 497.

[2] Daniel Gottesman. Stabilizer codes and quantum error correction. California Insti-
tute of Technology, 1997.

[3] Sergey B Bravyi and A Yu Kitaev. “Quantum codes on a lattice with boundary”. In:
arXiv preprint quant-ph/9811052 (1998).

[4] Austin G Fowler, Adam C Whiteside, and Lloyd CL Hollenberg. “Towards practical
classical processing for the surface code”. In: Physical review letters 108.18 (2012),
p. 180501.

[5] Austin G Fowler and Craig Gidney. “Low overhead quantum computation using
lattice surgery”. In: arXiv preprint arXiv:1808.06709 (2018).

[6] Héctor Bombın. “Topological order with a twist: Ising anyons from an abelian
model”. In: Physical review letters 105.3 (2010), p. 030403.

[7] Theodore J Yoder and Isaac H Kim. “The surface code with a twist”. In: Quantum
1 (2017), p. 2.

[8] Panos Aliferis, Daniel Gottesman, and John Preskill. “Quantum accuracy threshold
for concatenated distance-3 codes”. In: arXiv preprint quant-ph/0504218 (2005).

[9] Austin G Fowler and Simon J Devitt. “A bridge to lower overhead quantum com-
putation”. In: arXiv preprint arXiv:1209.0510 (2012).

[10] David S Wang, Austin G Fowler, and Lloyd CL Hollenberg. “Surface code quantum
computing with error rates over 1%”. In: Physical Review A 83.2 (2011), p. 020302.

[11] Eric Dennis et al. “Topological quantum memory”. In: Journal of Mathematical
Physics 43.9 (2002), pp. 4452–4505.

[12] Kao-Yueh Kuo and Chung-Chin Lu. “On the hardnesses of several quantum de-
coding problems”. In: Quantum Information Processing 19 (2020), pp. 1–17.

[13] Elwyn Berlekamp, Robert McEliece, and Henk Van Tilborg. “On the inherent in-
tractability of certain coding problems (corresp.)” In: IEEE Transactions on Infor-
mation Theory 24.3 (1978), pp. 384–386.

[14] Oscar Higgott. “PyMatching: A Python package for decoding quantum codes with
minimum-weight perfect matching”. In: ACM Transactions on Quantum Comput-
ing 3.3 (2022), pp. 1–16.

[15] Edsger W Dijkstra. “A note on two problems in connexion with graphs”. In: Edsger
Wybe Dijkstra: His Life, Work, and Legacy. 2022, pp. 287–290.

[16] Jack Edmonds. “Paths, trees, and flowers”. In: Canadian Journal of mathematics
17 (1965), pp. 449–467.

49

50 BIBLIOGRAPHY

[17] Daniel Gottesman. “The Heisenberg representation of quantum computers”. In:
arXiv preprint quant-ph/9807006 (1998).

[18] Yu Tomita and Krysta M Svore. “Low-distance surface codes under realistic quan-
tum noise”. In: Physical Review A 90.6 (2014), p. 062320.

[19] Richard Versluis et al. “Scalable quantum circuit and control for a superconduct-
ing surface code”. In: Physical Review Applied 8.3 (2017), p. 034021.

[20] “Suppressing quantum errors by scaling a surface code logical qubit”. In: Nature
614.7949 (2023), pp. 676–681.

[21] Youwei Zhao et al. “Realization of an error-correcting surface code with supercon-
ducting qubits”. In: Physical Review Letters 129.3 (2022), p. 030501.

[22] JF Marques et al. “Logical-qubit operations in an error-detecting surface code”. In:
Nature Physics 18.1 (2022), pp. 80–86.

[23] Sebastian Krinner et al. “Realizing repeated quantum error correction in a distance-
three surface code”. In: Nature 605.7911 (2022), pp. 669–674.

[24] Xie Chen et al. “Subsystem stabilizer codes cannot have a universal set of transver-
sal gates for even one encoded qudit”. In: Physical Review A 78.1 (2008), p. 012353.

[25] Bryan Eastin and Emanuel Knill. “Restrictions on transversal encoded quantum
gate sets”. In: Physical review letters 102.11 (2009), p. 110502.

[26] Lingling Lao et al. “Mapping of lattice surgery-based quantum circuits on surface
code architectures”. In: Quantum Science and Technology 4.1 (2018), p. 015005.

[27] Jonathan E Moussa. “Transversal Clifford gates on folded surface codes”. In: Phys-
ical Review A 94.4 (2016), p. 042316.

[28] Clare Horsman et al. “Surface code quantum computing by lattice surgery”. In:
New Journal of Physics 14.12 (2012), p. 123011.

[29] Daniel Litinski. “A game of surface codes: Large-scale quantum computing with
lattice surgery”. In: Quantum 3 (2019), p. 128.

[30] Jonghyun Lee et al. “Lattice surgery-based Surface Code architecture using remote
logical CNOT operation”. In: Quantum Information Processing 21.6 (2022), p. 217.

[31] Christophe Vuillot et al. “Code deformation and lattice surgery are gauge fixing”.
In: New Journal of Physics 21.3 (2019), p. 033028.

[32] Scott Aaronson and Daniel Gottesman. “Improved simulation of stabilizer circuits”.
In: Physical Review A 70.5 (2004), p. 052328.

[33] Kaifeng Bu and Dax Enshan Koh. “Efficient classical simulation of Clifford circuits
with nonstabilizer input states”. In: Physical review letters 123.17 (2019), p. 170502.

[34] Sergey Bravyi and Alexei Kitaev. “Universal quantum computation with ideal Clif-
ford gates and noisy ancillas”. In: Physical Review A 71.2 (2005), p. 022316.

[35] Sergey Bravyi and Jeongwan Haah. “Magic-state distillation with low overhead”.
In: Physical Review A 86.5 (2012), p. 052329.

BIBLIOGRAPHY 51

[36] Yangsen Ye et al. “Logical Magic State Preparation with Fidelity Beyond the Dis-
tillation Threshold on a Superconducting Quantum Processor”. In: arXiv preprint
arXiv:2305.15972 (2023).

[37] Ying Li. “A magic state’s fidelity can be superior to the operations that created it”.
In: New Journal of Physics 17.2 (2015), p. 023037.

[38] Neal Madras and Gordon Slade. The self-avoiding walk. Springer Science & Busi-
ness Media, 2013.

6
APPENDIX

The code for the numerical simulation in this thesis can be found here.

53

https://github.com/ZheruiWANG/Surface-code-error-correction-during-logical-operations

	Abstract
	Acknowledgements
	Introduction
	Quantum error correction
	Modelling quantum noise
	Stabilizer formalism

	Surface code
	Definition
	Error detection
	Quantum error correction cycles
	Creating logical qubits
	Logical qubit initialization and measurement

	Research motivation

	Decoding the surface code
	Decoding problem
	Detectors and syndrome defects
	Defects and error edges in spacetime

	Decoding algorithms
	Minimum-Weight Perfect Matching

	Improved stabilizer measurement circuits
	Proper stabilizer measurement circuits
	Fault-tolerant stabilizer measurement circuits
	Comparative analysis of two syndrome measurement types

	Fault tolerant universal quantum computing
	Lattice surgery
	Standard lattice surgery
	Universal gate with lattice surgery
	Plain surgery

	Magic state
	Transversal logical S gate

	Optimizing rounds of quantum error correction cycles
	Constructing detectors under code and stabilizer deformation
	Code deformation
	Stabilizer deformation

	Decoding lattice surgery
	Theory
	Simulation

	Decoding logical qubit movement

	Conclusion
	Bibliography
	Appendix

