DELFT UNIVERSITY OF TECHNOLOGY

MASTERS THESIS

Minimizing aborts in an epoch based
transaction protocol for deterministic
databases

Author: Supervisor:
Marcus SCHUTTE Dr. Asterios KATSIFODIMOS
Co-supervisor:

Dr. Burcu OZKAN

Daily supervisor:

Kyriakos PSARAKIS MSc

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

in the

Web Information Systems Group
Software Technology

July 16, 2023

http://www.tudelft.nl
https://www.linkedin.com/in/marcus-schutte-0836b91b6/
https://asterios.katsifodimos.com/
https://burcuku.github.io/home/
https://kpsarakis.com/
http://www.wis.ewi.tudelft.nl/
https://www.tudelft.nl/en/eemcs/the-faculty/departments/software-technology/

iii

Declaration of Authorship

I, Marcus SCHUTTE, declare that this thesis titled, “Minimizing aborts in an epoch
based transaction protocol for deterministic databases” and the work presented in it
are my own. I confirm that:

This work was done wholly or mainly while in candidature for a research de-
gree at this University.

Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

Where I have consulted the published work of others, this is always clearly
attributed.

Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

I have acknowledged all main sources of help.

Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

DELFT UNIVERSITY OF TECHNOLOGY

Abstract

Electrical Engineering, Mathematics and Computer Science
Software Technology

Master of Science

Minimizing aborts in an epoch based transaction protocol for deterministic
databases

by Marcus SCHUTTE

Today’s need for highly available systems leads to data partitioning and replication
across multiple nodes. Providing strong transactional consistency in a distributed
database requires extensive communication. For this, algorithms such as two phase
commit are used. These communication algorithms add extra network latency’s.
For application developers and database systems, this is the reason for lowering the
isolation level of a database. Deterministic databases run transactions effectively
without communication between replicas. Most deterministic databases need the
read write sets of a transaction prior to execution to calculate a deterministic exe-
cution schedule. Aria does not need the read write sets a priory but uses an epoch
based commit protocol. The commit protocol is an optimistic concurrency control al-
gorithm that executes all transactions against a snapshot in the execution phase and
determines which transactions can commit in the commit phase. For most work-
loads Aria outperforms state of the art deterministic databases. However, for high
contention workloads Aria suffers performance because of high abort rates. To over-
come this problem this thesis proposes two solutions: 1) Lowering the isolation level
to snapshot isolation. 2) Reordering the input sequence of transactions on transac-
tion degree. We have found that lowering the isolation level to snapshot isolation
allows for 3% less aborts per epoch and reduces latency from 210 ms to 170ms. Re-
ordering the transaction sequence allows for 5 percent less aborts per epoch for snap-
shot isolation and serializable isolation level. Reordering transactions on degree for
serializable isolation level reduces the average latency from 210 ms to 150 ms. Snap-
shot isolation reordering transactions on degree reduces the average latency from
170 ms to 120 ms.

HTTP://WWW.TUDELFT.NL
https://www.tudelft.nl/en/ewi/
https://www.tudelft.nl/en/eemcs/the-faculty/departments/software-technology/

vii

Acknowledgements

I'would like to express my gratitude towards my thesis supervisors. They helped me
forming my research such that it became an exciting journey. I would like to thank
Kyriakos for providing me with Aria: the system that this thesis is dedicated to im-
prove. But more importantly for believing in me and my algorithms. I would like to
thank Burcu for answering my questions about isolation levels and introducing me
to interesting papers about the topic. Some complicated topics where hard to grasp
for me and sometimes it felt like I would ask the same question twice. However,
Burcu always made time for me and answered my questions patiently. Last but not
least, I want to thank Asterios for his enthusiasm. For me this worked contagious,
after our meetings I felt refreshed and motivated to work on my thesis some more.

Contents

Declaration of Authorship

Abstract

Acknowledgements

1 Introduction

1.1
1.2
1.3

Deterministic databases
Research questions
Contributions e

2 Related work

2.1
2.2
2.3
24
2.5
2.6

Consistency e
Distributed transactions
Locking or optimistic concurrency control
Transactionchopping o oL
Deterministic databases0 0L,
Epoch based commit protocol

3 System overview

3.1

Data flow examplein Aria

4 Transaction protocols

4.1

4.2

4.3

44

Building start order serialization graphs
411 Conflict types in epoch based transaction scheduler
4.1.2 Directly conflicting transactions
413 Snapshot optimizable
Snapshotisolation. o L
421 Isolationlevels
422 Dependencygraph
423 ConsistencyinAria.
424 Example: Different conflict detection methods in practise.

425 Effectivenessanalysis
Serializable reordering ondegree
431 Reorderingondegree
43.2 Reordering on degreeexample
433 Determinism 0 L.
434 Optimalreordering
Snapshot isolation reordering ondegree,
441 Constructing BC-graphs
4.4.2 ILP formulation for snapshotisolation

iX

5 Communication
5.1 Communication in Aria’s conflict detection .
51.1 Default serializability
51.2 Deterministic reordering
513 Snapshotisolation

514 Communicating read write setsoraborts

5.2 Graph optimization algorithms
5.3 Distributed or coordinated

6 Experimental results
6.1 Benchmarks
6.1.1 Default workload parameters
6.1.2 Workload YCSB-B1
6.1.3 Workload YCSB-B5
6.14 Offlineworkload
6.2 Offline experiments
6.2.1 Snapshotisolation
6.2.2 Serializable reordering on degree . . .

6.2.3 Snapshot isolation reordering ondegree

6.3 Coordinated or distributed
6.4 Fallbackon....................
641 Skewfactor
6.42 Scaleout

7 Conclusion

8 Discussion
8.1 Building dependency graphs
8.2 Run time conflict detection algorithms
8.3 Fallback mechanism
84 Evaluation
8.5 Broadcastor coordinated
8.6 Futurework

8.6.1 Supporting optimizations for commutative operations

8.6.2 Reorderonhotkeys
8.6.3 Other epoch based commit schedulers

Bibliography

33
33
34
34
34
34
35
35

37
37
37
38
38
39
39
39
40
40
42
42
43
43

45

47
47
47
48
48
49
50
50
50
50

53

xi

List of Figures

3.1
3.2

3.3

4.1
4.2
43

44
4.5

4.6
4.7

4.8

4.9

4.10
411

6.1
6.2

6.3

6.4

One replica of Aria high level system overview 9
Two transactions represented as sequence of atomic operations on
storage (b). 10

Data flow example Arias execution phase. The workers keep track of
the transactions reads and writes in the read write sets. A transaction
is represented as a triple: T;(operation, key, value). Where R is the
read operationand Wawrite. L. 11

Timeline of two transactions reading from the same snapshot. Both

transactionsupdatex.o L Lo Lo 14
Start order Serialization Graph (SSG) of two conflicting updates. 14
Directly conflicting transactions 14
Directly conflicting transactions 14

Example of serialization graph patterns in YCSB-B1. The history in
(a) is allowed under snapshot isolation but not serializable. (b) shows
two directly conflicting transactions as partofacycle. 16
Dependency graph, example of a WAR, RAW and WAW. 18
Pseudo code for conflict detection methods: default serializable, de-
terministic reordering and snapshot isolation. Conflict detection al-
gorithm returns True if a transaction has conflict and False if there are
noconflicts. 20
left from the arrow: A dependency graph of the history of transaction
Ty, T, T3 and Ty. Right from the arrow: The RAW’s turned into WAR’s
according to deterministic reordering. 20
(a) Probability density functions for different Isolation levels for 10000
uniform distributed keys with batch size 100, 10 reads and 5 writes.
(b) corresponding probability of P(T; = 1) for different isolation lev-
els. (c) probability of P(T; = 1) for 10000 Zipf generated keys for
transaction with 1 write and 4 reads. (d) is the corresponding proba-

bility functionof P(T; =1) i 24
Start order serialization graph withcycles. 25
Read write anti dependency cycle in SSG in (a) results in an acyclic

BC-graphin(b). 29
Read, update and transfer operations form YCSB. 38
Create a transaction from a sequence of YCSB operations. Note that

generate_key is the zipfian key generation function of YCSB. 38

Result of snapshot isolation, deterministic reordering and default Se-
rializability on offline benchmarks YCSB-B1 (a) and YCSB-B5 (b) for
differentepochsize.. L o oo 39
Average latency from 10 runs in Aria for different conflict detection
methods: serializable, deterministic reordering and snapshot isola-
tion on the YCSB-B1 and YCSB-B5 workload. 40

Xii

6.5

6.6

6.7

6.8

6.9

Comparison of deterministic reordering, serializable reordering on
degree (Algorithm 1) and optimal solution (ILP 2 on YCSB-B1 (a) and
YCSB-B5(b). oo 41
Comparison of snapshot isolation, snapshot isolation reordering on
degree, snapshot isolation reordering on degree check acyclic and ILP 3
onYCSB-B5. 41
Different communication configurations for snapshot isolation on YCSB-
B10. Configured with 8 reads and 2 writes and a zipf constant of 0.7. . 42
System performance with fallback mechanism on for skew factor rang-

ing from 0 (uniform) til 0.99. Benchmark YCSB-B10 is used with 300
transactions/second as throughput. Configured with 4 workers total. 44
Scaling out horizontally with fallback mechanism on. Aria perfor-
mance configured with fallback mechanism on, skew factor 0.9 and

as input throughput: number of workers - 50 + 200 (transactions/sec-

ond). ... e e e 44

xiii

List of Tables

4.1 Expected value and peo,fiics for uniform distributed key value store
with 10000 keys, an epoch of N = 100 and each transactions making
5 writes and 10 reads. The Zipf distribution has 1000 keys, f z=0.99,

but here the transactions make 4 reads and 1 write. 23
5.1 Sets needed to resolve conflicts per conflict detection methods. 33
6.1 Workload overview. e e 37

6.2 Final results developed methods integrated in system. Configured
with as input 300 transactions/second on the zipf distribution with
skew parameter s = 0.7. Each transaction makes 2 writes and 8 reads.
The number of workers is 4 total. Fallback mechanism is used at an
abortrate of 0.1. 43

XV

List of Abbreviations

RAW
WAR
WW
WR
RW
SSG

Read After Write dependency
Write After Read dependency
Write Write conflict

Write Read conflict

Read Write conflict

Start Ordered Serialization Graph

Chapter 1

Introduction

Large web applications, such as Twitter and Facebook, use distributed and repli-
cated systems to manage data at scale. These systems execute transactions in paral-
lel to enhance processing time. A transaction is a sequence of operations performed
on the application’s state Gray and Reuter, 1992. Transactions provide application
developers with a small set of guarantees which simplifies reasoning about con-
current programming in a distributed system Kaki et al., 2017. Most importantly,
transactions provide atomicity, consistency, isolation and durability. The isolation
level specifies whether a transaction can read the effects of another transaction. This
serves as a contract between the database system and the application developer. In
an ideal world concurrent executions of transactions are serializable Papadimitriou,
1979. The effect of the transactions on the database is similar as if one transaction
would be executed before the other. In other words, there exists a serial order.

However, applications generally use database systems configured with lower
isolation guarantees such as read commit and snapshot isolation, because these iso-
lation levels offer better performance Crooks et al., 2017. Lowering the isolation
level allows the application developer to make a trade off between throughput and
correctness Berenson et al., 2007. Without serializability transactional anomalies ap-
pear Gan et al., 2020; Tang et al., 2022. Examples of transactional anomalies are lost
update and write skew. These anomalies can manifest in an application as double
spending and overselling. Nonetheless, little was known about the severity of con-
currency bugs in practise. Until a recent study Cheng et al., 2023 showed that con-
currency bugs lead to all kind of unwanted issues in real world applications such as
double spending and overselling.

As an example, consider a bank account x with $100 on the account. Suppose that
transactions T; wants to subtract $40 and transaction T, wants to subtract $60. Now
suppose that the transactions execute their reads and writes in the following order;
Transaction T; reads a value of $100. Transaction T; is executed concurrently. T,
performs a read and also reads x = 100. T; computes the new value x = 100 — 60 =
40. T, compute the new value, subtracts x = 100 — 40 = 60. T first writes 40 to
storage. T, overwrites this value and writes 60 to storage. This is an example of Lost
Update allowed under read-commit isolation. In distributed systems often referred
to as a transaction isolation problem Berenson et al., 2007.

Most commercial databases Microsoft, n.d.; Postgres, n.d.; Oracle, n.d. apply
read commit as there default isolation level. To make it more attractive to use strong
isolation levels, latency for isolation levels such as serializability and snapshot isola-
tion must be reduced as much as possible. In this work, we look at reducing latency
in a different kind of database: a deterministic database. Deterministic databases
reduce latency by removing coordination between replicas.

2 Chapter 1. Introduction

1.1 Deterministic databases

To achieve high availability, distributed databases replicate and partition data over
multiple nodes. Transactions that access data on multiple nodes are called dis-
tributed transactions. Supporting distributed transactions requires coordination be-
tween the replicas, often implemented with two phase commit (2PC) Mohan, Lind-
say, and Obermarck, 1986. The drawback of 2PC is that it takes multiple network
round trips and adds extra latency to the system.

Deterministic databases Thomson et al., 2012; Faleiro and Abadi, 2014; Faleiro,
Abadi, and Hellerstein, 2017; Lu et al., 2020 take a different approach. Asynchronous
communication and network latency’s introduce randomness in a distributed sys-
tem. In non-deterministic databases this randomness could produce different out-
put when given the same input twice. Instead of requiring communication between
replicas, deterministic databases take out stochastic processes so that replicas always
produce the same output for the same input. All replicas receive the same input, in-
stead of a replicating the output of a transaction.

Most deterministic databases Thomson et al., 2012; Faleiro, Abadi, and Heller-
stein, 2017; Faleiro and Abadi, 2014 need the read/write set of the transactions be-
fore execution to calculate a deterministic schedule. Often the read write sets are
obtained by executing the transactions in a test run. In a test run transactions run
against a snapshot without committing writes to storage. This leads to extra over-
head. Since every transaction is executed at least twice.

Aria Lu et al., 2020 does not need the read/write set a priory. Aria executes
transactions in batches called epochs. The batches are processed in two phases: the
execution phase and the commit phase. During the execution phase the transactions
read from the same snapshot of data. At the end of the epoch a conflict detection
algorithm determines which transactions are allowed to commit and which need to
abort. The transactions that abort due to concurrency conflicts are rescheduled in
the next epoch. One of the downsides of the aforementioned process is that when
one key is accessed frequently within one epoch a lot of transactions will have stale
reads and need to abort.

Although Aria shows promising performance on most benchmarks, in high con-
tent workloads Aria suffers performance because of high abort rates Lu et al., 2021.
Therefore, this work aims at improving Aria for high contention workloads. With
as goal to minimize the aborting transactions per epoch. There are two potential
optimizations: 1) Committing transactions with a weaker isolation level could al-
low more transactions to commit and therefore increase performance. 2) Reorder
transactions according to a given consistency model to minimize number of aborts.

Weak isolation levels trade off consistency for better performance. Lowering the
consistency level to a weaker isolation levels remain useful Adya, 1999. Applica-
tion developers need to be aware of the anomalies. Some workloads doe not show
any anomalies under snapshot isolation. This is called robustness against snapshot
isolation Beillahi, Bouajjani, and Enea, 2019. Optimizing the commit order for a se-
rializable consistency model means removing as less nodes as possible such that the
start order serialization graph is acyclic. This problem is also known as the feedback
vertex cover and is known to be NP-complete Karp, 2010. The optimal solution is
expected not to scale well, a fast and close to optimal heuristic is sufficient.

The related works, chapter 2 discusses the different system design decisions that
exist for distributed databases. Chapter 3 explains how Aria works. In transaction
protocols (chapter 4) the different conflict detection methods are developed. First
the isolation level is lowered to snapshot isolation in chapter 4.2. This is without

1.2. Research questions 3

changing the order of the input sequence. Section 4.2.5 provides a statistical analysis
of the potential impact that snapshot isolation has on the number of aborts. Section
4.3 proceeds with finding an optimal reordering for serializable consistency model.
The approach uses start order serialization graphs. Section 4.4 optimizes the com-
mit order for snapshot isolation on a different transaction model called BC-graphs
Zhang et al., 2023. To evaluate how close the methods are to an optimal reordering a
ILP formulation is developed that minimizes the number of aborts. The reordering
methods we propose in this thesis need a total view of the read write sets before re-
solving conflicts. Chapter 5 go’s in more depth about what kind of communication
between the workers is needed. Chapter 6 shows the results of the newly proposed
methods on a offline workload that simulates an epoch based commit scheduler.
This chapter also shows the proposed methods integrated in the system, configured
with fallback on and off. Chapter 7 summarizes the most important results and find-
ings and answers the research questions. The discussion in chapter 8 addresses the
way start order serialization graphs are constructed and if the proposed algorithms
are properly evaluated. The future works in section 8.6 proposes a reordering opti-
mization algorithms with better run time. The chapter explores the use of a different
batch based commit scheduler for optimizing the commit order. Lastly, this chap-
ter proposes to extend Aria to support optimizations for transactions that consist of
commutative operations.

1.2 Research questions

1. Does performance of deterministic database increase when lowering the isola-
tion level from serializability to snapshot isolation?

2. Can the number of aborted transactions per epoch be minimized for serializ-
able isolation?

3. Similarly, can the number of aborts be minimized under snapshot isolation?
4. How close are the reordering heuristics to an optimal commit order?

5. Does Aria perform better broadcasting read write sets or in a master worker
setup?

6. For which workloads does lowering the isolation guaranty to snapshot isola-
tion result in better performance?

1.3 Contributions

1. Snapshot isolation for Aria is developed in chapter 4.2.

2. A fast heuristic that reorders transactions while maintaining serializability,
based on transaction degree is developed in chapter 4.3. This method uses
Start Order Serialization graphs.

3. A fast heuristic for reordering transactions under snapshot isolation is devel-
oped in chapter 4.4. This method uses BC-graph structure.

4. An ILP that finds an optimal commit order under serializability is formulated
in section 4.3.4. An ILP that finds the optimal commit order of snapshot isola-
tion is formulated in section 4.4.2.

Chapter 1. Introduction

5. Chapter 5 discusses the trade offs between coordinator worker or broadcasting
communication configuration.

6. A theory of when relaxing constraints to snapshot isolation can reduce the
number of aborts for an epoch based commit scheduler is given in chapter 4.1.

Chapter 2

Related work

SQL interface databases such as MySQL Microsoft, n.d. and PostgreSQL Postgres,
n.d. are often compared to Swiss pocket knives. They try to do everything but they
fail at being proficient in one thing. Today’s needs for systems to be highly avail-
able has lead to another type of database: NoSQL. Databases such as Cassandra
Lakshman and Malik, 2009, Amazon Dynamo DeCandia et al., 2007 and MongoDB
prefer availability over consistency and provide little to no transactional guarantees.
However, there are also systems Shute et al., 2013; Rao, Shekita, and Tata, 2011 that
provide higher consistency. Distributed system often need to make trade offs be-
tween certain design choices. Such as consistency levels, isolation guaranties and
optimistic concurrency control or two phase locking. This chapter explores some of
the state of the art systems and there system design.

2.1 Consistency

To obtain high availability databases replicate data. In case of a node failing a replica
can step in. In distributed systems there are different contexts in which consistency
is used. Section 2.2 discusses consistency in terms of ACID transactions. This section
discusses consistency in terms of the CAP theorem. The consistency level specifies
if two concurrent processes are able to see different versions of the data at the same
time. Even tough they are connected to different nodes.

Replication can either be synchronous or asynchronous. Synchronous replication
waits for updates to be persistent at the replications which can result in high latency.
Asynchronous replication does not wait for updates to be persistent at replicas, re-
ducing latency. However when failures occur this gives less consistency then syn-
chronous replication as some data might be lost. This is essentially what the CAP
theorem provides: A system can have only two of the three: consistency, availability
and partition tolerance [17]. For many distributed systems such as Dynamo, Cassan-
dra and PNUTS this is the reason to lower consistency guarantee [11, 24, 7]. They
provide eventual consistency. Databases such as F1 Shute et al., 2013 and IBM Spin-
naker Rao, Shekita, and Tata, 2011 use synchronous consensus algorithms such as
Paxos Lamport, 2001 to keep replicas consistent. This is on the very strong spectrum
of consistency.

2.2 Distributed transactions

Besides replication, data is often partitioned over nodes to scale out horizontally.
Distributed transactions access data over multiple partitions. In 1980 system R im-
plemented the first relational database Astrahan et al., 1976. This was a high level
relational database manager based on Codds Codd, 1970 relational model for data.

6 Chapter 2. Related work

Not much later the term ACID transactions was introduced by Gray and Reuter
Gray and Reuter, 1992. Transaction processing systems provide ACID conditions
in a distributed system settings. These conditions are atomicity, consistency, iso-
lation and durability. Atomicity provides that either all or non of the changes of
a transaction take place. To obtain atomicity in distributed systems use coordina-
tion algorithms such as two phase commit (2PC) Mohan, Lindsay, and Obermarck,
1986. Consistency provides that a transaction needs to transform the database from
one consistent state to another. Regarding the database constraints. Isolation pro-
vides that regardless of some concurrent execution of transactions, the effect on the
database is as if they where executed serial. Durability: Once a transaction com-
mits (completes successfully) the changes cannot suffer data loss because of a node
failure.

Throughout the years many different type of isolation levels have been devel-
oped. Ranging form weaker guaranties, atomic read (ar) and casual consistency (cc)
to stronger guaranties such snapshot isolation and serializability Cerone, Bernardi,
and Gotsman, 2015. An isolation level works as a contract between the database and
the application developer. They describe what a developer can expect if two trans-
actions run concurrent. Weaker isolation levels (ar, cc) allow anomalies such lost
update. Snapshot isolation and serializability disallow lost update. However trans-
actions under snapshot isolation can put the database in inconsistent state since it
allows for write skew.

2.3 Locking or optimistic concurrency control

Concurrency control (CC) algorithms coordinate data access for transactions in a
distributed system setting. Pessimistic concurrency control algorithms use locks.
Transactions lock the data that they are reading/writing during there processing
time. An example is two phase locking (2PL) Gray, Lorie, and Putzolu, 1975. Op-
timistic concurrency control (OCC) Kung and Robinson, 1981 algorithms execute
transactions in parallel and determine which writes to make durable in the commit
phase. In high content workloads optimistic concurrency control algorithms suffer
high abort rates Wang and Kimura, 2016; Agrawal, Carey, and Livny, 1987. Wasting
resources on transactions that abort. Hybrid approaches apply heuristics to deter-
mine when to use OCC or locking concurrency control Thomasian, 1998. Another
hybrid is mostly optimistic concurrency control Wang and Kimura, 2016. In this ap-
proach only read locks are acquired and released before commit. At commit time
conflicts are resolved. There even exist learning approaches that try to learn from
the workload which concurrency control algorithm is optimal Wang et al., 2021.

2.4 Transaction chopping

Recent works involve breaking transactions down in smaller parts. Executing trans-
actions as atomic pieces in order to allow more concurrency in distributed systems
Mu et al., 2014. In locking based systems the idea behind this is that shorter trans-
actions reduces the time that keys are locked. Using system knowledge a transac-
tion can be chopped into smaller pieces that obtain the same result Shasha et al.,
1995. PWYV Faleiro, Abadi, and Hellerstein, 2017 uses data-flow analysis to deter-
mine when to expose a transactions write before the transaction is finished execut-
ing. Some approaches try to rearrange data over partitions to minimize the number
of distributed transactions Curino et al., 2010.

2.5. Deterministic databases 7

2.5 Deterministic databases

Deterministic databases take a different approach. Instead of replicating the out-
put of transactions, the input is replicated. Distributed databases sacrifice latency
to ensure serializability and atomicity using synchronous distributed transaction al-
gorithms such as two phase commit (2PC) Mohan, Lindsay, and Obermarck, 1986
or Paxos Lamport, 2001. Deterministic databases produce the same output on the
same input. Les coordination is needed resulting to reducing synchronisation over-
head Thomson and Abadi, 2010. Deterministic databases BOHM Faleiro and Abadi,
2014, Calvin Thomson et al., 2012 and PWYV Faleiro, Abadi, and Hellerstein, 2017
need the write set a priory to build a dependency graph and decide which transac-
tions can commit. Aria Lu et al., 2020 does not need to now the write set a priory
but suffers performance in high contention workloads Lu et al., 2021.

2.6 Epoch based commit protocol

Systems can buffer operation and then process them as a group. This method is
called batching. It can be applied in multiple parts in a Database. In the communica-
tion layer messages are batched to reduce message complexity and latency Friedman
and Van Renesse, 1997. Requested transactions can also be batched and processed
in a group such as in a group commit. Or slightly different: epoch based commit
such as in Coco Lu et al., 2021. Group commit focuses on reducing disc latency,
epoch based commit reduces commit latency in a distributed system by batching
the transactions in the two phase commit (2PC) protocol. In the evaluation phase of
optimistic concurrency control algorithm batching gives the opportunity to reorder
transactions and optimize for minimal aborts. Ding et al. Ding, Kot, and Gehrke,
2018 have developed a greedy algorithm for reordering transactions to minimize
aborts. They reorder on different cost functions and abort transactions with the high-
est cost until the serialization graph is acyclic. Dring et al Ding, Kot, and Gehrke,
2018 use different policies as cost function. They reorder on in degree of nodes to
minimize number of aborts. They reorder on number of retries to minimize tail la-
tency’s. Finding an minimal commit order is equivalent to the feedback vertex set
problem. Choosing nodes based on degree gives a good approximation for the feed-
back vertex set (FVS) problem Cutello and Pappalardo, 2015. Other methods assign
lazy time stamps. During commit time the real time stamps are assigned and the or-
dering of transactions order is calculated Yu et al., 2016. This is similar to reordering
the transactions in the validation state of a batched approach.

Chapter 3

System overview

Aria is a deterministic database that implements a key-value store. One instance
of Aria contains one replica of the data. Aria partitions data over different worker
nodes. To scale out horizontally. Within one instance of Aria data is not replicated.
In the context of this work Aria is adapted to work as a statefull-function as a ser-
vice platform (SFAAS). The key components are a sequencer, workers, a Kafka input
stream processor called: Ingress and a Kafka output stream processor called Egress.
The sequencer makes sure that all Aria replicas receive the same order of input trans-
actions. The Workers handle the transaction logic. An high level overview of the
data flow in Aria is demonstrated in Figure 3.1. Here one replica of an Aria instance
is shown. The keys are round robin partitioned over the workers. The requests come
in to the Ingress stream. The workers consume the request and receive transactions
with keys that are located at there partition. A transaction request always invokes
at least one key. The first key a transaction invokes determines which worker will
receive the transaction. If a transaction wants to access a key located on a other
worker, it can do so by making an asynchronous call. All the workers know which
keys are at the other workers and they can make request to each other.

The workers operate in two phases. First the workers process the functions
scheduled for that epoch. All functions are executed against the same snapshot.
The workers keep track of the reads and writes of the functions in read and write
sets. All writes are buffered and only made persistent in the commit phase. When a
transaction makes a read, the worker checks if the transaction did not make a previ-
ous write to that key. If this is the case the worker returns the buffered write of the
transaction. Allowing for a transaction to read its own writes. After all functions are
done, the workers resolve conflicts and determine which transactions can commit
and which should be scheduled for the next epoch. To resolve conflicts a network
round trip is needed.

Aria
ettt
| [Kafka Ingress Stream
|
| Y R Y
|
| ‘ Worker 1 } ‘ Worker 2 ‘ (WorkerS ‘
|
|
| y y y
| ‘ Kafka Egress Stream
|
o

FIGURE 3.1: One replica of Aria high level system overview

10 Chapter 3. System overview

| def transactionT1():

2 write(x,1)
a = read(y)
4 if a > 0:

b = read(x)
6 write(x, b+1)

s def tramnsactionT2():
9 a read (y)

10 b read (x)

11 write(x, a+b)

FIGURE 3.2: Two transactions represented as sequence of atomic op-
erations on storage (b).

If the abort rate of an epoch is high, Aria can be configured to use the fallback
mechanism. This is a locking concurrency algorithm based on Calvin Thomson et
al., 2012. After one epoch each transaction is executed once and the read write sets
are known. Calvin uses these read write sets to calculate a deterministic locking
schedule. With the fallback mechanism Aria ensures that it always performce as
least as good as Calvin.

3.1 Data flow example in Aria

For this example consider the system configured with 2 workers. Key x is located
on worker 1 and has an initial value of x = 3. Key y is located at worker 2 and has
an initial value of y = 5. As input the system is given two transactions:
def transactionT1():

x=1
if (y>0):
x =x +1

def transactionT2():

X =x +y
Transaction T; writes to x and updates x after checking a condition on y. Transaction
T, updates x by adding y to it. Suppose that these two transaction result atomic
operations on the database as implemented in Figure 3.2. This might not be the
most optimal sequence of atomic operations to decode these transactions. However
for the sake of the example this gives an interesting flow through the system.

Figure 3.3 gives an overview on a timeline how the transactions are executed. At
the start of the epoch the read and write sets are empty. The first key that T; accesses
is x therefore T is routed to start at Worker 1. Similarly transaction T is routed to
start on Worker 2. T; first writes 1 to x. Worker 1 updates the write set to contain
the write of T;. Then T7 makes an asynchronous call to Worker 2 with the rest of the
instructions for the transaction. At the same time T; reads the value of y on Worker 2
and makes an asynchronous call to Worker 1. Worker 2 updates the read set to keep
track of T,’s read of y.

Transaction T, continuous on worker 1 (the middle transaction on the timeline
of Worker 1 in Figure 3.3). Transaction T, reads the value of x. Worker 1 returns the
initial value of x = 3. Although T; already wrote to x before. This is because the
workers buffer writes. This write is not committed and lives only in the buffer. After
T received the value from storage it makes an asynchronous call to Worker 2 with

3.1. Data flow example in Aria 11

- read set: {} {} {T2: {x}} {Th: {x}, To: {x}}

writeset: {3 {Ti:{x:1}} {} {T1:{x:2}}
Ti(R,x,1)
T1(W/x/1) TZ(R/X/3) Tl(wfxlz)
Worker 1 N A - —T >

... ,"\‘/\“
TZ(R/]//5) T1<R,]/,5) T2<W,]//8)
Worker 2 >

- read set: {} {L:{y}} {T:{y}T:{y}} {T:{y}.Ti:{y}}
- write set: {} {3 {3 {T2: {y:8}}

FIGURE 3.3: Data flow example Arias execution phase. The work-

ers keep track of the transactions reads and writes in the read write

sets. A transaction is represented as a triple: T;(operation, key, value).
Where R is the read operation and W a write.

the last of its instructions. Concurrently transaction T; read the value of y on Worker
2. Then Transaction T; makes a last asynchronous call to Worker 1. Both workers
update the read write sets accordingly.

Worker 1 now executes the last instructions from T;. Tj first reads x. This read
returns a value of x = 1. T;’s previous write was buffered and the workers always
check if a worker already wrote to a value. Allowing a transaction to read its own
writes. Then transaction T; calculates x + 1 = 2 and writes x = 2 to the buffer. At
the same time, Worker 2 executes the last instruction of T5: a write to the buffer with
valuey = 8.

After the execution phase is finished the workers need to resolve conflicts. See
section 4.2.4 to see how Aria resolves conflicts. Then the workers communicate
which transactions can commit and which transactions need to abort. The aborted
transactions are rescheduled for the next epoch. When the workers know which
transactions to commit. The buffered writes of the transactions that can commit are
made persistent to storage. The read write sets are cleared and a new epoch can
begin.

13

Chapter 4

Transaction protocols

In this chapter we propose three new transaction protocols. First, in Section 4.1 a bit
of background knowledge about start order serialization graphs is established. Sec-
tion 4.2 introduces snapshot isolation without any optimal reordering. This section
also includes a statistical effectiveness analysis (Section 4.2.5) of default serializabil-
ity, deterministic reordering and snapshot isolation. Section 4.3 proposes reordering
method for serializable Isolation model based on the degree of a transaction. Sec-
tion 4.4 proposes the reordering methods based on degree for snapshot isolation.

4.1 Building start order serialization graphs

This chapter introduces how to build start order serialization graphs. Moreover,
it gives a brief analyis of the different patterns that occur in the start order serial-
ization graph for an epoch based commit scheduler. A start-ordered serialization
graph (SSG) is a directed graphs with transactions as nodes and dependencies as
edges Adya, 1999. From a commit history a Start-ordered serialization graph can be
formed. The patterns in the SSG will help reasoning what performance optimiza-
tions are possible. For instance, if two transactions try to update the same key only
one can commit. They are directly conflicting. Section 4.1.2 shows what this pat-
tern looks in the start order serialization graph. Furthermore, in section 4.1.3 we
will see that on workload YCSB-B1 snapshot isolation is not expected to outperform
serializability.

4.1.1 Conflict types in epoch based transaction scheduler

Because all transactions read from the same snapshot, all reads are concurrent. They
happen at the beginning of the epoch. If a transaction T; writes to a value that
transaction T; reads, this resolves in a read write (RW) anti-dependency. Since all
transactions read from the snapshot, a transaction T; will never read from another
transaction T;’s write within an epoch.. Therefore there are no write read (WR) de-
pendencies. If a transactions T; writes to the same value as T; there is a Write Write
(WW) conflict. However, the transactions writes are all buffered and still unordered.
The conflict detection algorithm can choose a direction by ordering the writes. Fig-
ure 4.1 shows a timeline of two transactions reading from and writing to the same
key. Resulting in two RW and one WW dependency. The direction of the WW de-
pendency depends on which transaction commits first. If there is a undirected write
write edge we choose the direction to point from the transaction with largest trans-
action id to smaller transaction id.

14 Chapter 4. Transaction protocols

read(x) write(x)

T COWW
: >< . RW -
T2 | |

Start époch read(x) write () gq époch
Time —

FIGURE 4.1: Timeline of two transactions reading from the same
snapshot. Both transactions update x.

—> directed RW

<> undirected WW directly
e.@ conflicting
FIGURE 4.2: Start

order Serialization FIGURE 4.3: Directly
Graph (SSG) of two conflicting transactions
conflicting updates.

4.1.2 Directly conflicting transactions

Transactions often update a value. An update is a transaction consisting of a read
and then a write to the same key. For instance:

a = Read(x)
Write(x,a + 1)

The transaction above increments the value of x by 1. Although simple, this transac-
tion forms a building block for many transactional workloads. Since it is one of the
transactions of the YCSB Gray et al., 1994 workload it is worth studying.

Consider the following example:

Example 4.1.1 Transactions Ty and T, both update the value of key x.

T; : R(x)W(x)
Ty : R(x)W(x)

As explained in Section 4.1.1 the reads are concurrent since they both read from the
same snapshot. However the writes always happen later in time and this results
to a RW dependency from transaction T; to T,. The same happens the other way
around from T, to T;. The direction of the WW dependency is yet to be determined.
This is essentially the same as Figure 4.1 tries to clarify. The start order serialization

directly
conflicting

FIGURE 4.4: Directly conflicting transactions

4.1. Building start order serialization graphs 15

graph is given if Figure 4.2. The order of committing T; and T, decides the direction
of the WW edge. The important observation here is that no matter which order we
commit T; and T, there will always be a cycle in the dependency graph. With a RW
edge, followed by a WW edge. Only one of the two transactions can commit. From
now on this work will refer to two transactions that have this pattern, as two directly
conflicting transactions.

Suppose a workload consists of a lot of directly conflicting transactions. The
question is: which transactions do we commit to find an optimal order? This is
where reordering the sequence on degree can be quite powerful. Consider the fol-
lowing example:

Example 4.1.2 Transactions Ty, Ty, T3 and Ty all try to update x1. Transaction Ty and Ts
both update x,. Figure 4.4 shows a conflict graph with edges between directly conflicting
transactions.

If transaction Ty would commit first, this would force T,, T3, T4 and Ts to abort.
Resulting in 1 commit and 4 aborts. However if transaction Ts commits first, T}
must abort. But one of T, Tz and Ty can still commit. Resulting in 2 transactions
that can commit. The same result can be obtained by reordering the transactions
based on there degree. For the this example only count the directly conflicting
edges. The degrees are: degree(T;)=4, degree(12)=3, degree(Ts)= 3, degree(Ty)=
3 and degree(Ts5)=1. Reordered on degree from small to large results in the se-
quence: Ts, T, T3, Ty, T1. A transaction protocol that commits transactions in this
order chooses T5 to commit first. After committing T5 one can already see that T;
needs to abort. Since it conflicts with T5. The protocol commits T, second. This
means that T3 and Ty would abort. The example gives a sketch of what can be gained
by reordering. More precise description algorithms for reordering under snapshot
isolation and Serializability are provided later in this chapter.

4.1.3 Snapshot optimizable

Some workloads are able to benefit from relaxing isolation constraints and others
are not. In this chapter we explore when it is expected that lowering the Isolation
level to snapshot isolation results in a performance gain. To illustrate this consider
the following example:

Example 4.1.3 Transactions Ty reads x, and updates xq. Transactions T, reads x3 and
updates xo. Transactions T3 reads xi and updates x3. This results in a read write edge
between transactions Ty and T, To and Tz and Tz and Ty. As shown in Figure 4.5a.

Serializable histories do not allow for cycles in the start order serialization graph
Adya, Liskov, and O’Neil, 2000. Snapshot isolation does allow for cycles, however
there need to be two adjacent RW edges in the cycle Adya, 1999. The history of 4.5a
is not serializable since there exist a cycle. However, this history is allowed under
snapshot isolation since all the edges are RW edges. For this example snapshot iso-
lation would allow more transactions to commit than serializability. This property
will be further referred to as snapshot optimizable.

However workloads that make a lot of updates have a lot of directly conflicting
transactions. For these workloads lowering the isolation guaranty to snapshot iso-
lation would not reduce the number of aborts. To see this consisdere the following
example:

16 Chapter 4. Transaction protocols

—> directed RW
. E <> undirected WW

(A) (B)

FIGURE 4.5: Example of serialization graph patterns in YCSB-B1. The
history in (a) is allowed under snapshot isolation but not serializable.
(b) shows two directly conflicting transactions as part of a cycle.

Example 4.1.4 Transactions T1 updates x and updates x1. Transactions T, reads x3 and
updates x;. Transactions T3 reads x1 and updates x3. The Start Order Serialization graph
is given in Figure 4.5b.

Here T; and T; both try to update x; resulting in a RW edge from T; to 1>, a RW edge
from T, to T1 and a undirected /undecided WW edge between T and T,. In other
words T; and T, are directly conflicting. It does not matter which isolation level is
configured: Snapshot isolation or serializability. T; or T, needs to abort. The take
away from this example is that workloads that are update heavy are not able to ben-
efit from lowering the isolation level from serializability to snapshot isolation. This
is somewhat similar to robustness against snapshot isolation Beillahi, Bouajjani, and
Enea, 2019. In which a workload does not show any anomalies when the isolation
level is relaxed from serializability to snapshot isolation.

4.2. Snapshot isolation 17

4.2 Snapshot isolation

In this section performance of snapshot isolation is compared with Aria’s default
serializable conflict detection algorithm and deterministic reordering (also serializ-
able). The variant of snapshot isolation implemented here does not make use of any
reordering optimization. This section starts off with introducing an axiomatic the-
ory of consistency models based on Cerone, Bernardi, and Gotsman, 2015. Then, a
small recap of how Aria’s already existing methods work and ensure serializabil-
ity. Finally, in section 4.2.3 Cerone et al’s definition of snapshot isolation is used to
develop a snapshot isolation conflict detection algorithm for Aria.

4.2.1 Isolation levels

Cerone et al Cerone, Bernardi, and Gotsman, 2015 have developed an axiomatic
framework that declare different consistency models. This framework is used be-
cause the definitions are free of implementation details. This section briefly explains
how Atomic Read Consistency, snapshot isolation and serializability are defined by
Cerone et al. Although Atomic read consistency itself is not used in this work, it
forms a basis for the other consistency levels and is therefore relevant to discuss.

Definition 4.2.1 Atomic read consistency satisfies the INT and EXT axioms.

Atomic read consistency is the baseline consistency model in Cerone, Bernardi, and
Gotsman, 2015 and is defined to satisfy INT and EXT axioms. The internal consistency
axiom INT ensures repeatable read within a transaction. That is, a transaction always
reads its own writes. The external consistency axiom EXT provides that a transaction
always reads from the latest write of a transaction. This would be violated if for
instance transaction T, writes to a key x two times and transaction T; reads the first
value of x. Than T; does not have the final value of x. Moreover EXT provides atomic
visibility. That is all external reads come from transactions that are committed. In
other words, this makes dirty reads impossible. If a transaction reads a value form
another transaction that ends up aborting, this is called a dirty read.

By default Aria provides internal reads INT and external reads EXT. Aria keeps
track of write sets of transactions. Before returning a value for a read, Aria checks
if a transaction already wrote to that key. If this is the case than Aria returns the
transactions own write. This makes sure that a transaction always reads its own
writes: INT. Aria also provides EXT. If a transaction did not write to a key, the reads
come from a snapshot of committed transacting. Aria buffers writes to the end of the
epoch. This ensures that a transaction always reads from a committed transaction
and transactions always only expose there latest writes.

Snapshot isolation is stronger than read consistency. Where atomic read consis-
tency suffers from lost update. Snapshot isolation does not allow for a lost update
to happen.

Definition 4.2.2 Snapshot isolation requires INT, EXT, PREFIX and NOCONFLICT.

PREFIX states that if a transaction T; observes a write of transaction T; it can also ob-
serve all transactions that precede T;. NOCONFLICT means that no two transactions
can write to the same key concurrent. In Aria PREFIX is always provided since if T;
can observe writes of transaction T; this means that transaction T; is scheduled in an
epoch after T;. Transactions always read from the committed snapshot. Never from
concurrent transactions that are executed in the same epoch. Transactions preced-
ing T; happen in the same or in a previous epoch as T;. Therefore T; observes all
transactions preceding T;.

18 Chapter 4. Transaction protocols

FIGURE 4.6: Dependency graph, example of a WAR, RAW and WAW.

Snapshot isolation is one of the strongest consistency models, however it suffers
from anomalies such as write skew. Serializability is stronger than snapshot isolation
and does not allow for any such anomalies. The definition of serializability from
Cerone et al. Cerone, Bernardi, and Gotsman, 2015 will not be used in this work.
But for completeness we give it here below.

Definition 4.2.3 Serializability is defined to satisfy INT, EXT and TOTALVIS.

By definition TOTALVIS means that the order in which the writes of transactions
should be visible to each other must be a total order. A total order is transitive,
irreflexive and every two elements in the set are related by this order. Informally this
means that every two transactions T; and T; can be ordered either with T; happening
before T; or T; happening before T;.

4.2.2 Dependency graph

In Aria Lu et al., 2020 Lu et al. define there own type of dependency graph. Different
from the start order serialization graphs introduced in section 4.1, the dependencies
of Aria are based on the order of the given input sequence. Each epoch Aria Lu et al.,
2020 gets as input a sequence of transactions ordered by the sequencing layer. Three
different conflict types are defined between transactions. The conflict types depend
on the transaction order produced by the sequencer. Transaction T; and T; have a
write after read conflict (WAR) if i < j and transaction T; reads a value from a key
that T; writes to. Transactions T; and T; have a read after write conflict (RAW) if i < j
and T; writes to a value that T; reads. Finally, if transaction T; and T; write to the
same key, again i < j there is a write after write conflict (WAW) from T; to T;. The
direction of the dependencies are always from transaction with large id to smaller
id.
Consider the following history:

Example 4.2.1 An epoch consisting of transactions Ty, T and T3 with the following oper-
ations:

Ty :R(x)R(z)W(x)
Ty :R(x)W(y)
T3 :W(z)W(y)

Transactions T, reads a value that transactions T; writes to. Note that transaction T»
does not read the value that T writes. This is not possible since all transactions read
from the same snapshot and T;’s writes are not committed yet. However they do
conflict on the same key. This results in a RAW dependency from T to T;. Tz writes
to a key after T also writes to this key, resulting in a WAW from T3 to T,. There is
a WAR from T3 to T; because T3 writes to z and T; reads z. A dependency graph of
this example is given in Figure 4.6. Note here that as stated above, the edges always
point in the direction of the smaller transaction id.

4.2. Snapshot isolation 19

4.2.3 Consistency in Aria

Section 4.2.1 explains that Aria provides INT and EXT by default. Now we will see
how Aria provides serializability. For this we need to show that Aria satisfies the
TOTALVIS axiom. Aria enforces a total visibility order by tracking conflicting opera-
tions such as WAR and RAW dependencies.

To produce a serializable output and remain deterministic Aria’s default conflict
resolution algorithm commits a transactions if:

Rule 1 (Default serializability) The transactions do not have WAW or RAW dependen-
cies on previous transactions. Defined by Lu et al., 2020.

If there is a RAW dependency a transaction has a dirty read since it reads an updated
value. If there is a WAW two transactions try to write to the same key and only one
is allowed to. In theory a WAW or RAW dependency do not necessary produce a
non serializable schedule. However the converse is true: If there are no RAW and
no WAW the history is serializable. For a proof of why Aria committing transactions
according to Rule 1 is serializable see the proof of Lu et al., 2020.

Aria Lu et al.,, 2020 developed another conflict detection algorithm called de-
terministic reordering. All transactions in the epoch, although ordered by the se-
quencer, are executed concurrent. Therefore the transactions can be reordered turn-
ing RAW conflict into WAR. As result more transactions can commit. In practice
transactions are not reordered. However, the constraints for when a transaction can
commit are lowered.

Rule 2 (Deterministic reordering) A transaction can commit if adheres two following
rules: 1) it has no WAW conflicts and 2) it has not both a RAW dependency and a WAR
dependency. Defined by Lu et al., 2020.

The transactions that have no WAW and no RAW dependencies where already able
to commit. However if a transaction has a RAW and no WAR this means the trans-
actions can be reordered such that the RAW becomes a WAR. For a proof of why aria
committing transactions according to Rule 2 is Serializable see the proof of Lu et al.
Lu et al., 2020. Section 4.2.4 provides a more detailed example how deterministic
reordering turns a RAW is turned into a WAR.

In the rule below Aria’s a conflict detection algorithm is proposed to commit
transaction with snapshot isolation. For this the definition of snapshot isolation from
Cerone, Bernardi, and Gotsman, 2015, introduced in section 4.2.1, is used.

Rule 3 (Snapshot isolation) A transaction T; can commit if it has no WAW dependencies
on previous transactions.

In comparison with Rule 1 and Rule 2 The constraints for a transaction to commit
are less strict. A transaction can commit if it has no WAW on preceding transactions.

Theorem 1 Aria following rule 3 enforces snapshot isolation.

Proof Section 4.2.1 showed that Aria provides INT, EXT and PREFIX. For snapshot
isolation the only thing left to prove is NoConflict. Since Rule 3 only commits trans-
actions if there are no WAW conflicts on preceding transactions NOCONFLICT is sat-

isfied. Hence, Aria committing transactions with Rule 3 provides snapshot isolation.
O

20

Chapter 4. Transaction protocols

1 def serializable(

def deterministic_reordering(

2 T, reads, writes 15 T, reads, writes
3): 16):
4 if WAW(T, reads, writes) or 17 if WAW(T, reads, writes):

RAW(T, reads, writes): 18 return True

return True 19

n

6 return False False or WAR(T, reads,
7 = False:

g8 def snapshot_isolation(20 return False
9 T, reads, writes 21 return True

10) 22

11 if WAW(T, reads, writes): 23

12 return True 24

13 return False 25

FIGURE 4.7: Pseudo code for conflict detection methods: default seri-

alizable, deterministic reordering and snapshot isolation. Conflict de-

tection algorithm returns True if a transaction has conflict and False if
there are no conflicts.

(™) Ol

if RAW(T, reads, writes)
writes)

Ti : R(x)W(y) P .
G S OLIOSO
4 W(g)R(p)

‘a ’

FIGURE 4.8: left from the arrow: A dependency graph of the history
of transaction Ty, Ty, T3 and Ty. Right from the arrow: The RAW’s
turned into WAR'’s according to deterministic reordering.

——>RAW ---->WAR

4.2. Snapshot isolation 21

4.2.4 Example: Different conflict detection methods in practise.

Consider the history given in Figure 4.8. The left hand side of the arrow shows
the dependency graph before changing the WAR'’s into RAW’s. The only transac-
tion with no WAW or RAW dependencies is transaction T;. Therefore, according to
Rule 1, using the default serializability conflict detection method of Aria, only trans-
action T; can commit. Remember that Rule 2 a transaction can commit if it has no
WAW, and not both a WAR and RAW dependency. The transactions of Figure 4.8
that comply with this rule are T;, T, and T5. T; has no dependencies. T, and T3
only have RAW’s. Therefore T1, T; and T3 can commit. However transaction T, not.
Since Ty has a WAR and a RAW. The effect of deterministic reordering is shown in
Figure 4.8 on the right hand side of the arrow. With reordering, all the RAW depen-
dencies are changed into WAR dependencies. However the resulting graph contains
one cycle. To remain an acylcic history T; needs to abort. For this case, reordering
the transaction to T3, T, T; would result in a Serial order. Under snapshot isolation,
as implemented according to Rule 3, all transactions are allowed to commit. Because
there are no WAW dependencies.

4.2.5 Effectiveness analysis

Pseudo code for the different conflict detection algorithms are listed in Figure 4.7.
Compare the algorithms and note that each algorithm relaxes the constraints for a
transaction to commit. Serializability requires no WAR or RAW. Deterministic re-
ordering relaxes this by requiring no WAW and no RAW or WAR. Snapshot isola-
tion relaxes the constraint even further and only checks for WAW. From a theoret-
ical point of view snapshot isolation allows for more transactions to commit since
it requires less constraints. However, what is the probability that a transaction can
commit under snapshot isolation? How does this compare to serializability and de-
terministic reordering? This chapter build a theory for a statistical effectiveness anal-
ysis that gives insights of the theoretical probability that a transaction T; can commit.

Let us proceed with calculating the probability that a transaction T; can commit
for different isolation models. Suppose the keys ki, ..., ky of the database are dis-
tributed following some distribution D. A transaction has r reads and w writes from
or to keys K; sampled from this distribution. So every transaction is a set of

T; = {W(K;,), ... W(K;,), R(K},), ..., K(R},) }

writes and reads. The order is not important. The keys are all independent iden-
tically distributed. That is, the keys that transaction T; accesses do not depend on
another transaction T; for i # j. The probability that two transactions access the
same key Kj, Kj ~ D is calculated as follows:

N N
Peonflicc = P(Ki =K;j) = P(|JKi =n AK;j=n) =) P(K;=n)P(K; =n).
n=1

n=1

Since K; and K; are independent. Later we will evaluate the probability of a single
Peonflict for different distributions. First lets calculate the probability that a transac-
tion has no WAW, RAW and WAR. The probability that a write operation of transac-
tion T; has no conflicts is given by:

P(operation has no conflicts) = (P _con ﬂict)iw

22 Chapter 4. Transaction protocols

Since T; makes w writes and there are i transactions preceding. Moreover:

P(—|WAW) = (Pnofconflict)zjw
P(—|RAW = (Pno_conflict)lrw
P(=WAR) = (Puo_conflcit)"™

Serializability requires no WAW and no RAW hence:
P(T; commits serializable) = P(-WAW)P(—RAW).

Deterministic reordering can commit if there are no WAW or there are no RAW and
WAR.

P(T; commit deterministic reordering) = P(-WAW) (1 — (1 — P(-RAW))(1 — P(-WAR)))
Snapshot isolation is the most relaxed and requires only no WAW:
P(T; commits snapshot Isolation) = P(-WAW)

To evaluate these probabilities the probability that two keys are equal poy et still
needs to be calculated. However, peonfiict is dependent of the distribution of the
keys. Below we will give a calculation for pe,fiic: when D is uniform and when D is
zipfen generated. The latter because YCSB Gray et al., 1994 uses this one as it gives a
good model for high content workloads. In the uniform case all keys have the same
probability of getting accessed. the probability of a single key is P(K = k) = 1/N
where N is the total number of keys:

N N

1

pno_conflictzl_ ZP(KZ‘:”)P<K]‘:1’I) =1- 21/N2:1—N
n=1 n=1

Zipfs law states that the most frequent key is accessed twice as often as the second
most frequent and so on. The zipfh distribution has the parameters N for total num-
ber of keys, s the skew factor and k is the rank of a key.

1

P(K=k) =-E
() i
where
N1
Hn/S:nZ::lﬁ

is the harmonic function that normalizes the probability. Therefore

N
1
Pro_conflict = 1- 1/H12\7,s E n2s’
n—1

The random variable for transactions T; introduced in the beginning is a binary ran-
dom variable. T; = 1 if the transaction commit and T; = 0 else. Model the batch B as
the sum of T;

B=T1+..+T,

4.2. Snapshot isolation 23

uniform | zipf

Serializability 70.61 12.96

Deterministic reordering | 83.79 18.50

Snapshot isolation 88.59 50.20
P(no conflict) 0.9999 | 0.98408

TABLE 4.1: Expected value and p oy fiic+ for uniform distributed key

value store with 10000 keys, an epoch of N = 100 and each transac-

tions making 5 writes and 10 reads. The Zipf distribution has 1000
keys, f z=0.99, but here the transactions make 4 reads and 1 write.

With this, it it possible to calculate the number of expected transactions that can
commit in an epoch. For this calculate the expected value of the batch B;.

E(B) = ip(n —1)

1

The probability density of B in Figure 4.9 gives good understanding of different
isolation levels and there statistical performance.

24

Chapter 4. Transaction protocols

frequency

frequency

0.12

S
[=J =
S ®

o
o
=

0.02

Serializable Serializable
Deterministic Reordering Deterministic Reordering
= Snapshot Isolation = Snapshot Isolation
1.0 1
0.9
—~ 0.8
—
Il
o
& 07 1
0.6
0.5
T T T T T T T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
number of commits T;
(a) (B)
Serializable Serializable
Deterministic Reordering Deterministic Reordering
= Snapshot Isolation = Snapshot Isolation
1.0
0.8
= 0.6
Il
5
A~ 0.4 A
0.2 4
-~ O‘O -~
T T T T T T T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
number of commits T;
(©) (D)

FIGURE 4.9: (a) Probability density functions for different Isolation

levels for 10000 uniform distributed keys with batch size 100, 10 reads

and 5 writes. (b) corresponding probability of P(T; = 1) for different

isolation levels. (c) probability of P(T; = 1) for 10000 Zipf generated

keys for transaction with 1 write and 4 reads. (d) is the corresponding
probability function of P(T; = 1)

4.3. Serializable reordering on degree 25

(D)
L @‘e

FIGURE 4.10: Start order serialization graph with cycles.

4.3 Serializable reordering on degree

Aria is an epoch based commit scheduler which commits transactions according to
a given input order. The sequencing layer determines the order of the transactions
before they are processed by Aria. It is possible to reorder the transactions, provided
it is done so in a deterministic way. This section explores optimizing the commit
order of transactions. We propose an algorithm that commits transactions based on
degree. To compare this algorithm to an optimal ordering we formulate an ILP that
finds an optimal reordering.

4.3.1 Reordering on degree

The problem of finding an optimal ordering is known as the minimum feedback
vertex set problem. This problem is NP-complete Karp, 2010. The feedback vertex
set (FVS) of a directed graph is a set of nodes which removal makes the graph acyclic.
The minimum feedback vertex set is a FVS of minimal size. When a commit history
is represented as a start order serialization graph (SSG), the problem of finding an
optimal commit order reduces to minimal FVS. In the SSG transactions are the nodes
and edges represent dependencies between the transactions. The degree of a node is
the total number of edges connected to that node. The intuition behind the proposed
algorithm is that nodes with a higher degree have a larger probability of being in a
cycle. Nodes that have a larger degree represent transactions that access more high
contention data. Therefore, commit the transactions with the lowest degree first.

The proposed algorithm takes a start order serialization graph G = (V,E) as
input. The nodes V of the graph represent the transactions. The edges E are the
dependencies between transactions. The nodes are reordered on in degree. The
algorithm keeps track of a set W of nodes that will commit. W starts out empty.
Add the nodes with the lowest degree to W first. Only add a node to W if non
of its neighbors are in W. This condition ensures that the result is acyclic. All the
transactions in the result set form a sub graph G’ = (W,E’) C G from the original
SSG G. The sub graph G’ needs to remain acyclic since this will be the actual start
order serialization graph when the transactions are committed. For tie breakers the
transactions with the smallest transaction id has priority. See Algorithm 1 for a more
detailed description of the heuristic.

Some optimizations are used to speed up the algorithm. Al transactions that
have no incoming and/or no outgoing edges are removed and can commit. These
transactions cannot form a cycle. Tarjan’s strongly connected components algorithm
Tarjan, 1972 is used to split large start order serialization graphs into smaller con-
nected components.

26 Chapter 4. Transaction protocols

Algorithm 1 Reordering based on degree.

Input: G = (V,E) a directed start order serialization graph.
Output: W C V subset of transactions to commit

1. W=0

2: V = SORTONDEGREE(V)

3: forv € Vdo

4 if NEIGHBORS(v) "W = @ then
5: V=VU{v}

6 end if

7: end for

8: return W

4.3.2 Reordering on degree example

Consider the start order serialization graph given in Figure 4.10. First lets count the
degree of the transactions. Transaction T; has one outgoing edge and one incoming
edge. The total degree of T; is 2. Transaction T, has 2 outgoing and 2 incoming
edges. Therefore, degree(T>) = 4. Below the degree of every edge is given:

Reordering the transactions on degree from small to large results in the sequence:
11, Ts, 13, Ty, Tp.

Lets iterate trough the algorithm where we start of with an empty resultset: W = {}.
First, add T to the result set, W = {T;}. Ts is next in the sequence. We can add T5
without creating a cycle in the graph. See Figure 4.10. Resulting to W = {T3, T5}.
By the same reasoning it is possible to add T3 and T, to W. Now we have W =
{Ty, T3, T4, Ts}. However, it is not possible to add T, without creating a cycle. So
T is excluded from the result set W. Since there are no more transactions in the
sequence to consider, the algorithm terminates. The transactions in the result set W
can commit.

Note that Algorithm 1 actually does not check if the adding a remaining node
creates a cycle. But only adds a transaction T if the neighbors of T are not in the
result set. This ensures the result to be acyclic and is less cost worthy than checking
for cycles. This might result in a few cases where transactions are aborted while
committing them would not necessarily lead to isolation level violations. As we will
see in figure 6.5b in chapter 6.

4.3.3 Determinism

In Aria determinism needs to be maintained to ensure replicas commit the same
data. To see that this reordering is deterministic consider the following: When re-
playing an epoch this results in the same start order serialization graph structure.

4.3. Serializable reordering on degree 27

Each transactions has the same number of out going and in going edges as before.
Tie breakers are solved with transactions id’s. Hence replaying an epoch would re-
sult to the same transactions to commit. The transactions are all executed against the
same snapshot. Thus this method reorders transactions deterministic.

4.3.4 Optimal reordering

The method of Algorithm 1 developed in the previous sections raises the natural
question: how far from optimal is this approach. To answer that question we de-
velop a integer linear model (ILP) in this section to optimize the maximal number
of transactions that can commit in an epoch. First we develop an ILP that solves for
histories when all transactions are directly conflicting. This will come in handy as
we will see later in section 6.1 one of the workloads YCSB-B1 has this property. The
other ILP solves the optimal commit order for general workloads.

Omitting the read only transactions, given a serialization graph: G. Each edge
e={T1, T} € Ein G = (V, E) denotes two transactions that are directly conflicting.
Only one can commit. Take x; € {0,1} as decision variable to decide if T; should
commit. This leads to the following ILP:

ILP 1 (Only directly conflicting transactions)

m
maximize: E Xj
j=1

subject to: V{T, T} €E xi+x; <1
Vi x; € {0,1}

The first constraint above says: if T; and T; are connected by an edge, only one of
them is allowed to commit (x; = 1).

When there is not such as nice structure that all transactions are directly conflict-
ing and it is still desirable to obtain an optimal commit order. One can look at all the
simple cycles present in the Start order serialization graph and add constraints for
each cycle. Given a graph G = (V, E). Suppose the set C contains all simple cycles.
Write down a cycle ¢ € C as a vertex sequence ¢ = (T}, T;,,..., T;,) with T; € V.
Again choosing x; € {0,1} as decision variable to decide if T; should commit.

ILP 2 (General ILP)
m

maximize: Z Xj
j=1

subject to: Ve=(T;,,Tyy,..., T;,) €C i +xi,+ ..+ x5, < ||c|| -1
Vi x; €1{0,1}

where ||c|| is the length of the cycle. For every simple cycles in G a constraint is
added to the ILP. The sum of the transactions in the cycle must be strict smaller then
the length of the cycle. This constraint makes sure that not all transactions of a cycle
end up in the result set together.

Example 4.3.1 ILP for the Start Order Serialization graph of Figure 4.10.

The ILP needs all simple cycles of the Start Serialization Graph as input. A simple
cycle is path that does not contain a node twice except for the start and end node. In
this case there are 3 simple cycles. One from T; to T, to Ts. Denote this by (T1 T2 T3).

28 Chapter 4. Transaction protocols

The other cycles are (T, T3Ts) and (T>T5T4). The length of the cycle is defined as the
number of nodes in the cycle. Here, all the cycles have length 3.

To formulate the ILP, introduce the decision variables x1, x, X3, x4 and x5. These
are binary values: x; € {0,1}. The variable x; = 1 if T; ends up in the result set.
Conversely, x; = 0 if T; is excluded from the result set. The objective is to maximize
the number of transaction that can commit. Therefore this ILP maximizes over the
sum of the decision variables. For every simple cycle add a constraint to ensure that
the result set is acyclic. For instance for the cycle (T1, Tp, T5) with length 3 add the
constraint:

X1+ x2+x3 <2

This means that x1, x and x3 cannot be 1 all together. In that case x; +x; +x3 =3 ﬁ
2. In other words, this constraint makes sure that T, T> and T3 are not in the result
set altogether. At least one needs to be excluded from the result set. Therefore the
cycle (T1T,T3) would not appear in the result set. The ILP is formulated as follows:

maximize: X1 + Xp + X3+ X4 + X5

subject to: x1 + x + x3 <2
X2+ x34+ X4 <2
X2 + X4 + X5 <2
Vi X; € {0,1}

If an ILP solver solves this ILP the optimal solution would be: x; = 1,x, = 0,x3 =
1,x4 = 1 and x5 = 1. This means that committing transactions W = {Ty, T3, T4, T5 }
is the optimal commit order of the Start Order Serialization graph of Figure 4.10.
One of the downsides of this methods is that for high content workloads the
number of simple cycles does not scale well. According to Jhonsen a fully connected

graph of size n contains
n—1 < n)
) . (n—i)!
= \n—-i+1

simple cycles Johnson, 1975. In high content workloads the start order serialization
graph has a high connectivity degree and contains many cliques. A clique is a fully
connected sub graph. The number of cycles is in high contention workloads is large.
This results to a non-polynomial number of constraints in the ILP.

4.4. Snapshot isolation reordering on degree 29

e.e —> Directed RW

(a) (B)

FIGURE 4.11: Read write anti dependency cycle in SSG in (a) results
in an acyclic BC-graph in (b).

4.4 Snapshot isolation reordering on degree

This chapter optimizes the reordering of transactions under snapshot isolation con-
sistency model. A new graph structure: BC-graph is introduced and used to opti-
mize snapshot isolation. The approach of the previous chapter is extended to work
on the BC-graph structure in algorithm 2. We develop ILP 3 and compare this opti-
mal solution with Algorithm 2.

4.4.1 Constructing BC-graphs

Adapting Algorithm 1 to work for snapshot isolation is not straight forward. On a
start order serialization graph, the serializable isolation model is equivalent to ob-
taining an acyclic graph. However snapshot isolation allows cycles with at least two
adjacent read write anti dependencies Fekete et al., 2005. This makes finding an opti-
mal commit order even more complicated than finding the maximal feedback vertex
set. An algorithm that checks if a history is consistent with snapshot isolation on
start order serialization graphs would need to iterate through all cycles and check if
there are at least two adjacent read write edges. Luckily there is another data struc-
ture called BC-graphs on which snapshot isolation is proven to be acyclic Zhang
et al.,, 2023. A BC-graph is formed from a start order serialization graph (SSG). For
every transaction T; in the SSG create two nodes B;, C; and an edge between these
nodes. For every read write anti-dependency between T; to Tj create an edge from
B; to C;. For each write-read or write-write edge between T; and T;. create an edge
from C; to B;. See Figure 4.11 for an example of a snapshot isolation history that
creates a cycle in the SSG but is acyclic in the BC-graph.

Algorithm 2 adjust Algorithm 1 to work for snapshot isolation on BC-polygraphs.
The Algorithm keeps the same approach by reordering the nodes on degree. How-
ever, when a node B; is a candidate to add to the results set. Besides from checking
its own neighbors, it needs to check if its partners C; neighbors are not already in the
result set.

This algorithm might not be the most optimal. To see this apply algorithm 2 to
the example in Figure 4.11b. Bj, B, both have the smallest in-degree: 0, lets choose
B; to add to the result set W first. Then B;’s partner: C; also needs to be added
to the result set W. The algorithm cannot add nodes B, and C, from transaction
T, since C; is B)s neighbor and is already in the result set. However T, is allowed
to commit under snapshot isolation consistency model. This might lead to trans-
actions being unnecessary aborted. Algorithm 3 solves this problem by checking
whether adding a node would add a cycle to the graph. However this algorithm is
more costly. Checking for cycles in a directed graph is often implemented with a
breath first search. Doing a breath first search every time a node is added is quite
costly. There are some different approaches that keep track of each nodes ancestors.
Search complexity will be O(1) however when adding a node all ancestors need to
be updated.

30 Chapter 4. Transaction protocols

Algorithm 2 Reordering based on degree for BC-graphs.

Input: G = (V,E) a directed BC-graph.

Output: W C V subset of transactions to commit
1. W=0
2: V = SORTONINDEGREE(V)
3: forv € Vdo

4 if NEIGHBORS(v) "W = @ then
5: p = PARTNER(V)
6: if NEIGHBORS(p) N W = @ then
7: W=WuU/{o,p}
8 end if
9: end if
10: end for
11: return W

Algorithm 3 Check if adding a node creates a cycle

Input: G = (V,E) a directed BC-graph.

Output: W C V subset of transactions to commit
1. W=0
2: V = SORTONINDEGREE(V)
3: forv € Vdo

4 E ={(ab)€E:abecWU{v}}

5: H= (WuU{v}, F) > H is a sub graph of G with all nodes of W U {v}
6: if ACYCLIC(H) then

7: W=Wu {U}

8: end if

9: end for

10: return W

4.4. Snapshot isolation reordering on degree 31

4.4.2 ILP formulation for snapshot isolation

Formulating an ILP for Snapshot isolation is almost similar to ILP 2 of section 4.3.4.
Using the BC-graph structure an optimal commit order needs to require the BC-
graph to be acyclic. Take B;,C; € {0,1} as decision variables whether or not to
include a node into the result set. The objective is to maximize the total number of
nodes include. A constraint needs to be added to ensure that if B; is chooses (i.e.
B; = 1) then C; is chosen to. Similarly as in ILP 2 for every simple cycle in the graph
a add a constraint to the ILP. Suppose again C is the set of all simple cycles. A cycle
¢ ={vy,...,vn} € Cisrepresented as a sequence of nodes. The nodes in the cycle can
be C-nodes or B-nodes.

ILP 3 (Snapshot Isolation)

m
maximize: Z Bj + Cj
j=1

subject to: Ve=(v1,...,0n) €C v1+..+0, <]| -1
Vi B, = G
Vi B;,C; € {0,1}

With ||c|| the length of the cycle. Note that the condition B; = C; requires that if one
of the nodes belonging to transaction T; is included in the result set also its partner
is included in the result set.

As practical optimization for finding the optimal solution in the ILP above, first
find all cycles consisting of 2 vertices. Add constraints for these cycles to the ILP.
Then, it is possible to remove the edges between these cycles, reducing the total
amount of simple cycles in the remaining graph.

33

Chapter 5

Communication

Serializability Papadimitriou, 1979 is the golden standard when it comes to dis-
tributed transactions. To achieve serializability extensive communication is required
between partitions Cerone, Bernardi, and Gotsman, 2015. Only weak isolation lev-
els such as read atomic and casual consistency do not need coordination between
partitions Bailis et al., 2016. Isolation levels such as parallel-snapshot isolation and
stronger require coordination Sovran et al., 2011. This chapter explores the different
design choices that are possible in Aria in terms of communication and coordination.
More specifically the chapter explains which conflict detection algorithms need the
local read write sets or the global read write sets. Table 5.1 shows an overview of
which methods needs which read write set.

In a distributed system like Aria it is desirable that the algorithms that are used
are as distributed as possible. In a sense this means that the algorithms used are
non-repetitive. The calculations that are executed on worker 1 are not executed the
exact same way on worker 2. The work is divided over the workers. However,
within Aria there is a trade off between message complexity and distribution of the
algorithm. Remember from chapter 3 that aria processes transactions in two phases.
1) The execution phase and 2) the commit phase. After phase 1 every worker has
partial knowledge about the read and write sets. They only know the reads and
writes that happened on there partition of the data. The next chapters describe in
more depth when in the commit phase communication is needed and how conflict
detection can be distributed as much as possible.

5.1 Communication in Aria’s conflict detection

During the commit phase there are two possibilities for the conflict detection algo-
rithm to communicate. Depending on the conflict detection algorithm 1) the workers
need the global read-write sets at the beginning of the commit phase or 2) the work-
ers only need the local read write sets but need to communicate which transactions
need to abort. Consider the following example:

Method local read set | local write set glol?al read
write sets
Default serializable v v
Deterministic reordering v
Snapshot isolation v
Reorder on degree v

TABLE 5.1: Sets needed to resolve conflicts per conflict detection
methods.

34 Chapter 5. Communication

Example 5.1.1 Suppose Aria is configured to have two workers. Key x is located on worker
1 and key y is located on worker 2. There are two transactions Ty and T»:

T1: R(x)R(y)W(x)
T2: R(x)R(y)W(y)

After execution phase the workers have the following read write sets. Worker 1 has
read set: {x : {T}, T»}} and write set: {x : {T1}}. While worker 2 has read set: {y :
{T}, T»}} and write set: {y : {T»}}. The workers do not have total knowledge over
the reads and writes in the system. If the workers where to resolve conflicts at this
point, without sharing the read write sets, the following would happen. Transaction
T; has no dependencies on previous transactions, since it is the first transaction in the
sequence. Therefore, T; can commit In worker 1 transactions T, reads a value that T}
writes to. So transaction T, has a RAW dependency on T;. In worker 2 transaction
T, writes to y after x reads y. This results in a WAR dependency. What happens next
depends on the configured conflict detection algorithm.

5.1.1 Default serializability

The default serializability algorithm is able to detect which transactions need to
abort without communicating the read write sets up front. According to Rule 1
of Chapter 4.2 transactions can commit if there is no WAW or no RAW. Following
this rule worker 1 would abort T; since it has a RAW dependency on T;. However
worker 2 does not find a reason to abort T,. Thus a network round trip is needed for
the workers to inform there peers which transactions need to abort.

5.1.2 Deterministic reordering

Suppose deterministic reordering is configured. As described in Rule 2 of Chap-
ter 4.2. Recall a transaction can commit if there is no WAW and not both a RAW
and a WAR. Worker 1 would commit T since it only has a RAW. Similarly, Worker
2 would commit T, since it has only a WAR dependency. While if the system would
have total knowledge about the dependencies it would notice that there is a WAR
and a RAW and the system needs to abort transaction T».

The difference with deterministic reordering is that in Rule 2 the condition is
composed of an AND clause. Just as in the example, if one RAW is located in one
worker and a WAR is located on a different worker, the workers would fail to detect
this anomaly. Therefore, deterministic reordering needs to communicate read write
sets before resolving conflicts.

5.1.3 Snapshot isolation

Snapshot isolation only checks for WAW. Similar as with Default Serializability this
can be done locally on the worker.After resolving conflicts a network round trip is
needed to inform there peers which transactions need to abort.

5.1.4 Communicating read write sets or aborts

It is possible to configure snapshot isolation and default serializable to communi-
cate read write sets before resolving conflicts, or communicating aborts after. The
communication complexity of broadcasting read write sets or broadcasting aborts
is the same. If the workers know the read write set before conflict detection they

5.2. Graph optimization algorithms 35

can calculate all the aborts and do not need to communicate after resolving con-
flicts. On the other hand, if all the workers calculate aborts without sharing the read
write sets first, then they need to inform the other workers which transactions need
to abort. Sharing aborts only has the advantage that the work is more distributed.
No two workers do the same calculation. However the workers do not have a total
overview of the complete read write set of in the system. Therefore it could happen
that Worker 1 aborts transaction T; and worker 2 aborts T,. Afterwards they share
there aborts and they conclude that both T; and T, need to abort. While if they had a
total overview of the read write set they could choose between aborting T; or T, An-
other advantages of broadcasting before resolving conflicts is that each worker gets
a total view of the logic aborts. The workers do not commit transactions that are al-
ready aborted by logic on another worker. Resulting in less conflicting transactions
to begin with.

5.2 Graph optimization algorithms

The conflict detection algorithms that use the start order serialization graphs need
a total view of the read/write set of all transactions in order to resolve conflicts.
The workers need to make one network round trip to share read write sets. After
that, each worker can build a start order serialization graph and start the algorithm.
A small optimization is possible. That makes the algorithm a bit more distributed.
Consider the following start order serialization graph G = (V, E) with transactions
V and dependencies between transactions described by E. A typical start order seri-
alization graph consists of multiple connected components.

G=CU..UC,,

where C; = (V,,E;) such that V;NV; = @ Vi,jand U, E; = E. That is, there are
no edges between connected components and the connected components do not
share nodes. Each worker can use Tarjans algorithm to find connected components
Nuutila and Soisalon-Soininen, 1994. A worker only needs to solve for the connected
components C; that contains a transactions that writes to one of keys located at there
own partition.

{Ci : AT; s.t. write_set(T;) N C; # O}

In this way workers do not have to do work for transactions that have no writes at
that workers partition. Moreover after resolving conflicts no extra network round
trip is needed to inform peers about aborts. Because all the workers find the same
aborts.

5.3 Distributed or coordinated

In the distributed setup each worker needs to broadcast there read write sets to there
peers. In terms of message complexity, for n workers this results to n(n — 1) mes-
sages. This does not scale efficiently when the number of workers grows. Another
solution is to configure the system to use a worker coordinator setup. The workers
share there read write sets with the coordinator. The coordinator then has the total
view of the global start order serialization graph. The coordinator then resolves the
conflicts and informs the workers which transactions need to abort.

37

Chapter 6

Experimental results

This chapter evaluates the methods proposed in this thesis. The different bench-
marks used for evaluation are introduced in section 6.1. Section 6.2.1 shows the
performance of lowering the isolation level to snapshot isolation. This is without
any order optimization. The experiment in section 6.2.2 presents the results of seri-
alizable ordering on degree. Section 6.2.3 shows the results of reordering on degree
for snapshot isolation. The results of different communication strategies from chap-
ter 5.1 can be seen in section 6.3. Section 6.4 shows the results of all the methods
integrated in the system with the fallback mechanism turned on. In section 6.4 an
experiment is conducted to see the influence of the skew factor on the performance of
the methods. To compare the conflict detection algorithms ability to scale out, chap-
ter 6.4.2 caries out an experiment that shows the effect of adding multiple workers
to the system. In some of the figures reordering on degree is abbreviated to ROD.

6.1 Benchmarks

The benchmarks used in this work are adopted from the Yahoo! Cloud Serving
Benchmark (YCSB) Cooper et al., 2010. There are two types of variants of YCSB
workload: 1) YCSB-A where all write operations are independent of all the read
operations. 2) YCSB-B where all writes dependent on all the reads. For this work
the YCSB-B benchmark is adopted into two variants. One variant YCSB-B1 where a
transaction consists of one operation of YCSB-B. The other variant is called YCSB-B5
and consists of five operations of the YCSB-B workload, combined into one transac-
tion to create a transactional workload Wang and Kimura, 2016. Table 6.1 gives an
overview of the two workloads and there characteristics.

6.1.1 Default workload parameters

If not otherwise stated the following default system specifications apply: The work-
loads configured to have an 80 to 20 ratio reads and writes. The system is configured
to have two worker nodes. Every workload consists of 10K transactions.

Workload ‘ Transaction operations ‘ Snapshot optimizable
YCSB-B1 | Update, read, transfer X
YCSB-B5 | 5 sequenced update/reads v

TABLE 6.1: Workload overview.

38

Chapter 6. Experimental results

1 # Get the value from the key value
store.

def read(key_1):
return storage.get(key_1)

Qo W N

Read the value from key 1 and

11 # Transfer mony from accont with
key 1 to key 2.

12 def transfer(key_1, key_2):

storage.get (key_1)

14 # Check the constraint
violation.

13 X =

write the update value to 15 if x - 1 > 0:

storage. 16 update (key_2)
6 def update(key_1): 17 x = x - 1
7 X = storage.get(key_1) 18 storage.put (key_2, x)
8 x = x + 1 19 else:
9 storage.put (key_1, x) 20 raise

10 return x NotEnoughCreditException ()

FIGURE 6.1: Read, update and transfer operations form YCSB.

1 # Create a transaction from a sequence of YCSB operations

2> def sequenced_operations (key_operation_set: Map[Key, str]):
3 for key, operation in key_operation_set.items ()
: if operation == ’update’:
update (key)
6 if operation == ’read’:
7 read (key)
8 if operation == ’transafer’:
9 key2 = generate_key ()

10 transfer (key, key2)

FIGURE 6.2: Create a transaction from a sequence of YCSB operations.
Note that generate_key is the zipfian key generation function of YCSB.

6.1.2 Workload YCSB-B1

This workload consist of small transactions. All writes depend on a read to the same
key. It is a common workload in online transaction processing. It is the default
workload of the Yaho! Cloud Serving Benchmark (YCSB) Cooper et al., 2010. The
workload consists of three different operations. A read operation to a single key, an
update and a transfer. An update is essentially a read to a key followed by a write to
the same value. A transaction takes two keys. In this case it is a positive update to
the first key followed by an negative update to the second key. There is a constraint
on key one and the transaction fails if the value is negative after subtracting. Pseudo
code of the implementation of these operations can be found in Figure 6.1.

6.1.3 Workload YCSB-B5

Workload YCSB-B5 consists of larger transactions. This workload contains 5 opera-
tions of the YCSB-B1 workload batched together to create a transactional workload
Wang and Kimura, 2016. Figure 6.2 shows how the YCSB operations can be trans-
formed to a transaction of sequenced operations. The function takes as input a map
of keys and operations and delegates the operation with the corresponding key.

Two important properties of this workload are: 1) A write can depend on multi-
ple reads to different keys. 2) A write is still always part of an update and therefore
also dependent on a read to the same key.

6.2. Offline experiments 39

== Default Serializable == Default Serializable
Snapshot Isolation Deterministic Reordering
—A- Deterministic Reordering —A Snapshot Isolation

80 A
30 A

% aborts

) ™

S G

1 1
% aborts
'S o
S S
1 1

20 A

15 4
[- ~—a - A
T T T T T T T T T T T T
20 40 60 80 100 120 20 40 60 80 100 120
epoch size (n transactions) epoch size (n transactions)
(A) YCSB-B1 (B) YCSB-B5

FIGURE 6.3: Result of snapshot isolation, deterministic reordering
and default Serializability on offline benchmarks YCSB-B1 (a) and
YCSB-B5 (b) for different epoch size.

6.1.4 Offline workload

To compare the performance of different conflict detection algorithms an offline
transactional database is created. The read write sets from a run of YCSB-B1 and
YCSB-B5 are saved to this database. Configured for different epochs sizes. With
this offline database, conflict detection algorithms are quickly compared without
the need of spinning up the system.

6.2 Offline experiments

This section shows the outcome of the experiments on the offline benchmark. Sec-
tion 6.2.1 shows that lowering the isolation level to snapshot isolation allows for
more transactions to commit per epoch. Section 6.2.2 shows the effects of reordering
transactions on degree for serializable isolation level compared with deterministic
reordering. Section 6.2.3 shows the effect of reordering on degree for snapshot isola-
tion. Compared with snapshot isolation without reordering.

6.2.1 Snapshot isolation

This shows the results of lowering the isolation level to snapshot isolation. The con-
flict detection algorithm for snapshot isolation is developed in section 3. Snapshot
isolation is compared with default serializability and deterministic reordering. Fig-
ure 6.3a shows the performance of the methods on YCSB-B1. Deterministic reorder-
ing and snapshot isolation outperform serializability. However snapshot isolation
and deterministic reordering perform similarly. This can be explained by the fact
that YCSB-B1 consists of short transactions. In the workload there are only reads,
updates and transfers. Compare the constraints in Rule 2 of deterministic reorder-
ing and Rule 3 of snapshot isolation. Because workload YCSB-B1 consists of small
transactions, all writes are part of updates. If a transactions has a RAW or WAR
this means it has also a WAW. Therefore there are no transactions that are allowed

40 Chapter 6. Experimental results

Bl YCSB-B1 YCSB-B5

6000

4000 -
2000
0 - T T T

Serializable Deterministic = Snapshot Serializable Deterministic =~ Snapshot
Reordering Isolation Reordering Isolation

ms

FIGURE 6.4: Average latency from 10 runs in Aria for different conflict
detection methods: serializable, deterministic reordering and snap-
shot isolation on the YCSB-B1 and YCSB-B5 workload.

by snapshot isolation but not by deterministic reordering. The workload is not opti-
mizable by lowering the isolation level to snapshot isolation, see section 4.1 for more
details. On YCSB-B5 however, as figure 6.3b shows, snapshot isolation outperforms
deterministic reordering and serializability. This is consistent with the effectiveness
analysis of section 4.2.5.

The results in Figure 6.4 show the average latency of Aria on YCSB-B1 and YCSB-
B5 in the online system configured with two workers with the fallback off. This
figure shows that snapshot isolation outperforms Serializability and deterministic
reordering on the workload YCSB-B5 but it shows worse performance on YCSB-BI.
This corresponds with the results form Figure 6.3. Snapshot isolation and determin-
istic reordering performing worse on YCSB-B1 could be a consequence of serializ-
able conflict detection algorithm terminating faster.

6.2.2 Serializable reordering on degree

In Figure 6.5 serializable reordering on degree (Algorithm 1), deterministic reorder-
ing and the optimal ordering of ILP 2 are compared on workload YCSB-B1 and
YCSB-B5. Configured with different epoch sizes. The plot shows that serializable
reordering on degree outperforms deterministic reordering and is very close to the
optimal solution of ILP 2. Note here that the solution of the ILP is only calculated up
till epoch size 60. For larger epoch sizes it is not possible to construct the ILP. There
are to many simple cycles in the graph.

6.2.3 Snapshot isolation reordering on degree

In Figure 6.6 Algorithm 2 (snapshot isolation reorder on degree) and Algorithm 3
(sapshot isolation reorder on degree check acyclic), as presented in section 4.4, are
compared with snapshot isolation of section 4.2 (without reordering) as baseline.
The left plot shows the number of aborts. The right plot shows the run time of the
algorithms. Both Algorithm 2 and Algorithm 3 outperform the baseline and are very
close to the optimal ordering calculated by ILP 3. From the left plot of Figure 6.6
follows that Algorithm 3 outperforms Algorithm 2. They are both very close to the
optimal solution. However the right plot of Figure 6.6 shows that the run time of

6.2. Offline experiments 41

% aborts

= Deterministic Reordering = Deterministic Reordering
=@~ Reorder on Degree =@~ Reorder on Degree
=& ILP —A 1ILP
21 A 70
20 A
60
19
18 A 50 - —Z -
2 2
817 5 40
! i
S 16 A = 30 4
15 A
20 A
14
10
13
T T T T T T T T T T T T
20 40 60 80 100 120 20 40 60 80 100 120
epoch size (n transactions) epoch size (n transactions)
(A) YCSB-B1 (B) YCSB-B5

FIGURE 6.5: Comparison of deterministic reordering, serializable re-
ordering on degree (Algorithm 1) and optimal solution (ILP 2 on
YCSB-B1 (a) and YCSB-B5 (b).

== Snapshot Isolation —— Snapshot Isolation ROD check acyclic
=@- Snapshot Isolation ROD =>& ILP Snapshot Isolation

1200 A /
1000
800 /

600 >£

400 ’

time (ms)
~

200 - e

T T T T
20 40 60 80 100 120 20 40 60 80 100 120
epoch size (n transactions) epoch size (n transactions)

FIGURE 6.6: Comparison of snapshot isolation, snapshot isolation re-
ordering on degree, snapshot isolation reordering on degree check
acyclic and ILP 3 on YCSB-B5.

42 Chapter 6. Experimental results

=~ Reorder on degree broadcast read write sets
Reorder on degree coordinator worker
—#— No reordering coordinator worker
No reordering broadcast read write sets

20000 A

= 18000 { ¥ '

é) \

& 16000 - ~

g

= 14000 -

12000

T T T T T
2 3 4 5 6

Number of workers

FIGURE 6.7: Different communication configurations for snapshot
isolation on YCSB-B10. Configured with 8 reads and 2 writes and
a zipf constant of 0.7.

Algorithm 3 is twice as long as 2. Therefore Algorithm 2 is favored over Algorithm
3.

6.3 Coordinated or distributed

Figure 6.7 shows the results of how different snapshot isolation conflict detection
methods scale out. Snapshot isolation reordering on degree is compared with snap-
shot isolation without reordering. The methods are configured with different com-
munication strategies from chapter 5. When the system is configured with 2 and
4 workers, snapshot isolation reordering on degree outperforms snapshot isolation
with no reordering. However configured with 6 workers no reordering outperforms
the reordering methods. Whether the system is configured in a coordinator worker
setup or broadcasting read write sets does not seem to influence the performance.

6.4 Fallback on

This section shows the results of the proposed conflict detection algorithms inte-
grated in Aria configured with the fallback mechanism turned on. Table 6.2 shows
the 50 and 90 percentile latency’s of default serializable, deterministic reordering,
snapshot isolation, serializable reordering on degree and snapshot isolation reorder-
ing on degree. The table shows that lowering the isolation level to snapshot isolation
reduces the latency with about 8 milliseconds for the 50 percentile compared with
deterministic reordering. For the 99 percentile lowering the isolation level reduces
the latency with about 40 milliseconds. The reordering methods are twice as fast on
the 50 percentile. For the 99 percentile serializable reordering on degree is very close
to snapshot isolation. However snapshot isolation reordering on degree is almost
twice as fast as serializable reordering on degree.

The column that shows the average percentage of aborts of table 6.2 also has an
interesting outcome. Lowering the isolation level to snapshot isolation allows for
0.73% more aborts average. This is somehow similar to the results on the offline

6.4. Fallback on 43

Latency(ms) | average abort %
Method 50p y9(9p ! pef epoch
Default serializable 29 145 3.37
Deterministic reordering 30 117 2.73
Snapshot isolation 22 104 2.02
Serializability reordering on degree 17 97 0.09
Snapshot isolation reordering on degree | 16 49 0.08

TABLE 6.2: Final results developed methods integrated in system.

Configured with as input 300 transactions/second on the zipf distri-

bution with skew parameter s = 0.7. Each transaction makes 2 writes

and 8 reads. The number of workers is 4 total. Fallback mechanism is
used at an abort rate of 0.1.

workload on YCSB-B5 that figure 6.3b shows. However the reordering methods
have an average abort rate of 0.9% and 0.8% for deterministic respectively snapshot
isolation reordering. This is way more than the increase of the reordering methods
on YCSB-B5 that figure 6.5b and figure 6.6 show. This could partially be explained
by the fact that the results of table 6.2 are from benchmark YCSB-B10 and these are
even longer transactions.

6.4.1 Skew factor

The skew factor plays important role on performance of distributed databases. This
work sets out to minimize the number of aborts in high contention workloads. The
experiment in figure 6.8 is conducted to find out what the influence of the skew
factor is on the in this thesis developed methods. Figure 6.8 shows that for low
contention workloads, when the skew factor is 0.0 or 0.4, the reordering methods
perform similar as the methods without reordering. For more high contention work-
loads, with skew factor 0.8, 0.9 and 0.99, the reordering methods clearly outperform
the other methods. Moreover, figure 6.8 shows that lowering the isolation level to
snapshot isolation is especially effective for high contention workloads.

6.4.2 Scale out

Aria is designed to partition data across multiple nodes and scale out horizontal;y.
The experiment of figure 6.9 aims at investigating how the conflict detection meth-
ods scale out when multiple workers are added to the system. To keep the workload
balanced, the experiment is configured to have as input throughput: number of workers -
50 + 200 transactions per second. For two workers this is 300 transactions/seconds,
four workers get as input 400 transactions/seconds and so on. Figure 6.9 shows that

the reordering methods, for snapshot isolation and serializable isolation level, are
able to scale out and outperform non-reordering methods for up to 8 workers.

44 Chapter 6. Experimental results

—ll- Default serializable Snapshot isolation
Deterministic reordering Snapshot isolation ROD

=4#— Serializable ROD

250 A

200 -

150 ~

latency (ms)

100 A

50 A . /_ /u

T T T
0.0 0.2 0.4 0.6 0.8 1.0
skew factor

FIGURE 6.8: System performance with fallback mechanism on for

skew factor ranging from 0 (uniform) til 0.99. Benchmark YCSB-B10is

used with 300 transactions/second as throughput. Configured with
4 workers total.

== Default serializable Snapshot isolation
Deterministic reordering Snapshot isolation ROD
—4#— Serializable ROD
700 A
—~ 600 -
g
~= 500 A
>
=
% 400 -
et [
300 - W= S—
200 A———,—— , ——
T T T T T T T
2 3 4 5 6 7 8

workers

FIGURE 6.9: Scaling out horizontally with fallback mechanism on.

Aria performance configured with fallback mechanism on, skew fac-

tor 0.9 and as input throughput: number of workers - 50 + 200 (trans-
actions/second).

45

Chapter 7

Conclusion

First, this chapter summarizes the most important results and findings. Then, this
chapter answers the research questions as posed in the introduction. The goal of
this thesis is to minimize the number of aborts in epoch based commit scheduler
like Aria for high contention workloads. To this end 2 solutions where proposed: 1)
lowering the isolation level to snapshot isolation and 2) reordering the order of the
transactions. Figure 4.9¢c of chapter 4.2.5 shows the probability density function of
snapshot isolation compared with deterministic reordered and default serializability.
The figure shows that snapshot isolation is expected to commit more transactions
compared with deterministic reordering. The theory of chapter 4.1.3 explains why
workloads consisting of short transactions are not able to commit more transactions
when lowering the isolation level to snapshot isolation. Figure 6.3a and figure 6.4 of
section 6.2.1 confirm this theory. Figure 6.3a shows that lowering the isolation level
to snapshot isolation does not improve the number of aborts on YCSB-B1. Figure 6.4
shows that on YCSB-B1 in a live system setting with the fallback mechanism turned
off, the average latency is not improved by lowering the isolation level to snapshot
isolation.

On the other hand, lowering the isolation level to snapshot isolation on YCSB-
B5 reduces the total number of aborts by 3% (figure 6.3b) and improves the latency
with 1000 ms when the fallback mechanism is turned off (figure 6.4). Moreover,
figure 6.5 shows that reordering the transactions on degree allows for more transac-
tions to commit within one epoch than deterministic reordering. Similarly, reorder-
ing the sequence for snapshot isolation reduces the number of aborts (figure 6.6).
Both methods are close to the optimal solution calculated by the ILP’s.

Integrated in the system, with the fallback mechanism turned on the reordering
methods are able to improve latency (table 6.2). On uniform workloads, when the
skew factor is lower, the reordering methods perform similar as the other methods
(figure 6.8). The higher the skew factor, the more the effect lowering the isolation
level has on the average latency (figure 6.8). The methods that reorder transactions
on degree are able to scale out and perform better than the non reordering methods
for Aria configured with up to 8 workers.

Below we answer the research questions.

1. Does performance of deterministic database increase when lowering the isola-
tion level from serializability to snapshot isolation?

On workloads that consist of short transactions, such as YCSB-B1, performance does
not increase when lowering the isolation level to snapshot isolation. This is shown
in figure 6.3a. For longer transactions, such as YCSB-B5 as show in figure 6.3b, snap-
shot isolation allows to commit about 3% more transactions per epoch. Figure 6.4
shows Aria configured with the fallback mechanism off in a live system setting. The
same results apply. Lowering the isolation level to snapshot isolation results to an

46 Chapter 7. Conclusion

improved latency of 1000 ms on YCSB-B5. For smaller transactions lowering the
isolation level does not improve the latency. Such as on YCSB-BI.

When Aria is configured with the fallback mechanism on similar result are ob-
served. Snapshot isolation reduces the average latency. Figure 6.8 shows that the
higher the skew factor the more the latency is reduced. Without reordering, for a
skew factor of 0.99 snapshot isolation improves the latency with about 30 ms. More-
over, for the same skew factor, when comparing snapshot isolation reordering on
degree with serializable reordering on degree, the snapshot isolation reordering on
degree outperforms serializable reordering on degree with about 30 ms.

2. Can the number of aborted transactions per epoch be minimized for serializ-
able isolation level?

For small transaction, on YCSB-B1, reordering on degree minimizes the number of
commits about 1% (Figure 6.5a). For larger transactions, on YCSB-B5 serializable
reordering on degree is able to abort 5% more transactions per epoch compared with
deterministic reordering (Figure 6.5b).

3. Can the number of aborts be minimized under snapshot isolation?

Figure 6.6 shows for snapshot isolation that reordering on degree allows for around
3% more transactions to commit per epoch on YCSB-B5.

4. How close are the reordering heuristics to an optimal commit order?

Snapshot isolation and serializable reordering on degree are both close to the opti-
mal solutions calculated by the ILP’s. Figure 6.5a shows that serializable reordering
on degree is optimal. In figure 6.5b one can see that serializable reordering on de-
gree is within a 1 percent distance close to the optimal solution. Figure 6.6 shows
that snapshot isolation reordering on degree is within 1 percent close to the optimal
solution calculated by the ILP. The reordering method that uses the more precise
but more cost-worthy algorithm to check for cycles performs optimal. However fig-
ure 6.6 also shows that the time performance of snapshot isolation reordering on
degree check acyclic is worse than snapshot isolation reordering on degree.

5. Does Aria perform better broadcasting read write sets or in a master worker
setup?

Figure 6.7 shows that for performance coordinator worker or broadcasting configu-
ration perform similar.

6. When does lowering the isolation guarantee to snapshot isolation result in bet-
ter performance?

The results in figure 6.3a show that for short transactions lowering the isolation guar-
antee to snapshot isolation does not allow for more transactions to commit. Chap-
ter 4.1 explains this by observing the patterns in the start order serialization graph.

47

Chapter 8

Discussion

In this chapter we discuss the evaluation of the algorithms that this work proposes.
Section 8.1 discusses if it is possible to improve the reordering techniques and if they
are optimal. Section 8.2 discusses the run time of the conflict detection algorithms.
Section 8.3 discusses the impact of the fallback mechanism on the results. Section 8.4
discusses how the methods are expected to perform for different benchmarks and
workload parameters. Finally, the future works, in section 8.6, proposes three ways
to extend this work: 1) A reordering method that has a linear run time (section 8.6.2),
2) supporting optimizations for commutative operations (section 8.6.1) and 3) apply-
ing reordering in other batch commit schedulers (section 8.6.3).

8.1 Building dependency graphs

Recall from chapter 4.1 that whenever two transactions write to the same key this
forms a write write dependency between the two. The write write dependencies are
initially undirected, but then chosen to point from transactions with larger transac-
tion id to transactions with smaller transaction ids. Although the proposed reorder-
ing methods are very close to the optimal solutions calculated by the ILP’s, it is good
to keep in mind that the ILP’s find the optimal solution for a given start order seri-
alization graph. If we choose different directions for the write write, this results in
different start order serialization graphs. It is possible that different start order seri-
alization graphs result in better solutions. However on workloads such as YCSB-B,
all the writes depend on reads. Whenever two transactions write to the same key
they also read from the same key. Resulting in two directly conflicting transactions.
Therefore the direction of the writes is not expected to be of a large influence on
the solution. However, for other workloads when the writes are independent of the
reads, the direction of the write write edges could be of influence.

8.2 Run time conflict detection algorithms

Aria does not need the most optimal commit scheduler, but a fast and effective
heuristic. The methods that reorder transactions on degree need the start order seri-
alization graph. To build the graph, the read write sets of each transaction need to be
compared with the read write sets of all the other transactions. To detect the depen-
dencies between the transactions in the graph. Therefore, building a graph runs in
O(n?). With n the number of transactions. Arguably reordering on degree might not
scale well when more workers are added to the system. The workers are configured
to process a fixed amount of transactions per epoch. The number of transactions in

48 Chapter 8. Discussion

one epoch in total in the system is
number of transactions = transactions per worker - number of workers

In high content workloads, transactions access multiple partitions this results in
large connected graphs. The reordering on degree algorithm suffers performance
when scaling out horizontally. Although figure 6.9 of section 6.1 shows that the re-
ordering methods outperform the other methods up to 8 workers. It is expected
that when more workers are added to the system performance degrades. Therefore
section 8.6.2 proposes a reordering mechanism that has a linear run time.

8.3 Fallback mechanism

In some of the experiments the fallback mechanism is turned off. This is done to
see the effect of the methods uninfluenced by the fallback mechanism. When the
fallback mechanism is turned off, the effects of a better conflict detection algorithm
become clearly visible. Less aborts results in less transactions that need to be pro-
cessed in the next epochs. The case could be made that Aria configured with the fall-
back mechanism turned off is broken for high contention workloads. Suppose that
N transactions are all conflicting with each other because they update the same key.
Only one transactions can commit per epoch and it would take N epochs to com-
mit these transactions. With the fallback mechanism turned off the effect of aborts
propagate in the next epochs. The fallback mechanism is an important part of Aria’s
performance. With the fallback mechanism turned on, it is harder to reason about
the systems behavior. It is complicated to reason about the interactions of Arias
optimistic concurrency control algorithm and the fallback mechanism. Reordering
transactions on degree means that transactions with a high degree are forwarded to
the fallback mechanism. This means that the fallback mechanism needs to process
transactions that have a high degree in the start order serialization graph.

8.4 Evaluation

To get a good understanding of how a distributed database performs it is impor-
tant to evaluate the system on different workloads and for different workload pa-
rameters. Parameters that could influence the performance of a distributed system
are: the number of partitions a transaction accesses, the skew factor, the number of
workers in the system and the length of the transactions. Often when databases set
out to improve for specific workload parameters it happens that they loose perfor-
mance on other workloads. However, figure 6.8 of section 6.4 shows that for uniform
workloads the methods that use reordering on degree perform similar as the other
methods. This means that even for uniform workloads the proposed methods do
not waste to much resources on calculating optimal orderings.

To get a better understanding of the reordering methods the methods need to be
tested against the other parameters. For this, more offline workloads could be cre-
ated that vary the transactions read write percentage, transactions length and skew
factor. This could also give more insight in when lowering the isolation guaranty to
snapshot isolation could reduce latency. Informally, snapshot isolation only checks
for write conflicts on keys instead of read after write conflict. Therefore it is expected
that increasing the write read ratio this decreases snapshot isolation performance.
However, when transactions access more keys, say with a read write ratio of 80%

8.5. Broadcast or coordinated 49

reads and 20% writes, this is expected to improve snapshot isolations performances,
compared with serializability.

Testing the effect of the number of partitions a transaction accesses can only be
evaluated in an online system setting. In our test setup on YCSB-B10, all the workers
make 10 asynchronous calls to different keys. The number of workers varies from 2
til a total of 8. Therefore in our test setup the transactions almost always access all the
workers. More experiments need to be done to see how the reordering algorithms
compare to the other methods when the transactions access less workers, for instance
only 2. However, the less partitions a transaction accesses the easier a workload is
to paralelize. Usually performance increases when transactions access less data.

The proposed methods used in this work are evaluated offline on the YCSB-B1
and YCSB-B5 workload. The proposed are also evaluated in online system setting
on YCSB-B10. These are widely accepted benchmarks and often used for compar-
ing performance of distributed databases. However to give a better overview of
the performance of system other benchmarks such as TPC-C would also need to be
evaluated.

8.5 Broadcast or coordinated

Performance is similar for broadcast or coordinator worker configuration. However,
when the system is configured with a reordering on degree algorithms, the workers
do the same work in broadcasting setup. Therefore, total resources used in coordi-
nator worker setup during conflict detection is the number of workers times larger
than in coordinator worker setup. For instance, TPC-C also measures price/perfor-
mance TPC Benchmark C 2010. Distributed systems often stay way from coordinator
worker configurations to avoid single point of failure. However, when in broadcast
configuration every worker of Aria is a single point of failure. Every worker needs
to respond in order to continue to the next epoch. For a coordinator configuration
does not mean that another cloud instance needs to be deployed. The workers can
also use a consensus algorithm leader election protocol appoint one of the workers
to do the job of the coordinator.

In the current testing setup the program is evaluated on one machine. The sys-
tem is designed to run in the cloud. When running on multiple machines network
latency would increase. This could impact the communication strategy. To validate
the value of the system in the cloud the system would need to be tested in a cloud
environment.

50 Chapter 8. Discussion

8.6 Future work

In this chapter we present some ideas of how to improve Aria. section 8.6.1 ex-
plains how to extend Aria to support optimizations for commutative operations.
section 8.6.2 proposes a different reorder method that has a linear run time. More-
over, since Aria is a deterministic databases some possibilities for reordering are lim-
ited. section 8.6.3 addresses this by suggesting to implement reordering techniques
in other databases that use batch commit.

8.6.1 Supporting optimizations for commutative operations

Transactions protocol often consider transactions as a black box. They do not make
assumptions about the data types a transaction accesses, or the operations that are
executed. Some examples of data types in databases are: strings, date times, arrays
and numbers. Operations could be string concatenation, array append or compare
and set. Making assumptions about the type of operations of transactions gives
room for certain optimizations. For instance Doppel Narula et al., 2014 assumes
operations of transactions are commutative. An example of commutative opera-
tor is addition. Most transactions involving money transfers are commutative. An
epoch based commit scheduler such as Aria would be a great candidate to support
commutative transactions. Transactions could be chopped into pieces. Because the
operations are commutative the order of the pieces is invariant. It is possible to dis-
tribute the pieces over the workers and execute them consecutively. The workers
do not need to read from the snapshot but could expose writes to each other at any
time. Resulting in more concurrency within one epoch. However some care needs
to be taken when handling transactions that have abort logic. For instance transac-
tions that have non-negative constraints. Exposing there writes early could result in
cascading aborts.

8.6.2 Reorder on hot keys

Reordering transactions on degree depends on building a start order serialization
graph. This has a run time of O(n?). As argued in the discussion this does not
scale well when multiple workers are added to the system. To reorder the sequence
every transaction needs a weight. It is possible to consider other cost functions that
assign a weight to each transaction. Below we propose a different cost function
that could be considered for future research and runs in O(n). With n the number
of transactions. The function works as follows. First, count per key how many
transactions write to that key. Call this the weight of a key. Keys that are accessed
often, so called hotkeys, will have a larger weight. For this, one iteration over all
transactions is needed. Within the loop the function needs to iterate through the
write set. This is bound by O(n - W), where W is the size of the write set. Then iterate
again over the transactions and calculates the weight of a transaction to be the sum
of the weights of the keys in the transactions write set. In this way transactions that
access a lot of hotkeys will end up having a larger weight. The cost of the second
iteration is again O(n - W).

8.6.3 Other epoch based commit schedulers

One of the main problems in Aria is that only one transaction can update the value
of a key per epoch. To allow for more writes within an epoch, a transaction needs

8.6. Future work 51

to expose its writes to other transactions. However, doing this, determinism will be
lost. Coco Lu et al.,, 2021 is a non-deterministic epoch based commit scheduler. It
uses two phase commit as concurrency control algorithm. Coco applies two phase
commit in epochs to reduce the overhead added by 2PC. This system could bene-
fit from reordering the transactions. In Coco transactions are allowed to read other
writes within an epoch. This allows read after write dependencies. This creates
chains with transactions that depend on other transactions to commit. Other opti-
mizations are possible that commits the largest chain and reduces cascading aborts
as much as possible.

53

Bibliography

Adya, Atul (1999). “Weak consistency: a generalized theory and optimistic imple-
mentations for distributed transactions”. PhD thesis. Massachusetts Institute of
Technology, Dept. of Electrical Engineering and ...

Adya, Atul, Barbara Liskov, and Patrick O’Neil (2000). “Generalized isolation level
definitions”. In: Proceedings of 16th International Conference on Data Engineering
(Cat. No. 00CB37073). IEEE, pp. 67-78.

Agrawal, Rakesh, Michael] Carey, and Miron Livny (1987). “Concurrency control
performance modeling: Alternatives and implications”. In: ACM Transactions on
Database Systems (TODS) 12.4, pp. 609-654.

Astrahan, Morton M. et al. (1976). “System R: Relational approach to database man-
agement”. In: ACM Transactions on Database Systems (TODS) 1.2, pp. 97-137.

Bailis, Peter et al. (2016). “Scalable atomic visibility with RAMP transactions”. In:
ACM Transactions on Database Systems (TODS) 41.3, pp. 1-45.

Beillahi, Sidi Mohamed, Ahmed Bouajjani, and Constantin Enea (2019). “Checking
robustness against snapshot isolation”. In: Computer Aided Verification: 31st Inter-
national Conference, CAV 2019, New York City, NY, USA, July 15-18, 2019, Proceed-
ings, Part II 31. Springer, pp. 286-304.

Berenson, Hal et al. (2007). “A critique of ANSI SQL isolation levels”. In: arXiv
preprint ¢s/0701157.

Cerone, Andrea, Giovanni Bernardi, and Alexey Gotsman (2015). “A framework for
transactional consistency models with atomic visibility”. In: 26th International
Conference on Concurrency Theory (CONCUR 2015). Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik.

Cheng, Chaoyi et al. (2023). “Developer’s Responsibility or Database’s Responsibil-
ity? Rethinking Concurrency Control in Databases”. In: 13th Annual Conference
on Innovative Data Systems Research (CIDR'23). January 8-11, 2023, Amsterdam, The
Netherlands.

Codd, Edgar F (1970). “A relational model of data for large shared data banks”. In:
Communications of the ACM 13.6, pp. 377-387.

Cooper, Brian F et al. (2010). “Benchmarking cloud serving systems with YCSB”. In:
Proceedings of the 1st ACM symposium on Cloud computing, pp. 143-154.

Crooks, Natacha et al. (2017). “Seeing is believing: A client-centric specification of
database isolation”. In: Proceedings of the ACM Symposium on Principles of Dis-
tributed Computing, pp. 73-82.

Curino, Carlo et al. (2010). “Schism: a workload-driven approach to database repli-
cation and partitioning”. In.

Cutello, Vincenzo and Francesco Pappalardo (2015). “Targeting the minimum ver-
tex set problem with an enhanced genetic algorithm improved with local search
strategies”. In: Intelligent Computing Theories and Methodologies: 11th International
Conference, ICIC 2015, Fuzhou, China, August 20-23, 2015, Proceedings, Part I 11.
Springer, pp. 177-188.

DeCandia, Giuseppe et al. (2007). Dynamo: Amazon’s Highly Available Key-Value Store.
SOSP, 2007.

54 Bibliography

Ding, Bailu, Lucja Kot, and Johannes Gehrke (2018). “Improving optimistic concur-
rency control through transaction batching and operation reordering”. In: Pro-
ceedings of the VLDB Endowment 12.2, pp. 169-182.

Faleiro, Jose M and Daniel] Abadi (2014). “Rethinking serializable multiversion con-
currency control”. In: arXiv preprint arXiv:1412.2324.

Faleiro, Jose M, Daniel] Abadi, and Joseph M Hellerstein (2017). “High performance
transactions via early write visibility”. In: Proceedings of the VLDB Endowment
10.5.

Fekete, Alan et al. (2005). “Making snapshot isolation serializable”. In: ACM Trans-
actions on Database Systems (TODS) 30.2, pp. 492-528.

Friedman, Roy and Robbert Van Renesse (1997). “Packing messages as a tool for
boosting the performance of total ordering protocols”. In: Proceedings. The Sixth
IEEE International Symposium on High Performance Distributed Computing (Cat. No.
97TB100183). IEEE, pp. 233-242.

Gan, Yifan et al. (2020). “IsoDiff: debugging anomalies caused by weak isolation”.
In: Proceedings of the VLDB Endowment 13.12.

Gray, Jim and Andreas Reuter (1992). Transaction processing: concepts and techniques.
Elsevier, pp. 5-6.

Gray, Jim et al. (1994). “Quickly generating billion-record synthetic databases”. In:
Proceedings of the 1994 ACM SIGMOD international conference on Management of
data, pp. 243-252.

Gray, Jim N, Raymond A Lorie, and Gianfranco R Putzolu (1975). “Granularity of
locks in a shared data base”. In: Proceedings of the 1st International Conference on
very large data bases, pp. 428-451.

Johnson, Donald B (1975). “Finding all the elementary circuits of a directed graph”.
In: SIAM Journal on Computing 4.1, pp. 77-84.

Kaki, Gowtham et al. (2017). “Alone together: compositional reasoning and inference
for weak isolation”. In: Proceedings of the ACM on Programming Languages 2.POPL,
pp- 1-34.

Karp, Richard M (2010). Reducibility among combinatorial problems. Springer.

Kung, Hsiang-Tsung and John T Robinson (1981). “On optimistic methods for con-
currency control”. In: ACM Transactions on Database Systems (TODS) 6.2, pp. 213—
226.

Lakshman, Avinash and Prashant Malik (2009). “Cassandra: structured storage sys-
tem on a p2p network”. In: Proceedings of the 28th ACM symposium on Principles of
distributed computing, pp. 5-5.

Lamport, Leslie (2001). “Paxos made simple”. In: ACM SIGACT News (Distributed
Computing Column) 32, 4 (Whole Number 121, December 2001), pp. 51-58.

Lu, Yi et al. (2020). “Aria: a fast and practical deterministic OLTP database”. In.

— (2021). “Epoch-based commit and replication in distributed OLTP databases”. In.

Microsoft (n.d.). SQL Server. https://www.microsoft.com/en-us/sql-server.

Mohan, C, Bruce Lindsay, and Ron Obermarck (1986). “Transaction management
in the R* distributed database management system”. In: ACM Transactions on
Database Systems (TODS) 11.4, pp. 378-396.

Mu, Shuai et al. (2014). “Extracting more concurrency from distributed transactions”.
In: 11th {USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 14), pp. 479-494.

Narula, Neha et al. (2014). “Phase reconciliation for contended in-memory transac-
tions”. In: 11th {USENIX} Symposium on Operating Systems Design and Implemen-
tation ({OSDI} 14), pp. 511-524.

https://www.microsoft.com/en-us/sql-server

Bibliography 55

Nuutila, Esko and Eljas Soisalon-Soininen (1994). “On finding the strongly connected
components in a directed graph”. In: Information processing letters 49.1, pp. 9-14.

Oracle (n.d.). MySQL Cluster. https://www.mysql.com/products/cluster/.

Papadimitriou, Christos H (1979). “The serializability of concurrent database up-
dates”. In: Journal of the ACM (JACM) 26.4, pp. 631-653.

Postgres (n.d.). PostgreSQL. https://wwu.postgresql.org/.

Rao, Jun, Eugene] Shekita, and Sandeep Tata (2011). “Using paxos to build a scal-
able, consistent, and highly available datastore”. In: arXiv preprint arXiv:1103.2408.

Shasha, Dennis et al. (1995). “Transaction chopping: Algorithms and performance
studies”. In: ACM Transactions on Database Systems (TODS) 20.3, pp. 325-363.

Shute, Jeff et al. (2013). “F1: A distributed SQL database that scales”. In.

Sovran, Yair et al. (2011). “Transactional storage for geo-replicated systems”. In:
Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles,
pp- 385—-400.

Tang, Chuzhe et al. (2022). “Ad hoc transactions in web applications: the good, the
bad, and the ugly”. In: Proceedings of the 2022 International Conference on Manage-
ment of Data, pp. 4-18.

Tarjan, Robert (1972). “Depth-first search and linear graph algorithms”. In: SIAM
journal on computing 1.2, pp. 146-160.

Thomasian, Alexander (1998). “Distributed optimistic concurrency control methods
for high-performance transaction processing”. In: IEEE Transactions on Knowledge
and Data Engineering 10.1, pp. 173-189.

Thomson, Alexander and Daniel] Abadi (2010). “The case for determinism in database
systems”. In: Proceedings of the VLDB Endowment 3.1-2, pp. 70-80.

Thomson, Alexander et al. (2012). “Calvin: fast distributed transactions for parti-
tioned database systems”. In: Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data, pp. 1-12.

TPC Benchmark C (2010). Last accessed 30 January 2023. URL: tpc.org/tpcc/.

Wang, Jia-Chen et al. (2021). “Polyjuice: High-Performance Transactions via Learned
Concurrency Control.” In: OSDI, pp. 198-216.

Wang, Tianzheng and Hideaki Kimura (2016). “Mostly-optimistic concurrency con-
trol for highly contended dynamic workloads on a thousand cores”. In: Proceed-
ings of the VLDB Endowment 10.2, pp. 49-60.

Yu, Xiangyao et al. (2016). “Tictoc: Time traveling optimistic concurrency control”.
In: Proceedings of the 2016 International Conference on Management of Data, pp. 1629—
1642.

Zhang, Jian et al. (2023). “Viper: A Fast Snapshot Isolation Checker”. In.

https://www.mysql.com/products/cluster/
https://www.postgresql.org/
tpc.org/tpcc/

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Deterministic databases
	Research questions
	Contributions

	Related work
	Consistency
	Distributed transactions
	Locking or optimistic concurrency control
	Transaction chopping
	Deterministic databases
	Epoch based commit protocol

	System overview
	Data flow example in Aria

	Transaction protocols
	Building start order serialization graphs
	Conflict types in epoch based transaction scheduler
	Directly conflicting transactions
	Snapshot optimizable

	Snapshot isolation
	Isolation levels
	Dependency graph
	Consistency in Aria
	Example: Different conflict detection methods in practise.
	Effectiveness analysis

	Serializable reordering on degree
	Reordering on degree
	Reordering on degree example
	Determinism
	Optimal reordering

	Snapshot isolation reordering on degree
	Constructing BC-graphs
	ILP formulation for snapshot isolation

	Communication
	Communication in Aria's conflict detection
	Default serializability
	Deterministic reordering
	Snapshot isolation
	Communicating read write sets or aborts

	Graph optimization algorithms
	Distributed or coordinated

	Experimental results
	Benchmarks
	Default workload parameters
	Workload YCSB-B1
	Workload YCSB-B5
	Offline workload

	Offline experiments
	Snapshot isolation
	Serializable reordering on degree
	Snapshot isolation reordering on degree

	Coordinated or distributed
	Fallback on
	Skew factor
	Scale out

	Conclusion
	Discussion
	Building dependency graphs
	Run time conflict detection algorithms
	Fallback mechanism
	Evaluation
	Broadcast or coordinated
	Future work
	Supporting optimizations for commutative operations
	Reorder on hot keys
	Other epoch based commit schedulers

	Bibliography

