
Polishing robot:
vibrations due to
impact
To simulate and
correct unwanted
behavior
M.L. Postma

Polishing robot:
vibrations due

to impact
To simulate and
correct unwanted

behavior
by

M.L. Postma
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on Friday June 30, 2017 at 15:00 h.

Student number: 4098161
Project duration: September 19, 2016 – June 30, 2017
Thesis committee: Prof. dr. ir. A.W Heemink, TU Delft, supervisor

Ir. T. Gotthardt, Fraunhofer IPT, supervisor
Dr. M. Möller, TU Delft
Dr. J.W. van der Woude, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface

This research is conducted at Fraunhofer IPT in Aachen as a master graduation project for Applied Mathe-
matics at the TU Delft from September 2016 till June 2017. The project was offered by Fraunhofer IPT on
their website, where I found it. The topic of this thesis is to simulate and correct unwanted behavior in the
polishing robot present at the Fraunhofer IPT. This results in a mathematical model to simulate this behavior
and choosing a good correction method. The correction method used improved the simulated model greatly.
The members of the thesis committee are Prof. dr. ir. A.W Heemink as TU Delft supervisor, Ir. T. Gotthardt
as Fraunhofer supervisor, Dr. M. Möller as external member from the numeric analysis department and Dr.
J.W. van der Woude as TU Delft advisor on system theory. This graduation project was not only a mental
challenge, but also living in Aachen for these months was a great experience. I have learned a lot about con-
ducting a research and, personally, got to know some great people and what I want to do for a next step after
graduation. I would specifically like to thank my supervisor Titus Gotthardt from Fraunhofer IPT in Aachen
for his guidance and support during this thesis.

M.L. Postma
Delft, June 2017

iii

Abstract

The specific issue researched in this thesis is correcting some inaccuracies that occur when the robot is pol-
ishing certain shapes. The biggest challenge is to mathematically describe this phenomenon in order to find
an appropriate correction. Since there are a lot of influences in the process (friction, movement, impact, de-
grees of freedom) this is very difficult to describe. The main topic of this thesis is therefore the description
and simulation of this problem. The research question defined is: what is causing the jumping of the polish-
ing tool in specific situations on non-flat surfaces and how can this be prevented?
The problem has multiple challenges due to combining a rotating movement with degrees of freedom in the
lateral movement. The cause that has been found with the simulations is the flexibility in the spindle and
the airbearing of the polishing robot. Together with resultant forces, caused by the rotation of the tool and a
certain angle of elevation of the material, the flexibility causes the tool to jump in all directions. The goal of
these simulations is to acquire data that describes the problem phenomenon. When the realistic data of the
simulation is known a correction method is proposed and first simulated.
The method tested to correct this is a static state feedback where the controller is found by minimizing the
H∞-norm. The results show that this type of controller and feedback can decrease the jumping to 0−10 %
of the original displacements. This correction is still theoretical, but actual physical solutions can be imple-
mented to test if it could solve the problem.

v

List of symbols

The general notation used is presented in this table. Variables or notations missing from this table are always
explained. Variations of the presented notation is also possible (i.e. a caption).

X,Y,Z Coordinate frames.
i, j,k,I,J,K Coordinate vectors.

q, q̇ State vectors, generalized coordinates.
x, ẋ State vectors, Cartesian displacements.

x, y, z Displacements of polishing disc in Cartesian coordinate frame [m].
xm , ym , zm Displacements of airbearing in Cartesian coordinate frame [m].

v (Relative) velocity [m/s].
a (Relative) acceleration [m/s2].

θ,ψ,φ,ρ Angular displacements [rad].
Ω,ω,λ, θ̇,ψ̇ Angular velocities [rad/s].

α Angular acceleration [rad/s2].
h Height [m].
b Width [m].

L, l Length [m].
d Deflection [m].
m Mass [kg].
r Radius [m].
t Time [s].
τ Natural period [s].
n Percentage [-].
E Energy [J].
H Hamiltonian function.
K Kinetic energy [J].
V Potential energy [J].
F Force [N].
T Torque [N m].
P (Generalized) momentum [kg m/s].
M Moments (also torques) [N m].
G Generalized mass matrix [kg].
I ,I Moment of inertia [kg m2] or unit matrix.
k Spring constants for linear [N/m] or torsional [Nm/rad] spring.
c Damping coefficient [Ns].
ζ Damping ratio total energy [-].
N Young’s modulus [N/m2].
ξ Material elevation angle [rad].
µ Coefficient of friction [-].
σ Angle of friction [rad].
α,β Angles of resultant forces in C1 and C2 [rad].
η Angle between crooked radius and j-axis [rad].
u Controller vector.
y Output vector.
w Exogenous input.

H2, H∞ Minimization norms.

vii

Contents

1 Introduction 1
2 The polishing robot 3

2.1 Polishing . 4
2.2 The use of robots . 4

3 Previous work and scientific publications 7
3.1 Definitions and basic concepts . 7
3.2 Accuracy and repeatability: static calibration . 8

3.2.1 Model-based static calibration . 8
3.2.2 Modeless static calibration. 9
3.2.3 Combining modeless and model-based approaches . 10

3.3 Trajectory optimization: dynamic calibration . 10
3.4 Contact forces: force control and vibration reduction . 11

3.4.1 Force control. 11
3.4.2 Vibration reduction . 12

4 Research question 13
4.1 The phenomenon . 13
4.2 Possible modeling techniques. 13
4.3 Research question . 14

5 Mathematical background 15
5.1 Spring-mass-damper systems. 15
5.2 State-Space representation . 16

5.2.1 Feedback controller . 17
5.3 System definition . 17

5.3.1 Newtonian mechanics . 18
5.3.2 Lagrangian . 18
5.3.3 Hamiltonian . 19

5.4 Numerical integration . 20

6 Polish brushmodel 21
6.1 Tool model . 21

6.1.1 Coordinate systems . 22
6.2 Euler angles . 23

6.2.1 Using three Euler angles . 23
6.2.2 Using two Euler angles . 23

6.3 Equations and assumptions. 24
6.3.1 Three Euler angles . 25
6.3.2 Two Euler angles . 26

6.4 State-space representation . 26

7 Forces and influences 29
7.1 Angle of kinetic friction . 29
7.2 Calculating the resultant forces . 30

7.2.1 Resultant forces in contact points . 30
7.2.2 Resultant forces in tilting points . 31
7.2.3 Summary . 33

ix

x Contents

7.3 Contact impulse . 33
7.4 Damping effects . 34
7.5 Impact and impact duration . 34
7.6 Discussion on realistic influences . 35

8 Airbearingmodel 37
8.1 Adding translational vibrations . 37

8.1.1 Reduced mass in horizontal direction . 38
8.2 Using total movement for airbearing spring constant . 38
8.3 Adding vertical vibrations . 39
8.4 Adding damping . 40
8.5 Natural frequencies and damping ratios . 40
8.6 Final model equations . 42

9 Simulations of polishing brush and airbearing 45
9.1 Values and assumptions . 45
9.2 Variables and local coordinate systems . 47
9.3 No moment present in polishing disc model . 47
9.4 Full model . 47

9.4.1 Results of run 3 . 48
9.4.2 Results of run 1 . 49
9.4.3 Results of run 4 . 50
9.4.4 Decreasing contact spring height . 50
9.4.5 Workaround with force factor . 50

9.5 Concluding remarks . 51

10 Feedback design 71
10.1 Linearization around an equilibrium . 71
10.2 Controllers using LMI’s . 71

10.2.1 Asymptotic stability . 72
10.2.2 H-infinity norm . 72
10.2.3 H-2 norm . 73
10.2.4 Yalmip package . 74

10.3 System description . 75
10.3.1 System without damping . 75
10.3.2 System with damping . 76

10.4 Further system matrices . 77
10.4.1 Norms of system without controller . 78

10.5 Scaled system . 78
10.6 Adding an observer . 79
10.7 Simulation . 81

11 Simulating with controllers 83
11.1 Static state feedback first solution. 83

11.1.1 Controller comparison H infinity norm . 83
11.1.2 Original system H infinity norm . 84
11.1.3 Scaled system H infinity norm . 84

11.2 Static state feedback second solution . 85
11.2.1 Controller comparison H infinity norm . 85
11.2.2 Original system . 86
11.2.3 Scaled system . 87

11.3 Final remarks . 87

12 Conclusion 103
13 Futurework and recommendations 105
A Simulation results without damping 107

A.1 Results of run 2 . 107
A.2 Extra results of run 4 . 107

Contents xi

B Simulation results with damping 111
B.1 Extra results run 1 . 111
B.2 Results run 2 . 111

B.2.1 First damping . 111
B.2.2 Second damping . 111

B.3 Extra results run 4 . 112
B.3.1 First damping . 112
B.3.2 Second damping . 112

C Simulation results of controllers 121
C.1 Controller matrices for first solution . 121

C.1.1 Static state controller and the H2-norm . 121
C.1.2 Static state controller and the H infinity-norm . 121

C.2 Controller matrices for second solution . 122

D Matlab code 123
D.1 Polishing brush ode function . 123
D.2 Airbearing ode function. 126
D.3 Static state controller ode function . 129
D.4 Calculation of H-infinity norm . 131

Bibliography 133

1
Introduction

The definition of industrial robots according to the Robot Institute of America is [17]:"A robot is a re-
programmable, multi-functional manipulator designed to move materials, parts, tools, or specialized de-
vices, through variable programmed motions for the performance of a variety of tasks." This technical def-
inition shows already the advantages of the industrial robot. In this graduation project a polishing robot
is studied. This robot is used and improved at the Fraunhofer Institut für Produktionstechnologie (IPT) in
Aachen. Fraunhofer is with more than 80 research facilities in over 40 German cities the largest research and
development institute of Europe (followed by TNO). Fraunhofer has a lot of different institutes with their own
topic.

The specific issue researched in this thesis is correcting some inaccuracies that occur when the robot is
polishing certain shapes. The biggest challenge is to mathematically describe this phenomenon in order to
find an appropriate correction. Since there are a lot of influences in the process (friction, movement, impact,
degrees of freedom) this is very difficult to describe. The main topic of this thesis is therefore the description
and simulation of this problem. The problem has multiple challenges due to combining a rotating move-
ment with degrees of freedom in the lateral movement. The goal of these simulations is to acquire data that
describes the problem phenomenon. When the realistic data of the simulation is known a correction method
is proposed and first simulated. This correction is still theoretical, but actual physical solutions can be im-
plemented to test if it could solve the problem.

To get to the answer of the research question multiple steps are taken and described in this thesis. First
an explanation is given about the specific polishing robot that is used at Fraunhofer IPT. Then a study to the
different types of problems and solving methods is given for these types of robots and applications. Next the
exact research question is defined and explained in chapter 4. To answer this a mathematical background is
needed with some basic explanations and definitions, which is presented in chapter 5. Then in chapters 6, 7
and 8 the mathematical model is build and expanded. The simulation results of this model are presented in
chapter 9. Then the correction method and possible solution is defined, explained and simulated in chapters
10 and 11. Then finally a final conclusion and recommendations are given.

1

2
The polishing robot

The robot that is key in this research is a Mitsubishi Industrial polishing robot of the type RV-6SD with a
CR2D-711 controller. It is a six-axes standard arm, it has 2 arms of different lengths (upper: 280 mm, fore:
315 mm)[28]. The polishing tool has a size of 20 mm and is attached to a spindle or rod of length 20 mm. The
connection between the polishing brush and the spindle is a ball joint around which the polishing brush can
move. The robot has 6 degrees of freedom. The controller can control 6 axis simultaneously. It is driven by an
AC servo motor with a brake on all axes. The repeatability (accuracy of returning multiple times to the same
position) is ±0.02 mm [28].

Figure 2.1: RV-6SD Mitsubishi Industrial Polishing Robot.[28]

3

4 2. The polishing robot

The Mitsubishi Industrial polishing robot has an extra airbearing inserted at the polishing tool, such that
forces during the polishing are compensated for. This airbearing is a NewWay S305002 of 50 mm inside diam-
eter [7]. An airbearing works as a line of springs around the tool itself. It is a small cylinder where a layer of air
is present (see figure 2.2). Even though having made such adjustments, forces such as friction and drag and
the very low stiffness can still cause the polishing tool to drift of the programmed path. The polishing tool is
being moved in a circular motion of maximum radius of 3 mm and a transverse movement of approximately
1 mm/s.

Figure 2.2: NewWay 50 mm inside diameter air bearing [7]

2.1. Polishing
The goal of polishing is the refinement of a surface structure for aesthetic reasons, correction prevention,
remove rust and small imperfections. The polishing robot at the Fraunhofer IPT uses diamond as grind.
There are other materials possible, such as silicon carbide, aluminum oxide or alumina and boron carbide
[40]. The silicon carbide is used more in applications where a rough result is needed and not for smooth
surface finishes. The alumina is used for fine surface finishes, since it breaks down over time. Alumina is also
less expensive. The boron carbide results in a moderate surface quality and is used when fast removal is done.
The diamond is the hardest grind known and used for polishing for its removal rates and end-result quality.
Another advantage of diamond is its thermal conductivity.
The polishing is done in multiple steps, where in each step the polishing material has finer grains:

1. Grinding: the grains are in the tool and grinding against the material. Used to reduce the material to a
suitable size or to remove large irregularities from the surface. A course abrasive is used (> 40µm) [40].;

2. Lapping: lose grains (typically 5−20µm) rolling over material in a slurry. Used to produce a smooth,
flat, unpolished surface. Removes subsurface damage caused by sawing or grinding;

3. Lap/polishing: variant of lapping where the tiny particles are embedded in the tool, finer surface finish;

4. Polishing: all particles (size < 3µm) are embedded in the tool. Removes the material to produce a
scratch free surface [40];

5. Buffing: very fine diamond, wiping away work path with a cloth tool. Leads to a smooth, shiny result.

The objects to be polished with the robot are moulds used for optic instruments. This means that the
precision of the polishing must be very good, since small errors can cause these type of instruments not to
work. When looking at polishing moulds for industrial and automotive applications the relative precision is
of less importance.

2.2. The use of robots
The specific difficulty with a robot such as a polishing robot is the fact that during its action the robot is
in contact with its environment and due to this contact extra forces and vibrations become important. Even

2.2. The use of robots 5

though a very high precision is requested, this is not possible with some sort of adjustment to compensate for
these forces and vibrations [39]. One of the main limitations in the robot is the low mechanical stiffness [39].
The advantage of using a robot for the polishing is the high productivity flexibility and the large workspace
[39]. Also the fact that a robot is reprogrammable is a big advantage above machine based polishing.

Specifically using the Mitsubishi robot for the polishing shows the following. The tool path (path over
which the rotating tool is moved) is not a straight line. Since the rotating tool holder is not in the middle of
the mechanical interface, the tool path exists out of a rotating motion (that is slower than the tool rotation)
that is moving in a direction. This means that there are a lot of moments in which the tool is still rotating,
but the robot arm itself is approximately in the same position. The material that is being polished has a free
geometry. With free geometry is meant that it can be any geometric form. This means in the rotating motion
the tool can come at such a location with a slope and not have the tool itself press entirely on the material.

3
Previous work and scientific publications

In this chapter some basic concepts of industrial robots and improving their accuracy are discussed. This is
done by describing different problems and ways to solve them. First the basic concepts and definitions are
given in section 3.1. Then first methods for improving the accuracy of the robot by taking the entire robot into
account are discussed. These are divided in static and dynamic calibration. Then different approaches have
been used for industrial robots that are used for machining operations where the tool is in contact with the
product. Different approaches are force control, vibration reduction and Eulers’ rigid body equations. These
methods zoom in more on the tool at the end of the robot arm and look less at the robot as an entire structure.

3.1. Definitions and basic concepts
Production/industrial robots can be classified in roughly two groups: serial and parallel robots. Serial robots
are robots whose kinematic structure describes an open loop chain, while parallel robots describe a closed
loop chain [43]. This means that a parallel robot has two or more independent kinematic chains connecting
the base to the tool of the robot [43]. Another term often used for robots is manipulator or robot manipulator.
A robot consists of links connected by joints with one end attached to a base and the other end to the end
effector which is equipped with a specialized gripper or tool [43], [29]. There are mainly two types of joints:
revolute and prismatic joints. Revolute joints are similar to hinges that allow relative rotation between two
links. Prismatic joints allow linear relative motion between two links [43]. The arm (or mainframe) of the
robot manipulator can generally move with three degrees of freedom [17]. Many industrial robots can be
divided in one of the four basic motion-defining categories [17]:

1. Cartesian coordinates (three linear axes)

2. Cylindrical coordinates (two linear and one rotary axes)

3. Spherical coordinates (one linear and two rotary axes)

4. Revolute or articulated coordinates (three rotary axes)

With robot calibration is meant the process of improving the robot positioning accuracy of a given manip-
ulator through software modification instead of changing the design of the robot or its control system [15],
[42]. Calibration is needed because a robot behaves different in real life from expected. This is caused for
example by small differences in the mechanism, temperature changes during use of the robot, errors due to
vibrations, friction, wear of components, etc. [35].

Two types of calibration can be distinguished: static and dynamic calibration. With static calibration the
identification of those parameters which influence primarily the static (time invariant) positioning character-
istics of a manipulator are meant [8]. The static calibration improves the accuracy by finding better estimates
of the true parameter values of the kinematic model used to control the robot’s motion [51]. Optimizing these
parameters will result in better positional accuracy and repeatability.
Robot kinematics can be described as the analytical study of the geometry of motion of a robot arm with
respect to a fixed reference coordinate system without regard to the forces/moments that cause the mo-
tion [17]. The differences in parameters can be classified under geometric (kinematic) or non-geometric

7

8 3. Previous work and scientific publications

(non-kinematic) errors. Geometric errors are constant for all robot configurations and non-geometric er-
rors can vary for different configurations [19]. Examples of geometric errors are component length errors
and assembly/joint-axis identification orientation. Examples of non-geometric errors are friction, backlash,
wear, control errors, measurement errors, static loads and thermal errors [19]. To map the position of the end-
effector location either a model-based (parametric) method or a modeless (non-parametric) method can be
used [48]. In model-based methods an important step is the identification of accurate robot models, while in
modeless methods the errors will not be explicitly modeled, but approximated [48].
Another distinction in static calibration can be made in the calculation of parameters and assumption of the
reference coordinate system [49]. Absolute calibration calculates the position of the end effector with respect
to one world coordinate frame. Relative calibration calculates the position of the end effector in an arbitrary
coordinate frame with its own origin. Then forward calibration predicts the location of the tool in world co-
ordinates given the joint parameters. Inverse calibration then calculates the parameters for putting the tool
at a desired location in the world coordinate frame [49].

Robot arm dynamics describe the mathematical formulations of the equations of robot arm motion [17].
With dynamic calibration the identification of parameters influencing primarily motion characteristics of the
manipulator (forces, actuator torques, accelerations) and dynamic effects that occur on a manipulator such
as friction and link stiffness are meant [8]. These dynamic related characteristics are for example distribution
of mass in the links, friction in actuators and joints and stiffness. When dynamic calibration is done the tra-
jectory is optimized and/or tracking errors are minimized.

The model-based calibration process has the following steps [15], [42]:

1. Modeling: setting up a mathematical model describing the behavior of the robot.

2. Measurement: gathering data from the actual robot.

3. Identification: calculating the error sources and new parameters or other values from the model and
measured data.

4. Compensation or correction: the model implementation step in which the new parameters following
from the identification step are implemented.

5. Verification: validation of the improved model. In this step the same characteristics have to be mea-
sured again to see if the changes have had any effect on the accuracy. When the accuracy is not im-
proved return to step 3 to adjust modeling techniques.

Different general methods can be used to improve different aspects of robot manipulators. The different
aspects are: accuracy and repeatability, trajectory optimization, force control and vibration reduction. Most
aspects can be improved using model-based methods.

3.2. Accuracy and repeatability: static calibration
3.2.1. Model-based static calibration
The kinematic model-based calibration is generally seen as the global calibration method that improves the
accuracy across the whole robot space [15]. In [31] an overview of previous methods is given for the modeling
and identification steps.

Modeling step For the model-based approach the kinematic model is mostly set up using the Denavit-
Hartenberg convention [35]. This method is very popular due to amongst other properties the minimal set
property [33]. The Denavit-Hartenberg convention is not unique, but gives a procedure to set up the different
coordinate frames of each joint of a robot manipulator. Some variations and extensions of the D-H model are
the S-model and zero-reference model. The Stone model (or S-model) estimates the six parameters for each
link based on circle point analysis [15]. It still has the same problem as the D-H convention when axes are
parallel [1]. The zero-reference model is based on Rodrigues equation and only uses two coordinate frames:
fixed in work space and the end-effector [29]. The zero-reference position is the wanted position for the robot
when all joint displacements are zero. In [10] a 5 parameter extension of the D-H convention is used.

To get good results from the calibration the model parameters must satisfy three properties: continuous,
proportional and completeness [35]. These properties lead to a parameter set that can handle small devia-
tions.

3.2. Accuracy and repeatability: static calibration 9

Another method to describe the model is using the POE formula. This formula came up in the 90s and
represents the forward kinematics as a product of matrix exponentials and is based on the concept of a one-
parameter subgroup of the Lie group. This is based on a geometric interpretation of classical screw theory
[33]. This came up as a proposition to overcome singularity, but also to avoid calculating a derivative and
introduce a kinematic model that can also be used for different applications [33].
In [13] a local POE formula is used. All joint axes are now expressed in their respective local frames, instead
of a base frame representation as in [33]. The advantage of this method is that the local coordinate frames
can be arbitrarily assigned to the links, such that the kinematic calibration becomes a process of finding new
local coordinate frames to reflect the correct geometric characteristics of the robot [13]. The big difference
between the two methods is that the Denavit-Hartenberg parameters are with respect to the previous link
frame, while the twist coordinates of the POE representation are with respect to a base frame.

Other less popular methods are for example the zero-reference model [33] and continuous and paramet-
rically complete (CPC) modeling approach (a six parameter model which is singularity-free) [13].

To conclude the Denavit-Hartenberg convention is the standard procedure for the modeling step in this
type of problems. Some literature such as [30] do however state that the product of exponentials is a superior
alternative to the use of the Denavit-Hartenberg parameters.

Identification step The most common method to calculate the optimized parameters is the least squares
algorithm. Other methods have been used to calculate the parameters such as nonlinear optimization (Levenberg-
Marquardt, Newton, etc.), iterative linearization, (extended) Kalman filter and maximum likelihood.

In [38] a global model for error estimation is build with a maximum likelihood estimate on a robot with 6
degrees of freedom. This maximum likelihood estimator takes into account backlash in transmission units,
measuring device errors and manufacturing tolerances. The best results were an improvement of the error to
0.5 mm without considering the non-geometrical errors. This is an improvement from an error of factor 10
to a region of 0.5−1.0.

In [51] the weighted least squares method is used instead of the standard least squares method. They
showed that 20 % decrease in average position error is possible compared to using the least squares method.
This method is expected to be useful when a large number of similar robots must be calibrated. In this sit-
uation the random error behavior becomes worthwhile, since it reduces the number of actual measurements.

In [35] a comparison between a nonlinear optimization procedure, an iterative linearization and an ex-
tended Kalman filter is made on a SCARA robot. All three methods generally converged, each with different
computation times. The parameter estimations and the efficiency of the extended Kalman filter were better
than the nonlinear optimization estimations. The parameter estimations of the linearized iterator were also
better than the ones of the nonlinear optimization method, but this method is not efficient and showed some
convergence problems for some parameters. The final conclusion of [35] was that the extended Kalman filter
was by far the best method by being fast, reliable and being able to give an estimation of the uncertainties.

In [37] a comparison is made between the least squares estimation and the extended Kalman filter on a
simulated 7 degrees of freedom MyBot humanoid arm. For this a non-singular Jacobian matrix is derived
that shows the influence of each parameter error on the difference of the measured and theoretical positions.
The least squares estimation is a non-iterative method that calculates the parameters using the singular value
decomposition and optimizes the root-mean square residual error of the model [50]. The extended Kalman
filter is again used to approximate the state when there are uncertainties. Both methods are iterated until
the desired norm is reached. [37] showed that the least squares estimate converges faster than the extended
Kalman filter, but the Kalman filter has better performance than the least squares estimation, especially when
only a small number of measurements are used.

3.2.2. Modeless static calibration
Another approach is the modeless calibration. In this type of calibration the calculations are based on ap-
proximation of robot kinematic relationships. Relationships such as between the robot joint readings and
its position errors or between the robot positions and its position errors. Methods that have been used here

10 3. Previous work and scientific publications

are for example radial basis function networks (RBFN), artificial neural networks (ANN), fuzzy logic, genetic
algorithm and utilization of polynomials (Fourier, ordinary, Jacobi, Laguerre, Hermite and Bessel).

The advantage of a modeless method is that the kinematic modelling and identification step can be
skipped [48]. In these type of methods the robot workspace is divided in a grid on which all position er-
rors are measured. Then an error compensation can be realized by interpolating errors from its neighboring
grid points [48]. The big disadvantage is that a choice has to be made between calibration accuracy and com-
putational load (number of grid points), [48].

The modeless method has two major steps, [48]. The first step is identifying all position errors for the
grid points. The second step then is targeting a random location and compensation the error with a linear
interpolation on the data from the first step [48].

In [24] both geometric and non-geometric errors are compensated for the D-H joint parameters. For the
other parameters only the geometric error is considered. The experiment is conducted on a six axes indus-
trial robot manipulator. The approach in [24] is to divide the workspace of the robot into subregions where
the parameter errors can be calculated. Then the continuous parameter error functions can be obtained by
interpolation, in this case by a Radial Basis Function Network (RBFN).

3.2.3. Combining modeless and model-based approaches
The down side on almost all model-based approaches is that the non-geometric errors cannot be correctly
included in the model itself [31]. In [10] the non-geometric errors are included in the kinematic model and
taken into account when using the least squares method. The measured absolute accuracy before the cal-
ibration is then 2.82 mm with standard deviation 0.88 mm. Calibrating only the geometric errors gives an
absolute accuracy of 0.69 mm with standard deviation 0.34 mm. Calibrating the combined method gives 0.58
mm with standard deviation 0.21 mm.

In [3] a classical least square estimation technique is used to determine the parameters of the system.
Then using this model-based technique the polynomial coefficients are determined to approximate the po-
sition error as a function of the joint angles. The error in [3] can be reduced by as much as 57 %. With just the
least square estimation this reduction is around 35 %.

In [4] the geometric errors are modeled with a nonlinear least squares method and the non-geometric
errors are compensated for with neural networks. This method is used on a seven degrees of freedom articu-
lated robot. In the identification step a nonlinear least squares method is first used to calibrate the geometric
parameters. Then two methods are used for accounting for the non-geometric parameters.

In [31] itself a combination of model-based and modeless methods is used. For the geometric errors a
model-based model is used where a model using the D-H convention is set up. The identification of the geo-
metric errors is then done using the extended Kalman filter. The non-geometric errors are included using an
error compensation with an artificial neural network.

3.3. Trajectory optimization: dynamic calibration
From already early on (1985) methods have been developed for robot dynamic parameter identification. The
goal of the dynamic calibration is trajectory optimization (path accuracy). This means improving the accu-
racy of the robot during its motion. In the past improving the path accuracy has not been done much for two
reasons [2]: there were no measuring systems available to measure the accuracy of the path during the mo-
tion and, compared to the static pose accuracy, the path accuracy was of minor importance. The trajectory
planning can be done in the joint-variable space or in the Cartesian space [17]. The joint-variable space has
the advantages that the trajectory is planned in the controllable variables, the planning can be done in near
real time and the joint trajectories are easier to plan. The disadvantage is that it is difficult to determine the
locations of the links and the end-effector during the motion.

The same steps for dynamic calibration can be distinguished as for the static calibration [2]. The modeling
step now means setting up a dynamic model describing not only position, but also acceleration and velocity.
Some of the properties that are taken into account for dynamic calibration are elasticity and joint backlash [2].

3.4. Contact forces: force control and vibration reduction 11

According to [11] two different dynamic calibration procedures are mostly used: Newton-Euler and La-
grangian. The Newton-Euler procedure uses a recursive formulation of the Newton-Euler motion equations.
The Lagrangian procedure is based on the Lagrangian energy approach. The actual estimation of the dynamic
parameters is often done with the least-square algorithm.

In [18] three different optimization methods are used to find a trajectory that minimizes the condition
number. The three methods are a heuristic method, a quasi Newton method and a iterative gradient conju-
gate type of method by Powell (1964) and Minoux (1983). This last method gave the best results, although no
actual results were presented in [18].

In [9] two approaches are applied; the Newton-Euler approach and the energy theorem using the Hamil-
tonian. The actual identification is done using a least squares method. Based on the obtained model a feed-
forward model based control is applied in a complete and partial form.

In [2] an offline dynamic calibration is done by modelling in analogy of the static calibration and by ap-
plying an on-line correction of the desired values. The results, according to [2], was an improvement of the
path accuracy up to 85 %.

In most studies the formulations used are Euler-Lagrange and Newton-Euler. In some various subforms
are defined such as: Uicker’s Lagrange-Euler equations, Hollerbach’s Recursive-Lagrange equations, Luh’s
Newton-Euler equations, Lee’s generalized d’Alembert (G-D) equations. The structure of these formulations
may differ as they are obtained for various reasons and purposes, but describe the same dynamic behavior
[17].

3.4. Contact forces: force control and vibration reduction
All previous methods address the positional accuracy and repeatability (static calibration) and the trajectory
optimization (dynamic calibration). What has not been addressed is the problem of forces and vibrations
caused by the contact with the material (environment). As mentioned before this is caused, amongst other
things, by the low stiffness of the robot [39]. The basic variables involved in the force control methods are
position, velocity, acceleration and force.

3.4.1. Force control
In [39] the adoption of force control strategies is discussed for machining operations, specifically drilling.
Machining operations are operations that require a high power and a good precision. This could also be
operations which have force contact with the environment, such as polishing, milling and grinding. Here
passive and active force control are explained. Passive force control adjustments to the robot itself are made
with, for example, springs and dampers in the robot end effector. Active force control uses controller pa-
rameters to perform the robot tasks. This can be done in two ways [27]. The first is directly modifying the
robots controller parameters, which is a lot of work since the controller architecture is usually closed and the
required bandwidth for force control might not be available in the robot[27]. The second method is indirectly
using a special purpose force controlled auxiliary device attached to the robot arm.

[21] and [52] give an overview of the types of force control methods. For more details the sources from
[52] can be studied. This gives the following classical types of methods [21], [52]:

• Indirect force control:

– Methods using the relation between position and applied force:

¦ Stiffness control by position only (passive): end-effector has an extra mechanical system
composed of springs (or springs and dampers). Successful for specific tasks as handling pegs
and orientations [52].

¦ Stiffness control by force feedback correction (active): programmable spring.

– Methods using the relation between velocity and applied force:

12 3. Previous work and scientific publications

¦ Impedance control: the relationship between the velocity and the applied force [52]. These
methods vary based on how the measured signals are used. [27] defines it more specifically as
imposing a dynamic relation between the end-effector position error and the force of inter-
action with the environment (desired impedance). According to [27] this desired impedance
is usually chosen linear and of second order (as a mass-spring-damper system).

¦ Admittance control: inverse relation of the impedance control [52]. Concept: making mod-
ifications of the admittance of a position controlled robot to enable the execution of con-
strained tasks [52].

• Direct force control:

– Methods using direct position and applied force:

¦ Hybrid position/force control: combines force and torque information with positioning data,
based on Mason’s concept [52]. Position control and force control can be studied separately
and the control laws can be designed independently. A lot of research has been done to this
method.

¦ Hybrid impedance control: combines impedance control and hybrid position/force control
into one strategy [52].

– Methods using direct applied force feedback:

¦ Explicit force control: two categories, force-based and position-based. Position-based ex-
plicit control has the same structure as admittance control. For force-based explicit methods
the measured forced is used directly to form an force-error vector [52].

¦ Implicit force control: control of position based on the pre-definition of position for a desired
force [52].

[52] also mentions an extra category of advanced force control methods for accurate force tracking or perfect
task accomplishment when there are unknown parameters and/or uncertainties.

The impedance control used in [27] preserves the stability for contour following operation. It is expected
that there will always remain some force peak at the moment of impact, i.e. the moment the tool touches the
material. However the impedance control shows some natural robustness to the impact phase. There is still
a peak force, but the oscillations afterward quickly vanish which shows stability preservation [27].

An indirect active force control method is used in [39] by using a pre-programmed Machining Force Con-
trol Pressure package of ABB. The downside of using such pre-programmed functions is that it is basically a
black box of which the parameters have to be determined empirically. The force and torque need to be de-
scribed to use this method in [39]. The results of the displacement during the contact force are an improve-
ment. When starting with 20 N during the process and 10 N in the beginning a difference in displacements is
found when having first contact from 0.1 mm to 0.06 mm.

3.4.2. Vibration reduction
Because of the low stiffness in the joints vibration exists in the robot arm [12]. This vibration problem tends to
be nonlinear and time-varying. This means that a set of partial differential equations can be used to describe
the vibrations. Then the boundary conditions are formulated in such a way that the restrictions of the robot
manipulator and the contact forces are included in the model.

In the literature two approaches to solve this can be found: open-loop feedforward methods and closed-
loop feedback methods [12]. The closed-loop methods have better performance, but increase the complexity
of the system and are computationally more expensive. The open-loop methods do not have these draw-
backs, but are less robust against disturbances and parameter variations [12].

in [12] an extended version of the input shaping technique (IST) is applied. The basic idea of this method
is to calculate a response function that exactly corrects the displacement vibrations. This technique was first
used in 1990 by Singer and Seering. Since then more extensions have been made to handle more complex
non-linear systems.

4
Research question

In this chapter a precise description of the research question and solution method is given. This takes into
account the work already done in optimizing robot manipulators (see chapter 3).

4.1. The phenomenon
As mentioned before, the robot arm at hand is used for polishing moulds used for optic instruments. This
means that the polishing must give a very accurate result. There are however some situations in which the
robot cannot keep the polishing brush exactly on the desired position. In these situations the polishing brush
can tilt and precess and continues to jump over the material. This phenomenon is not always happening,
but specifically when the polishing brush is moved in a material shaped as a tube. This indicates that some
external forces on the polishing brush are causing this. The tool keeps vibrating and precessing from side to
side when this starts. This can be caused by two things: a continuing precessing due to new impulses or a
resonance induced by the right forces. Stated differently: is the reason for the jumping movement an impulse
or a certain vibrational frequency that causes resonance? Another explanation could be that the vibration is
caused by the controllers of the robot itself. The robot arm positions itself perpendicular to the material in
the middle of the outer moving circle. Then the polishing brush makes a circular movement with a radius
of maximum 3 mm. This means the spindle or rod does not have to be perpendicular to the material it is
touching. This means that when the robot controllers notice an irregularity to correct, it is only of the inner
center of the movement circle and not of the correct position. This would have to happen often enough to
cause an effect. This situation is less likely, since measurements of the deviations by the robot are only done
at the joints. This would mean that the joints would be moving or vibrating the same way in their degrees
of freedom. The observed movement of precessing and tilting however does not seem to work through the
entire robot, but seems to be localized to the end effector part with the tool.

The general question for this problem is: what is exactly causing this and can this be corrected?

4.2. Possible modeling techniques
The first big question for choosing a modeling technique is: is it necessary to take the entire robot arm into
account or only a portion of the system. This depends not only on the problem to be solved, but also on the
information available.

Is it expected that the entire structure is necessary for solving this problem? The answer to this question
is actually no. Due to the air bearing added in the tool head, an extra flexibility has been added. In order to
be able to correct displacements the air bearing must give extra flexibility. A reasonable explanation of the
phenomenon is that the forces of the contact and impact feed the tool movement to tilt in the air bearing.
This would mean that the flexibility in the joints might not influence this greatly. Combining this with the
discussing in the last section, it seems reasonable to start by assuming the largest contribution to this prob-
lem is localized in the end-effector with the rotating tool. This is also convenient since the Mitsubishi robot
has a closed structure, meaning many parameters are not known. For these reasons the general static and
dynamic calibration will not be used.

13

14 4. Research question

The first step is then to look at the part of the robot manipulator that exists out of the airbearing, holder
and tool head. This eliminates any geometric information needed about the robot arm itself! Then the ques-
tion remains how to model this. Since the model exists out of a spring system combined with a rotating
element, two modeling options seem most promising.

The first option is defining this as a rotating beam system in which the influence of the air bearing and
contact forces are included as boundary conditions. This system is then integrated over the length of the tool.
The advantage of this method is that any resonance can be described in detail. The disadvantages are that the
specific geometry of the tool head and areas of contact are not included and that these models can become
very complicated.

The second option would be to start from the tool head. By assuming that there is some force or impulse
that is causing the tilting or precessing and using this force and impulse in an extended model. The tool
head can first be seen as a rotating disk. Here a rigid body can be defined with Euler’s equations of rotational
movement. The effect of tilting and precessing is then similar to that of a gyroscope. Then to include the
airbearing and torsional stiffness a second equation module can be added. It is expected that the impulses
and the forces will cause motion in the extended module of the airbearing and spindle. The advantage of
this method is the relative simplicity of the method. The resulting system can still be complicated, but the
essential method is more straightforward.

When the model is actually working and able to describe the phenomenon a solution must be found.
This can still be done in a passive or active way. First the computer model can indicate what can actually
solve this: can some mechanical part be added or is some type of controller necessary? If the cause of the
tilting and precessing is indeed local to the tool head and air bearing, adding a controller to the entire robot
might not work sufficient. This would have to be a controller defined outside the existing controller and every
calculation the found adjustment has to go through the existing controller and still has to have the correct
result. This also means that the adjustments that can be made are dependent on the calculation frequency of
the existing controller. For this reason some local adjustment (passive or active) would be best.

4.3. Research question
To summarize the research question is:

What is causing the jumping of the polishing tool in specific situations on non-flat surfaces and how can this
be prevented?

This is done by first assuming this is mainly caused by flexibility in the end-effector. Both methods discussed
in section 4.2 have their merits, but based on the observations and discussions the second method is used.
For this model Euler’s rotational equation of motion is used for rigid bodies. The model actually seems similar
to that of a gyroscope. This information is used to formulate the model. For the airbearing and spindle model
a relative standard spring-damper-mass system can be derived.

If the simulations are evaluated and validated with the situation a theoretical solution in some feedback
law can be made of which the actual applicability must be studied. This would be the active approach of
solving the problem. The passive approach can also be used by researching possible mechanical adjustments
on the end-effector.

5
Mathematical background

5.1. Spring-mass-damper systems
There are two types of springs: translational springs and rotational springs [46]. Translational springs are
springs with no rotating object on both sides and forces acting on one or both sides of the spring. When a
linear spring is assumed, the translational stiffness or spring constant kL is constant. The general formula for
the force is then

Fk = kL x, (5.1)

where Fk is the spring force and x the relative displacement. Normally the spring is assumed to have a negli-
gible mass. The rotational or torsional spring has stiffness kT and an external torque on one or both sides of
the spring is applied. It satisfies the following relation [46]

Tk = kT θ, (5.2)

where Tk is the torque applied and θ the relative angular displacement.

There are three types of well known damping [46]:

1. Viscous damping (fluid damping);

2. Coulomb damping (dry friction damping);

3. Structural damping (hysteresis damping).

With viscous damping two surfaces are separated by a liquid film. Due to a force the damping exists in op-
posite direction of the force and also depends on the fluid properties. The exact friction force is difficult to
describe, so most of the time a linear relationship is used for the damper. The magnitude can then be de-
scribed as

Fc = cv, (5.3)

where Fc is the damping force, c the damping coefficient and v the relative speed of the mass. When v > 0
this is positive damping, which helps to stabilize the system. If v < 0 the damping becomes self-excited
vibrations and adds energy into the system. This is called negative damping [46]. Again a difference can be
made between translational and rotational viscous dampers. The formulas are analogous with those of the
springs. For a translational viscous damper the equation assuming linear properties becomes

Fc = cv. (5.4)

For a rotational damper this becomes
Tc = cTω, (5.5)

where cT is the torsion viscous damping coefficient and ω is the relative angular velocity.

15

16 5. Mathematical background

Coulomb damping happens between two dry surfaces. If the relative velocity between the two surfaces
is zero the friction force is static. This static friction force can attain a maximum until sliding occurs. Then
this becomes kinetic friction force. In most situations the assumption is made that the kinetic friction force
is nearly constant [46].

Structural damping is the type of energy dissipation due to the stress and strain. Because of this stress
and strain an internal friction is present in the material [23]. Other types of damping are for example air
damping and displacement-squared damping [23]. In [23] all these 5 types are discussed and explanations of
the damping coefficients are given. Another method that is presented in this book is making an equivalent
damping coefficient to the linear viscous damping. This is done by introducing the dissipated energy per
cycle, ∆Ei for damping mechanism i . Then the equivalent viscous damping constant is

ceq =
∑n

i=1∆Ei

πωA2 , (5.6)

where ω is the frequency of the system and A is the amplitude of the solution of the system. Instead of using
the∆Ei it is sometimes convenient to assume a certain percentage of the systems energy is dissipating. Then
using n ∈ [0,1] as percentage the equivalent damping coefficient would become

ceq = n ∗Emax

πωA2 . (5.7)

The big advantage of such a simplified definition is that not all different types of damping need to be identi-
fied and less detailed information is needed.

These dampers and springs are part of a system of equations. If a single mass m is studied attached to a
wall of some kind with a spring and a damper and no external force, its movement can be described by [23]

mẍ + cẋ +kx = 0. (5.8)

The same can be done for a single rotating disc with a certain torsional stiffness, moment of inertia I and
damping effect. Then the movement can be described with [23]

I θ̈+ cθ̇+kθ = 0. (5.9)

5.2. State-Space representation
To work with systems and controls a state space representation of the problem is very useful. For this a
definition of state variables is needed. These form the smallest possible set of independent variables that
completely describe the state of a system [46]. The idea is that at a certain time these variables can describe
the system behavior. The independence means that the variables cannot be expressed as functions of each
other and the inputs. The state-variable equations are then formed by the time derivative of the state variables
as function of the state variables and inputs [46]. The final basic state-space representation of the system then
looks like

ẋ = Ax+Bu, (5.10)

y =C x+Du, (5.11)

where A is the state matrix, B the input matrix, C the output matrix and D the direct transmission matrix [46].
In a lot of situations the D = 0, since the input vector is not that interesting for the measurements. The x is
the state vector (another common notation is q) 1, u the input vector and y the output vector. The notation
ẋ is used for the time derivative of a variable or function. For other derivatives the notation d

dx or ∂
∂xi

is used.
An extended model system can be defined if there is a disturbance present in the system and if not only there
is an output vector y, but also an output that is relevant to the outside world z. This full system looks like [45]

ẋ = Ax+Bw w+Bu, (5.12)

z =Cz x+Dzw w+Dz u, (5.13)

y =C x+Dw w. (5.14)

(5.15)

Here w is an exogenous input. This means a disturbance or noise. With these type of systems the goal can be
to find a feedback controller to correct some type of unwanted behavior.

1For Cartesian coordinates x is used and for generalized coordinates q. Generalized coordinates can also be angles, line elements, etc.

5.3. System definition 17

5.2.1. Feedback controller
There are different types of feedback that can be used. The most basic state and output feedback methods
are the state feedback and output feedback. Two other methods are the dynamic compensator and the dis-
turbance rejection problem [34]. As stated before, a basic system with input x, output y and controller u looks
like

ẋ = Ax+Bu, (5.16)

y =C x. (5.17)

The state feedback controller is defined as u = Dc x such that

ẋ = (A+BDc)x, (5.18)

where Dc is chosen such that this closed loop system has the desired behavior. If the state is not available the
output can be used, i.e., u = Hy output feedback, such that

ẋ = (A+B HC)x. (5.19)

An extension of the state feedback is adding the possibility of influencing the system after the feedback, i.e.,

u = Dc x+Gxnew , (5.20)

where xnew is the new input. When there is an online dynamic system, a dynamic compensator can be used.
This uses a control law and an observer of the system. This method is relevant if it is possible to feed online in-
formation to the system. The last useful method is the disturbance rejection method. This aims at correcting
a system given by

ẋ = Ax+Bu+B1w, (5.21)

y =C x, (5.22)

z =C1x+D1w. (5.23)

Here w can be interpreted as the disturbance. The criteria described in [34] are however only valid in perfect
defined conditions. The idea behind this method is used to make an optimization method for these type of
problems [45]. First two types of norms are introduced; H2 and H∞ norms. Minimizing the H∞ norm means
that the peak values of the system are being minimized. Minimizing the H2 norm means minimizing the im-
pulse energy present in the system. Depending on the goal or focus of the wanted controller one of the norms
can be used.

The output feedback should be used if there is something known about measurements or information
that can be taken from the robot arm and end-effector.

5.3. System definition
In the definition of systems an important concept is the number of degrees of freedom. These are defined as
the number of independent generalized coordinates that specify the configuration of the system [46]. Another
definition is that the number of degrees of freedom equals the number of dependent generalized coordinates
n that specify the configuration of the system minus the number of independent equations of constraint m,
i.e.

#DOF = n −m. (5.24)

There are also different types of inputs that can be used for mechanical systems. The two general types
are generalized forces and generalized displacements [46]. The generalized forces are forces or moments
and generalized displacements can be displacement, velocity or acceleration in translational or rotational
direction.

The methods of deriving the system equations can differ based on the objective. The most common
methods are the force based Newton method and the energy based Hamiltonian and Lagrangian approaches.
Each of these approaches will be explained in this section.

18 5. Mathematical background

5.3.1. Newtonian mechanics
To start, the three laws of Newton of mechanics are [5]

1. A body remains at rest or in uniform motion unless acted upon by a force.

2. A body acted upon by a force moves in such a manner that the time rate of change of momentum equals
the force. In formula

F = Ṗ = mv̇ = ma, (5.25)

with P the momentum, m the mass, v velocity, F the force and a the acceleration.

3. If two bodies exert forces on each other, these forces are equal in magnitude and opposite in direction.
Or equivalent: action =− reaction.

Setting up a system with the second law of Newton gives for each body a differential equation in which all
forces acting upon the body are identified (gravity, friction, etc.). The coordinates that are used must be
Cartesian for using Newton’s laws. With more degrees of freedom and complex structures finding solutions to
the equations of motion following from Newtons laws gets more difficult [6]. Different modeling techniques
could better be used in these situations.

A related law to Newton’s second law is Euler’s law. This is used for rotational movements where moments
about a certain reference point O are summed. This law is generally given by [23]∑

MO = IOα, (5.26)

where MO are the moments around O, IO is the mass moment of inertia of the mass around O and α is the
angular acceleration vector.

5.3.2. Lagrangian
To obtain an equivalent system to that following from Newton’s laws is often done to get around some practi-
cal difficulties. One of the most used formulations is that of Lagrange. This gives for the Lagrangian function
L that this equals the difference between the kinetic energy K and potential energy V , or L = K −V . The
potential energy function is such that the force acting on each particle is determined by [5]

Fi =− ∂

∂qi
V (q1, · · · , qn). (5.27)

Then the system of equations of motion are given by [14]

d

d t

(
∂L

∂q̇

)
− ∂L

∂q
= Fg , (5.28)

where Fg is a vector of generalized forces acting on the system. Since the potential energy is only a function
of the generalized coordinates and not its derivatives, it is possible to rewrite this equation to

d

d t

(
∂K

∂q̇

)
− ∂

∂q
(K −V) = Fg . (5.29)

The kinetic energy is equal to

K = 1

2
mv2 = 1

2
mq̇2 (5.30)

or some sort of variation or sums of these terms with more complicated systems. This can be generally de-
scribed as

K (q, q̇) = 1

2
q̇T G(q)q̇, (5.31)

where the n×n inertia (generalized mass) matrix G(q) is symmetric and positive definite for all q [14]. The po-
tential energy is for example due to gravitation or the energy stored in a spring. In the gravitational situation
the potential energy is given by Ug = mg∆h and for a one dimensional spring this becomes Us = 1

2 kx2.

5.3. System definition 19

5.3.3. Hamiltonian
Hamilton’s principle shows that the path that a dynamical system follows is that which minimizes the time
integral of the difference between the kinetic and potential energies [5]. In terms of the Lagrangian function
this means that the following action integral must be minimized [5]:∫ t2

t1

L (q, q̇, t)d t . (5.32)

In this principle the coordinates do not have to be Cartesian, but are generalized coordinates and velocities.
The link between the Euler-Lagrange equation and the Hamiltonian equations is described with defining

the generalized momenta for any Lagrangian as [14]

P = ∂L

∂q̇
, (5.33)

and defining the state vector to be (q1, · · · , qn ,P1, · · · ,Pn)T . Then the equation for the momentum using (5.31)
simply becomes

P =G(q)q̇. (5.34)

So the final Hamiltonian equations become

q̇ = ∂H

∂P
(x,P), (5.35)

Ṗ =−∂H

∂q
(q,P)+Fg . (5.36)

Here H is the Hamiltonian function and is defined as the total energy of the system.
With both the Hamiltonian and Lagrangian modeling it needs to be clear when which description is used.

For this two types of energies are introduced: energy and co-energies [25]. The relation between the two
depends on the energy and the complementary relation between the energy and co-energy. In the situation
of kinetic energy for example there is a linear relation between the velocity v and the generalized moment p.
Then using Newton’s second law, the kinetic energy of a mass is the integral of the work done by the force, i.e.
[25]

K (P) =
∫

Fdx =
∫

dP

d t
dx =

∫
dP

dx

d t
=

∫
vdP =

∫
P

m
dP = P2

2m
. (5.37)

The kinetic co-energy cannot be calculated from the work like this, but is defined as the integral of the mo-
mentum with respect to the velocity which is equivalent to [25]

K ∗(v) = Pv−K (P) = m

2
v2. (5.38)

Since the kinetic energy and kinetic co-energy are both quadratic in P and v respectively the two equal each
other. Thus it is not necessary to make a distinction between K (P) and K ∗(v). This is all because the velocity
and momentum are linearly related. For potential energy the same distinction can be made. Then the co-
potential energy is defined as the integral of the displacement with respect to the force, i.e.

V ∗(F) =
∫

xdF. (5.39)

This leads to not only a Lagrangian and Hamiltonian, but also the possibility to define a co-Lagrangian and
co-Hamiltonian.

In this new definition paradigm the Lagrangian is defined as

L = K ∗(v)−V (q), (5.40)

where K ∗(v) is the kinetic co-energy and V the potential energy. The co-Lagrangian is then defined as

L ∗ =V ∗(F)−K (P). (5.41)

Since the Hamiltonian is the total energy it is given by the sum of the potential and kinetic energy, i.e.

H(q,P) = K (P)+V (q) = 1

2
PT G−1(q)P+V (q). (5.42)

The co-Hamiltonian is then defined as

H∗(v,F) = K ∗(v)+V ∗(F) = 1

2
vT G(q)v+V ∗(F). (5.43)

20 5. Mathematical background

5.4. Numerical integration
To solve the second order differential equations that follow from the system definition a numerical method is
often used. This since in a lot of situations an analytic solution is not possible. The type of integration that is
interesting for these type of problems are numerical time integration methods with an initial condition. The
most simple integration methods are the one step Euler forward and backward methods. If we have a one
dimensional system of the form

ẋ = f (t , x), (5.44)

then for example the Euler forward method calculates the unknown function value x each time step with step
size h by [47]

xn+1 = xn +h f (tn , xn). (5.45)

There are a lot of methods, but using Matlab gives one of the most stable methods called the ode45 solver.
This solver uses the Runge-Kutta integration method of the 4th and 5th order and varies the step size (which
does not have to be uniform) until the two solutions are close enough to each other.

6
Polish brush model

The rotation of the tool is a very important factor in the movement of the polishing brush. In this chapter a
model is set up of the polishing brush. This is simplified to a round disc moving over a non-flat surface. The
model can be derived using Euler’s rotational equations. For the derivations of equations [22] is used.

6.1. Tool model
First assume that there is only a tool polishing some random surface. The tool is rotating with approximately
50 Hz. This is equal to an angular speed of 50 · 2π rad/s. When the polishing surface is exactly parallel to
the polishing tool there is no resultant momentum in the x- or y- direction to cause tilting and precessing
behavior. When the polishing surface has a free geometric form this does not have to be the case. The model
is a disc on a non-flat surface where it is assumed that the disc is in contact with the material only at two
points, see figure 6.1.

Figure 6.1: Disc model of the polishing tool.

This model can be categorized as a rigid body. A rigid body can be seen as a continuous collection of
particles moving together as a "rigid" unit [22]. This movement is a rotational movement described by a single
angular velocity and/or angular acceleration. The general movement of a rigid body can be a combination of
two types of movements: translation and rotation. The translation can be described using linear momentum
and the rotation by angular momentum. The angular momentum can be expressed as the product of a tensor
with the angular velocity [22].

This tensor is in this case a 3×3 matrix and is called the inertia matrix and is noted with I . Some properties
are that this matrix is real and symmetric, i.e.

I =
 Ixx −Ix y −Ixz

−Ix y Iy y −Iy z

−Ixz −Iy z Izz

 . (6.1)

The elements on the diagonal Ixx , Iy y , Izz , are the moments of inertia and are given by

Ii i =
∫

m
(j 2 +k2)dm, i , j ,k ∈ x, y, z. (6.2)

The other elements are called products of inertia and defined as

Ii j =
∫

m
i j dm, i , j ∈ x, y, z. (6.3)

21

22 6. Polish brush model

The value of the elements of this matrix is dependent on the chosen coordinate system. For simplicity it is
assumed that the center of rotation of the disc is located at the center of the disc (in height and width). This
means that the radius from point 1 and point 2 to the center of rotation is not the radius of the polishing brush

rdi sc but actually r =
√

r 2
di sc +

(
h
2

)2
, where h is the height of the polishing brush.

6.1.1. Coordinate systems
To be able to describe the equations of motion for this problem multiple coordinate systems have to be de-
fined. The choice for coordinate systems is not unique and is often done in such a fashion to simplify equa-
tions. This is done by finding this coordinate system such that the inertia matrix is very simple [22]. Then
this inertia matrix can be transformed to the "actual" coordinate frame with a transformation matrix. It is
important that the coordinate systems are made of principle axes. These form a basis for which the products
of inertia vanish [22]. Two other properties of principle axes are [22]

1. A principle axis of a rigid body is perpendicular to a plane of symmetry.

2. Principle axes are dependent on the choice of origin.

For this problem three principle coordinate systems are defined: the local, the reference and the world
coordinate systems. The local coordinate system is noted with

Xl = xi, Yl = yj, Zl = zk. (6.4)

The reference coordinate system as

X = X I, Y = Y J, Z = Z K. (6.5)

The world coordinate system as

XW = X W IW, YW = Y W JW, ZW = Z W KW. (6.6)

First of all the world coordinate system is the system in which the material that has to be polished is defined,
see figure 6.2. Then the reference coordinate system is a coordinate system that is defined on the contact

Figure 6.2: World coordinate system.

point in the direction of the movement of the tool, see figure 6.3. To describe the reference coordinate sys-
tem in terms of the world coordinate system an extra variable is introduced: the material elevation angle
ξ(X W ,Y W). This is a 3D function which returns the angle of the material in the direction of the movement.
Assuming the material can be located such that the Y-axis is parallel to XW . Then the reference coordinate
axes are given by

I =−cos(ξ)JW + sin(ξ)KW (6.7)

J = IW , (6.8)

K = sin(ξ)JW +cos(ξ)KW . (6.9)

The local coordinate system is then positioned on the disc. The z-axis is chosen to go vertically up from
the disc. Then the x- and y- axes are defined as

i = K×k, j = k× i. (6.10)

This means that the y-axis is parallel to the longitude movement vector and the x-axis goes into the paper.

6.2. Euler angles 23

Figure 6.3: Reference coordinate system.

6.2. Euler angles
To describe the tilting and precessing of the disc, variables are used different from x, y and z. The variables
that fit best in this situation are the Euler angles. These are θ,ψ and φ. φ describes the rotation of the tool,
where φ̇ = p = constant. θ is defined as the angle between k and K, where θ̇ describes the nutation. ψ

is defined as the angle between i and I, where ψ̇ describes the precession. In aircraft dynamics a different
terminology is used for the different movements. Then p describes the yaw movement and θ̇ the pitch move-
ment. ψ̇ is a bit more difficult, since in this model it is measured around the K-axis and not the i-axis. This
rotation around the i-axis is rolling. So ψ̇ is a combination of rolling and yawing. The component rolling is
then ψ̇sin(θ).

6.2.1. Using three Euler angles
With introducing these angles the local coordinate system can be described in terms of the reference coordi-
nate system:

i = cos(ψ)I+ sin(ψ)J (6.11)

k = sin(θ)I+cos(θ)K. (6.12)

The Euler angles can now be described as vector angular velocities;

1. p = φ̇k = pk, p > 0.

2. θ̇ = θ̇i.

3. ψ̇= ψ̇K = ψ̇(sin(θ)j+cos(θ)k).

For the last angle K is written in terms of the local coordinate system. Then the absolute motion of the spin
axis can be denoted as

Ω= ψ̇+ θ̇ = θ̇i+ ψ̇sin(θ)j+ ψ̇cos(θ)k (6.13)

=Ωx i+Ωy j+Ωz k. (6.14)

The total angular velocity can be described as

ω=Ω+p (6.15)

=Ωx i+Ωy j+ (Ωz +p)k (6.16)

=ωx i+ωy j+ωz k. (6.17)

6.2.2. Using two Euler angles
A question one may ask is why is a variable component necessary around the k-axis, while it is already known
that the rotation of the tool is the constant p. If instead of the above discussed Euler angles ψ is taken as the
rotation around the j-axis this would give

1. p = φ̇k = pk, p > 0 constant.

2. θ̇ = θ̇i.

3. ψ̇= ψ̇j.

ThenΩy = ψ̇, ωy = ψ̇,Ωz = 0 and ωz = p in the above equations.
This would simplify the equations greatly in the next models. The question remains if it has any physical

influence on the model.

24 6. Polish brush model

6.3. Equations and assumptions
The equations of motion for a rigid body are dependent on the angular momentum H. This is given by the
cross-product of the radius r = xi+ yj+ zk and the momentum P = mv, i.e.

H = r×mv. (6.18)

Taking the time derivative of this equation yields

dH

d t
= ṙ×mv+ r×mv̇ = r×mv̇, (6.19)

since ṙ and v are parallel. Then remember Newton’s second law
∑

i Fi = ma = mv̇. This changes the right hand
side to

dH

d t
= r×∑

i
Fi =

∑
i

r×Fi , (6.20)

which is exactly the definition of the momentum due to forces, so the equation of motion becomes

dH

d t
=∑

i
Mi . (6.21)

Continuing with deriving an exact equation, H must be studied. The definition was H = r×mv. The velocity
can be written in terms of the angular velocity ω=ωx i+ωy j+ωz k by v =ω× r. This gives

H = mr× (ω× r) = m(||r||2ω− (r ·ω)r). (6.22)

This last equality follows from the fact that

A× (B ×C) = (A ·C)B − (A ·B)C . (6.23)

Expanding equation (6.22) in all separate terms gives the possibility for the following notation

H = Iω, (6.24)

where I is defined as equation (6.1). Then using this form of H in the equation of motion gives

∑
i

Mi = dIω

d t
=ω× Iω+ d

d t

∣∣∣∣
r el

(Iω) =ω× Iω+ Iα, (6.25)

where α is the angular acceleration. This equation is known as Euler’s equation.
The equalities are possible since:

1. Looking at the time derivative of a vector A:

dA

d t
= (Ȧx i+ Ȧy j+ Ȧz k)+ (Ax i̇+ Ay j̇+ Az k̇) (6.26)

The first term is the change observed in the rotating system, so ignoring the actual rotation. This can
be defined as the relative time derivative Ȧr el . Another notation for this relative time derivative due to
some angular velocity is

Ȧr el =
d

d t

∣∣∣∣
ω

A. (6.27)

Then the derivatives of basis vectors describe the rotation of the system. This means that the rotation
can be described as the change in the unit vector due to the angular velocity ω. So then

i̇ =ω× i, j̇ =ω× j k̇ =ω×k. (6.28)

This then leads to
(Ax i̇+ Ay j̇+ Az k̇) =ω× (Ax i+ Ay j+ Az k) =ω×A. (6.29)

So
dA

d t
=ω×A+ Ȧr el . (6.30)

6.3. Equations and assumptions 25

2. If instead of A the angular velocity ω is used, the time derivative becomes

ω̇=ω×ω+ ω̇r el . (6.31)

Then since ω×ω= 0 this becomes ω̇= ω̇r el or α=αr el .

3. The time derivative relative to ω is given by

d

d t

∣∣∣∣
r el

(Iω) = İr elω+ Iω̇r el . (6.32)

Then İr el = 0, since the relative system rotates with the body.

So now the general equation of motion is derived. The question remains on how the angular velocity,
inertia matrix and angular acceleration are defined. In the local coordinate system (i, j,k) the inertia matrix is
generic. This means it is very simple due to the symmetry of the polishing brush. The products of inertia are
all equal to zero and the moments of inertia in the x and y direction are the same since the disc is symmetric
here. For simplicity it is assumed the polishing brush is a disc with a height h and a radius r . Then the values
of the moments of inertia are generally known [16]

I =
 1

12 m(3r 2 +h2) 0 0
0 1

12 m(3r 2 +h2) 0
0 0 1

2 mr 2

 . (6.33)

Now using in Euler’s equation (6.25) the fact that the total angular velocity is given by ω=Ω+p

∑
i

Mi = (Ω× Iω+p× Iω)+ I

(
d

d t

∣∣∣∣
Ω

ω+Ω×ω
)

, (6.34)

where is used that (see equation (6.30)

d

d t
ω= d

d t

∣∣∣∣
Ω

ω+Ω×ω. (6.35)

Then expanding more

p× Iω= p× I(Ω+p) (6.36)

= p× IΩ+p× Ip, (6.37)

here the last term vanishes since p is defined along the principle axis k and I is a diagonal matrix defined such
that the two terms are parallel to each other. The grouping of the I and Ω is also possible because of these
reasons. Then

I(Ω×ω) = I(Ω×Ω)+ I(Ω×p) (6.38)

= I(Ω×p) (6.39)

= (IΩ)×p =−p× IΩ. (6.40)

Combining equations (6.36) and (6.38) in the equation of motion then gives

∑
i

Mi =Ω× Iω+ I
d

d t

∣∣∣∣
Ω

ω=Ω× Iω+ Iαr el . (6.41)

6.3.1. Three Euler angles
Now using the definitions (6.13) and (6.15) gives for αr el = Ω̇+ ṗk;

αr el = θ̈i+ (ψ̈sin(θ)+ ψ̇θ̇cos(θ))j+ d

d t
(ψ̇cos(θ)+p)k. (6.42)

Now for the cross productΩ× Iω the same can be done

Ω× Iω= (IzzΩy (Ωz +p)− Iy yΩyΩz)i− (IzzΩx (Ωz +p)− IxxΩxΩz)j, (6.43)

26 6. Polish brush model

whereΩx ,Ωy ,Ωz are given in (6.13). Note that Ixx = Iy y = IO due to symmetry.
Then the final equations become∑

i
Mi =

(
IO(θ̈− ψ̇2 sin(θ)cos(θ))+ Izzψ̇sin(θ)ωz

)
i (6.44)

+ (
IO(ψ̈sin(θ)+2ψ̇θ̇cos(θ))− Izz θ̇ωz

)
j (6.45)

+ Izzω̇z k. (6.46)

In this equation ωz is not expanded. This is motivated by the assumption that in this system no moment will
arise in the z-direction and ω̇z only appears in this direction.

6.3.2. Two Euler angles
Now doing the same for the definition where p is the rotation around the k-axis, θ̇ the rotation around the
i-axis and ψ̇ the rotation around the j-axis gives for αr el = Ω̇+ ṗk;

αr el = θ̈i+ ψ̈j+ ṗk. (6.47)

Since the rotation around the k-axis is assumed known and constant, ṗ = 0. Now for the cross productΩ× Iω
the same can be done

Ω× Iω= (IzzΩy (Ωz +p)− Iy yΩyΩz)i− (IzzΩx (Ωz +p)− IxxΩxΩz)j. (6.48)

Note that Ixx = Iy y = IO due to symmetry.
Then the final equations become ∑

i
Mi =

(
IO θ̈+ Izzψ̇p

)
i (6.49)

+ (
IOψ̈− Izz θ̇p

)
j (6.50)

+0k. (6.51)

These equations are a lot simpler than (6.44).

6.4. State-space representation
To be able to simulate the model a state-space representation is needed of the form

q̇ = f(q), (6.52)

where f(q) can be a nonlinear function. First of all: there are three axes on which equations can be formed.
Assume the following notation for the moments in each direction:

M x =∑
i

M x
i , M y =∑

i
M y

i , M z =∑
i

M z
i . (6.53)

Then for the three angles model the state variables used are q = (θ, θ̇,ψ,ψ̇,ωz)T . Then rewriting (6.44) gives

q̇1 = q2 (6.54)

q̇2 = M x

IO
+q2

4 sin(q1)cos(q1)− Izz

IO
q4 sin(q1)q5 (6.55)

q̇3 = q4 (6.56)

q̇4 = M y

IO sin(q1)
−2q4q2

cos(q1)

sin(q1)
+ Izz q2q5

IO sin(q1)
(6.57)

q̇5 = M z

Izz
(6.58)

For the two angles model only four equations are needed:

6.4. State-space representation 27

q̇1 = q2 (6.59)

q̇2 = M x

IO
− Izz

IO
q4p (6.60)

q̇3 = q4 (6.61)

q̇4 = M y

IO
+ Izz

IO
q2p. (6.62)

7
Forces and influences

Due to the free geometric forms of the material contact forces can arise on the polishing tool which cause
non-zero moments on the system from the last section. The longitudinal movement of the tool is assumed to
have a speed of v . There is also a polishing force applied on the material in the −z-direction from the robot
arm. The value of this polishing force is between 10 and 15 Newton. There can be different influences on the
polishing disc that create moments in the system. In this chapter different possible causes are discussed to
describe this behavior.

Because there is no full contact with the material in the assumed situation, resultant forces can arise in
the two outer contact points. The question is what this longitude movement means for the resultant force.
The only reason an object moves is that the force with which the tool is moving exceeds a certain limit. First
an introduction on friction force and the angle of friction must be given.

7.1. Angle of kinetic friction
There are two types of friction; static and kinetic friction [20]. They are both caused by the roughness of
surfaces. Static friction can be defined as the friction that causes motion of solid ground. Kinetic friction is
related to the movement of bodies in contact and results in loss of energy. If the direction of the resultant force
due to the normal force and the friction force exceeds a certain angleσmovement will be possible [20]. This is
showed by Coulomb. This angle is called the angle of friction. He showed that there is a good approximation
between the friction force Fr and the movement:

1. The friction force Fr is proportional to the normal force with proportionality factor µ.

2. The friction force Fr is oriented in the opposite direction of the velocity vector.

The resulting law of friction then is [20]

Fr =µFN , (7.1)

where FN is the normal force. The proportionality factorµ is the coefficient of kinetic friction. Mathematically
the vector force can be noted as

Fr =−µFn
v

‖v‖ . (7.2)

The angle of friction and the coefficient of kinetic friction are related as

tan(σ) =µ. (7.3)

Theσ can be graphically interpreted as a cone around the axis of the normal force with angle ofσ. The actual
value of the coefficient of kinetic friction is still difficult to determine. This value is dependent on the material
properties of both the polishing brush and the material. This is a value that has to be approximated in some
way.

29

30 7. Forces and influences

7.2. Calculating the resultant forces
Even without having the exact magnitude of the friction forces, with help of the last section, they can be ap-
proximated with the angle of friction. Since there is a translational movement due to the robot arm, the angle
of friction must be reached to allow movement. This means the resultant force that reacts on the movement
and the polishing pressure follows the angle σ. This resultant force is a combination of the normal force and
the friction force and its component in the k-direction can cause a moment in the i-direction (right-hand
rule).

Figure 7.1: Polishing tool head from above with k-axis coming out of the paper.

7.2.1. Resultant forces in contact points
First start with the situation where the only contact points are in the direction of the movement. These two
points are C1 and C2, see figure 7.1. The two other points C3 and C4 float above the material. To simplify
maters the disc in figure 6.1 is now assumed as one unit with one width. As discussed in the introduction of
this section there is in both points C1 and C2 a resultant force that has an angle ofσwith the normal direction
to the material, see figure 7.2.

Figure 7.2: Polishing tool head sideways with all forces on it (direction of movement to the right).

Since the movement causes friction force opposite to the movement, the resultant force is located to the
far left of the friction cone for both points. There must be a balance of forces so with the known angles
and known polishing force Fp the problem in figure 7.3 can be solved. First the angles α and β must be
determined. It was assumed that the angle of the material elevation, ξ, is known at each point. Assume that
the direction of the translational movement corresponds to the minus and plus signs of ξ.

Then first α, the angle between Fp and F C 2
r es . The angle between the normal axis of the material and the

horizontal axis is 1
2π−ξ(C2). This makes the angle between the horizontal and F C 2

r es equal to 1
2π−ξ(C2)+σ.

Then the horizontal, part of Fp and F C 2
r es form a triangle with a corner of 1

2π. So thenα= 1
2π−

(1
2π−ξ(C2)+σ)=

ξ(C2)−σ.
For β the same type of argument can be made. The angle between the horizontal and the material is

ξ(C1). Then with some basic geometry it can be proven that the angle between Fp and the normal axis from

7.2. Calculating the resultant forces 31

the material is ξ(C1). This means that β= ξ(C1)+σ.

Figure 7.3: Forces working on the polishing tool.

Then calculating the actual forces can be done by solving the following two equations:

F C 1
r es cos(β)+F C 2

r es cos(α) = Fp (7.4)

−F C 1
r es sin(β)+F C 2

r es sin(α) = 0. (7.5)

Solving this in part gives the next formulas

F C 2
r es =

Fp

cos(β)

(
sin(α)

sin(β)
+ cos(α)

cos(β)

)−1

(7.6)

F C 1
r es =

Fp

cos(β)
− cos(α)

cos(β)
F C 2

r es . (7.7)

Especially F C 2
r es can be simplified using standard trigonometric identities from Calculus. The resulting formu-

las are then

F C 2
r es = Fp

sin(β)

sin(α+β)
(7.8)

F C 1
r es =

Fp

cos(β)

(
1− cos(α)sin(β)

sin(α+β)

)
. (7.9)

For the actual moments, only the components that are perpendicular to the direction of r can contribute

to them. This means the angle between r =
√

r 2
di sc +

(
h
2

)2
and the j-axis must be calculated. This angle is

defined as η = tan−1
(

h
2rdi sc

)
. The component of the forces will cause a moment in the i-direction (following

the right-hand-rule), i.e.

M x = (
F C 1

r es cos(β+η)−F C 2
r es cos(α+η)

) · r. (7.10)

Figure 7.4: Polishing tool head sideways with all forces working on it (i-axis following disc to left).

7.2.2. Resultant forces in tilting points
When the polishing tool comes in contact with the material (see figure 7.4) a reaction exists at the extra point
of contact. For this derivation the extra point of contact is assumed to be C3 (for C4 it is all similar, but
mirrored). The forces (7.8) and (7.9) are still present, but are now balanced with F C 3

r es , see figure 7.5. The

32 7. Forces and influences

direction of F C 3
r es is to the far left of the friction cone. As the disc hits the material the relative movement is in

the direction of the material, so the counter friction will have the opposite direction. The same way as before
the angles must be determined first. First focus on γ. γ is actually the component of ψ that rolls around the
j-axis and not the K-axis. The angle between the j-axis and the K-axis is 1

2π− θ. To get an equation for γ
consider sin(γ). In terms ofψ this becomes sin(γ) = sin(ψ)cos(1

2π−θ) = sin(ψ−ψ0)sin(θ). So an equation for
γ is

γ= sin−1 (
sin(ψ−ψ0)sin(θ)

)
, (7.11)

here ψ0 is the initial value ofψ. For δ the same as before can be done. In the picture no elevation is assumed,
but if there was, a simple addition of ξ(C3) is needed. In the picture the normal axis to the material is parallel
to the resultant forces of C1 and C2, so the general angle is δ= ξ(C3)+σ.

Figure 7.5: Force balance of the polishing tool .

Now calculating the actual forces is similar. F C 1
r es and F C 2

r es are the same except for the Fp term which is
now replaced with

F∗
p = Fp cos(γ)−F C 3

r es cos(δ). (7.12)

So the resulting forces for C1 and C2 are

F C 2
r es = F∗

p
sin(β)

sin(α+β)
(7.13)

F C 1
r es =

F∗
p

cos(β)

(
1− cos(α)sin(β)

sin(α+β)

)
. (7.14)

Then the resultant force for C3 and the force F∗
p satisfy

F∗
p +F C 3

r es cos(δ) = Fp cos(γ) (7.15)

F C 3
r es sin(δ) = Fp sin(γ). (7.16)

This leads to the following values

F C 3
r es = Fp

sin(γ)

sin(δ)
(7.17)

F∗
p = Fp cos(γ)−F C 3

r es cos(δ). (7.18)

Then this force causes only a moment in the j -direction due to the component in the k-direction. The mo-
ment it causes is in the negative direction. Since γ> 0, Fp > 0 and δ> 0 in this situation this means

M y =−F C 3
r es cos(δ+η) · r. (7.19)

In the situation C4 touches the material, γ< 0 and the angles are the same. If the assumption is made that
the angle of the material elevation is the same the forces have the same values. Now again the component
in the k-direction only contributes to the moment in the j-direction. In this situation the force component
leads to a moment in the positive direction, i.e.

M y = F C 4
r es cos(δ+η) · r =−F C 3

r es cos(δ+η) · r. (7.20)

7.3. Contact impulse 33

Here it is important to notice that for the calculation of F∗
p the absolute value is taken of F C 3

r es , otherwise wrong
forces are calculated.

Finally it is important to know when one or the other situation occurs. For this the initial height of the
center of rotation must be calculated. This can be approximated multiple ways by using the two angles.
If more information is known about the material better approximations can be made. Here the following
calculation is done:

∆h = nrdi sc sin(ξ(C3))+ (1−n)rdi sc sin(ξ(C1)), (7.21)

where n is a percentage that can be chosen realistically. The The actual height of C3 or C4 with respect to
the center of rotation can be calculated with h′ = r sin(γ). When γ < 0 and h′ < 0 this means the disc is
approaching the material at C4. Since it is a symmetric disc the situation that there is contact with the material
is when ∆h −|h′| ≤ 0.

7.2.3. Summary
To summarize the last section, the following resultant forces arise:

If ∆h −|h′| > 0 (no contact with C3 and C4):

F C 1
r es =

Fp

cos(β)

(
1− cos(α)sin(β)

sin(α+β)

)
(7.22)

F C 2
r es = Fp

sin(β)

sin(α+β)
(7.23)

F C 3
r es = 0. (7.24)

If ∆h −|h′| ≤ 0:

F C 1
r es =

F∗
p

cos(β)

(
1− cos(α)sin(β)

sin(α+β)

)
(7.25)

F C 2
r es = F∗

p
sin(β)

sin(α+β)
(7.26)

F C 3
r es = Fp

sin(γ)

sin(δ)
(7.27)

F∗
p = Fp cos(γ)−|F C 3

r es |cos(δ). (7.28)

The moments resulting from these forces are given by (using Fp or F∗
p when appropriate)

M x = (
F C 1

r es cos(β+η)−F C 2
r es cos(α+η)

) · r (7.29)

M y =−F C 3
r es cos(δ+η) · r (7.30)

M z = 0. (7.31)

The forces in the three directions are slightly different and given by (only the F∗
p can be replaced by Fp when

appropriate)

Fx = Fp sin(γ) (7.32)

Fy = 2F∗
p

sin(α)sin(β)

sin(α+β)
(7.33)

Fz = F∗
p

(∣∣∣∣sin(α)cos(β)

sin(α+β)

∣∣∣∣+ ∣∣∣∣cos(α)sin(β)

sin(α+β)

∣∣∣∣+ ∣∣∣∣sin(γ)cos(δ)

sin(δ)

∣∣∣∣) . (7.34)

Here for Fx = F C 3
r es · sin(δ), Fy = F C 1

r es sin(β)+F C 2
r es sin(α) and Fz = |F C 1

r es |cos(β)+|F C 2
r es |cos(α)+|F C 3

r es |cos(δ).

7.3. Contact impulse
Another option of influence can be an impact impulse or force. This means looking at the exact moment one
of the points comes in contact with the material. In a small time interval there will be an initial accelera-
tion and a crash with the material and a final acceleration after the crash. The force difference in the angle

34 7. Forces and influences

variables can be given by

∆Fi mpact = m∆α= m(α f −αi). (7.35)

The initial acceleration is calculated in the model, but about the final acceleration an assumption must be
made. Since the polishing brush is stopped by the material in its motion, there will be a moment in which
the acceleration is zero. If this is used, the moment added is only for the two angles in both the two and three
angle model

M =−
(

mθ̈r
mψ̈r

)
. (7.36)

In the θ angle this moment of crashing happens any time the polishing brush is not in equilibrium position
θ = θ0. This means that any time this happens a moment is existing in C1 or C2. In C1 this moment will be
negative and in C2 positive. The moments will happen when θ−θ0 6= 0. Since in the contact points there is
not a lot of moving room the assumption that θ̈ f = 0 seems quite realistic.

For ψ this moment might be adjusted for the three angle moment, since its movement is then not per-
pendicular to the material. The impact will happen when C3 or C4 will come in contact with the material (see
section 7.2.2). Then in C3 a negative moment will be added and in C4 a positive moment. This will happen
when |r sin(ψ−ψ0)| ≥∆h (see equation (7.21)). Only the assumption that φ̈ f = 0 may be too strict, since there
is enough room for the polishing brush to bounce back.

7.4. Damping effects
Stabilizing effects in simulation models can be made by adding damping. Damping is an influence that is
present in all real world physical systems[23]. Eventually vibrations decay and die out. Mathematical mod-
eling and physical observations give rise to a simple addition of a cq̇ term, where c is the viscous damping
coefficient. This type of damping is most often used. The problem remains where to identify the damping in
the model. The following options can be found:

1. Damping due to the friction between the polishing brush and the material with the liquid layer with
diamond particles.

2. Damping in the center of rotation. In reality a ball joint is present here which could cause friction and
damping in the movement of ψ and θ.

The damping effects can also be added to the airbearing model presented in the next section. This would
mean that the choice has to be made if the damping is present in the airbearing or in the rod stiffness or if
there is a separate damping at the end of the polishing tool. Furthermore the damping coefficient must be
determined. This is for a large part dependent on the results of the system. When deviations are physically
not possible because they explode the damping coefficient should be increased.

7.5. Impact and impact duration
Following the derivations made in [44] a description of the impact and approximation of the impact duration
can be made. Impact is defined here as a sudden contact of a moving body with a motionless barrier or with
a body with a much larger size. An impact exists out of 3 phases: the loading phase, the rest moment and the
unloading phase. The loading phase begins at the moment of the first impact and in this phase a deforma-
tion takes place as result of inertia forces. At the end of this phase the entire object has zero velocity. Then the
unloading phase starts in which the body returns to its own shape and regains speed in the opposite direction.

The situation of C3 and C4 touching the material with a certain velocity is a simplified situation described
as a body impact against a no-slip surface [44]. Using the preservation principle the following impulse and
final angular velocity can be defined:

α f =
mv0ex

I0
, (7.37)

Pi mpul se = mv0, (7.38)

7.6. Discussion on realistic influences 35

where v0 is the initial normal velocity component, ex the distance between the center of rotation and the
location of impact. The initial normal velocity of the movement is the angular velocity times the radius r .
The impulse has as unit [N s]. To really calculate the magnitude of the force, the duration of impact must be
approximated. [44] also has approximations for this value. First of all it is assumed that when the polishing
disc comes in contact with the material its behavior can be described as a linear spring. Then the duration of
impact is one fourth of the entire period, since it is only a quarter of a total movement. The natural period is
then defined as

τ= 2π

√
m

kp
, (7.39)

where kp is some assumed spring stiffness. Then the duration of impact is

ti m = τ

4
= π

2

√
m

kp
. (7.40)

For C1 and C2 it is only an impact if the initial velocity θ̇ is not zero and the angle θ is not equal to θ0. For C3

and C4 a different approximation must be made. Since the contact is modeled as a linear spring it is possible
to derive its maximum deflection, dmax . This can be done by writing a simple energy balance of a mass-spring
system. This would give

Eki n = Epot (7.41)

1

2
mv2 = 1

2
d 2

max kp . (7.42)

This then leads to the maximum deflection

dmax =
√

m

kp
v, (7.43)

where v is the linear velocity. When C3 and C4 are a distance dmax from the material the theoretical linear
spring is activated.

7.6. Discussion on realistic influences
The resultant forces in C3 and C4 are not valid for this specific robot arm, since the spindle or rod is actually
positioned orthogonal to the reference point for the robot and not moving with the polishing disc. The damp-
ing is a difficult behavior to describe, since this is very specific to the material properties. The best description
found is the impact theory last described. The damping can then be used to decrease growing frequencies.

8
Airbearing model

The next step to get a realistic model is to include a big influence on the amount of movement possible of
the tool: the airbearing. As explained before, the airbearing is a tube which contains air between the tool rod
inside and the outside tube. This air behaves as springs on the tool rod. A way to model this is to divide the
airbearing in a horizontal component and a vertical component. This gives different spring constants and
adjusted masses.

8.1. Adding translational vibrations
For small horizontal vibrations it can be assumed that the movement is translational. So it can be modeled as
a simple spring-masses system, see figure 8.1. The bending stiffness of the rod, kx , is also taken into account.
This can have a different value dependent on the material of the rod. A general formula used for bending
stiffness is [23]

kx = 3N I

l 3 , (8.1)

where l is the length of the rod, N the elastic or Young’s modulus in N /m2, I the cross-sectional moment of
inertia in m4. For a circular rod this cross-sectional moment of inertia or, short, area moment is given by [32]

I A = π

4
r 4

r od . (8.2)

Then the translational stiffness of the airbearing, kt , in N /m, is again a specification dependent on the type
of airbearing. The only question now is what the horizontal component of the mass of the airbearing is, mx .

Figure 8.1: Horizontal model of the airbearing and tool head as masses and springs.

Then to model figure 8.1 some notes must be made. Since the resultant forces in x- and y-directions are
different, both directions get two equations. So using basic modeling techniques for these systems gives [23]

mx ẍm =−kt xm +kx (x −xm), (8.3)

mt ẍ =−kx (x −xm)−Fx , (8.4)

mx ÿm =−kt ym +kx (y − ym), (8.5)

mt ÿ =−kx (y − ym)−Fy . (8.6)

The minus signs for the resultant forces in x- and y-direction are based on the assumption that C 2 and C 3
are located left of the model.

37

38 8. Airbearing model

8.1.1. Reduced mass in horizontal direction
In the x-directional movement there is an arm between the center of rotation (in the middle of the airbearing)
and the movement of the polishing brush. For this reason the actual mass of the airbearing cannot be used for
this reduced model. The mass relative to the inertia of the movement must be used. This can be calculated
the following way: assume that the movement xt is an approximation of the movement from the center of
rotation in the airbearing, ϕb . This means that xt = rbϕb and ẋ = rbϕ̇b . Then in the model xt = x + xm , so

the total mass of the movement is m = mx +mt . The total radius of the movement is given by rb = hbear i ng

2 +
lr od + hdi sc

2 . Now since this rotational movement from the airbearing is assumed to be so small that it can be
approximated by a translational movement, the kinetic energy of the rotational movement should equal the
kinetic energy of the translational movement to still have conservation of energy. This means that

1

2
mẋ2

t =
1

2
Ibear i ng ϕ̇

2
b . (8.7)

Then since ẋ = rbϕ̇b ,

1

2
mr 2

b ϕ̇
2
b = 1

2
Ibear i ng ϕ̇

2
b , (8.8)

and thus

m = Ibear i ng

r 2
b

. (8.9)

So the reduced mass in the x and y-direction is mx = Ibear i ng

r 2
b

−mt . Note: most of the time the mass of the

rod is neglected in the model (since its mass is relatively small), but if it was included in the model its mass
should also be subtracted from mx . The next problem is how to describe the moment of inertia. Since the
moment of inertia is a summation or integration about mass it is possible to divide the moment of inertia in
three different standard components of which the moments are known:

1. A rectangle with rotational axis in the center for the airbearing.

Ib1 =
mbear i ng

12

(
h2

bear i ng +b2
bear i ng

)
, (8.10)

where b is the symbol used for width.

2. A rod with rotation from a distance
hbear i ng

2 from the edge of the rod.

Ir od = mr od

(
l 2

r od

12
+

h2
bear i ng

4

)
. (8.11)

3. A rectangle rotation with a distance
hbear i ng

2 + lr od from the center of rotation from the middle of the
edge.

Idi sc = mt

(
4

12

h2
bear i ng

4
+4r 2

di sc +
(

hbear i ng

2
+ lr od

)2
)

. (8.12)

Then the total moment of inertia from the airbearing is given by

Ibear i ng = Ib1 + Idi sc + Ir od . (8.13)

8.2. Using total movement for airbearing spring constant
The spring constant for the airbearing can be seen as a combination of the transverse and torsional move-
ment in the airbearing. The spring constants for both movements are given in the design list of the airbearing
and are presented in table 9.1. If a certain equilibrium situation from the center of the airbearing is consid-
ered (acceleration is zero) given by figure 8.2 the following two equations of motion are valid

F +ktr xt = 0 (8.14)

F L+krρ = 0. (8.15)

8.3. Adding vertical vibrations 39

Here xtot = x +ρL = xm + x. If the beam stiffness in the rod is neglected for the moment, the equation of
motion from the center of rotation is

F +kt xtot = 0. (8.16)

This means that to calculate the total spring constant − F
xtot

is needed. Combining the two equations of mo-
tion by multiplying by kr and ktr L and adding them gives

F (kr +ktr L2)+kr ktr (x +ρL) = 0. (8.17)

This leads to

kt =− F

xtot
= ktr kr

kr +ktr L2 . (8.18)

Figure 8.2: Total movement within the airbearing due to force on the polishing tool.

8.3. Adding vertical vibrations
Figure 8.3 shows the mass and spring model for the vertical model of the airbearing and tool. Here only one
spring is present for which the following formula exists for the spring constant kz [23]

kz = N A

l
, (8.19)

where l is again the length of the rod, N the same Young’s modulus and A the area of an intersection of the
rod given by A =πr 2

r od .
The mass in the vertical direction mz is assumed to equal the actual mass of the airbearing. The forces

here are the polishing force Fp and all resultant forces with components in the z-direction (impact and nor-
mal forces). As it will turn out however with the simulations, something is needed in the model to hold the
polishing tool in contact with the material. Physically speaking this is the holder in the robot which makes
sure the polishing tool with spindle stays in the robot. The behavior of this holder can also be modeled as a
very stiff spring, which describes the very tiny space the tool has in the holder in the z-direction which also
takes the impact forces due to the polishing disc. The spring constant kA should be very large. This leads to
the following two equations

mz z̈m =−kz (zm − z)−kA zm −Fp , (8.20)

mt z̈ = kz (zm − z)+Fz . (8.21)

40 8. Airbearing model

Figure 8.3: Vertical model of the airbearing and tool head as masses and springs.

8.4. Adding damping
Using the different types of damping can be very difficult. In this situation at least three types of damping
can be easily identified. The airbearing is subject to air damping or velocity-squared damping. The spindle
or rod that is bending is subject to structural damping and the friction over the material causes Coulomb
damping. Following [23] a detailed approximation can be made of the damping coefficients, but another way
is to assume a certain percentage n of the total energy as dissipation (see section 5.1). The formula from this
section was

ceq = n ·Emax

πωA2 . (8.22)

Adding two dampers next to each spring in the x and y model means that two damping coefficients need
to be calculated. For a spring system the total energy is defined as a summation of the kinetic and potential
energy. In this situation this means that if the spring is fully stretched the potential energy is maximum and
the kinetic energy is zero. This means that

ceq = n · (1
2 k A2

)
πωA2 = 1

2

n ·k

πω
. (8.23)

This means that cA is calculated using kt andωA and cD using kx andωD . Adding the dampers to the systems
equations gives for x (same for y)

mx ẍm =−kt xm +kx (x −xm)− cA ẋm + cD (ẋ − ẋm) , (8.24)

mt ẍ =−kx (x −xm)− cD (ẋ − ẋm)−Fx . (8.25)

For the z-direction the same can be done by adding damping, cR , due to internal damping. The equations
for z become

mz z̈m =−kz (zm − z)−kA zm − cR (żm − ż)−Fp , (8.26)

mt z̈ = kz (zm − z)+ cR (żm − ż)+Fz . (8.27)

8.5. Natural frequencies and damping ratios
The horizontal and vertical systems vibrate with some natural frequency that can be calculated. If this natural
frequency is very high it means that it might be wise to exclude this effect in the model. A very high natural
frequency gives small, but a lot of, displacements. Since they might be too small to be of real importance for

8.5. Natural frequencies and damping ratios 41

the model it is wise to calculate the frequencies beforehand. There are three different systems the x-, y- and
z- system. To calculate the natural frequency a harmonic solution is assumed to the system of the form

xm = A1 sin(ωt +υ)+B 1 cos(ωt +υ), (8.28)

x = A2 sin(ωt +υ)+B 2 cos(ωt +υ). (8.29)

For y and z the same form is assumed. The following homogeneous system is used

mx ẍm =−kt xm +kx (x −xm), (8.30)

mt ẍ =−kx (x −xm). (8.31)

Using the assumed harmonic solution gives(−ω2mx +kt +kx −kx

−kx −mtω
2 +kx

)(
xm

x

)
=

(
0
0

)
(8.32)

Note: for y the exact same system applies due to symmetry and thus also the same natural frequency is
present. For the calculation of mx the mass of the rod is assumed to be zero.

Solving for the natural frequencies is equivalent to solving this system for eigenvalues. This means the
determinant of the matrix above must equal zero, i.e.,

(−ω2mx +kt +kx)(−mtω
2 +kx)−k2

x = 0 (8.33)

mt mxω
4 −mtω

2(kt +kx)−mxω
2kx +kx (kt +kx)−k2

x = 0 (8.34)

mt mxω
4 −ω2(mt kt +mt kx +mx kx)+kx kt = 0. (8.35)

Solving this gives two positive solutions f x
1 = 2.0696 ·103 Hz = 2.0696 kHz and f x

2 = 194.0691 Hz. So for y the
frequencies are also f y

1 = 2.0696 ·103 Hz = 2.0696 kHz and f y
2 = 194.0691 Hz.

For the z-direction the same procedure can be followed:(−ω2mz +kz +kA −kz

−kz −mtω
2 +kz

)(
zm

z

)
=

(
0
0

)
(8.36)

This means solving the equation

mz mtω
4 − ((mz +mt)kz +mt kA)ω2 +kAkz = 0. (8.37)

This leads to f z
1 = 4.6107 ·103 Hz = 4.6107 kHz and f z

2 = 2.8246 ·103 Hz= 2.8246 kHz . This frequency is very
high and in situations where the computation time gets to long simplification might be a solution.

In Matlab this can be calculated by the function ei g (A), with A the system matrix from the next section.
This can then also be done in the situation with damping. The eigenvalues are then in symbolic notation [36]

λ1,2 =σ± iω, (8.38)

where σ relates to the damping and ω to the frequencies of the oscillation. Then the damping ratio and the
frequency is calculated using [36]

ζ=− σp
σ2 +ω2

(8.39)

f = ω

2π
. (8.40)

Using a damping percentage of n = 0.1 % the frequencies are the same as calculated before and the corre-
sponding damping ratios are

ζxm = ζym = 8.1742 ·10−5, (8.41)

ζx = ζy = 7.9374 ·10−5, (8.42)

ζzm = 1.9923 ·10−5, (8.43)

ζz = 5.7860 ·10−13. (8.44)

42 8. Airbearing model

What can be concluded is that the damping ratio for z is a lot lower than the others. This might be a problem
for the simulations. With some computations is also found that there is no damping value in which ζz comes
near the other values. This would imply that some other sort of damping is necessary. Adding an extra damp-
ing −cZ ż to equation (8.27) with cZ = 10−8 Ns results in a damping ratio of ζz = 5.0028 ·10−5. This is closer
to the other values. Physically this would mean applying cZ means z is damping due to the polishing disc on
the material. In the z-direction this is not expected to be large since the actual Coulomb friction is expected
in the x and y-directions and just a small part could go up. So 10−8 Ns seems reasonable.

8.6. Final model equations

The final equations of the airbearing in different axial directions now are

mx ẍm =−kt xm +kx (x −xm),

mt ẍ =−kx (x −xm)−Fx ,

mx ÿm =−kt ym +kx (y − ym), (8.45)

mt ÿ =−kx (y − ym)−Fy ,

mz z̈m =−kz (zm − z)−kA zm −Fp ,

mt z̈ = kz (zm − z)+Fz .

And the system with damping becomes

mx ẍm =−kt xm +kx (x −xm)− cA ẋm + cD (ẋ − ẋm) ,

mt ẍ =−kx (x −xm)− cD (ẋ − ẋm)−Fx ,

mx ÿm =−kt ym +kx (y − ym)− cA ẏm + cD
(
ẏ − ẏm

)
, (8.46)

mt ÿ =−kx (y − ym)− cD
(
ẏ − ẏm

)−Fy ,

mz z̈m =−kz (zm − z)−kA zm − cR (żm − ż)−Fp ,

mt z̈ = kz (zm − z)+ cR (żm − ż)− cZ ż +Fz .

For the state space representation the x notation can be used for the state, since it contains only Cartesian

8.6. Final model equations 43

coordinates. The state space representations then become

ẋ =



0 1 0 0 0 0 0 0 0 0 0 0

− (kt+kx)
mx

0 kx
mx

0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
kx
mt

0 − kx
mt

0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 − (kt+kx)
mx

0 kx
mx

0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 kx
mt

0 − kx
mt

0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 − (kz+kA)
mz

0 kz
mz

0
0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 kz
mt

0 − kz
mt

0



x

+



0
0
0

− Fx
mt

0
0
0

− Fy

mt

0

− Fp

mz

0
Fz
mt



. (8.47)

And the system with damping becomes

ẋ =



0 1 0 0 0 0 0 0 0 0 0 0

− (kt+kx)
mx

− (cA+cD)
mx

kx
mx

cD
mx

0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
kx
mt

cD
mt

− kx
mt

− cD
mt

0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 − (kt+kx)
mx

− (cA+cD)
mx

kx
mx

cD
mx

0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 kx
mt

cD
mt

− kx
mt

− cD
mt

0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 − (kz+kA)
mz

− cR
mz

kz
mz

(cR+cZ)
mz

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 kz
mt

cR
mt

− kz
mt

− cR
mt



x

+



0
0
0

− Fx
mt

0
0
0

− Fy

mt

0

− Fp

mz

0
Fz
mt



. (8.48)

9
Simulations of polishing brush and

airbearing

In this chapter results from simulations of all options presented before are discussed. The goal is to find the
best description of what is happening during this process and what influences are important. The polishing
brush will be modeled with the two-angle model for simplicity.

9.1. Values and assumptions
For the simulations some assumptions must be made and values must be set. A lot of values are already
known from the design of the robot and the end effector (see table 9.1). CR means center of rotation of the
polishing disc.

The situation considered is a tube in which the tool is moved in a rotating movement and lateral move-
ment, see figure 9.1. The function for this material is given by

f (x, y) = 1

10

(
5x

4

)2

+5(4y)2, (9.1)

where x and y are given in meters. With the location and directional velocity of the center of rotation the
angle of the material can be calculated. The location of the center of the polishing tool is given by

Loc(C R) =
(
Rr ot cos(ωt)+ v t + rd +Rr ot

Rr ot sin(ωt)

)
, (9.2)

where t is taken between 0 and 5 seconds for all simulations unless stated otherwise. The velocity vector of

Figure 9.1: Geometry of the material to be polished.

the center of rotation is important for calculating the angular elevation of the material. The velocity vector
can be used to determine the direction of the tool and thus the direction of the angle that is needed. The
velocity vector is given by

V el (C R) =
(−ωRr ot sin(ωt)+ v

ωRr ot cos(ωt)

)
. (9.3)

45

46 9. Simulations of polishing brush and airbearing

Table 9.1: Known values

Symbol Explanation Value
rd radius of brush 0.010 [m]
rb radius of rod between tool and air bearing 0.0015 [m]
h height brush 0.010 [m]
hb height of air bearing 0.089 [m]
r radius from CR to edge point 0.01118 [m]
rr ot radius of robot rotation 0.003 [m]
l length of rod between tool and air bearing 0.020 [m]
v longitude speed of robot 0.001 [m/s]
m mass polishing brush 0.2 [kg]
p speed of tool rotation 50 ·2π [rad/s]
λ rotation speed of robot 2 ·2π [rad/s]
mbear i ng mass of air bearing 0.337 [kg]
Fp polishing force 10 [N]
µ coefficient of friction 0.5 ·p(2) · 1

2 [-]
σ angle of friction tan−1(µ) [rad]
E Youngs modulus for steel 2 ·1011 [N/m2]
kp spring constant of imaginary contact spring 1 ·108 [N/m]
kt spring constant linear air bearing 110 ·106 [N/m]
kr torsional stiffness air bearing 23 ·106 [Nm/rad]
kA holder stiffness from robot 1010 [N/m]
cA damper coefficient of the airbearing 1.3159 [Ns]
cD damper coefficient of the polishing disc in x and y direction 0.0389 [Ns]
cR damper coefficient of the spindle in z-direction 0.5581 [Ns]
cZ damper coefficient of the polishing action on the material 1 ·10−8 [Ns]
n dissipation percentage 0.001 [-]
Emax maximum energy present in excitation of spring system Tmax =Umax [J]
ωA natural frequency of airbearing part 1.3004 ·104 [rad/s]
ωD natural frequency of polishing disc part 1.2194 ·103 [rad/s]
ωR natural frequency spindle in z-direction 2.8970 ·104 [rad/s]

9.2. Variables and local coordinate systems 47

The robot arm positions itself using the center of the outer rotationω as reference frame. This means that the
rod or spindle is positioned in an angle, r od0, depending on the angle in the center of outer rotation. This
value also changes with the direction of the tool movement. When the polishing tool can be pressed down

in a straight position the initial values are

[
θ0

ψ0

]
=

[
r od0

0.5∗π
]

. The final elevation angle in the direction of the

velocity vector n is then calculated in each point (x, y) using

∂ f

∂n
(x, y) = 1

‖n‖
(
nx

∂ f

∂x
+ny

∂ f

∂y

)
, (9.4)

ξ(x, y,n) = tan−1
(
∂ f

∂n
(x, y)

)
. (9.5)

The solver used for integrating the system is the ode45 solver of Matlab. This solver uses the integration
method Runge-Kutta of order 4 and 5 to compare the final result with an error stopping criteria. Matlab will
adjust the time step size until the stopping criteria has been met.

9.2. Variables and local coordinate systems
To show all variables used for the calculation three schematic pictures are made of the three different views
in a 3D situation, see figures 9.2, 9.3 and 9.4. The points C1,C2,C3 and C4 are located and defined as before.
The blue straight arrow in figures 9.2 and 9.4 indicates that the general movement goes from C1. λ in figure
9.4 is the robot rotation assumed at 2 Hz. θ,ψ and p are positive in the indicated direction. The yellow circle
means the ball joint in the middle of the polishing brush.

Figure 9.2: Polishing brush seen from the side, y z-frame.

9.3. No moment present in polishing disc model
In the situation that there is no moment present in the model, it means that there is no cause for the polishing
brush to move out of its equilibrium stable position. Simple simulations show in the two angle model that
this is correct, see figure 9.5. The first two graphs are the angles θ and ψ as functions of time in seconds. The
two lowest graphs are the elevation in meters and in radians. The elevation in meters is the function value of
the height of the material from the assumed zero plane. The elevation in radians is the angle the elevation
makes in the direction of the movement.

The material function defined before will be used with all computations.

9.4. Full model
The full polishing disc and airbearing model is formed by two separate parts. In the first part the angular
equations of θ and ψ are calculated. In the second part the solution of this system is used to calculate the
impact forces in the x, y and z directions to see the effect on the entire airbearing and spindle model. The
reason that these two models are separated is because the polishing disc model requires a much higher ac-

48 9. Simulations of polishing brush and airbearing

Figure 9.3: Polishing brush seen from the side, xz-frame.

Figure 9.4: Polishing brush seen from above, x y-frame.

curacy and therefore smaller time step than the airbearing model. But since the ode45 solver of Matlab looks
at an average of the error the solution to the polishing disc model can be very different from the actual one.

There are 6 basic values that are tested. Different contact spring rates kp are used to study the effect.
The different basic simulations can be found in table 9.2. The figures of the results that are not specifically
discussed can be found in appendix A.

9.4.1. Results of run 3
The results for kp = 108 are presented in this section. In figure 9.6 the angles and angular velocities are pre-
sented using a spring height of 1 mm for C1 and C2. For C3 and C4 the spring height from equation (7.43)
is used. In figure 9.7 the forces in the different principal axes are presented. What can be seen is that the
magnitude of the impact forces are a lot higher than, for instance, the polishing force of 10 [N].

Then figures 9.8, 9.9 and 9.10 show the deviations from the equilibrium position and the total deviation

Table 9.2: Known values

Number Spring rate
1 104 N/m
2 106 N/m
3 108 N/m
4 1010 N/m

9.4. Full model 49

Figure 9.5: Graph of θ and ψ over an elevated material without impact.

of the polishing tool without damping. They are all growing without any damping. This is obviously not a
realistic physical result.

Adding a simple damping of 0.1% already solves the growing in x-direction and y-direction (see figures
9.11 and 9.12). For the z-direction there does not seem to be a lot of difference. For this reason the extra
spring kA was introduced in section 8.3. The value of the spring constant depends on the information about
the difference in flexibility of the spindle and the holder. For kA = 109 the results show that the deviations
for the holder are 10 times smaller than for the spindle. Using kA = 1010 this difference is 100 times. Since
the holder and spindle are both very stiff materials, but the spindle will have a bit more expanding room,
choosing kA = 109 seems appropriate.

If the damping is increased to 1 % the deviations in x-direction and y-direction are half as small as when
the damping is 0.1 % (see figures 9.15 and 9.16). In the z-direction this is not the case. The vibrations are
then only thinned, see figure 9.17. So concluding, damping helps a lot, but mostly in the x and y direction.
Increasing the damping also decreases the deviations, but still not enough to get a realistic result. Looking
at the forces, this might be caused by the magnitude. These forces seem unrealistic large coming from a
polishing brush. This is a problem that is caused by the contact force description and is not solved yet.

To be able to say something about the entire model, a workaround is needed. For this the impact force
derived in the polishing disc model is divided by a large factor to get a realistic result and to say something
about the feedback design. The frequency of the impact force is used from the polishing disc model, but the
magnitude is simply adjusted.

9.4.2. Results of run 1
When using kp = 104 the behavior of the polishing disc is very different (see figure 9.18). First of all the
magnitude of the forces are smaller, see figure 9.19. Comparing the forces of figure 9.7 with figure 9.19 in the
x-direction it can be seen that the forces are ten times smaller. The forces are now also a more continuous
function. The more varying force results in a smaller deviation in the x-direction, see figure 9.20. For the
y-direction the magnitude is now also four times smaller and the forces in y-direction can also be negative.
This results in total in smaller deviations, see figure 9.21. With the z-direction there is still the same problem,
see figure 9.22.

The effect of 0.1 % damping is a four times smaller deviation in the total x-direction, see figure 9.23. In
the y-direction this is already ten times smaller, see figure 9.24. In the z-direction adding the damping and
holder spring gives a lot better results (figure 9.25).

50 9. Simulations of polishing brush and airbearing

Figure 9.6: Run 3 θ, θ̇,ψ,ψ̇ presented over 5 seconds.

9.4.3. Results of run 4
When kp = 1010 N/m θ remains at one angle and bounces a bit. The reason the result from this run is in-
teresting is because the forces are now defined in such a manner that the deviations in the x-direction are
bounded and not increasing continuously, see figure 9.28. This does indeed indicate that the magnitude and
frequency of the impact force is very important for damping and stability of the system.

9.4.4. Decreasing contact spring height
The assumed layer of 1 mm in the y-direction or C1 and C2 contact is a guess to approximate when the
polishing brush is impacting the material. When this is decreased to 1 µm kp = 1010 gives a realistic result,
see figure 9.29. The forces in y-direction are still equal in magnitude compared to 1 mm layer.

9.4.5. Workaround with force factor
One of the reasons the force might become too large is that the impact impulse is converted to a force, by di-
vision by a very small duration time. The impulse is defined as the total force applied in that impact duration
time. Outside of this time there is no applied force. This may raise the question if this duration time is well
defined or if the force description is not too high.

Another possibility is that the forces are too high due to the material definition chosen and the friction
coefficient choice that causes the velocities and accelerations in the polishing disc model. This can be tested
if an actual product is used for the simulation to see if the assumed geometry is realistic.

Even though impact forces should be very large, for some reason the model of the airbearing cannot han-
dle this. A real solution to this problem is not yet found, but in order to simulate the actual situation the forces
are reduced to a realistic magnitude. The force frequencies and behavior are still used this way, but simply
scaled to a realistic magnitude. Two values are used: dividing the forces by 10000 and multiplying the forces
by the impact duration tm such that the impulse value is used. This might not be physically correct with the
units, but it is a way to adjust each run in a proportional way.

The best results for the 10000 workaround come from run 1. Figures 9.31, 9.32 and 9.33 show the results
for run 1 for 0.1 % damping. The scale is now a lot better. In the y-direction the maximum deviation lies
around 1.5 cm due to the stiffness of the spindle. The deviations of the airbearing go up to 40 µm in the
y-direction.

9.5. Concluding remarks 51

Figure 9.7: Run 3 forces in the three principal directions in [N].

Figures 9.34, 9.35 and 9.36 show the results of 1 % in the same situation. These results only show less
intense vibrations, less thick. Depending on what seems most realistic the correct damping can be chosen.

The best results for the tm workaround are from run 4. Figures 9.37, 9.38 and 9.39 show the results for run
1 for 0.1 % damping. In the original results run 3 seemed very promising, but with these factors the deviations
in y-direction are still up to 5 cm. This is too high. In figure 9.38 the maximum deviation is up to 5 mm. These
deviations seem promising for the problem description.

Figures 9.40, 9.41 and 9.42 show the results of 1 % in the same situation. These results show less intense vi-
brations, less thick, but also a bit smaller. Again depending on what seems most realistic the correct damping
can be chosen.

These results show that smaller forces indeed give realistic vibrations. But this still needs some tuning
to find the right magnitude. This is still a problem originating from the polishing disc model. Since the
goal in this thesis is not only to model but also to discuss possible correction methods it is important to
use the workaround with realistic results to investigate the use of the airbearing model. The four different
runs discussed in this section will be used as data sets for testing the correction methods. These correction
methods will be discussed in the next chapter.

9.5. Concluding remarks
Simulating situations where rotations, friction and impact forces are present is very difficult. The model
found in this thesis still has some problems, but in the end the model simulates the observed problem with a
simple workaround. The description of the model consists of all parts present in the end-effector. The biggest
problem found in the end is the magnitude of the resultant forces in C1 and C2. As it turns out α and β have
a magnitude that ensures that the forces are very big and cause a high angular velocity and therefore a large
impact force. The obvious reason for this could be that the geometry of the material to be polished is not
realistic, i.e., the angles are too steep. Another factor could be that the friction coefficient is too large.

52 9. Simulations of polishing brush and airbearing

Figure 9.8: Run 3 deviations in x-direction without damping in [m].

Figure 9.9: Run 3 deviations in y-direction without damping in [m].

9.5. Concluding remarks 53

Figure 9.10: Run 3 deviations in z-direction without damping in [m].

Figure 9.11: Run 3 deviations in x-direction with 0.1 % damping in [m].

54 9. Simulations of polishing brush and airbearing

Figure 9.12: Run 3 deviations in y-direction with 0.1 % damping in [m].

Figure 9.13: Run 3 deviations in z-direction with 0.1 % damping in [m].

9.5. Concluding remarks 55

Figure 9.14: Run 3 deviations in z-direction with 0.1 % damping and holder spring in [m].

Figure 9.15: Run 3 deviations in x-direction with 1 % damping in [m].

56 9. Simulations of polishing brush and airbearing

Figure 9.16: Run 3 deviations in y-direction with 1 % damping in [m].

Figure 9.17: Run 3 deviations in z-direction with 1 % damping in [m].

9.5. Concluding remarks 57

Figure 9.18: Run 1 θ, θ̇,ψ,ψ̇ presented over 5 seconds.

Figure 9.19: Run 1 forces in the three principal directions in [N].

58 9. Simulations of polishing brush and airbearing

Figure 9.20: Run 1 deviations in x-direction without damping in [m].

Figure 9.21: Run 1 deviations in y-direction without damping in [m].

9.5. Concluding remarks 59

Figure 9.22: Run 1 deviations in z-direction without damping and holder spring in [m].

Figure 9.23: Run 1 deviations in x-direction with 0.1 % damping in [m].

60 9. Simulations of polishing brush and airbearing

Figure 9.24: Run 1 deviations in y-direction with 0.1 % damping in [m].

Figure 9.25: Run 1 deviations in z-direction with 0.1 % damping in [m].

9.5. Concluding remarks 61

Figure 9.26: Run 4 θ, θ̇,ψ,ψ̇ presented over 5 seconds.

Figure 9.27: Run 4 forces in the three principal directions in [N].

62 9. Simulations of polishing brush and airbearing

Figure 9.28: Run 4 deviations in x-direction without damping in [m].

Figure 9.29: θ, θ̇,ψ,ψ̇ presented over 5 seconds with decreased contact spring height.

9.5. Concluding remarks 63

Figure 9.30: Forces in the three principal directions in [N] with decreased contact spring height.

Figure 9.31: Run 1 workaround deviations in x-direction with 0.1 % damping and dividing factor of 10000 in [m].

64 9. Simulations of polishing brush and airbearing

Figure 9.32: Run 1 workaround deviations in y-direction with 0.1 % damping and dividing factor of 10000 in [m].

Figure 9.33: Run 1 workaround deviations in z-direction with 0.1 % damping and dividing factor of 10000 in [m].

9.5. Concluding remarks 65

Figure 9.34: Run 1 workaround deviations in x-direction with 1 % damping and dividing factor of 10000 in [m].

Figure 9.35: Run 1 workaround deviations in y-direction with 1 % damping and dividing factor of 10000 in [m].

66 9. Simulations of polishing brush and airbearing

Figure 9.36: Run 1 workaround deviations in z-direction with 1 % damping and dividing factor of 10000 in [m].

Figure 9.37: Run 4 workaround deviations in x-direction with 0.1 % damping and multiplication factor of tm in [m].

9.5. Concluding remarks 67

Figure 9.38: Run 4 workaround deviations in y-direction with 0.1 % damping and multiplication factor of tm in [m].

Figure 9.39: Run 4 workaround deviations in z-direction with 0.1 % damping and multiplication factor of tm in [m].

68 9. Simulations of polishing brush and airbearing

Figure 9.40: Run 4 workaround deviations in x-direction with 1 % damping and multiplication factor of tm in [m].

Figure 9.41: Run 4 workaround deviations in y-direction with 1 % damping and multiplication factor of tm in [m].

9.5. Concluding remarks 69

Figure 9.42: Run 4 workaround deviations in z-direction with 1 % damping and multiplication factor of tm in [m].

10
Feedback design

Now that the equations of motion are established the question of how to improve the behavior can be an-
swered. Some sort of correction needs to be designed to improve the unwanted behavior found. To accom-
plish this it might be needed to linearise the full system around some stable point. To avoid this linearization
it is also possible to divide the model into different parts with their own functionality. This then leads to a
linear problem to solve. For this problem a controller can be designed to make the correction. When the con-
troller is known it can be used with the original system to test the influence of this controller. In this chapter
the theory and methods used for calculating the controller will be described.

10.1. Linearization around an equilibrium
The system now derived can be generally stated as

q̇ = f (q,u), (10.1)

where q is the state vector, u the so called input vector. This is called a time-invariant system [34]. The goal of
the linearization is defining a simpler system to analyze. The linearised system can be an accurate model for
the problem. The first step is identifying the equilibrium points, or the constant vectors q∗ and u∗ satisfying
[34]

f (q∗,u∗) = 0. (10.2)

By expanding in Taylor series and defining the system in a neighborhood of the equilibrium point by q = q∗+z
and u = u∗+v the linearised system of (10.1) is defined as [34]

ż = Az+Bv, (10.3)

where

A = ∂ f

∂q
(q∗,u∗) (10.4)

B = ∂ f

∂u
(q∗,u∗). (10.5)

10.2. Controllers using LMI’s
For the beginning it is best to assume that the full state is known. Then looking at the full system of equa-
tions of the polishing disc and the airbearing it can be seen that it is a linear system except for the mo-
ments and the response angular velocities θ̇ and ψ̇ after the impact. Since it is physically not possible to
adjust θ and ψ it might be a solution to use linear matrix inequalities (LMI’s), where the state is given by x =
(xm , ẋm , x, ẋ, ym , ẏm , y, ẏ , zm , żm , z, ż)T and the disturbance is given by w = (Fx (θ, θ̇,ψ,ψ̇),Fy (θ, θ̇,ψ,ψ̇),Fz (θ, θ̇,ψ,ψ̇),Fp)T .
The linear matrix inequalities form a set of which an optimal solution can be calculated by minimizing the
H∞ or H2 norm. The choice of norm is dependent on what is most important to adjust in the original sys-
tem. The advantage of using LMI’s is that multiple objectives can be combined into one control problem [36].

71

72 10. Feedback design

These problems can be solved using the interior point technique in convex programming.

From the simulations it was already concluded that the two systems of the polishing disc and of the air-
bearing must be calculated separately. This means that the norms and LMI’s can perfectly be used, since w
is then calculated beforehand and B1 is the matrix to calculate different components. There exists a Matlab
package Yalmip to optimize the H2 and H∞ norms.

In [45], [41] and [36] the use of linear matrix inequalities (LMI’s) for minimization of norms is explained.
In [45] explicit matrix inequalities are defined and solved with the Yalmip Matlab package [26]. In [36] the
LMI toolbox is used. In this research the Yalmip optimization tools are used. As stated before, the system of
interest is of the form

ẋ = Ax+Bu+B1w,

y =C x, (10.6)

z =C1x+D1w.

The transfer matrix T (s) is the input-output description of the system in the Laplace domain and is given by
[45]

T (s) =C1(sI − A)−1B1 +D1, (10.7)

where I is the identity matrix. Two types of feedback controllers are studied in [45]:

• Static state feedback: u = Dc x, which gives the closed loop system

ẋ = (A+BDc)x+B1w, (10.8)

z =C1x+D1w. (10.9)

• Dynamic feedback:

ẋc = Ac xc +Bc y, (10.10)

u =Cc xc +Dc y. (10.11)

This gives the closed loop system

ẋ = (A+BDcC)x+BCc xc +B1w, (10.12)

ẋc = BcC x+ Ac xc , (10.13)

z =C1x+D1w. (10.14)

For the static state feedback it is assumed that the full state is known by measurements, i.e., C = I . The
difference in behavior of a static and dynamic feedback is that in general the dynamics are needed if the state
is not available and needs to be estimated to be used for control. Also a dynamic control calculated at time t
does not only depend on the output measured at time t but also on previous measurements [34]. In the next
subsections asymptotic stability, H∞ norm and the H2 norm are discussed with their LMI characterizations.

10.2.1. Asymptotic stability
To be able to use the LMI’s and the norms to calculate a feedback controller the system without the controller
must be asymptotically stable. There is a LMI definition for proving that a system is asymptotically stable.
This definition is that a system (10.6) without the controller u and measurements y is asymptotically stable,
or equivalent, A is an asymptotically stable matrix if and only if

∃K = K T Â 0 : AT K +K A ≺ 0. (10.15)

10.2.2. H-infinity norm
The H∞ norm of a system gives a factor that indicates the height of the peak values in the worst-case situation
of the system [45]. When taken from the transfer matrix T it is denoted as ‖T ‖H∞ . It describes the maximum
gain in the principal direction [36]. Then using LMI’s the matrices can be found to minimize this height. This

10.2. Controllers using LMI’s 73

means that minimizing the H∞ norm gives a more uniform system. The LMI definition for this norm is then
[45]: Let γ> 0 be a given real number and A an asymptotically stable matrix. Then

‖T ‖H∞ < γ ⇐⇒∃K = K T :

(
AT K +K A+C T

1 C1 K B1 +C T
1 D1

B T
1 K +DT

1 C1 γ2I +DT
1 D1

)
≺ 0. (10.16)

It can be shown that if A has to be asymptotically stable this is equivalent to the definition that [45]

‖T ‖H∞ < γ ⇐⇒∃K = K T Â 0 :

AT K +K A K B1 C T
1

B T
1 K −γ2I DT

1
C1 D1 −I

≺ 0. (10.17)

When the H∞ norm is being minimized by finding a static state feedback u = Dc x some adjustments must be
made in order to get a proper LMI to solve. In [45] an exact description and derivation are given of how to
define the LMI in this situation. Here it is stated that for a γ > 0 the following must hold to get a asymptotic
stable system

∃M ,∃Y = Y T Â 0 : (10.18)(AY +B M)+ (AY +B M)T B1 Y C T
1

B T
1 −γ2I DT

1
C1Y D1 −I

≺ 0. (10.19)

Here Y = K −1 and M = Dc K −1 = Dc Y . The controller can then be found by calculating Dc = MY −1.

For the dynamic controller it becomes a lot more complicated to get to a LMI. The following definition is
then given to find a dynamic controller that produces an asymptotically stable system: for γ> 0

∃v : X (v) Â 0 (10.20)A(v)T + A(v) B1(v) C1(v)T

B1(v)T −γ2I D1(v)T

C1(v) D1(v) −I

≺ 0. (10.21)

Here v = {X ,Y ,K ,L, M , N } is a vector of the unknowns and the matrices are given by

A(v) =
(

AY +B M A+B NC
K X A+LC

)
,

B1(v) =
(

B1

X B1

)
, (10.22)

C1(v) = (
C1Y C1

)
,

X (v) =
(
Y I
I X

)
.

Here X and Y should be symmetric. Note: I as matrix here means the identity matrix. The final controller
can then be calculated by first solving

V U T = I −Y X , (10.23)

for V and U . This can be done with a LU decomposition where V is a lower triangular matrix and U T an
upper triangular matrix. Then the final controller is given by(

Ac Bc

Cc Dc

)
=

(
U X B
0 I

)−1 (
K −X AY L

M N

)(
V T 0
C Y I

)−1

. (10.24)

10.2.3. H-2 norm
The H2-norm gives the overall energy of a system where it is specifically relating the input disturbance to the
output response [36]. When taken from the transfer matrix T it is denoted as ‖T ‖H2 . The H2 norm can be
seen as the output when applying a series of unit impulses [36]. Then using LMI’s, the controller matrices

74 10. Feedback design

can be found to minimize the energy. This means that minimizing the H2 norm gives a system in which the
total energy in the system is minimized. The LMI definition for this norm is then [45]: Let γ> 0 be a given real
number and A an asymptotically stable matrix. Then

‖T ‖H2 < γ ⇐⇒∃K = K T ,∃Z = Z T :



(
AT K +K A K B1

B T
1 −γI

)
≺ 0,(

K C T
1

C1 Z

)
Â 0,trace(Z) < γ.

(10.25)

Then in order to make sure the system is asymptotically stable it can be shown that only one small adjustment
has to be made to get [45]

‖T ‖H2 < γ ⇐⇒∃K = K T Â 0,∃Z = Z T :



(
AT K +K A K B1

B T
1 −γI

)
≺ 0,(

K C T
1

C1 Z

)
Â 0,trace(Z) < γ.

(10.26)

In computations with the H2 norm it is assumed that D1 = 0. This means that the disturbance itself is not
an output, but just the state which it affects. The same way as for the H∞ norm an extended definition of
LMI’s and matrices can be given when searching for a controller. For the static state feedback controller this
means again with γ> 0 that

∃M ,∃Y = Y T Â 0∃Z = Z T : (10.27)

(
(AY +B M)+ (AY +B M)T B1

B T
1 −γI

)
≺ 0,(

Y Y C T
1

C1Y Z

)
Â 0, trace(Z) < γ

(10.28)

Here Y = K −1 and M = Dc K −1 = Dc Y . The controller can then be found by calculating Dc = MY −1.

The dynamic controller is a more complicated description. The following definition is then given to find
a dynamic controller that produces an asymptotically stable system: for γ> 0

∃v∃Z = Z T : X (v) Â 0 (10.29)

(
A(v)T + A(v) B1(v)

B1(v)T −γI

)
≺ 0.(

X (v) C1(v)T

C1(v) Z

)
Â 0, trace(Z) < γ.

(10.30)

Here v = {X ,Y ,K ,L, M , N } is a vector of the unknowns and the matrices are given by (10.22). The final
controller can be calculated by first solving

V U T = I −Y X , (10.31)

for V and U . This can be done with a LU decomposition where V is a lower triangular matrix and U T an
upper triangular matrix. This gives the final controller as(

Ac Bc

Cc Dc

)
=

(
U X B
0 I

)−1 (
K −X AY L

M N

)(
V T 0
C Y I

)−1

. (10.32)

For more details on the derivation the lecture notes of [45] can be used.

10.2.4. Yalmip package
Yalmip is a toolbox for modeling and optimization in Matlab [26]. It has a lot of optimization functions to
save a lot of programming time . The three LMI descriptions from before can be solved using the Optimize
function for which an objective to minimize is given and some additional options can be set.

10.3. System description 75

10.3. System description

Now the final systems (8.45) and (8.46) can be written in state-space notation. Here the forces that can be
calculated from the polishing disc model must first be multiplied with the correct angles to get the solution in
the (x, y, z) coordinate frame. For notation use Fθ and Fψ for the impact forces from the polishing disc model.
Then

Fx = Fψ sin(α), (10.33)

Fy = Fθ sin(β), (10.34)

Fz = Fp +|Fθ|cos(β)+|Fψ|cos(α). (10.35)

Here Fp acts as the normal force as reaction to the polishing force (now with positive sign instead of negative
sign). The absolute value is taken since both components of z-forces of θ andψwill be directed to the positive
direction, but when they are in a negative x or y direction they can be negative.

10.3.1. System without damping

To get the state description of the system first rewrite (8.45) into

ẍm =− kt

mx
xm + kx

mx
(x −xm),

ẍ =− kx

mt
(x −xm)− sin(α)

mt
Fψ,

ÿm =− kt

mx
ym + kx

mx
(y − ym), (10.36)

ÿ =− kx

mt
(y − ym)− sin(β)

mt
Fθ,

z̈m =− kz

mz
(zm − z)− kA zm

mz
− Fp

mz
,

z̈ = kz

mt
(zm − z)+ Fp +|Fθ|cos(β)+|Fψ|cos(α)

mt
.

76 10. Feedback design

Then using x = (
xm , ẋm , x, ẋ, ym , ẏm , y, ẏ , zm , żm , z, ż

)T again as before and w = (Fx ,Fy ,Fz ,Fp)T the final sys-
tem becomes

ẋ =



0 1 0 0 0 0 0 0 0 0 0 0

− (kt+kx)
mx

0 kx
mx

0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
kx
mt

0 − kx
mt

0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 − (kt+kx)
mx

0 kx
mx

0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 kx
mt

0 − kx
mt

0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 − (kz+kA)
mz

0 kz
mz

0
0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 kz
mt

0 − kz
mt

0



x

+



0 0 0 0
0 0 0 0
0 0 0 0
0 − 1

mt
0 0

0 0 0 0
0 0 0 0
0 0 0 0

− 1
mt

0 0 0
0 0 0 0
0 0 0 − 1

mz

0 0 0 0
0 0 1

mt
0



w. (10.37)

Here the matrices correspond with the system ẋ = Ax+B1w. What can be seen in these matrices is that for the
controller design none of the difficult constants are needed. With difficult constants are the contact spring
rates and damping coefficients of the springs meant. The only downside of using this system would be that it
is not realistic, since there is always damping in real life.

10.3.2. System with damping

The system with damping then is defined as

ẍm =− kt

mx
xm + kx

mx
(x −xm)− cA

mx
ẋm + cD

mx
(ẋ − ẋm) ,

ẍ =− kx

mt
(x −xm)− cD

mt
(ẋ − ẋm)− sin(α)

mt
Fψ,

ÿm =− kt

mx
ym + kx

mx
(y − ym)− cA

mx
ẏm + cD

mx

(
ẏ − ẏm

)
, (10.38)

ÿ =− kx

mt
(y − ym)− cD

mt

(
ẏ − ẏm

)− sin(β)

mt
Fθ,

z̈m =− kz

mz
(zm − z)− kA zm

mz
− cR

mz
(żm − ż)− Fp

mz
,

z̈ = kz

mt
(zm − z)+ cR

mt
(żm − ż)+ Fp +|Fθ|cos(β)+|Fψ|cos(α)

mt
.

10.4. Further system matrices 77

With the same state and disturbance vector the state-space representation then becomes

ẋ =



0 1 0 0 0 0 0 0 0 0 0 0

− (kt+kx)
mx

− (cA+cD)
mx

kx
mx

cD
mx

0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
kx
mt

cD
mt

− kx
mt

− cD
mt

0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 − (kt+kx)
mx

− (cA+cD)
mx

kx
mx

cD
mx

0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 kx
mt

cD
mt

− kx
mt

− cD
mt

0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 − (kz+kA)
mz

− cR
mz

kz
mz

cR
mz

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 kz
mt

cR
mt

− kz
mt

− cR
mt



x

+



0 0 0 0
0 0 0 0
0 0 0 0
0 − 1

mt
0 0

0 0 0 0
0 0 0 0
0 0 0 0

− 1
mt

0 0 0
0 0 0 0
0 0 0 − 1

mz

0 0 0 0
0 0 1

mt
0



w. (10.39)

In this system it is obvious that the damping constants have an influence. So the value of the damping has an
effect on the controller that will be designed.

10.4. Further system matrices
The other matrices involved, i.e. B ,C ,C1,D1, are dependent on design and practical considerations. If u is
defined as forces influencing or the airbearing or the spindle in x−, y- or z- direction, then u = Dc x for static
state feedback means that the force is given as a linear function of displacements and/or velocities. A function
of all displacements in the uneven equations leads to a B given by

B =



1 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0



. (10.40)

This will be used as first solution for correction. The second solution used is when the correction is given as a
function of the derivations when the correction is given by, for example, springs to correct in each direction

78 10. Feedback design

and location. The B matrix is then given by

B =



0 0 0 0 0 0
1

mx
0 0 0 0 0

0 0 0 0 0 0
0 1

mt
0 0 0 0

0 0 0 0 0 0
0 0 1

mx
0 0 0

0 0 0 0 0 0
0 0 0 1

mt
0 0

0 0 0 0 0 0
0 0 0 0 1

mz
0

0 0 0 0 0 0
0 0 0 0 0 1

mt



. (10.41)

Since the disturbance w influences the system internally it is logically to assume D1 = 0. Then C and C1

correspond to what is known about the output. This means that C describes what part of the state can be
used to formulate the controller. For the beginning it is best to assume that C = I , the identity matrix. Then
C1 describes what part of the system shows the relevant behavior. Since what is observed are the deviations
in the x−, y- and z- directions and not the velocities it is assumed that C1 is given by

C1 =



1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0

 . (10.42)

10.4.1. Norms of system without controller
To calculate the starting norms of the system the transfer function can be used, without any controller. This
is given by

T (s) =C1(sI − A)−1B1 +D1. (10.43)

D1 is assumed zero and all other matrices given as before in this chapter, where A is used as the total system
with damping. As explained in [45] computing the H∞ norm of this transfer function, i.e. ‖T ‖H∞ < γ, is
equivalent to calculating

∃K = K T :

(
AT K +K A+C T

1 C1 K B1 +C T
1 D1

B T
1 K +DT

1 C1 −γ2I +DT
1 D1

)
≺ 0. (10.44)

Computing this in Matlab gives for γ the result γ= 0.0021182. This value should be decreased by the use of a
controller. The lower this gets the better the performance with the controller.

The H2 norm has the same type of definition for ‖T ‖H2 < γ given by [45]

∃K = K T Â 0∃Z = Z T :

(
K A+ AT K K B1

B T
1 K −γI

)
≺ 0,

(
K C T

1
C1 Z

)
Â 0, trace(Z) < γ. (10.45)

Computing this in Matlab gives for γ the result γ= 0.0029477.

10.5. Scaled system
Looking at the matrix entries it can be concluded that the entries in A can vary a lot. This can cause some
difficulties in simulating when the goal is to minimize a norm. A workaround for this is to scale the system
with diagonal matrices to scale the rows and columns to decrease the difference in magnitude . This can im-
prove the performance of the minimization and after a transformation the result is applicable for the original
system.

10.6. Adding an observer 79

In Matlab some functions are present to define a scaled system description. This feature could ensure
that the calculation of the controller is better and less scattered due to large variations in magnitudes. It is
therefore important to take this possibility into account. For this system the Matlab function prescale is used.

A scaled system can be defined by two transformation matrices: TL and TR = T −1
L . These matrices are

both diagonal matrices and define the scaled system:

As = TL ATR , (10.46)

B s = TLB , (10.47)

C s =C TR , (10.48)

B s
1 = TLB1, (10.49)

C s
1 =C1TR , (10.50)

D1 = 0. (10.51)

The transformation matrices TL and TR for the first solution of B are given by

TL = diag(256,7.8125 ·10−3,64,6.2500 ·10−2,256,7.8125 ·10−3,64,6.2500 ·10−2,256,3.9063 ·10−3,128,7.8125 ·10−3),
(10.52)

TR = diag(3.9063 ·10−3,128,1.5625 ·10−2,16,3.9063 ·10−3,128,1.5625 ·10−2,16,3.9063 ·10−3,256,7.8125 ·10−3,128).
(10.53)

For these transformation matrices the norms calculated are comparable to the non-scaled system, i.e.,

‖T ‖H∞ < γ= 0.0021182, (10.54)

‖T ‖H2 < γ= 0.0029474. (10.55)

The transformation matrices TL and TR for the second solution of B is given by

TL = diag(4096,0.125,1024,1,4096,0.125,1024,0.5,8192,0.125,4096,0.25), (10.56)

TR = diag(2.4414 ·10−4,8,9.7656 ·10−4,1,2.4414 ·10−4,8,9.76562 ·10−4,2,1.2207 ·10−4,8,2.4414 ·10−4,4).
(10.57)

For these transformation matrices the norms calculated are comparable to the non-scaled system, i.e.,

‖T ‖H∞ < γ= 0.0021182, (10.58)

‖T ‖H2 < γ= 0.0029476. (10.59)

The only difference with the first solution is the last decimal of the H2-norm.
These transformation matrices are dependent on the values of the damping constants, the spring con-

stants and system matrices of the airbearing model.
All the calculated controller matrices (for static and dynamic feedback) can be used as calculated for the

corresponding system. When the scaled controller matrix is used for the original system it is necessary to
transform it to the correct scale again. The use of the scaled system is then a different optimization solution.
For the static state feedback Dc is then given by

Dc = D s
c T −1

R . (10.60)

10.6. Adding an observer
Right now it is assumed that the full state is known, i.e. C = I . This might not be the case, but this depends on
the measuring device applied. In this situation another method similar to a dynamic controller can be used
with the static state feedback to correct the system. This combines a controller with a so-called observer. For
this the definition of an observable system is needed. An observable system means that if u and y are known
on some interval starting from zero, its initial state x0 can be determined [45]. Assume n is the dimension of
A. To check if a system is observable the following statements are equivalent [45]:

• The pair (C , A) is observable;

80 10. Feedback design

• rank

(
sI − A

C

)
= n for all s ∈C;

• rank

(
λI − A

C

)
= n for all λ eigenvalues of A;

When the system without disturbances w, given by

ẋ = Ax+Bu, (10.61)

y =C x, (10.62)

is observable, an observer can be defined of the form

˙̂x = Ax̂+Bu+Cc (y−C x̂). (10.63)

Using this estimate state for defining a state control means that u = Dc x̂. The resulting system is then given
by [45]

ẋ = Ax+BDc x̂, (10.64)

˙̂x =CcC x+ (A+BDC −CcC)x̂, (10.65)

y =C x. (10.66)

The full system with disturbance w now becomes

ẋ = Ax+BDc x̂+B1w, (10.67)

˙̂x =CcC x+ (A+BDC −CcC)x̂, (10.68)

y =C x+D1w. (10.69)

Then following the notation of [45] gives

A =
(

A BDc

CcC A+BDc −CcC

)
, (10.70)

B1 =
(
B1

0

)
, (10.71)

C1 =
(
C1 0

)
, (10.72)

D1 = D1. (10.73)

Since the H∞-norm has a more compatible objective for this problem this is the only norm discussed in this
section. The H∞-norm can be calculated with the following system of inequalities and simultaneously ensure
asymptotic stability of A: the H∞-norm of the system is less than γ> 0 if and only if

∃K =K T Â 0 :

A T K +K A K B1 C T
1

BT
1 K −γ2I DT

1
C1 D1 −I

≺ 0. (10.74)

Unfortunately these inequalities do not form a LMI (not linear). For this a transformation needs to be defined
to be able to calculate the controller. This is a little tricky.

For future work an example for a more realistic situation is when only the displacements are measurable,
i.e.,

C =



1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0

 . (10.75)

This means that C =C1.

10.7. Simulation 81

10.7. Simulation
To actually apply the controller calculated in this chapter, the adjusted system with its controller (static or
dynamic) is used. First the angular model is used to derive the impulse forces, then the new system can be
integrated using the controllers. For different choices of runs all types of controllers and norms are used. The
resulting matrices are presented in appendix C. The calculation of these controller matrices is only depen-
dent on the choice of damping. The results of these runs will be given and discussed in the next chapter.

It is expected that the H∞-norm will be better suited for this problem than the H2-norm simply because
the objective of the H∞-norm is to decrease peak values. The H2-norm improves the overall time behavior
and will not just focuss on these extremes that are in this problem so important.

11
Simulating with controllers

The four runs from section 9.4.5 are used to test the controllers. For the static state feedback both the H∞-
norm minimization and the H2-norm minimization are applied with the scaled system and the original sys-
tem. The calculated controller matrices can be found in appendix C.

11.1. Static state feedback first solution
For the first B matrix the H∞-norm shows some interesting results for both the original controller and the
scaled controller. As it turns out, the behavior of the controller does not change with a different damping. For
this reason only the results of a damping of 0.1 % are presented here.

11.1.1. Controller comparison H infinity norm
The scaled controller must first be transformed back to the right scale before being applied. This is done
following equation (10.60). Figures 11.1 and 11.2 show the control u = Dc x for the non-scaled problem for
run 1. An interesting result is that in the x-direction the total controller equals zero. The only explanation
for this to happen is that the controller design is optimal for the x-direction. In the y-direction and the z-
direction this is different. In the y-direction some delay can be recognized at the start which damps out very
fast. In the z-direction for the airbearing a lot of oscillations can be seen and for the spindle a delay again.

Figure 11.1: Feedback part of the airbearing DcC x of the system in [m/s].

83

84 11. Simulating with controllers

Figure 11.2: Feedback part of the spindle DcC x of the system in [m/s].

Comparing these controllers u with the scaled solution u = D s
c T −1

R x shows for the y- and z-direction
something entirely different, see figures 11.3 and 11.4. The controller values are smaller and less wild. This
can be caused by the fact that with scaling some of the high frequencies are not taken into account. This
controller does look more applicable in real life. The x-direction remains at the same optimum value.

The H∞-norm of these systems with controller is for the original system γ= 3.4459·10−6 and for the scaled
system 5.0011 ·10−6. In comparison with the value for the system without control (0.0021182 for scaled and
non-scaled) this is already a lot better.

11.1.2. Original system H infinity norm
The final resulting deviations of the use of the H∞ controllers show the quality of this method on these types
of problems. In this section the results of the original static state controller are presented for run 1 and run 4.
These show for two very different impact behavior values how this method works out.

Figures 11.5, 11.6 and 11.7 show the comparison of the total deviation without and with the static state
controller. It is obvious to see that in the x-direction the controller works optimal. Note: even though the sim-
ulations show absolutely no deviation with a certain controller, this doesn’t mean that in real life no deviation
takes place. In real life other factors also influence the system and this only shows if the found controller cor-
rects the deviations due to certain identified factors. In the y-direction the deviations are not only decreased,
but also the frequency of oscillation is a lot lower. The same can be said about the z-direction.

The final comparison of run 4 is shown in figures 11.8, 11.9 and 11.10. These figures show the same
extremely good result for the x-direction. In the y-direction the deviations are approximately 10 times smaller
than without the controller and again with less oscillations. In the z-direction the entire movement into the
material is gone and only a small deviation in the upward direction is possible. This shows that the general
behavior of the controller decreases the deviations enormously.

11.1.3. Scaled system H infinity norm
In this section the results of the scaled static state controller are presented for run 1 and run 4. These show
again for two very different impact behavior values how this method works out.

Figures 11.11, 11.12 and 11.13 show the total deviations of scaled run 1. There is no difference for the
x-direction, where again the entire deviation is corrected. For the y-direction the same general behavior is
observed, only with even less oscillations. In the z-direction not much difference is observed with the original
controller results.

Comparing now for run 4 again the original controller performance in the last section with the scaled
controller performance in figures 11.14, 11.15 and 11.16 show the same type of results as run 1 does. The x-

11.2. Static state feedback second solution 85

Figure 11.3: Scaled feedback part of the airbearing DcC x of the system in [m/s].

Table 11.1: Maximum absolute deviation of different solutions of run 1

xmax [m] ymax [m] zmax [m]
Original 7.8095 ·10−4 0.0177 1.9855 ·10−4

H∞-norm 0 7.5486 ·10−4 7.1232 ·10−6

H∞-norm of scaled system 0 4.5467 ·10−4 8.0705 ·10−6

direction remains the same. The y- and z-direction are greatly improved. In the y-direction the oscillations
are even more reduced than with the original controller.

To see in numbers the improvements made with the controllers calculated from the H∞-norms, table 11.1
and table 11.3 show the maximum absolute amplitude of the different solutions for run 1 and 4 respectively.
Tables 11.2 and 11.4 show the percentage of improvement compared to the situation without a controller.
These numbers do not show any trend or obvious relation between the scaled and non-scaled situation or
the different runs. It can be said that the behavior of these controllers is very good.

11.2. Static state feedback second solution
For the second solution or the second type of adjustment B-matrix the calculated Dc -matrix shows that the
resulting equation BDc means the physical addition of springs and dampers in the system. This type of
controller is already more realistic for testing the H∞ norm. The same simulations have been done for run 1
and run 4 and the results are presented the same way as in the last section.

11.2.1. Controller comparison H infinity norm
Again a comparison is made between the different controller calculations of the second B-matrix solution.
Figures 11.17 and 11.18 show the feedback behavior of the airbearing and the spindle. With this entirely
different type of solution a very different scale of values is calculated. The values are now a lot higher and in

Table 11.2: Percentage of improvement of maximum absolute deviation of different solutions of run 1

xmax improvement [%] ymax improvement [%] zmax improvement [%]
H∞-norm 100 95.73 96.41
H∞-norm of scaled system 100 97.43 95.93

86 11. Simulating with controllers

Figure 11.4: Scaled feedback part of the spindle DcC x of the system in [m/s].

Table 11.3: Maximum absolute deviation of different solutions of run 4

xmax [m] ymax [m] zmax [m]
Original 0.0011 0.0094 1.5049 ·10−4

H∞-norm 0 7.9841 ·10−4 1.2877 ·10−5

H∞-norm of scaled system 0 4.9490 ·10−4 1.2861 ·10−5

Newton. Only in the x-direction the structure of the controller corrects all deviations.
Comparing these forces again with the scaled situation shows a very different result. Figures 11.19 and

11.20 show that now the correcting forces have become in fact a lot smaller. As a realistic solution, this would
be easier to implement in real life. This shows that the use of different calculation methods for controllers can
also benefit the actual use of the solution. The feedback values in the y- and in the z-direction now resemble
more to the behavior of a spring and show more oscillations in the controller.

The values of the H∞ norm are again lower than of the system without control, but higher than with
the first solution. For this solution the normal result is γ = 6.5060 ·10−5. The result for the scaled system is
γ= 5.3719 ·10−5.

11.2.2. Original system
The comparison without and with controller is again made in this section for the original controller (without
scaling). For run 1 this gives figures 11.21, 11.22 and 11.23. This shows that in the x-direction the same
happens as in the other B-matrix situation. For the y- and z-direction the behavior of the deviations is the
same with or without controller, but the magnitude is a lot smaller and the oscillations are not that wild
anymore. For the y-direction the magnitude is even decreased with two digits, i.e., from 10−3 scale to 10−5

scale. This seems one of the biggest improvements until now. The behavior of the results is more or less the
same as in the other B-matrix situation.

For run 4 the same figures have been made for this solution, see figures 11.24, 11.25 and 11.26. For the x-

Table 11.4: Percentage of improvement of maximum absolute deviation of different solutions of run 4

xmax improvement [%] ymax improvement [%] zmax improvement [%]
H∞-norm 100 91.50 91.44
H∞-norm of scaled system 100 94.73 91.45

11.3. Final remarks 87

Figure 11.5: Run 1 comparison of total deviation in x-direction before and after controller in [m].

direction the same full correction is made. For the y-direction the deviations are a lot reduced in magnitude,
from 10−3 to 10−5 scale. This also happened for this controller for run 1. If improvements in the x- and
y- directions are most important than the non-scaled controller with the B-matrix of the second solution
would be a very good solution. For the z-direction not that much improvement is made in magnitude. The
oscillating behavior is a lot less than in the situation without controller.

11.2.3. Scaled system
In this section the scaled system results of the H∞-norm are compared to the situation without a controller.
For run 1 the results are presented in figures 11.27, 11.28 and 11.29. The x-direction shows again that the
controller is optimal for this direction. The y-direction shows again a similar shape but with a smaller magni-
tude and less oscillations. Compared to the non-scaled situation it actually shows that the scaled matrix has a
worse result. Even though the oscillations are less in this situation, the magnitude of the deviations is almost
10 times bigger than for the non-scaled controller. The z-direction is very different from the results before for
this direction. There are still a lot of oscillations, but smaller in magnitude than in the non-scaled situation.

For the scaled controller in run 4 the comparison can be found in figures 11.30, 11.31 and 11.32. It is not
surprising to see that in the x-direction the controller corrects all deviations again. For the y-direction a great
improvement is made in the magnitude and oscillating behavior. The only problem is the few very high peaks
in the controller solution. Because of this value the performance based on the maximum absolute amplitude
will be a lot higher than in the non-scaled situation. The amount of oscillations is less than in the non-scaled
situation, but the magnitude of the deviations is bigger. The z-direction shows the same type of result as in
run 1 for this controller: a lot of oscillations, but a smaller magnitude than the non-scaled situation.

To put some of these results into numbers again, tables 11.5, 11.6, 11.7 and 11.8 show the absolute am-
plitude improvement by the different type of controllers. Looking at tables 11.6 and 11.8 shows again no real
relation between different models used or controllers. It does confirm that even with an entirely different
solution the performance of the controller is still very good. It just depends on the choice of correction how
well a certain adjustment behaves. For run 4 for example it is obvious that the z-direction correction is less
effective than for the other solutions.

11.3. Final remarks
The H∞ norm shows generally very good results. Tables 11.2, 11.4, 11.6 and 11.8 show very good perfor-
mances for both types of solutions for both runs. It shows that for different types of corrections or possible
solutions the H∞-norm can be used to find the correct parameters corresponding to this solution. A remark-

88 11. Simulating with controllers

Figure 11.6: Run 1 comparison of total deviation in y-direction before and after controller in [m].

Table 11.5: Maximum absolute deviation of different solutions of run 1

xmax [m] ymax [m] zmax [m]
Original 7.8095 ·10−4 0.0177 1.9855 ·10−4

H∞-norm 0 7.4643 ·10−5 2.4510 ·10−5

H∞-norm of scaled system 0 6.8915 ·10−4 9.7659 ·10−6

able result for the x-direction is found, which implies that the optimization of the H∞ norm works from the
first variable to the last. Since the other directions also show very good results this is not a problem.

The performance of the designed H2-norm could not be tested for the two test runs, since these runs take
too long computation time. It would be interesting to see if a norm with another objective gives a different
performance for the controllers. The H2-norm would optimize the general performance of the system, which
would probably have led to a worse result, since the specific problem here are the peak values. The peak
values are the objective of the H∞ norm.

However, using the workaround, this model still gives useful information. For example the methods used
for finding a controller proved to be effective. When the exact data of the model is used as input, this will
also lead to a situation for which these methods can be used. The original choice for these type of controllers
is based on using an optimization method rather than an analytic solution. The computational load for one
run with the controller is unfortunately very large. This means that testing a possible adjustment or solution
might take a while. The H2 norm takes specifically more time than the H∞ norm to get to a result. The final
combination of models and the solution methods for controllers gives a good testing model for possible phys-
ical solutions. The assumption for the static state controller is that the controller is in some way a function of
the state. As discussed before this could mean for instance adding a spring of a certain spring constant and
dampers with a certain damping coefficient as solution to the end-effector on appropriate places.

The H∞-norm has been tested on two different situations. The results show a very good performance

Table 11.6: Percentage of improvement of maximum absolute deviation of different solutions of run 1

xmax improvement [%] ymax improvement [%] zmax improvement [%]
H∞-norm 100 99.58 87.66
H∞-norm of scaled system 100 96.11 95.07

11.3. Final remarks 89

Figure 11.7: Run 1 comparison of total deviation in z-direction before and after controller in [m].

Table 11.7: Maximum absolute deviation of different solutions of run 4

xmax [m] ymax [m] zmax [m]
Original 0.0011 0.0094 1.5049 ·10−4

H∞-norm 0 8.2640 ·10−5 4.6829 ·10−5

H∞-norm of scaled system 0 8.0809 ·10−4 1.9925 ·10−5

for these situations. Generally speaking it does not make that much of a difference if the scaled or non-
scaled model is used. In most situations the scaled model gives a smoother result with less oscillations, but
in magnitude it cannot be said beforehand if the results will be better or worse. The H2-norm is very difficult
to test. As it turns out it is very heavy to compute the results. The behavior of the controller calculated from
the H∞-norm is luckily that good that it can be concluded that it is possible to find a solution to the problem
this way.

The choice for the exact type of controller is also depended on what you can adjust. For example the
matrix B in the system describes in which equations it is possible to adjust something. The choice for u
is also determined by the physical possibilities. If some solution is suggested its influence on the original
system of equations must be described and added to the system this way. The only difficulty is that if u is
not a linear function of x or w variables, the method for calculating the controller matrix Dc becomes more
difficult. The dynamic controller discussed in this thesis never gave a solid result for controller matrices. Due
to some calculations needed (near) singularity of the matrices exists. This does not lead to good behavior. The
static state controller is therefore the only controller tested in this thesis. This is a much simpler controller,
but gives already good results.

Table 11.8: Percentage of improvement of maximum absolute deviation of different solutions of run 4

xmax improvement [%] ymax improvement [%] zmax improvement [%]
H∞-norm 100 99.12 68.88
H∞-norm of scaled system 100 91.40 86.76

90 11. Simulating with controllers

Figure 11.8: Run 4 comparison of total deviation in x-direction before and after controller in [m].

Figure 11.9: Run 4 comparison of total deviation in y-direction before and after controller in [m].

11.3. Final remarks 91

Figure 11.10: Run 4 comparison of total deviation in z-direction before and after controller in [m].

Figure 11.11: Run 1 comparison of total deviation in x-direction before and after scaled controller in [m].

92 11. Simulating with controllers

Figure 11.12: Run 1 comparison of total deviation in y-direction before and after scaled controller in [m].

Figure 11.13: Run 1 comparison of total deviation in z-direction before and after scaled controller in [m].

11.3. Final remarks 93

Figure 11.14: Run 4 comparison of total deviation in x-direction before and after scaled controller in [m].

Figure 11.15: Run 4 comparison of total deviation in y-direction before and after scaled controller in [m].

94 11. Simulating with controllers

Figure 11.16: Run 4 comparison of total deviation in z-direction before and after scaled controller in [m].

Figure 11.17: Feedback part of the airbearing DcC x of the system in [N].

11.3. Final remarks 95

Figure 11.18: Feedback part of the spindle DcC x of the system in [N].

Figure 11.19: Scaled feedback part of the airbearing DcC x of the system in [N].

96 11. Simulating with controllers

Figure 11.20: Scaled feedback part of the spindle DcC x of the system in [N].

Figure 11.21: Run 1 comparison of total deviation in x-direction before and after controller in [m].

11.3. Final remarks 97

Figure 11.22: Run 1 comparison of total deviation in y-direction before and after controller in [m].

Figure 11.23: Run 1 comparison of total deviation in z-direction before and after controller in [m].

98 11. Simulating with controllers

Figure 11.24: Run 4 comparison of total deviation in x-direction before and after controller in [m].

Figure 11.25: Run 4 comparison of total deviation in y-direction before and after controller in [m].

11.3. Final remarks 99

Figure 11.26: Run 4 comparison of total deviation in z-direction before and after controller in [m].

Figure 11.27: Run 1 comparison of total deviation in x-direction before and after scaled controller in [m].

100 11. Simulating with controllers

Figure 11.28: Run 1 comparison of total deviation in y-direction before and after scaled controller in [m].

Figure 11.29: Run 1 comparison of total deviation in z-direction before and after scaled controller in [m].

11.3. Final remarks 101

Figure 11.30: Run 4 comparison of total deviation in x-direction before and after scaled controller in [m].

Figure 11.31: Run 4 comparison of total deviation in y-direction before and after scaled controller in [m].

102 11. Simulating with controllers

Figure 11.32: Run 4 comparison of total deviation in z-direction before and after scaled controller in [m].

12
Conclusion

In this thesis a mathematical model has been derived for the end-effector of a one-armed polishing robot.
This mathematical model exists of two parts: the polishing brush and a model extended to the airbearing.
Such a model has to our knowledge not been developed before for this exact process and robot. With this
model the actual problem has been simulated for different values of impact behavior. The results of these
simulations are then used to design a correction for the unwanted behavior. This has been done with static
state controllers. The controllers are found by optimization methods. The two different optimization meth-
ods treated in this thesis are minimizing the H∞-norm and minimizing the H2-norm.

The research question for this thesis is: what is causing the jumping of the polishing tool in specific situ-
ations on non-flat surfaces and how can this be prevented? The cause that has been found with the simula-
tions is the flexibility in the spindle and the airbearing of the polishing robot. Together with resultant forces,
caused by the rotation of the tool and a certain angle of elevation of the material, the flexibility causes the tool
to jump in all directions. The method tested to correct this is a static state feedback where the controller is
found by minimizing the H∞-norm. The results show that this type of controller and feedback can decrease
the jumping to 0−10 % of the original displacements.

The limitations of the simulation of the displacements have been that the forces, caused in the polishing
disc by impact behavior on the material, are unrealistically big for these types of models. To have a realistic
result of final displacements in the airbearing and spindle model, the forces from the polishing disc are scaled
to describe the problem. This method does take into account the frequency and relative magnitude between
axes of the forces. The limitation of the correction or feedback method is that only the very basic static state
feedback has been tested. Other types of feedback methods such as the dynamic feedback could improve the
performance of the polishing tool end-effector even more.

When an actual solution for the polishing robot needs to be tested, the model and controller methods
presented in this thesis can be used to approximate the needed parameters and predict an approximation of
the performance for that solution.

103

13
Future work and recommendations

In this thesis an entire model is defined for a specific robot and polishing process. There is still room for
improvement, specifically for some properties of the process. For example the material geometry of the ex-
ample mould is based on a guess. This geometry determines the resultant forces and therefore the angular
velocities and with that the impact forces. Adding an actual mould geometry might even solve the problem
of too high impact forces. Another element that can add to the quality of the model is a study on the material
properties such as the friction coefficient and impact constants such as the impact duration approximation
and the spring constant.

Another entirely different method would be the use of measurements. If forces in the x- and y-direction
could be measured, the impact forces would be actually known and could be corrected a lot easier. This would
avoid the entire polishing disc model and therefore the magnitude of impact forces. Taking measurements
during such a process is difficult, since the use of liquids complicate the use of extra electrical devices.

In this thesis only the static state feedback has successfully been applied without singularity problems.
There are other ways in Matlab to use the same methods but it might give a result different from that of the
Yalmip package. For example as used in [36] the LMI toolbox is used instead of the Yalmip toolbox. There also
exist build-in Matlab functions for minimizing the H2 and H∞ norm. But solving the singularity problem for
the dynamic controller would also give an extra controller that can vary over time. Another method discussed
in this thesis but not applied is using an observer in combination with a state controller. If a proper LMI defi-
nition is found for calculating the H∞-norm it could also extend the controller to a situation where only part
of the state is known.

Another entirely different direction which has not been studied during this thesis is solving the problem
as a rotating beam partial differential equation. The impact forces are then part of the boundary conditions
and the final solution can be calculated by using techniques such as finite element methods. The same diffi-
culty remains however with the description of the impact forces.

To conclude there are a lot of ways to extend this model or to adjust this model, but the final product of
this thesis can be used for further research by add an actual mould geometry and, if this indeed solves the
magnitude of impact forces, use the entire model. Otherwise the workaround still shows the behavior of the
impact forces and the results are still helpful. Then actual solutions for the robot itself can be tested using
this product. By adjusting the Dc matrix of the state representation in such a manner that it describes the
possible solution. The simulation model can then show if the solution does what it supposed to do and can
even give a starting approximation of design parameters.

105

A
Simulation results without damping

In this appendix the results are presented that are not in detail discussed in the corresponding chapter.

A.1. Results of run 2
Figures A.1, A.2, A.3, A.4 and A.5.

Figure A.1: θ, θ̇,ψ,ψ̇ presented over 5 seconds.

A.2. Extra results of run 4
Figures A.6 and A.7.

107

108 A. Simulation results without damping

Figure A.2: Forces in the three principal directions in [N].

Figure A.3: Deviations in x-direction without damping in [m].

A.2. Extra results of run 4 109

Figure A.4: Deviations in y-direction without damping in [m].

Figure A.5: Deviations in z-direction without damping in [m].

110 A. Simulation results without damping

Figure A.6: Deviations in y-direction without damping in [m].

Figure A.7: Deviations in z-direction without damping in [m].

B
Simulation results with damping

In this appendix the results are presented that are not in detail discussed in the corresponding chapter.

B.1. Extra results run 1
Damping of 1%. Figures B.1, B.2 and B.3.

Figure B.1: Deviations in x-direction with 1 % damping in [m].

B.2. Results run 2
B.2.1. First damping
Damping of 0.1%. Figures B.4, B.5 and B.6.

B.2.2. Second damping
Damping of 1 %. Figures B.7, B.8 and B.9.

111

112 B. Simulation results with damping

Figure B.2: Deviations in y-direction with 1 % damping in [m].

B.3. Extra results run 4
B.3.1. First damping
Damping of 0.1%. Figures B.10, B.11 and B.12.

B.3.2. Second damping
Damping of 1 %. Figures B.13, B.14 and B.15.

B.3. Extra results run 4 113

Figure B.3: Deviations in z-direction with 1 % damping in [m].

Figure B.4: Deviations in x-direction with 0.1 % damping in [m].

114 B. Simulation results with damping

Figure B.5: Deviations in y-direction with 0.1 % damping in [m].

Figure B.6: Deviations in z-direction with 0.1 % damping in [m].

B.3. Extra results run 4 115

Figure B.7: Deviations in x-direction with 1 % damping in [m].

Figure B.8: Deviations in y-direction with 1 % damping in [m].

116 B. Simulation results with damping

Figure B.9: Deviations in z-direction with 1 % damping in [m].

Figure B.10: Deviations in x-direction with 0.1 % damping in [m].

B.3. Extra results run 4 117

Figure B.11: Deviations in y-direction with 0.1 % damping in [m].

Figure B.12: Deviations in z-direction with 0.1 % damping in [m].

118 B. Simulation results with damping

Figure B.13: Deviations in x-direction with 1 % damping in [m].

Figure B.14: Deviations in y-direction with 1 % damping in [m].

B.3. Extra results run 4 119

Figure B.15: Deviations in z-direction with 1 % damping in [m].

C
Simulation results of controllers

In this appendix the results are presented that are not in detail discussed in the corresponding chapter.

C.1. Controller matrices for first solution
The exact matrices resulting from optimizing the LMI’s are presented in this section.

C.1.1. Static state controller and the H2-norm
The controller matrix found for 0.1% damping is given by

Dc =

−2.1030 ·1017 2.0970 ·109 3.0127 ·1017 4.3969 ·108 0 0 0 0 0 0 0 0
2.9994 ·1017 −2.9909 ·109 −5.6768 ·1017 3.8381 ·108 0 0 0 0 0 0 0 0

0 0 0 0 −2.1030 ·1017 2.0970 ·109 3.0127 ·1017 4.3969 ·108 0 0 0 0
0 0 0 0 −2.9994 ·1017 −2.9909 ·109 −5.6768 ·1017 3.8381 ·108 0 0 0 0
0 0 0 0 0 0 0 0 −4.5023 ·1016 1.7683 ·108 1.6719 ·1016 4.5613 ·107

0 0 0 0 0 0 0 0 1.6744 ·1016 −1.7638 ·107 −9.6861 ·1016 3.9255 ·108


(C.1)

The scaled controller matrix with 0.1 % damping is

Dc =

−1.3559 ·1012 2.9271 ·105 1.1746 ·1011 2.1971 ·106 0 0 0 0 0 0 0 0
−6.8568 ·109 1.0562 ·105 −2.1865 ·1013 9.4967 ·105 0 0 0 0 0 0 0 0

0 0 0 0 −1.3559 ·1012 2.9271 ·105 1.1746 ·1011 2.1971 ·106 0 0 0 0
0 0 0 0 −6.8568 ·109 1.0562 ·105 −2.1865 ·1013 9.4967 ·105 0 0 0 0
0 0 0 0 0 0 0 0 −1.3346 ·1012 1.1758 ·107 3.8282 ·108 4.3916 ·106

0 0 0 0 0 0 0 0 −5.5072 ·107 4.7306 ·105 −5.3423 ·1012 3.1032 ·105


(C.2)

C.1.2. Static state controller and the H infinity-norm
The controller matrix found for 0.1% damping is given by

Dc =

−1.7760 ·106 7.1658 ·102 4.8323 ·103 −0.6122 0 0 0 0 0 0 0 0
4.8322 ·103 −1.7826 −3.0898 ·104 1.4777 ·102 0 0 0 0 0 0 0 0

0 0 0 0 −1.7760 ·106 7.1658 ·102 4.8323 ·103 −0.6122 0 0 0 0
0 0 0 0 4.8322 ·103 −1.7826 −3.0898 ·104 1.4777 ·102 0 0 0 0
0 0 0 0 0 0 0 0 −4.3132 ·106 7.4990 ·102 2.8127 ·105 −48.0846
0 0 0 0 0 0 0 0 2.8169 ·105 15.5677 −7.6372 ·105 6.3364 ·102


(C.3)

121

122 C. Simulation results of controllers

The scaled controller matrix with 0.1 % damping is

Dc =

−5.3415 −0.0758 0.4234 −0.0556 0 0 0 0 0 0 0 0
0.0564 −0.1047 −44.1852 −3.7897 0 0 0 0 0 0 0 0

0 0 0 0 −5.3415 −0.0758 0.4234 −0.0556 0 0 0 0
0 0 0 0 0.0564 −0.1047 −44.1852 −3.7897 0 0 0 0
0 0 0 0 0 0 0 0 −5.6772 −0.1203 −0.0041 −0.0811
0 0 0 0 0 0 0 0 −0.0204 −0.1220 −16.1900 −0.1105


(C.4)

C.2. Controller matrices for second solution
When the B-matrix is changed to a different type of solution, the controller matrices change. The scaled and
original controller matrix from the H∞-norm for 0.1 % damping are then given by

Dc =

9.0544 ·107 0.3096 1.8918 ·105 −0.2062 0 0 0 0 0 0 0 0
8.9506 ·106 −4.4892 −3.2651 ·106 −17.2076 0 0 0 0 0 0 0 0

0 0 0 0 9.0544 ·107 0.3096 1.8918 ·105 −0.2062 0 0 0 0
0 0 0 0 8.9506 ·106 −4.4892 −3.2651 ·106 −17.2076 0 0 0 0
0 0 0 0 0 0 0 0 2.1167 ·108 −18.0526 6.5185 ·107 −13.4988
0 0 0 0 0 0 0 0 5.6515 ·108 −46.9699 −5.1039 ·107 −36.6347


(C.5)

The scaled controller matrix with 0.1 % damping is

Dc =

−4.3912 ·10−5 −0.1127 −0.0029 −0.5432 0 0 0 0 0 0 0 0
0.0027 −2.2877 −0.9858 −191.9876 0 0 0 0 0 0 0 0

0 0 0 0 −4.1680 ·10−5 −0.1095 −0.0019 −0.5654 0 0 0 0
0 0 0 0 0.0035 −1.1354 −0.6822 −200.3145 0 0 0 0
0 0 0 0 0 0 0 0 3.9457 ·10−5 −0.5892 −1.5791 ·10−4 −0.3606
0 0 0 0 0 0 0 0 6.6238 ·10−4 −1.8623 −0.0011 −4.0172


(C.6)

D
Matlab code

D.1. Polishing brush ode function

1 function dwdt = odeBrush21 (t ,w) %two angle model with impuls , variable material
2 %Variables :
3 vars = getGlobalVars ;
4 p = vars (1) ;
5 omega = vars (2) ;
6 kp = vars (3) ;
7 %measurements :
8 rd = 0 . 0 2 0 * 0 . 5 ; % radius of brush in [m]
9 rb = 0 . 0 0 3 * 0 . 5 ; %radius of rod between tool and a i r bearing [m]

10 h = 0 . 0 1 0 ; %height brush in [m]
11 hb = 0 . 0 8 9 ; %height of a i r bearing [m]
12 wb = 0 . 0 5 ; %width of airbearing [m]
13 r = sqrt (rd^2 + (h/2) ^2) ; % = sqrt (0.000125)= 0.01118 [m]
14 Rrot = 0 . 0 0 3 ; %radius of robot rotation [m]
15 l = 0 . 0 2 0 ; %length of rod between tool and a i r bearing [m]
16 A = rb^2* pi ; %Area of cross section rod between tool and airbearing [m^2]
17 v = 0 . 0 0 1 ; %longitude speed vector [m/ s]
18

19 %masses :
20 m = 0 . 2 ; %mass brush in kg
21 mrod = 0 ; %mass of rod in kg
22 mbearing = 0 . 3 3 7 ; %mass a i r bearing in kg
23 Ibearing = mrod * (l ^2/12 + (hb/2) ^2)+ m* ((4 / 3) * ((h/2) ^2) + 4*(rd ^2) + ((hb/2)^2+ l

^2)) +mbearing * ((hb/2) ^2+(wb/2) ^2) ; %Moment of i n e r t i a assumed from center of
rotation in a i r bearing [kg m^2]

24 %masses reduced :
25 mz = mbearing ;
26 mx = Ibearing / ((hb/2 + l + h/2) ^2) −m − mrod ; %Not correct ?
27

28 %Springconstants :
29 E = 2*10^11 ; % Youngs modulus for s t e e l [N/m^2]
30 Ib = (rb ^4) * pi / 4 ; %Cross sect ional moment of i n e r t i a [m^4]
31 kt = 110*10^6; % t r a n s l a t i o n a l springconstant a i r bearing [N/m] (multiplied by

6 ?)
32 kx = 3*E* Ib / (l ^3) ; %t r a n s l a t i o n a l vibration from bending s t i f f n e s s rod [N/m]
33 kz = E*A/ l ; %S t i f f n e s s of the toolholder and rod [N/m]
34 kr = 23*10^6; %Torsional s t i f f n e s s a i r bearing [Nm/rad]

123

124 D. Matlab code

35 cp = 4.76*10^(−2) ; %damper c o e f f i c i e n t of s l u r r y with diamond grains , based on
c r i t i c a l l y damped assumption [Ns/m]

36

37 %Moments of i n e r t i a :
38 I = 0.5*m* r ^2; %+ m* Rrot ^2? Moment of i n e r t i a around principal axis z [kgm^2]
39 I0 = (1/12) *m* (3 * r^2+h^2) ; %+ m* Rrot ^2? Moment of i n e r t i a around principal axes

x and y [kgm^2]
40

41 %Angles :
42 mu = 0.5* sqrt (2) * 0 . 5 ; %Coe ff i c ient of f r i c t i o n , not correct probably
43 sigma = atan (mu) ; %angle of f r i c t i o n
44

45 %variable geometry of material
46 %x i = [elevation ([delta_p / sqrt (2) +rd delta_p / sqrt (2)]) ;
47 % elevation ([delta_p / sqrt (2)−rd delta_p / sqrt (2)]) ;
48 % elevation ([delta_p / sqrt (2) delta_p / sqrt (2) +rd]) ;
49 % elevation ([delta_p / sqrt (2) delta_p / sqrt (2)−rd])] ;
50

51 Center1 = Rrot * cos (omega* t) +v * t + rd+Rrot ;
52 CenterToolLoc = [Center1 ; Rrot * sin (omega* t)] ;
53 Vel1 = −omega* Rrot * sin (omega* t) +v ;
54 CenterToolVel = [Vel1 ; omega* Rrot * cos (omega* t)] ;
55 psi0 = pi / 2 ;
56 rod0 = tube_elevation (CenterToolVel , r+Rrot , 0) ;
57 theta0 = rod0 ;
58 C1 = rd * abs (cos (w(1))−theta0) * CenterToolVel /norm(CenterToolVel) +CenterToolLoc ;
59 C2 = −rd * abs (cos (w(1))−theta0) * CenterToolVel /norm(CenterToolVel) +CenterToolLoc ;
60 Center3 = (Rrot−rd * abs (cos (w(3)−psi0))) * cos (omega* t) + rd+Rrot +v * t ;
61 C3 = [Center3 ; (Rrot−rd * abs (cos (w(3)−psi0))) * sin (omega* t)] ; %Not sure
62 Center4 = (Rrot+rd * abs (cos (w(3)−psi0))) * cos (omega* t) + rd+Rrot +v * t ;
63 C4 = [Center4 ; (Rrot+rd * abs (cos (w(3)−psi0))) * sin (omega* t)] ; %Not sure
64 x i = [tube_elevation (CenterToolVel , C1(1) , C1(2)) ;
65 tube_elevation (CenterToolVel , C2(1) , C2(2)) ;
66 tube_elevation (CenterToolVel , C3(1) , C3(2)) ;
67 tube_elevation (CenterToolVel , C4(1) , C4(2))] ;
68 hCR =0. 5 *(tubeFunction (C1(1) ,C1(2)) +tubeFunction (C2(1) ,C2(2))) ;
69 dh3 = hCR − tubeFunction (C3(1) , C3(2)) ; %The dif ference in height from point

below center of rotation to material [m]
70 dh4 = hCR − tubeFunction (C4(1) , C4(2)) ;
71

72 alpha = abs (x i (2))−sigma ;
73 beta = abs (x i (1)) + sigma ;
74 Mangle = pi /2 − atan (2* rd/h) ; %angle in disc of corner points to the center of

rotation
75

76 kappa = 0 ; %measure in which the body i s r e f l e c t e d
77

78 hC34 = r * sin (w(3)−psi0) ; %height of point C3 w. r . t . center of rotation [m]
79

80 tm = pi * sqrt (m/kp) / 2 ; %approximation of duration of impact of C3 or C4 on the
material [s]

81 Mit = 0 ;
82 Mjt = 0 ;
83 v0 = w(4) * r ; %tangential v e l o c i t y on the material * cos (alpha+Mangle) [m/ s]
84 v1 = w(2) * r ;

D.1. Polishing brush ode function 125

85 delta0 = sqrt (m/kp) * abs (v0) ;%sqrt (m/kp) * abs (v0) ; %small possible deviation ,
assuming l iq u id layer of 1 mm = atan (0.001/ r)

86 delta1 = atan (0.001/ r) ;%sqrt (m/kp) * abs (w(2)) ;%; sqrt (m/kp) * abs (w(2))
87 i f (dh3>0)
88 i f (dh3−abs (hC34) <= delta0 && (w(3)−psi0) >0)
89 impuls = m * v0 *(1 +kappa) ;
90 Mjt = −impuls * r /tm ;%
91 w(4) = −m* v0 *(1+kappa) * rd /(I0 * abs (cos (w(3)−psi0))) ;%* abs (cos (w(3)−psi0))
92 end
93 else
94 i f (dh3 − hC34<delta0 && w(4) >0)
95 impuls = m * v0 *(1 +kappa) ;
96 Mjt = −impuls * r /tm ; %
97 w(4) = −m* v0 *(1+kappa) * rd /(I0 * abs (cos (w(3)−psi0))) ;%* abs (cos (w(3)−psi0))
98 end
99 end

100 i f (dh4>0)
101 i f (abs (dh4)−abs (hC34) <= delta0 && (w(3)−psi0) <0)
102 impuls = m * v0 *(1 +kappa) ;
103 Mjt = −impuls * r /tm ; %
104 w(4) = −m* v0 *(1+kappa) * rd /(I0 * abs (cos (w(3)−psi0))) ; %* abs (cos (w(3)−psi0))
105 end
106 else
107 i f (dh4+ hC34<delta0 && w(4) <0)
108 impuls = m * v0 *(1 +kappa) ;
109 Mjt = −impuls * r /tm ; %
110 w(4) = −m* v0 *(1+kappa) * rd /(I0 * abs (cos (w(3)−psi0))) ; %* abs (cos (w(3)−psi0))
111 end
112 end
113

114 i f (abs (w(1)−theta0−x i (1)) > delta1 && w(2) ~= 0) %abs (w(1)−theta0−x i (1)) > delta1
&& abs (w(1)−x i (1)) > delta1 &&

115 impuls = m * v1 *(1 +kappa) ;
116 Mit = −impuls * r /tm ; %
117 w(2) = −m*w(2) *(1+kappa) * (r) * rd /(I0 * abs (cos (w(1)−theta0))) ; %* abs (cos (w

(1)−theta0))
118 end
119

120

121 %Constant force :
122 Fp = 10; %Pressure force for polishing , between 10−15 [N]
123 FC2= Fp* sin (beta) / sin (alpha+beta) ;
124 FC1= (Fp/cos (beta)) *(1− cos (alpha) * sin (beta) / sin (alpha+beta)) ;
125

126 Mi = (FC1* cos (beta+Mangle)−FC2* cos (alpha+Mangle)) * r + Mit ; %
127 Mj = Mjt ;
128 Mk = 0 ;
129 %i f (t ==0)
130 % f i l e I D = fopen (’ forcemoments . txt ’ , ’w’) ;
131 %else
132 % f i l e I D = fopen (’ forcemoments . txt ’ , ’ a ’) ;
133 %end
134 %f p r i n t f (f i l e I D , ’%.4 f %.4 f %.4 f \n ’ , FC2 , FC1 , Mi) ;
135 %f c l o s e (f i l e I D) ;
136

137 dwdt = [w(2) ;

126 D. Matlab code

138 Mi/ I0− I *p*w(4) / I0 ; %+ r ^2*w(2) *cp/ I0theta
139 w(4) ;
140 Mj/ I0+ I *p*w(2) / I0] ;
141

142 end

D.2. Airbearing ode function

1 function dwdt = odeAir8 (t ,w) %Ful l airbearing + two angle model for function1
2 %Variables :
3

4 vars = getGlobalVars ;
5 p = vars (1) ;
6 omega = vars (2) ;
7 kp = vars (3) ;
8

9 Damping = getGlobalDamp ;
10 cA = Damping(1) ;
11 cD = Damping(2) ;
12 cz = Damping(3) ;
13 cm = Damping(4) ;
14 cAZ = Damping(5) ;
15

16 %measurements :
17 rd = 0 . 0 2 0 * 0 . 5 ; % radius of brush in [m]
18 rb = 0 . 0 0 3 * 0 . 5 ; %radius of rod between tool and a i r bearing [m]
19 h = 0 . 0 1 0 ; %height brush in [m]
20 hb = 0 . 0 8 9 ; %height of a i r bearing [m]
21 wb = 0 . 0 5 ; %width of airbearing [m]
22 r = sqrt (rd^2 + (h/2) ^2) ; % = sqrt (0.000125)= 0.01118 [m]
23 Rrot = 0 . 0 0 3 ; %radius of robot rotation [m]
24 l = 0 . 0 2 0 ; %length of rod between tool and a i r bearing [m]
25 A = rb^2* pi ; %Area of cross section rod between tool and airbearing [m^2]
26 v = 0 . 0 0 1 ; %longitude speed vector [m/ s]
27 htot =0.5*h+ l +0.5*hb ; %t o t a l length between center of airbearing and center of

rotation [m]
28

29 %masses :
30 m = 0 . 2 ; %mass brush in kg
31 mrod = 0 ; %mass of rod in kg
32 mbearing = 0 . 3 3 7 ; %mass a i r bearing in kg
33 Ibearing = mrod * (l ^2/12 + (hb/2) ^2)+ m* ((4 / 3) * ((h/2) ^2) + 4*(rd ^2) + ((hb/2)^2+ l

^2)) +mbearing * ((hb/2) ^2+(wb/2) ^2) ; %Moment of i n e r t i a assumed from center of
rotation in a i r bearing [kg m^2]

34 %masses reduced :
35 mz = mbearing ;
36 mx = Ibearing / ((hb/2 + l + h/2) ^2) −m − mrod ; %Not correct ?
37

38 %Springconstants :
39 E = 2*10^11 ; % Youngs modulus for s t e e l [N/m^2]
40 Ib = (rb ^4) * pi / 4 ; %Cross sect ional moment of i n e r t i a [m^4]
41 kt = 110*10^6; % t r a n s l a t i o n a l springconstant a i r bearing [N/m] (multiplied by

6 ?)
42 kx = 3*E* Ib / (l ^3) ; %t r a n s l a t i o n a l vibration from bending s t i f f n e s s rod [N/m]
43 kz = E*A/ l ; %S t i f f n e s s of the toolholder and rod [N/m]

D.2. Airbearing ode function 127

44 kr = 23*10^6; %Torsional s t i f f n e s s a i r bearing [Nm/rad]
45 ktot = kt * kr / (kr+kt * (htot ^2)) ; %t o t a l spring constant of airbearing [N/m]
46

47 %Moments of i n e r t i a :
48 I = 0.5*m* r ^2; %+ m* Rrot ^2? Moment of i n e r t i a around principal axis z [kgm^2]
49 I0 = (1/12) *m* (3 * r^2+h^2) ; %+ m* Rrot ^2? Moment of i n e r t i a around principal axes

x and y [kgm^2]
50

51 %Angles :
52 mu = 0.5* sqrt (2) * 0 . 5 ; %Coe ff i c i ent of f r i c t i o n , not correct probably
53 sigma = atan (mu) ; %angle of f r i c t i o n
54

55 ltD = getGlobalLt ;
56 teind = getGlobalTermt ;
57 StepSize= teind / (ltD−1) ;
58 for i = 1 : (ltD−1)
59 i f (StepSize * (i −1)<= t && StepSize * i >= t)
60 wD = (t−StepSize * (i −1)) * getGlobalWd (i +1) / StepSize + (1− t +StepSize * (i −1)) *

getGlobalWd (i) / StepSize ;
61 end
62 end
63

64 Center1 = Rrot * cos (omega* t) +v * t + rd+Rrot ;
65 CenterToolLoc = [Center1 ; Rrot * sin (omega* t)] ;
66 Vel1 = −omega* Rrot * sin (omega* t) +v ;
67 CenterToolVel = [Vel1 ; omega* Rrot * cos (omega* t)] ;
68 psi0 = pi / 2 ;
69 rod0 = tube_elevation (CenterToolVel , r+Rrot , 0) ;
70 theta0 = rod0 ;
71 C1 = rd * abs (cos (wD(1))−theta0) * CenterToolVel /norm(CenterToolVel) +CenterToolLoc ;
72 C2 = −rd * abs (cos (wD(1))−theta0) * CenterToolVel /norm(CenterToolVel) +CenterToolLoc ;
73 Center3 = (Rrot−rd * abs (cos (wD(3)−psi0))) * cos (omega* t) + rd+Rrot +v * t ;
74 C3 = [Center3 ; (Rrot−rd * abs (cos (wD(3)−psi0))) * sin (omega* t)] ; %Not sure
75 Center4 = (Rrot+rd * abs (cos (wD(3)−psi0))) * cos (omega* t) + rd+Rrot +v * t ;
76 C4 = [Center4 ; (Rrot+rd * abs (cos (wD(3)−psi0))) * sin (omega* t)] ; %Not sure
77 x i = [tube_elevation (CenterToolVel , C1(1) , C1(2)) ;
78 tube_elevation (CenterToolVel , C2(1) , C2(2)) ;
79 tube_elevation (CenterToolVel , C3(1) , C3(2)) ;
80 tube_elevation (CenterToolVel , C4(1) , C4(2))] ;
81 hCR =0. 5 *(tubeFunction (C1(1) ,C1(2)) +tubeFunction (C2(1) ,C2(2))) ;
82 dh3 = hCR − tubeFunction (C3(1) , C3(2)) ; %The dif ference in height from point

below center of rotation to material [m]
83 dh4 = hCR − tubeFunction (C4(1) , C4(2)) ;
84

85 alpha = abs (x i (2))−sigma ;
86 beta = abs (x i (1)) + sigma ;
87 Mangle = pi /2 − atan (2* rd/h) ; %angle in disc of corner points to the center of

rotation
88

89 kappa = 0 ; %measure in which the body i s r e f l e c t e d
90

91 hC34 = r * sin (wD(3)−psi0) ; %height of point C3 w. r . t . center of rotation [m]
92

93 tm = pi * sqrt (m/kp) / 2 ; %approximation of duration of impact of C3 or C4 on the
material [s]

94 F i t = 0 ;

128 D. Matlab code

95 F j t = 0 ;
96 v0 = wD(4) * r ; %tangential v e l o c i t y on the material * cos (alpha+Mangle) [m/ s]
97 v1 = wD(2) * r ;
98 delta0 = sqrt (m/kp) * abs (v0) ;%sqrt (m/kp) * abs (v0) ; %small possible deviation ,

assuming l iq u id layer of 1 micron = atan (1*10^(−6) / r)
99 delta1 = atan (0.001/ r) ;% atan (0.000001/ r) ; sqrt (m/kp) * abs (wD(2)) ;

100 i f (dh3>0) %p o s i t i v e psi
101 i f (dh3−abs (hC34) <= delta0 && (wD(3)−psi0) >0)
102 impuls = m * v0 *(1 +kappa) ;
103 F j t = abs (impuls) /tm ; %
104 end
105 else %p o s i t i v e psi
106 i f (dh3 − hC34<delta0 && wD(4) >0)
107 impuls = m * v0 *(1 +kappa) ;
108 F j t = impuls/tm ; %
109 end
110 end
111 i f (dh4>0) %negative psi
112 i f (abs (dh4)−abs (hC34) <= delta0 && (wD(3)−psi0) <0)
113 impuls = m * v0 *(1 +kappa) ;
114 F j t = −abs (impuls) /tm ; %
115 end
116 else %negative psi
117 i f (dh4+ hC34<delta0 && wD(4) <0)
118 impuls = m * v0 *(1 +kappa) ;
119 F j t = −impuls/tm ; %
120 end
121 end
122

123 i f (abs (wD(1)−theta0−x i (1)) > delta1 && w(2) ~= 0) % abs (wD(1)−x i (1)) > delta1 &&
124 impuls = m * v1 *(1 +kappa) ;
125 F i t = −impuls/tm ; %
126 end
127

128 %Constant force :
129 Fp = 10; %Pressure force for polishing , between 10−15 [N]
130 FC2= Fp* sin (beta) / sin (alpha+beta) ;
131 FC1= (Fp/cos (beta)) *(1− cos (alpha) * sin (beta) / sin (alpha+beta)) ;
132 f a c t o r = 1 ; %400
133 Fx = F j t * sin (alpha) / f a c t o r ;
134 Fy = F i t * sin (beta) / f a c t o r ;
135 Fz = Fp+(abs (F i t) * cos (beta) + abs (F j t) * cos (alpha)) / f a c t o r ;
136 i f (w(11) >0)%i f there i s no contact with the material : no normal force to work

against g r a v i t y and the polishing pressure
137 Fp = Fp + mz*9.81*w(9) ;
138 Fz = Fz − m*9.81*w(11)−Fp ;
139 end
140 w1 = w(2) ;
141 w2 = −ktot *w(1) /mx + kx * (w(3)−w(1)) /mx−(cA+cD) *w(2) /mx + cD*w(4) /mx;
142 w3 = w(4) ;
143 w4 = −kx * (w(3)−w(1)) /m − cA * (w(4)−w(2)) /m − Fx/m;
144 w5 = w(6) ;
145 w6 = −ktot *w(5) /mx + kx * (w(7)−w(5)) /mx −(cA+cD) *w(6) /mx + cD*w(8) /mx;
146 w7 = w(8) ;
147 w8 = −kx * (w(7)−w(5)) /m − cA * (w(8)−w(6)) /m −Fy/m;
148 w9 = w(10) ;

D.3. Static state controller ode function 129

149 w10 = −kz * (w(9)−w(11)) /mz − cz * (w(10)−w(12)) /mz − cAZ*w(10) /mz − Fp/mz;
150 w11 = w(12) ;
151 w12 = kz * (w(9)−w(11)) /m + cz * (w(10)−w(12)) /m −cm*w(12) /m + Fz/m;
152

153 dwdt = [w1; w2; w3; w4; w5; w6; w7; w8; w9; w10 ; w11 ; w12] ;
154

155

156 end

D.3. Static state controller ode function

1 function dwdt = odeStateControl1 (t ,w) %Ful l airbearing + two angle model for
function1

2 %Variables :
3

4 vars = getGlobalVars ;
5 p = vars (1) ;
6 omega = vars (2) ;
7 kp = vars (3) ;
8

9 Damping = getGlobalDamp ;
10 cA = Damping(1) ;
11 cD = Damping(2) ;
12 cz = Damping(3) ;
13

14 [A , B, C, B1 , C1] = getGlobalSys ;
15 Dc = getGlobalStateC ;
16

17 %measurements :
18 rd = 0 . 0 2 0 * 0 . 5 ; % radius of brush in [m]
19 h = 0 . 0 1 0 ; %height brush in [m]
20 r = sqrt (rd^2 + (h/2) ^2) ; % = sqrt (0.000125)= 0.01118 [m]
21 Rrot = 0 . 0 0 3 ; %radius of robot rotation [m]
22 v = 0 . 0 0 1 ; %longitude speed vector [m/ s]
23

24 %masses :
25 m = 0 . 2 ; %mass brush in kg
26 %Angles :
27 mu = 0.5* sqrt (2) * 0 . 5 ; %Coe ff i c ient of f r i c t i o n , not correct probably
28 sigma = atan (mu) ; %angle of f r i c t i o n
29

30 ltD = getGlobalLt ;
31 teind = getGlobalTermt ;
32 StepSize= teind / (ltD−1) ;
33 for i = 1 : (ltD−1)
34 i f (StepSize * (i −1)<= t && StepSize * i >= t)
35 wD = (t−StepSize * (i −1)) * getGlobalWd (i +1) / StepSize + (1− t +StepSize * (i −1)) *

getGlobalWd (i) / StepSize ;
36 end
37 end
38

39 Center1 = Rrot * cos (omega* t) +v * t + rd+Rrot ;
40 CenterToolLoc = [Center1 ; Rrot * sin (omega* t)] ;
41 Vel1 = −omega* Rrot * sin (omega* t) +v ;
42 CenterToolVel = [Vel1 ; omega* Rrot * cos (omega* t)] ;

130 D. Matlab code

43 psi0 = pi / 2 ;
44 rod0 = tube_elevation (CenterToolVel , r+Rrot , 0) ;
45 theta0 = rod0 ;
46 C1 = rd * abs (cos (wD(1))−theta0) * CenterToolVel /norm(CenterToolVel) +CenterToolLoc ;
47 C2 = −rd * abs (cos (wD(1))−theta0) * CenterToolVel /norm(CenterToolVel) +CenterToolLoc ;
48 Center3 = (Rrot−rd * abs (cos (wD(3)−psi0))) * cos (omega* t) + rd+Rrot +v * t ;
49 C3 = [Center3 ; (Rrot−rd * abs (cos (wD(3)−psi0))) * sin (omega* t)] ; %Not sure
50 Center4 = (Rrot+rd * abs (cos (wD(3)−psi0))) * cos (omega* t) + rd+Rrot +v * t ;
51 C4 = [Center4 ; (Rrot+rd * abs (cos (wD(3)−psi0))) * sin (omega* t)] ; %Not sure
52 x i = [tube_elevation (CenterToolVel , C1(1) , C1(2)) ;
53 tube_elevation (CenterToolVel , C2(1) , C2(2)) ;
54 tube_elevation (CenterToolVel , C3(1) , C3(2)) ;
55 tube_elevation (CenterToolVel , C4(1) , C4(2))] ;
56 hCR =0. 5 *(tubeFunction (C1(1) ,C1(2)) +tubeFunction (C2(1) ,C2(2))) ;
57 dh3 = hCR − tubeFunction (C3(1) , C3(2)) ; %The dif ference in height from point

below center of rotation to material [m]
58 dh4 = hCR − tubeFunction (C4(1) , C4(2)) ;
59

60 alpha = abs (x i (2))−sigma ;
61 beta = abs (x i (1)) + sigma ;
62 Mangle = pi /2 − atan (2* rd/h) ; %angle in disc of corner points to the center of

rotation
63

64 kappa = 0 ; %measure in which the body i s r e f l e c t e d
65

66 hC34 = r * sin (wD(3)−psi0) ; %height of point C3 w. r . t . center of rotation [m]
67

68 tm = pi * sqrt (m/kp) / 2 ; %approximation of duration of impact of C3 or C4 on the
material [s]

69 F i t = 0 ;
70 F j t = 0 ;
71 v0 = wD(4) * r ; %tangential v e l o c i t y on the material * cos (alpha+Mangle) [m/ s]
72 v1 = wD(2) * r ;
73 delta0 = sqrt (m/kp) * abs (v0) ;%sqrt (m/kp) * abs (v0) ; %small possible deviation ,

assuming l iq u id layer of 1 micron = atan (1*10^(−6) / r)
74 delta1 = atan (0.001/ r) ;% atan (0.000001/ r) ; sqrt (m/kp) * abs (wD(2)) ;
75 i f (dh3>0) %p o s i t i v e psi
76 i f (dh3−abs (hC34) <= delta0 && (wD(3)−psi0) >0)
77 impuls = m * v0 *(1 +kappa) ;
78 F j t = abs (impuls) /tm ;
79 end
80 else %p o s i t i v e psi
81 i f (dh3 − hC34<delta0 && wD(4) >0)
82 impuls = m * v0 *(1 +kappa) ;
83 F j t = impuls/tm ;
84 end
85 end
86 i f (dh4>0) %negative psi
87 i f (abs (dh4)−abs (hC34) <= delta0 && (wD(3)−psi0) <0)
88 impuls = m * v0 *(1 +kappa) ;
89 F j t = −abs (impuls) /tm ;
90 end
91 else %negative psi
92 i f (dh4+ hC34<delta0 && wD(4) <0)
93 impuls = m * v0 *(1 +kappa) ;
94 F j t = −impuls/tm ;

D.4. Calculation of H-infinity norm 131

95 end
96 end
97

98 i f (abs (wD(1)−theta0−x i (1)) > delta1 && w(2) ~= 0) % abs (wD(1)−x i (1)) > delta1 &&
99 impuls = m * v1 *(1 +kappa) ;

100 F i t = −impuls/tm ;
101 end
102

103 %Constant force :
104 Fp = 10; %Pressure force for polishing , between 10−15 [N]
105 FC2= Fp* sin (beta) / sin (alpha+beta) ;
106 FC1= (Fp/cos (beta)) *(1− cos (alpha) * sin (beta) / sin (alpha+beta)) ;
107 f a c t o r = 1 ; %400
108 Fx = F j t * sin (alpha) / f a c t o r ;
109 Fy = F i t * sin (beta) / f a c t o r ;
110 Fz = Fp+(abs (F i t) * cos (beta) + abs (F j t) * cos (alpha)) / f a c t o r ;
111 forces = [Fx ; Fy ; Fz ; Fp] ;
112

113 dwdt = (A+B*Dc*C) *w+B1* forces ;
114

115

116 end

D.4. Calculation of H-infinity norm

1 function [Dc,gamma] = H_inf_ssf (A , B, B1 , C1 ,D1)
2 %Minimize the H_inf norm to find the c o n t r o l l e r Dc for s t a t i c s t a t e
3 %feedback
4 %Does there need to be a optimal solution or j u s t f e a s i b l e ?
5 %define s i z e s :
6 n = s i z e (A, 1) ;
7 m = s i z e (B, 2) ;
8 k = s i z e (B1 , 2) ;
9 l = s i z e (C1, 1) ;

10

11 %Define semidefinite programming variables
12 Y = sdpvar (n , n) ;
13 M = sdpvar (m, n) ;
14 gamma2 = sdpvar (1) ;
15

16 %Formulate constraints
17 F = [gamma2>0 , Y>0 , [(A*Y+B*M) +(A*Y+B*M) ’ B1 Y * (C1 ’) ; B1 ’ −gamma2* eye (k) D1 ’ ;

C1*Y D1 −eye (l)] < 0] ;
18

19 %Optimize (possibly extra options needed)
20 optimize (F ,gamma2) ;
21 %save solutions for M Y and gamma2
22 Mfeasible = value (M) ;
23 Yfeasible = value (Y) ;
24 gamma2Feas = value (gamma2) ;
25 gamma = sqrt (gamma2Feas) ;
26

27 Dc = Mfeasible * inv (Yfeasible) ;
28

29 %possible check for negative eigenvalues

132 D. Matlab code

30

31 end

Bibliography

[1] M. Abderrahim and A.R. Whittaker. Kinematic model identification of industrial manipulators. Robotics
and Computer Integrated Manufacturing, 16:1–8, 2000.

[2] T. Alban and H. Janocha. Dynamic calibration of industrial robots with inertial measurement systems.
In European control conference (ECC), 1999.

[3] C. Alici and B. Shirinzadeh. A systematic technique to estimate positioning errors for robot accuracy
improvement using laser interferometry based sensing. Mechanism and machine theory, 40:879–906,
2005.

[4] S. Aoyagi, A. Kohama, Y. Nakata, Y. Hayano, and M. Suzuki. Improvement of robot accuracy by calculat-
ing kinematic model using a laser tracking system, compensation of non-geometric errors using neural
networks and selection of optimal measuring points using genetic algorithm. In IEEE/RJS international
conference on intelligent robots and systems, 2010.

[5] G. Baumann. Mathematica for theoretical physics; classical mechanics and nonlinear dynamics. Springer
Science+Business Media, Inc, 2005.

[6] C.F. Beard. Vibration and control systems. Ellis Horwood Limited, 1988.

[7] New Way Air Bearings. Specification sheet of part nr. s305002. Specifications, 2012.

[8] R. Bernhardt and S.L. Albright. Robot calibration. Chapman & Hall, 1993.

[9] F. Caccavale and P. Chlacchio. Identification of dynamic parameters and feedforward control for a con-
ventional industrial manipulator. Control engineering practice, 2(6):1039–1050, 1994.

[10] J.L. Caenen and J.C. Angue. Identification of geometric and non geometric parameters of robots. In IEEE
international conference on robotics and automotion, 1990.

[11] G. Calafiore, M. Indri, and B. Bona. Robot dynamic calibration: optimal excitation trajectories and ex-
perimental parameter estimation. Journal of robotic systems, 18(2):55–68, 2001.

[12] P.H. Chang and H.S. Park. Time-varying input shaping technique applied to vibration reduction of an
industrial robot. Control Engineering Practice, 13:121–130, 2005.

[13] I.M. Chen, G. Yang, C.T. Tan, and S.H. Yeo. Local poe model for robotic kinematic calibration. Mechanism
and machine theory, 36:1215–1239, 2001.

[14] V. Duindam, A. Maccheli, S. Stramigioli, and H. Bruyninckx. Modeling and control of complex physical
systems; the port-Hamiltonian approach. Springer-Verlag Berlin Heidelberg, 2009.

[15] A.Y. Elatta, L.P. Gen, F.L. Zhi, Y. Daoyuan, and L. Fei. An overview of robot calibration. Information
Technology Journal, 3(1):74–78, 2004.

[16] M. Fogiel, Research, and Education Association. The Essentials of Mechanics I. Research and Education
Association, 1989.

[17] K.S. Fu, R.C. Gonzalez, and C.S.G. Lee. Robotics: control, sensing and intelligence. Springer-Verlag Lon-
don, 2008.

[18] M. Gautier and W. Khalil. Exciting trajectories for the identification of base inertial parameters of robots.
The international journal of robotics research, 11(4):362–375, 1992.

[19] C. Gong, J. Yuan, and J. Ni. Nongeometric error identification and compensation for robotic system by
inverse calibration. International Journal of Machine Tools and Manufacture, 40:2119–2137, 2000.

133

134 Bibliography

[20] D. Gross, W.A. Wall, W. Hauger, N. Rajapakse, and J. Schröder. Engineering Mechanics 1 statics, 2nd
edition. Springer Science+Business Media Dordrecht, 2013.

[21] T. Haidegger, B. Benyó, L. Kovács, and Z. Benyó. Force sensing and force control for surgical robots. In
7th IFAC symposium on modelling and control in biomedical systems, pages 401–406, 2009.

[22] R.A. Howland. Intermediate dynamics, a linear algebraic approach. Springer Science+Business Media,
2006.

[23] D.J. Inman. Engineering vibrations, third edition. Pearson Education, Inc, 2009.

[24] J.H. Jang, S.H. Kim, and K. Kwak. Calibration of geometric and non-geometric errors of an industrial
robot. Robotica, 19:311–321, 2001.

[25] D. Jeltsema and J.M.A. Scherpen. Multidomain modeling of nonlinear networks and systems. IEEE
control systems magazine, 29(4), 2009.

[26] J. Löfberg. Yalmip : A toolbox for modeling and optimization in matlab. In In Proceedings of the CACSD
Conference, Taipei, Taiwan, 2004.

[27] A.M. Lopes and F.G. Almeida. Acceleration-based force-impedance control of a six-dof parallel manip-
ulator. Industrial robot: an international journal, 34(5):386–399, 2007.

[28] Mitsubishi Industrial Robot RV-6SD/6SDL Series standard specifications manual (CR2D-711/CR3D-711M
Controller). Mitsubishi electric corporation, 5th edition, 2008.

[29] B.W. Mooring, Z.S. Roth, and M.R. Driels. Fundamentals of manipulator calibration. John Wiley & Sons,
1991.

[30] R.M. Murray, Z. Li, and S.S. Sastry. A mathematical introduction to robotic manipulation. CRC Press,
1994.

[31] H. Nguyen, J. Zhou, and H. Kang. A calibration method for enhancing robot accuracy through inte-
gration of an extended kalman filter algorithm and an artificial neural network. Neurocomputing, 151:
996–1005, 2015.

[32] S.B. Niku. Engineering Principles in Everyday Life for Non-Engineers. Morgan and Claypool Publishers,
2016.

[33] K. Okamura and F.C. Park. Kinematic calibration using the product-of-exponentials formula. Robotica,
14:415–421, 1996.

[34] G.J. Olsder, J.W. van der Woude, J.G. Maks, and D. Jeltsema. Mathematical systems theory, 4th edition.
VSSD, 2011.

[35] A. Omodei, G. Legnani, and R. Adamini. Three methodologies for the calibration of industrial manipu-
lators: experimental results on a scara robot. Journal of robotic systems, 17(6):291–307, 2000.

[36] B. Pal and B. Chaudhuri. Robust control in power systems. Springer Science+Business Media, 2005.

[37] I.W. Park and J.H. Kim. Estimating entire geometric parameter errors of manipulator arm using laser
module and stationary camera. In IECON 37th anual conference on IEEE industrial electronics society,
2011.

[38] J.M. Renders, E. Rossignol, M. Becquet, and R. Hanus. Kinematic calibration and geometrical parameter
identification for robots. IEEE transactions on robotics and automation, 7(6):721–732, 1991.

[39] D.G.G Rosa, J.F.S. Feiteira, P.A.F. de Abreu, and A.M. Lopes. Robotic system with force control for drilling
operations. In 23th ABCM international congress of mechanical engineering, 2015.

[40] Applications Laboratory SBT. Report 54 lapping and polishing basics. www.southbaytech.com.

[41] C. Scherer and S. Weiland. Linear matrix inequalities in control. lecture notes, 2004.

Bibliography 135

[42] K. Schröer. Handbook on robot performance testing and calibration. Fraunhofer IRB Verlag, 1998.

[43] M.W. Spong, S. Hutchinson, and M. Vidyasagar. Robot dynamics and control, second edition. lecture
notes, 2004.

[44] G. Szuladzinski. Formulas for Mechanical and Structural Shock and Impact. CRC Press, 2009.

[45] J.W. van der Woude. Advanced system theory wi4226, first part. lecture notes, 2016.

[46] H.V. Vu and R. S. Esfandiari. Dynamic systems; Modeling and analysis. The McGraw-Hill Companies,
Inc, 1998.

[47] C. Vuik, P. van Beek, F. Vermolen, and J. van Kan. Numerieke methoden voor differentiaalvergelijkingen.
VSSD, 2006.

[48] D. Wang, Y. Bai, and J. Zhao. Robot manipulator calibration using neural network and a camera-based
measurement system. Transactions of the institute of measurement and control, 2010.

[49] D.E. Whitney, C.A. Lozinski, and J.M. Rourke. Industrial robot forward calibration and result. Journal of
dynamic systems, measurement and control, 108:1–8, 1986.

[50] J. Wu, J. Wang, and Z. You. An overview of dynamic parameter identification of robots. Robotics and
computer-integrated manufacturing, 26:414–419, 2010.

[51] G. Zak, B. Benhabib, R.G. Fenton, and I. Saban. Application of the weighted least squares parameter
estimation method to the robot calibration. In Transactions of the ASME, volume 116, pages 890–893,
2009.

[52] G. Zeng and A. Hemami. An overview of force control. Robotica, 15:473–482, 1997.

	Introduction
	The polishing robot
	Polishing
	The use of robots

	Previous work and scientific publications
	Definitions and basic concepts
	Accuracy and repeatability: static calibration
	Model-based static calibration
	Modeless static calibration
	Combining modeless and model-based approaches

	Trajectory optimization: dynamic calibration
	Contact forces: force control and vibration reduction
	Force control
	Vibration reduction

	Research question
	The phenomenon
	Possible modeling techniques
	Research question

	Mathematical background
	Spring-mass-damper systems
	State-Space representation
	Feedback controller

	System definition
	Newtonian mechanics
	Lagrangian
	Hamiltonian

	Numerical integration

	Polish brush model
	Tool model
	Coordinate systems

	Euler angles
	Using three Euler angles
	Using two Euler angles

	Equations and assumptions
	Three Euler angles
	Two Euler angles

	State-space representation

	Forces and influences
	Angle of kinetic friction
	Calculating the resultant forces
	Resultant forces in contact points
	Resultant forces in tilting points
	Summary

	Contact impulse
	Damping effects
	Impact and impact duration
	Discussion on realistic influences

	Airbearing model
	Adding translational vibrations
	Reduced mass in horizontal direction

	Using total movement for airbearing spring constant
	Adding vertical vibrations
	Adding damping
	Natural frequencies and damping ratios
	Final model equations

	Simulations of polishing brush and airbearing
	Values and assumptions
	Variables and local coordinate systems
	No moment present in polishing disc model
	Full model
	Results of run 3
	Results of run 1
	Results of run 4
	Decreasing contact spring height
	Workaround with force factor

	Concluding remarks

	Feedback design
	Linearization around an equilibrium
	Controllers using LMI's
	Asymptotic stability
	H-infinity norm
	H-2 norm
	Yalmip package

	System description
	System without damping
	System with damping

	Further system matrices
	Norms of system without controller

	Scaled system
	Adding an observer
	Simulation

	Simulating with controllers
	Static state feedback first solution
	Controller comparison H infinity norm
	Original system H infinity norm
	Scaled system H infinity norm

	Static state feedback second solution
	Controller comparison H infinity norm
	Original system
	Scaled system

	Final remarks

	Conclusion
	Future work and recommendations
	Simulation results without damping
	Results of run 2
	Extra results of run 4

	Simulation results with damping
	Extra results run 1
	Results run 2
	First damping
	Second damping

	Extra results run 4
	First damping
	Second damping

	Simulation results of controllers
	Controller matrices for first solution
	Static state controller and the H2-norm
	Static state controller and the H infinity-norm

	Controller matrices for second solution

	Matlab code
	Polishing brush ode function
	Airbearing ode function
	Static state controller ode function
	Calculation of H-infinity norm

	Bibliography

