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Abstract

The likelihood ratio is a generally accepted measure for the strength of evidence in
forensic comparison problems. These problems concern comparisons where it is inves-
tigated whether at least two items come from the same source or not, e.g. whether
the DNA on the crime scene comes from the suspect or not. The use of likelihood
ratios by forensic experts in practical forensic casework demands for a unified system
to compute likelihood ratios. Therefore, the EU funded the “ENFSI-LR” project that
aims to construct software which helps forensic experts to calculate likelihood ratios
based on validated scripts and harmonized models. In this thesis some problems con-
cerning the ENFSI-LR project are addressed. Solutions to these problems are useful
for unification, validation and (future) development of the software. Throughout this
thesis, the emphasis is on continuous two-level feature-based models. In the literature,
these underlying models have led to two likelihood ratio formulas. In this thesis it is
proved that these two formulas are exactly the same. This thesis also explores several
parameter estimation methods for the two-level model. Standard estimation methods
are compared with estimation methods which have not been used in forensic statistics
until now: a generalized weighted mean or maximum likelihood estimation. As an ex-
tension of existing feature-based models, a model is introduced that combines discrete-
and continuous evidence into one likelihood ratio.
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Introduction

Warning: dangerous xtc tablets at Amsterdam Dance Event (ADE)
Wednesday the ADE started in Amsterdam. The Trimbos Insitute warns vis-
itors for a deadly xtc tablet that contains a very high dosage of PMMA. This
dangerous tablet is pink and has a Superman logo on both sides.

– Volkskrant, 21 October 2016

Production and trafficking of xtc tablets is a significant problem in Europe, because of
several reasons such as the health risks as described in the news article above. Forensic
science is a useful tool in the fight against this problem. For instance, suppose that the
police seizes two consignments of pink Superman xtc tablets at the ADE. The question
of interest in court is whether the seized consignments are from the same source or not.
The task for forensic drug experts is to evaluate the evidence (e.g. both consignments
contain pink tablets with a Superman logo and a high dosage of PMMA) and to provide
the judge with the strength of this evidence. In forensic science the likelihood ratio is
a generally accepted measure to evaluate the strength of evidence.

This specific example of the comparison of seized consignments of xtc tablets falls
within a broader class of forensic comparison problems. In these comparison problems
forensic scientists always compare whether at least two items (e.g. consignments of xtc
tablets) come from the same source or not. Other examples include the comparison
of a shoe print at the crime scene with a shoe of the suspect or the comparison of
a bloodstain on the crime scene with the blood of the suspect. Although forensic
experts agree about the use of the likelihood ratio approach in such forensic comparison
problems, the calculation of the likelihood ratio is not (yet) unified in forensic science.

Various forensic statisticians in different countries have developed statistical models
for the computation of likelihood ratios. Some of them have written (non-validated)
scripts that enables forensic experts to compute likelihood ratios in their casework. The
use of likelihood ratios in practice demands for a unified system to compute likelihood
ratios. To investigate and harmonize the statistical models and existing software, the
European Union funded a two year project for the European network of forensic science
institutes (ENFSI), called the “ ENFSI-LR” project. The aim of this project is to
construct a Graphical User Interface (GUI) around software that helps forensic experts
to calculate likelihood ratios based on validated scripts and harmonized models.

In this thesis some problems concerning the ENFSI-LR project are addressed, such
as unifying different likelihood ratio approaches and exploring different methods for
parameter estimation. Before these problems are addressed, the underlying models
within the likelihood ratio approach are explained. Furthermore, some suggestions and
extensions for future development of the project will be given. As a running example
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1. INTRODUCTION 6

throughout this thesis, xtc tablet comparison problems will be used. However, it is
important to note that the theory can be applied to a great diversity of fields of expertise
within forensic science.

Thesis outline

In order to obtain a full understanding of problems in forensic statistics, Chapter 2
will serve as an introduction to forensic evidence evaluation. The chapter starts off
with forensic problems that can be approached with a likelihood ratio. The particular
example of xtc tablet comparison will be used throughout this thesis. The chapter is
concluded by describing how the likelihood ratio can be used to evaluate evidence.

The purpose of Chapter 3 is to describe existing discrete- and continuous models
that can be used to calculate the likelihood ratio. In this thesis the focus will be on
the continuous evidence models described in Section 3.2. In these continuous evidence
models the data is modelled as a two-level model. In forensic literature modelling
these two levels are known as within-source variation and between-source variation. In
forensic statistics there exist two types of two-level models. In this thesis these models
will be referred to as Gaussian two-level models and non-Gaussian two-level models.

In Chapter 4 the Gaussian two-level model is described and two explicit likelihood
ratio formulas are derived. One of the goals of this chapter is to show that these two
formulas are exactly the same. This is important in the ENFSI-LR project, for one of
the objectives of the project is to agree upon likelihood ratio formulas. Furthermore,
the equivalence of the two likelihood ratio formulas is important for the validation of
the implemented likelihood ratio in the software.

The likelihood ratio formula in Chapter 4 depends on unknown parameters of the
two-level Gaussian model. In Chapter 5 different methods to estimate these parameters
are explored. The exploration of parameter estimation for Gaussian two-level models is
important for the ENFSI-LR project, since the software must contain “simple” plug-in
estimators as default choice. Other estimators will be implemented as optional choices.
Currently, forensic statisticians are discussing which plug-in estimator should be used
for the mean parameter. These estimators are compared in this chapter. Furthermore,
an alternative to these estimators is given. As an optional choice for the estimators, the
EM-algorithm is suggested in this thesis as an iterative method to find the maximum
likelihood estimates. The chapter ends with a comparison of these methods using a
simulation study.

In practice, the assumption of a Gaussian two-level model is often not valid. There-
fore in forensic statistics the non-Gaussian two-level model, which uses a non-parametric
estimation technique, is often applied. Because of its importance in forensic statistics
and consequently in the developed ENFSI-LR software, this model is described in
Chapter 6. Furthermore, some difficulties in this model are introduced which can be
investigated in the future.

Chapter 7 introduces an extension of the models described in Section 3. Up to now
forensic experts could only report two separate likelihood ratios, one based on discrete
evidence and the other based on continuous evidence. The objective of this chapter is
to describe a model that can be used to combine the discrete and continuous evidence
into one likelihood ratio. In addition, in Chapter 7 the described methods in this thesis
and the extended model of Chapter 7 are applied to real xtc data.



2

Forensic evidence evaluation

This chapter will give an introduction to forensic evidence evaluation. Section 2.1
describes a forensic comparison problem that will form the basis of the theory through-
out this thesis. Section 2.2 describes the use of probability within such problems. This
section introduces the likelihood ratio as fundamental ingredient in forensic statistics.

2.1 A forensic comparison problem

The last decades, the impact of forensic science on investigation and evidence evaluation
in criminal cases became more apparent because of increasing media attention. For
example, Figure 2.1(a) illustrates an investigation problem that aims to find a similarity
between DNA-profiles. Figure 2.1(b) shows an example of evidence evaluation in a
criminal case where glass pieces found on the suspect are compared to a car window at
the crime scene.

(a) A 29-year old man is arrested for sexual abuse
of a 60-year old woman in her house. During tech-
nical research at the crime scene, DNA was se-
cured and transmitted to the Netherlands Foren-
sic Institute for further examination. The NFI
found a match between the DNA-profile of the
suspect and the DNA which was found at the
crime scene. (Blik op nieuws (2016)).

(b) In three criminal cases the police has tracked
down suspects after an analysis of the glass pieces
found at the crime scene. One of the cases is a
double liquidation in the Staatsliederenbuurt in
Amsterdam. The balaclava from one of the sus-
pects contained a glass piece from the getaway
car which has been shot at the crime scene. (NOS
(2016)).

Figure 2.1: Translated summaries of two Dutch news items that illustrate problems in
forensic science.

Next to the comparison of DNA-profiles and glass pieces, several other examples of
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2. FORENSIC EVIDENCE EVALUATION 8

applications in forensic science exist, e.g. evidence based on shoe print comparison or
fingerprint comparison. Despite the great diversity of fields of expertise, most criminal
cases will share some similar aspects (Sjerps (2004)). For example, criminal investi-
gation often concerns the comparison of at least two items. Figure 2.1(a) shows for
instance the comparison of DNA of a suspect with DNA found on a crime scene. Figure
2.1(b) shows the comparison of a piece of glass found on the suspect with a window at
the crime scene. In this thesis we emphasize this form of criminal investigation. For
the police and court the question of interest is whether these items come from the same
source. Hence, in such criminal cases it is common to consider two hypotheses. The
prosecutor’s hypothesis (Hp) proposes that the items come from the same source. The
hypothesis of the defense (Hd) suggests that the items come from different sources. In
this thesis emphasis is put on such hypotheses, which are called hypotheses on “source
level”. This can only indicate whether the items (glass pieces) have the same source
(window) or not. Another possibility would be to consider hypotheses on “activity
level”: whether the suspect smashed the window or not. We could also consider the
“crime level”, whether the suspect committed the crime or not. To consider such hy-
potheses often more (unknown) information is needed. For example, there should be
information about whether the number of pieces found on the suspect is reasonable
when he smashed the window. If enough information is available, currently Bayesian
networks are used to solve these problems (Aitken and Taroni (2004))

Considering the prosecutors hypothesis and the hypothesis of the defense, foren-
sic experts are asked to evaluate the evidence, i.e. to compare items, given the two
hypothesis. Hence, they are expected to answer the following question

“Under which hypothesis (Hp or Hd) is the evidence the most likely?”

To evaluate the evidence, the strength of observed similarities and differences between
the items should be determined. In the late twentieth century a probabilistic framework
to evaluate the strength of evidence was developed. This framework serves as a basis
for this thesis. This will be further explained in Section 2.2.1.

In this thesis, the focus will be on criminal cases where two or more items will be
compared under hypotheses as stated above. As a running example throughout this
thesis, drug comparison will be used. However, it is important to note that the theory
can be applied to many other examples as well. The next section will describe the
forensic problem of xtc tablet comparison. After a sketch of this problem is given, the
framework of forensic evidence evaluation will be described.

2.1.1 XTC tablets comparison

To fight against drug production and trafficking in Europe, comparison on samples of
drug seizures is an important forensic tool (Koper et al. (2007)). First the problem of
the production of xtc tablets will be discussed. Subsequently it will be described how
comparison of drug samples can be used as a forensic tool.

A remaining problem

Europe is an important market for drugs, supported by both domestic production and
drugs trafficked from other regions. For example, 3,4-methylenedioxymethamphetamine
(MDMA) is one of the most widely spread synthetic drugs since the 1990s. MDMA
tablets, also known as xtc or ecstasy, have always been popular MDMA products on the
market. However, the last decade investigations performed by the European Monitor-
ing Centre for Drugs and Drugs Addiction (EMCDA) have shown a decline in MDMA
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production. In the 1990s and 2000s, xtc tablets had a low MDMA content. More-
over, a majority of the xtc tablets on European markets contained no MDMA at all
(EMCDDA (2016b)).

However, a re-emerge of the production of xtc tablets which contain higher doses of
MDMA started in 2011-2012. In Figure 2.2 it can be seen that at present over half of
all xtc tablets contains over 140 mg of MDMA compared to just 3% in 2009 (EMCDDA
(2016b)). Moreover, “super pills” with a MDMA purity between 270-340 mg are found
on the market. In addition, there are variations in the dosage in similar looking tablets.
As a consequence, in 2014 the EMCDDA and Europol have issued an alert warning
of health risks linked to the consumption of tablets that contain a very high MDMA
purity (EMCDDA (2016a)).

Figure 2.2: Drugs information and monitoring system (DIMS) reports of MDMA con-
tent levels in the Netherlands (EMCDDA (2016b)).

Production of MDMA in Europe appears to be concentrated around the Netherlands
and Belgium, providing the largest production and producing higher purity products
than elsewhere (EMCDDA (2016b)). Therefore, it may not come as a surprise that
the highest mass loads of MDMA is found in the wastewater of Belgian and Dutch
cities. Due to the increased production and higher purity of the tablets, wastewater
MDMA loads are higher compared to the loads in 2011. The increase of dumping
dangerous waste products from MDMA production processes has been reported by
law enforcement agencies and is considered to be an environmental concern in the
Netherlands and Belgium (EMCDDA (2016b)).

Due to both environmental concern and health risks, production and trafficking of
xtc tablets remains a significant problem in Europe. To fight against this problem,
comparison on samples of drug seizures can be used as a forensic tool.

Forensic comparison of drug seizures

In 2012, the Netherlands reported seizing 2.4 million xtc tablets (EMCDDA (2016a)).
In most cases, the origin of the confiscated consignments with xtc filled bags is un-
known. However, suspicion of links between different consignments may exist. For
example, if tablets are found in the same type of bags this can indicate that the tablets
originate from the same source. The court is interested in whether the tablets of two
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consignments C1 and C2 come from the same source or not, i.e.{
Hp : Tablets of the consignments C1 and C2 come from the same source.
Hd : Tablets of consignments C1 and C2 come from different sources.

To investigate whether consignments have a common source, similarities and differences
in the characteristics of the tablets are being examined.

For xtc tablets these characteristics can be distinguished in pre-tabletting charac-
teristics and post-tabletting characteristics. This distinction is due to the two-stage
production process of xtc tablets (Koper et al. (2007), Weyerman et al. (2008)). The
first stage (pre-tabletting) is a synthesis process that creates a mixed powder that con-
tains for instance the active substance MDMA. Next to this chemical composition the
powder consist of impurities which arise during the synthesis process. The magnitude
of the impurities can differ depending on the raw materials that are used, for instance.
The chemical composition, dosage and impurities of the synthetic drug are thus con-
sidered to be pre-tabletting characteristics.1 The impurities are more distinctive in
the synthesis process than the chemical composition and dosage, because most dealers
aim at more or less the same composition (e.g. 50% MDMA) while the impurities arise
randomly. Consequently, often 15 selected impurities are used by forensic experts as
pre-tabletting characteristics for comparison purposes. In the second stage the mixed
powder is compressed using a tabletting machine. The post-tabletting characteristics
are thus considered to be features such as diameter, weight, thickness, logo, color or
shape. In the second stage, the so called “production batch” is created. This batch is
ready for transfer, sale and usage.

Because the stages are often carried out at different locations, we can consider the
stages as two different sources: the source that produces the mixed powder (stage 1)
and the source that forms the production batch (stage 2). Since there are two types
of sources in this case, it is important to decide on what source we are focusing in the
hypothesis Hp. If this decision is not made, confusing situations could emerge. This
problem is described below. If we consider that consignments originate from the same
source (hypothesis Hp), three possibilities can be distinguished:

1. The consignments have a different first source (stage 1, synthesis) and the same
second source (stage 2, production batch), see Figure 2.3(a).

2. The consignments have the same first source (stage 1, synthesis) and a different
second source (stage 2, production batch), see Figure 2.3(b).

3. The consignments have the same first source (stage 1, synthesis) and the same
second source (stage 2, production batch), see Figure 2.3(c).

Consider the first possibility, see Figure 2.3(a). It is generally assumed that if tablets
originate from the same source, they will have corresponding characteristics (Milliet et
al. (2009)). Because the two consignments originate from the same production batch
we can thus assume that they have the same post-tabletting characteristics. But,
since the two consignments come from a different synthesis process, the pre-tabletting
characteristics (e.g. (average) purity) can be different. If a dissimilarity in purity is
measured, this would thus indicate a difference in the first source but cannot give
exclusion about whether the two consignments originate from the same production

1Research performed by drug experts shows that often the impurities and dosage in tablets can be
assumed to be distributed homogeneously. However, the impurities and dosage between tablets in one
batch can vary. Therefore, we use the average impurities/dosage of a consignment.
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batch. For that reason it is important to establish which source is being studied and
hence which characteristics must be considered. This means that if we want to examine
whether consignments have the same second source (production batch), only the post-
tabletting characteristics should be studied. In Figure 2.3(b) this problem is given
the other way around. Because the consignments come from a different production
batch, the post-tabletting characteristics can be different. However, a dissimilarity in
the post-tabletting characteristics does not imply that the consignments come from a
different synthesis process. Thus, to examine whether consignments have the same first
source (synthesis process), only the pre-tabletting characteristics should be studied. In
Figure 2.3(c) this problem does not exist, because both the first- and second source are
the same.

Stage 1
synthesis

Stage 2
production

batch
Consignments

(a) Two consignments have a dif-
ferent synthesis (stage 1) but are
from the same production batch
(stage 2).

Stage 1
synthesis

Stage 2
production

batch
Consignments

(b) Two consignments have the
same synthesis (stage 1) but are
from a different production batch
(stage 2).

Stage 1
synthesis

Stage 2
production

batch
Consignments

(c) Two consignments have the
same synthesis (stage 1) and are
from the same production batch
(stage 2).

Figure 2.3: Examples of consignments that have the same source.

In this thesis we choose to consider the question whether the tablets of two consignments
C1 and C2 originate from the same production batch or not. For that reason, the
following prosecutor’s hypothesis (Hp) and a hypothesis of the defense (Hd) can be
considered (Bolck et al. (2009)):{
Hp : Tablets of the consignments C1 and C2 come from the same production batch.
Hd : Tablets of consignments C1 and C2 come from different production batches.

Hence, to investigate whether the consignments come from the same production batch,
similarities and differences in the post-tabletting characteristics are studied. The pre-
tabletting characteristics are thus not considered in this problem. Since post-tabletting
characteristics are formed within one source, it is reliable to assume that there is a
certain dependency between these characteristics. For instance, tablets with a Ferrari
logo are often red.

Due to the increased marketing of xtc tablets, there is a sharp increase in the number
of new tablets designs (174 new designs in 2014). This increase concerns the use of
logos, shapes, bright and fluorescent colors and larger sizes and weights of tablets. For
example, xtc tablets are produced specifically for individual events. Typically, these
events are music events such as Amsterdam Dance Event. Examples of some of the
physical features are given in Figure 2.4 and Table 2.1.

The fast increase of new designs give rise to an additional difficulty for the forensic
experts. The problem is that when a new design is observed for the first time in
two consignments this will automatically be considered as a rare event. Consequently
this might indicate strong evidence that the consignments come from the same batch.
However, such a conclusion could be a mistake in case this new design is a very popular
design that is used by several manufacturers. The forensic experts do not possess this
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kind of information when observing the new design for the first time, so when observing
a new design they have to be cautious in drawing conclusion about rare events.

Figure 2.4: Tablet made for the
Amsterdam Dance Event (ADE)
electronic music festival (EM-
CDDA (2016b)).

Logo Colour Weight [mg]
Marlboro Grey 190
Star White 240
Euro White 264
Peace Pink 271
Ferrari White 306
Mitsubishi Beige-white 341
Dromedary Yellow 237
Twins Beige 305

Table 2.1: The logo, colour and weight
of a sample of XTC tablets (Milliet et al.
(2009)).

A methodology that can be used by forensic experts to investigate whether found sim-
ilarities are probable when items have a common production batch or not is described
in Section 2.2.1.

2.2 Towards a numerical framework

Until the late twentieth century, it was standard practice for forensic experts to provide
conclusions as for example (Bolck et al. (2012)):

• “The xtc tablets come from the same production batch.”

• “The xtc tablets do not come from the same production batch.”

• “Whether the xtc tablets come from the same production batch is undecided.”

To come to one of these conclusions, no general concept of evidence evaluation was
established. Every field of expertise used their own methods to determine the strength
of evidence (Sjerps (2004)). For example, to compare xtc tablets visual examination
was frequently used.2

Within the likelihood ratio framework (or Bayesian framework) a numerical expres-
sion for the strength of evidence can often be computed. Using this concept, forensic
experts do not draw any conclusions about whether tablets originate from the same
batch or not. Instead it became more usual to give probabilistic conclusions as “The
matching logos are slightly more probable if the consignments come from the same
batch than if they come from different batches”. In this way, forensic experts only
provide the strength of their studied evidence. Consequently, it is up to the court only
to conclude whether tablets are from the same batch.

In Section 2.2.1 it is described how the strength of evidence is expressed as a nu-
merical expression by the likelihood ratio. The translation of the numerical expression
to a verbal probabilistic conclusion is described in Section 2.2.2. The rise of the use of

2The interested reader is for example referred to Koper et al. (2007), Weyermann et al. (2008) or
Milliet et al. (2009).
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the likelihood ratio in forensic casework demands for a unified system to compute these
ratios. Hence, forensic statisticians work on a European project with that purpose
nowadays. Section 2.2.3 briefly describes this project and how this project relates to
this thesis.

2.2.1 Likelihood ratio as strength of evidence

In the early twentieth century, forensic scientists began to develop the use of proba-
bilistic theories in the field of forensic science (Aitken and Taroni (2004)). However,
the first systematic work in the field was given in Fairley and Finkelstein (1970). They
suggested a new approach to assess the strength of evidence based on Bayes’ theo-
rem. Nowadays this approach is known as the likelihood ratio approach (or Bayesian
approach) and is widely accepted by forensic scientists.

To describe the likelihood ratio approach we consider a lawsuit about whether the
suspect is a drug (xtc) dealer or not. Suppose the police has seized two consignments
C1 and C2 of xtc tablets and there exists some links to the suspect. The question of
interest for forensic experts is whether these consignments come from the same batch
or not. Consequently, the prosecutors hypothesis Hp states that the consignments C1

and C2 come from the same batch, as described in Section 2.1.1. The hypothesis of the
defense, Hd, claims that the consignments come from different production batches.

Every case that comes to court has certain non-scientific evidence for the jury to
evaluate. This could include factors such as motive, eyewitness evidence, alibi and so
on (Evett (1998)). An eyewitness in this case can be the following example: a farmer
who rented his barn to the suspect saw the suspect carrying two heavy bags into his
expensive car. Let I denote all background information, for example such non-scientific
evidence.

During the lawsuit the prosecutor urges the judge to consider the probability
that the consignments come from the same production batch given the non-scientific
evidence, prior to any further (scientific) evidence. This probability is denoted by
P (Hp | I). Since it is not meaningful to consider this probability without consider-
ing an alternative, the odds in favor of Hp given the non-scientific evidence can be
considered,

P (Hp | I)

P (Hd | I)
. (2.1)

If this ratio is greater than one, this means that given the non-scientific evidence, Hp

is more probable than Hd.
However, in most cases scientific evidence E is available as well. This could include

measurements on the tablets, such as the diameter and weight of the xtc tablets in
the seized consignments.3 As a consequence, the considered probabilities should be
conditioned on both the non-scientific evidence I and the scientific evidence E. In
theory, the probabilities P (Hp | I) and P (Hd | I) should be updated in the light of the
new information E. The new ratio to be considered is

P (Hp | E, I)

P (Hd | E, I)
. (2.2)

In this sense, it seems reasonable to call the ratio in equation (2.1) the prior odds or
the judge’s “prior beliefs”. After updating the prior probabilities in the light of the new
information E, equation (2.2) is called the posterior odds. However, neither the judge

3Further specification of the evidence E is given in Chapter 3.
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or a forensic expert can determine the probability of Hp (or Hd) directly. Hence, direct
calculation of both equation (2.1) and (2.2) will be impossible. This is were Bayes’
theorem comes in.

Theorem 2.2.1 (Bayes’ theorem). Let A and B be events where P (A) > 0 and P (B) >
0. Then

P (B | A) =
P (A | B)P (B)

P (A)
.

The proof of Bayes’ rule follows from the definition of conditional probabilities (Rice
(2007)).

Applying this theorem to the numerator and denominator in the ratio given in equation
(2.2) gives

P (Hp | E, I)

P (Hd | E, I)
=

P (E, I | Hp)P (Hp)

P (E, I | Hd)P (Hd)

=
P (E | Hp, I)P (I | Hp)P (Hp)

P (E | Hd, I)P (I | Hd)P (Hd)

where the latter equation is found by the definition of conditional probabilities. Then,
again using the definition of conditional probabilities gives the fundamental equation
for the likelihood ratio approach:

P (Hp | E, I)

P (Hd | E, I)
=

P (E | Hp, I)

P (E | Hd, I)
· P (Hp | I)

P (Hd | I)
. (2.3)

In the literature, the explicit mention of the background information I is often omitted
from the latter equation for the ease of notation. In words, the formula is expressed as
follows:

Posterior odds = likelihood ratio× prior odds.

To determine the likelihood ratio the following two questions need to be answered:
“what is the probability of the evidence given that the consignments C1 and C2 come
from the same production batch?” and “what is the probability of the evidence given
that the consignments C1 and C2 come from different production batches?”. Since in
many cases these questions can be answered, the likelihood ratio can be determined
and thus the likelihood ratio may be thought of as the value of evidence. Equation
(2.3) then demonstrates that the likelihood ratio assists the court in updating the prior
odds to the posterior odds.

The task of the forensic experts is to provide the judge with the likelihood ratio.
In an optimal situation, the judge will make an estimation of the prior odds, based on
all background information. Subsequently, he will use the likelihood ratio to convert
the prior odds into the posterior odds.

The process of updating the prior odds to a posterior odds using the likelihood
ratio can in theory be an iterative process. This is because the evidence can exists
of different pieces and for each piece a likelihood ratio can be calculated. To use all
these likelihood ratios in the iterative process, the likelihood ratios of the different
pieces of evidence must be computed under the same hypotheses Hp and Hd. For
example, suppose the comparison problem as illustrated in Figure 2.3(c). A forensic
expert has measured pre- and post-tabletting characteristics, but often considers these
as two separate pieces of evidence. Since we consider the situation in Figure 2.3(c)
the hypotheses of both pieces are the same, i.e. the consignments come from the same
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source or not. Hence, first the forensic experts can give a likelihood ratio based on
the pre-tabletting characteristics such that the judge can update his prior odds to a
posterior odds. Subsequently, the forensic expert can give another likelihood ratio
based on the post-tabletting characteristics such that the judge uses the posterior odds
as a prior odds and update this to a new posterior odds.

Using the likelihood ratio approach, the forensic expert can only give a probabilistic
conclusion about the strength of evidence in his field of expertise. For example: “These
matching logos are 10 times more probable if consignments come from the same batch
than if they come from different batches”. Conclusions about the posterior odds, which
state whether it is likely that the tablets come from the same production batch given
the evidence, are only made by the judge. A schematic representation of this framework
is given in Figure 2.5.

Prior odds Posterior odds

multiplied by LR

The LR expresses the degree of
support given by the forensic
findings for one proposition

compared with an alternative.

fact finder: courts,
lawyers, jurists

forensic scientists

Figure 2.5: Schematic representation of the Bayesian framework (Champod (2013)).
This process can be used as an iterative process if there are multiple pieces of evidence
that provide multiple likelihood ratios under the same hypotheses. Then, the posterior
odds can be used as the prior odds for a new likelihood ratio update.

Currently, in forensic statistics the likelihood ratio is a generally accepted measure
to evaluate the strength of evidence. In addition, many experts prefer this approach
over a traditional approach used for assessing evidence, e.g. using visual inspection and
similarity measures to conclude that tablets have a strong link or not. In caseworks
involving DNA or glass given in Figure 2.1, the likelihood ratio is a common measure to
use. Since 2009 the approach is used for the comparison of xtc samples as well (Bolck
et al. (2009)). However, the (numerical) likelihood ratio approach is not yet applicable
in many fields of expertise and many kinds of casework. This is due to the absence
of databases, to difficulties in interpretation and to the lack of information needed
to consider certain hypotheses (e.g. activity level). In addition there are limitations
caused by comparison problems that rely on many variables (e.g. handwriting or voice
recognition) and by its demands for data.

2.2.2 Verbal likelihood ratios

In the previous section the likelihood ratio approach is described as a method to eval-
uate the evidence. In practice, there are two possibilities to determine this value of
evidence:

• The most ideal situation is when the likelihood ratio can be computed numerically.
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• As noticed before, numerical calculation of the likelihood ratio is not always
possible. In that case it is common practice that the forensic expert gives a
subjective (verbal) estimate of the likelihood ratio based on knowledge, expertise
and experience (Bolck et al. (2012)).

In either way, reporting the value of evidence by the forensic expert is an important
part in forensic casework. Suppose that the computed value of the likelihood ratio is
equal to 378. In that case, the conclusion of the forensic expert would be:

“These matching logos and colors are 378 times more probable if consign-
ments come from the same batch than if they come from different batches.”

However, such a conclusion can be hard to interpret. Especially for communicating
evidence values in the courtroom it would be useful to translate the numerical expres-
sion “378 times more probable” to a verbal counterpart, such as “appreciably more
probable”.

Values of likelihood ratio Verbal equivalent
1-2 The forensic findings provide no assistance in ad-

dressing the issue.
2-10 The forensic findings are slightly more probable given

one proposition relative to the other.
10-100 The forensic findings are more probable given one

proposition relative to the other.
100-10.000 The forensic findings are much more probable given

one proposition relative to the other.
10.000-1.000.000 The forensic findings are far more probable given one

proposition relative to the other.
>1.000.000 The forensic findings are exceedingly more probable

given one proposition relative to the other.

Table 2.2: The current unified framework to relate verbal and numerical likelihood
ratios (NFI (2014)).

If a numerical likelihood ratio is not computable, the forensic expert will only provide
such a verbal conclusion based on experience. For example:

“These matching logos and colors are slightly more probable if the consign-
ments come from the same batch than if they come from different batches.”

Thus, for the assessment of the conclusions in both situations it is important to allow
the interpretation of different kinds of evidence in one common framework. Therefore a
unified scale that relates verbal and numerical likelihood ratios needs to be introduced.
In 2014 the Netherlands Forensic Institute has suggested such a unified framework,
see Table 2.2. In forensic reports often only the verbal likelihood ratio is given. Note
that this verbal likelihood ratio is not necessarily based on the numerical value. More
discussion about this problem can for example be found in Evett et al. (2000) or
Nordgaard (2012).

2.2.3 ENFSI LR software

In the beginning of Chapter 2 an overview of comparison problems in forensic casework
is given. We have seen how the likelihood ratio can be used as a measure for the strength
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of evidence in such cases. Although forensic statisticians agree about the framework
of the likelihood ratio approach, calculation of the likelihood ratio is not (yet) unified.
Various forensic statisticians in different countries have developed statistical models
for the computation of likelihood ratios. Some of them have written (non-validated)
scripts such that (non-statistical) forensic experts are able to compute likelihood ratios
in their casework. The rise of the use of likelihood ratios in practice demands for a uni-
fied system to compute likelihood ratios. To investigate and harmonize the statistical
models and existing software, the European network of forensic science institutes (EN-
FSI) leads the two year “ENFSI-LR” project. The aim of this project is to construct a
userfriendly graphical interface around software that helps forensic experts to calculate
likelihood ratios based on validated scripts and harmonized models. This userfriendly
graphical interface is called SAILR.

This thesis addresses some problems concerning the ENFSI-LR project. In Section
4.2 the equality of two specific likelihood ratio expressions is proved. In Chapter 5
various possibilities for parameter estimation are investigated. Furthermore, some ex-
tensions and suggestions are given for future development of the project. In Section 4.1
some suggestions are given to check the model assumptions. In Chapter 7 the extension
of existing models is described.



3

Likelihood ratios for evidence
evaluation

In the previous chapter an introduction to forensic evidence evaluation is given. In
Section 2.1 we have seen forensic comparison problems and in Section 2.2.1 we have
discussed the importance of the likelihood ratio in such cases. The purpose of this
chapter is to describe models that can be used to find a numerical value for the likelihood
ratio given in equation (2.3).

The models are explained based on the drug comparison problem given in Section
2.1.1. Recall that when two consignments C1 and C2 are found, it is desired to know
whether they come from the same production batch (Hp) or not (Hd). If consignments
of xtc tablets are compared, we have discussed that we will focus on post-tabletting
characteristics. These characteristics are physical characteristics and can be distin-
guished in either continuous features (weight, thickness) or discrete features (color,
logo).

In forensic statistics various types of models exist to compute the likelihood ratio
in cases like this. These models are applicable to either discrete- or continuous data
(characteristics). The first section describes a model in case only discrete data are
available and shows how this model can be used to find an expression for the likelihood
ratio in terms of a probability mass function. Section 3.2 has the same structure, but is
only applicable for continuous evidence. In Chapter 7 these models are combined, such
that a likelihood ratio model is found that is applicable for a combination of discrete-
and continuous evidence.

3.1 Discrete evidence

Suppose that discrete features of xtc tablets are measured by forensic experts. These
features are post-tabletting characteristics such as logo or color (see Section 2.1.1).
This section starts off with a likelihood ratio model applicable if measurements on such
discrete characteristics are made. In Section 3.1.2 the described model is used to find
an expression for the likelihood ratio.

3.1.1 Model

Suppose that p discrete features (p > 1) of xtc tablets are measured by forensic experts.
The evidence (scientist’s results) E is divided into two parts,

E = (Y1,Y2).

18
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The discrete random vector Y1 represents p characteristics of the tablets from consign-
ment C1,

Y1 = (Y11, . . . , Y1p).

This vector can be referred to as the control data. The control data will be com-
pared to the recovered data Y2, that is the discrete random vector which represents
p characteristics of the tablets from consignment C2. Thus, the random variables
{Yl} = (Ylk, l ∈ {1, 2}, k ∈ {1, . . . , p}) represent discrete characteristics (e.g. the logo
and color) of the tablets from consignments C1 and C2. In Section 2.1.1 we have seen
that it is reasonable to assume that there exist certain dependencies between the post-
tabletting characteristics of tablets from one consignment. We thus assume that there
exist certain dependencies within the random vectors Y1 and Y2.

In the particular example of xtc tablets, the control- and recovered data consist of
categorical variables. A categorical variable is a discrete random variable whose sample
space is the set of s individually identified items (categories). The sample space can be
taken as a finite sequence of integers that should be fixed beforehand. The integers are
used as labels and the choice of the sequence is thus not important. For the evidence
E we then have,

Ylk ∈ {1, . . . , sk} for l ∈ {1, 2}, k ∈ {1, . . . , p} and sk ∈ N, (3.1)

where sk is the number of levels of the variable, e.g. all possible logos such as Ferrari,
shark or star. Here, we assume that all possible categories1 (e.g. logos) are known and
both the control- and recovered data can take the same values.

For discrete characteristics it is assumed that for each characteristic one measure-
ment is sufficient to represent the evidence. In many applications this is a reliable
assumption, since for discrete characteristics the measurement often equals the true
value of the characteristic. Furthermore, it can be assumed that the xtc tablets within
one consignment have the same discrete characteristics. So, if one tablet in consign-
ment C1 has a Ferrari logo, we assume that all of the tablets in consignment C1 will
have a Ferrari logo. For continuous random variables this is in particular not true, as
we will see in Section 3.2.

Suppose that the multivariate probability mass function of the evidence E belongs
to a set of probability mass functions G, that is gY1,Y2 ∈ G where

G =
{
gY1,Y2 : N2p → [0, 1] |

∑
v
gY1,Y2(u,v) =

∑
v
gY1,Y2(v,u) ∀u

}
. (3.2)

This means that we consider probability mass functions gY1,Y2 such that the probability
mass functions of Y1 and Y2 are the same, i.e. gY1 = gY2 = g. This is a valid
assumption, because we can assume that tablets in consignment C1 and C2 will have
the same probability of a certain feature (e.g. Ferrari logo). For now, it will be assumed
that the marginal probability mass functions are known. Later on, estimation of the
probability mass functions is discussed.

3.1.2 An expression for the likelihood ratio

Suppose that a forensic expert has measured control- and recovered data y1 and y2

from two consignments C1 and C2. Recall from Section 2.2.1 that the goal of the
1In practice it is often not feasible to know all possible categories. For example, 174 new designs

were discovered in 2014 (see Section 2.1.1). Thus “all possible categories” refers to categories that have
been observed before.
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forensic expert is to determine the likelihood ratio,

LR(y1,y2) =
P (E = (y1,y2) | Hp, I)

P (E = (y1,y2) | Hd, I)
. (3.3)

This is the ratio of the probability of the evidence given two opposite hypotheses,{
Hp : Tablets of the consignments C1 and C2 come from the same production batch.
Hd : Tablets of consignments C1 and C2 come from different production batches.

To find a useful expression for the likelihood ratio, the two hypotheses Hp and Hd need
to be formulated more mathematically. First the formulas will be given and these will
be explained thereafter. {

Hp : gY1,Y2|I ∈ Gp
Hd : gY1,Y2|I ∈ Gd,

(3.4)

where

Gp =
{
gY1,Y2|I : N2p → [0, 1]

∣∣ gY1,Y2|I(y1,y2 | I) = g(y1 | I)1{y1=y2}
}

Gd =
{
gY1,Y2|I : N2p → [0, 1]

∣∣ gY1,Y2|I(y1,y2 | I) = g(y1 | I)g(y2 | I)
}
.

To understand this expression, we first consider the numerator of the likelihood ratio,
i.e. Hp is true. In this case the consignments C1 and C2 come from the same batch.
In Section 2.1.1 we have seen that it can be assumed that tablets from the same batch
have the same (discrete) characteristics, i.e.

gY1,Y2|I(y1,y2 | I) = P (Y1 = y1,Y1 = y2 | I).

And hence,
gY1,Y2|I(y1,y2 | I) = g(y1 | I)1{y1=y2},

where g is the marginal probability mass function of Y1 as defined in Section 3.1.1.
To derive the denominator of the likelihood ratio, we assume that the hypothesis Hd

is true. If the consignments C1 and C2 come from different batches, this does not
necessarily imply that tablets in the two consignments have different features. For
example, they could have the same logos. The only thing we do know in this case is
that a feature of the tablets of consignment C1 does not affect the probability of that
feature of the tablets from the other consignment. And thus each characteristic in the
control data is independent of the corresponding characteristic in the recovered data,
that is Y1k⊥Y2k for every characteristic k. In this case, this also implies that Y1k⊥Y2k′

for all k 6= k′ with k′ = 1, . . . , p. Hence,

gY1,Y2|I(y1,y2 | I) = g(y1 | I)g(y2 | I).

Using (3.4), the likelihood ratio in equation (3.3) can be written as

LR(y1,y1) =
gp(y1,y1 | I)

gd(y1,y1 | I)
=

1

g(y1 | I)
. (3.5)

If the control- and recovered data are not the same (y1 6= y2), the likelihood ratio will
be zero because of the assumption that tablets from the same batch should have the
same discrete characteristics.
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In Section 3.1.1 we have assumed that there exist certain dependencies between the
features of tablets from one consignment. However, in some applications it is reasonable
to assume that the characteristics are independent of each other, that is Y1k⊥Y1k′ and
Y2k⊥Y2k′ for all k, k′ ∈ {1, . . . , p}. In that case the likelihood ratio in equation (3.5) is
the product of the likelihood ratios of the separate discrete characteristics.

For the strength of evidence, i.e. the value of the likelihood ratio, not only the
fact that the measurements are the same is important. The value itself also plays an
important role. Suppose that both consignments contain tablets with the logo shark.
If sharks do not occur frequently, the strength of evidence will be higher since the
probability of a shark will be smaller.

So far, the probability functions are assumed to be known. However, in practice the
probability g(y1 | I) has to be estimated in order to calculate a likelihood ratio. The
most straightforward way is to estimate this probability based on the frequency of the
features in the relevant background data. By relevant background data we mean the
database should contain random sampled xtc consignments of the relevant population.
The relevant population is possibly determined by the background information I. For
example, suppose that our total database contains samples of xtc consignments from
the “total population” Europe. But, because of the background information I there
is reason to assume that both consignments are produced in the Netherlands.2 Then,
theoretically the relevant background data should contain features of (random) samples
of xtc consignments that are produced in the Netherlands, i.e. a subset of the total
database. However, in practice such a relevant database is often not available for
drug comparison. In some areas (e.g. DNA) there already exist databases for some
ethnic groups (possible relevant populations). Other areas work towards more specific
resources too, but it takes a lot of time and input to accomplish that goal.

In the literature, see for example Aitken and Taroni (2004) or Bolck et al. (2012),
the likelihood ratio is given by3

1

P (Y = y | Hd, I)
,

where often I is omitted from the expression. Although there is a small difference in
notation, in practice this likelihood will give exactly the same value as the one given
in equation (3.5). Since it is assumed that the probability of the recovered data is
independent of whether the two consignments come from the same source or not, we
know that

P (Y = y | Hd) = P (Y = y).

Conditioning on Hd is thus just a choice of notation.
Recall that for drug comparisons it is a valid assumption that tablets from the same

source will have corresponding characteristics. Consequently, we have seen that the
likelihood ratio is equal to zero if the control- and recovered data are not the same. In
this thesis we will work under this assumption and thus with the likelihood ratio results
as discussed previously. However, in other forensic fields this assumption (items from
the same source have the same discrete characteristics) is not necessarily true. To give
a more complete illustration of reality, we will briefly discuss this situation. If tablets
from the same source will not necessarily have corresponding characteristics (e.g. tablets

2In this case the background information can be for example the place where the consignments were
seized. Another possibility could be that the tablets have logos from a dance event in the Netherlands.
Then, the feature ‘logo’ is the discrete evidence, but it influences the background information as well.

3In that literature, the control data is denoted by X and the recovered data by Y.
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from the same source have different logos), the situation under Hp changes. Hence, if
different control- and recovered data are found we could find a positive likelihood ratio:

LR(y1,y2) =
P (E = (y1,y2) | Hp, I)

P (Y1 = y1 | I)P (Y2 = y2 | I)
=
P (Y2 = y2 | Y1 = y1, Hp, I)

P (Y2 = y2 | I)
.

In addition to g(y2 | I), the probability in the numerator has to be estimated as well
(Bolck et al. (2012)).

3.2 Continuous evidence

Suppose that continuous features of xtc tablets are measured by forensic experts. These
features are post-tabletting characteristics such as weight, thickness or diameter4 (see
Section 2.1.1). This section starts off with a likelihood ratio model applicable when
measurements on such continuous characteristics are available. In Section 3.2.2 the
described model is used to find an expression for the likelihood ratio.

3.2.1 Model

Suppose that p continuous features (p > 1) of xtc tablets are measured by forensic
experts. In Section 3.1 it is explained that when discrete characteristics are measured,
it is sufficient to determine the characteristics on a single tablet in a consignment. It
is reasonable to assume that if one tablet has the logo Ferrari, all the tablets within
that consignment will have the same logo. For continuous characteristics this is often
not true. For example, suppose that the weight of the tablets is measured. Due to
different types of errors, the measured weights will vary around a certain value. These
errors can include measurement errors or errors due to an inhomogeneous production
process. Hence, it might be that tablets on top of the seized consignment have lower
weights than other tablets within that consignment. Therefore it is important that
drug experts take a random sample from tablets in a consignment, instead of a single
tablet to measure.

Let n1 be the number of tablets that can be measured in consignment C1. The
control data is given by

Y1 = (Y11, . . . ,Y1n1)

where
Y1j = (Y1j1, . . . , Y1jp) for j = 1, . . . , n1.

The vectors Y11, . . . ,Y1n1 thus represent p measured features of n1 different tablets in
consignment C1. Similarly, let n2 be the number of tablets measured in consignment
C2 such that the recovered data is given by Y2 = (Y21, . . . ,Y2n2). Although it is
desirable that the forensic experts take a random sample from tablets in a consignment,
in practice sometimes only one tablet can be recovered.

In forensic statistics, two-level models are often used to model the data. Using such
a multilevel model is appropriate because the data is organized at more than one level:
the nl tablets (first level) are nested in either the control- or recovered consignment
(second level). In the forensic literature the assumption of variation between the nl

4Currently it is being discussed whether diameter should be treated as a continuous variable or a
discrete variable. Forensic experts have strong suspicions that tabletting machines can only produce
tablet of 4, 5 or 6 millimeter. If this is indeed true, the measurements can be categorized. In this
thesis we will consider the diameter as a continuous variable.



3. LIKELIHOOD RATIOS FOR EVIDENCE EVALUATION 23

tablets within the same consignment is known as within-source variation. The variation
between the consignments is known as between-source variation.

To model the within-source variation, it is reasonable to assume the presence of
noise within both the control- and recovered data due to errors for each feature as
described above. Let εlj = (εlj1, . . . , εljp), l ∈ {1, 2}, j ∈ {1, . . . , nl} be random vectors
of p random errors for the control- and recovered data respectively. Assume that the
noise vectors are independent identically distributed normal random vectors,

εlj ∼ Np(0,Σ) for l ∈ {1, 2}, j ∈ {1, . . . , nl},

with

ε1j⊥ε2j ∀j, and εlj⊥εlj′ ∀j 6= j′.

For now, we will assume that Σ is known. In Chapter 5 methods to estimate the
covariance matrix Σ are discussed.

We assume that the control- and recovered data vary around their group means θ1

and θ2, i.e. let
θl = (θl1, . . . , θlp) for l ∈ {1, 2}

then

Ylj = θl + εlj for l ∈ {1, 2}, j ∈ {1, . . . , nl},

To model the between-source variation we assume that θ1 and θ2 are random group
means who share their distribution,

θl ∼ h for l ∈ {1, 2}.

At this moment, we will assume that the between-source density h is known. In Chapter
4 and 6 we will make this probability function more explicit.

θ2θ1

θl ∼ h

Y11, . . . ,Y1n1 Y21, . . . ,Y2n2

between-source variation

Group mean

Control- and recovered data

εlj ∼ Np(0,Σ)

ε1j ε2j

within-source variation

Random noise

Figure 3.1: Schematic representation of the two-level model for the continuous control-
and recovered data, l ∈ {1, 2}, j ∈ {1, . . . , nl}.

We can thus see the data as generated in a two-level process, where first the groups
means θ1 and θ2 are drawn from the between-source density h. Subsequently, each
measurement is

Ylj | θl
iid∼ Np(θl,Σ) for l ∈ {1, 2}, j ∈ {1, . . . , nl},
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that is the group mean plus some random noise such that the (conditional) variation
within-source is normally distributed. Figure 3.1 represents this model schematically.

In this problem, it is generally accepted to reduce the original data to the means
of the measurements (Bolck and Alberink (2011), Lindley (1977)). Then, the evidence
E is given by

E = (Y1,Y2),

where

Yl =
1

nl

nl∑
j=1

Ylj for l ∈ {1, 2}

such that
Yl | θl ∼ Np(θl, n−1

l Σ) for l ∈ {1, 2}. (3.6)

3.2.2 An expression for the likelihood ratio

In Section 3.1.2 we have seen that an expression for the likelihood ratio in equation
(3.3) could be determined for discrete control- and recovered data. In this section
we assume to have continuous data from the model described in Section 3.2.1. The
evidence is given by the means of the observations, E = (Y1,Y2) and suppose E ∼ F ,
with F the distribution function. Since we are considering continuous random vectors
the likelihood ratio from definition (3.3) does not apply directly. In fact, both the
numerator and denominator in equation (3.3) are zero for continuous random vectors.
Hence, we will consider the following approximation:

LR(y1,y2) =
P (Y1 ∈ [y1 ± δ1p] ,Y2 ∈ [y2 ± δ1p] | Hp, I)

P (Y1 ∈ [y1 ± δ1p] ,Y2 ∈ [y2 ± δ1p] | Hd, I)
(3.7)

for some small and positive constant δ and 1p a vector of ones. This likelihood ratio
can be rewritten to its continuous version, that is in terms of the probability density
function f of the evidence. In order to do that, we will use the lemma that is given
below.

Lemma 3.2.1. Let Y 1 and Y 2 be continuous random variables with joint probability
density f and suppose its partial derivatives fy1 and fy2 are continuous in the neigh-
bourhood of (y1, y2). Then, the probability P (Y1 ∈ [y1 ± δ1p] ,Y2 ∈ [y2 ± δ1p] ) can be
approximated by (2δ)2pf(y1,y2) if δ → 0.

Proof. For the ease of notation we will assume p = 1. However, for p > 1 the same
steps can be applied. By definition we know that

P (Y 1 ∈ [y1 ± δ] , Y 2 ∈ [y2 ± δ] ) =

y2+δ∫
y2−δ

y1+δ∫
y1−δ

f(y∗1, y
∗
2)dy∗1dy

∗
2. (3.8)

Furthermore, we know that

y2+δ∫
y2−δ

y1+δ∫
y1−δ

f(y1, y2)dy∗1dy
∗
2 =

y2+δ∫
y2−δ

2δf(y1, y2)dy∗2 = 4δ2f(y1, y2). (3.9)
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By combining equation (3.8) and equation (3.9) we have that

|P(Y 1∈[y1±δ],Y 2∈[y2±δ])−4δ2f(y1,y2)|=
∣∣∣∣∣ y2+δ∫y2−δ

y1+δ∫
y1−δ

(f(y∗1 ,y
∗
2)−f(y1,y2))dy∗1dy∗2

∣∣∣∣∣. (3.10)

By the generalization of the mean value theorem (Adams and Essec (2010)) we have∣∣∣∣∣ y2+δ∫y2−δ
y1+δ∫
y1−δ

(f(y∗1 ,y
∗
2)−f(y1,y2))dy∗1dy∗2

∣∣∣∣∣ =

∣∣∣∣∣ y2+δ∫y2−δ
y1+δ∫
y1−δ

((y∗1−y1)fy1 (ζ)+(y∗2−y2)fy2 (ζ))dy∗1dy∗2

∣∣∣∣∣
≤

∣∣∣∣∣ y2+δ∫y2−δ
y1+δ∫
y1−δ

(y∗1−y1)fy1 (ζ)dy∗1dy
∗
2

∣∣∣∣∣+
∣∣∣∣∣y2+δ∫y2−δ

y1+δ∫
y1−δ

(y∗2−y2)fy2 (ζ)dy∗1dy
∗
2

∣∣∣∣∣
where the last inequality is true by the triangle inequality and ζ lies in the open line
segment between (y∗1, y

∗
2) and (y1, y2). Then it can be used that,∣∣∣∣∣∣∣

y2+δ∫
y2−δ

y1+δ∫
y1−δ

(y∗1 − y1) fy1(ζ)dy∗1dy
∗
2

∣∣∣∣∣∣∣ ≤
y2+δ∫
y2−δ

y1+δ∫
y1−δ

∣∣(y∗1 − y1) fy1(ζ)
∣∣ dy∗1dy∗2

≤
∣∣∣∣fy1∣∣∣∣∞ · 2δ3 (3.11)

where the latter inequality is true, because we have assumed that the partial derivatives
of f are continuous and because we can rewrite the following integral

y2+δ∫
y2−δ

y1+δ∫
y1−δ

|y∗1 − y1| dy∗1dy∗2 =

y2+δ∫
y2−δ


y1∫

y1−δ

−(y∗1 − y1)dy∗1 +

y1+δ∫
y1

(y∗1 − y1)dy∗1

 dy∗2

=

y2+δ∫
y2−δ

δ2dy∗2

= 2δ3.

By combining equation (3.11) with equation (3.10) it then follows that∣∣P (Y 1 ∈ [y1 ± δ] , Y 2 ∈ [y2 ± δ] )− 4δ2f(y1, y2)
∣∣ ≤ ( ∣∣∣∣fy1∣∣∣∣∞ +

∣∣∣∣fy2∣∣∣∣∞ )2δ3

:= κ2δ3.

Hence,

δ−2
∣∣P (Y 1 ∈ [y1 ± δ] , Y 2 ∈ [y2 ± δ] )− 4δ2f(y1, y2)

∣∣→ 0 if δ → 0. (3.12)

In the definition of the likelihood ratio in equation (3.3), the numerator and denomi-
nator are zero for continuous random vectors. By using the approximation in equation
(3.7) and the result from Lemma 3.2.1 we can now give meaning to the likelihood ratio
in equation (3.3) for continuous random vectors:

LR(y1,y2) = lim
δ→0

(2δ)2pf(y1,y2 | Hp, I)

(2δ)2pf(y1,y2 | Hd, I)
=
f(y1,y2 | Hp, I)

f(y1,y2 | Hd, I)
. (3.13)

Note that the conditioning on the hypotheses and the background information I is
omitted in Lemma 3.2.1, but this does not affect the result. Below, a useful expression
for the likelihood ratio in equation (3.13) will be derived.
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First assume that Hp is true, i.e. the consignments C1 and C2 come from the same
batch. In Section 3.1 we have used that when Hp is true, the discrete features of
consignments C1 and C2 have the same values. For continuous features, it cannot be
assumed that they have the same value, but it can be assumed that the true means θ1

and θ2 of the measurements in both consignments are the same. Under this assumption,
the two-level model for the control- and recovered data can be seen as the process that
draws one mean vector θ ∼ h such that all measurements are derived from that mean
plus some random noise. So, under the hypothesis Hp

fY1,Y2|I(y1,y2 | I) =

∫
θ

fY1,Y2|θ,I(y1,y2 | θ, I)h(θ | I)dθ.

Because Y1 and Y2 have the same underlying mean θ, they are not independent. How-
ever, conditional on this mean, the value of Y2 does not contain additional information
about Y1, i.e. the means of the measurements are conditional independent. And thus,

fY1,Y2|I(y1,y2 | I) =

∫
θ

fY1|θ,I(y1 | θ, I)fY2|θ,I(y2 | θ, I)h(θ | I)dθ.

Now suppose that Hd is true, i.e. the consignments C1 and C2 come from different
batches. If Hd is true, this does not necessarily imply that the two consignments have
different true means. The only thing we do know in this case is that the means of
the characteristics in consignment C1 do not affect the probability of the means of
the characteristics in consignment C2. And thus, θ1 and θ2 are independent. Under
this assumption, the two-level model can be seen as the process that draws two means
θ1,θ2 ∼ h independently. Subsequently the control- and recovered measurements are
derived from their mean plus some random noise. Thus, under hypothesis Hd

fY1,Y2|I(y1,y2 | I) =

∫
θ1

∫
θ2

fY1,Y2|θ1,θ2,I
(y1,y2 | θ1,θ2, I)h(θ1 | I)h(θ2 | I)dθ1dθ2.

Because the means of the measurements Y1 and Y2 are independent given their mean
vectors θ1 and θ2, we have that

fY1,Y2|I(y1,y2 | I) =

∫
θ1

∫
θ2

fY1|θ1,I
(y1 | θ1, I)fY2|θ2,I

(y2 | θ2, I)

× h(θ1 | I)h(θ2 | I)dθ1dθ2.

The latter expression is exactly the product of the marginal distributions of Y1 and
Y2,

fY1,Y2|I(y1,y2 | I) =

∫
θ1

fY1|θ1,I
(y1 | θ1, I)h(θ1 | I)dθ1

×
∫
θ2

fY2|θ2,I
(y2 | θ2, I)h(θ2 | I)dθ2.

And thus, under Hd we know that the means of the measurements are independent, i.e.
Y1⊥Y2. The latter derivations of the joint density function f under the hypotheses
Hp and Hd can be summarized as{

Hp : fY1,Y2|I ∈ Fp
Hd : fY1,Y2|I ∈ Fd,

(3.14)
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where

Fp =

{
fY1,Y2|I : R2p → [0, 1] | fY1,Y2|I(y1,y2 | I) =

∫
θ

fY1|θ,I(y1 | θ, I)

× fY2|θ,I(y2 | θ, I)h(θ | I)dθ

}
,

Fd =

{
fY1,Y2|I : R2p → [0, 1] | fY1,Y2|I(y1,y2 | I) = fY1|I(y1 | I)fY2|I(y2 | I)

}
.

The expression in equation (3.14) can be used to write the likelihood ratio in equation
(3.13) as

LR(y1,y2) =

∫
θ fY1|θ,I(y1 | θ, I)fY2|θ,I(y2 | θ, I)h(θ | I)dθ∫

θ1
fY1|θ1,I

(y1 | θ1, I)h(θ1 | I)dθ1

× 1∫
θ2
fY2|θ2,I

(y2 | θ2, I)h(θ2 | I)dθ2
. (3.15)

In the forensic literature two other derivations for the likelihood ratio are given (see
Aitken and Taroni (2004) or Bolck et al. (2012)). The derivation in Aitken and Taroni
(2004) leads to exactly the same likelihood ratio as given in equation (3.15). Bolck et
al. (2012) uses a different expression to describe the same likelihood ratio as given in
equation (3.15). In Chapter 4 it will be shown that the expression used in Bolck et
al. (2012) can be rewritten into the likelihood ratio expression used in equation (3.15)
and Aitken and Taroni (2004). This is important in light of unification within the
ENFSI-LR project.

From Section 3.2.1 we know that the conditional densities fY1|θ1
and fY2|θ2

are
normal densities. However, to compute the likelihood ratio the between-source density
h is important. Currently, in forensic statistics two possibilities for the between-source
density h are distinguished. Either a normal distribution is assumed or a kernel den-
sity estimator is used to estimate the density function. Both possibilities are further
discussed in Chapter 4 and Chapter 6. Based on the choice of the between-source dis-
tribution, these sections will give explicit formulas to compute the likelihood ratio as
well.



4

Likelihood ratios in Gaussian
two-level models

The purpose of this chapter is to make the likelihood ratio that is given in Section
3.2 more explicit. This chapter thus focuses on continuous evidence that is modeled
using a two-level model. This means that the control- and recovered data are modelled
such that they vary around their random group means θl, l ∈ {1, 2}, which are drawn
from a between-source density h. Up to now we have assumed that the between-source
density h was known. In practice, either a normal density is assumed or, if the normality
assumption is not satisfied, a nonparametric density estimate is assumed to model the
between-source variation. In this chapter a normal between-source density is assumed
such that likelihood ratios in Gaussian two-level models can be derived. In forensic
literature, these models are also called “two-level normal normal models”, because both
the within-source distribution and the between-source distribution are assumed to be
normal. The assumption of a nonparametric density estimate for the between-source
density is discussed in Chapter 6.

In this chapter two problems of interest for the ENFSI-LR project are discussed.
In addition, it will give a good overall view on actual computation of likelihood ratios.
Section 4.1 describes the normality assumption and suggests some first ideas to assess
the assumption of normality. A description of formal methods to assess normality is
valuable for further development of the ENFSI-LR project, because it is of interest
to implement such methods in the software. Formal tests could help (non-statistical)
forensic experts to decide whether the model described in this chapter or the one in
Chapter 6 should be used for likelihood ratio calculation.

One of the objectives of the ENFSI-LR project is to agree upon a likelihood ratio
formula. This is especially of interest for the validation of the implemented likelihood
ratio in the software. Section 4.2 describes two approaches that lead to likelihood ratios
under the normality assumption. This section shows that these different approaches
lead to the exact same likelihood ratio. This validates the implemented likelihood ratio.

4.1 A Gaussian between-source distribution

This section will focus on the normality assumption for the between-source density.
Section 4.1.1 describes the assumption of normality for the true means. According to
a literature study, Section 4.1.2 will discuss some first ideas to assess the assumption
of normality. Since in future development formal tests will be implemented in the
ENFSI-LR software, these tests can be further explored.

28
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4.1.1 The assumption of normality

In Section 3.2 we have seen that the continuous evidence E is given by E = (Y1,Y2),
where Y1 and Y2 are the means of the control- and recovered data. The vectors Y1

and Y2 are modelled as a two-level model, i.e. the mean vector is assumed to have a
so called between-source distribution h,

Yl = θl + εl for l ∈ {1, 2},
θl ∼ h,

where εl is the mean of the nl random error vectors in group l. So far we have assumed
that the between-source density h is known. In practice, however, this is not the case.
In the beginning of the development of two-level models in forensic statistics, it was
common to assume a (multivariate) normal distribution for θl. For xtc comparison, this
assumption originated from the idea which states that produced batches of xtc tablets
were on average the same. For example, it was supposed that the means of the weights
of the tablets in different batches have a certain overall mean and deviate from that
mean depending on who produced the batches. Under this assumption the control- and
recovered data are in fact modelled as a random effects model (Searle (1992)), i.e.

Ylj = µ+ αl + εlj , for l ∈ {1, 2}, j ∈ {1, . . . , nl}

with µ the overall mean and
αl ∼ N(0, τ2)

the random group effect, i.e. the effect of the lth consignment depending on who pro-
duced the batches. This is thus the same as assuming a normal distribution for the
means of the weights of the batches:

θl ∼ N (µ, τ2).

The described assumption of normality can be extended to a multivariate normal dis-
tribution for θl with mean vector µ, containing the overall means of the batch means
for each feature, and T the covariance matrix,

θl ∼ Np(µ,T).

Hence, all feature means are supposed to be normally distributed. Furthermore, we
assume that

θl⊥εl′j ∀l and l′.

Recall from Section 3.2.1 that εl ∼ Np(0, n−1
l Σ) because the error vectors within group

l are independent. Therefore, Y1 and Y2 are the sums of two independent normal
vectors θl and εl. And thus

Yl ∼ Np(µ, n−1
l Σ + T). (4.1)

Although it is used to be reasonable to assume that the means of the features of
different batches were normally distributed, nowadays this is less realistic. For instance,
in Section 2.1.1 we have seen the rise of “super pills” on the market. Hence, we can
imagine that for example the means of the weights do not only have a peak on µ, but
they also have a peak on a higher weight, say µ + c for c a constant. The normality
assumption is thus not valid in such situation. Consequently, a multivariate normal
distribution for θl will be even more complicated, since each feature means should have
a normal distribution. The following section will discuss some ideas to assess whether
a multivariate normal distribution is a valid assumption for θl.
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4.1.2 Evaluating the assumption of normality

In Section 4.1.1 we have discussed the assumption of normality for the true means θl,
l ∈ {1, 2}. Based on experience, a forensic expert assigns a normal distribution to for
example the means of the weights. However, especially for higher dimensions (p > 1)
such an assumption is harder to assess. Therefore, this section covers some initial
exploration to methods to assess the (multivariate) normality assumption for the true
means θl, l ∈ {1, 2}.

To evaluate the normality assumption, available background (empirical) data will
be used. Let

Zi = (Zi1, . . . , Zip) for i = 1, . . . ,m.

be the batch means taken over m batches of p features that are contained in the
background data. Thus, Z1, . . . ,Zm are the mean vectors of the m consignments that
are contained in the database. A more detailed description of the background data will
be given in Section 5.1. Since the mean vectors θl are assumed to be equally distributed
for both consignments C1 (l = 1) and C2 (l = 2), the sample Z1, . . . ,Zm can be used
as realizations for θl. Furthermore, let the observations Z1, . . . ,Zm be independent
and identically distributed from some distribution H. Then we want to answer the
following question:

Are the observations Z1, . . . ,Zm samples from a normal distribution, i.e. is
H a (multivariate) normal distribution?

To answer this question we will use properties of the multivariate normal distribution.
Since a normal random vector has normal marginals, we can first assess whether the
marginals of Zi, i ∈ {1, . . . ,m} are normal distributed. However, individual normal
random variables are not necessarily jointly normal distributed. Hence, we should test
the multivariate structure on normality as well.

Normality of the marginal distributions

To assess whether the observations Z1k, . . . , Zmk come from a normal distribution for
each k ∈ {1, . . . , p}, either probability plots can be used or goodness of fit tests. The
latter test is a more formal test. Both types will be briefly described below. In Section
7.3 these methods will be applied to real xtc data.

• QQ-plots provide a visual way to assess a certain distributional assumption. Al-
though this is not a formal method, it is a quick tool to check the assumption.
This visual test is especially interesting if the number of features p is not too
high. To assess normality, the normal (probability) plot can be used as a special
case of the QQ-plot. The idea of a normal plot is to compare the order statistics
(sample quantiles) to quantiles from a standard normal distribution (theoretic
quantiles) (Rice (2007)).

Let Z1k, . . . , Zmk be data from some distributionH. The empirical distribution of
the data Ĥm can be estimated by Ĥm(Z [i]k) = i

m such that Ĥm(Z [i]k) ≈ H(Z [i]k),
where Z [i]k is the i-th order statistic. If H is indeed a normal distribution with
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mean µ and variance τ then,

Z [i]k ≈ H−1
(
Ĥm

(
Z [i]k

))
= H−1

(
i

m

)
= µ+ τΦ−1

(
i

m

)
(4.2)

where Φ−1 is the standard normal quantile function. Thus, if the data comes
from a normal distribution we expect the points

(
Z [i]k,Φ

−1
(
i−0.5
m

))
to be in a

straight line. Here, the term i
m is replaced by i−0.5

m to ensure that Φ−1(1) is not
evaluated because this can be infinite.

• A more formal way to assess the normality of the observations Z1k, . . . , Zmk is
to use composite goodness of fit tests. In such tests we want to test whether the
distribution of the sample belong to a certain class of distribution functions. In
this problem, we thus consider the testing problem{

H0 : H ∈ H
H1 : H /∈ H,

whereH is the class of normal distribution functions. An example of a well-known
goodness of fit test for normality is the Shapiro-Wilk test. The test-statistic is

W =
(
∑m

i=1 aiZ [i]k)
2∑m

i=1(Zik − Zm)2
,

where Zm is the sample mean and the coefficients (a1, . . . , am) are based on
the expected values and covariances of order statistics of independent standard
normal random variables (Shapiro and Wilk (1965)). The idea behind this test
statistic is that under H0 both the numerator and denominator are estimators
for (n − 1)τ2 (Mardia (1980)). Thus, a test for normality is to compare the
statistic W with 1. The hypothesis H0 is rejected for small values of W . The
Shapiro-Wilk test is only one example of a suitable goodness of fit test for this
problem. Other tests are for example based on skewness and kurtosis. For more
information about goodness of fit tests, see for example D’Agostino and Stephens
(1986) or Mardia (1980).

If at least one of the marginal distributions is clearly not normal distributed, we thus
know that the multivariate structure is not normal either. However, one should bear
in mind that all measures of goodness of fit tests suffer from the same problem: for
small samples only very aberrant behaviour will be identified as a lack of fit and thus
the difference is not always detected. On the other hand, for large samples a difference
(relevant or not) is always detected.

Normality of the multivariate structure

Although the presence of non-normality is often reflected in the marginal distributions
(Johnson and Wichern (2007)), the multivariate structure should be assessed as well.
The assessment of the multivariate structure can be done by extensions from univariate
tests as described before. In Section 7.3 these methods will be applied to real xtc data.
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• For a visual check to assess multivariate normality again a QQ-plot can be used.
In contrary to the normal plot for the univariate case, now a chi-squared plot
should be used (Johnson and Wichern (2007)). In this plot the squared general-
ized distances d2

i are used as sample quantiles where,

d2
i = (Zi − µ)T−1(Zi − µ), i = 1, . . . ,m. (4.3)

In Johnson and Wichern (2007, result 4.7) it is proved that if Zi is distributed
as a multivariate normal distribution with mean µ and covariance matrix T,
the squared generalized distances are chi-squared distributed with p degrees of
freedom, where p is the number of features. This is true, because d2

i can be
written as the sum of independent standard normal random variables, which is
exactly the definition of a chi-squared random variable. Hence, the theoretic
quantiles are based on the chi-squared distribution. Again the steps of equation
(4.2) can be applied, but since the chi-squared distribution is not a location-scale
distribution and has only the parameter p which is known, we have

d2
(i) ≈ qp

(
i

m

)
,

where qp is the quantile function of the chi-squared distribution with p degrees
of freedom. Thus, if the data d2

(i) comes from a chi-squared distribution, we

expect the points
(
d2

(i), qp

(
i−0.5
m

))
to be on a straight line through the origin

with slope one. Hence, this indicates that the observations Z1, . . . ,Zm come
from a multivariate distribution. In Johnson and Wichern (2007) it is noted
that this method should only be applied if the condition m− p > 25 is satisfied.
Furthermore, the sample mean and sample covariance can be used for µ and T
in the computation of d2

i in equation (4.3).

• For the goodness of fit tests for the multivariate normal distribution some uni-
variate generalizations exist, such as the extension of the Shapiro-Wilk test
(Malkovich and Afiffi (1973)). But also various strict multivariate procedures
exist. Good overviews of these tests are e.g. in Gnanadesikan (1977) or Mardia
(1980). Another test is suggested in Doornik and Hansen (2008). The proposed
test has the best size and power in comparison to tests that were supposed to be
the most effective in earlier experiments. Further details about these tests will
not be discussed here, but these multivariate tests will be valuable in addition to
the chi-square plot to assess the normality of the multivariate structure.

4.2 Derivation of the likelihood ratio

Section 4.1 covered the assumption of a Gaussian between-source distribution. In the
forensic literature two different expressions for the likelihood ratio are given under this
assumption of normality. Section 4.2.1 and Section 4.2.2 describe these two approaches
that are used to obtain the likelihood ratio given in equation (3.15) in more detail.
Finally, in Section 4.2.3 it will be shown that these different approaches lead to the same
likelihood ratio. This result is therefore useful for the ENFSI-LR project. Although
it is not explicitly defined in Chapter 3, from now on we will assume that the vectors
Yl,θl and εlj are column vectors ∀l ∈ {1, 2}, j ∈ {1, . . . , nl}.
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4.2.1 Lindley’s approach

In Aitken and Lucy (2004) and Zadora et al. (2014) a likelihood ratio is given under the
assumption of a normal between-group distribution. The formula that is given there,
is based on the approach in Lindley (1977). The approach in Lindley (1977) is applied
on the univariate model, i.e. for p = 1. The idea of Lindley can be extended to a
multivariate model, p > 1, such that it leads to the formulas given in Aitken and Lucy
(2004) and Zadora et al. (2014). In this section Lindley’s approach for the multivariate
structure will be discussed in more detail. To do this, recall the likelihood ratio given
in equation (3.15). The computation of the numerator and the denominator will be
given separately.

Computation of the numerator

The numerator of the likelihood ratio in equation (3.15) is given by1∫
θ

fY1|θ(y1 | θ)fY2|θ(y2 | θ)h(θ)dθ. (4.4)

Since we know from Section 3.2 that the conditional random vector Yl | θ is normally
distributed and we have assumed that θ is normally distributed as well, the numerator
could be computed by direct integration. However, Lindley uses the fact that equation
(4.4) is the unconditional joint density of Y1 and Y2. More precisely, he claims that
this joint density is normal. We cannot immediately claim that equation (4.4) is a
multivariate normal density function, because unconditional on θ the vectors Y1 and
Y2 are not independent. Therefore, it will be shown that the numerator is indeed a
multivariate normal density below.

Lemma 4.2.1. The integral in equation (4.4) is a multivariate normal density function

with mean vector µ =

(
µ
µ

)
and covariance matrix Σ =

(
T + n−1

1 Σ T
T T + n−1

2 Σ

)
.

Proof. Since Y1 and Y2 both have the underlying true mean vector θ, we know from
Section 3.2.1 that we can write

Ylj = θ + εl,

where

εl =
1

nl

nl∑
j=1

εlj ∼ Np
(
0, n−1

l Σ
)

and
θ ∼ Np(µ,T).

Recall from Section 3.2.1 and Section 4.1.1 that

ε1⊥ε2 and θ⊥εl for l ∈ {1, 2}.

By definition a random vector is multivariate normal if and only if every linear com-
bination of its elements is univariate normal (Rao (1973), p.518). Then, it follows
that  θε1

ε2

 ∼ N3p

µ0
0

 ,

T 0 0
0 n−1

1 Σ 0
0 0 n−1

2 Σ

 .

1For the ease of notation, the conditioning on the background information I is omitted here. In
Chapter 5 it will be explained how the background information should be used in the likelihood ratio.
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Now we can use the following property of the multivariate normal distribution (Rao
(1973), p.519)

(
Y1

Y2

)
= A

 θε1

ε2

 ∼ N2p

A
µ0

0

 , A

T 0 0
0 n−1

1 Σ 0
0 0 n−1

2 Σ

A′


with

A =

(
Ip Ip 0
Ip 0 Ip

)
.

Here, Ip is the p× p identity matrix. Since

A

µ0
0

 =

(
µ
µ

)
:= µ

and

A

T 0 0
0 n−1

1 Σ 0
0 0 n−1

2 Σ

A′ =

(
Ip Ip 0
Ip 0 Ip

) T T
n−1

1 Σ 0
0 n−1

2 Σ


=

(
T + n−1

1 Σ T
T T + n−1

2 Σ

)
:= Σ

we obtain the required result.

Despite the fact that we now have shown that the numerator is multivariate normal,
Lindley adds an extra variable transformation to obtain a more computational favorable
result. Lindley chooses to take independent linear combinations of the vectors Y1 and
Y2. By using these variable transformations, the numerator can be expressed as the
product of the two corresponding multivariate normal densities of dimension p. Let

U = g1

(
Y1,Y2

)
= Y1 −Y2,

V = g2

(
Y1,Y2

)
=
n1Y1 + n2Y2

n1 + n2
.

Then (Rao (1973), p.519)(
U
V

)
= B

(
Y1

Y2

)
∼ N2p(Bµ, BΣB′) (4.5)

with

B =

(
1 −1
n1

n1+n2

n2
n1+n2

)
⊗ Ip,

where ⊗ is the Kronecker-product. However since

BΣB′ =

(
n−1

1 Σ + n−1
2 Σ 0

0 (n1 + n2)−1Σ + T

)
the covariance between U and V is zero. And thus the random vectors U and V are
independently distributed (Rao (1973), p.520). By using this independence result, the
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following transformation for the unconditional joint density of Y1 and Y2 is helpful
(Rice (2007))

fY1,Y2
(y1,y2) = fU (g1 (y1,y2)) fV (g2 (y1,y2)) |J (y1,y2)| , (4.6)

where J (y1,y2) is the Jacobian of the transformation,

J (y1,y2) =

∣∣∣∣∂g1/∂y1 ∂g1/∂y2

∂g2/∂y1 ∂g2/∂y2

∣∣∣∣ =

∣∣∣∣ 1 −1
n1

n1+n2

n2
n1+n2

∣∣∣∣ = 1.

By using the identity in equation (4.6), the numerator in equation (4.4) can be written
as: ∫

θ

fY1|θ(y1 | θ)fY2|θ(y2 | θ)h(θ)dθ = fU (g1 (y1,y2)) fV (g2 (y1,y2)) , (4.7)

where the random vector U has a multivariate normal distribution with mean vector
0 and covariance matrix (n−1

1 + n−1
2 )Σ and the random vector V has a multivariate

normal distribution with mean vector µ and covariance matrix (n1 + n2)−1Σ + T
according to (4.5).

Computation of the denominator

The denominator of the likelihood ratio in equation (3.15) is given by∫
θ1

fY1|θ1
(y1 | θ1)h(θ1)dθ1

∫
θ2

fY2|θ2
(y2 | θ2)h(θ2)dθ2, (4.8)

i.e. the product of the unconditional densities of Y1 and Y2. From Section 4.1.1 it is
known that Y1 and Y2 are normally distributed with mean vector µ and covariance
matrices T + n−1

1 Σ and T + n−1
2 Σ, respectively. The denominator is thus the product

of these two densities. If we combine this result with equation (4.7), the likelihood
ratio in equation (3.15) is equal to

LR(y1,y2) =

∣∣(n−1
1 + n−1

2 )Σ
∣∣− 1

2 exp

{
−1

2(y1 − y2)′
(

(n−1
1 + n−1

2 )Σ
)−1

(y1 − y2)

}
∣∣T + n−1

1 Σ
∣∣− 1

2 exp
{
−1

2(y1 − µ)′(T + n−1
1 Σ)−1(y1 − µ)

}
×

exp

{
−1

2

(
n1y1+n2y2
n1+n2

− µ
)′(

T + Σ
n1+n2

)−1(n1y1+n2y2
n1+n2

− µ
)}

∣∣T + n−1
2 Σ

∣∣− 1
2 exp

{
−1

2(y2 − µ)′(T + n−1
2 Σ)−1(y2 − µ)

}
×

∣∣∣(T + Σ
n1+n2

)∣∣∣− 1
2
. (4.9)

4.2.2 A Bayesian approach

The two-level model that is described in Section 3.2 can also be seen as a Bayesian
statistical model, because we have a parametric statistical model f(yl|θl), l ∈ {1, 2},
and a prior on the parameter θl, i.e. h(θl) (Hoff (2009), chapter 8). This Bayesian
paradigm is used in Bolck and Alberink (2011) to find an explicit formula for the
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likelihood ratio. Instead of the likelihood ratio given in equation (3.15), they start off
with the following likelihood ratio2:

LR(y1,y2) =

∫
θ fY2|θ(y2|θ)h(θ|y1)dθ∫

θ2
fY2|θ2

(y2|θ2)h(θ2)dθ2
. (4.10)

To find the latter likelihood ratio a different method is used compared to the method
described in Section 3.2. However, the formula in equation (4.10) is the same as the
likelihood ratio given in equation (3.15). To see this, we use the definition of the
posterior density h(θ | y1) (Robert (2007)):

h(θ | y1) =
f(y1 | θ)h(θ)∫

θ f(y1 | θ)h(θ)dθ
.

Substituting the latter equation into the likelihood ratio in (3.15) results in equation
(4.10), hence the two expressions are the same.

The denominator of equation (4.10) is the unconditional density of Y2. Recall from
equation (4.1) that this random vector is normally distributed with mean vector µ
and covariance matrix T + n−1

2 Σ and thus the denominator is known. To compute
the numerator of the likelihood ratio it is necessary to know the posterior distribution.
Below it will be shown that the posterior is a normal distribution.

Lemma 4.2.2. The posterior h(θ | y1) is a multivariate normal distribution with
mean vector µn = T(T + n−1

1 Σ)−1y1 + n−1
1 Σ(T + n−1

1 Σ)−1µ and covariance matrix
Tn = T−T(T + n−1

1 Σ)−1T.

Proof. The posterior distribution is proportional to the likelihood times the prior dis-
tribution,

h(θ | y1) ∝ f(y1 | θ)h(θ).

Since we have assumed that θ is normally distributed with mean vector µ and covari-
ance matrix T, it follows that

h(θ|y1) ∝ exp
(
− 1

2
(y1 − θ)′(n−1

1 Σ)−1(y1 − θ)
)

exp
(
− 1

2
(θ − µ)′T−1(θ − µ)

)
∝ exp

(
− 1

2

(
− θ′((n−1

1 Σ)−1y1 + T−1µ)− (y′1(n−1
1 Σx)−1 + µ′T−1)θ

+ θ′((n−1
1 Σ)−1 + T−1)θ

))
= exp

(
− 1

2

(
− θ′T−1

n µn − µ′nT−1
n θ + θ′T−1

n θ
))

(4.11)
Hence,

θ|y1 ∼ Np(µn,Tn).

To see that µn and Tn are the same as defined in the lemma, the following two matrix
identities for invertible matrices A and B will be used:

(M1) : (A−1 + B−1)−1 = A−A(A + B)−1A = B−B(A + B)−1B
(M2) : (A−1 + B−1)−1 = A(A + B)−1B = B(A + B)−1A

2Note that the notation of the formula given in Bolck and Alberink (2011) is adapted to the notation
used in this thesis. In Bolck and Alberink (2011) the mean vector θ2 is replaced by θ in combination
with conditioning on the hypothesis Hd in the denominator.
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A proof of these identities is given in Appendix A.1. From equation (4.11) we know
that,

µn = Tn((n−1
1 Σ)−1y1 + T−1µ)

Apply (M2) on Tn results in

µn = T(n−1
1 Σ + T)−1n−1

1 Σ(n−1
1 Σ)−1y1 + n−1

1 Σ(n−1
1 Σ + T)−1TT−1µ

= T(T + n−1
1 Σ)−1y1 + n−1

1 Σ(T + n−1
1 Σ)−1µ.

To find Tn we apply (M1) on Tn and hence

Tn = T−T(T + n−1
1 Σ)−1T.

Now the posterior distribution is known, the numerator of the likelihood ratio in equa-
tion (4.10) can be computed with direct integration. These steps are shown in Appendix
A.2. Using this result the following formula is found (Bolck and Alberink (2011)):

LR(y1,y2) =
|Un|−

1
2 exp

{
−1

2(y2 − µn)′U−1
n (y2 − µn)

}
|U0|−

1
2 exp

{
−1

2((y2 − µ)′U−1
0 (y2 − µ))

} (4.12)

with

µn = T(T + n−1
1 Σ)−1y1 + n−1

1 Σ(T + n−1
1 Σ)−1µ,

Tn = T−T(T + n−1
1 Σ)−1T,

U0 = T + n−1
2 Σ,

Un = Tn + n−1
2 Σ.

4.2.3 Equality of different likelihood ratio expressions

In Section 4.2.1 and Section 4.2.2 we have seen that under a normal between-source
distribution there are two different likelihood ratio formulas in forensic literature. By
applying the definition of the posterior h(θ | y1) we have seen that in theory the
likelihood ratio expression in equation (4.10) is the same as the likelihood ratio given
in equation (3.15). However, for the ENFSI-LR project it is of great importance that
the explicit formulas, given in equation (4.9) and equation (4.12), are the same as
well. The ENFSI-LR project has implemented the likelihood ratio given in Bolck and
Alberink (2011) and thus it is important that this formula is in harmony with the
formula given in other literature (Aitken and Lucy (2004) and Zadora et al. (2014)).
Therefore, below it is shown that the the likelihood ratios given in equation (4.9) and
equation (4.12) are equal.

Lemma 4.2.3. The likelihood ratios given in equation (4.9) and equation (4.12) are
the same.

The proof of this lemma is given in Appendix A.3.



5

Parameter estimation for Gaussian
two-level models

In Section 4.2 an explicit formula for the likelihood ratio has been derived under the
assumption of a normal between-source distribution h. To compute the likelihood ratio
in equation (4.9), the mean vector µ and covariance matrices T and Σ are required.
Since these parameters are unknown, this chapter is devoted to estimation techniques
for the parameters within the Gaussian two-level model.

In Section 5.1 we start off with an overview of the available background data, i.e.
the data that will be used to estimate the parameters. In the ENFSI-LR project
it is decided that the software must contain a “simple” plug-in estimator as default
choice. Other estimators will be implemented as optional choices. Section 5.2 and
Section 5.3 describe these possible plug-in estimators. Currently, forensic statisticians
are discussing whether the so called “weighted mean” or “unweighted mean” should be
used as an estimator for the mean. Section 5.2 therefore gives a comparison of both
estimators that can help in this decision. It is generally accepted to use the analysis
of variance estimators to estimate the covariance matrices Σ and T. This method
is briefly described in Section 5.3. However, since this estimator for T depends on
µ, the estimator is closely related to the discussion in Section 5.2. To overcome this
problem, in Section 5.3 a general formula for the analysis of variance estimator for T
is derived, such that it easily adapts to the choice of the mean estimator. This is also
useful for implementation purposes. In Section 5.4 the method of maximum likelihood
is suggested to estimate the parameters. The maximum likelihood estimates can be
computed iteratively using the EM-algorithm, see Section 5.4.1. In Section 5.5 the
suggested estimators are compared using Monte Carlo simulation.

5.1 Background data

In the likelihood ratio given in equation (4.9), the control- and recovered data are
modelled as a Gaussian two-level model. To estimate the parameters µ, T and Σ of
this model, background data will be used as observations for the control- and recovered
data. Let (Zij | 1 ≤ i ≤ m, 1 ≤ j ≤ ni) denote the background data that consist of m
groups (batches) and ni measured tablets within each batch, such that

Zij = measurement vector of p characteristics within batch i on tablet j.

This data set can be unbalanced, because the number of measured tablets ni can differ
in each group. The data set would be called balanced if the number of measured tablets

38
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is the same in each batch, i.e. ni = ni′ ∀i, i′ ∈ {1, . . . ,m}. In practice, the background
data will consist of seized xtc consignments. The data will often be unbalanced, because
it is infeasible to measure the same number of tablets in each seized xtc consignment.

Because the background data can be seen asm repeated observations of xtc batches,
we model the background data by the Gaussian two-level model that is used to model
the control- and recovered data (see Section 3.2),

Zij = θi + εij for i = 1, . . . ,m, j = 1, . . . , ni (5.1)

with

θi
iid∼ Np(µ,T) ∀i,

εij
iid∼ Np(0,Σ) ∀i, j,

and

θi ⊥ εi′j ∀i, i′.

Hence,
Zij ∼ Np(µ,Σ + T).

A schematic representation of this model is given in Figure 5.1, which is an extension
of Figure 3.1.

θ2θ1 θm

θi ∼ Np(µ,T)

Z11, . . . ,Z1n1 Z21, . . . ,Z2n2 Zm1, . . . ,Zmnm. . .

ε1j ε2j εmj

εij ∼ Np(0,Σ)

Figure 5.1: Schematic representation of the Gaussian two-level model for the back-
ground data.

In Section 5.3 we are also interested in the distribution of the batch means Zi, i ∈
{1, . . . ,m}. Recall that in Section 4.1.2 we have used thesem batch means of p features
to evaluate the assumption of normality, i.e.

Zi =
1

ni

ni∑
j=1

Zij = θi + εi i ∈ {1, . . . ,m} (5.2)
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such that by independence,

Zi ∼ Np(µ,T + n−1
i Σ). (5.3)

To estimate the parameters µ,Σ and T suitable background data should thus be avail-
able. Nowadays, within an increasing number of forensic fields people try to create such
background databases. Naturally these databases should contain measurements on the
required features and they need to contain a sufficient amount of data. However, as we
have already mentioned in Chapter 3, it takes a lot of time and resources to accomplish
these goals.

Remarks:

• As mentioned in Section 4.1, the described two-level model is a multivariate
random effects model. In the literature it is common to write θi as the sum of its
mean µ and the random group effect αi, i.e. θi = µ+ αi where αi ∼ Np(0,T).
Recognizing this as a random effects model is helpful for a literature study to
parameter estimation in such models.

• The notation used to model the background data is the same as the notation
used to model the control- and recovered data in Chapter 3. In this section the
parameters θ1 and θ2 and the group sizes n1 and n2 are the batch means and
group sizes of two random batches in the background data respectively. Thus,
these quantities do not correspond to the control- and recovered data as modelled
in Section 3.2.1.

Background information

In the likelihood ratio in equation (3.15), the densities f and h are conditioned on
the background information I. In Section 3.1 we have discussed the example that
the total database contains xtc consignments from Europe, but from the background
information it follows that we should only consider xtc batches that originate from the
Netherlands. In this case a subset of the database as described above should be used
and thus the estimates of the parameters will be based on xtc consignments from the
Netherlands instead of from Europe. Thus, conditioning on the background information
I could influence the background data that should be used. Hence, conditioning on the
background information affects the estimated parameters µ,Σ and T.

In theory, the background information can only be used when the evidence E de-
pends in a certain way on this information. For example, if the evidence exists of the
weights of the tablets, it may depend on the country of origin of the tablets. But the
kind of bags the tablets are found in, does probably not influence the weights and hence
such information cannot be used.

It can thus be difficult to determine in what way the evidence depends on the
background information and how it can be used. Moreover, earlier it was mentioned
that it is hard to create a suitable background database. Hence, one can imagine that
a background database based on the background information is even harder to obtain.
Despite the fact that in practice this remains a bit of a black box, in theory we condition
on the background information I.
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5.2 Estimating the mean

In this section plug-in estimators for the mean vector µ are examined. Between forensic
statisticians an active discussion exist about whether the weighted- or the unweighted
mean should be used. Therefore, in Section 5.2.1 these estimators are compared based
on the mean squared error. It will be shown that both estimators are unbiased. Hence,
it is interesting to examine the variances of the estimators and in particular which one
has smallest variance. We will see that this depends on the relation between unknown
parameters. Section 5.2.2 gives a generalized weighted mean as an alternative to the
weighted- and the unweighted mean.

5.2.1 Weighted- versus unweighted mean

Two natural estimators for the mean vector µ are the weighted mean and the unweighted
mean. The weighted mean is the average over all observations Zij (Searle (1992)),

µ̂w =
1

N

m∑
i=1

ni∑
j=1

Zij , (5.4)

where N is the total number of observations, i.e. N =
∑m

i=1 ni. The unweighted mean
is the average over the average of the observations Zij in each group (Sahai and Ojeda
(2005)):

µ̂u =
1

m

m∑
i=1

1

ni

ni∑
j=1

Zij =
1

m

m∑
i=1

Zi. (5.5)

First note that if the data is balanced, i.e. ni = ni′ ∀i, i′ ∈ {1, . . . ,m}, the weighted-
and unweighted average are exactly the same. For unbalanced data, some prefer the
weighted average and others the unweighted average (Aitken and Lucy (2004), Bolck
and Alberink (2011)). The fact that the weighted average is more robust to single
outliers in a group and has least variance are arguments in favor of the weighted average.
An argument in favor of the unweighted average is that in practical forensic research
it is beneficial that groups have equal importance, despite the number of observations.
In fact, it is shown in this section that the best choice depends on the situation. For
example, if the error εij is small on average i.e. if Zi ≈ θi, then the unweighted average
is the maximum likelihood estimator and we would prefer this one. To make such
statements more explicit, the mean squared errors of both estimators will be compared.
For ease of notation this comparison is done for one dimension, i.e. p = 1, such that
the mean vector µ boils down to a single parameter µ and covariance matrices T and
Σ are equal to τ2 and σ2, respectively. At the end of this section the results will be
extended to the multivariate case (p > 1).

First, we show that both estimators are unbiased,

E (µ̂w) =
1

N

m∑
i

ni∑
j

E (Zij) =
1

N

m∑
i

niµ = µ

and

E (µ̂u) =
1

m

m∑
i

E
(
Zi
)

=
1

m

m∑
i

µ = µ
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by using equation (5.3). For the variance of the weighted mean it follows that

Var (µ̂w) =
1

N2

m∑
i=1

Var

 ni∑
j=1

Zij


=

1

N2

m∑
i=1

Var

niθi +

ni∑
j=1

εij


by the definition in (5.1). Because of independence it then follows that

Var (µ̂w) =
1

N2

m∑
i=1

Var (niθi) +

ni∑
j=1

Var (εij)


=

1

N2

m∑
i=1

{
n2
i τ

2 + niσ
2
}
.

For the variance of the unweighted mean we have

Var (µ̂u) =
1

m2

m∑
i=1

Var (θi + εi)

=
1

m2

m∑
i=1

{
τ2 +

σ2

ni

}
.

Because both estimators are unbiased, the mean squared error of the estimator is
equal to its variance. We will therefore examine which estimator has smallest variance.
Hence, consider the efficiency of µ̂u relative to µ̂w (Rice (2007)):

eff(µ̂u, µ̂w) =
Var(µ̂w)

Var(µ̂u)

=
1
N2

∑m
i=1

{
n2
i τ

2 + niσ
2
}

1
m2

∑m
i=1

{
τ2 + σ2

ni

}
=

τ2

N2

∑m
i=1 n

2
i + σ2

N
τ2

m + σ2

m2

∑m
i=1

1
ni

. (5.6)

By Jensen’s inequality it follows that

1

m

m∑
i=1

n2
i ≥

(
1

m

m∑
i=1

ni

)2

=
N2

m2
(5.7)

and thus,

τ2

N2

m∑
i=1

n2
i ≥

τ2

N2

mN2

m2
=
τ2

m
. (5.8)

This inequality refers to the first terms in the numerator and denominator of equation
(5.6). So, if we can show that the inequality σ2

N ≥
σ2

m2

∑m
i=1

1
ni

is true (the second
terms), then we have shown that the variance of the weighted mean is always bigger
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than the variance of the unweighted mean. However, again by using Jensen’s inequality
it follows that

1

m

m∑
i=1

1

ni
≥ 1

1
m

∑m
i=1 ni

=
m

N
. (5.9)

Here we have used that the function φ(x) = 1
x is convex for x > 0, which is all we need

since we are only considering positive values. Using the latter inequality it thus follows
that

σ2

m2

m∑
i=1

1

ni
≥ σ2

N
. (5.10)

Furthermore, whether the term τ2

N2

∑m
i=1 n

2
i is greater or equal than the denominator,

completely depends on the magnitudes of the quantities. Consequently, the efficiency
of µ̂u relative to µ̂w is not always bigger than one. On the other hand, the efficiency
of µ̂u relative to µ̂w is not always smaller than one either. This can be seen from
equation (5.10) and by the fact that the term σ2

m2

∑m
i=1

1
ni

is not always bigger than
the numerator. Thus, it can be concluded that we cannot be conclusive about which
estimator has smallest variance. However, certain conditions can be determined for the
quotient in equation (5.6) to be greater or smaller than one. To make things easier,
multiply the quotient in equation (5.6) with the term m2N2 in the numerator and
denominator and let r = σ2

τ2
. Then

eff(µ̂u, µ̂w) =
m2
∑m

i=1 n
2
i +m2Nr

mN2 + rN2
∑m

i=1
1
ni

. (5.11)

It can be seen that

eff(µ̂u, µ̂w) > 1 if r

(
m2N −N2

m∑
i=1

1

ni

)
> mN2 −m2

m∑
i=1

n2
i .

Note that the term m2N − N2
∑m

i=1
1
ni

is always negative, because of equation (5.9).
Hence,

eff(µ̂u, µ̂w) > 1 if r <
mN2 −m2

∑m
i=1 n

2
i

m2N −N2
∑m

i=1
1
ni

:= c. (5.12)

Furthermore, the termmN2−m2
∑m

i=1 n
2
i is always negative as well because of equation

(5.7), such that the constant c is always positive as required. Therefore,{
Var(µ̂w) > Var(µ̂u) if σ2 < cτ2,

Var(µ̂w) < Var(µ̂u) if σ2 > cτ2,
(5.13)

Thus which variance is the smallest, and correspondingly which estimator is the best
choice, depends on the proportion between σ and τ . So if the error is small, i.e. the
variance σ2 is small and can assumed to be smaller than cτ2, then the variance of the
weighted mean is bigger than the variance of the unweighted mean and one should
prefer the unweighted mean. This example corresponds with the example which we
have seen in the beginning of this section, i.e if Zi ≈ θi then we would prefer the
unweighted average.
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To decide which estimator is best to use, one should thus have certain prior knowl-
edge about the proportion between the variances σ2 and τ2. However, because these
quantities are unknown this choice is combined with uncertainty.

For the multivariate case, instead of estimating a single mean µ, a whole vector of
means should be estimated (see equation (5.4) and (5.5)). It is easy to see that for the
multivariate case, both estimators are still unbiased. But instead of the variance of the
estimator, we now have a covariance matrix of the mean vector to consider. Hence,
the variance of each of the p components of the mean vector estimator should thus be
compared as described in (5.13). In practice the choice between the two estimators
based on this condition, would be obviously harder than in the one dimensional case.

5.2.2 Generalized weighted mean

This section suggests a more general estimator for the mean than the weighted- and
unweighted mean which are described in Section 5.2.1. We will refer to this more
general estimator as the generalized weighted mean1. We start off with the estimator
for the univariate model. At the end of this section the estimator is extended to the
multivariate model.

Define the generalized weighted mean as (Rice (2007))

µ̂ =

m∑
i=1

wiZi where
m∑
i=1

wi = 1. (5.14)

Recall from Section 5.1 that Zi ∼ N (µ, τ2+σ2/ni). From the constraint w1+· · ·+wm =
1 it then follows that the generalized weighted mean is unbiased,

E(µ̂) =
m∑
i=1

wi E
(
Zi
)

=

m∑
i=1

wiµ = µ.

The variance of µ̂ is equal to

Var(µ̂) =

m∑
i=1

w2
i Var

(
Zi
)

=

m∑
i=1

w2
i

(
τ2 + σ2/ni

)
.

Since the variance depends on the choice of the weights wi, i = 1, . . . ,m, the question
arises how to choose these weights to minimize Var(µ̂) subject to the constraint w1 +
· · ·+ wm = 1 (Rice (2007)).

Lemma 5.2.1. The weights w1, . . . , wm that minimize Var(µ̂) subject tot the constraint
w1 + · · ·+ wm = 1 are given by

wi =
1

(τ2 + σ2/ni)
∑m

i=1 (τ2 + σ2/ni)
−1 (5.15)

where i = 1, . . . ,m.

Proof. To minimize Var(µ̂) subject to the constraint w1 + · · · + wm = 1 we introduce
a Lagrange multiplier λ such that the Lagrange function is equal to:

Lλ(w1, . . . , wm, λ) =
m∑
i=1

w2
i

(
τ2 + σ2/ni

)
− λ

(
m∑
i=1

wi − 1

)
.

1In the literature this estimator is called the weighted mean. However, in forensic literature the
estimator in equation (5.4) is called the weighted mean. Therefore we will refer to this estimator as
the generalized weighted mean.
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We will minimize the Lagrange function over Rm. For i = 1, . . . ,m we have

∂Lλ
∂wi

= 2
(
τ2 + σ2/ni

)
wi − λ.

Setting these partial derivatives equal to zero, we have the system of equations

wi =
λ

2 (τ2 + σ2/ni)
.

Now using the constraint
∑m

i=1wi = 1 gives

m∑
i=1

λ

2 (τ2 + σ2/ni)
= 1.

Hence,

λ =
1∑m

i=1
1
2 (τ2 + σ2/ni)

−1 .

Thus,

wi =
1

(τ2 + σ2/ni)
∑m

i=1 (τ2 + σ2/ni)
−1

which proves the lemma.

This lemma shows that for the weights in equation (5.15) the generalized weighted
mean is optimal, i.e.

µ̂opt =

∑m
i=1

(
τ2 + σ2/ni

)−1
Zi∑m

i=1 (τ2 + σ2/ni)
−1 . (5.16)

Note that the generalized weighted mean can only be called an estimator if the param-
eters σ2 and τ2 are known. When we hereafter refer to µ̂opt as an estimator we are
assuming that σ2 and τ2 are known.

The weighted- and unweighted mean are special cases of the generalized weighted
mean given in equation (5.14). It can be seen that the weighted mean µ̂w is the
generalized weighted mean with weights wi = niN

−1 ∀i. The unweighted mean µ̂u is
the generalized weighted mean with weights wi = m−1 ∀i. Since the weights in equation
(5.15) yield the minimum variance for µ̂ we can thus conclude that, if the parameters
σ2 and τ2 are known, µ̂opt is the best of these three estimators.

Further it can be noticed that, if the parameters σ2 and τ2 are known, the gener-
alized weighted mean with optimal weights is the maximum likelihood estimator. In
fact, Z1, . . . , Zm, are independent and identically distributed normal random variables
such that their joint density is the product of the marginal densities. The log likelihood
is thus equal to

−m
2

log 2π − 1

2

m∑
i=1

log (τ2 + σ2/ni)−
1

2

m∑
i=1

(Zi − µ)2

τ2 + σ2/ni
.

To find the maximum likelihood estimator for µ we thus want to minimize the term

m∑
i=1

(Zi − µ)2

τ2 + σ2/ni
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with respect to µ. Taking the derivative of the latter expression with respect to µ and
setting this derivative equal to zero then gives exactly the estimator in equation (5.16).
The fact that this generalized weighted mean is the maximum likelihood estimator is
not surprising, because in many situations the maximum likelihood estimator is the
minimum variance estimator.

Although in theory the generalized weighted mean µ̂opt is the minimum variance
unbiased estimator, in practice this is not true. The weights in equation (5.15) depend
on the parameters τ2 and σ2, which are unknown. Therefore, estimated values of these
parameters should be substituted which will have influence on the variance of the gen-
eralized weighted mean. So in conclusion we theoretically derived that for known σ2

and τ2 the generalized weighted average is better than the weighted- and unweighted
mean. In practice, however, this result is not necessarily true after substituting esti-
mates for τ2 and σ2. In Section 5.5 this issue will be investigated by comparing the
mean squared errors of the estimators in a simulation study. Another interesting ques-
tion is to investigate what the effect of a non-optimal estimator is on the likelihood
ratio. Due to time limitations this is not covered in this thesis. Nevertheless, since
forensic experts currently not always report the numerical value of the likelihood ratio
but only the verbal scale, it is likely that the effect of the estimator on the verbal scale
is rather small.

In the one-dimensional case it is a natural choice to minimize the variance of the gen-
eralized weighted mean to obtain optimal weights. To extend the generalized weighted
mean to the multivariate case, instead of the variance we now have a covariance matrix
of the generalized weighted mean to consider. Hence, a choice should be made which
object will be minimized. Since it is desired to minimize the variances of the multivari-
ate generalized weighted mean, i.e. the diagonal of the covariance matrix, rather than
the covariances of the generalized weighted mean, we choose to minimize the trace of
the covariance matrix. Then, again using a Lagrange multiplier it can be found that
the optimal weights are (see Appendix A.5)

wi =

(
m∑
i=1

(
T + n−1

i Σ
)−1

)−1 (
T + n−1

i Σ
)−1

for i = 1, . . . ,m such that

µ̂opt =

(
m∑
i=1

(T + n−1
i Σ)−1

)−1( m∑
i=1

(T + n−1
i Σ)−1Zi

)
(5.17)

is the optimal generalized weighted mean.

5.3 Analysis of variance estimators

In random effects models the analysis of variance technique is commonly used to es-
timate the within covariance matrix Σ and the between covariance matrix T. The
analysis of variance estimation is based on the following identity:

m∑
i=1

ni∑
j=1

(
Zij − Z

) (
Zij − Z

)′
=

m∑
i=1

ni∑
j=1

(
Zij − Zi

) (
Zij − Zi

)′
+

m∑
i=1

ni
(
Zi − Z

) (
Zi − Z

)′
. (5.18)
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Here Zi and Z are the group mean and the overall mean, respectively. In Rice (2007)
the latter identity is showed for balanced one-dimensional data. For unbalanced higher
dimensional data the idea is roughly the same, this is shown in Appendix A.4 for
convenience. The left-hand side of equation (5.18) is called the total sum of squares.
The first- and second term on the right-hand side of the identity are called the within
group sums of squares (SSW ) and the between group sum of squares (SSB), respectively.
Due to the outer products these quantities are p× p matrices that represent variation
within groups (SSW ) and between groups (SSB). The idea of analysis of variance
estimation is to derive the expected values of SSB and SSW . Subsequently, these
expected values can be equated to the observed values for SSB and SSW . These
equations need to be solved for the matrices Σ and T to obtain the analysis of variance
estimators.

For the within group sum of squares it can be shown that

E (SSW ) = Σ(N −m). (5.19)

The derivation of this expectation for one dimensional problems can be found in several
places in the literature (e.g. Searle (1992) or Sahai and Ojeda (2005)). The multivariate
derivation is an extension and is given in Appendix A.6. The expectation of SSW can
now be equated to the observed value of SSW , such that the analysis of variance
estimator for Σ is found

Σ̂ =

∑m
i=1

∑ni
j=1 (zij − zi) (zij − zi)′

N −m
. (5.20)

To compute the expectation of the between group sum of squares, the definition of Z
is important. In the literature it is common to use the weighted average as described
in Section 5.2.1. The corresponding estimator for T will thus depend on this choice,
see Searle et al. (1992). In Sahai and Ojeda (2005) a remark is given for the analysis of
variance estimator for T using the unweighted average for Z. In Section 5.2 we have seen
that we cannot be exclusive in our choice between the weighted- and unweighted average
for the overall mean. In theory, this choice should depend on the relation between the
within- and between variances. In fact, neither the weighted- or unweighted average
is the minimum variance estimator, because in theory this is the generalized weighted
mean as given in equation (5.20). We have mentioned that all these estimators can be
expressed as generalized weighted averages with different weights, see equation (5.14).
Therefore below the expectation for SSW is computed in terms of a general estimator
for Z. Hence, the estimator for T will be in terms of this expression. Depending on
the choice of the estimator for Z, the corresponding weights should be substituted in
the estimator for T. In this way, the estimator for T can be easily adapted to each
situation. Obviously, Σ̂ is not affected by this choice and will remain as given in
equation (5.20). Let Z be a generalized weighted average

Z =
m∑
i=1

wiZi.

The expectation of the between group sum of squares is equal to

E (SSB) =
m∑
i=1

ni

{
E
(
ZiZ

′
i

)
− E

(
ZiZ

′
)
− E

(
ZZ′i

)
+ E

(
ZZ′

)}
.

Using equation (5.3) we have

E
(
ZiZ

′
i

)
= Cov

(
Zi,Zi

)
+ E

(
Zi
)

E
(
Zi
)′

= n−1
i Σ + T + µµ′.
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Using the same approach to compute the expectation E
(
ZiZ

′
)
, the covariance between

Zi and Z is thus required:

Cov
(
Zi,Z

)
= Cov

(
Zi,

m∑
r=1

wrZr

)

By independence of Zi and Z′i for all i 6= i′ it follows that

Cov
(
Zi,Z

)
= Cov

(
Zi,wiZi

)
= wi Cov

(
Zi,Zi

)
.

Since the generalized weighted average for Z is unbiased, i.e. E
(
Z
)

= µ, we now have

E
(
ZiZ

′
)

= wi

(
T + n−1

i Σ
)

+ µµ′.

This computation holds for the expectation E
(
ZZ′i

)
as well. To compute the expec-

tation E
(
ZZ′

)
, again by independence it follows that

Cov
(
Z,Z

)
=

m∑
i=1

Cov
(
wiZi,wiZi

)
=

m∑
i=1

w2
i

(
T + n−1

i Σ
)
.

Thus, we have

E (SSB) =

m∑
i=1

ni

{
T + n−1

i Σ− 2wi

(
T + n−1

i Σ
)

+

m∑
r=1

w2
r

(
T + n−1

r Σ
)}

=
m∑
i=1

ni

{
Σ

(
n−1
i − 2win

−1
i +

m∑
r=1

w2
rn
−1
r

)}

+
m∑
i=1

ni

{
T

(
1− 2wi +

m∑
r=1

w2
r

)}

= Σ

(
m− 2

m∑
i=1

wi +N

m∑
r=1

w2
rn
−1
r

)
+ T

(
N − 2

m∑
i=1

niwi +N

m∑
r=1

w2
r

)
.

Equating this expectation to the observed value of SSB then gives the estimator

T̂ =

∑m
i=1 ni

(
Zi − Z

) (
Zi − Z

)′ − Σ̂
(
m− 2

∑m
i=1 wi +N

∑m
r=1 w2

rn
−1
r

)
(N − 2

∑m
i=1 niwi +N

∑m
r=1 w2

r)
. (5.21)

Thus, if for example the weighted average is chosen for Z, then we have seen in Section
5.2.2 that the weights should equal wi = niN

−1. Hence, substituting these weights in
equation (5.21) will give the same estimator for T as is derived in for example Searle
et al. (1992).

A difficulty related to these estimators is the fact that for some data it can happen
that the variance estimates are negative. In that case it could be that the wrong
model is used or it may be an indication that the true value is zero, because it is an
unbiased estimator (Searle et al. (1992)). To avoid the possibility of negative estimates,
other estimators can be used. An example is maximum likelihood estimation, which is
described in the following section.
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5.4 Maximum likelihood estimation

In this section the method of maximum likelihood is discussed to estimate the param-
eters µ, Σ and T. First, the likelihood function will be derived from which it can
be seen that there exist no explicit formulas to estimate the parameters. In Section
5.4.1 the EM-algorithm is suggested as an iterative method to solve this problem. Let
Ψ = (µ,Σ,T) and consider the background data Z = (Zij , 1 ≤ i ≤ m, 1 ≤ j ≤ ni) as
described in Section 5.1. The joint density of the background data is

fΨ(z) =
m∏
i=1

fΨ(zi1, . . . , zini), (5.22)

because the observations are independent between groups. The observations within
group i are not independent and thus the joint density of Zi1, . . . ,Zini is needed.

Lemma 5.4.1. The joint density of Zi1, . . . ,Zini is multivariate normal with mean

vector

µ...
µ

 and covariance matrix Σi =

T + Σ T
. . .

T T + Σ

 .

Proof. To show this result an extension of the steps used in the proof of lemma 4.2.1
can be applied, i.e.


Zi1
Zi2
...

Zin1

 = A


θi
εi1
...
εini

 ∼ Npni
A


µ
0
...
0

 , A


T 0 . . . . . . 0
0 Σ 0 . . . 0
... 0

. . . 0
...

...
... 0

. . . 0
0 0 . . . 0 Σ

A′


with A a (pni × p(ni + 1)) matrix

A =


Ip Ip 0 . . . 0
... 0

. . . 0
...

...
... 0

. . . 0
Ip 0 . . . 0 Ip

 .

From this result is follows that the joint density of Z is equal to

fΨ(z) =

m∏
i=1

1√
(2π)pni |Σi|

exp

(
−1

2
(zi − µi)

′Σ−1
i (zi − µi)

)
,

where zi = (z′i1, . . . , z
′
ini

)′. Then, the log likelihood function is

l(Ψ) = −p
2

m∑
i=1

ni log 2π − 1

2

m∑
i=1

log |Σi|

− 1

2

m∑
i=1

(Zi − µi)
′Σ−1

i (Zi − µi) (5.23)

In Sahai and Ojeda (2005) it is shown that for p = 1 this log likelihood can be rewritten
in terms of µ, σ2 and τ2 such that partial derivatives can be calculated. However, it
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is shown that explicit solutions do not exist for the maximum likelihood estimators
and hence iterative procedures are required. For the log likelihood derived in Section
5.2.2 we have the same problem and hence iterative procedures are required as well.2

Therefore, below the EM-algorithm is suggested as an iterative procedure to obtain the
maximum likelihood estimates.

5.4.1 EM-algorithm

The EM-algorithm is a broadly applicable approach to the iterative computation of
maximum likelihood estimates that has become popular in the fundamental paper of
Dempster, Laird and Rubin (1977). The algorithm is useful in a variety of incomplete
data problems. The most evident problems have for example missing data or censored
group observations. However, a random effect model as considered here can also be
seen as an incomplete data problem and thus the EM-algorithm is applicable for such
problems as well. Recall that the random effect model is

Zij = θi + εij 1 ≤ i ≤ m, 1 ≤ j ≤ ni.

Hence, the observed background data Z can be viewed as incomplete, since the random
group effects θi are unobservable data. Then, the complete data are

(Zij ,θi) 1 ≤ i ≤ m, 1 ≤ j ≤ ni.

In case complete data are observed, maximum likelihood estimation is often easy.
Hence, the idea of the EM-algorithm is to approach the problem of solving the incomplete-
data likelihood by associating it to the complete data log likelihood function. The
complete data likelihood function is

fΨ(z,θ) = fΨ(z | θ)hΨ(θ)

=
m∏
i=1

fΨ(zi1, . . . , zini | θi) ·
m∏
i=1

hΨ(θi).

Contrary to equation (5.22), the observations within group i are independent because
we condition on the group effect θi, i.e.

fΨ(z,θ) =
m∏
i=1

ni∏
j=1

fΨ(zij | θi) ·
m∏
i=1

hΨ(θi)

Then, by using the conditional distribution for Zij and the Gaussian between-source
distribution it follows that

fΨ(z,θ) =

m∏
i=1

ni∏
j=1

{
(2π)−

p
2 |Σ|−

1
2 exp

(
−1

2
(zij − θi)′Σ−1(zij − θi)

)}

×
m∏
i=1

{
(2π)−

p
2 |T|−

1
2 exp

(
−1

2
(θi − µ)′T−1 (θi − µ)

)}
= (2π)−

p(m+N)
2 |T|−

m
2 |Σ|−

N
2

×
m∏
i=1

exp

−1

2
(θi − µ)′T−1 (θi − µ)− 1

2

ni∑
j=1

(zij − θi)′Σ−1 (zij − θi)

.
2Note that for the likelihood in Section 6.2.2 we have used the means Z1, . . . , Zm as data instead

of the total background data Z. The reason for this is that the generalized weighted mean is defined
in terms of the means Zi.
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The complete data log likelihood function is then

lc(Ψ) = −p
2

(m+N) log 2π − m

2
log |T| − 1

2
N log |Σ|

− 1

2

m∑
i=1

(θi − µ)′T−1(θi − µ) +

ni∑
j=1

(Zij − θi)′Σ−1(Zij − θi)

 .

From this complete log likelihood it follows that maximum likelihood estimation is
indeed computationally more tractable if we had observed the variables θi in addition
to Zij . In this case we could find closed form maximum likelihood estimators from the
latter expression using the maximum likelihood estimators for multivariate Gaussian
likelihood functions (Mardia et al. (1979), p.103). The complete data problem thus
yields a closed form solution for the maximum likelihood estimator.

This fact is used in the EM-algorithm to approach the problem of solving the
incomplete data likelihood in equation (5.23) indirectly by proceeding iteratively in
terms of the complete data log likelihood (McLachlan and Krishnan (1997)). Because
the complete data log likelihood is unobservable, this log likelihood is replaced by its
conditional expectation given the observed data under the distribution determined by
the current fit for the parameters. This step is known as the expectation step of the
algorithm. In the maximization step this conditional expectation is maximized such
that a new estimate is found. More specifically, for iteration (k + 1) (McLachlan and
Krishnan (1997)):

E-step : Caclulate Q(Ψ;Ψ(k)) where Q(Ψ;Ψ(k)) = EΨ(k) (lc(Ψ) | Z = z)

for Ψ(k) the current estimate.
M-step : Choose Ψ(k+1) to be any value of Ψ such that it maximizes Q(Ψ;Ψ(k)),

i.e. Q(Ψ(k+1);Ψ(k)) ≥ Q(Ψ;Ψ(k)) ∀Ψ.

These steps should be repeated until convergence. In practice this means that a certain
stopping criterion should be chosen. A discussion about stopping criteria is given in
Section 5.5. The E-step and the M-step for this problem are derived below.

E-step

For the expectation step we need to compute the conditional expectation of the com-
plete log likelihood,

Q(Ψ;Ψ(k)) = EΨ(k) (lc(Ψ) | Z = z)

= −p
2

(m+N) log 2π − m

2
log |T| − N

2
log |Σ|

− 1

2

m∑
i=1

EΨ(k)

(
(θi − µ)′T−1(θi − µ) | Zi = zi

)
− 1

2

m∑
i=1

ni∑
j=1

EΨ(k)

(
(Zij − θi)′Σ−1(Zij − θi) | Zi = zi

)
.

From the latter expression it can be seen that we need the following conditional expec-
tations:

(i) EΨ(k)

(
θ′iT

−1θi | Zi = zi
)

(ii) EΨ(k)

(
θ′iΣ

−1θi | Zi = zi
)
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(iii) EΨ(k) (θi | Zi = zi).

To compute the expectations given in (i) and (ii) note that since each term θ′iT
−1θi is

a scalar it equals the trace of itself

θ′iT
−1θi = tr(θ′iT

−1θi).

Now using the cyclic property of the trace it follows that (Searle (1982), p.45)

θ′iT
−1θi = tr(T−1θiθ

′
i).

Since both the expectation and the trace are linear operators (Searle (1982), p.29) they
commute and thus

EΨ(k)

(
θ′iT

−1θi | Zi = zi
)

= tr
(
T−1 EΨ(k)

(
θiθ
′
i | Zi = zi

))
.

Therefore, instead of the expectations given in (i) and (ii) we need

(iv) EΨ(k)

(
θiθ
′
i | Zi = zi

)
to find Q(Ψ;Ψ(k)). To compute the expectations given in (iii) and (iv) the conditional
distribution of θi given the data Zi is required. To find this distribution, the following
result is necessary.

Lemma 5.4.2. The joint density of θi and Zi is multivariate normal with mean vector

µ1
i =

µ...
µ

 and covariance matrix Σ1
i =


T T . . . T
T T + Σ T
...

. . .
T T T + Σ

 .

Proof. The proof follows from the proof of lemma 5.4.1 with A a (p(ni+ 1)×p(ni+ 1))
matrix

A =


Ip 0 . . . . . . 0
Ip Ip 0 . . . 0
... 0

. . . 0
...

...
... 0

. . . 0
Ip 0 . . . 0 Ip

 .

To find the desired result of the conditional distribution of θi given Zi, partition the
vector µ1

i and matrix Σ1
i as follows:

µ1
i =

(
µ1

µ2

)
such that the vector µ1 consist of a single vector µ and the vector µ2 consist of the
remaining ni vectors µ. The matrix Σ1

i can be partitioned as

Σ1
i =

(
Σ11 Σ12

Σ21 Σ22

)
where Σ11 = T, Σ22 = Σi as defined in lemma 5.4.1 and the matrix Σ12 consist of pni
matrices T, i.e. Σ12 = (T, . . . ,T). Then we have that (Rao (1973), p.522)

θi | Zi ∼ Np
(
µi,Σi

)
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with

µi = µ1 + Σ12Σ
−1
22 (zi − µ2)

Σi = Σ11 −Σ12Σ
−1
22 Σ21.

Therefore the conditional expectations given in (iii) and (iv) are equal to

EΨ(k)(θi | Zi = zi) = µ
(k)
i

and

EΨ(k)

(
θiθ
′
i | Zi = zi

)
= Σ

(k)
i + µ

(k)
i µ

(k)
i
′.

Hence, the conditional expectation of the complete log likelihood is equal to

Q(Ψ;Ψ(k)) = −p
2

(m+N) log 2π − m

2
log |T| − N

2
log |Σ|

− 1

2

m∑
i=1

{
tr
(
T−1

(
Σ

(k)
i + µ

(k)
i µ

(k)
i
′
))
− µ(k)

i
′T−1µ− µ′T−1µ

(k)
i

+ µ′T−1µ
}
− 1

2

m∑
i=1

ni∑
j=1

{
z′ijΣ

−1zij − z′ijΣ
−1µ

(k)
i − µ

(k)
i
′Σ−1zij

+ tr
(
Σ−1

(
Σ

(k)
i + µ

(k)
i µ

(k)
i
′
))}

. (5.24)

This expression has the same structure as the complete log likelihood. This is beneficial
for the maximization step, since we have explained that the complete data problem
yields closed form solutions for the maximum likelihood estimators.

M-step

In the maximization step we need to maximize Q(Ψ;Ψ(k)) given in equation (5.24)
with respect to Ψ. First, Q(Ψ;Ψ(k)) will be maximized with respect to µ. Hence, we
need to compute

∂Q(Ψ;Ψ(k))

∂µ
=

∂

∂µ

{
− 1

2

m∑
i=1

{
− µ(k)

i
′T−1µ− µ′T−1µ

(k)
i + µ′T−1µ

}}
.

The latter derivative is found by the derivative of scalars with respect to the vector
µ. Because the inverse of the covariance matrix T is symmetric as well it follows that
(Searle (1982), p.336)

∂µ
(k)
i
′T−1µ

∂µ
=
∂µ′T−1µ

(k)
i

∂µ
= µ

(k)
i T−1

and
∂µ′T−1µ

∂µ
= 2µ′T−1.

Hence, for the partial derivative of Q(Ψ;Ψ(k)) with respect to µ it follows that

∂Q(Ψ;Ψ(k))

∂µ
= −1

2

m∑
i=1

{
−2µ

(k)
i T−1 + 2µ′T−1

}
=

m∑
i=1

{
µ

(k)
i T−1

}
−mµ′T−1.
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Equating this derivative to zero and solving for µ results in the required estimator

µ(k+1) =
1

m

m∑
i=1

µ
(k)
i . (5.25)

To maximize Q(Ψ;Ψ(k)) with respect to T, we compute

∂Q(Ψ;Ψ(k))

∂T−1 =
∂

∂T−1

{
− m

2
log |T| − 1

2

m∑
i=1

{
tr
(
T−1

(
Σ

(k)
i + µ

(k)
i µ

(k)
i
′
))

− µ
(k)
i
′T−1µ− µ′T−1µ

(k)
i + µ′T−1µ

}}
. (5.26)

Because the inverse of the matrix T is symmetric we have that (Searle (1982), p.337)

d log |T−1|
dT−1 = 2T− diag(T).

In addition, the matrix Σ
(k)
i +µ

(k)
i µ

(k)
i
′ is symmetric because it is the sum of a covari-

ance matrix and an outer product, hence (Searle (1982), p.336)

∂tr
(
T−1

(
Σ

(k)
i + µ

(k)
i µ

(k)
i
′
))

∂T−1 = 2
(
Σ

(k)
i + µ

(k)
i µ

(k)
i
′
)
− diag

(
Σ

(k)
i + µ

(k)
i µ

(k)
i
′
)
.

In general it follows that (Searle (1982), p.336)

∂µ
(k)
i
′T−1µ

∂T−1 =
∂tr

(
T−1µµ

(k)
i
′
)

∂T−1

= µµ
(k)
i
′ + µ

(k)
i µ

′ − diag
(
µµ

(k)
i
′
)
.

This approach can also be applied for the partial derivatives of the terms µ′T−1µ
(k)
i

and µ′T−1µ. Then, the partial derivative of Q(Ψ;Ψ(k)) with respect to T−1 is

∂Q(Ψ;Ψ(k))

∂T−1 =
1

2
(2mT−m · diag(T))− 1

2

m∑
i=1

{
2
(
Σ

(k)
i + µ

(k)
i µ

(k)
i
′
)

− diag
(
Σ

(k)
i + µ

(k)
i µ

(k)
i
′
)
− µµ(k)

i
′ − µ(k)

i µ
′ + diag

(
µµ

(k)
i
′
)

− µ
(k)
i µ

′ − µµ(k)
i
′ + diag

(
µµ

(k)
i
′
)

+ 2µµ′ − diag(µµ′)

}
:=

1

2
(2V − diag(V )) ,

where

V = mT−
m∑
i=1

{
Σ

(k)
i + µ

(k)
i µ

(k)
i
′
}

+

m∑
i=1

{
µµ

(k)
i
′
}

+

m∑
i=1

{
µ

(k)
i µ

′
}
−mµµ′. (5.27)

Equating the latter derivative to zero implies that

V =
1

2
diag(V ),
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however this is only true for V = 0. Thus if we solve equation (5.27) for T, the required
estimator is found:

T(k+1) =
1

m

m∑
i=1

{
Σ

(k)
i + µ

(k)
i µ

(k)
i
′ − µµ(k)

i
′ − µ(k)

i µ
′ + µµ′

}
. (5.28)

Note that the optimal value for T depends on µ. Hence, it is a natural choice to
substitute the optimal value for µ in the estimator for T. Since the parameters are
optimized simultaneously, this means that in iteration k+1 the mean µ will be replaced
by the optimal value for µ, i.e. µ(k+1).

To maximize Q(Ψ;Ψ(k)) with respect to Σ, we have to compute

∂Q(Ψ;Ψ(k))

∂Σ−1 =
∂

∂Σ

{
− N

2
log |Σ| − 1

2

m∑
i=1

ni∑
j=1

{
z′ijΣ

−1zij − z′ijΣ
−1µ

(k)
i

− µ
(k)
i
′Σ−1zij + tr

(
Σ−1

(
Σ

(k)
i + µ

(k)
i µ

(k)
i
′
))}}

.

This derivative is of the same form as equation (5.26) and thus the same steps can be
applied. Hence,

Σ(k+1) =
1

N

m∑
i=1

ni∑
j=1

{
Σ

(k)
i + µ

(k)
i µ

(k)
i
′ − zijµ

(k)
i
′ − µ(k)

i z′ij + zijz′ij
}
. (5.29)

The new estimate Ψ(k+1) is given by equation (5.25), (5.28) and (5.29).
The described EM-algorithm has several appealing properties relative to other it-

erative algorithms (McLachlan and Krishnan (1997)). For instance, it is numerically
stable with each iteration increasing the likelihood.Further, under general conditions
convergence is nearly always to a local maximizer from arbitrary initial values. Ad-
ditionally, the algorithm is often easily implemented with low cost per iteration. On
the other hand, if there is more than one local maximum it does not guarantee con-
vergence to a global maximum and then the estimate depends on the initial values.
Further, it may converge slowly in certain situations. Therefore modified versions of
the EM-algorithm have been developed that can be used as well.

5.5 Comparison of methods of estimation

To compare the described methods in this chapter a Monte Carlo simulation has been
performed. In Section 5.5.1 the simulation setup is briefly discussed. After that, the
mean estimators described in Section 5.2 are compared. The remainder of the section
covers the comparison of the analysis of variance estimators (Section 5.3) and the EM-
algorithm for maximum likelihood estimation (Section 5.4).

5.5.1 Monte Carlo simulation

The number of repeated simulations is fixed at M = 1000. This means that M times a
background data set is simulated according to the model described in Section 5.1 and
subsequently the parameters are estimated according to the methods described in this
chapter.

The simulation is performed for two situations which we will refer to as balanced
design and unbalanced design. The values for the quantities m and ni, i ∈ {1, . . . ,m}
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are based on xtc data collected by the Netherlands Forensic Institute and are given in
the table below.

m n N

balanced design 10 20 200
unbalanced design 10 (39,17,28,13,10,3,31,7,6,46) 200

Table 5.1: The quantities m and ni, i ∈ {1, . . . ,m} that are chosen for the simulation
of the balanced- and unbalanced design.

To simulate the background data, the parameters µ, Σ and T had been fixed based
on real xtc data, see e.g. Bolck et al. (2009) and Bolck and Alberink (2011). By fixing
these parameters, the random vectors εij and θi were drawn from multivariate normal
distributions as given in Section 5.1 for each i ∈ {1, . . . ,m} and j ∈ {1, . . . , ni}. Hence
the background data (Zij , 1 ≤ i ≤ m, 1 ≤ j ≤ ni) was generated by taking the sum of
these vectors, see equation (5.1).

To assess the quality of the estimations we consider the estimated values within the
mean vector and covariance matrices separately. To do this, the following notation is
used

µ =

µ1
...
µp

 , Σ =

σ
2
1

. . .
σ2
p

 , T =


τ2

1

τ12 τ2
2

...
. . .

τ1p . . . τ(p−1)p τ2
p

 .

In this simulation Σ is modelled as a diagonal matrix, hence only the diagonal is sub-
tracted from the estimation Σ̂ and assessed on the performance. To assess the estimate
of T we only consider the lower triangular of the matrix, because it is symmetric. To
give an overview of the estimated parameters in the Monte Carlo simulation box plots
are used (Rice (2007)). To assess the performance of the estimates the mean squared
error is chosen (Wasserman (2004)). For example, for the estimates of the mean the
mean squared error is equal to:

Eµk (µ̂k − µk)2 for k = 1, . . . , p.

This means that for each simulation i, with i ∈ {1, . . . ,M}, the squared difference
between the estimate and the true value is computed. AfterM simulations the average
over these squared differences is taken as the mean squared error.

One should bear in mind that the number of parameters to compare is

p+ p+

p∑
k=1

k = 2p+
1

2
p(p+ 1)

=
1

2
p(p+ 5).

Hence, we start off with a simulation study for p = 4 since this gives a reasonable
amount of estimated parameters to compare. Some of the parameters that are used
are given below.
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µ1 µ2 µ3 µ4 σ2
1 σ2

2 σ2
3 σ2

4

0.812 6.920 1.800 2.505 0.007 0.033 0.003 0.028
τ2

1 τ2
2 τ2

3 τ2
4

0.638 7.936 4.151 0.025

Table 5.2: Some parameters used in the simulation for p = 4 that are based on real xtc
data.

5.5.2 Comparing the mean estimators

In Section 5.2 three plug-in estimators for the mean are described. In this section the
suggested estimators are compared based on the unbalanced design as specified above.
For a balanced design the estimators for the mean are the same.

In Section 5.2.1 it is argued that the choice between the weighted- and the un-
weighted mean depends on the proportion between the unknown variances, see equa-
tion (5.13). Although the variances are unknown, the constant c can be computed
since it depends on the quantities m and ni, i ∈ {1, . . . ,m}, see equation (5.12). For
the unbalanced design it then follows that c = 10.294. This constant can also be found
if we plot the efficiency of µ̂u relative to µ̂w against the quotient r = σ2/τ2 as given
in equation (5.11). Recall from equation (5.13) that the efficiency of µ̂u relative to µ̂w
is greater than one if r < c. Hence, in Figure 5.2 we can find the value of c. This is
illustrated in the figure below.
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Figure 5.2: Plot of the efficiency of µ̂u relative to µ̂w (Quotient MSE) against the
quotient r = σ2/τ2 for the unbalanced design. The dashed line shows that the efficiency
is 1 for c = 10.294.

If r < c then the efficiency quickly increases to a maximum of 1.5, i.e. the variance
of the weighted mean is at most 1.5 times bigger than the variance of the unweighted
mean. If r > c the quotient of the mean squared errors slowly decreases to zero.

In this simulation study the values for Σ and T are fixed and hence it is known
that cτ2

k > σ2
k for k ∈ {1, 2, 3, 4}, see Table 5.2. Thus, the unweighted mean should be

preferred over the weighted mean. In practice such a choice can be based on experience.
In the table below the value of c is given for two xtc data sets of the NFI which are
used in casework.

m n N c
Data set 1 38 4≤ ni ≤20 458 11.356
Data set 2 1372 1≤ ni ≤20 1792 11.135

Table 5.3: Two values of c for two background xtc data sets of the NFI.
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In forensic xtc comparison it is a valid assumption that the covariance matrix Σ consist
of small values. One of the reasons for this small error variances is that the measurement
device is very accurate. Since the constant c is approximately 11 for the background
xtc data sets, by equation (5.13) it is therefore convincing to use the unweighted mean
instead of the weighted mean for xtc comparison problems. However, the decision
might be more difficult in other forensic applications if the value for c is smaller, for
instance if c = 1.5 it is harder to examine whether cτ2 > σ2 than if c = 11.

In Section 5.2.2 we have seen that if the covariance matrices Σ and T are known,
the generalized weighted mean µ̂opt is the minimum variance estimator. Since in this
simulation the values for Σ and T are known, these can be substituted into the gen-
eralized weighted mean. It is therefore interesting to examine the difference between
these estimates and the weighted- and unweighted mean that can be used in practice
more easily. In Figure 5.3 the results are given.
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(a) Boxplot for the weighted mean estimator.
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(b) Boxplot for the unweighted mean estimator.
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(c) Boxplot for the optimal generalized weighted
mean.
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Figure 5.3: Boxplots and means squared errors of the estimated mean vector µ using
the weighted mean, the unweighted mean and the optimal generalized weighted mean
in the unbalanced design.

From the figures above it can be seen that the weighted mean has indeed a larger mean
squared error (variance) than the unweighted mean. From the true parameter values
given in Table 5.2 it can be computed that σ2

2/τ
2
2 = 0.004. In Figure 5.2 it can then

be seen that the variance of the weighted mean is 1.5 times bigger than the variance of
the unweighted mean. This is confirmed by the mean squared errors for µ2 in Figure
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5.3(d). For µ4 the weighted variance is 1.4 times bigger than the unweighted variance
(σ2

4/τ
2
4 = 1.12), obviously this has less effect since the mean squared errors itself are

smaller. The fact that some mean squared errors are larger than others (see µ2, µ3 in
comparison to µ1, µ4 in Figure 5.3(d)) can be confirmed by the theoretical values of the
variances of the weighed- and unweighted mean in equation (5.6), which will increase
when the parameter values are larger.

It is interesting to note that the optimal generalized weighted mean has more or
less the same mean squared error as the unweighted average in this situation. This can
be explained by the small values for the parameters in Σ, see Table 5.2. To illustrate
this, if the value for σ2 is small (p = 1) it follows that τ2 + σ2/ni ≈ τ2. Hence,

Var (µ̂u) ≈ 1

m2

m∑
i=1

τ2 =
τ2

m
.

The variance of the optimal generalized weighted mean is approximately,

Var (µ̂opt) ≈
1(∑m

i=1
1
τ2

)2 m∑
i=1

(
1

τ2

)2

τ2 =
τ2

m
.

Thus for small values of σ2, we have

Var (µ̂u) ≈ Var (µ̂opt)

and hence for such situation the unweighted mean is as good as the minimum variance
estimator.

In Section 5.4 we have seen that the maximum likelihood estimate for µ can be
found using the EM-algorithm. It can be expected that for this situation this estimator
behaves more or less the same as the unweighted mean, since the unweighted mean
approaches the optimal generalized weighted mean (maximum likelihood estimator).
In the next section we will see that this is indeed true.

5.5.3 Comparing ANOVA estimators with the ML estimators

This section will compare the ANOVA estimators with the maximum likelihood esti-
mators for the balanced- and unbalanced design for p = 4.

Starting values and stopping criterion

To use the EM-algorithm starting values and a stopping criterion must be specified. In
this problem, two natural choices for the starting values are:

1. A vector with ones for µ(0) and the identity matrices for Σ(0) and T(0).

2. The analysis of variance estimators for Σ(0) and T(0) with the corresponding
mean estimator for µ(0).

A stopping criterion for the EM-algorithm is usually in terms of either the magnitude
of the relative change in the parameter estimates or the (incomplete) log likelihood
(McLachlan and Kirshnan (1997)):

1.
∣∣Ψk+1 −Ψk

∣∣ < 10−δ

2. l(Ψ(k+1))− l(Ψ(k)) < 10−δ,
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where l is the incomplete log likelihood given in equation (5.23) which increases in
each step of the EM-algorithm. Since the EM-algorithm can suffer from very slow
convergence, it is important to emphasize that both criteria measure lack of progress
and not actual convergence. Thus, selecting a suitable stopping criterion might be
difficult. In any event, one should try to balance the number of iterations and the lack
of progress.

In the literature such trade-offs are often obtained with δ varying between 2 and 8.
Based on the simulation of the balanced design it was found that for identity starting
values and a reasonable amount of iterations the relative changes between all estimated
parameters was less than 10−5. Figure 5.4(a) shows a histogram of the number of itera-
tions that were needed for the Monte Carlo simulation using this stopping criterion. In
Figure 5.4(b) the monotonicity of the log likelihood for one of the repeated simulations
is shown. For this simulation it was found that if the stopping criterion based on the
likelihood increment would be used (δ = 5), the number of iterations would be the same
as for the stopping criterion based on the changes in parameter estimates (δ = 5), that
was used to produce Figure 5.4(b). The results for the unbalanced design were more
or less the same. Therefore, for this simulation it is chosen to use the relative changes
of the parameters for δ = 5 as the stopping criterion.
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(b) Incomplete log likelihood for each iteration for
one of the repeated simulations.

Figure 5.4: EM-algorithm for the balanced design using identity matrices as initial
values and

∣∣Ψk+1 −Ψk
∣∣ < 10−5 as stopping criterium.

When the analysis of variance estimators are used as starting values, the stopping
criterion is satisfied for less iterations and the same estimates are found. For instance,
for the simulation illustrated in Figure 5.4(b) it was then found that only 5 iterations
were needed instead of 8. Since only a few more iterations are needed to satisfy the
same stopping criterion, for this simulation it is chosen to use the identity matrices as
starting values.

Balanced design

The results of the simulation of the balanced design are given in Figure 5.5. For bal-
anced data the weighted- and unweighted mean are the same and hence it is irrelevant
which mean estimator is used in the ANOVA estimator for T̂. Moreover, these means
are equal to the optimal generalized weighted mean. Hence, both the weighted- and
unweighted mean are equal to the maximum likelihood estimator. Therefore the results
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for the mean estimates in Figure 5.5 are exactly the same.
The estimates of the parameters in Σ have very small mean squared errors for

both the ANOVA estimates and for the maximum likelihood estimates. In fact, the
mean squared errors of the maximum likelihood estimates are smaller than those of
the ANOVA estimates. Some differences are negligible or not visible in Figure 5.5(a),
therefore Figure 5.5(b) shows the mean squared errors on a smaller scale.

The quality of the estimates of the parameters in T is very different. It can be
noticed that the parameters that have highest mean squared errors depend on the
mean estimates with highest mean squared errors (τ2, τ3, τ23, τ12). Overall, in this
simulation the mean squared errors of the maximum likelihood estimates are lower or
equal to the mean squared errors of the ANOVA estimates.
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(d) Boxplot of the maximum likelihood estimates.

Figure 5.5: Results of the Monte Carlo simulation of the balanced design.

Unbalanced design

The results of the simulation of the unbalanced design are given in Figure 5.6. In Section
5.5.2 we have seen that for this kind of data, the unweighted mean performs better than
the weighted mean. Moreover, we have showed that the unweighted mean approaches
the optimal generalized weighted mean. Hence, we expected that the unweighted mean
behaves more or less the same as the maximum likelihood estimator. In Figure 5.6(a)
and Figure 5.6(b) we see that this is indeed the case.
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(c) Boxplot of the ANOVA estimates.
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(d) Boxplot of the maximum likelihood estimates.

Figure 5.6: Results of the Monte Carlo simulation of the unbalanced design.

Since the unweighted mean is preferred over the weighted mean in this situation, it is
interesting to compare the ANOVA estimates using the unweighted mean (substitute
wi = 1 in equation (5.21)) with the estimates obtained with the EM-algorithm. How-
ever, for convenience the results of the ANOVA estimator with the weighted mean are
given in Figure 5.6(a) and Figure 5.6(b) as well.

In comparison to the balanced design it can be noticed that the mean squared
errors are higher for the unbalanced design. Moreover, the difference between the
mean squared errors for the ANOVA estimates and the maximum likelihood estimates
is increased (see τ2

2 , τ
2
3 ). Overall it can again be concluded that the maximum likelihood

estimators perform the same or better than the ANOVA estimators.
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Likelihood ratios in non-Gaussian
two-level models

In Chapter 4 we have focused on likelihood ratios for continuous evidence that is mod-
elled using a Gaussian two-level model. This means that the control- and recovered
data are modelled such that they vary around their random group means θl, l ∈ {1, 2},
which are drawn from a (multivariate) normal distribution. In Section 4.1.1 we have
mentioned that a multivariate normal distribution for θl will often be inappropriate,
because the mean of each feature must be normally distributed. If the between-source
distribution is indeed non-normal, other options must be considered. These options can
include assuming another parametric distribution for the between-source distribution
or using a nonparametric method to estimate the between-source distribution.

In forensic statistics it is common practice to use the nonparametric method called
kernel density estimation to estimate the between-source density in such cases. In
forensic literature this method is referred to as a kernel distribution for the distribution
of between-source variability, see for example Aitken an Lucy (2004). In this thesis
we refer to two-level models using such a kernel density estimate as “non-Gaussian
two-level models”. The purpose of this chapter is to describe the theory behind the
kernel density estimator, to discuss some difficulties and finally to derive the likelihood
ratio given in Section 3.2 for non-Gaussian two-level models. In Section 6.1 kernel
density estimation is explained. In Section 6.2 some attention is paid to the difficulty
of choosing a smoothing parameter in the kernel density estimator for multivariate
problems. In Section 6.3 the likelihood ratio is given and the difficulty due to the curse
of dimensionality is briefly discussed.

6.1 Kernel density estimation

In Chapter 4 and Chapter 5 we used the parametric approach to estimate h assuming
that h belongs to the normal family. If the normal family cannot be assumed, a kernel
density estimator can be used which assumes no pre-specified functional form for h. To
use this estimator, a sample of the random vectors θ1, . . . ,θm is required. In Section
4.1.2 we have seen that the mean vectors Z1, . . . ,Zm are used as realizations for θl
to evaluate the assumption of normality for the true means θl, l ∈ {1, 2}. In fact,
Zi is the sum of the two independent random vectors θi and εi, see equation (5.2).
Hence, the distribution of Zi is the convolution of their individual distributions, i.e. the
between-source density h and the normal distribution with zero mean and covariance
matrix n−1

i Σ. The sample Z1, . . . ,Zm thus serves as an approximation of an i.i.d.
sample θ1, . . . ,θm from the between-source distribution H. In practice, the use of this

63
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approximating sample is a natural and common choice. Note that for larger values of
ni the approximation improves. Hence, this section deals with the following question:

How do we estimate h using a kernel density estimator based on the sample
Z1, . . . ,Zm?

In forensic comparison problems the number of features is often greater than one, hence
we are particularly interested in the multivariate kernel density estimator. In Section
6.1.1 the univariate kernel density estimator is described, because this estimator is easier
to visualize. The univariate estimator can be generalized to a multivariate problem
quite easily, which is described in Section 6.1.2

6.1.1 Kernel density estimator

Let the number of features equal to one, i.e. p = 1, such that the observations
Z1, . . . , Zm are random variables instead of vectors. The oldest non-parametric es-
timator for the density h is the well-known histogram. This estimator is simple, but
results in a stair function with possible discontinuities. A smoother density estimate is
preferred, since this will in general approximate the distribution of the underlying vari-
able more accurately. Hence as an alternative to histograms, kernel density estimators
can be used. These estimators result in smoother estimates which converge faster to
the true density than histograms (Wasserman (2006)).

Empirical distributions assign mass of size 1
m to each Zi. The idea of kernel density

estimators is to (smoothly) spread this mass of size 1
m over the neighbourhood of the

associated data point. This mass is spread according to a kernel function K, i.e. a non
negative function that integrates to one (Silverman (1986)). Examples of such kernel
functions are for example,

Uniform kernel : K(u) =
1

2
1{|u|≤1}

Normal kernel : K(u) =
1√
2π

exp

(
−1

2
u2

)
.

To spread the mass over the neighbourhood of the data point, the kernel function is
scaled with bandwidth parameter b and centered around the data point:

Kb

(
θ − Zi

)
=

1

b
K

(
θ − Zi
b

)
.

Hence the mass 1
m of each data point Zi is spread according to the functionKb

(
θ − Zi

)
.

If a uniform kernel is used, the mass is spread over the finite support θ ∈ [Zi±1] and is
equal for all points in the neighbourhood of the data point. If a normal kernel is used,
the mass is spread over all points θ and the mass is bigger for points closer to the data
point, i.e. the mass depends on the distance to the data point. This is illustrated in
Figure 6.1(a). If the scaled and centered kernel function is used to spread the mass on
each data point, the kernel density estimator for each point θ is the sum over the mass
contributed by the data points, i.e. the sum over the mass spread by all centered and
scaled kernel functions:

ĥ(θ) =
m∑
i=1

1

m
Kb

(
θ − Zi

)
=

1

mb

m∑
i=1

K

(
θ − Zi
b

)
. (6.1)

The kernel density estimate for a normal kernel is illustrated in Figure 6.1(b).



6. LIKELIHOOD RATIOS IN NON-GAUSSIAN MODELS 65

θ

K
b
(θ

−
Z

i)

Normal
Uniform

Zi

(a) A Normal- and Uniform scaled and centered
kernel that spread the mass around a data point.
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(b) Example of a kernel density estimate for 6
data points using the optimal bandwidth b = 1.15
(see Section 6.2).

Figure 6.1: Examples of scaled and centered kernels and the kernel density estimate.

The bandwidth parameter b scales the kernel K, but it also functions as a smoothing
parameter in equation (6.1). If the bandwidth is larger, the mass is spread around the
data points more extensively. To see this, consider the Gaussian kernel. The centered
and scaled kernel is the normal density with mean Zi and standard deviation b. Hence,
the larger b the larger the standard deviation and thus the more mass is given to points
further from the center. If points θ further from the data point Zi have more mass,
the density estimator ĥ(θ) will be smoother than when the scaled and centered kernels
are more peaked. This is illustrated in the figure below.
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(a) Example of a kernel density estimate for 6
data points using b = 0.3, which results in a less
smooth estimate than Figure 6.1(b).

0 2 4 6 8 10

0
.0

0
0

.1
0

0
.2

0

θ

D
e

n
s
it
y
 f

u
n

c
ti
o

n

data points
scaled centered kernels
kernel density estimate

(b) Example of a kernel density estimate for 6
data points using b = 2, which results in a
smoother estimate than Figure 6.1(b).

Figure 6.2: Examples of over- and under smoothed kernel density estimates.

The choice of the kernel K is not crucial for the estimate, but the choice of b is very
important (Wasserman (2006)). The choice of an optimal bandwidth b is discussed in
Section 6.2.2.
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6.1.2 Multivariate problem

In this section we suppose that the data are p-dimensional so that Zi = (Zi1, . . . , Zip)
is a random vector, as given in equation (5.2). The kernel density estimator for the
univariate problem can be generalized to p dimensions quite easily. In comparison to
the univariate kernel density estimator there are two important modifications. The
first modification is that the kernel function should be taken to be a p-variate kernel
function. The kernel function can for example be generated from univariate kernels by
using a product kernel (Wand and Jones (1995))

K(u) =

p∏
i=1

K0(ui),

where K0 is a univariate kernel and u = (u1, . . . , up). If the univariate normal kernel
is taken, the product kernel results in the standard p-variate normal density:

K(u) = (2π)−p/2 exp

(
−1

2
u′u
)
, u ∈ Rp.

The second modification in the multivariate problem concerns the bandwidth parameter
b that turns into a symmetric and positive definite p × p bandwidth matrix B. Now
the kernel density estimator can be smoothed in each of the p directions. There are
different possible choices for B, which are discussed in section 6.2.1. Using these two
modifications, the multivariate density estimator results in

ĥ(θ) = m−1|B|−
1
2

m∑
i=1

K
(
B−

1
2
(
θ − Zi

))
. (6.2)

As we have mentioned in the univariate problem, the choice of the kernel is not as
important as the choice for the bandwidth matrix. For more details about the choice
of a (multivariate) kernel we refer to for example Wand and Jones (1995). In forensic
statistics it is common to use a normal kernel. In the next section we explain more
about the choice for the bandwidth matrix B and the optimal bandwidth selection.

6.2 Smoothing parametrisation

This section will focus on the bandwidth (or smoothing) parametrisation for the kernel
density estimator. In the literature some standard suggestions for the bandwidth matrix
B exist. Section 6.2.1 will give some motivation for each of these suggestions, but the
objective of Section 6.2.1 is to discuss the bandwidth matrix which is used in forensic
applications. Hence, first some theoretical motivation for this bandwidth matrix is
given. The section will end with a disadvantage of this particular choice.

In the Section 6.1 it is mentioned that the performance of the kernel density estima-
tor depends on the choice of the value for the smoothing parameter b. The search for an
optimal bandwidth is therefore important. For the univariate kernel density estimator
this problem is well understood. There exist a number of methods that combine the-
oretical properties with practical performance. In the multivariate problem, choosing
an optimal bandwidth matrix B can be more challenging. However, the bandwidth
matrix which is used in forensic applications is found by the extension of a univariate
method.

The objective of Section 6.2.2 is to give a brief overview of optimal bandwidth
selection. Detailed theoretical motivation and calculations are not given in this thesis,
but are discussed in the literature extensively.
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6.2.1 Choice for the bandwidth matrix

Consider the multivariate kernel density estimator given in equation (6.2). The band-
width matrix B is defined as a p× p symmetric and positive definite matrix:

B =


b21
b12 b22
...

. . .
b1p . . . b(p−1)p b2p

 . (6.3)

Hence, the matrix B has 1
2p(p+1) entries that needs to be determined. This results in a

numerous amount of bandwidth parameters even for moderate dimensions. Therefore,
often simplifications for the bandwidth matrix are used. Two familiar simplifications
are (Wand and Jones (1995)):

1. B = b2Ip×p, with Ip×p the p× p identity matrix.

2. B = diag(b21, . . . , b
2
p).

The advantage of the first suggestion is that only one parameter b has to be determined.
However, as a consequence the amount of smoothing is the same in each of the p
directions. In comparison to the first option, the second option has p parameters that
needs to be determined and hence smoothing is possible in each of the p directions. If
the full bandwidth matrix B, given in equation (6.3), is used than smoothing in each
possible direction is feasible. The difference between the full bandwidth matrix and the
simplified bandwidth matrices as given above can be illustrated with the well-known
two-dimensional example as given in the figure below.

Figure 6.3: Contour plots of two-dimensional kernels for different parametrisation.
The left panel: the bandwidth matrix is B = b2Ip×p, with Ip×p, hence the amount of
smoothing is the same in each direction. Panel in the centre: the bandwidth matrix is
B = diag(b21, . . . , b

2
p), hence the smoothing is possible in both horizontal and vertical

direction. The right panel: full bandwidth matrix B as defined in equation (6.3), such
that smoothing is possible in each direction. Figure by Multivariate Kernel Estimation
(2010).

As illustrated in the figure above, the best choice for the bandwidth matrix completely
depends on the data. As a simple example, one can think of the (elliptical) contours of
bivariate normal densities (Rice (2007)). More specifically, the contour plot of bivariate
normal variables which are uncorrelated and have equal variance exactly correspond
to the left figure of Figure 6.3 and hence the matrix B = b2Ip×p would suffice. The
contour plot of correlated bivariate normal variables, however, correspond to the right
figure of Figure 6.3 and hence full bandwidth matrices are needed.

A scatter plot of the data thus might indicate which bandwidth matrix should be
used. However, in higher dimensions this is more difficult or even impossible (p > 3).
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Therefore, choosing a full bandwidth matrix might be the most preferable since a kernel
parametrized by this matrix performs well in all cases. In Silverman (1986) a simple
way of obtaining a full bandwidth matrix is suggested:

B = b2S, (6.4)

where S is the sample covariance matrix. In forensic applications this bandwidth matrix
is used as well. Therefore, some theoretical motivation for this matrix is explained
below.

Let the data Z1, . . . ,Zm have sample mean µs and sample covariance matrix S.
The transformation

Z∗i = S−
1
2 (Zi − µs)

is called whitening or sphering data (Koch (2014)). These names originate from the
important properties that sphering the data results in uncorrelated variables with zero
mean and unit variance. Sphered data have an identity covariance matrix, because

Var
(
Σ
− 1

2
(
Zi − µ

))
= E

(
Σ
− 1

2
(
Zi − µ

) (
Zi − µ

)′
Σ
− 1

2

)
= Σ

− 1
2ΣΣ

− 1
2 = Ip×p

where µ and Σ are the true mean and covariance of Zi. Consequently, if the data is
transformed the sphered data will look like Figure 6.4.

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2

Figure 6.4: Scatter plot of sphered data, i.e. data with zero mean and identity covari-
ance matrix.

From this figure it can be noticed why sphering the data might be useful. In fact, if the
data looks like those visualized in Figure 6.4 it can be seen from Figure 6.3 that the
bandwidth matrix B = b2Ip×p would be suitable to use in the kernel density estimator.
If this bandwidth matrix is used, the kernel density estimator for the transformed data
in equation (6.2) boils down to the following formula

ĥ(θ∗) = m−1b−p
m∑
i=1

K
(
b−1

(
θ∗ − Z∗i

))
where θ is transformed in exactly the same way as Zi. To find the kernel density
estimator for the original data, we have to transform the variables back. To do this
recall equation (4.6) for the variable transformation Zi = S

1
2Z∗i +µs. Then, the kernel

density estimator for θ is

ĥ(θ) = =
∣∣∣S− 1

2

∣∣∣ ĥ(S− 1
2 (θ − µs)

)
=

∣∣∣S− 1
2

∣∣∣m−1b−p
m∑
i=1

K
(
b−1S−

1
2 (θ − Zi)

)
.
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Hence, using equation (6.2) it can be seen that the matrix B for the original data must
satisfy the following equation:

B−
1
2 = b−1S−

1
2 .

Since B
1
2 = S

1
2 b it follows that equation (6.4) is indeed true.

Although this method results in a simple bandwidth matrix which depends on a
single parameter b, Wand and Jones (1995) advise not to use this method. They
claim that in case of multivariate normal data sphering is appropriate, but there is no
corresponding theoretical support for estimation of general density shapes. To get some
feeling for the problem, below the problem is illustrated using an example. Consider a
bivariate normal density

N
((

0
0

)
,

(
1 0.5

0.5 1

))
and a mixture density of two bivariate normals

1

2
N
((
−2
0

)
,

(
1
10 0
0 1

))
+

1

2
N
((

2
0

)
,

(
1
10 0
0 1

))
,

which gives a non-normal shape. Scatter plots of variables which are generated from
these two densities are given in Figure 6.5(a) and Figure 6.5(b). The problem of the
bandwidth matrix in equation (6.4) comes from the fact that it depends on the sample
covariance matrix S. For multivariate normal variables as given in Figure 6.5(a) the
sample covariance matrix approximates the true covariance matrix and hence the kernel
density estimate performs as expected, see Figure 6.5(c) and Figure 6.5(e). For the
mixture density, however, the sample covariance matrix is equal to(

4.12 0.063
0.063 0.95

)
.

Since the estimated variance of 4.12 is a very poor representation of the normal mixture,
the amount of smoothing in the horizontal direction (h2 ·4.12) will not take into account
the mixture shape of the density. Consequently, this is harmful for the result of the
kernel density estimate which is illustrated in Figure 6.5(d) and Figure 6.5(f).

From Figure 6.5(f) it is clear that the two tops of the normal mixture are not
captured in the kernel density estimate. Therefore, using the bandwidth matrix B =
b2S can be very detrimental for the kernel density estimate of a simple non-Gaussian
density. The choice for the bandwidth matrix can thus be crucial in the performance
of the estimated density. In Section 4.1 it is mentioned that for xtc problems it can be
expected that the density h will have multiple peaks and thus it will not be exceptional
that the h will look like a kind of normal mixture. The example described above shows
a disadvantage of the choice of the bandwidth matrix B = b2S and hence it might be
useful to reconsider this choice in future development. However, in the following section
we will see that considering a full bandwidth matrix B without further assumptions
results in some other practical issues.
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(a) Scatter plot of bivariate normal variables. 0.5.
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(b) Contour plot of the kernel density estimate of
the bivariate normal density.
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(c) Scatter plot of mixture of bivariate normal
variables.
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(d) Contour plot of the kernel density estimate of
the mixture of bivariate normal densities.
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(e) Kernel density estimate of the bivariate nor-
mal density.

z

(f) Kernel density estimate of the mixture of bi-
variate normal densities.

Figure 6.5: Two examples of kernel density estimates with a normal kernel and B = b2S.

6.2.2 Optimal bandwidth selection

In Section 6.1 we have mentioned that the (univariate) kernel density estimate is sensi-
tive to the choice of the bandwidth parameter. In Figure 6.2 we have seen that a small
bandwidth b gives a rough (under smoothed) estimate, while a large bandwidth b gives
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a smoother (over smoothed) estimate. Hence, in the literature a lot of attention is paid
to the optimal choice of the bandwidth parameter.

To find an optimal value for b, the performance of the estimator h is taken into
account. The performance can be measured locally in terms of the mean squared error.
However, it is more convenient to study the global behaviour of the estimator through
the mean integrated squared error (MISE):

MISE(ĥ) = E

(∫ (
ĥ(θ)− h(θ)

)2
dθ

)
. (6.5)

Hence, minimizing this risk with respect to the bandwidth b leads to an optimal
bandwidth. Nevertheless, this optimal bandwidth depends on the unknown density
h. Therefore there are different approaches to choose b in practice. In general it is
recommended to use a plug-in type bandwidth, such as a reference bandwidth, or a
cross-validation approach. Details about these approaches can be found in Wand and
Jones (1995) or Wasserman (2006) for example.

For the multivariate problem we have seen that the choice for the bandwidth matrix
plays an important role for the performance of the kernel density estimator. Moreover,
the number of parameters b which has to be optimized depends on the choice for the
bandwidth matrix. In Section 5.2.1 we have discussed that in applications of forensic
statistics the matrix B = b2S is used. Hence, only one smoothing parameter b has to
be found. Given the choice for the bandwidth matrix B = b2S, in Silverman (1985)
an optimal choice for b is discussed extensively. This optimal choice is based on the
extension of the univariate problem, i.e. the multivariate version of the MISE given in
equation (6.5) is minimized. This leads to (Silverman (1985))

bopt =

(
pβα−2

{∫
(∇2h)2

}−1

m−1

) 1
p+4

,

where α and β are constants depending on the kernel K and ∇ is the gradient. If a
reference bandwidth is used, this means that we have to choose a parametric family
which can be substituted for h in the formula for bopt. If a normal reference density
h is assumed and a normal kernel is used, Silverman (1985) shows that the optimal
bandwidth turns out to be the following simple plug-in formula:

bopt =

(
4

(p+ 2)m

) 1
p+4

. (6.6)

This optimal bandwidth can then be used directly in the kernel density estimator with
normal kernel and bandwidth matrix B = b2S. In forensic statistics this method
is applied. However, it is worth noticing that for the determination of bopt a cross-
validation approach could be used as well.

In situations where an unconstrained full bandwidth matrix B would be preferable,
e.g. the example in Section 5.2.1, the problem of finding optimal bandwidths becomes
more complicated. If such a full matrix would be considered, 1

2p(p + 1) bandwidth
parameters should be determined. In Wand and Jones (1995) plug-in bandwidths and
least squares cross validation is discussed to allow selection of an optimal full bandwidth
matrix B. However, these methods turns out to be hard to use in practice. Research
to improve this method is still ongoing. In Duong and Hazelton (2005) an algorithm
is presented that gives a fast and accurate computation for unconstrained bandwidth
matrices.
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6.3 Likelihood ratio

To find an explicit formula for the likelihood ratio in equation (3.15), the between-
source density h is required. In Chapter 4 we assumed a Gaussian two-level model,
hence a multivariate normal density will be substituted for h. In this chapter no pre-
specified form for h is assumed, consequently h is estimated using the kernel density
estimator given in equation (6.2). As mentioned in the previous sections, in forensic
statistics it is common to use a normal kernel and a bandwidth matrix as given in
equation (6.4). Since it is assumed that the means Zi are observations for the variable
θ, in forensic literature the sample covariance matrix S in (6.4) is replaced by the true
covariance matrix T of θ.1 Consequently, the kernel density estimator is equal to

ĥ(θ) =
1

m

m∑
i=1

(2π)−
p
2

∣∣b2optT
∣∣− 1

2 exp

(
−1

2

(
θ − Zi

)′
(b2optT)−1

(
θ − Zi

))
, (6.7)

with the optimal bandwidth bopt as given in equation (6.6). The latter estimator ĥ(θ)
can be substituted into the likelihood ratio given in equation (3.15). To find an explicit
formula for the likelihood ratio, three integrals have to be solved. In Chapter 4 we have
seen that for a Gaussian two-level model two likelihood ratios are derived in forensic
literature, one based on direct integration and one based on a bayesian approach. For
a non-Gaussian two-level model two likelihood ratios are derived in the same way. The
resulting likelihood ratios are given in Aitken and Lucy (2004) and Bolck and Alberink
(2011). Although it is shown in in Section 4.2.3 that the two different likelihood ratios
are exactly the same for the Gaussian two-level model, in this thesis we will not show
the equality of the likelihood ratios for the non-Gaussian two-level model. In Chapter
7 the likelihood ratio given in Bolck and Alberink (2011) is used for an application to
real xtc data. Therefore this formula is stated below:

LR(y1,y2) =

∑m
i=1 exp

(
−1

2 (y1 − zi)′U−1
hx (y1 − zi)− 1

2 (y2 − µhi)
′U−1

hx (y2 − µhi)
)∑m

i=1 exp
(
−1

2 (y1 − zi)′U−1
hx (y1 − zi)

)
× m |Uhn|−

1
2

|Uh0|−
1
2
∑m

i=1 exp
(
−1

2 (y2 − zi)′U−1
h0 (y2 − zi)

) (6.8)

with

µhi = b2optT
(
b2optT + n−1

1 Σ
)−1 y1 + n−1

1 Σ
(
b2optT + n−1

1 Σ
)−1 zi

Uhx = b2optT + n−1
1 Σ

Uh0 = b2optT + n−1
2 Σ

Uhn = n−1
2 Σ + b2optT− b2optT

(
b2optT + n−1

1 Σ
)−1

b2optT.

The likelihood ratio in equation (6.8) depends on the covariance matrix T and on the
covariance matrix Σ. Chapter 5 covered the estimation of these covariance matrices
for the Gaussian two-level model. For the non-Gaussian two-level model the matrices
T and Σ can again be estimated using the analysis of variance estimators described
in Section 5.3, because this method does not rely on the normality assumption. On
the other hand the method of maximum likelihood described in Section 5.4 depends on
the assumption of normality and is thus not natural to use to estimate the covariance
matrices. Hence, it is suggested to use the analysis of variance estimators for Σ and T.

1However, bear in mind that the covariance matrix of Zi is equal to T + n−1
i Σ.
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Statistical curse of dimensionality

A difficulty that occurs by using smoothing methods such as kernel density estimation
is that the accuracy of the estimate decreases quickly if the dimension increases. In fact,
if the data has dimension p then a sample size that grows exponentially with p is needed
to obtain a required accuracy. This problem is referred to as the statistical curse of
dimensionality. To get some feeling for this problem, we consider the following example.
Suppose we want a point estimate of an unknown density f and we have chosen the
bandwidth such that it minimizes the mean squared error on this point. The mean
squared error of the estimate is approximately equal to (Wasserman (2006)):

MSE ≈ cm−
4
p+4 ,

for some c > 0 and sample size m. Then, the required sample size for a certain mean
squared error is proportionally equal to

m ∝
( c

MSE

) p
4
.

Hence, the sample size grows exponentially with the dimension p. Silverman (1986)
shows required sample sizes for a mean squared error less than 0.1 for estimation of a
standard multivariate normal density using a normal kernel at the point zero. Some
of these values are shown in Table 6.1. This table shows that up to four dimensions
a reasonable sample size is needed, but nearly a million observations are needed in 10
dimensions. Furthermore, Silverman (1986) claims that if the mean integrated squared
error (global risk) was used, the sample sizes would be approximately 1.7 times higher
than is shown in Table 6.1.

Dimension p Sample size m
1 4
2 19
3 67
4 223
8 43 700
10 842 000

Table 6.1: Required sample size to ensure that the MSE at zero is less than 0.1, when
estimating a standard multivariate normal density using a normal kernel and bandwidth
that minimizes the MSE at zero (Silverman (1986)).

Thus, in higher dimensions one may be able to compute an estimate but it will not be
accurate. Therefore it is suggested that kernel density estimates should not be reported
without confidence bands. These bands will be very wide for higher dimensions. A
derivation for the confidence bands can for example be found in Wasserman (2006). A
visualization for such bands in one dimensions is given in Figure 6.6.

The question of interest is what the impact of the increasing uncertainty in the
estimate of h (growing with the dimension p) will be on the likelihood ratio in equation
(3.15). When only an estimate of the density h is required, this uncertainty in h can be
nicely illustrated by use of a confidence band. These bands can thus be of help when
communicating results of the density estimate and its accuracy.2

2Note that this auxiliary plot only works in an understandable way for the one-dimensional case,
however in higher dimensions the bands also exists. Moreover the bands are then even wider due to
the curse of dimensionality.
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θ

h

Figure 6.6: A visualization of confidence bands for a kernel density estimate.

However, in this application the density estimator in equation (6.7) will be substituted
into the likelihood ratio in equation (3.15). Unfortunately the uncertainty in h now
disappears and consequently the likelihood ratio cannot reflect the uncertainty brought
by the density estimate of h. The error that is possibly made in the likelihood ratio is
thus omitted. For example, the true density h could have been located very close to the
upper bound of the confidence band in Figure 6.6. The functions that are integrated
over θ in equation (3.15) using the density estimate ĥ according to equation (5.8) (the
blue line in Figure 6.6), will have a deviating shape compared to the functions that
are integrated over θ using the true density h. Hence, the likelihood ratio that will
be calculated using the blue line estimate will thus deviate from the likelihood ratio
when the true density h would have been used. Important to note is that this error
in the likelihood ratio is unavoidable. However, as stated in Wasserman (2006), it is
necessary to be aware of this error in the model, especially when the dimensionality of
the features increases and the sample size is not in line with Table 6.1. An interesting
follow-up question would thus be to investigate this uncertainty in the likelihood ratio.



7

Likelihood ratios to combine
discrete- and continuous evidence

In Chapter 3 we have seen that in forensic statistics two types of models exist to com-
pute likelihood ratios in comparison problems. These models are applicable to either
discrete- or continuous data (characteristics). This means that up to now, forensic ex-
perts could only report two separate likelihood ratios. For discrete data, the likelihood
ratio is for example based on the color and logo of the tablets. For continuous data,
the likelihood ratio is for example based on the weights and thickness of the tablets.
The objective of this chapter is to describe a model that can be used to combine the
discrete- and continuous evidence into one likelihood ratio.

In Section 7.1 the discrete- and continuous model described in Chapter 3 are com-
bined such that in Section 7.2 a likelihood ratio is found that is applicable for a com-
bination of discrete- and continuous evidence. In Section 7.3 the described theory will
be illustrated using an example based on real xtc data.

7.1 Discrete- and continuous evidence model

Suppose that p1 discrete features (p1 > 1) and p2 continuous features (p2 > 1) of xtc
tablets are measured by forensic experts. The evidence E is divided into the discrete-
and continuous evidence,

E = (Ed, Ec).

Here, the discrete evidence Ed is given by Ed = (Y1,Y2) where Y1 represents the p1

discrete characteristics of tablets from consignment C1, see Section 3.1. The evidence
Ec is assumed to be Ec = (Y1,Y2), where Y1 are the means of the measurements of
p2 continuous characteristics of tablets in consignment C1, as described in Section 3.2.
In the same way, the vectors Y2 and Y2 correspond to consignment C2.

To describe a suitable model in this section, we will use the assumptions from the
previous sections. This means that the assumptions in Section 3.1.1 are applicable
for the discrete part of the evidence, Ed, and the assumptions in Section 3.2.1 are
applicable for the continuous part, Ec. Thus, recall from equation (3.2) that Ed =
(Y1,Y2) ∼ gY1,Y2 and Y1 and Y2 share their probability mass function,

Yl ∼ g for l ∈ {1, 2}.

Remember from Section 3.2 that we assume a two-level model for the continuous evi-
dence. Consequently, the group means are drawn from the between source density,

θl ∼ h for l ∈ {1, 2}

75
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and conditional on θl the means of the measurements are distributed according to a
multivariate normal density f as given in equation (3.6),

Yl | θl ∼ fYl|θl for l ∈ {1, 2}.

In the next section we will see that by conditioning on the discrete vectors, we can
express the likelihood ratio in an intuitive way in terms of the probability functions for
the continuous- and discrete random vectors.

7.2 Likelihood ratio

The purpose of this section is to find an expression for the likelihood ratio for a com-
bination of discrete- and continuous evidence. To find this expression the techniques
described in Section 3.1.2 and Section 3.2.2 will be used. Since we are working with
a combination of discrete- and continuous vectors the likelihood ratio can be written
as a combination of the definition in equation (3.3) and the approximation in equation
(3.7), i.e.

LR(ed, ec) =
P (Y1 = y1,Y2 = y2,Y1 ∈ [y1 ± δ1p] ,Y2 ∈ [y2 ± δ1p] | Hp, I)

P (Y1 = y1,Y2 = y2,Y1 ∈ [y1 ± δ1p] ,Y2 ∈ [y2 ± δ1p] | Hd, I)
(7.1)

where ed = (y1,y2), ec = (y1,y2) and δ some small and positive constant. Below, a
useful expression for this likelihood ratio will be derived.

First assume that Hp is true, i.e. the consignments C1 and C2 come from the same
batch. Recall from Section 3.1 that we will assume that tablets will have the same
discrete features if they come from the same production batch. Then, the numerator
of equation (7.1) can be written as

P ((Ed, Ec) = (ed, ec) | I) = P (Y1 = y1,Y1 ∈ [y1 ± δ1p] ,Y2 ∈ [y2 ± δ1p] | I)1{y1=y2}

= P (Y1 ∈ [y1 ± δ1p] ,Y2 ∈ [y2 ± δ1p] | Y1 = y1, I)

× g(y1 | I)1{y1=y2}.

Hence, to find a useful expression for the numerator we have to consider the conditional
probability of the continuous evidence given the discrete evidence,

P (Y1 ∈ [y1 ± δ1p] ,Y2 ∈ [y2 ± δ1p] | Y1 = y1, I). (7.2)

To find an approximation for this probability, we consider the following example. Sup-
pose that we are interested in the weight Y 1 and color Y1 of xtc tablets. We assume
that xtc tablets can only have four different colors and the weight of the tablets has
a true mean θ1. An example of a rough sketch of a joint feature space of the weight
and color of xtc tablets is given in Figure 7.1(a). Now suppose that we are inter-
ested in the probability that tablets have weight y1 given that their color is red, i.e.
P (Y 1 ∈ [y1 ± δ1p] | Y1 = red). To find this probability we would focus on one specific
part of the feature space, see Figure 7.1(b). Hence, the mean of the weight we are
interested in will change from the “overall” true mean θ1 to the mean of the red tablets
θred

1 . To approximate the probability in equation (7.2) we will use the same idea.
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0

weight

blue red yellow pink

color

θ1

(a) Rough sketch of a joint feature space
of weight and color.

0

weight

blue red yellow pink

color

θred
1

(b) To find the conditional probability
of a certain weight given that the color
was red, focus on the red part of the
feature space.

Figure 7.1: An example of a (conditional) feature space of the weight and color of xtc
tablets. The joint density is positive for values in the feature space indicated by the
vertical lines.

Recall from Section 3.2.2 that under Hp we can assume that the true means of Y1 and
Y2 are the same, i.e. the true mean of the continuous control- and recovered data is
θ ∼ h. However, since we are interested in the probability of the continuous evidence
given that certain discrete features features are observed, the mean we are interested
in will be restricted to θy1 . In other words, that is the true mean of the continuous
features from tablets that have discrete features y1. Then, by using Lemma 3.2.1, the
probability in equation (7.2) can be approximated by

(2δ)2p2

∫
θy1

fY1,Y2|θy1 ,I(y1,y2 | θy1 , I)h(θy1 | I)dθy1 .

Since Y1 and Y2 are conditionally independent given their mean θy1 , we can use the
following expression for the numerator in equation (7.1):

P ((Ed, Ec) = (ed, ec) | Hp, I) = (2δ)2p2g(y1 | I)1{y1=y2}

∫
θy1

fY1|θy1 ,I(y1 | θy1 , I)

× fY2|θy1 ,I(y2 | θy1 , I)h(θy1 | I)dθy1 . (7.3)

Now assume that Hd is true, i.e. the consignments C1 and C2 come from different
sources. Since Y1 and Y2 are independent under Hd, the denominator of equation
(7.1) can be written as

P ((Ed, Ec) = (ed, ec) | I) = P (Y1 ∈ [y1 ± δ] ,Y2 ∈ [y2 ± δ] | Y1 = y1,Y2 = y2, I)

× g(y1 | I)g(y2 | I).

Again, conditioning on Y1 and Y2 can be seen as restricting the true means θ1 and θ2

to θy1
1 and θy2

2 , such that they are based on tablets with discrete features y1 and y2

respectively. Then, by using Lemma 3.2.1 and the independence of Y1 and Y2 given
their means θy1 and θy2 , the following expression can be used for the denominator of
equation (7.1):

P ((Ed, Ec) = (ed, ec) | Hd, I) = (2δ)2p2

∫
θ
y1
1

fY1|θ
y1
1 ,I

(y1 | θ
y1
1 , I)h(θ

y1
1 | I)dθ

y1
1

×
∫

θ
y2
2

fY2|θ
y2
2 ,I

(y2 | θ
y2
2 , I)h(θ

y2
2 | I)dθ

y2
2

× g(y1 | I)g(y2 | I). (7.4)
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Thus, by combining equation (7.3) and equation (7.4), the following expression for the
likelihood ratio in equation (7.1) can be used:

LR(ed, ec) =

∫
θy1 fY1|θy1 ,I(y1 | θy1 , I)fY2|θy1 ,I(y2 | θy1 , I)h(θy1 | I)dθy1

g(y2 | I)
∫
θ
y1
1
fY1|θ

y1
1 ,I

(y1 | θ
y1
1 , I)h(θ

y1
1 | I)dθ

y1
1

× 1∫
θ
y2
2
fY2|θ

y2
2 ,I

(y2 | θ
y2
2 , I)h(θ

y2
2 | I)dθ

y2
2

, (7.5)

where ed = (y1,y2) and ec = (y1,y2). If the discrete part of the evidence is not the
same (y1 6= y2), the likelihood ratio will be equal to zero.

It can be seen that this likelihood ratio is almost the same expression as the product
of the discrete likelihood ratio and the continuous likelihood ratio, given in equations
(3.5) and (3.15). However, there is a subtle difference in the continuous part of the
likelihood ratio since we have restricted the mean vector θ to the discrete evidence,
θy1 . This restriction can affect the choice of the between source density and thus
the computation of the continuous part of the likelihood ratio. An example of the
computation of this likelihood ratio will be given in the next section. If the continuous
features are independent of the discrete features, the likelihood ratio will be exactly
the product of equation (3.5) and equation (3.15).

7.3 Application on real xtc data

To apply the described theory about likelihood ratios for combined evidence, we will
consider an example based on real xtc data. The background data that is used is based
on (a subset of) real xtc data and therefore the data is anonymized. Most of the xtc
data collected by the NFI does not contain the combination of continuous- and discrete
features. Hence, a relative small data set is used in the problem below. However, since
this problem is only an illustration and not based on a real lawsuit this is not an issue.
This section can therefore also be seen as a motivation to collect more data consisting
of both discrete- and continuous features in the future.

7.3.1 Problem definition

Consider a lawsuit about the origin of two seized consignments C1 and C2. The pros-
ecutor’s hypothesis Hp states that the consignments C1 and C2 come from the same
production batch. The hypothesis of the defense Hd supposes that the consignments
come from different production batches (see Section 2.1.1). The task of a forensic drug
expert is to provide the judge with the likelihood ratio. To calculate the likelihood
ratio, the forensic expert is able to examine one tablet from both consignments. He es-
tablished the color and logo of the tablets and measured two continuous post-tabletting
features A and B of the tablets in both consignments. The color, logo and features A
and B of each consignment is given in the table below.

Consignment Logo Color A B
C1 Harley Davidson Beige 0.238 0.719
C2 Harley Davidson Beige 0.213 0.676

Table 7.1: The logo, color and features A and B of the consignments C1 and C2

measured by a forensic expert.
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In this example we will assume that consignments that originate from the same pro-
duction batch will have the same discrete features, see Section 2.1.1. Furthermore, we
will assume that there is no further background information I available.

To calculate the likelihood ratio, a suitable background database is required to
estimate the parameters (see Section 5.1). In this example we will use background
data which consist of consignments that are confiscated in the Netherlands. A small
subset of the available background data is given in the table below.

Batch Tablet Color A B
1 1 Beige 0.533 0.682
1 2 Beige 0.570 0.674
...

...
...

...
...

1 20 Beige 0.592 0.677
2 1 Pink 0.433 0.527
...

...
...

...
...

50 1 Red 0.475 0.361
...

...
...

...
...

50 8 Red 0.471 0.362

Table 7.2: A subset of the available background data Z.

The available background data Z = (Zij | 1 ≤ i ≤ 50, 1 ≤ j ≤ ni) consists of m batches
and 1 ≤ ni ≤ 20 measured tablets within each batch. The vector Zij contains measure-
ments of the color, feature A and feature B within batch i on tablet j. For example,
Z11 = (beige, 0.533, 0.682). Note that the color is equal within each batch i, while the
continuous features A and B can differ for each tablet.

Since the logos of the 50 batches in the background data are not established, the
forensic expert will not use the logo of consignment C1 and C2 in the likelihood ratio
calculation. Therefore, we will only consider the color of the tablets as discrete evidence
and according to the model described in Section 3.1.1 the discrete evidence is then given
by Ed = (beige, beige). The forensic expert is able to measure the continuous features
A and B of one tablet from each consignment, i.e. n1 = n2 = 1. Then according to the
model described in Section 3.2.1 the continuous evidence is equal to the measurements
on the control- and recovered data, Ec = ((0.238, 0.719), (0.213, 0.676)). First we will
compute two separate likelihood ratios, one based on the discrete evidence and the
other based on the continuous evidence. After that, a likelihood ratio based on a
combination of the discrete and continuous evidence will be computed using the theory
described in Section 7.1 and Section 7.2.

7.3.2 Discrete evidence

The forensic expert has established that the discrete evidence is given byEd = (beige, beige).
To determine the strength of evidence of two consignments both having beige tablets,
we will assume the model described in Section 3.1.1. Since the control- and recovered
data are the same and we do not have any background information I, we know from
equation (3.5) that the likelihood ratio is equal to

LR(beige, beige) =
1

g(beige)
.
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To estimate the probability of a consignment containing beige tablets, g(beige), we will
use the frequency of batches containing beige tablets in the background data Z. An
example of the frequency of some colors in the background data are given below.

Color Frequency Estimated probability
Beige 4 0.08
Pink 11 0.22
Red 2 0.04
Blue 8 0.16

Light green 2 0.04

Table 7.3: Example of the frequency of some colors in the database.

Table 7.3 shows that 4 batches in the database contain beige tablets, hence the required
probability is estimated as ĝ(beige) = 4/50 = 0.08. Therefore, the likelihood ratio is
equal to

LR(beige, beige) =
1

0.08
= 12.5. (7.6)

Then, according to Table 2.2, we would conclude that the matching beige color is more
probable if the consignments come from the same batch than if they come from different
batches.

In Section 2.2.1 we described a difficulty in this approach, due to the fast increase
of new designs of xtc tablets. Since batches that contain beige tablets occur only four
times in the database, seizing two consignments with beige tablets is considered as a
rare event. Consequently, the likelihood ratio indicates that the forensic findings are
more probable given the prosecutors hypothesis. It could happen that beige colored
tablets is a new popular design and more consignments with this color are confiscated
by the police later this month. This could affect the strength of evidence. For example,
suppose that at the end of this month 6 additional consignments with beige tablets are
confiscated. Since beige tablets occur more frequently, the estimated probability will
be higher than before and hence the likelihood ratio will be smaller, i.e.

LR(beige, beige) =
1

10/50
= 5.

Consequently, the verbal likelihood ratio will turn into: “the matching beige color is
slightly more probable if the consignments come from the same batch than if they come
from different batches”. Then, the evidence will be less strong than the reported value
in equation (7.6) at the beginning of the month. This problem is considered to be
an open problem in forensic statistics. One of the suggested approaches is to use a
dynamic database, e.g. a database which includes data of the last three years.

7.3.3 Continuous evidence

To determine the strength of the continuous evidence we have to compute the likelihood
ratio given in equation (3.15). To compute this likelihood ratio we want to decide
whether it is reasonable to assume a Gaussian between-source distribution or not. To
evaluate the assumption of normality, the background data Z will be used. Since
we are focusing on the continuous evidence, we consider the background data Z with
vectors Zij containing only the measurements of the continuous features A and B.
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The vectors Z1, . . . ,Z50 are the batch means taken over the 50 batches for these two
continuous features. To assess whether the observations Z1, . . . ,Z50 are samples from
a bivariate normal distribution, first the means Z1k, . . . , Z50k, k ∈ {1, 2} are examined
for (univariate) normality using the techniques described in Section 4.1.2. In Figure
7.2(a) and Figure 7.2(b) the normal QQ-plots of these means are given. In Table 7.4
results from the Shapiro-Wilk test are given. Since the points in the normal QQ-plot are
approximately on a straight line and the p-values of the Shapiro-Wilk test are greater
than 0.05 (the test-statistic W is close to one) we will assume that the marginals of
Z1, . . . ,Z50 are normal distributed.
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Figure 7.2: Normal QQ-plots of the means Z1k, . . . , Z50k, k ∈ {1, 2}, of the features A
(k = 1) and B (k = 2).
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Figure 7.3: Chi-squared QQ plot
to assess the multivariate normal-
ity of Z1, . . . ,Z50.

Shapiro-Wilk
Feature W p-value
A 0.962 0.109
B 0.972 0.290
Mardia’s MVN

Estimate p-value
Skewness 0.439 0.454
Kurtosis 8.693 0.540

Table 7.4: Results from the univariate and
multivariate goodness of fit tests to assess
the assumption of normality.

Although the marginals are assumed to be normal distributed individually, testing the
multivariate structure on normality is required as well. In Section 4.1.2 we have seen
that a Chi-squared QQ-plot can be used for this purpose, provided that m − p =
50− 2 > 25. In Figure 7.3 the generalized distances d2

1, . . . , d
2
m are plotted against the

quantiles of a Chi-squared distribution with 2 degrees of freedom. Since these points
are approximatley on a straight line through the origin, this plot indicates multivariate
normality. Furthermore, in Table 7.4 results from Mardia’s goodness of fit test for
multivariate normality are given. This test is based on a multivariate extension of
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skewness and kurtosis, see for example Mardia (1980) and Korkmaz et al. (2015). Both
the skewness and kurtosis estimates indicate multivariate normality. Hence, according
to the Chi-squared QQ-plot and the goodness of fit test we assume that the data
Z1, . . . ,Z50 follows a multivariate normal distribution.

Encouraged by these results we will assume that it is appropriate to model the
continuous evidence using a Gaussian two-level model as described in Chapter 4. Con-
sequently, we will compute the likelihood ratio which is given in equation (4.12). Since
this likelihood ratio depends on the parameters µ, Σ and T, estimation of these param-
eters is required. The EM-algorithm is used to estimate the parameters, see Section
5.4.

The identity matrices are chosen as starting values and the relative change of the
parameters for δ = 5 as the stopping criterion, see Section 5.5.3. Using these starting
values and stopping criterion 18 iterations were needed. The incomplete log likelihood
is given in Figure 7.4. The estimated parameters are listed below:

µ̂ =

(
0.419
0.495

)
, Σ̂ =

(
0.042 −0.004
−0.004 0.023

)
, T̂ =

(
9.482× 10−3 4.210× 10−3

4.210× 10−3 6.007× 10−3

)
.
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Figure 7.4: Incomplete log likelihood for each iteration of the EM-algorithm.

Using these parameter estimates, the estimated likelihood ratio in equation (4.12) can
now be calculated

LR
(

(0.238, 0.719), (0.213, 0.676)
)

= 1.38. (7.7)

Then, according to Table 2.2, we would conclude that the continuous evidence provides
no assistance in addressing the issue.

7.3.4 Combination of discrete- and continuous evidence

In Section 7.3.2 and Section 7.3.3 we have seen the computation of two separate likeli-
hood ratios, one based on the discrete evidence and the other based on the continuous
evidence. If the discrete and continuous evidence are assumed to be independent, the
combined likelihood ratio would be the product of these two separate likelihood ratios.
However, in Section 2.1.1 we have argued that since post-tabletting characteristics are
formed within one source, it is likely that there is a certain dependency between these
characteristics. Consequently, in this example it is also assumed that there is a certain
dependence between the color and the continuous features A and B of the tablets.
Hence, in a situation like this, a forensic expert could only report two separate likeli-
hood ratios. By using the theory from Section 7.1 and Section 7.2 it will be shown how
the evidence can be combined into one likelihood ratio.
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The evidence E is divided into the discrete- and continuous evidence, E = (Ed, Ec).
The likelihood ratio for this combined evidence is given in equation (7.5). We have seen
that this likelihood ratio is almost the same expression as the product of the “discrete
likelihood ratio” and the “continuous likelihood ratio”. For the discrete part of the
likelihood ratio, the likelihood ratio given in equation (7.6) can be used.

However, the continuous part of the likelihood ratio is slightly different than the
likelihood ratio given in equation (7.7). In the continuous part of the likelihood ratio in
equation (7.5) we restrict the mean vector θ to the discrete evidence θy1 . This means
that we condition the true mean vector θ of continuous features A and B on the discrete
evidence y1, i.e. we consider the continuous features A and B for tablets with a beige
color. It is worth noting that this results in the same likelihood ratio as the likelihood
ratio in equation (3.15) when the discrete data is seen as the background information
I. In Section 5.1 it is explained that conditioning on the background information I
can be of influence to the background data that should be used. This automatically
affects the estimated parameters. If the background information consists of the discrete
features, the resulting likelihood ratio in equation (3.15) is thus exactly the same as
the continuous part of the likelihood ratio in equation (7.5).

Hence, to decide whether a Gaussian between-source distribution can be used for
θbeige, we have to use a restricted background data set Zbeige instead of the total
background data set Z. The restricted data set only contains the batches in the back-
ground data which have a beige color, i.e. Zbeige = (Zij , 1 ≤ i ≤ 4, 1 ≤ j ≤ ni) where
2 ≤ ni ≤ 20. Consequently, to evaluate the assumption of normality for θbeige, only
four observations Z1,Z2,Z3,Z4 can be used. For such a small sample only very aber-
rant behaviour will be identified by goodness of fit tests as a lack of fit from normality.
Recall that at this moment larger data sets which consist of both discrete- and con-
tinuous features are not available. For this example we will therefore assume that the
between-source density of θbeige is normal. Note that when larger sets are available in
the future, the normality test will be more decisive.

Hence, we will again assume that it is appropriate to model the continuous ev-
idence using a Gaussian two-level model. The computation of the continuous part
of the likelihood ratio in equation (7.5) is now equal to the likelihood ratio given in
equation (4.1) except for the fact that the parameters are restricted to the discrete ev-
idence, µbeige,Σbeige and Tbeige. To estimate these parameters based on the restricted
background data Zbeige, again the EM-algorithm will be used with identity starting
values and the relative changes in the parameters as stopping criterion. To obtain the
estimated parameters which are given below, 8 iterations were needed.

µ̂beige =

(
0.359
0.572

)
, Σ̂

beige
=

(
4.751× 10−4 2.053× 10−5

2.053× 10−5 1.306× 10−4

)
,

T̂
beige

=

(
0.046 0.005
0.005 0.003

)
.

By using these parameter estimates, the likelihood ratio of the continuous features of
beige tablets is equal to 17.2. By using the discrete likelihood ratio in equation (7.6),
the likelihood ratio of the combined evidence (equation (7.5)) can now be calculated,

LR
(
Ed, Ec

)
= 12.5× 17.2 = 215. (7.8)

Thus, for this example we have seen that based on the evidence which is used, different
conclusions are obtained:
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(i) Discrete evidence: Based on the color the forensic expert would conclude that
the discrete evidence is more probable if the consignments come from the same
batch than if they come from different batches.

(ii) Continuous evidence: Based on the features A and B the forensic expert would
conclude that the continuous evidence provides no assistance in addressing the
issue.

(iii) Discrete- and continuous evidence: Based on both the color and the features
A and B, the forensic expert would conclude that the discrete and continuous
evidence is much more probable if the consignments come from the same batch
than if they come from different batches.

In this section we have seen the calculation of the likelihood ratio for a combination
of discrete- and continuous evidence. We mentioned that the available (combined)
database is small and more data should be collected in the future. However, for many
discrete features a bigger combined data set is not feasible, because the number of
categories is too big (recall that the number of new xtc designs is increasing fast).
Hence, discrete features with less possible categories are more appropriate to use in
a likelihood ratio for combined evidence. Two examples of such features are shape or
diameter1.

7.3.5 A non-Gaussian between-source distribution

In Section 7.3.3 we have seen that for the problem described in Section 7.3.1, it can
be assumed that the between-source distribution is a normal distribution. However, in
many practical cases this assumption is not valid. Therefore, the non-Gaussian two-
level model described in Chapter 6 is important. Below, the use of the non-Gaussian
two-level model in practice will be briefly illustrated by an extension of the example
described in Section 7.3.1.

Suppose that an additional continuous feature C is measured by forensic experts.
In the background data, each vector Zij now contains measurements of the features A,
B and C. Likewise in Section 7.3.3, to assess whether the between-source distribution is
a multivariate normal distribution, we consider the batch means Z1, . . . ,Z50 for these
three continuous features. In Figure 7.5(a) a QQ plot of the marginal distribution
of the batch means of feature C is given. In Figure 7.5(b) a QQ-plot of the squared
generalized distances is given. Both visual tests shows that multivariate normality
cannot be assumed, since the plotted points deviate from the straight reference lines.
Hence, a non-Gaussian model will be assumed to model the continuous evidence and
the likelihood ratio from equation (6.8) can be applied.

If it is desired to combine the discrete- and continuous evidence as described in
Section 7.3.4, the restricted background data Zbeige still consist of four batches. Due to
this small sample size, the multivariate normality assumption for the between-source
distribution will again not be rejected. On the other hand, the use of kernel density
estimation for such a small sample for three dimensions can be questioned as well
(see Table 6.1). Therefore, both reasons should be seen as motivation to collect more
combined data in the future.

1Currently it is being discussed whether diameter should be treated as a continuous variable or a
discrete variable. Forensic experts have strong suspicions that tabletting machines can only produce
tablet of 4, 5 or 6 millimeter. If this is indeed true, the measurements can be categorized
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(a) Normal QQ-plot of Z1k, . . . , Z50k of the fea-
ture C (k = 3).
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(b) Chi-squared QQ-plot to assess the multivari-
ate normality of Z1, . . . ,Z50.

Figure 7.5: QQ-plots to assess the assumption of multivariate normality.



Conclusion

The ENFSI-LR project aims to construct a GUI around software that helps forensic
experts to calculate a likelihood ratio. In the past two years forensic statisticians devel-
oped software called SAILR for this project. During this development some problems
occurred that had to be tackled. This thesis is written to investigate some of these
problems. Two main problems are proving the equality of likelihood ratio formulas
arising from the Gaussian two-level model and investigating various possibilities for
parameter estimation within the Gaussian two-level model.

Before these problems were addressed in this thesis, in Chapter 2 an introduction
to the likelihood ratio approach in forensic evidence evaluation is given. Chapter 3 de-
scribes the underlying discrete- and continuous models in the likelihood ratio approach.
The focus in this thesis was mainly on the continuous two-level model. This two-level
model is distinguished in a Gaussian two-level model and a non-Gaussian two-level
model.

In Chapter 4 the equality of two likelihood ratio formulas arising from the Gaussian
two-level models is proven. Since only one of these formulas is implemented in the
software, the equality of these formulas is important for the validation of the software
and agreement upon likelihood ratios within the ENFSI-LR project.

In Chapter 5 estimation techniques are explored for the parameters µ, T and Σ
within the Gaussian two-level model. In the ENFSI-LR project it is decided that the
software must contain a “simple” default choice and some optional choices to estimate
the parameters. As default choice for the estimators of the covariance matrices T
and Σ, forensic statisticians have decided that ANOVA estimators will be used. As a
default choice for the mean estimator, forensic statisticians are discussing whether the
weighted- or the unweighted mean should be used. Therefore, this chapter compares
both estimators for the mean. As an alternative to the weighted- and unweighted
mean, in this thesis a generalized weighted mean with optimal weights is suggested.
A disadvantage of these optimal weights is that they depend on unknown parameters.
In case these parameters are known, the generalized weighted mean would be the
estimator that has minimum variance among all estimators in it class, which includes
the weighted- and unweighted mean.

As optional choice to estimate the parameters, this thesis suggests the EM-algorithm
as an iterative method to find the maximum likelihood estimates. Based on the simu-
lation study at the end of Chapter 5, it can be concluded that the maximum likelihood
estimators performs the same as or better than the ANOVA estimators. Furthermore,
for this simulation we have seen that the stopping criterion is reached within a reason-
able amount of iterations. Moreover, if ANOVA estimates are used as starting values
this number will be even less. Additionally, the use of the maximum likelihood estima-
tors avoids the choice between the mean estimators. Thus, on the basis of the results
in Chapter 5, we would suggest to use the EM-algorithm with the ANOVA estimates
as starting values to find the maximum likelihood estimates.

86
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In Chapter 6 the likelihood ratio approach under the assumption of a non-Gaussian
two-level model is described. This model is also embedded in the ENFSI-LR software,
because of its importance in practice. In this chapter we illuminated some possible
difficulties resulting of the use of this method.

In Chapter 7 an extension of the discrete- and continuous models is introduced in
this thesis, such that the discrete- and continuous evidence can be combined into one
likelihood ratio. We have seen that this combined likelihood ratio results in an intuitive
approach, but demands for more data sets that contain a combination of discrete-
and continuous features. This extended model can be used in future likelihood ratio
calculation, in future development of the software and as a motivation to collect more
combined data sets.

Recommendations and future development

• Currently, the ENFSI-LR software does not contain a tool to test the assumption
of multivariate normality for the between-source distribution. Including such
tools in the software can help forensic experts in the decision between a Gaussian
two-level model and a non-Gaussian two-level model. In Section 4.1 some first
ideas to assess the assumption of multivariate normality are given. In Section 7.3
these ideas are applied to real xtc data. In future development, these ideas can
be further explored and implemented in the software.

• In Chapter 5 estimation techniques for the parameters in the Gaussian two-level
model are explored. In this thesis the EM-algorithm is suggested as an alterna-
tive iterative method to find the maximum likelihood estimates. In Bolck and
Alberink (2011) it is suggested to explore the method of restricted maximum
likelihood estimation (REML) or a Bayesian approach, see for example Searle
et al. (1992). Due to computational difficulties useful REML estimators are not
derived in this thesis. This problem might be solved in further research.

• In Section 6.3 we have seen that in forensic statistics it is common to use the
bandwidth matrix B = b2optT in the kernel density estimator for h. The advantage
of this bandwidth matrix is that it is a simple way of obtaining a full bandwidth
matrix. However, in Section 6.2.1 we have seen a simple example where this
choice for the bandwidth matrix can be very detrimental for the estimate of h. In
such a situation an unconstrained full bandwidth matrix would be preferable. It
can be recommended to explore methods to find such a matrix, even though such
methods can be hard and research to improve methods is ongoing. An example
of an algorithm resulting in a fast and accurate computation for unconstrained
bandwidth matrices is given in Duong and Hazelton (2005).

• In Section 6.3 we have mentioned the difficulty of the statistical curse of dimen-
sionality that occurs in kernel density estimation. We have seen that the sample
size m (the number of groups in the background data) grows exponentially with
dimension p to obtain a required accuracy. Silverman (1986) shows in an example
that for 10 dimensions a sample size of 842000 would be needed to obtain a mean
squared error less than 0.1. Thus, in higher dimensions the kernel density esti-
mate will not be very accurate. Hence, it is suggested that the estimates should
not be reported without confidence bands. However, the uncertainty brought by
the kernel density estimate is not reflected in the likelihood ratio. Since in xtc
comparison problems often 15 pre-tabletting features are compared (see Section
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2.1.1) this dimensionality problem most likely occurs in the likelihood ratio ap-
proach. Therefore an interesting follow-up question would be to investigate this
uncertainty in the likelihood ratio.



Appendix A

Detailed calculations and proofs

A.1 Proof of the matrix identities (M1) and (M2)

Assuming that each of the stated inverses exist, the following statements will be proved:

(M1) : (A−1 + B−1)−1 = A−A(A + B)−1A = B−B(A + B)−1B
(M2) : (A−1 + B−1)−1 = A(A + B)−1B = B(A + B)−1A

Proof of (M1)

To prove that
(A−1 + B−1)−1 = A−A(A + B)−1A,

it is sufficient to show that

(A−1 + B−1)(A−A(A + B)−1A) = I

where I is the identity matrix. Indeed this is true because

(A−1 + B−1)(A−A(A + B)−1A) = (A−1 + B−1)A− (A−1 + B−1)A(A + B)−1A
= I + B−1A− (A + B)−1A−B−1A(A + B)−1A
= I− (A + B)−1A−B−1(A(A + B)−1 − I)A
= I− (A + B)−1A−B−1((A− (A + B))(A + B)−1)A
= I− (A + B)−1A−B−1(−B(A + B)−1)A
= I− (A + B)−1A + (A + B)−1A
= I.

When we interchange the role of A and B it can be shown that (A−1 + B−1)−1 =
B−B(A + B)−1B.

Proof of (M2)

To prove that
(A−1 + B−1)−1 = A(A + B)−1B,

it is sufficient to show that

(A−1 + B−1)A(A + B)−1B = I
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where I is the identity matrix. Indeed this is true because

(A−1 + B−1)A(A + B)−1B = (A + B)−1B + B−1A(A + B)−1B
= (I + B−1A)(A + B)−1B
= B−1(B + A)(A + B)−1B
= B−1IB
= B−1B
= I.

When we interchange the role of A and B it can be shown that (A−1 + B−1)−1 =
B−B(A + B)−1B.

A.2 Proof of the likelihood ratio in equation (4.12)

First the numerator of equation (4.10) will be computed. The computation of the
denominator of equation (4.10) is similar to the computation of the numerator. We
know that

y2 | θ ∼ Np(θ, n−1
2 Σ)

θ | y1 ∼ Np(µn,Tn)

The numerator of equation (4.10) can be written as follows∫
θ

f(y2|θ)π(θ|y1)dθ =

∫
θ

|2πn−1
2 Σ|−

1
2 exp

(
− 1

2
(y2 − θ)′(n−1

2 Σ)−1(y2 − θ)
)
|2πTn|−

1
2

× exp
(
− 1

2
(θ − µn)′T−1

n (θ − µn)
)
dθ

= |2πn−1
2 Σ|−

1
2 |2πTn|−

1
2 exp

(
− 1

2

(
y′2(n−1

2 Σ)−1y2 + µ′nT
−1
n µn

))
×
∫
θ

exp
(
− 1

2

(
θ′((n−1

2 Σ)−1 + T−1
n )θ − (y′2(n−1

2 Σ)−1 + µ′nT
−1
n )θ

− θ′((n−1
2 Σ)−1y2 + T−1

n µn)
))
dθ.

Let

Σ̃−1 = (n−1
2 Σ)−1 + T−1

n ,

Σ̃−1µ̃ = (n−1
2 Σ)−1y2 + T−1

n µn.

Using a multivariate normal distribution for θ with parameters µ̃ and Σ̃, the numerator
of equation (4.10) is equal to∫
θ

f(y2|θ)π(θ|y1)dθ = |2πn−1
2 Σ|−

1
2 |2πTn|−

1
2 exp

(
− 1

2

(
y′2(n−1

2 Σ)−1y2 + µ′nT
−1
n µn

))
× |2π((n−1

2 Σ)−1 + T−1
n )−1|

1
2

× exp
(1

2

(
((n−1

2 Σ)−1y2 + T−1
n µn)′Σ̃′((n−1

2 Σ)−1y2 + T−1
n µn)

))
.
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In the latter equation it is used that (AB)′ = B′A′ for two matrices A and B. Using
properties of the determinant and the definition of Un on page 37 it follows that∫
θ

f(y2|θ)π(θ|y1)dθ = (2π)−
p
2
|n−1

2 ΣU−1
n Tn|

1
2

|n−1
2 ΣTn|

1
2

exp
(
− 1

2

(
y′2(n−1

2 Σ)−1y2 + µ′nT
−1
n µn

))
× exp

(1

2

(
(y′2((n−1

2 Σ)−1)′ + µ′n(T−1
n )′)Σ̃((n−1

2 Σ)−1y2 + T−1
n µn)

))
= (2π)−

p
2 |U−1

n |
1
2 exp

(
− 1

2

(
y′2(n−1

2 Σ)−1y2 + µ′nT
−1
n µn

))
× exp

(1

2

(
y′2(n−1

2 Σ)−1Σ̃(n−1
2 Σ)−1y2 + µ′nT

−1
n Σ̃(n−1

2 Σ)−1y2

+ y′2(n−1
2 Σ)−1Σ̃T−1

n µn + µ′nT
−1
n Σ̃T−1

n µn

))
= (2π)−

p
2 |Un|−

1
2 exp

(
− 1

2

(
y′2((n−1

2 Σ)−1 − (n−1
2 Σ)−1Σ̃(n−1

2 Σ)−1)y2

+ µ′nT
−1
n Σ̃(n−1

2 Σ)−1y2 + y′2(n−1
2 Σ)−1Σ̃T−1

n µn + µ′n(T−1
n −T−1

n Σ̃T−1
n )µn

))
.

The first two equations are true since covariance matrices are symmetric. Because Σ̃
consists of covariance matrices it is symmetric too. Finally, the matrix identities (M1)
and (M2) will be used:∫
θ

f(y2|θ)π(θ|y1)dθ = (2π)−
p
2 |Un|−

1
2 exp

(
− 1

2

(
y′2(n−1

2 Σ + Tn)−1y2 + µ′n(n−1
2 Σ + Tn)−1y2

+ y′2(n−1
2 Σ + Tn)−1µn + µ′n(n−1

2 Σ + Tn)−1µn

))
= (2π)−

p
2 |Un|−

1
2 exp

(
− 1

2
(y2 − µn)′U−1

n (y2 − µn)
)
.

Since Y2 ∼ Np(µ, n−1
2 Σ + T), the denominator is equal to∫

θ

f(y2|θ)π(θ)dθ = (2π)−
p
2 |U0|−

1
2 exp

(
− 1

2
(y2 − µ)′U−1

0 (y2 − µ)
)
.

Dividing the numerator by this denominator gives the likelihood ratio of expression
(4.12).

A.3 Proof of Lemma 4.2.3

Consider the following part of equation (4.9):

1

|n−1
2 Σ + T|−

1
2

exp

{
1

2
(y2 − µ)′(n−1

2 Σ + T)−1(y2 − µ)

}
.

It is immediately clear that this term equals the following part of equation (4.12):

|U0|
1
2 exp

{
1

2
(y2 − µ)′U−1

0 (y2 − µ)

}
.
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Thus, in order to show the equality of the likelihood ratio formulas it is sufficient to
show that equation (A.1)∣∣(n−1

1 + n−1
2 )Σ

∣∣− 1
2

∣∣∣(T + Σ
n1+n2

)∣∣∣− 1
2

∣∣T + n−1
1 Σ

∣∣− 1
2

exp

{
1

2
(y1 − µ)′(T + n−1

1 Σ)−1(y1 − µ)

}

× exp

{
−1

2
(y1 − y2)′

(
(n−1

1 + n−1
2 )Σ

)−1
(y1 − y2)

}
× exp

{
−1

2

(n1y1 + n2y2

n1 + n2
− µ

)′(
T +

Σ

n1 + n2

)−1(n1y1 + n2y2

n1 + n2
− µ

)}
(A.1)

and equation (A.2)

|Un|−
1
2 exp

{
−1

2
(y2 − µn)′U−1

n (y2 − µn)

}
(A.2)

are the same.

Equality of equation (A.1) and equation (A.2)

In order to show that equation (A.1) coincides with equation (A.2), the following two
statements for square matrices A and B will be used frequently:

(M1) : (A−1 + B−1)−1 = A−A(A + B)−1A = B−B(A + B)−1B
(M2) : (A−1 + B−1)−1 = A(A + B)−1B = B(A + B)−1A

A proof of these identities is given in Appendix A.1. All of the stated inverses are
assumed to exist for covariances matrices Σ and T. The equality of equation (A.1) and
equation (A.2) will be shown in several steps.

Step 1

The first step is to show the following equality:

∣∣Un

∣∣− 1
2 =

∣∣n−1
1 Σ + n−1

2 Σ
∣∣− 1

2
∣∣(n1 + n2)−1Σ + T

∣∣− 1
2∣∣n−1

1 Σ + T
∣∣− 1

2

. (A.3)

We will focus on the right hand side of equation (A.3). First, use that |A|−1= |A−1|
and |AB|= |BA|, for matrices A and B. Then, the right hand side of equation (A.3)
is equal to ∣∣∣(Σ

n1
+ Σ

n2

)(
Σ
n1

+ T
)−1 ( Σ

n1+n2
+ T

)∣∣∣− 1
2
.

Completing this product, it can be seen that

Σ

n1

(
Σ

n1
+ T

)−1

T = (n1Σ
−1 + T−1)−1 = Tn,

where in the first and second equality the statements (M2) and (M1) respectively are
applied. The remaining terms should thus equal n−1

2 Σ. For that reason, write the right
hand side of equation (A.3) as∣∣∣Tn + Σ

n2

(
Σ
n1

+ T
)−1 [

n2
n1

Σ
n1+n2

+ Σ
n1+n2

+ T
]∣∣∣− 1

2
.

And since the terms in the square brackets can be simplified to
(
Σ
n1

+ T
)
, equation

(A.3) is indeed true.
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Step 2

The next step in showing that the equations (A.1) and (A.2) are equal, is to prove that
the exponential terms in these equations are the same.This means that the following
four equations have to be shown:

y′2U
−1
n y2 = y′2

(
Σ

n1
+

Σ

n2

)−1

y2 +
n2y′2
n1 + n2

(
Σ

n1 + n2
+ T

)−1 n2y2

n1 + n2
(A.4)

−y′2U
−1
n µn = −y′2

(
Σ

n1
+

Σ

n2

)−1

y1 +
n2y′2
n1 + n2

(
Σ

n1 + n2
+ T

)−1

×
(

n1y1

n1 + n2
− µ

)
(A.5)

−µ′nU−1
n y2 = −y′1

(
Σ

n1
+

Σ

n2

)−1

y2 +

(
n1y1

n1 + n2
− µ

)′( Σ

n1 + n2
+ T

)−1

× n2y2

n1 + n2
(A.6)

µ′nU
−1
n µn = y′1

(
Σ

n1
+

Σ

n2

)−1

y1 +

(
n1y1

n1 + n2
− µ

)′( Σ

n1 + n2
+ T

)−1

×
(

n1y1

n1 + n2
− µ

)
− (y1 − µ)′

(
Σ

n1
+ T

)−1

(y1 − µ) (A.7)

Step 2.1

To prove equation (A.4), it is sufficient to prove that(
(T−1 + n1Σ

−1)−1 +
Σ

n2

)−1

=

(
Σ

n1
+

Σ

n2

)−1

+

(
n2

n1 + n2

)2( Σ

n1 + n2
+ T

)−1

,

where the definition of U−1
n is used in the left hand side of the equation. First, apply

statement (M1) on the left hand side of this equation(
(T−1 + n1Σ

−1)−1 +
Σ

n2

)−1

= n2Σ
−1 − n2Σ

−1
(
T−1 + (n1 + n2)Σ−1

)−1
n2Σ

−1.

If (M1) is applied on the right hand side of the latter equation, then(
(T−1+n1Σ

−1)−1+
Σ

n2

)−1

= n2Σ
−1−n2Σ

−1

[
Σ

n1 + n2
− Σ

n1 + n2

(
Σ

n1 + n2
+T
)−1 Σ

n1 + n2

]
n2Σ

−1.

Completing the product gives(
(T−1 +n1Σ

−1)−1 +
Σ

n2

)−1

= n2Σ
−1− n2

2

n1 + n2
Σ−1 +

(
n2

n1 + n2

)2( Σ

n1 + n2
+T

)−1

.

Now notice that

n2Σ
−1 − n2

2

n1 + n2
Σ−1 =

(
n1 + n2

n1n2
Σ

)−1

=

(
Σ

n1
+

Σ

n2

)−1

and thus equation (A.4) is indeed true.
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Step 2.2

To prove equation (A.5), it has to be shown that

U−1
n µn =

(
Σ

n1
+

Σ

n2

)−1

y1 −
n2

n1 + n2

(
Σ

n1 + n2
+ T

)−1( n1y1

n1 + n2
− µ

)
,

with

U−1
n =

(
Σ

n1
+

Σ

n2

)−1

+

(
n2

n1 + n2

)2( Σ

n1 + n2
+ T

)−1

(step 2.1)

µn = T
(
T +

Σ

n1

)−1

y1 +
Σ

n1

(
T +

Σ

n1

)−1

µ. (by definition)

Thus, the following two equations have to be true

U−1
n T(T +

Σ

n1
)−1y1 = (

Σ

n1
+

Σ

n2
)−1y1 −

n2

n1 + n2
(

Σ

n1 + n2
+ T)−1

× n1y1

n1 + n2
. (A.8)

U−1
n

Σ

n1
(T +

Σ

n1
)−1µ =

n2

n1 + n2
(

Σ

n1 + n2
+ T)−1µ. (A.9)

To prove equation (A.8), first apply (M1) on the left hand side

U−1
n T

(
T +

Σ

n1

)−1

y1 = U−1
n y1 −U−1

n (T−1 + n1Σ
−1)−1T−1y1.

Thus, it has to be shown that

U−1
n −U−1

n (T−1 +n1Σ
−1)−1T−1 =

(
Σ

n1
+

Σ

n2

)−1

− n2

n1 + n2

(
Σ

n1 + n2
+T

)−1 n1

n1 + n2
.

This is the same as showing that the following equation is true(
n2

n1 + n2

)2( Σ

n1 + n2
+ T

)−1

−U−1
n

(
T−1 + n1Σ

−1
)−1 T−1 = − n2

n1 + n2

(
Σ

n1 + n2
+ T

)−1

× n1

n1 + n2
(A.10)

To confirm the latter equation, first apply (M2) on the second term in the left hand
side

−U−1
n (T−1 + n1Σ

−1)−1T−1 = −U−1
n

Σ

n1

(
T +

Σ

n1

)−1

.

Using the expression for U−1
n , the left hand side of equation (A.10) can then be written

as(
n2

n1 + n2

)2( Σ

n1 + n2
+T
)−1

− n2

n1 + n2

(
T+

Σ

n1

)−1

−
(

n2

n1 + n2

)2( Σ

n1 + n2
+T
)−1 Σ

n1

(
T+

Σ

n1

)−1

.

The latter expression can be written in the same form as the right hand side of equation
(A.10),

− n2

n1 + n2

(
Σ

n1 + n2
+T
)−1[

−n2

n1
+
n1 + n2

n1

(
Σ

n1 + n2
+T
)(

T+
Σ

n1

)−1

−n2

n2
1

Σ

(
T+

Σ

n1

)−1] n1

n1 + n2
.
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Now notice that

−n2

n1
+
n1 + n2

n1

(
Σ

n1 + n2
+ T

)(
T +

Σ

n1

)−1

− n2

n2
1

Σ

(
T +

Σ

n1

)−1

= I.

Hence, equation (A.10) is true en thus equation (A.8) is true. To prove equation (A.9),
the left hand side can be written as

U−1
n

Σ

n1

(
T+

Σ

n1

)−1

µ =
n2

n1 + n2

(
T+

Σ

n1

)−1

µ+

(
n2

n1 + n2

)2(
T+

Σ

n1 + n2

)−1 Σ

n1

(
T+

Σ

n1

)−1

µ.

The right hand side of the latter equation can be written in the same form as the right
hand side of equation (A.9),

U−1
n

Σ

n1

(
T +

Σ

n1

)−1

µ =
n2

n1 + n2

(
Σ

n1 + n2
+ T

)−1[( Σ

n1 + n2
+ T

)(
Σ

n1
+ T

)−1

+
n2

n1 + n2

Σ

n1

(
T +

Σ

n1

)−1]
µ.

Now it follows that(
Σ

n1 + n2
+ T

)(
Σ

n1
+ T

)−1

+
n2

n1 + n2

Σ

n1

(
T +

Σ

n1

)−1

=

[(
Σ

n1 + n2
+ T

)
+

n2

n1 + n2

Σ

n1

]
×

(
Σ

n1
+ T

)−1

= I.

and hence equation (A.9) is indeed true.

Step 2.3

The proof of equation (A.6) is similar to step 2.2.

Step 2.4

To prove equation (A.7), equation (A.6) will be used. From equation (A.6), we know
that

µ′nU
−1
n = y′1

[(
Σ

n1
+
Σ

n2

)−1

− n1n2

(n1 + n2)2

(
Σ

n1 + n2
+T
)−1]

+µ′
(

Σ

n1 + n2
+T
)−1 n2

n1 + n2
.

If the latter equation is multiplied on both sides with µn, it follows that the following
four equations should be true

1. y′1[(Σn1
+ Σ

n2
)−1 − n1n2

(n1+n2)2
( Σ
n1+n2

+ T)−1]T(T + Σ
n1

)−1y1 = y′1(Σn1
+ Σ

n2
)−1y1 +

n1y′1
n1+n2

( Σ
n1+n2

+ T)−1 n1y1
n1+n2

− y′1(Σn1
+ T)−1y1.

2. y′1[(Σn1
+Σ
n2

)−1− n1n2
(n1+n2)2

( Σ
n1+n2

+T)−1]Σn1
(T+Σ

n1
)−1µ = − n1y′1

n1+n2
( Σ
n1+n2

+T)−1µ+

y′1(Σn1
+ T)−1µ.

3. µ′( Σ
n1+n2

+T)−1 n2
n1+n2

T(T+Σ
n1

)−1y1 = −µ′( Σ
n1+n2

+T)−1 n1y1
n1+n2

+µ′(Σn1
+T)−1y1

4. µ′( Σ
n1+n2

+ T)−1 n2
n1+n2

Σ
n1

(T + Σ
n1

)−1µ = −µ′( Σ
n1+n2

+ T)−1µ− µ′(Σn1
+ T)−1µ



APPENDIX A. DETAILED CALCULATIONS AND PROOFS 96

To prove equation (1) (ignoring the terms y1), the left-hand side can be written as(
Σ

n1 + n2
+ T

)−1[( Σ

n1 + n2
+ T

)(
Σ

n1
+

Σ

n2

)−1

T− n1n2

(n1 + n2)2
T
](

T +
Σ

n1

)−1

and thus the left-hand side is equal to(
Σ

n1 + n2
+ T

)−1[ n1n2

n1 + n2
TΣ−1T

](
T +

Σ

n1

)−1

.

The right-hand side of equation (1) can be written in the same form as the left hand
side (

Σ

n1 + n2
+ T

)−1[( Σ

n1 + n2
+ T

)(
n1n2

n1 + n2
Σ−1

)(
Σ

n1
+ T

)
+

n2
1

(n1 + n2)2

(
Σ

n1
+ T

)
−
(

Σ

n1 + n2
+ T

)](
T +

Σ

n1

)−1

.

By simplifying the products in the square brackets it follows that this is indeed the
same as the left-hand side. To prove equation (2) a similar trick is used. The left-hand
side of equation (2) can be written as (ignoring the terms y1 and µ)(

Σ

n1 + n2
+ T

)−1[ n2

n1 + n2

(
Σ

n1 + n2
+ T

)
− n1n2

(n1 + n2)2

Σ

n1

](
T +

Σ

n1

)−1

.

This can be simplified to(
Σ

n1 + n2
+ T

)−1 n2

n1 + n2
T
(
T +

Σ

n1

)−1

.

The right-hand side of equation (2) can be written as(
Σ

n1 + n2
+ T

)−1[
− n1

n1 + n2

(
Σ

n1
+ T

)
+

(
Σ

n1 + n2
+ T

)](
T +

Σ

n1

)−1

and thus this is equal to the left-hand side of equation (2). For equation (3), write the
right-hand side as(

Σ

n1 + n2
+ T

)−1 n1

n1 + n2

[(
Σ

n1 + n2
+ T

)
n1 + n2

n1
−
(
T +

Σ

n1

)](
T +

Σ

n1

)−1

.

If the product in the square brackets is simplified it follows that equation (3) is indeed
true. To prove that equation (4), notice that the right-hand side can be written as(

Σ

n1 + n2
+ T

)−1[(Σ

n1
+ T

)
−
(

Σ

n1 + n2
+ T

)](
Σ

n1
+ T

)−1

.
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A.4 Proof of the identity in equation (5.18)

The left-hand side of equation (5.18) can be written as

m∑
i=1

ni∑
j=1

(Zij − Z)(Zij − Z)′ =
m∑
i=1

ni∑
j=1

((Zij − Zi) + (Zi − Z))((Zij − Zi) + (Zi − Z))′

=
m∑
i=1

ni∑
j=1

(Zij − Zi)(Zij − Zi)′ +
m∑
i=1

ni∑
j=1

(Zi − Z)(Zi − Z)′

+2

m∑
i=1

ni∑
j=1

(Zij − Zi)(Zi − Z)′

=

m∑
i=1

ni∑
j=1

(Zij − Zi)(Zij − Zi)′ +
m∑
i=1

ni(Zi − Z)(Zi − Z)′

+2

m∑
i=1


ni∑
j=1

(Zij − Zi)

 (Zi − Z)′.

Since
ni∑
j=1

(Zij − Zi) =

ni∑
j=1

Zij −
ni∑
j=1

1

ni

ni∑
j=1

Zij =

ni∑
j=1

Zij −
ni∑
j=1

Zij = 0

the identity in equation (5.18) is indeed true.

A.5 Proof of the generalized weighted mean in equation
(5.17)

Define the multivariate generalized weighted mean as

µ̂ =
m∑
i=1

wiZi where
m∑
i=1

wi = 1.

Recall from Section 5.1 that Zi ∼ N (µ,T + n−1
i Σ). The covariance matrix of µ̂ is

equal to

Var(µ̂) =

m∑
i=1

wi

(
T + n−1

i Σ
)
w′i.

The trace of the covariance matrix is equal to

tr (Var(µ̂)) =

m∑
i=1

tr
(
wi

(
T + n−1

i Σ
)
w′i
)
.

To minimize tr (Var(µ̂)) subject to the constraint w1 + · · · + wm = 1 we introduce a
Lagrange multiplier λ such that the Lagrange function is equal to:

Lλ(w1, . . . ,wm, λ) =
m∑
i=1

tr
(
wi

(
T + n−1

i Σ
)
w′i
)
− λ

(
m∑
i=1

wi − 1

)
.

We will minimize the Lagrange function over Rm. For i = 1, . . . ,m we have

∂Lλ
∂wi

= 2wi

(
T + n−1

i Σ
)
− λ.
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Setting these partial derivatives equal to zero, we have the system of equations

wi = λ
(
T + n−1

i Σ
)−1

.

Now using the constraint
∑m

i=1 wi = 1 gives

m∑
i=1

λ
(
T + n−1

i Σ
)−1

= 1.

Hence,

λ =

(
m∑
i=1

(
T + n−1

i Σ
)−1

)−1

.

Thus,

wi =

(
m∑
i=1

(
T + n−1

i Σ
)−1

)−1 (
T + n−1

i Σ
)−1

.

A.6 Proof of the expectation in equation (5.19)

The expectation of the within group sums of squares SSW is equal to

E(SSW ) =

m∑
i=1

ni∑
j=1

E
[
(Zij − Zi)(Zij − Zi)′

]
=

m∑
i=1

ni∑
j=1

E
[
((θi + εij)− (θi + εi))((θi + εij)− (θi + εi))

′]
=

m∑
i=1

ni∑
j=1

E
[
(εij − εi)(εij − εi)′

]
=

m∑
i=1

ni∑
j=1

E
[
εijε

′
ij + εiε

′
i − εijε′i − εiε′ij

]
,

Because εij is a normal random vector with zero mean and covariance matrix Σ it
follows that

E
(
εijε

′
ij

)
= Σ.

Furthermore by independence of the errors we have,

E
(
εiε
′
i

)
=

1

n2
i

E

∑
j

εij

∑
j

εij

′
=

1

n2
i

· niΣ.

For the same reason,

E
(
εijε

′
i

)
=

1

ni
E

εij
∑

j′

εij′

′
=

1

ni
Σ.
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Thus,

E(SSW ) =

m∑
i=1

ni∑
j=1

(
Σ− 2

ni
Σ +

1

ni
Σ

)

= Σ

m∑
i=1

ni∑
j=1

(
1− 1

ni

)
= Σ(N −m).
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