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Figure 1.1 “Anatomy lesson of Dr. Deijman”, Rembrandt, 1656. This painting shows a brain 
dissection being performed on the cadaver of an executed criminal (left); supervillain Krang, 
“Teenage Mutant Ninja Turtles” series. 

1 Introduction  
“The brain, and the brain alone, is the source of our pleasures, joys, laughter, and 

amusement, as well as our sorrow, pain, grief and tears. It is especially the organ we 

use to think and learn, see and hear, to distinguish the ugly from the beautiful, the 

bad from the good, and the pleasant from the unpleasant. The brain is also a seat of 

madness and delirium, of the fears and terrors that assail us, often at night, but 

sometimes even during the day, of insomnia, sleepwalking, elusive thoughts, 

forgetfulness, and eccentricities… In these ways I am of the opinion that the brain 

exercises the greatest power in the man. This is the interpreter to us of those things 

which emanate from the air, when it [the brain] happens to be in a sound state.” 

Hippocrates, ca. 400 BC 

1.1 Human Brain 

The first known reference to the brain dates back to the 17th century BC and was 

found in an Egyptian medical papyrus. From that time people have been fascinated 

and intrigued by the brain and its inner workings, which is frequently reflected in 

art and popular culture, e.g. Figure 1.1. 

The human brain is a complex network of about 86 billion neurons (Herculano-
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Figure 1.2 Left: Schematic of a neuron consisting of a cell body, dendrites and an axon, modified 
from (Blausen.com, 2014). Right: cerebral cortex and view of corpus callosum WM tract from 
above, adapted from (Bartleby.com, 2000). Cerebral cortex is frequently referred to as grey 
matter. Corpus callosum is a tract connecting right and left brain hemispheres. 

Houzel, 2009). A neuron typically consists of a cell body, dendrites, and an axon, 

see Figure 1.2. An outer, folded layer of the brain is largely formed by neuronal cell 

bodies and is called the cerebral cortex, which is frequently referred to as the grey 

matter (GM). Dendrites are branching extensions of the cell body via which the 

neuron receives information from other neurons. An axon is a long extension via 

which electrical impulses are sent to surrounding cells from the neuron’s cell body. 

A neuron has a large amount of dendrites, however there is only one axon 

originating from the neuron’s cell body. Axons of multiple neurons form bundles 

connecting different parts of the grey matter. Such bundles are called tracts and 

constitute the so-called white matter (WM). Nerve fibers are surrounded by myelin, 

which mainly consists of fat (70-80%) and protein (20-30%). Myelin gives the 

white matter its color and acts as an electrical insulation improving the speed of 

electrical nerve signals transmission. 

1.2 Cardiovascular diseases and brain disorders 

According to the factsheet of the (World Health Organization, 2017), 

cardiovascular diseases (CVDs) are the leading cause of death globally with 

estimated 17.7 million people or 31% of global deaths in 2015, of which 6.7 

million were due to stroke. Ischemic stroke is an abrupt interruption of the blood 



Chapter 1. Introduction 

5 
 

1. In
troduction

 

flow to certain brain areas, which results in brain cell death. Among the survivors, 

stroke is a major cause of disability in the developed world with up to 80% 

suffering from upper limb paresis (Kwakkel et al., 2003; Dobkin, 2005). In the 

Netherlands, societal cost per stroke survivor in the first year after stroke is 

estimated as €29500 (van Eeden et al., 2015). Three quarters of the costs are spent 

in the first six months, mainly due to hospital, rehabilitation and loss of 

productivity costs (van Eeden et al., 2015). As the population is aging, total 

economic burden of stroke is expected to grow, unless structure and costs of 

rehabilitation and treatment change. 

Prognosis for upper limb motor recovery/outcome is mainly determined within the 

first hours and days after the onset of brain ischemia. Recently, (Winters et al., 

2015) showed that outcome of motor recovery of the upper paretic limb measured 

at 6 months is predictable within the first 72 hours post stroke using clinical 

determinants (e.g. absence of finger extension, stroke size, low motion scores of 

both upper and lower extremities). The extent of recovery in the majority of the 

patients is an almost fixed amount of about 70% of the total ly possible change, 

defined as the difference between patient motor score and maximum possible score 

(Byblow et al., 2015). However, ~30% of the patients, called non-fitters, experience 

less recovery than predicted by this proportional recovery rule (Winters et al., 2015) 

and the reason for that is not well understood. 

There is a number of mechanisms which can account for damage reversibility of 

infarcted motor control areas post stroke. For example, it can be achieved by 

salvation of the tissue bordering the ischemic lesion or recovery of function in 

anatomically separated, but functionally related areas (Buma et al., 2013). A better 

insight into how neuronal networks change, starting from the acute phase after 

stroke onset, could help to understand the underlying recovery mechanisms and 

explain lack of recovery in these non-fitters. Additionally, prognostic models might 

be improved by an enhanced understanding of these mechanisms. Furthermore, 

having improved biomarkers of spontaneous recovery early after stroke could 

support assessing the impact of applied rehabilitative interventions. To achieve this, 

analysis techniques able to assess neurological damage have to be carefully designed 

and tested first in chronic stages and then during the course of recovery. 
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While stroke is more prevalent in older population, Attention-

Deficit/Hyperactivity Disorder (ADHD) is a neurodevelopmental disorder, which 

is most frequently diagnosed in children and adolescents. There is no global 

consensus on the number of people it affects. However, a pooled estimate, based on 

analysis of 175 studies, is 7.2% in children under 18 (Thomas et al., 2015) and  

3.4% in adults under 44 years (Fayyad et al., 2007). Prevalence in young children 

under 6 years old and adults over 44 years old is less well studied. Usually, severe 

cases are diagnosed at an early age, under 5 years old, moderate cases – under 7 

years old and mild cases at a later age. Boys are two to three times more frequently 

diagnosed with ADHD, depending on the disease type (Willcutt, 2012; Visser et al., 

2014). The reason for this gender imbalance is not yet clear. As more and more 

children are diagnosed with ADHD and treated with stimulant medication, it is 

important to get a better insight into the effects this medication may have on the 

patients' brain. Specifically, learning whether these effects are age dependent would 

facilitate better treatment of afflicted children and teenagers. 

1.3 Electric activity of the brain 

The outer layer of the brain, cortex, with thickness varying between about 2 and 5 

mm, has a folded structure formed from a smooth neuronal tube during fetal 

development. This process creates grooves, called sulci, and ridges, called gyri, with 

a total cortex surface area of roughly 2000 cm2. Electrical current in the brain is the 

flow of ions through channels in neuronal membranes, the direction of which is 

determined by the membrane potential. Existence of this current was discovered by 

Richard Caton in 1875 and first measured on the human scalp by Hans Berger in 

1924, (Teplan, 2002). Such measurements, achieved by placing a number of 

electrodes on the scalp, are called electroencephalography (EEG) and normally have 

amplitude ranging between 0.5 and 100 µV. Typically, between 32 and 256 

electrodes are used for measuring EEG, but in some cases even signal from one or 

two electrodes placed over a region of interest can be employed. 

The potential generated by a single neuron is not sufficient to be picked up by the 

EEG electrodes. However, a measurable signal results from synchronized activity of 

cortical neuron populations (da Silva, 2009), where the active neurons must be 
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arranged parallel to each other. A configuration in which a region of positive charge 

is spatially separated from a region of negative charge is referred to as a dipole. EEG 

can measure two major types of dipoles: tangential and radial with respect to the 

scalp surface. Tangential dipoles generally originate from the cortical gyri and radial 

ones from the sulci. See (Jackson and Bolger, 2014) for the review of 

neurophysiological bases and details of EEG measurement. 

With typical sampling rates ranging between 250 and 2000 Hz, and in some cases 

even higher (Weiergräber et al., 2016), EEG has high temporal resolution. 

However, even in the case of high density EEG set-ups, there exist more potential 

sources of brain activity than the number of EEG electrodes measuring that activity. 

Therefore, distribution of the electrical potentials recorded at the scalp does not 

uniquely translate into a configuration of dipoles, because multiple source 

distributions could explain the recorded potentials. This is known as an inverse 

problem and forms one of the main challenges in EEG analysis: finding an 

approach to solve this ill-posed problem (Koenig, 2014). Clearly, it requires making 

assumptions regarding the distribution and origin of brain activity. In practice, this 

is usually done in one of the following ways: assuming a limited number of active 

sources, direct search of the optimal source positions over the source space or 

introducing regularization methods/priors of the solution (Baillet et al., 2001; 

Darvas et al., 2004). The other part of EEG source estimation, also called source 

localization, is the conduction problem, which allows to calculate the potential field 

values given the source distribution. This is essentially the forward part of the 

inverse problem. To solve it, again several assumptions are needed (i.e., the skull 

can be assumed spherical or modeled based on MRI information) in search of a 

balance between model accuracy and computational complexity (Baillet et al., 

2001). 

1.4 Brain imaging 

Since the first human body magnetic resonance imaging (MRI) scan was recorded 

in 1977 (Damadian et al., 1977), its clinical applications and our technical abilities 

have come a long way. Nowadays, images can be created with widely varying tissue 

contrasts, high resolution and high SNR. An important factor enabling this has 
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been the increased strengths of the main magnetic field of scanners. The main 

magnetic field of commercially available MRI scanners for clinical purpose ranges 

up to 3 T, whereas for research purposes 7 T or even 11.7 T could be used. What is 

more, scanners with up to 23.5 T exist for nuclear magnetic resonance 

spectrometry. To put these enormous fields into perspective, a souvenir refrigerator 

magnet is hundreds of times weaker with 5 mT and the Earth’s magnetic field 

varies between about 30 and 70 µT, depending on the latitude1. 

These magnetic fields are used to manipulate and measure the magnetization of the 

nuclear spins – typically, H+ ions – in the body. First of all, the nuclear spins tend 

to align in the direction of a strong static magnetic field, the B0 field. Furthermore, 

the nuclear spins will start to precess around this B0 field at a frequency 

proportional to the field strength, known as the Larmor frequency and given by:  

 0,= Bω γ  (1.1) 

where γ  is the gyromagnetic ratio and 0B  is the strength of the static magnetic field.  

Gradient coils are used to generate gradients in the static magnetic field and 

introduce a positional dependency of the precession frequencies, which makes it 

possible to differentiate between signals coming from different positions in the 

body. Finally, radio frequency (RF) pulses are used to flip the magnetization into a 

plane that is transverse to the 0B  field. In this way weak RF fields generated by the 

precessing spins can be measured using receive coils. As the precession frequency is 

location-dependent, this signal is at the basis to form an image. Conventional MRI 

is an established technique for assessment of patients, which allows to exploit 

different tissue contrasts depending on the specific acquisition sequence. 

Molecules of gases and liquids are involved in constant random motion associated 

with their thermal energy. This process is also called diffusion. The MR signal can 

be made sensitive to molecular diffusion, which causes a decrease in signal 

amplitude. This sensitivity is exploited to acquire diffusion-weighted images. The 

                                           
1 https://en.wikipedia.org/wiki/Orders_of_magnitude_(magnetic_field)  
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Figure 1.4 The diffusion is typically modelled by a mathematical construct called a tensor, which 
is visualized by an ellipsoid. It basically represents the shape of the local diffusion, from which 
scalar measures are derived such as, for example, the fractional anisotropy (FA), left. Fiber tracts 
are streamlines throughout the tensor field, indicating the WM bundles, right. 

 

Figure 1.3 A schematic of the pulsed field gradient spin echo MR technique introduced by 
Stejskal and Tanner (1965). Figure is adapted from (Basser and Özarslan, 2009). In contrast with 
the acquisition sequence containing only RF pulses and the echo (signal recording), two gradients 
are applied after flipping the spins into a transverse plane with the 900 pulse and after rephrasing 
with the 1800 pulse. When a water molecule diffuses during the sequence, it is exposed to varying 
gradient strength and dephases. This occurs at a much smaller scale than a single voxel and 
reduces the amount of the measured signal. 

classical diffusion weighted MRI (dMRI) acquisition scheme introduced by 

(Stejskal and Tanner, 1965) is presented in Figure 1.3. 

The level of induced sensitivity to diffusion is called a b-value. Quantitatively, it 

can be expressed via parameters of the MR acquisition: 

 ( ) ( )2
/ 3 ,= ∆ −b Gγδ δ  (1.2) 
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where G is the magnetic gradient amplitude, δ is the gradient duration and ∆ is the 

time between two diffusion synthesizing gradients. 

Complementary to conventional, anatomical MRI, diffusion weighted MRI (dMRI) 

reflects tissue structure. Particularly, it measures the ability of water molecules to 

move freely in the surrounding tissue. Human white matter (WM) bundles have a 

structure due to which water molecules both inside and outside the axons can 

diffuse easier along the tracts than perpendicular to them. Importantly, normal 

WM shows high diffusivity along and low across axons, whereas in gray matter 

(GM) the diffusion is more isotropic, i.e. direction-independent (see Figure 1.4). 

Frequently, dMRI studies compare fractional anisotropy (FA) maps between subject 

groups. Here FA is a scalar measure describing the degree of anisotropy of a 

diffusion process and ranging between zero (equal diffusion in all directions) and 

one (diffusion along one direction only). FA and other diffusion measures give 

indication of microstructural tissue properties, c.q. neuronal integrity More recently, 

dMRI has also been used to study prevalent networks in the brain: structural 

connectivity analysis.  

1.5 Connectivity: structure and function 

White matter tracts connect grey matter areas with each other, forming an 

anatomical brain network. By following the diffusion directions, modeled based on 

dMRI, we can infer the orientations of the WM bundles and their properties. 

Reconstruction of such inferred connections is called tractography (Behrens and 

Jbabdi, 2009). To explore brain networks, they can be modelled as graphs 

composed of nodes (vertices) denoting brain regions that are linked by edges 

representing physical connections. Structural networks of the human brain, also 

known as the human connectome, can be either studied as binary graphs 

(connection is present/absent) or weighted graphs. In the latter case, properties of 

the tracts such as their length or mean diffusivity measures over the tracts can be 

used as weights for the graph edges, describing the structural connectivity (SC) 

(Bullmore and Sporns, 2009).  

The structural connection formed between pairs of brain areas may be at the basis 

of some kind of activity interaction between them (Rubinov and Sporns, 2010). 
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Conventionally, these interactions are defined as temporal correlation (statistical 

dependence) or causal relation between activity of brain areas. In general this is 

referred to as functional connectivity (FC), which can be derived, for example, from 

EEG or functional MRI measurements (Bastos and Schoffelen, 2016). Such 

recordings can be performed either in the ‘resting state’ condition or while subjects 

perform certain tasks. 

In the past years both SC and FC have been investigated in healthy population and 

animal models to reveal architecture and characteristics of brain network 

organization (Bassett et al., 2011a; Bullmore and Bassett, 2011; Azadbakht et al., 

2015; van den Heuvel et al., 2015). Based on various studies it is clear that changes 

in the connectome (either structural or functional) are associated with brain 

development or its deterioration due to diseases. Such changes can be indicative of 

human learning (Bassett et al., 2011b) or help predict effects of lesions (Alstott et 

al., 2009). In simulated and healthy subjects’ data, a strong interrelation between 

structural and resting state functional connectivity was demonstrated, even though 

functional connectivity can be present between regions without direct anatomical 

linkage (Honey et al., 2009). In clinical population of schizophrenia patients, it was 

found that coupling between SC and FC is disrupted (Cocchi et al., 2014). 

Therefore, it is becoming increasingly clear that brain structure and function should 

be studied together to capture the complex nature of neurological alterations during 

aging or disease development. 

1.6 4D-EEG: a new tool to investigate the spatial and temporal 

activity patterns in the brain 

The 4D-EEG project was a collaboration among Delft University of Technology, 

VU University Medical Center, VU University, and Northwestern University, and 

was funded by the European Research Council (Advanced ERC grant, n. 291339). 

The aim of the 4D-EEG project was to develop a new methodology allowing to 

assess the dynamics of neural processing during motor control in healthy 

individuals and in stroke survivors. Different research directions within the project 

included: system identification techniques on EEG recordings, source localization 

methodology, and analysis of dMRI. This thesis mainly focuses on dMRI analysis. 
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1.7 Problem statement and goal 

Clinically, most of recovery after stroke occurs in the first months after the incident 

and varies greatly between patients. Predicting functional outcome from initial 

patient status is difficult as it depends on many factors including direct nerve fiber 

damage and subsequent degeneration of areas more distal to the lesion. The role of 

different cerebral structures in motor deficits and impact of stroke on them are not 

exactly known. The assessment of the neural dynamics both in healthy subjects and 

in stroke population could increase our understanding of the sensorimotor system. 

Accordingly, the overall objective of this thesis is to enhance understanding of the 

neurological alterations in patients using diffusion-weighted MRI modeling. We 

intend to investigate influence of stroke on the human brain by measuring 

structural features with dMRI and combining them with functional properties 

obtained by EEG. Evaluation of the WM integrity using brain imaging may in the 

future enable to set realistic therapeutic goals and selection of particular 

rehabilitation approaches. 

1.8 Thesis Outline 

Chapter 2 presents an example of how diffusion-weighted MRI can be used in a 

randomized clinical trial. It is investigated whether effects of medication used to 

mitigate ADHD on the brain WM are modulated by age. 

In Chapter 3 properties estimated by different diffusion-tensor models are related 

to the motor function of the upper limb of stroke survivors. Additionally, the 

asymmetry of these diffusion characteristics in lesional/contralesional hemisphere in 

stroke patients is compared to that of healthy subjects. 

Chapter 4 introduces a framework for probabilistic tractography based on spatially 

varying diffusion models: in each voxel the best fitting diffusion model is selected.  

Chapter 5 describes an advanced computational approach to track the information 

flow in the brain based on Bayesian hierarchical modeling of EEG sources with 

constraints derived from anatomical and diffusion-weighted MRI. This method is 

then validated using in-vivo sensorimotor evoked potentials’ measurements. 
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Chapter 6 assesses evolution of diffusion properties in major white matter tracts 

during the recovery period for six case studies. No clear relation between the 

changes in the diffusivity properties of the patient WM and their motor outcome 

was found. The results suggest that the rapid decrease of the brain swelling in the 

first weeks post-stroke is associated with motor recovery. 

The thesis is concluded by discussing advantages and limitations of the current 

work and presenting an outlook on future research in this field. 
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2 Effects of Methylphenidate on 

White Matter in Children and Adults 

With Attention-Deficit/Hyperactivity 

Disorder 
Objective Although methylphenidate (MPH) is highly effective in treating 

attention-deficit/hyperactivity disorder (ADHD), not much is known about its 

effect on the development of human brain white matter (WM).  

Method To determine whether MPH modulates WM age-dependently, we set up a 

randomized, double-blind, placebo-controlled trial (ePOD-MPH) among ADHD 

referral centers (NTR3103). Fifty male stimulant treatment naïve boys (aged 10-12 

years of age) and 49 adult men (23-40 years of age) diagnosed with ADHD (all 

types) according to DSM-IV criteria were randomized to treatment with MPH or a 

placebo for 16 weeks. Before and one week after treatment cessation, patients 

underwent MR imaging including diffusion tensor imaging (DTI). The main 

outcome measure was change in fractional anisotropy (FA), which was assessed in 

three regions of interest (ROIs) as well as voxel-based in the whole WM. Data was 

analysed using intention to treat using linear mixed models for ROI analysis and a 

permutation-based methods for voxel based analysis.  

Results Analysis of the ROIs yielded no main effect of time in any of the 

conditions. However, voxel-based analysis revealed significant time-by-medication-

by-age interaction effects in several association tracts of the left hemisphere as well 

as lateral aspect of the truncus of the corpus callosum, due to more rapid increase in 

FA in MPH treated children, and not so in children receiving a placebo, nor adults.  

Interpretation Our findings suggest that, at least on the short-term and in boys 

with ADHD, the effects of MPH on specific tracts in brain WM are modulated by 

age. 
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2.1 Introduction 

Attention-deficit/hyperactivity disorder (ADHD) is the most frequently diagnosed 

neurodevelopmental disorder, with symptoms arising in childhood and often 

persisting into adulthood (Merikangas et al., 2010). Methylphenidate (MPH) is a 

commonly prescribed psychotropic drug for treatment of ADHD and its efficacy is 

very high (MTA Cooperative Group, 1999). ADHD has been associated with 

alterations in white matter (WM) tract development. A meta-analysis (van Ewijk et 

al., 2012) identified compromised WM integrity in several tracts in both pediatric 

and adult ADHD patients, including right anterior corona radiata containing fibers 

from the superior longitudinal fasciculus, forceps minor close to the genu of the 

corpus callosum (CC), right and left legs of internal capsule, and left cerebellar 

WM. However, the studies included in this meta-analysis were all retrospective in 

nature and the possible confounding effects of medication were not taken into 

account.  

For instance, the initial paper by (Castellanos et al., 2002) reported an (+8.9%) 

increase, or rather normalization, of WM volume in medicated ADHD children 

compared to unmedicated children. However, in that retrospective study, 

medication status of the subjects was not well accounted for, and most subjects 

were already on ADHD medication. Interestingly, in a preclinical study in rats we 

observed an increase in FA only in the CC of adolescent rats treated with MPH, 

but not in adult rats or rats treated with a saline solution (van der Marel et al., 

2014). These preclinical findings suggest that the effect of MPH on brain WM are 

modulated by age. Indeed, the adolescent brain is a rapidly developing system 

maintaining high levels of plasticity. For instance, the maturation and development 

of WM continues well into adulthood (Yap et al., 2013). Therefore, brain WM 

may be particularly vulnerable to drugs such as ADHD medication that interfere 

with these processes or modify the specific genes involved.  

Evidently, increasing the knowledge about the effects of MPH on human brain 

development may result in better treatment of children and adolescents with 

ADHD. Therefore, we designed a randomized clinical trial (RCT) entitled the 

"Effects of Psychotropic medication On brain Development - Methylphenidate 

(ePOD-MPH) (Bottelier et al., 2014) study”. This paper aims to investigate 
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whether the effects of MPH on human brain including WM are indeed modulated 

by age. Based on the available (preclinical) literature, we expected increased FA 

values in children treated with MPH but not in children treated with placebo, nor 

adults. 

2.2 Materials and Methods 

2.2.1 Experimental design 

ePOD-MPH was a 16-week double-blind, RCT with MPH. A blinded end-point 

evaluation in stimulant-treatment naïve children and adults with ADHD was 

performed (Bottelier et al., 2014). Subjects were randomly assigned to either a 

placebo or treatment with MPH. The effect of age and MPH treatment on WM 

structure was assessed by means of DTI at baseline and at the end of the trial, after 

a one-week washout in week 18 to ensure drug clearance (half-life time of MPH is 

2-3 hours). The trial protocol adhered to the Declaration of Helsinki (2013) and 

was registered by the Central Committee on Research Involving Human Subjects 

(an independent registry) on March 24, 2011 (identifier NL34509.000.10) and 

subsequently at The Netherlands National Trial Register (identifier NTR3103). 

The primary outcome measure of ePOD-MPH was to report on the modification 

by age of MPH treatment on the outgrowth of the DA system using 

pharmacological MRI, and second primary outcome measures included diffusion 

tensor imaging (DTI) for WM assessment. This RCT is the first study that 

examines the effects of MPH on the brain in children and young adults using MRI. 

This means that there is only limited and indirect data available to perform a 

sample size calculation. Our goal for this research was to be able to detect 

differences in the age-dependent effect of MPH on the outgrowth of the 

dopaminergic system if these differences were in the magnitude of a standardized 

effect size of 1.25. As we pointed out in our study protocol (online Supplementary), 

there are several pieces of evidence supporting the view that the expected differences 

will lead to standardized effect sizes of at least 1.25, including the DTI assessments 

we report here. Our findings on DA function (assessed using pharmacological MRI) 

have been reported elsewhere (Schrantee et al., 2016). The trial was monitored by 

the Clinical Research Unit of the Academic Medical Center.  
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2.2.2 Randomization and blinding 

After baseline MRI assessment, every patient was stratified by age and randomized 

to receiving either MPH or placebo treatment (1:1) using a permuted block scheme 

generated by the local Clinical Research Unit. The hospital pharmacy (Alkmaar) 

received the information sealed and prepared the assigned treatment, i.e. MPH or 

placebo. Patients as well as the treating physician as well as research personnel were 

blinded to the type of treatment. The treating physician prescribed the study 

medication on clinical guidance (change of ADHD symptoms), in accordance with 

Dutch treatment guidelines. The placebo tablet matched the MPH tablet in 

appearance and was manufactured and labelled according to GMP guidelines 

(2003/94/EG). Therapy compliance was monitored on five control visits. 

2.2.3 Participants 

The included study subjects were 50 stimulant treatment-naive boys (10-12 years of 

age) and 48 stimulant treatment-naive men (23-40 years of age), of which baseline 

DTI values were published elsewhere (Bouziane et al., 2018). They were recruited 

in the outpatient clinics of the Child and Adolescent Psychiatry Center Triversum 

(Alkmaar), department of Child and Adolescent Psychiatry at the Bascule/AMC 

(Amsterdam), Adult ADHD program at PsyQ, psycho-medical programs clinical 

programs at the PsyQ mental health facility (The Hague) and from the department 

of Psychiatry of the AMC (Amsterdam). All subjects were diagnosed by an 

experienced psychiatrist based on the criteria of the Diagnostic and Statistical 

Manual of Mental Disorders (DSM-IV, 4th edition). The diagnosis was 

subsequently confirmed with a structured interview: the Diagnostic Interview 

Schedule for Children (National Institute of Mental Health Diagnostic Interview 

Schedule for Children Version IV, DISC-IV (Ferdinand and van der Ende, 2000)) 

and the Diagnostic Interview for ADHD (DIVA 2.0 (Kooij and Francken, 2010)) 

for adults. Inclusion criteria were at least 6 of 9 symptoms of inattention or 

hyperactivity/impulsivity on the DISC-IV (for children) and on the DIVA 2.0 (for 

adults). Patients were excluded if diagnosed with a co-morbid axis I psychiatric 

disorder requiring pharmacological treatment at study entry or having general 

contraindications for MRI such as implanted electric and electronic devices, metal 

implants or claustrophobia. Adult patients received coaching sessions, and parents 

of children received psychoeducation. All patients, and for the children also either 

both parents or their legal representatives, provided written informed consent. 
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2.2.4 Image Acquisition  

DTI is a powerful non-invasive technique that enables assessment of micro-

structural features of WM and microfiber neuronal pathways by measuring the 

diffusion of water molecules. Fractional anisotropy (FA) is a scalar measure that 

provides information about the degree of fiber organization and integrity (Feldman 

et al., 2010). Processes that lead to alterations in axonal architecture, such as altered 

axonal outgrowth, can result in FA changes (Reneman et al., 2001; Moeller et al., 

2005; de Win et al., 2006). All MR imaging was performed on a 3.0T Philips MR 

scanner equipped with a SENSE 8-channel head coil and body coil transmission 

(Philips Medical Systems, Best, The Netherlands). DTI scans were obtained at 

baseline (week 0) and post-treatment . The scan parameters were: field of view: 

224x224 mm, slice thickness: 2 mm, TR/TE: 8135/94 ms, scan time: 6m47s, 

SENSE: 2, slices: 60, 46 gradient directions with b=1000 s/mm2, four averaged 

images with b=0 s/mm2, half-scan: 0.797, fat suppression SPIR: 250 Hz. 

2.2.5 DTI processing 

Pre-processing of Diffusion Weighted Images (DWIs) is discussed in detail in the 

Supplementary Materials. Briefly, DWIs were corrected for distortions due to eddy 

currents and head motion (Mohammadi et al., 2010). Based on the latter 

correction, an overall motion score was calculated for each subject representing the 

degree of patient movement during scanning (Ling et al., 2012). Diffusion tensors 

were estimated from the DWIs after which the tensors’ FA statistic was calculated. 

The pre-processing of the DTI data was partially performed using in-house 

developed software, written in Matlab (The MathWorks, Natick, MA). This was 

done using the AMC Neuroscience Gateway, using resources of the Dutch e-

Science Grid with the support of SURF Foundation (Shahand et al., 2015). 

Average values of the diffusion statistics were computed over the whole WM 

(Castellanos et al., 2002), within a ROI central in the truncus of the CC (van der 

Marel et al., 2014), as well as well as in the bilateral anterior thalamic radiation 

(ATR) as determined by the JHU white-matter tractography atlas (Mori et al., 

2005). The choice of whole brain FA and CC was based upon previous findings, 

while we included the ATR because it is an important tract in the frontal lobe, and 

one of the latest to mature (Klingberg et al., 1999; Barnea-Goraly et al., 2005; Yap 

et al., 2013). Therefore, a WM skeleton representation was generated with TBSS 
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software (Tract-Based Spatial Statistics) (de Groot et al., 2013). The whole brain 

and ROIs mean FA values were computed based on the WM skeleton.  

2.2.6 Statistical analysis 

All ROI analyses were intent-to-treat, with significance level set at p<0.05 (two-

sided). Linear mixed models (using SPSS version 22.0 (IBM, 2013)) were used to 

estimate the effect of time, group and age and the corresponding interaction effects 

in the three ROIs. A compound symmetry covariance matrix and a fixed intercept 

were asserted; the model parameters were estimated using a maximum likelihood 

approach. Demeaned motion was added as a covariate to the model. Further, 

missing values (dropout and technical failure, see below) were imputed by 

population averages. The data were analyzed in IBM SPSS Statistics (Version 22.0. 

Armonk, NY). In addition, an exploratory voxel-wise statistical analysis was 

performed on the TBSS created WM skeleton to evaluate differences in FA using 

non parametric permutation testing with Randomise (500 permutations) (Winkler 

et al., 2014). All analyses were initially thresholded at P-value < 0.05 (two-sided) 

with a family wise error (FWE) correction for multiple comparisons using threshold 

free cluster enhancement (TFCE) (Smith and Nichols, 2009). Conditions were 

compared over time with demeaned motion scores as covariates, similar to the ROI 

analyses.  

2.3 Results 

2.3.1 Demographics and treatment  

The children nor the adult groups differed in age, ADHD symptom severity nor 

extent of clinical impairment prior to treatment administration. No serious adverse 

events were noted in any of the subjects studied. An overview of the demographics 

and clinical scores of the subjects is presented in 

 

Table 2.1. The CONSORT flow diagram of the trial is presented in Figure 2.1. 

Seven missing datasets were imputed due to dropout (no follow-up), and one due 

to technical failure of the scan (at baseline), amounting to 4.1% (8 of 196) in total. 

The voxel-wise analysis involved 47 children and 43 adults (Appendix, Table 2.2). 
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Table 2.1. Characteristics of the study groups  

 Children 

MPH 

placebo Adults 

MPH 

placebo 

 n=25 n=25 n=24 n=24 

 

Age (y) 

Estimated IQ1 

mean±SD 

11.4±0.8 

104.8±21.0 

mean±SD 

11.3±0.9 

103.4±15.1 

mean±SD 

28.6±4.6 

107.9±8.8 

mean±SD 

29.0±4.9 

107.9±6.4 

ADHD subtype 

Inattentive 

Hyperactive/impulsive 

Combined 

 

14 

0 

11 

 

14 

1 

10 

 

11 

0 

13 

 

5 

0 

19 

ADHD symptoms 

DBD-RS Inattention 

DBD-RS Hyperactivity 

ADHD-SR 

 

21.7±3.2 

15.0±5.0 

- 

 

22.8±3.4 

16.4±6.3 

- 

 

- 

- 

30.6±10.0 

 

- 

- 

30.4±9.3 

Adherence 84%±15 80%±18 90%±8 86±8 

  Motion scores  

 Children  Adults 

 Baseline Follow-up Baseline Follow-up 

 

 

mean±SD 

0.16±0.42 

mean±SD 

0.098±0.43 

mean±SD 

-0.18±0.24 

mean±SD 

-0.09±0.27 

1For children: Wechsler Intelligence Scale for Children (WISC); for adults: 

National Adults Reading Test (NART); DBD-RS=disruptive behavior disorder 

rating scale; ADHD-SR=Attention Deficit Hyperactivity Disorder-Self Report 
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Figure 2.1 CONSORT diagram. 

2.3.2 ROI-based analysis 

At baseline, no differences were observed in the children nor in the adult group 

between the two medication groups for any of the ROIs (all P>0.2). We found no 

three-way interaction between time, age and medication in any of the ROIs (whole 

brain: F[1,88.6]=0.43 P=0.51; ATR: F[1,85.7]=0.03 P=0.86; CC: F[1,90.9]=0.13 

P=0.72) (Figure 2.2). After splitting the age groups, we also did not find a two-way 
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Figure 2.2 ROI analysis. Change in FA values from baseline to post-treatment in whole brain 
WM, ATR and splenium. Error bars represent standard error of the mean. 

interaction between time and medication in either the young or adult patients 

(children: whole brain: F[1,46.78]=2.23 P=0.13; ATR: F[1,46.34]=0.30 P=0.59; 

CC: F[1,47.60]=0.33 P=0.57; adults: whole brain: F[1,42.40]=1.86 P=0.18; ATR: 

F[1,39.43]=0.58 P=0.45; CC: F[1,43.24]=0.09 P=0.76). Finally, no main effect of 

time was found on FA in any of the ROIs (all P>0.2).  

2.3.3 Voxel-based analysis 

In line with the ROI analyses, there were no differences between the medication 

groups in either the children or adults at baseline. Additionally, no significant 

changes in FA were observed between baseline and post-treatment in any age group 

and treatment condition (all P>0.2). Interestingly, in contrast with the ROI 

analyses, we found several clusters with significant differences in the changes from 

baseline to post-treatment between children and adults in which MPH was 

administered (see Figure 2.3(left) for the time-by-medication-by-age interaction 

effects), illustrating small but significant increases in FA in MPH children. The 

change in mean FA of all the significant voxels was extracted and plotted in Figure 

2.3(right). 

2.4 Discussion 

In this RCT we studied for the first time whether the effects of MPH treatment on 

WM of stimulant naïve ADHD patients are modulated by age. We did not find a 

significant age by time by treatment interaction in the ROI analyses. However, our 

voxel-based analyses demonstrated a different change in FA values in children after 

treatment with MPH than the change in adults treated with MPH in specific brain 

regions. This suggests that the effects of MPH on brain WM are modulated by age. 

As such, additional evidence is provided that, already during this relatively short 

treatment time, MPH seems to affect the regional WM development. 
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Figure 2.3 Voxel based analysis. Voxel-wise FA comparison by TBSS showing significant 
treatment-by-age interaction effects. A) The areas in which the difference between baseline and 
post-treatment in children treated with MPH is higher than in adults treated with MPH is 
color coded red (P<0.05), and located in several association fibers (parts of left superior 
longitudinal fasciculus, inferior longitudinal fasciculus, inferior fronto-occipital fasciculus) and 
commisural fibers (lateral in the truncus corpus callosum). B) FA of all significant voxels from 
panel A was extracted and plotted per group. 

Our results are in line with the (limited) available literature on ADHD medications 

and brain WM. First, (Castellanos et al., 2002) also reported an (8.9%) increase of 

WM volume in ADHD medicated children compared to unmedicated children. 

Interestingly, also in a preclinical study in rats we observed an increase of 9.2% in 

FA (only) in the CC of adolescent rats treated with MPH, but not in adult rats nor 

saline treated rats (van der Marel et al., 2014). As such, there is some evidence that 

ADHD medication could affect brain WM development in an age-dependent 

manner, in which the effects differ between early and late exposure. The combined 

results of these studies and our current findings (albeit in a limited number of 

patients, but with the best possible study design), provides further evidence that 

MPH seems to affect WM maturation. The preclinical evidence also suggests that 

our current findings may be mediated, in part, by increased expression of striatal 

genes involved in the formation of new axons which were upregulated (fold 

change >1.5) by peri-adolescent MPH treatment (Adriani et al., 2006).  

The fact that we observed the interaction effects only in voxel-wise comparisons 

and not in the selected ROIs, suggests the effects of MPH are particularly subtle. 

Furthermore, the locations in which significant interactions were found might 

indicate that other brain regions than ATR are more susceptible to the stimulating 

effects of MPH. As for our CC ROI: this ROI was placed central and more 

anteriorly in the truncus CC than where the voxel-based analysis detected an 
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interaction effect (lateral and more posteriorly in the truncus): the lack of overlap 

likely explains the discrepancy between the two analyses. Moreover, changes after 

such a short period of time are likely small and therefore restricted to subclusters of 

tracts rather than along the entire tract. Our voxel-based analyses suggests that the 

WM in several association fibers (parts of left superior longitudinal fasciculus, 

inferior longitudinal fasciculus, inferior fronto-occipital fasciculus) seem to be 

particularly sensitive to the modulating effects of age. However, it is well known 

that these regions are rich in crossing fibers. The diffusion weighted MRI 

acquisition used in this study was limited to a single b = 1000 s/mm2 value. In 

future studies a more advanced protocol using multiple (at least two) b-values 

would allow to distinguish additional WM details, for example, fiber crossings, 

which cannot be reliably estimated otherwise.  

As we did not include normal developing peers in this RCT, for evident medical 

ethical reasons, we do not know whether the increase in FA in children treated with 

MPH is a ‘normalizing’ effect. However, the study by (Castellanos et al., 2002) 

reported that the increase in FA in medicated children was in the direction of the 

healthy subjects. Similar findings were reported for cortical thickness, 

demonstrating more rapid cortical thinning in a group not taking psychostimulants 

when compared to a group taking psychostimulants (Shaw et al., 2009). 

Interestingly, similar to this RCT, the treatment groups in that study also did not 

differ regarding clinical outcome (which we reported elsewhere (Schrantee et al., 

2016)). Although it is conceivable that we here provide further evidence for a 

positive/normalizing effect of MPH on brain WM maturation, the long-term 

effects hereof on clinical outcome remain to be established. This is especially 

relevant because it has been shown that the effects of stimulants like MPH on the 

developing brain are only fully expressed later in life, in early adulthood (Andersen, 

2005). 

The clinical implications of our study are considerable in view of the importance 

brain WM maturation plays in the development of cognitive function. For instance, 

it has been shown that lower FA values are associated with lower cognitive function 

(Vernooij et al., 2009). Safety studies on the effect of MPH on the immature brain 

in general are scarce in children. This has led to considerable debate and concern, 

e.g. amongst parents, about the consequences or possible side effects of MPH 
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prescriptions to children. High non-compliance is attributed in part to 

apprehension about the safety of MPH on human brain development. In this 

respect, our data may provide some direction, as we provide evidence that MPH 

seems to have positive effects on brain WM in children with ADHD, in that it 

increases FA values, presumably to normal levels, at least on the short term. 

Importantly, MPH is being prescribed not only to increasing numbers of children, 

but also to children of increasingly younger ages. In addition, a substantial 

proportion of the patients fails to meet criteria for ADHD (Elder, 2010), or use 

stimulants such as MPH to improve school performance (Lakhan and Kirchgessner, 

2012). Although we did not investigate the effects of MPH treatment in normally 

developing children, it is conceivable that lasting alterations to WM by MPH in 

normal developing children may not be beneficial, and could potentially induce 

behavioral and psychiatric problems later in life. As such our findings provide 

comfort to treatment with MPH of patients with ADHD, but at the same time 

urge for tighter regulations of prescribing ADHD medications.  

A major strength of our current study is its design, in which effects of confounders, 

such as age and gender, are very small. Also, we included only male patients to limit 

subject variation as girls and boys differ considerably in brain WM 

development(Giedd et al., 1999). The selective inclusion of stimulant-treatment 

naive patients was also critical for addressing our objective. Clearly, there are 

important ethical considerations for medication studies in children and in our case, 

the most important restriction was the time that a child would not receive adequate 

treatment (but a placebo). Because the waiting list for treatment in the Netherlands 

was typically four months, this dictated the design of this RCT. Ideally, we would 

have used a longer wash-out period, as pointed out above. Also, future studies 

should investigate whether our findings can be extrapolated to the female gender 

and young/older children and/or adolescents. Another potential weakness is the 

limited statistical power. Due to its complexity, the power of the study was limited, 

especially because we examined three different brain regions, which could have 

increased the risk of a type I error. The voxel-based analyses, however, were 

corrected for multiple comparisons. Our relatively low statistical power likely 

explains the lateralization of the effects in the left hemisphere (Figure 2.3): when we 

increase the statistical threshold from P<0.05 to P<0.2, we also observe interaction 
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effects in the right hemisphere. Alternatively, since nearly all children were righted 

handed, handedness could also explain the lateralization of our MPH effect.  

2.5 Conclusion 

In line with clinical and preclinical data, we provide further evidence that the 

effects of MPH on brain WM are modulated by age. The group difference was due 

to more rapid increase in FA in MPH treated children, and not so in children 

receiving a placebo nor adults.  
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Appendix 

A. Pre-processing 

Head motion and deformations induced by eddy currents were corrected for by 

affine registration of the Diffusion Weighted Images (DWIs) to the non-diffusion 

weighted (b0) image. The gradient directions were corrected by the rotation 

component of the transformation. These corrections were performed using the 

artefact correction in diffusion MRI (ACID) toolbox of SPM software 

(Mohammadi et al., 2010). The affine transformation between consecutive DWI’s 

was derived from their respective registrations to the b0 image. Subsequently, 

patient displacement from one DWI to the next was represented by the magnitude 

of the translation component (discarding potential skewing or rotation 

components). The motion score for a patient was defined as the logarithm of the 

mean patient displacement (to compensate for the skewed distribution of 

displacements). When compared within the same age and medication group (e.g. 

initial and follow-up scans of children treated with MPH), motion scores were 

demeaned for that specific group. Rician noise in the DWIs was reduced by an 

adaptive noise filtering method (Caan et al., 2010), which was applied after eddy 

current and motion correction. Subsequently, diffusion tensors were estimated in a 

non-linear least squares sense facilitating computation of the outcome parameters: 
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FA, MD, and RD. FA maps of all patients were aligned to a 1x1x1 mm3 standard 

MNI152 space using elastix (Klein et al., 2010) instead of the standard nonlinear 

registration step included in the TBSS pipeline of the FSL package (Andersson et 

al., 2007). The following settings were used for the registration setup:  

• normalised cross correlation as the cost function;  

• affine transformation with 12 degrees of freedom served as the starting point 

for the B-spline non-linear transformation;  

• adaptive stochastic gradient descent optimization procedure was applied;  

• random coordinate sampler was selected for the cost function calculation;  

• four resolutions in combination with the Gaussian scale space were used as a 

hierarchical strategy.  

Subsequently, the transformed images were averaged to create a mean FA image, 

from which a skeleton was generated. This allows to reduce risk of partial volume 

effects as the analysis focuses on the central parts of the WM tracts. A threshold of 

0.2 was applied to represent tracts common for all subjects and to avoid including 

regions of too high inter-subject  

variability where good alignment could not be attained. FA values were projected 

on the same skeleton for each patient to minimize bias of FA comparisons between 

groups caused by possible residual misalignment. Average values of diffusion 

statistics were computed over the entire WM skeleton and within the CC and the 

left and right ATR as determined by the JHU white-matter tractography atlas(Mori 

et al., 2005). Furthermore, a voxelwise statistical analysis of the FA data was carried 

out using TBSS (Tract-Based Spatial Statistics) (Smith et al., 2004; Smith et al., 

2006). 

B. Demographics 

Table 2.2. Demographic and clinical information of 47 children and 43 adults with both baseline 
and post treatment scans. These subjects are considered in the voxel-wise analysis. 

 Children Adults 

Age (median), years 10.06-13.08 (11.05) 22.44-39.37 (27.48) 

Age IQR, years 10.63-11.77 25.67-31.38 

ADHD scores (median) 22-50 (38) 9-48 (33) 

ADHD score IQR 33-44 24-38.5 
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IQ total score (median)* 71-145 (99) 92-124 (108) 

IQ total score IQR* 92-111 101.75-111.25 

Treated with MPH/placebo 23/24 22/21 

*Score is not available for 2 children and 3 adults 

  



Chapter 2. DTI application example. TBSS in ADHD 

33 

 

2.
 T

B
SS

 i
n

 A
D

H
D

 

References 

Adriani, W., Leo, D., Greco, D., Rea, M., di Porzio, U., Laviola, G., et al. (2006). 
Methylphenidate Administration to Adolescent Rats Determines Plastic 
Changes on Reward-Related Behavior and Striatal Gene Expression. 
Neuropsychopharmacology 31(9), 1946-1956. doi: 
http://www.nature.com/npp/journal/v31/n9/suppinfo/1300962s1.html. 

Andersen, S.L. (2005). Stimulants and the developing brain. Trends in 
Pharmacological Sciences 26(5), 237-243. doi: 
http://dx.doi.org/10.1016/j.tips.2005.03.009. 

Andersson, J., Jenkinson, M., and Smith, S. (2007). Non-linear registration aka 
Spatial normalisation FMRIB Technial Report TR07JA2. 

Barnea-Goraly, N., Menon, V., Eckert, M., Tamm, L., Bammer, R., Karchemskiy, 
A., et al. (2005). White Matter Development During Childhood and 
Adolescence: A Cross-sectional Diffusion Tensor Imaging Study. Cerebral 
Cortex 15(12), 1848-1854. doi: 10.1093/cercor/bhi062. 

Bottelier, M.A., Schouw, M.L.J., Klomp, A., Tamminga, H.G.H., Schrantee, 
A.G.M., Bouziane, C., et al. (2014). The effects of Psychotropic drugs On 
Developing brain (ePOD) study: methods and design. BMC Psychiatry 14, 
48-48. doi: 10.1186/1471-244X-14-48. 

Bouziane, C., Caan, M.W.A., Tamminga, H.G.H., Schrantee, A., Bottelier, M.A., 
de Ruiter, M.B., et al. (2018). ADHD and maturation of brain white matter: 
A DTI study in medication naive children and adults. NeuroImage: Clinical 
17, 53-59. doi: https://doi.org/10.1016/j.nicl.2017.09.026. 

Caan, M., Khedoe, G., Poot, D., den Dekker, A., Olabarriaga, S., Grimbergen, K., 
et al. (2010). "Adaptive Noise Filtering for Accurate and Precise Diffusion 
Estimation in Fiber Crossings," in Medical Image Computing and Computer-
Assisted Intervention – MICCAI 2010: 13th International Conference, Beijing, 
China, September 20-24, 2010, Proceedings, Part I, eds. T. Jiang, N. Navab, 
J.P.W. Pluim & M.A. Viergever.  (Berlin, Heidelberg: Springer Berlin 
Heidelberg), 167-174. 

Castellanos, F., Lee, P.P., Sharp, W., and et al. (2002). Developmental trajectories 
of brain volume abnormalities in children and adolescents with attention-
deficit/hyperactivity disorder. JAMA 288(14), 1740-1748. doi: 
10.1001/jama.288.14.1740. 

de Groot, M., Vernooij, M.W., Klein, S., Ikram, M.A., Vos, F.M., Smith, S.M., et 
al. (2013). Improving alignment in Tract-based spatial statistics: Evaluation 
and optimization of image registration. NeuroImage 76, 400-411. doi: 
http://dx.doi.org/10.1016/j.neuroimage.2013.03.015. 



Chapter 2. DTI application example. TBS.S in ADHD 

34 

 

2. T
B

SS in
 A

D
H

D
 

de Win, M.M.L., Reneman, L., Jager, G., Vlieger, E.-J.P., Olabarriaga, S.D., 
Lavini, C., et al. (2006). A Prospective Cohort Study on Sustained Effects of 
Low-Dose Ecstasy Use on the Brain in New Ecstasy Users. 
Neuropsychopharmacology 32(2), 458-470. 

Elder, T.E. (2010). The importance of relative standards in ADHD diagnoses: 
Evidence based on exact birth dates. Journal of Health Economics 29(5), 641-
656. doi: https://doi.org/10.1016/j.jhealeco.2010.06.003. 

Feldman, H.M., Yeatman, J.D., Lee, E.S., Barde, L.H.F., and Gaman-Bean, S. 
(2010). Diffusion Tensor Imaging: A Review for Pediatric Researchers and 
Clinicians. Journal of developmental and behavioral pediatrics : JDBP 31(4), 
346-356. doi: 10.1097/DBP.0b013e3181dcaa8b. 

Ferdinand, R.F., and van der Ende, J. (2000). NIMH DISC-IV: Diagnostic 
Interview Schedule for Children [in Dutch]. Rotterdam, the Netherlands: 
Erasmus MC-Sophia. 

Giedd, J.N., Blumenthal, J., Jeffries, N.O., Castellanos, F.X., Liu, H., Zijdenbos, 
A., et al. (1999). Brain development during childhood and adolescence: a 
longitudinal MRI study. Nat Neurosci 2(10), 861-863. 

Klein, S., Staring, M., Murphy, K., Viergever, M.A., and Pluim, J.P. (2010). elastix: 
a toolbox for intensity-based medical image registration. IEEE Trans Med 
Imaging 29(1), 196-205. doi: 10.1109/TMI.2009.2035616. 

Klingberg, T., Vaidya, C.J., Gabrieli, J.D.E., Moseley, M.E., and Hedehus, M. 
(1999). Myelination and organization of the frontal white matter in children: 
a diffusion tensor MRI study. NeuroReport 10(13). 

Kooij, J., and Francken, M. (2010). Diagnostic Interview for ADHA in Adults 
(DIVA). 

Lakhan, S.E., and Kirchgessner, A. (2012). Prescription stimulants in individuals 
with and without attention deficit hyperactivity disorder: misuse, cognitive 
impact, and adverse effects. Brain and Behavior 2(5), 661-677. doi: 
10.1002/brb3.78. 

Ling, J., Merideth, F., Caprihan, A., Pena, A., Teshiba, T., and Mayer, A.R. (2012). 
Head injury or head motion? Assessment and quantification of motion 
artifacts in diffusion tensor imaging studies. Hum Brain Mapp 33(1), 50-62. 
doi: 10.1002/hbm.21192. 

Merikangas, K.R., He, J.-P., Brody, D., Fisher, P.W., Bourdon, K., and Koretz, 
D.S. (2010). Prevalence and Treatment of Mental Disorders Among US 
Children in the 2001–2004 NHANES. Pediatrics 125(1), 75. 

Moeller, F.G., Hasan, K.M., Steinberg, J.L., Kramer, L.A., Dougherty, D.M., 
Santos, R.M., et al. (2005). Reduced anterior corpus callosum white matter 
integrity is related to increased impulsivity and reduced discriminability in 



Chapter 2. DTI application example. TBSS in ADHD 

35 

 

2.
 T

B
SS

 i
n

 A
D

H
D

 

cocaine-dependent subjects: diffusion tensor imaging. 
Neuropsychopharmacology 30(3), 610-617. doi: 10.1038/sj.npp.1300617. 

Mohammadi, S., Möller, H.E., Kugel, H., Müller, D.K., and Deppe, M. (2010). 
Correcting eddy current and motion effects by affine whole-brain 
registrations: Evaluation of three-dimensional distortions and comparison 
with slicewise correction. Magnetic Resonance in Medicine 64(4), 1047-1056. 
doi: 10.1002/mrm.22501. 

Mori, S., Wakana, S., van Zijl, P.C.M., and and Nagae-Poetscher, L.M. (2005). 
MRI Atlas of Human White Matter. Amsterdam: Elsevier. 

MTA Cooperative Group (1999). A 14-month randomized clinical trial of 
treatment strategies for attention-deficit/hyperactivity disorder. Archives of 
General Psychiatry 56(12), 1073-1086. doi: 10.1001/archpsyc.56.12.1073. 

Reneman, L., Majoie, C.B.L.M., Habraken, J.B.A., and den Heeten, G.J. (2001). 
Effects of Ecstasy (MDMA) on the Brain in Abstinent Users: Initial 
Observations with Diffusion and Perfusion MR Imaging. Radiology 220(3), 
611-617. doi: 10.1148/radiol.2202001602. 

Schrantee, A., Tamminga, H.G.H., Bouziane, C., Bottelier, M.A., Bron, E.E., 
Mutsaerts, H.-J.M.M., et al. (2016). Age-Dependent Effects 
ofMethylphenidate on the Human Dopaminergic System in Young vs Adult 
Patients With Attention-Deficit/Hyperactivity Disorder A Randomized 
Clinical Trial. JAMA Psychiatry 73(9), 8. doi: 
10.1001/jamapsychiatry.2016.1572. 

Shahand, S., Benabdelkader, A., Jaghoori, M.M., Mourabit, M.a., Huguet, J., Caan, 
M.W.A., et al. (2015). A data-centric neuroscience gateway: design, 
implementation, and experiences. Concurrency and Computation: Practice and 
Experience 27(2), 489-506. doi: 10.1002/cpe.3281. 

Shaw, P., Sharp, W., Morrison, M., Eckstrand, K., Greenstein, D., Clasen, L., et al. 
(2009). Psychostimulant treatment and the developing cortex in Attention-
Deficit/Hyperactivity Disorder. The American journal of psychiatry 166(1), 
58-63. doi: 10.1176/appi.ajp.2008.08050781. 

Smith, S.M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T.E., 
Mackay, C.E., et al. (2006). Tract-based spatial statistics: voxelwise analysis 
of multi-subject diffusion data. Neuroimage 31(4), 1487-1505. doi: 
10.1016/j.neuroimage.2006.02.024. 

Smith, S.M., Jenkinson, M., Woolrich, M.W., Beckmann, C.F., Behrens, T.E.J., 
Johansen-Berg, H., et al. (2004). Advances in functional and structural MR 
image analysis and implementation as FSL. NeuroImage 23, Supplement 1, 
S208-S219. doi: http://dx.doi.org/10.1016/j.neuroimage.2004.07.051. 



Chapter 2. DTI application example. TBS.S in ADHD 

36 

 

2. T
B

SS in
 A

D
H

D
 

Smith, S.M., and Nichols, T.E. (2009). Threshold-free cluster enhancement: 
Addressing problems of smoothing, threshold dependence and localisation in 
cluster inference. NeuroImage 44(1), 83-98. doi: 
https://doi.org/10.1016/j.neuroimage.2008.03.061. 

van der Marel, K., Klomp, A., Meerhoff, G.F., Schipper, P., Lucassen, P.J., 
Homberg, J.R., et al. (2014). Long-Term Oral Methylphenidate Treatment 
in Adolescent and Adult Rats: Differential Effects on Brain Morphology and 
Function. Neuropsychopharmacology 39(2), 263-273. doi: 
10.1038/npp.2013.169. 

van Ewijk, H., Heslenfeld, D.J., Zwiers, M.P., Buitelaar, J.K., and Oosterlaan, J. 
(2012). Diffusion tensor imaging in attention deficit/hyperactivity disorder: 
A systematic review and meta-analysis. Neuroscience & Biobehavioral Reviews 
36(4), 1093-1106. doi: http://dx.doi.org/10.1016/j.neubiorev.2012.01.003. 

Vernooij, M.W., Ikram, M., Vrooman, H.A., and et al. (2009). White matter 
microstructural integrity and cognitive function in a general elderly 
population. Archives of General Psychiatry 66(5), 545-553. doi: 
10.1001/archgenpsychiatry.2009.5. 

Winkler, A.M., Ridgway, G.R., Webster, M.A., Smith, S.M., and Nichols, T.E. 
(2014). Permutation inference for the general linear model. NeuroImage 92, 
381-397. doi: http://dx.doi.org/10.1016/j.neuroimage.2014.01.060. 

Yap, Q.J., Teh, I., Fusar-Poli, P., Sum, M.Y., Kuswanto, C., and Sim, K. (2013). 
Tracking cerebral white matter changes across the lifespan: insights from 
diffusion tensor imaging studies. Journal of Neural Transmission 120(9), 
1369-1395. doi: 10.1007/s00702-013-0971-7. 

   



Chapter 3. Model comparison in chronic stroke 

37 

 

3.
 M

od
el

 c
om

pa
ri

so
n

 

 

3 

Diffusion Models 

in Chronic Stroke 
 

 

 

 

 

 

Comparison is the great force which motivates  

us to compete and to improve ourselves. 

Aleksandr Vertinsky 

  



Chapter 3. Model comparison in chronic stroke 

38 

 

3. M
odel com

parison
 

3 Comparison of Multi-Tensor 

Diffusion Models’ Performance for 

White Matter Integrity Estimation in 

Chronic Stroke 
Better insight into white matter (WM) alterations after stroke onset could help to 

understand the underlying recovery mechanisms and improve future interventions. 

MR diffusion imaging enables to assess such changes. Our goal was to investigate 

the relation of WM diffusion characteristics derived from diffusion models of 

increasing complexity with the motor function of the upper limb. Moreover, we 

aimed to evaluate the variation of such characteristics across different WM 

structures of chronic stroke patients in comparison to healthy subjects. Subjects 

were scanned with a two b-value diffusion-weighted MRI protocol to exploit 

multiple diffusion models: single tensor, single tensor with isotropic compartment, 

bi-tensor model, bi-tensor with isotropic compartment. From each model we 

derived the mean tract fractional anisotropy (FA), mean (MD), radial (RD) and 

axial (AD) diffusivities outside the lesion site based on a WM tracts atlas. 

Asymmetry of these measures was correlated with the Fugl-Meyer upper extremity 

assessment (FMA) score and compared between patient and control groups. 

Eighteen chronic stroke patients and eight age-matched healthy individuals 

participated in the study. Significant correlation of the outcome measures with the 

clinical scores of stroke recovery was found. The lowest correlation of the 

corticospinal tract FAasymmetry and FMA was with the single tensor model (r=-0.3, 

p=0.2) whereas the other models reported results in the range of r=-0.79÷-0.81 and 

p=4∙10-5÷8∙10-5. The corticospinal tract and superior longitudinal fasciculus showed 

most alterations in our patient group relative to controls. Multiple compartment 

models yielded superior correlation of the diffusion measures and FMA compared 

to the single tensor model.  



Chapter 3. Model comparison in chronic stroke 

39 

 

3.
 M

od
el

 c
om

pa
ri

so
n

 

3.1 Introduction 

Unilateral loss of motor function is a frequent consequence of stroke. White matter 

changes in the corticospinal tract (CST) and the posterior limb of the internal 

capsule (PLIC) are known to correlate to motor impairment in stroke patients (Cho 

et al., 2007; Schaechter et al., 2008; Jang et al., 2010; Park et al., 2013; Song et al., 

2014). Therefore, accurate measurements of white matter changes could be an 

indicator of stroke severity. 

A commonly used technique to assess white matter integrity is diffusion Magnetic 

Resonance Imaging (dMRI). Specifically, it measures the ability of water molecules 

to move freely in the surrounding tissue. Importantly, normal white matter (WM) 

shows high diffusivity along axons and low across axons, whereas gray matter (GM) 

shows more isotropic diffusion patterns(Neil, 2008). The diffusion is 

conventionally modeled by a mathematical construct called a tensor, which can be 

visualized by an ellipsoid. It represents the shape of the local diffusion, from which 

measures are derived such as the mean diffusivity (MD) and the fractional 

anisotropy (FA). FA is a measure of anisotropy or pointedness of a diffusion 

ellipsoid and MD represents the mean diffusion in a voxel. 

dMRI has proven to be a versatile tool and used in a wide range of applications. 

Particularly, FAasymmetry was utilized by (Byblow et al., 2015) who aimed to predict 

which patients will have spontaneous recovery. In a severe patient category without 

transcranial magnetic stimulation (TMS) evoked potentials, patients with initially 

small FAasymmetry would still show some recovery, in contrast to patients with a large 

FAasymmetry. For the purpose of building a linear regression model, FAasymmetry was 

binarized (< >0.15) and became the only significant predictor of change in the 

FMA score. Therefore, FAasymmetry could be a good predictor of the stroke severity 

and potential recovery. 

Several studies with animal models of stroke found that structural white matter 

changes in both the ipsi- and contralesional hemispheres play an important role in 

motor recovery (Dancause et al., 2005; Brus-Ramer et al., 2007). Furthermore, 

many studies have employed measures of brain asymmetry to study stroke outcome 

(Bhagat et al., 2008; Lindenberg et al., 2010; Puig et al., 2010; Park et al., 2013; 

Cunningham et al., 2015). For example, the asymmetry of FA along the PLIC in 
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the ipsi- versus contralesional hemisphere had higher correlation to upper limb 

motor functioning than functional MRI responses of cortical motor areas in 

chronic stroke patients (three to nine months post stroke) (Qiu et al., 2011). Ratios 

of FA between the affected and unaffected hemispheres were also used to study 

neuronal alterations immediately after stroke in hyper-acute ischemic stroke 

patients (Bhagat et al., 2008) and longitudinally from 1 week to 1 year (Yu et al., 

2009). In the hyper-acute phase, the fractional anisotropy in the lesion relative to 

the healthy side was not consistent among patients, but elevated in some of them. 

After the first 24 h this FA ratio showed more consistent reductions (Bhagat et al., 

2008). Subsequently, after three months, changes in the anisotropy ratio stabilized 

(Yu et al., 2009). Still, the exact patterns of change in diffusion properties of WM 

after stroke remain unclear. 

Although white matter alterations are well-known to correlate with motor 

functioning in stroke patients, the exact etiology of these changes remains unknown. 

It has been observed, for example, in (Buma et al., 2013) that after stroke a general 

white matter deterioration takes place. However, as described above, most previous 

studies have merely focused on the CST and PLIC. Furthermore, a single diffusion 

ellipsoid was classically used to model the local diffusion of the water molecules. 

This conventional model is known to be inadequate for the characterization of 

diffusion in complex structures such as crossing fibers found, for example, at the 

intersection of the CST and corpus callosum. Importantly, (Jeurissen et al., 2013) 

showed that crossing fibers are present in 60 to 90% of the diffusion data. The 

benefit of more sophisticated diffusion modeling has already been reported for 

other applications (Caan et al., 2010b; Arkesteijn et al., 2015; Yang et al., 2015) 

and in a recent work of (Archer et al., 2017), where a two-compartment model 

representing free water and white matter tissue is used to study a relation between 

FAasymmetry and grip strength in chronic stroke subjects. 

A single-tensor model is often applied to analyze dMRI in both chronic and 

longitudinal stroke studies (Lindenberg et al., 2012; Ma et al., 2014). A systematic 

review was presented by (Kumar et al., 2016). We hypothesize that more complex 

diffusion models are better equipped to detect subtle WM changes after stroke. 

This hypothesis also underlies the use of a two-compartment model in (Archer et al., 
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2017), which adapted an approach by (Pasternak et al., 2009) to model a tissue and 

a free water compartment. 

Multi-tensor models are a logical extension of the traditional single tensor model. 

Certainly, other higher order models exist, such as spherical deconvolution (SD) 

approaches. Instead of assuming a specific number of fibers, these models assume a 

distribution of fiber orientations. This allows to express the diffusion weighted 

signal as the spherical convolution of the fiber orientation distribution function and 

a response function representing the signal of a single fiber population (Tournier et 

al., 2004). However, a response function is unknown and generally assumed to be 

the same for the whole brain possibly leading to spurious results (Parker et al., 

2013).  

This paper aims to evaluate four diffusion models of increasing complexity based 

on the strength of the relation between the estimated WM properties and the 

clinical outcomes of chronic stroke patients. One of the motivating factors for the 

choice of these models is to validate their suitability for stroke patients and the 

feasibility of a model comparison per model parameter. The outcome parameters of 

the diffusion models are physically meaningful and directly comparable to each 

other. Moreover, the asymmetry between the healthy and afflicted hemispheres in 

the patient group is compared with the asymmetry in healthy controls in order to 

assess which WM properties are most relevant for such a comparison. We start with 

an application of the traditional single tensor model and build up to a so-called bi-

tensor model with isotropic compartment in order to identify the smallest 

differences in diffusivities. This bi-tensor model especially takes into account that 

the diffusion may be affected by free water due to a cerebrovascular accident. We 

hypothesize that there are significant differences in diffusivity measures in several 

tracts between the two hemispheres. Furthermore, we anticipate that the 

application of sophisticated models allows a more sensitive analysis than the 

conventional approach. 

3.2 Methods 

3.2.1 Cohort 

Subjects were included after informed consent and with permission of the Medical 

Ethics Committee of the Vrije Universiteit Medical Center, Amsterdam. The trial 
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protocol was registered on 23 October 2013 at the Netherlands Trial Register 

(identifier NTR4221). Inclusion criteria for the subjects suffering from chronic 

stroke were: upper limb paresis, ability to sit without support (National Institutes 

of Health Stroke Scale item 5 a/b > 0), age >18, first-ever ischemic hemispheric 

stroke, >6 months post stroke. Exclusion criteria were: previously existing 

pathological neurological conditions or orthopedic limitations of the upper limb 

that would affect the results, botuline-toxine injections or medication that may 

have influenced upper limb function in the past three months, general MRI contra 

indications (claustrophobia, pacemaker or other metallic implants), high risk of 

epilepsy. 

Patients (n=18) were consecutively included from April 22, 2015 to February 29, 

2016. Additionally, 8 controls with matching mean age were recruited for 

comparison in the period between April 9, 2015 and November 22, 2016. Post-hoc 

sample size analysis for this unmatched case-control study at the two-sided 

significance level of 0.05 indicated the power (chance of detecting) of 90% 

assuming a proportion of 44% of controls and an effect size of 0.5 (Kelsey et al., 

1996; Charan and Biswas, 2013). Based on this analysis we stopped inclusion as we 

reached the mentioned number of patients and controls. 

The patient population consisted of 18 first-ever ischemic stroke patients (12 men); 

median age: 60 (IQR: 51 – 67); 8/18 patients had an impaired left hand; for 9/18 

patients the dominant hand was impaired; median FMA score: 57 (IQR: 24.75 – 

61.5); median Action Research Arm Test (ARAT) score: 54 (IQR: 16.25 – 56.75). 

The control group consisted of 8 healthy subjects (7 men); median age: 59.5 (IQR: 

55.25 – 62.25). 

3.2.2 MRI protocol 

Image acquisition was performed with a 3T MRI scanner (Discovery MR750, GE 

Medical Systems). The diffusion-weighted MRI (dMRI) acquisition protocol 

involved 40 non-collinear gradient directions uniformly sampled over a sphere for 

each of two b-values: 1000 and 2000 s/mm2; TE=100 ms, TR=7200 ms, field of 

view FOV = 240x240 mm2, imaging matrix = 96x64 (zero padded to 256x256), 52 

consecutive slices with a thickness of 2.5 mm, acquisition time 12,5 min. This 
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Figure 3.1 Overview of the analysis steps starting with the pre-processed dMR images. A 
diffusion tensor model is fitted to the data (four different diffusion models were used in this 
study). Masks excluding the subject-specific lesion site are created based on the thresholded 
isotropic compartment of the bi-tensor model with isotropic compartment. The results of this 
step are registered to the white-matter tract atlas 
(https://neurovault.org/media/images/264/JHU-ICBM-tracts-maxprob-thr25-1mm.nii.gz) and 
mean values of the outcome parameters are calculated for each tract. 

allowed for whole brain coverage. Data for each b-value were acquired as separate 

scans together with five non-diffusion weighted images (i.e. per b-value). 

3.2.3 Data processing 

Figure 3.1 presents an overview of the analysis steps described below. 

3.2.3.1 Pre-processing 

dMRI data were preprocessed using FSL v5.0 (http://fsl.fmrib.ox.ac.uk/fsl/, 

(Jenkinson et al., 2012)). The acquired DWIs were corrected for motion and eddy 

current distortion by affine coregistration to the reference b0-image (using FSL 

eddy_correct). Gradient directions were reoriented according to the rotation 

component of the affine transformation. Datasets of the same subject with b=1000 

and b=2000 s/mm2 different diffusion weighting were coregistered with each other 

using FSL flirt affine registration with six degrees of freedom.  
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3.2.3.2 Diffusion models 

The following four diffusion models of increasing complexity were fitted to the 

diffusion data of each voxel using the so-called maximum likelihood estimation as 

described, for example, in (Caan et al., 2010b):  

(1) Single-tensor model: A single tensor. The tensor shape is unconstrained. 

Images were generated representing FA, MD, axial diffusivity (AD) and radial 

diffusivity (RD). Axial diffusivity is the principal eigenvalue of the diffusion tensor 

and is often considered to represent the diffusion along a fiber tract. Radial 

diffusivity equals the mean of the secondary eigenvalues and is often taken to 

represent the diffusivity perpendicular to a tract.  

(2) Single tensor with an isotropic compartment: A single tensor compartment 

accompanied by an isotropic, free water compartment. The shape of the tensor is 

unconstrained. Unlike in (Arkesteijn et al., 2015), not even a trace constraint is 

applied. This model yielded the same parameters as the single tensor model derived 

from the fiber compartment, and in addition a volume fraction characterizing the 

amount of free water in all voxels. 

(3) Bi-tensor model (Caan et al., 2010b): A model consisting of two tensor 

compartments with the same shape (symmetric tensors with equal AD and RD, and 

thus same FA), but variable volume fractions (i.e. relative contribution to a voxel) 

and arbitrary orientations. This model represented two white matter bundles 

simultaneously present in a voxel. It yielded the same parameters as the single 

tensor model due to the presumed identical shape of the two tensors. The volume 

fraction was not considered for further analysis as it is affected by (arbitrary) partial 

volume effects. 

(4) Bi-tensor model with an isotropic compartment (Yang et al., 2016): A 

model combining the representation of crossing nerve bundles and free water 

diffusion in a single voxel. The two estimated tensors are restricted to have the same 

shape as in the bi-tensor model. The free-water volume fraction is an additional 

parameter to the aforementioned parameters of the bi-tensor model. 

In all of the models the maximum diffusivity of the tensor compartment is limited 

by the diffusivity of free water at body temperature. For an illustration of these 
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Figure 3.2 Illustration of the four diffusion models. From left to right: single tensor, single 
tensor with isotropic compartment, bi-tensor and bi-tensor with an isotropic compartment 
models. 

models see . Mathematical details of specific model parametrizations and model 

fitting procedure are described in the Appendix. 

It is important to notice that models with multiple compartments are capable of 

modelling diffusion signals produced by several fiber populations leading to lower 

fit errors. However, applying these models to voxels containing a single fiber 

population may result in noise fitting and thus spurious fiber orientations’ and 

erroneous model parameters. 

3.2.3.3 Tract identification 

The volume fraction of tissue in a stroke lesion was estimated to be less than 0.1 by 

(Latour and Warach, 2002). Reflecting this decreased parenchymal volume fraction, 

masks of stroke lesions were created by conservatively thresholding the volume 

fraction of the isotropic compartment estimated by model (4) at f��� = 0.9. As such, 

regions with f��� larger than this value were excluded from further analysis. The 

accuracy of the lesion delineation was visually checked by a research fellow (OF). 

The research fellow could adjust the threshold to obtain a more accurate 

delineation in case the mask was considered suboptimal. 

Separate FA images were derived for each diffusion model and each subject. All FA 

images were co-registered to the MNI space using an affine registration with 12 

degrees of freedom as implemented in FSL v5.0 (Jenkinson et al., 2012). To 

achieve an accurate registration of the non-lesional brain parts, the masked regions 

of the chronic stroke subjects were excluded in the registration process. 

Subsequently, the same transformation was applied to the parameter maps derived 

from the diffusion models (e.g. the volume fractions). Next, the JHU white-matter 
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tractography atlas, which is also defined in MNI space, was projected onto the data. 

This tractography atlas contains 20 labeled white matter structures. It was generated 

by averaging the results of deterministic tractography on 28 normal subjects (mean 

age 29, M:17, F:11) (Mori et al., 2005; Hua et al., 2008). Symmetric WM tracts in 

this atlas are considered in our analysis. Their functional roles are summarized in 

Table 3.1. Additionally, the atlas contains delineations of forceps major and forceps 

minor. For the median and interquartile range of the considered regions of interest 

computed in the atlas space after masking the lesion out see . 

Registration to the atlas space is illustrated in Figure 3.3, showing that no 

significant warping occurs. Not even for the scans of a patient with a big lesion. 

Table 3.1. White matter tracts of the JHU tractography atlas obtained from deterministic 
tractography on 28 normal subjects (https://neurovault.org/media/images/264/JHU-ICBM-
tracts-maxprob-thr25-1mm.nii.gz, (Hua et al., 2008)), their approximate location and function.  

Tract name Location Function 

Anterior thalamic 
radiation (ATR) 

Passes from thalamus to pre-
frontal cortex 

As a part of thalamic radiations, 
relays sensory and motor data to 
pre- and post-central cortex 

Corticospinal tract 
(CST) 

Connects cerebral motor and 
somatosensory cortex to 
medulla and descends into 
contralateral spinal cord 

Facilitates voluntary motor control 
of the limbs and trunk 

Cingulum (all parts): 

Cingulum 1 -cingulate 
gyrus (CG); cingulum 
2 – cingulate 
hippocampus (CH) 

A collection of WM fibers 
connecting cingulate gyrus 
(cortex) to the entorhinal 
cortex 

Part of the limbic system of the 
brain, associated with emotion, 
visual and spatial skills, working 
and general memory 

Inferior fronto-
occipital fasciculus 
(IFOF) 

Connects the occipital lobe 
with the anterior part of the 
temporal lobe, running 
medially and above the optic 
fibers. It is a direct pathway 
connecting occipital, posterior 
temporal orbitofrontal areas 

Integration of auditory and visual 
association cortices with prefrontal 
cortex. Function is still poorly 
understood. 
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Inferior longitudinal 
fasciculus (ILF) 

Connects the occipital lobe 
with the anterior part of the 
temporal lobe, running above 
the optic radiation fibers 

Integration of auditory and speech 
nuclei. Function is still poorly 
understood. 

Superior longitudinal 
fasciculus (all parts): 

SLF and temporal 
part SLF-T 

Major association fiber tract 
connecting frontal, parietal, 
and temporal lobes 

As a major tract with projections to 
multiple lobes, it is involved with 
regulating motor behavior, spatial 
attention, visual and oculomotor 
functions, transfer of 
somatosensory information as well 
as language. 

Uncinate fasciculus A hook-shaped fiber bundle 
linking anterior parts of the 
temporal lobe with the lower 
surface of the frontal lobe 

Part of the limbic system which 
takes part in memory integration 

3.2.4 Data analysis and statistics 

The mean parameter values of each model were calculated for every tract and for all 

subjects. After that, we determined ratios of the mean tract values between 

contralesional (healthy) and ipsilesional (impaired) hemispheres, which were 

normalized to the interval between -1 and 1. For example, for FA it was defined as 

( ) ( )healthy impaired healthy impairedFA FA FA FA− +
. In this way, WM properties that were 

balanced between the hemispheres resulted in values close to zero; positive values 

indicate that the contralesional side has higher FA than the ipsilesional side and vice 

versa for negative values. In the same manner, the asymmetry was calculated for 

MD, RD and AD. For the healthy controls asymmetry was defined between the 

dominant and non-dominant hemispheres based on the handedness of each subject.  

The asymmetries were statistically analyzed using the two-sided Wilcoxon signed 

rank test. The Benjamini–Hochberg procedure was used to control the false 

discovery rate at the 5% level (Benjamini and Hochberg, 1995; Benjamini and 

Yekutieli, 2001), independently for each of the outcome parameters. Comparisons 

for each model and each diffusivity measure were done independently. WM 

asymmetries were correlated with the upper limb Fugl-Meyer assessment (FMA) 

score using Pearson correlation. 
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3.3 Results 

Pearson correlations between FA, MD, AD and RD asymmetries estimated from 

the four diffusion models with Fugl-Meyer scores are presented in Figure 3.4.  

The comparison of asymmetries in diffusion measures between patient and control 

groups for all four diffusion models is presented in Figure 3.5. After applying the 

Benjamini–Hochberg false discovery rate control procedure, the comparisons were 

deemed to be statistically significant at the 95% confidence level when p<=0.016 

for FAasymmetry, p<=0.014 for MDasymmetry, p<=0.003 for ADasymmetry and p<=0.012 

for RDasymmetry. Patients showed a significant difference from controls in CST 

asymmetries of FA, MD and RD for all models, but of AD only for model (3). 

Similarly, a difference between groups was found in SLF asymmetries of FA, MD 

and RD for all models, and of AD only for models (1) and (3). ADasymmetry did not 

identify other WM tracts as being different between the patient and control groups. 

None of the models identified statistically significant difference in the cingulum-1, 

inferior fronto-occipital fasciculus and uncinate fasciculus. For the inferior 

longitudinal fasciculus, only RDasymmetry for models (2) and (4) and MDasymmetry for 

model (2) differed significantly between patients and controls. 

Table 3.2. Median and IQR over the study population of the considered regions of interest after 
masking lesions out, computed in the atlas space. Names and order of ROIs coincide with Table 
3.1. 

Tract name Median (IQR), px 

Right hemisphere Left hemisphere 

Anterior thalamic radiation 11716 (9928,5-12588) 10776 (7265,25-11320,75) 

Corticospinal tract 8867 (8451,75-9057,5) 7991,5 (7302,75-8106,75) 

Cingulum (all parts) 5021 (4992,75-5053,75) 3781,5 (3721,75-3792,75) 

Inferior fronto-occipital 
fasciculus 

11018 (10587,25-11097,5) 12036 (10976-12134,5) 
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Inferior longitudinal fasciculus 10359,5 (10314-10400) 6964 (6790,5-7004,25) 

Superior longitudinal fasciculus 
(all parts) 

14977,5 (14862,5-15017,5) 11881,5 (11186,75-
11909,75) 

Uncinate fasciculus 2627 (2551,5-2650,75) 1775,5 (1605-1810) 

3.4 Discussion 

In this study, we evaluated how WM diffusion properties estimated by four 

diffusion models of increasing complexity relate to the motor outcome of chronic 

stroke patients. Particularly, the influence of stroke on symmetric white matter 

structures was assessed based on the interhemispheric asymmetry of mean tract 

model parameters. We have not investigated the influence of lesion size and lesion 

location on motor recovery, which was presented in literature before (e.g. (Lo et al., 

2010)), but focused on four diffusion measures: FA, MD, AD and RD. 

Model comparison 

Diffusion MRI has been used to derive characteristics of the corticospinal tract in 

chronic stroke using the single tensor model. (Archer et al., 2017) aimed to 

eliminate bias of free water contamination from the FA estimation with an 

approach by (Pasternak et al., 2009) for modeling a tissue and a free water 

compartment. We add to this previous work by not only investigating the 

FAasymmetry, but other diffusivity measures (MD, AD and RD) as well. This is 

supported by our acquisition protocol with two b-values, as it was discussed in 

(Taquet et al., 2015) that estimation of the parameters in the two-compartment 

model by (Pasternak et al., 2009), NODDI (Zhang et al., 2012), CHARMED 

(Assaf and Basser, 2005) and DIAMOND (Scherrer et al., 2013)2 is ineffective for a 

single b-value data, unless additional regularization or assumptions are enforced on 

the model fit. Two-compartment models were also previously applied to multi-shell 

                                           
2 NODDI = Neurite Orientation Dispersion and Density Imaging; CHARMED = Composite hindered and 
restricted model of diffusion; DIAMOND = DIstribution of 3-D Anisotropic MicrOstructural eNvironments in 
Diffusion-compartment imaging 
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Figure 3.3 FA image of an affected hemisphere of a patient before (subject space, left) and after 
(atlas space, right) registration to the atlas space. Lesion mask was applied. The absence of large 
deformations indicates that the presence of the lesion hardly affected the registration outcome. 

dMRI data by, for example, (Pierpaoli and Jones, 2004; Pasternak et al., 2012; Hoy 

et al., 2014).  

The WM asymmetries were assessed using four diffusion models of increasing 

complexity: (1) single tensor, (2) single tensor with isotropic compartment, (3) bi-

tensor and (4) bi-tensor with isotropic compartment. The addition of each 

compartment to the models in this study permits modeling of an additional 

physical phenomenon (i.e., free water and crossing fibers) and contributes to the 

interpretation of the results. It is important to notice that the outcome parameters 

of the selected diffusion models are directly comparable to each other. For example, 

the frequently used ball-and-stick model (Behrens et al., 2003) yields volume 

fractions of the fiber populations that cannot be directly compared to FA. However, 

more complex models do not everywhere in the brain reflect the underlying white 

matter anatomy. Applying a two tensor model to the diffusion data from a single 

fiber tract may lead to overfitting and meaningless outcome parameters. This is 

described in (Yang et al., 2016). Therefore, it cannot be taken for granted that 

more complex models are always performing better, especially in case of 

pathologies. 

Damage to the CST after stroke has been extensively investigated in (Stinear et al., 

2007; Schaechter et al., 2008; Schaechter et al., 2009; Cunningham et al., 2015). A 

linear correlation was found between the CST integrity and increased activation of 

the contralesional primary sensorimotor cortex (Schaechter et al., 2008). Qui and 
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coworkers (Qiu et al., 2011) showed a close relationship between the FA 

asymmetry and clinical outcome measures. The current study expands on this by 

exploring this relation for multiple WM properties assessed by four diffusion 

models. We did not find a significant Pearson correlation between the asymmetry 

of single tensor diffusion measures and the upper-limb FMA in most of the tracts, 

not even in the CST. The other models do show significant correlations between 

the CST asymmetry and the FMA score. The highest correlation and statistical 

significance are for FA and RD CST asymmetries. Except for the cingulum (tracts 3 

and 4), MD, AD and RD asymmetry derived from models (2)-(4) showed 

significant correlation with the FMA for all other tracts. However, it was less 

consistent among tracts for the FA asymmetry. This may indicate that not only 

CST integrity, but also the state of other white matter tracts could be indicative of 

the patient’s motor abilities after stroke. A similar conclusion was previously 

reached based on a voxel-wise FA analysis (Schaechter et al., 2009). 

Our findings indicate that accounting for the free water by adding an isotropic 

compartment to the single tensor model already significantly increases the 

sensitivity of diffusion outcomes. Differences in the outcomes of different models 

may suggest that for specific tracts and especially in the areas hampered by partial 

volume effects, it can be beneficial to go beyond the single tensor model when 

relating the results to the patient motor function. 

Affected white matter tracts 

We investigated the asymmetry in FA, MD, AD and RD and tested whether the 

asymmetry was significantly different from the same measures for the control group 

and whether it correlated with the FMA score of the patients. As a higher FA may 

be related to a better quality of WM tracts (Huppi and Dubois, 2006; Teipel et al., 

2010; Winston, 2012), statistically significant correlations of FAasymmetry with the 

motor score are negative. The rest of the diffusion properties have an inverse 

relation, e.g. lower MD indicates higher membrane density, leading to significant 

correlations of MD, AD and RD asymmetries with FMA being negative. Moreover, 

prior research predominantly focused on the CST in general and the posterior limb 

of the internal capsule in particular, because these structures are regularly associated 

with stroke damage (Jang, 2011; Park et al., 2013; Song et al., 2015). Instead, we 
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Figure 3.4 Correlation of the FMA score and asymmetry in (A) FA (top left), (B) MD (top 
right), (C) AD (bottom left) and (D) RD (bottom right) for the considered WM tracts. 
Statistically significant correlations (p<0.05) are depicted in blue, not significant correlations 
are shown in red. Models are denoted as follows: single tensor – square, single tensor with 
isotropic compartment –diamond, bi-tensor – triangle, bi-tensor with isotropic compartment – 
star. Horizontal dashed lines mark conditional boundaries of moderate (negative) linear 
relation (correlation of +/-0.5), solid lines – strong relation (correlation of +/-0.7). 

chose to pursue a more comprehensive analysis involving diffusivity parameters in 

nine symmetric tracts as listed above. 
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Figure 3.5 Comparison of the (A) FA (top left), (B) MD (top right), (C) AD (bottom left) and 
(D) RD (bottom right) asymmetries in the WM tracts between patients and controls (range 
indicated in black) estimated by the four diffusion models. Results for patients are color-coded 
with their FMA score. Models from left to right for each tract: single tensor (square), single 
tensor with isotropic compartment (diamond), bi-tensor (triangle), bi-tensor with isotropic 
compartment (star). Filled bullets at the top of each data series mark the tracts and models for 
which, after Benjamini-Hochberg correction, the asymmetry of patients is significantly 
different from the one of controls. 
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As might be expected, the WM tracts asymmetry in healthy controls fluctuated 

around zero. After false discovery rate correction, FA, MD and RD, but not AD, 

asymmetries differed between patients and controls in CST and SLF. Model (1) 

also failed to identify the FAasymmetry in SLF. Asymmetry in SLF has not been 

reported previously. However, the dorsal component of SLF originates in the 

superior and medial parietal cortex and terminates in the dorsal and medial cortex 

of the frontal lobe and in the supplementary motor cortex. Therefore, changes in 

the SLF with respect to the control group could have been expected as all patients 

in this study suffered from a certain extend of motor impairment. Overall, patients 

with more severe impairment, indicated by lower FMA scores, displayed indeed 

higher asymmetry of their WM properties. 

Limitations 

Diffusion properties of the cingulum (tracts 3 and 4) did not correlate with FMA 

and showed higher asymmetries even for the control group (Figure 3.4, Figure 3.5). 

Information about the dominant and the impaired hand of the patients may 

suggest that handedness of subjects could have influenced the sign of the WM 

asymmetry. A number of studies investigated the effects of handedness on the 

human brain. Differences in volumes of grey and white matter areas were detected 

by (Herve et al., 2006). A voxel-based statistical analysis found higher FA in the left 

arcuate fasciculus in consistent right-handers (Buchel et al., 2004). However, this 

was not confirmed in a similar study by (Park et al., 2004). Despite the fact that 

right hand preference might be expected to result from asymmetries in the motor 

cortex, it is stronger correlated with asymmetries in language-processing structures 

(Toga and Thompson, 2003). A more recent study by (Powell et al., 2012) suggests 

a greater effect of sex than handedness on FA asymmetry. (Luft et al., 2004) found 

significantly higher FA values for left-handed individuals in all major lobes and in 

the corpus callosum compared to the right-handed subjects. As such, results 

regarding handedness effects on WM have not been entirely consistent across 

different studies. 

In our work we rely on an assumption that stroke causes a much larger asymmetry 

than the handedness of a person. We did compare the effect of stroke to the 

baseline asymmetries in diffusion properties of our control group, which are quite 
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symmetrically distributed around zero (except for the cingulum as mentioned 

above) and are in range that is at least twice smaller than that of the patient group. 

Although we are aware that this approach has drawbacks, it is frequently performed 

to avoid oversegmentation of the cohort, i.e. dividing it into groups based on 

handedness, (Luft et al., 2004; De Vico Fallani et al., 2013). Practically, it enabled 

us to include a sufficiently large subject group to achieve statistically valid results 

and conclusions. Such an approach is similar to the underlying assumption of many 

other stroke studies .  

As a limitation we would also like to mention the absence of a ground truth, as the 

true diffusion properties of WM in stroke patients are unknown. This limits our 

ability to evaluate the performance of the diffusion models, but this is a common 

problem of in-vivo studies into brain structures, allowing only indirect assessments. 

Another factor is the smaller size of the control group compared to the patient 

group. We assume that the variation in the outcome parameters (e.g. FAasymmetry, 

MDasymmetry, etc.) of the controls is much smaller than those of the patients. 

Accordingly, the smaller group size of the controls should not hinder the 

comparison. This was confirmed in our power analysis, which indicated that the 

chance of detecting a large effect is 90%. That is why we consider our study design 

to be sufficient to fulfil its aims. However, a design with equal group size would 

have further enhanced the statistical power of the study. 

Outlook 

Differences in the parameter outcomes of different models may suggest that for 

specific tracts and especially in brain areas contaminated by partial volume effects, it 

can be beneficial to go beyond the single tensor model when relating the outcomes 

to the patients’ motor function. Approaching stroke dMRI equipped with more 

sophisticated models could be helpful in studying scans at a more acute phase, 

when it is important to make a prediction of recovery and adjust therapy. This 

could be most beneficial for so-called non-fitters to the 70% recovery rule (see, for 

example, (Winters et al., 2015)) and differentiating between necrotic and still 

salvageable tissue. Our results suggest that employing multi-compartment diffusion 

models should be tested to investigate WM changes in stroke patients 

longitudinally, starting from the acute phase. 
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3.5 Conclusions 

• FA and RD asymmetries are an indication of white matter alterations after 
stroke and related with the patients’ motor outcome. 

• As for selecting a diffusion model, the bi-tensor model with isotropic 
compartment should be used if permitted by the dMRI acquisition protocol 
(i.e., sufficient diffusion directions and multiple b-values). Otherwise, a 
single tensor model with isotropic compartment is a good alternative. 

• Not only the cortical-spinal tract, but also the superior longitudinal 
fasciculus integrity values are significantly affected by stroke as indicated by 
the group comparison between patients and controls. 

• Approaching dMRI in stroke patients with sophisticated diffusion models 
instead of a single tensor model leads to a higher sensitivity and should be 
tested in scans at a more acute phase, when it is important to make a 
prediction of recovery and adjust therapy. This could be most beneficial for 
so-called non-fitters to the 70% recovery rule (see, for example, (Winters et 
al., 2015)) and for differentiating between necrotic and still salvageable 
tissue.  

• Employing multi-compartment diffusion models should be tested to detect 
WM changes in stroke patients longitudinally, starting from the acute phase. 
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Appendix. Diffusion modeling 

Assuming a mono-exponential and Gaussian diffusion along the principal 

directions (given by the eigenvectors) of the separate fiber compartments, the 

measured dMR signal S� can be modeled as a sum of up to two fiber bundles and 

an isotropic compartment in the following way:  

 ( ) ( )0
1,2

exp - exp -b g D g b
=

 
= + 

 
∑ T

j i j j i j iso j iso

i

S S f f D    (3.1) 

where S�  is the signal without diffusion weighting, f�  and f���  are the volume 

fractions of different compartments such that 
1,2

1
=

+ =∑ i iso

i

f f , g�  is a gradient 

direction, b� is the diffusion weighting coefficient, D� is the diffusion tensor of the 

i�� fiber, and D��� is the scalar coefficient of isotropic diffusion. Here directions of 

diffusion sensitizing gradients and the amount of weighting are inputs, depending 

on the acquisition protocol. Different models are obtained by adjusting the number 

of fibers, constraints on diffusion tensors and presence or absence of the isotropic 

diffusion process. The assumption of the mono-exponential signal decay is valid up 
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to at least 2000 s/mm2 (Yoshiura et al., 2001), or even up to 3000 s/mm2 as 

reported in the multiple sclerosis study by (Assaf et al., 2002). 

To estimate the unknowns, the diffusion tensor can be parametrized in polar 

coordinates. Parameters of the considered models are listed below. 

Single tensor: 1 1 1 1 2 3 0, , , , , , Sθ φ ψ λ λ λ . 

Single tensor with an isotropic compartment: 1 1 1 1 2 3 0, , , , , , ,
iso

f Sθ φ ψ λ λ λ . 

Bi-tensor model: 1 || 1 1 2 2 0, , , , , , ,⊥f Sλ λ θ φ θ φ . 

Bi-tensor with an isotropic compartment: 1 || 1 1 2 2 0, , , , , , , ,⊥iso
f f Sλ λ θ φ θ φ . 

Here 1 2 3, ,λ λ λ  are eigenvalues of the diffusion tensor, ||, ⊥λ λ  denote the axial and 

perpendicular diffusion respectively, 
i

ψ , 
i

θ  and 
i

φ  determine the i��  fiber 

orientation in polar coordinates. 

The parameter vector is obtained by maximizing the log likelihood of the joint 

probability density function for diffusion-weighted signals with independent noise 

realizations. It is done using our constrained non-linear optimization routine in 

Matlab (The MathWorks, Natick, MA). The optimization problem can be 

formulated as follows. 

Let ,Sɶ j σ  be the measured diffusion weighted image (DWI) with diffusion weighting 

b
j
 in direction g

j . It is affected by Rician noise with standard deviation σ

(Gudbjartsson and Patz, 1995). Therefore, for the parameter vector θ , the 

probability density function (PDF) of the measured signal is given by 

 

2 2
, ,, , ,

, 02 2 2

S SS
(S | ) exp

2

θ θ
θ

   +
 =       

ɶ ɶɶ
ɶ

j jj j j
j

S S
p I

σ σσ
σ

σ σ σ ,    (3.2) 

where 0( )⋅I  is the zeroth order modified Bessel function of the first kind, . Due to 

statistical independence of the DWIs, the joint probability density function ɶ( | )S θp σ  

of the signal profile ɶSσ  is equal to the product of the marginal distributions for the 

measured signals ,Sɶ j σ  in each of the gN  diffusion weighted directions g
j
: 
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 ɶ( ) ( ),

1

| S |S θ θ

=

= ∏ ɶ
gN

j

j

p pσ σ        (3.3) 

The parameter values can be estimated by maximizing the log likelihood function 

of θ  given ɶSσ  (Sijbers et al., 2004): 

 ɵ ɶ( ){ }MLE arg max ln ( | )
θ

θ S θ= p σ .      (3.4) 

Maximum likelihood estimation (MLE) has a number of beneficial properties for 

diffusion estimation in crossing fiber bundles (Caan et al., 2010a). First of all, 

under very general conditions, MLE asymptotically reaches the Cramér-Rao lower 

bound (CRLB). This is a theoretical lower bound on the variance of any unbiased 

estimator. Secondly, the MLE is consistent, which means that it asymptotically 

( →∞gN ) converges to the true value of the parameter in a statistically well-defined 

way (Van den Bos, 2007). Optimization is performed using Levenberg–Marquardt 

algorithm. 
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Probability is the very guide of life. 

Marcus Tullius Cicero 
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4 Probabilistic tractography in 

complex fiber orientations with 

automatic model selection. 
Fiber tractography aims to reconstruct white matter (WM) connections in the brain. 

Challenges in these reconstructions include estimation of the fiber orientations in 

regions with multiple fiber populations, and the uncertainty in the fiber 

orientations as a result of noise. In this work, we use a range of multi-tensor models 

to cope with crossing fibers. The uncertainty in fiber orientation is captured using 

the Cramér-Rao lower bound. Furthermore, model selection is performed based on 

model complexity and goodness of fit. The performance of the framework on the 

fibercup phantom and human data was compared to the open source diffusion 

MRI toolkit Camino for a range of SNRs. Performance was quantified by using the 

Tractometer measures in the fibercup phantom and by comparing streamline 

counts of lateral projections of the corpus callosum (CC) in the human data. On 

the phantom data, the comparison showed that our method performs similar to 

Camino in crossing fiber regions, whilst performing better in a region with kissing 

fibers (median angular error of 0.73o vs 2.7o, valid connections of 57% vs 21% 

when seed is in the corresponding region of interest). Furthermore, the amount of 

counts in the lateral projections were found to be higher using our method (19 to 

89% increase depending on a subject). Altogether, our method outperforms the 

reference method on both phantom and human data allowing for in-vivo 

probabilistic multi-fiber tractography with an objective model selection procedure. 

4.1 Introduction 

Diffusion weighted magnetic resonance imaging (dMRI) is a non-invasive 

technique which can be used for assessing tissue structure. Particularly, it measures 

the ability of water molecules to move freely in the surrounding tissue. Importantly, 

normal white matter (WM) shows high diffusivity along and slow across axons, 

whereas in gray matter (GM) the diffusion is more isotropic. As such, properties of 

WM tracts related to e.g. the fiber orientation, and fiber density can be estimated 

(Basser et al., 1994; Alexander et al., 2010). Fiber tractography algorithms strive to 
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reconstruct WM connections in the brain by following the estimated tract 

orientation. 

Tractography algorithms can be roughly subdivided into two types: deterministic 

and probabilistic. Deterministic algorithms use line propagation techniques to 

generate streamlines from a seed region (Mori and van Zijl, 2002). However, noise 

in the dMRI acquisition can introduce uncertainties and possible errors in the 

generated streamlines (Jones, 2002). Alternatively, probabilistic tractography 

algorithms target to address this issue by modeling a probability density function 

(PDF) of the fiber orientations (Behrens et al., 2003). A density of streamlines can 

be obtained by sampling this PDF, which is assumed to relate to the probability of 

connection between voxels. 

A classic way to estimate fiber orientations is to fit a single diffusion tensor (DT) to 

the signal in a voxel. The main assumptions of this approach are presence of a 

single Gaussian diffusion process in a voxel and correspondence of the principal 

eigenvector of the 3 x 3 DTs to the fiber orientation (Basser et al., 1994). However, 

it is well known that the single tensor model does not hold in voxels with non-

Gaussian diffusion (Tuch et al., 2002), as is the case in voxels with multiple fiber 

populations. The prevalence of these multi-fiber voxels has been estimated to range 

from 33% up to ∼90% of the WM voxels (Behrens et al., 2007; Jeurissen et al., 

2013). Several methods have been developed to address the issue of multiple fiber 

populations in a voxel. For example, one can directly estimate the spin 

displacement probability (Jansons and Alexander, 2003; Tuch, 2004; Wedeen et al., 

2005) or model the signal coming from different fiber compartments (Tuch et al., 

2002; Kreher et al., 2005; Behrens et al., 2007). 

Current methods to estimate the fiber orientation PDFs are based on the shape of 

the diffusion tensor (Parker et al., 2003), the variability between acquisitions (i.e. 

bootstrap methods) (Jones, 2008; Jeurissen et al., 2011), and the posterior 

probability of tensor parameters (Bayesian interference) (Behrens et al., 2003). 

Limitations of these methods include the increased scanning time (Chung et al., 

2011) and long calculation times for Bayesian inference methods (Yang et al., 

2016). Complementary, different model selection approaches exist that aim to 

select the model parameters best supported by the data (Behrens et al., 2007), 
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estimate the number of fiber compartments (Jeurissen et al., 2013), determine the 

type of diffusion (Alexander et al., 2002), and find a trade-off between goodness of 

fit and model complexity (Freidlin et al., 2007). 

The aim of this work is to introduce a framework for model selection and 

probabilistic tractography with parsimonious model selection. Essentially, our 

approach takes uncertainties into account that are derived directly from the model 

fitting procedure. To achieve this we apply multi-tensor models, which model the 

signal as a combination of multiple fiber compartments and an isotropic 

compartment. 

4.2 Methods 

4.2.1 Models 

The measured signal in a voxel Sj was modelled to originate from up to two fiber 

compartments and an isotropic compartment:  

 ( ) ( )0
1,2

exp exp ,g D g
=

 
= − + − 

 
∑ T

j i j j i j iso j iso

i

S S f b f b D  (4.1) 

where S0 denotes the signal without diffusion weighing, fi and fiso are the volume 

fractions of the different compartments, bj stands for the strength of the diffusion 

gradient of the corresponding gradient direction gj, Di is the 3 x 3 diffusion tensor 

of each fiber compartment, and lastly Diso denotes the isotropic diffusion coefficient 

(Caan et al., 2010). 

Parameters and constraints Practically, we fitted nine different diffusion models 

of increasing complexity to the data, see Table 4.1. Summary of the diffusion 

tensor models, their parameters and constraints. These models were based on the 

signal model of Equation 4.1. In the most conventional one, a single tensor model, 

we parametrized the diffusion tensor Di with its eigenvalues λ1, λ2 and λ3, and three 

angles θ, φ and ψ determining the tensor’s orientation. Here, θ and φ represented 

the orientation of the principle eigenvector in spherical coordinates. The third angle 

ψ determined the rotation of the second and third eigenvectors around the first 

eigenvector. The described single tensor model can be expanded by adding an 

isotropic compartment. 
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Table 4.1. Summary of the diffusion tensor models, their parameters and constraints. 

Model Parameters # Comp Iso Extra constraints 
1 

1 1 1 1 2 3 0, , , , , ,Sθ φ ψ λ λ λ  1 No  

2 
1 1 1 || 0, , , , ,⊥ Sθ φ ψ λ λ  1 No 

2 3 ⊥= =λ λ λ  

3 
1 1 1 1 2 3 0, , , , , , ,f Sθ φ ψ λ λ λ  2 Yes  

4 
1 1 1 1 2 3 0, , , , , , ,f Sθ φ ψ λ λ λ  2 Yes 

2 3 3+ + = MDCλ λ λ  
5 

1 1 1 || 0, , , , , ,⊥ iso
f Sθ φ ψ λ λ  2 Yes 

2 3 ⊥= =λ λ λ  

6 
1 1 2 2 || 1 0, , , , , , ,⊥ f Sθ φ θ φ λ λ  2 No 

1 2⊥ ⊥ ⊥= =λ λ λ  

7 
1 1 2 2 || 0, , , , , ,⊥ Sθ φ θ φ λ λ  2 No 

1 2 0.5= =f f  

8 
1 1 2 2 || 1 0, , , , , , , ,⊥ iso

f f Sθ φ θ φ λ λ  3 Yes 
1 2⊥ ⊥ ⊥= =λ λ λ  

9 
1 21 1 2 2 || 1 0, , , , , , , , ,⊥ ⊥ iso

f f Sθ φ θ φ λ λ λ  3 Yes  

 

Further constrained versions of the signal model of Equation 4.1 were used to 

characterize the signal in a crossing of two fibers. While doing so, we assumed that 

the axial diffusivities λ|| of the two anisotropic tensors are equal. Furthermore, the 

second and third eigenvector of each tensor were also taken to be the same and 

henceforth referred to as the radial diffusivity λ⏊. We applied these constraints in 

the same way as in (Caan et al., 2010), to avoid degeneracy of the parameter 

estimation with our data. 

Other constraints that were used in the models: the isotropic diffusion coefficient 

was set to that of free water 3·10−3 mm2s−1 and the sum of the volume fractions was 

set to one. The different diffusion models were fitted by maximum likelihood 

estimation assuming Rician distributed noise as in (Poot and Klein, 2015). 

4.2.2 Model Selection 

Clearly, unconstrained fitting the two tensor model in a region with just a single 

fiber population still results in overfitting. Therefore, we performed model selection 

with the aim to find the tensor model that best represents the underlying fiber 

population in each voxel. 

ICOMP-TKLD We adopted the ICOMP-TKLD criterion for the model selection 

(Yang et al., 2015a). This criterion is an adapted version of the information 
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complexity (ICOMP) criterion (Bozdogan, 2000). The ICOMP-TKLD criterion 

performed model selection through balancing the goodness of the model fit and the 

model complexity. The goodness of fit was quantified by the log-likelihood of the 

model fit. In general, the goodness of fit is decreasing with increasing complexity. 

The model complexity was captured in the total Kullback-Leibler divergence 

(TKLD) (Vemuri et al., 2011). This TKLD quantifies the interdependence 

between the model parameters, which is a direct measure of the model complexity. 

In other words, the more interdependent the parameters are, the higher the model 

complexity. Accordingly, a model in which the parameters are orthogonal and thus 

independent will have a complexity of zero (Yang et al., 2015b). 

Formally, the ICOMP-TKLD criterion was defined as: 

 ( ) ( )( ) ( )( )1ˆ ˆ ˆ2log | 2 .θ θ S I θ
−= − +ɶ

TKLD i i tot iICOMP L C  (4.2) 

Here, the first term quantified the goodness of fit where L is the likelihood of the fit 

of the parameter vector θ̂i
 given the measured signal Sɶ . The second term 

represents the model complexity, where tot
C  denotes the TKLD which requires the 

inverse of the Fisher information matrix 1I−  as an input. 

4.2.3 Uncertainty in the fiber orientation 

The previously described model selection essentially outputted the most appropriate 

model as estimates for the fiber orientation(s) in each voxel. These served as an 

input for our probabilistic tractography algorithm. The probabilistic tractography 

algorithm also needed a measure of the uncertainty in the estimated fiber 

orientations. In this work, we used the Cramér-Rao lower bound (CRLB) of each 

model parameter to provide an estimate of the variance in the estimated fiber 

orientations. This CRLB was obtained by inverting the Fisher information matrix. 

The diagonal of the resulting matrix contained lower bounds for the variance that 

could be obtained by an unbiased estimator on the given data (Sid et al., 2017). In 

our diffusion tensor models the angles θ and φ determine the fiber orientation. The 

uncertainty in these parameters was assumed to be normally distributed with a 

mean equal to the estimated parameter value, a variance equal to the CRLB of the 

parameter and a covariance obtained from the off-diagonal elements of the CRLB 
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matrix. This yielded a probability density function (PDF) of the fiber orientations 

at each voxel, that were sampled during tractography. 

Tractography algorithm Our tractography algorithm is a standard line 

propagation algorithm with a fixed step size (Mori and van Zijl, 2002). The 

probabilistic aspect of the tractography was reflected in the placement of seed 

points and the sampling of the fiber orientation PDFs from the fiber 

compartment(s) at each step. The starting points for the streamlines were placed at 

a random position inside the seed voxels, as this allowed us to sample the variation 

in streamlines based on their starting position. The streamlines were propagated by 

comparing the direction of the last step in the streamline with a sample from the 

fiber orientation PDF of each compartment in the voxel. A step was taken in the 

direction of the sample that made the smallest angle with the previous step. 

Propagation of the fiber was stopped when the angle between successive steps was 

larger than 80 degrees, the streamline exited the brain mask or the streamline 

looped back on itself. In our tractography we generated 5000 streamlines per seed 

voxel to obtain sufficient sampling of the fiber orientation PDFs. 

4.2.4 Benchmarking 

The performance of our tractography algorithm was assessed by comparing it with 

the open source dMRI toolkit Camino (Cook et al., 2006), which also allows for 

probabilistic multi-fiber tractography. 

We performed a quantitative and qualitative comparison between the two 

tractography frameworks. In the quantitative comparison we used the reconstructed 

version of the fibercup phantom (Neher et al., 2015) with multiple b-values 

(1500/2000 s/mm2). The fibercup phantom is shown in Figure 4.1. The ground 

truth of this phantom was used to evaluate the tractography algorithms using 

measures from the tractometer, which is an online evaluation tool for tractography 

algorithms (Côté et al., 2013). These measures assessed the performance of the 

algorithms by quantifying global measures, such as the percentage of the valid 

bundle covered by streamlines (average bundle coverage or ABC), the percentage of 

invalid bundles covered by streamlines (No bundle coverage) and, the angular error 

of the generated streamlines. ROI specific measures that were used were the 

number of streamlines that either correctly connect ROIs (Valid connections or 
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Figure 4.2. The fibercup phantom with numbered ROIs. 

VC), do not reach another ROI (No connection or NC) and incorrectly connect 

ROIs (invalid connections or IC). Baseline (BL) tractography was performed, i.e. 

without additional noise, as well tractography at range of SNR values to investigate 

the sensitivity of the tractography algorithms to noise (Table 4.2. Signal-to-noise 

ratios for the different noise scenarios.). 

The qualitative comparison was performed on data from 5 healthy controls with 

multiple b-values (1000/2000 s/mm2). The scans were acquired on a 3T MRI 

scanner (Discovery MR750, GE Medical Systems). 40 gradient directions were 

used for the diffusion weighted acquisitions combined with five non-diffusion 

weighted acquisitions per b-value. The SNR values for the b = 0, 1000, and 2000 

s/mm2 acquisitions were estimated to be 41, 20 and 12 respectively. Seed regions 

were placed in the corticospinal tract (CST) and the corpus callosum (CC). We 

examined the lateral projections of the CC into the pre-central gyrus to assess the 

performance of the methods on in-vivo fiber crossings. 

Table 4.2. Signal-to-noise ratios for the different noise scenarios. 

 b=0 b=1500 b=2000 
Noise scenario 1 (N1) 39 11 7 
Noise scenario 2 (N2) 26 7 5 

4.3 Results 

Benchmarking The results for the global tractometer measures are shown in Table 

4.3. The table shows that our method had a lower median angular error than 

Camino. The average bundle coverage of Camino was slightly higher but 
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(a) Our method 

 
(b) Camino 

 

 
(c) Our method 

 

 
(d) Camino 

 

 
(e) Our method 

 

 
(f) Camino 

Figure 4.3. The percentage of valid connections (a,b), invalid connections (c,d) and no 
connections (e,f) per seed region for the baseline (BL) and different noise levels (N1,N2,) of 
the fibercup phantom. The dashed lines represent the average percentage of connections for all 
ROIs. 

simultaneously the no bundle coverage of Camino was markedly higher than our 

method for all noise levels. 

Table 4.3. Results for the median angular error, average bundle coverage and no bundle coverage 
for the baseline (BL) and different noise levels (N1,N2) of the fibercup phantom. 

 Median angular error Average bundle coverage No bundle coverage 
 BL N1 N2 BL N1 N2 BL N1 N2 
Our method 0.730 1.60 2.80 87.0% 84.4% 83.2% 10.0% 12.7% 15.0% 
Camino 2.70 2.70 4.20 95.3% 88.7% 90.4% 47.7% 27.5% 32.0% 

Figure 4.3 shows that on average the percentage of valid connections decreased for 

increasing noise levels, whilst the percentage of invalid and no connections 

increased. We used a Wilcoxon rank sum test to test whether the perceived 

difference in the connection types between the two methods was significant. The 
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results are shown in Table 4.4. This table demonstrates that the two methods 

differed most significantly in terms of valid and no connection percentage. 

Human data An example of the crossing of the CC and CST streamlines is shown 

in Figure 4.4. There seemed to be more streamlines from the CC that crossed over 

the CST estimated by our algorithm than by the Camino algorithm. We have 

quantified this by determining the average number of streamlines passing through 

the fiber crossing. The results are shown in Table 4.5. 

Table 4.4. P-values for the ROIs where the difference in performance of both methods is 
statistically significant. 

 Our method better Camino better 
ROI 1 5 8 11 12 7 8 9 11 
Valid 
connections 

6.4·10-9 6.4·10-9 x x 6.4·10-9 x 0.0043 6.4·10-9 x 

Invalid 
connections 

0.0043 x 6.4·10-9 x 6.4·10-9 x x x 0.0043 

No 
connections 

6.4·10-9 6.4·10-9 x 5.6·10-5 6.4·10-9 0.0043 0.0043 6.4·10-9 x 

 

Table 4.5. The average streamline count from the CC passing the crossing with the CST. 

 Control 1 Control 2 Control 3 Control 4 Control 5 
Our method 37 30 123 41 358 
Camino 31 17 66 27 278 

 

4.4 Discussion 

Benchmarking The global tractometer measures showed that the median angular 

error for our method is consistently lower than that of Camino. This could be 

attributed to the different methods used for estimating the fiber uncertainty. 

Notably, the fiber orientation PDFs in Camino are based on the link between the 

relative magnitude and orientations of the DT’s second and third eigenvectors and 

the uncertainty in fiber orientation (Parker et al., 2003). This shape of the tensor 

might be invariant at lower noises levels, therefore introducing a higher angular 

error. Our method derives the uncertainty from the CRLB, whose value decreases 

with lower noise levels (Sid et al., 2017). The higher uncertainty in fiber 

orientation in Camino also explains the higher average bundle coverage, as it allows 
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(a) Our method 

 

(b) Camino 

Figure 4.4. Tractography outputs for the CC seed region (Red) and the CST seed region (Blue) in a 
coronal slice, overlaid with a fractional anisotropy map. 

the tractography to explore more voxels. However, this also leads to a higher no 

bundle coverage which is undesirable. 

From the ROI specific tractometer measures (Table 4.4 and Figure 4.3) we can see 

that the ROIs where our method performs better contain a highly curved bundle 

(ROI 4 and 5) and a bundle with kissing fibers (ROI 1 and 12). Camino performs 

better in ROIs with a long straight section such as ROI 8 and 9. Both methods 

seem to perform similarly in the ROIs with crossing fibers. 

The observed decrease in valid connections with noise level, especially the one in 

ROI 11 (see Figure 4.3), is due to not discerning the fiber crossing by both our 

method and Camino’s. In the case of Camino, which selects models based on fitted 

diffusion type (e.g. Non-Gaussian or Gaussian diffusion), the diffusion in the 

crossing is considered to be merely Gaussian (Alexander et al., 2002). The 

erroneous classification in our model selection stems from the effect of noise on the 

log likelihood the different model fits. This log-likelihood converges to similar 
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values for all models, effectively causing our model selection to pick the simplest 

(Gaussian) model. 

Overall, our method performs either better or similarly to Camino software while 

having lower no bundle coverage. 

Human data As our method was applied to human data more fibers were tracked 

across the fiber crossing than with Camino. In this region we observed that the 

magnitude of the second eigenvector was similar to that of the first eigenvector. In 

Camino this leads to an increased uncertainty, hence, fewer fibers passing the 

crossing. Performance of our method is not reduced as the uncertainty is based on 

the noise level and not tensor shape. 

Limitations There are two limitations to the use of our method for probabilistic 

tractography. First of all, the data needs to have multiple b-values, which preferably 

consist of a low b-value of at least 1000 s/mm2 and a high b-value of about 2000 

s/mm2. This is necessary to fit the more complex dual tensor models (Caan et al., 

2010). Secondly, there is the influence of noise on the model selection. This 

limitation was observed in a crossing with lower diffusivity in the fiber cup 

phantom and resulted in selection of single tensor models. Still, the performance on 

the human data, which is comparable in SNR to most modern dMRI acquisitions, 

suggests that tracking across in-vivo crossings is very well possible. 

Our results both on the fibercup phantom and especially on the human data 

suggest that sophisticated diffusion tensor reconstruction techniques combined 

with model selection procedures can lead to improved fiber tractography outcomes. 
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We must become the change we want to see. 

Mahatma Gandhi 
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5  Dynamic information flow based 

on EEG and diffusion MRI: proof-of-

principle study 
In hemiparetic stroke, functional recovery of paretic limb may occur with the 

reorganization of neural networks in the brain. Neuroimaging techniques, such as 

magnetic resonance imaging (MRI), have a high spatial resolution which can be 

used to reveal anatomical changes in the brain following a stroke. However, low 

temporal resolution of MRI provides less insight of dynamic changes of brain 

activity. In contrast, electro-neurophysiological techniques, such as 

electroencephalography (EEG), have an excellent temporal resolution to measure 

such transient events, however are hindered by its low spatial resolution. This 

proof-of-principle study assessed a novel multimodal brain imaging technique 

namely Variational Bayesian Multimodal Encephalography (VBMEG), which aims 

to improve the spatial resolution of EEG for tracking the information flow inside 

the brain and its changes following a stroke. The limitations of EEG are 

complemented by constraints derived from anatomical MRI and diffusion weighted 

imaging (DWI). EEG data were acquired from individuals suffering from a stroke 

as well as able-bodied participants while electrical stimuli were delivered 

sequentially at their index finger in the left and right hand, respectively. The 

locations of active sources related to this stimulus were precisely identified, resulting 

in high Variance Accounted For (VAF above 80%). An accurate estimation of 

dynamic information flow between sources was achieved in this study, showing a 

high VAF (above 90%) in the cross-validation test. The estimated dynamic 

information flow was compared between chronic hemiparetic stroke and able-

bodied individuals. The results demonstrate the feasibility of VBMEG method in 

revealing the changes of information flow in the brain after stroke. This study 

verified the VBMEG method as an advanced computational approach to track the 

dynamic information flow in the brain following a stroke. This may lead to the 

development of a quantitative tool for monitoring functional changes of the cortical 

neural networks after a unilateral brain injury and therefore facilitate the research 

into, and the practice of stroke rehabilitation. 
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5.1 Introduction 

Stroke is a sudden interruption of the blood supply to the brain due to a vessel 

occlusion or rupture ((WHO), 2015). After the incident, most survivors suffer 

from hemiparesis, making it more difficult to perform activities of daily living. 

Clinical tests, such as Fugl-Meyer motor scores, indicate the severity of neural 

impairment following a stroke, but do not provide insight to the changes within the 

brain that occur after the incident and during recovery (Gladstone et al., 2002). 

Brain plasticity or neuroplasticity refers to the ability of the brain to reorganize 

neuronal connections, triggered by goal-oriented and environment-induced  

experiences – thus learning and adapting (Arya et al., 2011). The problem of 

understanding how the brain reconfigures itself following a stroke may be 

approached in different ways. One of the main strategies is to investigate brain 

responses to external stimuli. This can be achieved with various non-invasive brain 

imaging techniques such as electroencephalography (EEG) and functional magnetic 

resonance imaging (fMRI) (Bandara et al., 2016; Weinstein et al., 2017). 

Mapping from the measured scalp EEG signals to their cortical sources is called an 

inverse problem, which is inherently ill-posed due to a limited number of 

measurement electrodes in comparison to the large number of active sources in the 

cortex (Wendel et al., 2009). Thus, precise source localization is a key challenge for 

EEG. Despite its poor spatial resolution, the major advantage of EEG is its 

temporal resolution in the order of milliseconds, which allows capturing fast 

dynamics of neuronal activity in the brain. A recent review of stroke rehabilitation 

indicated that the assessment of electrical neuronal activity with EEG may provide 

a precise way of measuring dynamic neural processes and thereby providing 

biomarkers for time-dependent brain plasticity during spontaneous neurobiological 

recovery (Ward, 2017b). In contrast, the spatial resolution of fMRI is in the order 

of 2-3 mm, which is much higher than that of EEG. However, the temporal 

resolution of fMRI is relatively low because the hemodynamic response reaches its 

peak around 5-6 seconds after the neural activity. Moreover, the fMRI is an 

indirect measure of electrical neuronal activity in the brain (Heeger et al., 2000).  

Additional to the functional brain imaging approaches, anatomical brain imaging 

techniques are also often used in the stroke research (Qiu et al., 2011; Song et al., 
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2012; Song et al., 2015; Wirsich et al., 2017). For example, commonly used T1-

weighted structural MRI allows obtaining the high-resolution detailed brain 

structure. Diffusion-weighted MRI (dMRI) is another anatomical acquisition that 

is typically used to infer white matter connections between cortical regions (Owen 

et al., 2017). Anatomical brain imaging techniques reflect the anatomical changes 

in the brain following a stroke; however, they cannot provide direct insight into 

functional changes brain activity caused by a brain lesion (Boyd et al., 2017).  

As discussed, each brain imaging technique has its pros and cons (Ward, 2015; 

Boyd et al., 2017). Nowadays, it has become clear that combining different 

imaging modalities may improve our understanding of the brain as a complex 

biological system and its functions (Arikan, 2011). The excellent temporal 

resolution of EEG provides unique advantage for monitoring dynamic changes of 

neuronal activity at the cortex following a stroke. Nevertheless, the 

underdetermined nature of the inverse problem of EEG calls for structural, 

physiological and functional information to be combined to better estimate the 

location of active sources at the cortex and the causal interactions between sources, 

i.e., effective connectivity, related to a specific form of stimulus. Various 

computational approaches such as dynamic causal modeling (DCM) and 

conditional Granger causality analysis have been proposed and used to estimate the 

effective connectivity (Bajaj et al., 2015; Schulz et al., 2016; Wang et al., 2016). 

However, most of the current methods either require prior assumptions on the 

model structure (e.g., DCM) or exclusively rely on the signal correlations without 

considering anatomical constraints in the model (e.g., Granger causality analysis). 

Among the state-of-the-art methods, the Variational Bayesian Multimodal 

Encephalography (VBMEG) method has shown potential both in locating the 

active cortical sources and in identifying neural pathways (both physically and 

causally) between them, without involving prior assumptions on the model 

structure. A physiologically constrained Bayesian estimation algorithm is used to 

locate active cortical sources. Combining them with white matter tracks estimated 

from dMRI, a linear connectome dynamics (LCD) model is built to infer causal 

interactions between active cortical sources (Friston, 2011). Such a method allows 

tracking the information flow through the neural fibers within the brain network. 

The VBMEG method was initially proposed to investigate the dynamic cortical 
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activity of healthy participants during a face recognition task (Fukushima et al., 

2015). VBMEG has been tested in both simulations (Sato et al., 2004; Aihara et al., 

2012) and healthy volunteer studies (Yoshioka et al., 2008; Yoshimura et al., 2012; 

Nakamura et al., 2015; Yoshimura et al., 2017); their main focus was on muscle 

activity reconstruction and visual stimuli analysis with or without structural and 

functional MRI constraints. Nevertheless, as a novel brain imaging method, the 

clinical value of the VBMEG method is yet to be demonstrated regarding its 

potential to investigate functional brain changes following a brain disease such as a 

stroke. 

Therefore, the present work serves as a proof-of-principle study demonstrating the 

feasibility of the VBMEG method to estimate active cortical sources and their 

dynamic interactions in stroke participants during a sensory stimulation task. The 

high-density EEG, anatomic MRI, and diffusion MRI data were collected from 

both able-bodied and stroke participants. EEG was recorded when the participants 

were receiving electrical finger stimulation. The accuracy of EEG source 

localization and dynamic information flow estimation within the VBMEG method 

was evaluated by the Variance Accounted For (VAF). The VAF indicates how 

much cortical activity and brain dynamics can be explained by the VBMEG 

method. The estimated dynamic information flow was compared between two 

chronic hemiparetic stroke survivors and two able-bodied individuals to 

demonstrate the feasibility of the VBMEG method in revealing functional cortical 

network changes post hemiparetic stroke.  This proof-of-principle study is a critical 

prerequisite for applying the VBMEG on a large database to identify a quantitative 

biomarker for assessing neurological impairment and exploring neurobiological 

recovery following a stroke.  

5.2 Materials and methods 

5.2.1 Subjects  

Two chronic stroke survivors and two age-matched able-bodied individuals were 

included in this proof-of-principle study. The participants were recruited with 

informed consent and permission of the Medical Ethics Committee of the Vrije 

Universiteit Medical Center, Amsterdam. The trial protocol was registered on 23 

October 2013 at the Netherlands Trial Register (identifier NTR4221). Inclusion 
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criteria for the subjects suffering from chronic stroke were 1) upper limb paresis, 2) 

ability to sit without support (National Institutes of Health Stroke Scale item 5a/b > 

0), 3) age over 18, 4) single ischemic hemispheric stroke, 5) more than six months 

post stroke. Exclusion criteria were 1) previously existing pathological neurological 

conditions or orthopedic limitations of the upper limb that would affect the results, 

2) botulin toxin injections or medication that may have influenced upper limb 

function in the past three months, 3) general MRI contraindications 

(claustrophobia, pacemaker or other metallic implants), and 4) absence of history of 

epilepsy or seizures. All participants are in the age range of 55-70 in this study. The 

information of lesion side in the brain and clinical assessment for stroke survivors is 

provided in the Table 5.1. Both stroke participants had lesions in the posterior limb 

of internal capsule, but in different hemispheres, as shown in Figure 5.1. 

The finger stimulation experiment and EEG data acquisition were performed in a 

conversion van which was designed to execute measurements at geographical 

locations convenient for the participants. MR images were acquired on another day 

after the EEG recording was completed at VU University Medical Center at 

Amsterdam. The two stroke participants were chronic and the above measurements 

were done more than 6 years post stroke, meaning that their recovery had plateaued. 
 

Table 5.1 Information of stroke subjects. FM: Fugl-Meyer Upper Extremity Assessment Score, 
EmNSA: the Erasmus MC modification of the Nottingham Sensory Assessment. 

Subject  Lesion side  FM-UE EmNSA Year of 

stroke 

Stroke 1 Right 58 8 2009 

Stroke 2 Left 66 8 2009 

5.2.2 Electrical finger stimulation and EEG acquisition 

The experiment was performed within a NEN1010 approved measurement van. 

During the experiment, participants were sitting comfortably with their hands and 

forearms positioned on their lap with the fingers facing upward (supine position).  
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Figure 5.1 Lesion locations for two stroke subjects shown on an axial slice of the T1-weighted 
anatomic images. 

Between forearm and lap, a pillow was placed to secure a stable position and 

comfort. Index fingers of both hands were stimulated with a randomized order in 

healthy controls and stroke patients with bipolar stimulation using a battery-

powered electrical stimulator (Micromed, Brain quick, Treviso, Italy). The anodal 

electrode (size 1 cm) was placed on most distal phalange and cathode on the second 

distal phalange with an inter-electrode distance of approximately 1 cm (Kalogianni 

et al., 2018a).This placement is chosen to reduce the likelihood of anodal block 

(Cruccu et al., 2008). A monophasic anodic rectangular electrical pulse of 400 ks 

width and a stimulation intensity of two times the sensation threshold was chosen. 

The sensation threshold was defined as the level at which the subject was able to 

sense half of the 10 given pulses (Jones and Tan, 2013). The chosen stimulation 

did not cause any pain or heat feeling to the participants.  

The finger stimulation was repeated during 500 trials for each hand. During the 

stimulation, the EEG data were recorded with a 64-channel EEG system (TMSi, 

Netherlands) with ground electrode placed at the left mastoid, and online 

referenced to the common average. Sampling rate was 1024 Hz. Apart from 

antialiasing filters, no other filters were applied online. Positions of the EEG 

electrodes for every subject were measured with the ANT Neuro Xensor system 

(ANT Neuro, Enschede, Netherlands). The experimental setup (e.g. EEG cap 

placement and preparation, etc.) and finger stimulation had a typical duration of 50 
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min per participant. This short experimental time is plausible for stroke participants 

without any physical or mental fatigue.  

5.2.3 EEG pre-processing 

EEG data were preprocessed using EEGLAB (Delorme and Makeig, 2004), which 

is an open source toolbox running in the MATLAB environment. Continuous 

EEG data was band-pass filtered between 1 and 30 Hz to remove possible slow 

trends in the data (e.g., blood pressure, heartbeat, and breathing) and high-

frequency fluctuations in event-related potentials, and then down-sampled to 512 

Hz. EEG epochs were extracted using a window analysis time of 250 ms, with 50 

ms before stimulus and 200 ms after stimulus. The artifact caused by electrical 

stimulus was removed by a blanking window from 10 ms before the stimulus to 10 

ms after the stimulus. Then the gap was filled by a 3-order autoregressive model. 

Independent Component Analysis (ICA) algorithm (Delorme and Makeig, 2004) 

was used to remove the components of eye-blinks and movements (Li et al., 2006). 

After the artifact removal, the baseline correction was applied to each epoch using 

the signal from 50 ms to 10 ms before the stimulus. The epochs for the same 

experimental conditions were averaged in each subject, time-locked to the onset of 

the stimulus to extract the event-related potential (ERP). 

5.2.4 MRI acquisition and preprocessing 

Image acquisition was performed with a 3T MRI scanner (Discovery MR750, GE 

Medical Systems) at VU University Medical Center. Anatomical T1-weighted 

acquisition had the following settings: TE=3.22 ms, TR=8.21 ms, flip angle 12o, 

imaging matrix = 256 x 256 x 172, resolution 1 mm3. The diffusion-weighted MRI 

(dMRI) acquisition protocol involved 40 non-collinear gradient directions 

uniformly sampled over a sphere for each of two b-values: 1000 and 2000 s/mm2; 

TE=100 ms, TR=7200 ms, voxel size 2.5×2.5×2.5 mm3, 52 consecutive slices, 

acquisition time 12,5 min. This allowed for whole brain coverage. Data for each b-

value were acquired as separate scans together with five non-diffusion weighted 

images (i.e., per b-value). 

The dMRI data were preprocessed using FSL v5.0 (http://fsl.fmrib.ox.ac.uk/fsl/) 

(Jenkinson et al., 2012). The acquired DWIs were corrected for motion and eddy 

current distortion by affine co-registration to the reference b0-image (using FSL 

eddy_correct). Gradient directions were reoriented according to the rotation 
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Figure 5.2 Workflow of the VBMEG method. EEG, anatomic and diffusion weighted MRIs 
are first preprocessed. Then EEG sources are estimated using hVB approach. By combining 
sources and anatomical connections extracted from diffusion MRI, the linear connectome 
dynamics model is built leading to the estimation of dynamic information flow traveling 
between sources. The results are visualized individually for each subject dataset. 

component of the affine transformation. Diffusion tensor fitting and fractional 

anisotropy (FA) were calculated using FSL, and fiber tracking was performed with 

MRTrix software v0.2.10 (http://jdtournier.github.io/mrtrix-0.2/index.html).  

5.2.5 VBMEG Method 

The VBMEG method is constituted by a hierarchical Variational Bayesian (hVB) 

estimation of cortical sources as proposed by Sato et al. (2004) and a dynamic 

estimation of the information flow traveling from one source to another 

(Fukushima et al., 2015). In contrast to the original work from Sato et al. (2004), 

prior knowledge obtained from functional MRI was not included in hVB 

estimation. In this study, the source localization and dynamic information flow 

estimation were performed using VBMEG toolbox with default settings, using pre-

processed EEG data, built leadfield matrix and fiber tracking results. The VBMEG 

toolbox and documentation are available online 

(http://vbmeg.atr.jp/docs/v2/static/vbmeg_users_manual.html, 

http://vbmeg.atr.jp/download2/). The general overview of the VBMEG method is 

provided in Figure 5.2.  
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5.2.6 Source localization  

An individual head model for each subject was built using the T1 MR image for 

EEG source localization. Freesurfer (Reuter et al., 2012), an MRI processing 

software, was used to construct a polygon model of cortical surface, label the cortex 

surface anatomically, and extract the inner skull surface and outer scalp surface 

from the T1 image. Then a three-layer (CSF, skull, and scalp) head model was built 

using boundary element method (BEM) by VBMEG toolbox (Fukushima et al., 

2015). 10000 vertices on the cortex surface were chosen as possible dipole sources, 

and the leadfield matrix was built based on the position of dipole sources and EEG 

electrodes, as well as the head model by VBMEG toolbox. The conductivity of CSF, 

skull, and scalp was set as 0.62, 0.03 and 0.62 s/m respectively as the default setting 

in the toolbox (ATR, 2017). As both stroke participants have small white matter 

lesions in the deep brain area (see Figure 5.1), their lesions would not affect EEG 

source localization.  

The inverse calculation was performed using the hVB method to estimate the 

cortical source of EEG activity. The hVB is an altered version of the MNE method 

similar in structure to the Wiener filter, which intends to use the current variance 

to regularize the solution of the L2 – reconstruction problem (Sato et al., 2004). 

Nevertheless, because the true current variance is unknown, the hVB method places 

a hierarchical prior on the current variance and estimates it iteratively using an 

Automatic Relevance Determination (ARD) model (Neal, 1996). The hVB method 

differentiates itself further from the MNE method in that it places a smoothness 

constraint in the currents, ensuring that neighboring active sources are correlated 

(Sato et al., 2004). The source activity was estimated with pre-processed EEG 

signals and estimated leadfield matrix using the hVB method, which is 

implemented in the VBMEG toolbox.  

5.2.7 Dynamic information flow estimation  

The dynamic information flow was estimated by a linear connectome dynamics 

(LCD) model (as a variant of multivariate autoregressive, MAR model) to 

determine whether causal interactions exist between active cortical sources 

(Fukushima et al., 2015). The time window for dynamic analysis is around 0-200 

ms post stimulation for the length of 102 samples (sampling rate: 512 Hz). An 

anatomical constraint was applied to the LCD model based on the fiber tracking 

results from diffusion MRI, so only the anatomically connected sources have the 
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non-zero weights. For fiber tracking, the cortical surface was parcellated into 250 

equally distributed target regions of interest (ROIs) based on the diffusion MRI 

data. The remaining cortex vertices were clustered into these ROIs based on their 

spatial proximity. The source activity of these ROIs was calculated as the mean of 

contained dipole moments. Thus, there are 250 variables in the LCD model. Fibers 

connecting these ROIs through white matter were tracked using MRtrix 0.2. The 

fiber tracking results provide information about the presence of fiber connections 

between ROIs as well as the length of the fibers. The time lags in the LCD model 

were estimated based on the length of fiber connection using the theoretical 

conduction velocity of axon equal to 6 m/s (Fukushima et al., 2015). Only the 

terms with specific time lags were included in the LCD model, therefore the order 

for inter-variable interaction is one. In this case, the estimated LCD model could be 

represented by a 2-D matrix for inter-source dynamics. The intra-source dynamics 

was set as a second-order interaction. The LCD weights were estimated based on 

fiber connections and their corresponding time lag using an L2-regularized least-

squares method with the default regularization parameter (0.01) (Golub and 

Reinsch, 1971). These LCD weights represented the estimated dynamic 

information flow between cortical sources.  

5.2.8 Model evaluation 

The accuracy of source localization and dynamic information flow estimation was 

evaluated by calculating the Variance Accounted For (VAF) (Vlaar et al., 2017; 

Kalogianni et al., 2018b). For source localization, the estimated sources were used 

to generate an estimated EEG signal ˆM̂ LS= , which was compared with collected 

EEG signal M . For the ith EEG channel, 
iMVAF was defined as:  

( )
( )

ˆvar
1 100%

vari

i i

M

i

M M
VAF

M

 −
 = − ⋅
 
 

. 

The time window was chosen as from 0-200ms. As EEG channels on the non-

active areas are not representative, the VAF for source localization MVAF was 

defined as the median (instead of mean) of 
iMVAF across all EEG channels. For 

dynamic information flow estimation, one step forward (2 ms) of source activity Ŝ

was estimated by the LCD model. The estimated source activity was compared with 
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the results S  from source localization. For a specific time point t, the ( )SVAF t was 

defined as: 

( )
( )

ˆvar ( ) ( )
( ) 1 100%

var ( )
S

S t S t
VAF t

S t

 −
 = − ⋅
 
 

, 

where ( )S t  and ˆ ( )S t  are vectors containing all source activities resulting from 

source localization and estimated from LCD model respectively, and � is the time 

going from 0-200ms. The VAF for dynamic information flow SVAF  was defined as 

the mean of ( )SVAF t  in the time window. 

As the accuracy of the LCD model can be affected by the signal to noise ratio 

(SNR), the signal to noise ratio of the EEG recording was also calculated. The SNR 

is defined as follows:  

signal

noise

RMS

RMS

A
SNR

A
= , 

where Arms is the root mean square amplitude. To intuitively show the signal level, 

signal percentage was calculated by 

 100%signal

signal noise

RMS

signal

RMS RMS

A
P

A A
= ⋅

+
 

5.3 Results 

The results of the method application are illustrated in four cases: for two able-

bodied individuals and two chronic stroke subjects.  

In Figure 5.3 the ERP of a control and a stroke subject are presented.  In line with 

the literature (Oniz et al., 2016; Zhang et al., 2016), a positive-going peak around 

50 ms (P50) and a negative-going peak around 100 ms (N100) were identified in 

the ERP for both control and stroke. Additionally, we provide the ERP 

topographies at the latency of P50 in Figure 5.4. Both controls have similar 

topographies with large ERP values at the sensorimotor area of the contralateral 

hemisphere. This result is consistent with previous studies (Desmedt and Cheron, 

1980; Buchner et al., 1995; Druschky et al., 2003). Individual differences are 
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Figure 5.3 Normalized C3 Amplitude for control and stroke with stimulus on right hand. The 
ERP plotting at C3 shows great similarity for both control and stroke. The latency of P50 peak 
for stroke is slightly larger than that of control. 

 

Figure 5.4 Brain topographies of the P50 peak for control and stroke subjects when a 
dominant hand (for controls) and an affected hand (for strokes) are stimulated. (A-B): controls, 
(C): stroke 1, (D): stroke 2. 

shown in stroke patients, which may be related to subject-specific lesion load and 

recovery. 

The VAF of EEG source localization is shown in Table 5.2, where we can see the 

VAF of source localization is higher than 80 % for all subjects. 

Figure 5.5 shows the estimated dynamic information flow for each subject for 

finger stimulation at the dominant hand for control subjects, and at the affected 

hand for stroke participants. It also schematically depicts the anatomic connections 



Chapter 5. Neural dynamics based on EEG and diffusion MRI 

 

5. N
eural D

yn
am

ics 

between the active sources. The information flow is shown only at the contralateral 

hemisphere in the control subjects, while at the both hemispheres in the stroke 

participants. In the time period between P50 and N100 peaks, information flow 

occurs in the ipsilateral (contralesional) hemisphere, i.e. the left hemisphere for 

stroke subject 1 and the right hemisphere for stroke subject 2.  

Table 5.2 The VAF of EEG source localization (inverse model) for each subject. 

Subject VAF, Right Hand VAF, Left Hand 

Control 1 94.49 % 96.28 % 

Control 2 93.64 % 92.27 % 

Stroke 1 90.03 % 87.12 % 

Stroke 2 85.63 % 83.79 % 

The VAF of dynamic information flow estimation is provided in Table 5.3, where 

the VAF is higher than 90% for all subjects. Additionally, we also provide the SNR 

for all subjects in Table 5.4. Although the SNR for the stroke subjects is slightly 

lower than the controls, the signal percentage is above 88% for all subjects. To 

determine the baseline value of VAF when the input signal of the model is random, 

we replaced ERP signals with white noise. The same estimation and prediction 

process were repeated 100 timed with different noise realizations to determine the 

baseline. The estimated VAF obtained from this baseline test was around zero. 

Therefore, the high VAF from our dynamic information flow estimation, with 

respect to EEG source activity, can prove the significance of our results by 

comparing it to this baseline. 

For each subject, estimated coefficients matrices of the LCD model are presented in 

Figure 5.6, where we can see that increased inter-hemisphere interactions are shown 

for the stroke participants. This increase is also characterized by the number and 

percentage of the non-zero LCD model coefficients within and between 

hemispheres as shown in Table 5.5. 
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Figure 5.5 Source interactions estimated from LCD model. The plots show the information 
flow between P50 and N100 for each subject and anatomic connections between the active 
sources estimated via white matter tractography based on the individual dMRI acquisitions. 
The gray lines indicate the whole fiber network involved in the transmission of somatosensory 
information flow through the brain. The blue lines show the currently active fibers, and red 
dots are the currently active sources on the cortex at the specific time points. The ‘active 
sources’ here denotes the sources have electrical neural activities at the presented time point, 
while ‘active fibers’ indicate the fibers where the information flow is travelling through. For 
each subject projection of all axial slices (top) and of all sagittal slices (bottom) are shown. (A-
B): controls, (C): stroke 1, (D): stroke 2. For the full dynamics visualizations please refer to the 
Supplementary material of (Filatova et al., 2018b) 
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Table 5.3. The average VAF of the dynamic model estimation with standard deviation for all 
subjects 

Subject VAF Right Hand VAF Left Hand 

mean std mean std 

Control 1 97.77 % 12.42 % 97.77 % 12.41 % 

Control 2 97.58 % 10.00 % 97.78 % 12.42 % 

Stroke 1 92.30 % 14.80 % 93.75 % 12.06 % 

Stroke 2 91.69 % 11.58 % 92.86 % 10.47 % 

Table 5.4. Signal to noise ratio of data acquisition in each subject when the corresponding hand 
was stimulated. In Stroke 1 case left hand was impaired. In Stroke 2 case right hand was impaired. 

Subject  Right Hand  Left Hand 

SNR (dB) Signal 

percentage  

SNR (dB) Signal 

percentage  

Control 1  14.22 96.35 %  13.76 95.97 % 

Control 2  13.45 95.68 %  15.28 97.12 % 

Stroke 1  7.64 85.30 %  8.62 87.92 % 

Stroke 2  9.92 90.76 %  8.71 88.13 % 

Table 5.5. Number and percentage of intra-hemispheric vs. inter-hemispheric interactions 
represented by non-zero LCD model coefficients.  

 intra-hemispheric interactions inter-hemispheric interactions 

Number of 
interactions 

Percentage  Number of 
interactions 

Percentage 

Control 1 4956 89.3% 594 10.7% 

Control 2 4930 93.51% 342 6.49% 

Stroke 1 11868 84.18% 2230 15.82% 

Stroke 2 11274 76.51% 3462 23.49% 
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Figure 5.6 Matrices of the LCD model coefficients for controls (A and B) and stroke 
participants (C and D). 

To illustrate how the anatomical priors used in VBMEG improves the estimation 

of dynamic information flow, we also used a conventional method based on 

correlation metrics (Greicius et al., 2003) to estimate brain functional connectivity 

without involving anatomical constraints. As shown in Figure 5.7, numerous 

spurious connectivity was estimated between the sources, for which there is no 

physical pathway connection. It is also quantified in Table 5.6 as the number of 

false positives and false discovery rate. 

Table 5.6. Number of false positives (FP) and false discovery rate, i.e. FP/(FP + TP) × 100%, 
generated by correlation metrics without involving anatomical constraints. TP: True positive. 

 Number of false positives False discovery rate 

Control 1 5342 49.05 %  
Control 2 3598 40.56 % 

Stroke 1 2084 12.88% 

Stroke 2 2896 16.42% 
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Figure 5.7 False positives (indicated by the black dots in the maps) of functional connectivity 
generated by correlation metrics without involving anatomical constraints: (A-B): controls, 
(C): stroke 1, (D): stroke 2. 

5.4 Discussion  

The present work aimed to test the two-stage estimation procedure of the VBMEG 

method, consisting of an estimation of EEG sources and a dynamic estimation of 

the information flow between them, in both able-bodied individuals and stroke 

participants. This study is a proof of principle for the clinical applicability of 

VBMEG method, not only demonstrating its new application regarding the 

somatosensory stimulations but also indicating its potential for the study of 

hemiparetic stroke, which has not been done in previous studies.  

The estimation of the activation causality between sources provides insight on 

functional integration between cortical areas. The selection of strong fiber pairs 

between estimated sources constrains the solution space. Only the sources having 

the anatomical connection are included in the estimation of dynamic information 

flow, which controls the type I error in the MAR modeling. In the VBMEG 
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method, assumptions were made regarding the spatial sparseness and smoothness of 

the currents, as well as regarding the noise distribution being Gaussian and 

temporally uncorrelated. However, different noise models can potentially lead to 

different estimation results, and as long as a "true model" is not known, there will 

always be uncertainty regarding the possibility of fitting the noise in the solution. 

Therefore, a quantitative evaluation is needed to assess how much task-relevant 

cortical source activity and dynamics were captured in the VBMEG method.  In 

this proof of principle study, we assessed the performance of EEG source 

localization and LCD modeling in the VBMEG method by the variance accounted 

for (VAF) (Vlaar et al., 2017; Kalogianni et al., 2018b). The VAF is a summary of 

how much of the variability of the data can be explained by a fitted model. High 

VAF for both source localization and LCD modeling was reported in all tested 

datasets, indicating the VBMEG method can precisely capture the task-relevant 

cortical source activity and the dynamics in the brain network.  

In terms of stroke research, many efforts have been previously made to develop 

advanced methods based on fMRI to investigate reorganization of the sensorimotor 

system following a stroke (Grefkes and Fink, 2011). However, the poor temporal 

resolution of fMRI limits its ability to capture fast somatosensory information flow 

between cortical regions, which typically occurs in less than a hundred milliseconds. 

Therefore, a dynamic method based on EEG is highly desired for studying stroke. 

Most existing methods computing EEG source interactions are based on signal 

correlation/coherence (Srinivasan et al., 2007; Smit et al., 2008) or purely signal-

driven MAR modelling (Baccalá and Sameshima, 2001; Kamiński et al., 2001; 

Blinowska et al., 2004; Bressler and Seth, 2011) without referring to anatomical 

pathways in the brain (Friston, 2011; Sakkalis, 2011). When compared to a 

conventional method based on correlation metrics (Greicius et al., 2003), it is clear 

that our method combining the anatomic constraints provided a way to avoid 

spurious connectivity estimations as shown in Figure 5.7. 

For the able-bodied individuals, the estimated cortical sources and dynamic 

information flow are found only at the sensorimotor areas contralateral to the finger 

stimulation. This result is consistent with previous electro-neurophysiological 

studies (Jamali and Ross, 2013; Porcaro et al., 2013; Kalogianni et al., 2018a), 

showing that the somatosensory information is processed by brain regions 

predominantly contralateral to the stimulated hand. Conversely, in chronic 



Chapter 5. Neural dynamics based on EEG and diffusion MRI 

 

5. N
eural D

yn
am

ics 

hemiparetic stroke participants, the activation of brain activity occurs in both 

hemispheres, with information flow transmitted from the contralateral (ipsilesional) 

to the ipsilateral (contralesional) hemisphere in the time period between P50 and 

N100 whereas in control participants cortical activity stays over the contralateral 

hemisphere. The result of dynamic information flow indicates that reconfiguration 

of the sensory network following a stroke. Two chronic stroke survivors have the 

Fugl-Meyer upper extremity scores of 58 and 66, respectively, and the Erasmus MC 

modifications to the Nottingham Sensory Assessment (EmNSA) of 8 (see Table 

5.1). Thus, the reconfiguration of the sensory network occurs even in well-

recovered individuals with hemiparetic stroke as shown in this study. Similar 

findings were previously reported in an animal model (Winship and Murphy, 

2009). Regarding previous EEG/MRI studies in human participants the focus is on 

revealing cortical reconfiguration only of a motor network (Ward, 2015). There is 

growing evidence indicating an increased usage of ipsilateral (contralesional) 

cortical motor network associated with the loss of independent joint control (van 

Kordelaar et al., 2012; van Kordelaar et al., 2013; van Kordelaar et al., 2014) or the 

expression of the flexion synergy in the paretic upper limb following hemiparetic 

stroke (Yao et al., 2009; Wilkins et al., 2017; McPherson et al., 2018). However, 

less is known regarding changes of somatosensory cortical networks in this cohort 

(Gurari et al., 2017; Vlaar et al., 2017; Gurari et al., 2018). Our results could 

provide new evidence of reconfiguration of somatosensory cortical networks in 

individuals with hemiparetic stroke, which cannot be revealed by current clinical 

assessments. The reconfiguration of somatosensory cortical network may contribute 

to our understanding of time-dependent mechanisms during recovery of the 

sensory as well as motor function post hemiparetic stroke (Nelles et al., 1999; Ward, 

2017a). A better understanding of the recovery of somatosensory function, based 

on connectivity, is imperative as it serves as an essential feedback channel for the 

control of movement (Todorov and Jordan, 2002; Scott, 2004). Thus, the 

VBMEG has potential to evolve into a new neuroimaging tool to monitor cortical 

network changes post hemiparetic stroke and thus improving our understanding of 

stroke recovery. 

It is worth to discuss the pros and cons of the presented work, in order to point out 

possible future directions. This work presented a multi-modal brain imaging 

method which combines anatomical and physiological information from MRI and 
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EEG. Different from conventional EEG connectivity methods that are purely based 

on mathematical modelling and signal correlation, our method considers physical 

connections between cortical sources (obtained from dMRI), which reduces the 

chance of false positive in connectivity assessment, as indicated by Figure 5.7 and 

Table 5.6. This allows for a comprehensive way to track neural information flow 

traveling between cortical regions through neural tracts, which, to the best of our 

knowledge, has never been realized before in other methods. Moreover, compared 

to the fMRI-based connectivity methods, this EEG-dMRI combined method is 

able to provide a fine temporal resolution to capture fast somatosensory 

information flow in the brain, which occurs at the timescale in order of 

milliseconds.  

Nevertheless, the current work has several limitations and could be improved in 

following directions:  

• Ideally, the presented method could be configured in a way that 
simultaneously estimates EEG sources and dynamic information flow, 
known as “one-step” strategy (Fukushima et al., 2015). However, the 
implementation of one-step strategy has yet to be improved and validated3. 
Therefore, in this study, we employed the “two-step” strategy where the 
EEG source localization and dynamic information were performed 
sequentially. 

• In the future, we will also consider improving our method by estimating 
tissue conductivity in a subject-specific way. This can be done using the 
electrical impedance tomography as introduced by (Dabek et al., 2016) . 
That will allow a more precise head modelling for EEG source localization.  

• Additionally, the white matter conduction velocity could be better estimated 
in the future by considering the change of fiber myelination after stroke.   

• In the current study, we applied our method to stroke patients with small 
white matter lesions. Thus, the head modeling and EEG source localization 
would not be affected by the lesion. In the future, the finite element model 
can be built for precise head modeling, in particular for the patients who also 
have gray matter lesions. This will also require additional methodological 
improvements to allow for cortical parcellation. To the best of our 
knowledge, the currently available approaches are not equipped to solve this 
problem. 

                                           
3 http://vbmeg.atr.jp/docs/v2/static/vbmeg_users_manual.html#toc9  
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• As a proof of principle study, we did not aim to make general conclusions 
regarding reorganization of the information flow between neural networks in 
the brain after stroke. Current results can be considered as a multiple-case 
study used for the introduction of our methodology as well as provides a 
preliminary assessment of the ability of our approach. Therefore, no 
conclusions on a group level can be drawn yet neither for the able-bodied 
individuals, nor for the stroke survivors. However, we do consider this as an 
objective for the future application of our method, in order to develop a 
sensitive biomarker for assessing brain function and reorganization after a 
hemiparetic stroke. Increase in the inter-hemispheric cross talk after stroke, 
as indicated by Figure 5.6 and Table 5.5, might be considered a candidate 
for such a biomarker. 

• Regarding our results on EEG source localization and information flow, the 
stimulation to either the left or right hand leads to similar responses in the 
contralateral hemisphere in able-bodied individuals. Therefore, we did not 
further investigate the effect of handedness in this study. Furthermore, there 
are a few previous neuroimaging studies investigated the effects of 
handedness on the human brain. For example,  differences in volumes of 
grey and white matter areas were detected by Herve et al. (2006). A voxel-
based statistical analysis found higher FA in the left arcuate fasciculus in 
consistent right-handers (Buchel et al., 2004), but this was not confirmed in 
a study from Park and colleagues (Park et al., 2004). Right hand preference 
might be expected to result from asymmetries in the motor cortex. However, 
it is more strongly correlated with asymmetries in language-processing 
structures (Toga and Thompson, 2003). A more recent study by Powell et al. 
(2012) suggests a greater effect of gender than handedness, based on a DTI 
analysis. All in all, results regarding handedness effects on the brain have not 
been entirely consistent across different studies. Based on new evidence from 
(Filatova et al., 2018), it is very likely that the influence of stroke is 
significantly higher than the effect of handedness. In the future, we would 
like to further justify this assumption on a larger sample size using our 
method. 

5.5 Conclusion  

This study provides a proof-of-principle assessment on the VBMEG method. Our 

experimental results indicate that VBMEG method can capture the task-relevant 

cortical source activity and estimate the dynamic information flow in neural 

networks at the brain. Application of the VBMEG method to the data recorded 
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from stroke participants demonstrates the potential of monitoring dynamic brain 

activity and revealing the reconfiguration of somatosensory cortical networks 

following a hemiparetic stroke. In the future, we plan to apply this method to a 

larger sample size to identify quantitative biomarkers for the assessment of sensory 

impairment after a unilateral brain injury. Furthermore, the inclusion of this novel 

imaging method in future clinical trials starting at the acute phase following a 

hemiparetic stroke is likely to advance our understanding of the neurobiological 

recovery. In conclusion, the use of the VBMEG method is expected to provide 

novel quantitative means to assess and subsequently develop more effective 

neurorehabilitation approaches. 
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The future is fluid. Each act, each decision, and each development creates new 

possibilities and eliminates others. The future is ours to direct. 

Jacque Fresco 
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6 A longitudinal diffusion MRI study: 

case studies from acute to chronic 

stroke 
In this chapter multiple case-studies of stroke recovery in six individuals are 

presented. Based on the results of Chapter 3, two multi-compartment models were 

applied to the diffusion magnetic imaging (dMRI) data of stroke survivors acquired 

longitudinally throughout their recovery.  

6.1 Introduction 

Stroke is a major cause of disability in the developed world. Up to 80% of the 

stroke survivors suffer from upper limb paresis (Kwakkel et al., 2003; Dobkin, 

2005). Prognosis for upper limb motor recovery is mainly determined within the 

first hours and days after the onset of brain ischemia. It was suggested in (Winters 

et al., 2015) that the outcome of motor recovery of the upper paretic limb 

measured at 6 months may be predictable within the first 72 hours post stroke. 

Moreover, the extent of recovery in the majority of the patients is an almost fixed 

amount of about 70% of the totally possible change. There is a number of 

mechanisms which can account for damage reversibility of infarcted motor control 

areas post stroke such as: salvation of penumbral tissue and elevation of diaschisis 

(Buma et al., 2013). 

Unfortunately, about one third of the patients does not fit this proportional model 

of spontaneous recovery. A better insight into how neuronal networks change, 

starting from the acute phase after stroke onset, could help to understand the 

underlying recovery mechanisms in these nonfitters. Additionally, prognostic 

models might be improved by an enhanced understanding of these mechanisms. 

Furthermore, having improved biomarkers of spontaneous recovery from diffusion 

Magnetic Resonance Imaging (dMRI) early after stroke could support assessing the 

impact of applied rehabilitative interventions. The importance of dMRI stems from 

evidence that changes in white matter (WM) structures may be observed in 
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diffusion tensor imaging (DTI) data prior to clinical onset of diseases and before 

becoming evident in conventional MRI. 

In recent years, more and more studies have emerged investigating longitudinal 

alterations in stroke survivors (Ward et al., 2003; Pannek et al., 2009; Groisser et 

al., 2014; Ma et al., 2014; Vlaar, 2017) or even patients suffering a transient 

ischemic attack (Ferris et al., 2017). A limitation of the previous assessments of 

WM microstructural changes, and also in the cases of longitudinal measurements, is 

in using conventional, so-called single b-value dMR imaging methods (Pannek et 

al., 2009; Yu et al., 2009). An accurate study into white matter alterations after 

stroke benefits from advanced imaging techniques enabling sophisticated modeling 

(Filatova et al., 2018). We intend to study neurological alterations after stroke 

longitudinally by measuring structural features using dMRI starting within the first 

five days post-stroke. As swelling reaches its maximum around 5-7 days post-stroke 

and then decreases, we should be able to observe changes in the diffusivity 

parameters, for example, fractional anisotropy increase and therefore decrease of the 

brain asymmetry due to stroke (Warach et al., 1996; Bhagat et al., 2008). 

Accordingly, dMRI and clinimetric information were measured four times during 

the first half year post stroke starting within five days of the incident. Our aim is to 

study anatomic changes occurring in the brain during stroke recovery based on 

dMRI. We hypothesize that there is a common pattern of recovery reflected in WM 

diffusion properties that can be captured early on after stroke. Such a metric could 

be represented either by initial brain asymmetry measures or their changes between 

the first two measurement points. 

6.2 Methods 

6.2.1 Cohort and study design 

Subjects were included after informed consent and with permission of the Medical 

Ethics Committee of the Vrije Universiteit Medical Center, Amsterdam, and the 

Board of the Reinier de Graaf Gasthuis hospital, Delft. The trial protocol was 

registered on 23 October 2013 at the Netherlands Trial Register (identifier 

NTR4221) and amended on April 4, 2016, to include longitudinal dMRI 

measurements. Inclusion criteria for the subjects suffering from stroke were: upper 

limb paresis, ability to sit without support (National Institutes of Health Stroke 
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Scale item 5 a/b > 0), age >18, first-ever ischemic hemispheric stroke, <5 days post 

stroke. Exclusion criteria were: previously existing pathological neurological 

conditions or orthopedic limitations of the upper limb that would affect the results, 

botuline-toxine injections or medication that may have influenced upper limb 

function in the past three months, general MRI contra indications (claustrophobia, 

pacemaker or other metallic implants), high risk of epilepsy. Clinimetric 

measurements were scheduled as close to the dMRI acquisition date as possible. 

Patients (n=18) were consecutively included from November 30, 2016 to March 21, 

2018. However, 12 dropped out at different stages of the study: 1 wrong stroke 

diagnosis, 1 death, 2 repeated strokes in the course of the study, 1 skin rash, 1 

claustrophobia (unknown at the inclusion time), 6 patients were too burdened by 

the study (project protocol included clinimetric and electroencephalographic 

measurements in addition to the MRI acquisitions). 

6.2.2 MRI protocol 

Image acquisition was performed with a 3T MRI scanner (Philips Achieva, Philips 

Healthcare, Best, The Netherlands). The diffusion-weighted MRI (dMRI) 

acquisition protocol had 40 non-collinear gradient directions uniformly sampled 

over a sphere for each of two b-values, 1000 and 2000 s/mm2, acquired in a single 

scan; TE=100 ms, TR= 6506 ms, imaging matrix = 96x96, 50 consecutive slices 

with a thickness of 2.5 mm and slice spacing 2.5 mm. One image per acquisition 

had no diffusion weighting, i.e. b=0 s/mm2. 

6.2.3 Data preprocessing 

Preprocessing was done similarly to Chapter 3, (Filatova et al., 2018). However, a 

main difference was the fact that scans corresponding to different b-values were 

acquired simultaneously, so that their co-registration was not needed. 

dMRI data were preprocessed using FSL v5.0 (http://fsl.fmrib.ox.ac.uk/fsl/, 

(Jenkinson et al., 2012)). The acquired DWIs were corrected for motion and eddy 

current distortion by affine coregistration to the reference b0-image (using FSL 

eddy_correct). Gradient directions were reoriented according to the rotation 

component of the affine transformation. Based on the results of Chapter 3, two 

diffusion models were fitted to the data: single tensor with isotropic compartment 

and bi-tensor with isotropic compartment (Caan et al., 2010). The maximum 
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diffusivity of the tensor compartment in both models was limited by the diffusivity 

of free water at body temperature, ~3·10-3 mm2/s. 

6.2.4 Registration 

Separate fractional anisotropy (FA) and radial diffusivity (RD) images were derived 

for each diffusion model and each subject. All FA images were co-registered to the 

Montreal Neurological Institute (MNI) space using an affine registration with 12 

degrees of freedom as implemented in FSL v5.0 (Jenkinson et al., 2012). 

Subsequently, the same transformation was applied to the rest of the parameter 

maps (RD, volume fractions, etc.). Similarly to the previous cross-sectional analysis 

(Chapter 3), areas with high volume fraction of the isotropic compartment (fiso) 

determined by the bi-tensor model were excluded from the analysis. 

The JHU white-matter tractography atlas (https://neurovault.org/collections/264/) 

was projected onto the data to determine location of the common WM tracts. This 

tractography atlas contains 20 labeled white matter structures. It was generated by 

averaging the results of deterministic tractography in 28 normal subjects (mean age 

29, M:17, F:11) (Mori et al., 2005). Several symmetric WM tracts in this atlas were 

considered in our analysis. Their functional roles are summarized in Table 3.1 of 

this thesis. Additionally, the atlas contains delineations of forceps major and forceps 

minor. Based on the results of Chapter 3, we considered diffusion measure changes 

only in corticospinal tract and superior longitudinal fasciculus, because those WM 

structures were most affected by stroke. 

6.2.5 Data analysis 

As concluded from the cross-sectional analysis, FA and RD are the properties most 

strongly reflecting WM changes after stroke compared to the control population. 

That is why for every tract and for all subjects we calculated the mean values of FA, 

RD and fiso. After that, we determined asymmetries of the mean tract values 

between contralesional (healthy) and ipsilesional (impaired) hemispheres, which 

were normalized to the interval between -1 and 1. For example, for FA it was 

defined as 
( )
( )

healthy impaired

asymmetry

healthy impaired

FA FA
FA

FA FA

−
=

+
. This allowed making sure that subject 

outcomes are comparable despite individual differences of the absolute values of 

diffusion measures between subjects.  
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Figure 6.1. Fugl-Meyer upper extremity score of the subjects as a function of time since stroke 
(week) are indicated. Maximal FMA score is 66 points. Colors represent different subjects. For 
Subject 3 the third measurement (week 12) is missing. 

6.3 Results 

The characteristics of the 6 patients were : 1 female; median age: 63 (IQR: 59 – 

69.25); 2/6 patients had an impaired right hand; for 3/6 patients the dominant 

hand was impaired. Four diffusion-weighted MRI (dMRI) scans were acquired 

within 5 days, at 5, 12 and 26 weeks post stroke. Further information regarding 

patient inclusion and initial measurements is presented in Table 6.1. Notes on 

lesion location are presented in Table 6.2. 
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Figure 6.2. Change of the Fugl-Meyer upper extremity score between T4 and T1 in each subject 
represents observed recovery. Expected recovery is computed based on the 70% rule as 

( )max initial0.7 FMA FMA⋅ − . Maximal FMA score is 66 points. Colors represent different 

subjects. 

Table 6.1. Patient demographic information. 

Patient 
number 

Stroke date Inclusion date 
First MRI 

date 
First clinimetrics 

date 
1 7.03.2017 08.03.2017 09.03.2017 10.03.2017 
2 25.03.2017 27.03.2017 28.03.2017 27.03.2017 
3 12.08.2017 12.08.2017 15.08.2017 12.08.2017 
4 15.08.2017 17.08.2017 18.08.2017 17.08.2017 
5 20.08.2017 23.08.2017 24.08.2017 23.08.2017 
6 15.10.2017 16.10.2017 16.10.2017 17.10.2017 

Table 6.2. Lesion location per subject. 

Patient number Lesion location 
1 Basal ganglia, right hemisphere 
2 Small areas in frontal and parieto-occipital lobes, right 
3 Thalamus, right 
4 Small lacunar infarct (no CT representation), left 
5 Internal capsule and sub-insular, right 
6 Small lacunar infarct (no CT representation), left 
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Fugle-Meyer assessment (FMA) score of the study participants over time is 

presented in Figure 6.1. For subject 3, clinimetrics of week 12 is missing. For 

subjects 1 and 3 no dMRI was acquired at 12 weeks. These data are missing due to 

unavailability of the patients in the week required by the protocol. In all of the 

plots points and/or lines of the same color represent the same subject. 

Figure 6.2 shows how recovery of the subjects in this study relates to the so-called 

proportional recovery rule. According to this rule, patients achieve about 70% of 

their maximum recovery as indicated by the FMA score. Among our subjects only 

Subject 3, depicted in green, did not fit this rule. 

Time trajectories of each patient of fiso, FA and RD asymmetries in two white 

matter tracts, corticospinal tract (CST) and superior longitudinal fasciculus (SLF), 

are presented in Figure 6.3 (single tensor plus isotropic compartment) and Figure 

6.4 (bi-tensor with isotropic compartment). 

When compared to the outcomes of the cross-sectional study (Chapter 3), 

individual patient outcomes for both FAasymmetry and RDasymmetry fall outside the 

range of the corresponding measures for the control subjects. Except for the 

increased FAasymmetry and RDasymmetry compared to the controls, no clear recovery 

pattern of these was observed in neither CST nor SLF for both models. Pearson 

correlations computed between these asymmetries at week 1 and FMA at week 26 

were not statistically significant. The same holds for the correlations of the 

asymmetry changes between week 5 and week 1 and patient FMA at week 26. 

However, a rapid decrease in the asymmetry of fiso for subjects 1, 2, 4 and 6 can be 

observed with both employed models. Subjects 3 and 5 demonstrate a less 

prominent decrease. Even in the latter two subjects, the lowest asymmetry value of 

fiso corresponds to the time point with the highest measured FMA score. 

6.4 Discussion 

In the present preliminary study we studied microstructural changes occurring in 

the brain during stroke recovery as assessed by diffusion-weighted MRI measured at 

four time points in the first six month of recovery starting within 5 days after stroke. 

Based on the tract-based spatial statistics, (Koyama and Domen, 2017) suggested 

that interhemispheric ratio of FA in CST and SLF could be a predictor of cognitive 



Chapter 6. Longitudinal diffusion MRI 

121 
 

6.
 L

on
gi

tu
di

n
al

 d
M

R
I 

function and extremity function. In case of cognitive processing assessment, the 

same two tracts were found to play an important role: CST for the psychomotor 

speed and SLF for the executive functioning (Biesbroek et al., 2018). Therefore, 

based on the recent stroke literature and our previous results, we investigated the 

behavior of diffusion measures’ asymmetries in CST and SLF. 

Despite the original hypothesis, no clear relation was found between the FA and 

RD asymmetries at week 1 or their changes between week 1 and week 5 and the 

FMA scores at week 26. However, the results show that the asymmetry in the 

volume fraction of the isotropic compartment between the contra- and ipsilesional 

hemispheres rapidly decreases during the first weeks of recovery. This may indicate 

that the white matter tissue swelling decreases in the affected hemisphere thus 

leading to the improved motor performance. Moreover, the isotropic compartment 

might be a biomarker of the vasogenic edema post stroke. 

This study has a number of limitations. The most prominent drawback is the small 

sample size with a group consisting of the patients well-recovered at the half-year 

mark. This was caused by the low inclusion and high drop-out rates of the study. 

Furthermore, from a methodological point of view, especially at the early stages 

post stroke, it is more desirable to measure MRI and clinimetrics on the same day, 

which was not the case in our protocol. According to (Thomas et al., 2018), even 

the time of day at which the patient was scanned may play a role with the 

diffusivity measures. Although the exact underlying mechanism is not known, 

radial and axial diffusivities increase from the afternoon to the morning hours. 

Despite the limitations, the unclear pattern of recovery observed in this work could 

also be caused by the biological differences between the patients. Lesion location 

and volume vary between the patients, but are important indicators of the nature 

and severity of post-stroke impairment (Wu et al., 2015). Moreover, all the stroke 

participants exhibited extremely high levels of recovery, even exceeding the 70% 

recovery rule prediction. According to the current recovery prediction modelling, 

patients with initial FMA scores under 17 points have low chances of good motor 

recovery. In two out of the six considered patients lesions were not visible on the 

clinical CT scans. Four patients had initially low FMA scores with three of them 
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reaching above 50 points at the end of the observation period. This most probably 

led to a study cohort biased towards a good motor outcome. 

In the study of Boscolo Galazzo and colleagues a similar longitudinal design was 

used with measurements within 1 week, at 1 month and 6 months (Boscolo 

Galazzo et al., 2018). They were able to quantify the remodeling of WM tracts and 

even grey matter regions involved in motor recovery after ischemic stroke in 10 

stroke patients and 10 control participants. However, their acquisition consisted of 

258 diffusion directions and 34 non-zero diffusion weightings (b-values) allowing 

to apply generalized diffusivity measures such as generalized fractional anisotropy, 

propagator anisotropy, etc. In our case even with the very limited study population 

and much less extensive acquisition protocol we are able to detect microstructural 

changes based on the water content in the affected brain.  

In conclusion, we did not find significant correlations between diffusion measures 

and FMA score. However, we visually observe trends that could be of high interest 

for clinical application. Our study was very limited in its design regarding the 

number of subjects, we therefore recommend to perform longitudinal study with a 

larger sample size. 

6.5 Conclusions 

• No clear patterns in FA and RD asymmetry changes were observed during 

longitudinal dMRI measurements of stroke recovery. 

• Initial asymmetry change in volume fraction of an isotropic compartment, i.e. 

tissue swelling, could be a useful outcome predictor for an upper extremity 

recovery 

• Further investigation of the WM changes in the bigger sample of the diverse 

population of stroke survivors and larger sample sizes are necessary to achieve 

further insights into stroke recovery mechanisms. 
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Figure 6.3 Evolution over time of FA, RD and fiso asymmetries in the corticospinal tract (left) and superior longitudinal fasciculus (right) estimated 
by the single tensor model with isotropic compartment. 
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Figure 6.4 Evolution over time of FA, RD and fiso asymmetries in the corticospinal tract (left) and superior longitudinal fasciculus (right) estimated 
by the bi-tensor with isotropic compartment. 
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Life is the art of drawing sufficient conclusions from insufficient premises. 

Samuel Butler 
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7 Conclusion and outlook 
In the past decades diffusion-weighted MRI has grown and matured as a unique 

non-invasive technique to assess the white matter microstructure of the brain. This 

thesis focused on brain dMRI analysis and aimed to enhance the understanding of 

the white matter changes in clinical populations, namely, patients with attention 

deficit hyperactivity disorder (ADHD) and in stroke survivors. In this chapter, I 

will highlight the conclusions of my work; discuss the relationship between the 

results obtained in separate chapters and give recommendations for the future 

developments in the field. 

Figure 7.1 schematically describes relations between the chapters of this thesis in 

terms of the study design (cross-sectional or longitudinal) and the type of the 

methodology being used (established in the field or novel). 

What catches the eye in Figure 7.1 is that the top right quadrant of the scheme is 

empty: novel methods described in Chapters 4 and 5 have not yet been applied to 

the data acquired in a longitudinal manner. 

By combining methodology for assessing dynamic information flow in the brain, 

introduced in Chapter 5, with the longitudinal measurements, as presented in 

Chapter 6, a deeper insight into structure-function coupling in the stroke survivors’ 

population can be gained. It remains unclear whether the higher level of 

interhemispheric integration demonstrated in the proof-of-principle study in this 

thesis is generalizable to the wider range of stroke patients. Moreover, how such an 

integration may occur and at what stage during the course of recovery would be an 

important direction of investigation. This project set out to enable determination of 

realistic therapeutic goals and selection of particular rehabilitation approaches. 

Speculatively speaking, it could happen that certain types of therapy lead to 

normalization of the brain information flow thus ensuring better patient outcomes. 

Or, perhaps, even higher levels of interhemispheric communication could mean 

more efficient motor performance of the patients as the contralesional hemisphere 

takes over functions of the affected hemisphere. Approaches described in this thesis 
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Figure 7.1 Schematic representation of the chapters of this thesis in terms of the study design 
(cross-sectional or longitudinal) and the type of the methodology being used (established in the 
field or novel). 

could be used to search for answers to these questions and further development of 

both neuroscience and rehabilitation fields. 

On the other hand, it is also possible to apply the tractography approach with an 

automatic model selection to longitudinal measurements. However, when 

attempting to compare outcomes in the same pixel or region of interest, one should 

make sure that diffusion measures  are comparable over multiple time points. The 

difficulty is that they could be estimated through different models and the exact 

ways to deal with this issue need to be investigated to draw any meaningful 

conclusions. One approach to resolve this could be based on spatially consistent 

model selection inspired, for example, by Chapter 4 of (Arkesteijn, 2018). 

Let us now discuss the results of each chapter in more detail. 
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7.1 Voxel-based morphometry of dMRI in ADHD patients 

Despite the increased number of subjects being diagnosed with ADHD, safety 

studies on the effect of stimulant medication on the development of the adolescent 

brain remain scarce. In Chapter 2, dMRI is employed in a randomised clinical trial 

to study the influence of stimulant medication on the WM and its age modulated 

effects. Our results provide some direction regarding safety of methylphenidate 

hydrochloride use during brain development indicating positive effects on brain 

white matter FA in children suffering from ADHD. As for the long-term, the 

significance of these findings still remains to be established. 

The study design was strong, especially in terms of minimizing confounders such as 

age and gender. However, the applied acquisition protocol with a single diffusion 

weighting value (b=1000 s/mm2) limits possibilities for the more advanced 

diffusion modeling that could further improve interpretability of the results.  

With that in mind, and based on experiences of colleagues working on studies such 

as the Rotterdam scan study (Ikram et al., 2015), one should develop the protocol 

for a study based on the expected outcome measures. In the Chapters 3, 4 and 6 of 

this thesis a protocol with two diffusion weightings was used to allow for more 

freedom for interpreting diffusion measures. Namely, a more extensive protocol 

made it possible to apply models taking into account additional physical processes 

such as fiber crossings and the presence of free water in the tissue. 

7.2 Chronic stroke: diffusion modeling 

In Chapter 3, we evaluated the influence of stroke on white matter tracts based on 

interhemispheric asymmetry of diffusion properties. This analysis was done using 

four tensor-based diffusion models in order to determine their performance when 

relating WM properties with the clinical outcome of chronic stroke patients. 

Particularly, we studied the asymmetries of FA, MD, AD and RD in nine 

symmetric WM structures. Our results indicated that FA and RD asymmetries may 

be most predictive for white matter alterations after stroke. Moreover, multi-

compartment models accounting for the free-water diffusion allowed for a more 

sensitive evaluation of the tract properties. We found that not only the corticospinal 
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tract, but also the superior longitudinal fasciculus is significantly affected by stroke 

as indicated by the group comparison between patients and controls. This supports 

the hypothesis previously discussed in literature that stroke leads to alterations in 

the brain even in the areas distal to the lesion location. A limitation of this study is 

a relatively small sample size which does not allow to investigate further statistics 

such as an interaction between the handedness of the subjects, lesion location and 

brain asymmetry. 

Given this information at the chronic stroke stage, multi-compartment diffusion 

models should be tested in stroke patients longitudinally, starting from the acute 

phase. 

7.3 Multi-tensor tractography with model selection 

So far, we have concluded that multi-compartment models are useful tools to 

investigate WM properties in stroke. However, it is also important to take into 

account brain anatomy at different locations. For example, corpus callosum is the 

inter-hemispheric tract and its body does not contain fiber crossings. It is thus 

superfluous to fit a crossing-fiber model to the data of this tract. On the other hand, 

the corticospinal tract and various association fibers encounter many crossings over 

their length and it is advantageous to model that as well. 

In Chapter 4, we introduce a framework for model selection and probabilistic 

tractography and assess the performance of this approach quantitatively using 

artificial phantom data as well more qualitatively in healthy subjects’ scans by 

counting the number of fibers estimated over one crossing of major white matter 

tracts. We employ the information complexity criterion that balances the goodness 

of the model fit and the model complexity. This way the selection procedure 

outputs the model, which is best supported by the available data. The resulting 

fiber orientations and CRLB-based variance of the estimated fiber orientations serve 

as inputs for the probabilistic tractography algorithm. 

Our framework allowed achieving a lower median angular error and a better 

performance for the highly curved fibers and the kissing fibers of the fibercup 

phantom compared to the Camino software. As for the in-vivo measurements of 
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healthy controls, we were consistently able to track more fibers across the 

corticospinal tract and corpus callosum than Camino. These results indicate that 

employing model selection as a part of a dMRI analysis pipeline is beneficial for 

achieving accurate estimations of white matter properties. 

7.4 Brain dynamics estimation 

Lesions affect anatomical brain networks resulting in functional disturbances of 

brain systems and their behavior (Alstott et al., 2009). In Chapter 5 we 

demonstrated the feasibility of estimating dynamic interactions of cortical sources 

during sensory stimulation, with the aid of dMRI-based anatomic constraints. First, 

sources of the brain activity were estimated from EEG recordings at different time 

points. Then anatomic connections and their length were derived using white 

matter tractography. Only sources connected by tractography are included in the 

estimation of dynamic information flow and time delays are estimated based on the 

connection length. This helps to control the type I error in multivariate 

autoregressive modeling. 

This approach is first applied to the EEG recordings of healthy controls. The results 

show contralateral activation patterns consistent with findings in literature. In 

chronic hemiparetic stroke participants, the activation of brain activity occurs in 

both hemispheres, with information flow running through the ipsilateral 

(contralesional) hemisphere. Performance of the method is evaluated by estimating 

the variance accounted for in the source localization and dynamics estimation. 

Despite the linear nature of the multivariate autoregressive model, an average 

variance accounted for (VAF) of over 90% is achieved for the dynamics estimation, 

with about 97% VAF in controls and about 91% in stroke patients. 

Our results indicate that reconfiguration of the sensory network may occur 

following a stroke. This suggests a direction for identifying quantitative biomarkers 

to assess sensory impairment after a unilateral brain injury. Application of this 

methodology to a large database of measurements can be a first step to achieve 

further understanding of the brain reorganization and recovery mechanisms post-

stroke. 



Chapter 7. Conclusion 

135 
 

7.
 C

on
cl

us
io

n
 

7.5 Stroke recovery 

In Chapter 6, based on the results of Chapter 3, a single tensor model with an 

isotropic compartment and a bi-tensor model with an isotropic compartment were 

applied to the dMRI data acquired longitudinally during recovery of stroke patients. 

Asymmetries of FA, RD and fiso were assessed in the corticospinal tract and the 

superior longitudinal fasciculus of these patients at each time point. 

No relation was found between the patient motor outcome and initial FA and RD 

asymmetries or the patterns of their change in time. The asymmetry in the volume 

fraction of the isotropic compartment between the hemispheres showed rapid 

decrease during the first weeks of recovery indicating the decrease in tissue swelling. 

This was associated with the increased FMA scores of patients. All in all, a larger 

and more varied sample size is necessary for generalizing the conclusions about the 

microstructural changes during stroke recovery. 

7.6 Final remarks 

Diffusion-weighted MRI of the brain’s white matter is a widely applied technique 

for research purposes. However, it is not yet a common clinical tool and still needs 

to find a place in the standard toolbox of radiologists and neurologists. For a stroke 

patient arriving to a hospital, computed tomography (CT) is the first modality of 

choice all over the world to differentiate hemorrhagic and ischemic strokes. Clinical 

utilization of dMRI is much more rare despite its ability to dramatically alter 

ischemic stroke care by early detection of ischemic changes in the brain tissue and 

differentiating them from other stroke-mimicking events (Birenbaum et al., 2011). 

Lack of studies proving how complex diffusion modeling can be helpful in 

rehabilitation and the absence of readily available analysis software solutions are 

among the obstacles for translating research knowledge on dMRI into clinical 

practice. Moreover, to assess brain microstructure based on the dMRI, appropriate 

acquisition protocols should be used. 

This thesis studies how outcomes of different multi-compartment models relate to 

patient outcomes and developing the tools to gain insight into the disease impact 

and patient recovery process. Combining functional causality and structural 
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connectivity is one of the ways to get a more comprehensive understanding of 

stroke. 

A general difficulty in human neuroscience research is the absence of a ground 

truth, making it even more difficult to interpret the results of image analysis and 

modeling approaches. One way to overcome this problem is to look into simulated 

or animal data. At the same time, attempting to do so in patient measurements will 

certainly add another level of complexity. 

On a more general level, we aim at improving patient prognostic models so that for 

every patient the possible extent of recovery would be clear at a very early stage. The 

better prognosis is made, the more personalized rehabilitation therapy can be. 

However, what will we do when they become very precise on individual level? 

Which approach will be taken in cases when almost no recovery will be predicted 

for a specific person? To my opinion scientific development means that awareness 

of such questions needs to be increased not only in daily practice of clinical doctors, 

but of technical researchers as well. 

Currently, one of the biggest challenges is translation of knowledge gathered via 

basic and applied research into clinical use. That is why, in my view, translational 

research is where the biggest impact can be made in the near future. To be 

successful, such an interdisciplinary field requires combined efforts of researchers 

and clinicians. Frequently, researchers are interested in developing new technology 

and studying fundamental biological mechanisms by means of modeling or 

nowadays widely popular machine learning approaches. On the other hand, the 

primary concern of clinicians is their patients’ well-being, which may cause 

reluctance in adopting new techniques and devices. Therefore, a change of the 

mindset needs to happen at both sides of the spectrum. Many problems that are 

being solved and presented in scientific forums and conferences form an important 

step in this direction. I find that we need to start with the question or need from 

the clinical perspective and then work towards addressing it with technological 

advances. The research community should rise to the challenge of generalizing 

algorithms to clinically relevant data, handling patient-specific results and non-

standard anatomy. One of the most difficult parts is demonstrating that what we 
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develop has benefits when used in the clinic and addressing the above-mentioned 

problems can be another step in this direction. And that is what clinicians should 

be open to. 

Hopefully, insights presented in this thesis can be employed to bring dMRI analysis 

closer to rehabilitation of stroke patients in clinical practice, with the ultimate goal 

of facilitating more personalized treatments. 
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Summary 
Human brain consists of grey and white matter. Grey matter largely forms the 

outer layer of the brain, and is responsible for decision making and functioning 

of the human body. Complementary, the white matter (WM) contains the 

communication pathways between the grey matter areas. Diffusion-weighted 

magnetic resonance imaging (dMRI) is an imaging modality allowing to model 

the brain’s white matter structures by making the MRI acquisition sensitive to 

diffusion processes. When brain structure is altered due to pathology, it can be 

assessed and quantified by analysing dMRI data. 

This thesis investigates the influence of stroke on the brain’s white matter 

structure based on dMRI-measurements and functional properties measured 

with EEG. This work is part of the 4D EEG project, one of the aims of which 

was to evaluate outcomes of the stroke patients in terms of their WM integrity 

and brain function. 

To gain a better understanding of the commonly used analysis techniques, 

conventional dMRI data of patients with Attention Deficit Hyperactivity 

Disorder (ADHD) were analyzed. This study evaluated whether the effects of 

stimulant ADHD medication on the brain were modulated by the age of the 

patients. The results demonstrate a different change in WM properties of 

children after treatment than the change in adults treated with the same 

medication. (Chapter 2) 

Traditional diffusion tensor imaging (DTI) models water diffusion with one 

Gaussian profile. However, multiple brain regions contain complex white 

matter configurations such as crossing or kissing fibers. Moreover, edema is 

present in the brain of stroke survivors, especially around the lesion site. Such 

physical properties can be modeled with multi-compartment models in which 

crossings and free water diffusion are explicitly accounted for. Comparing four 

models of increasing complexity, starting with a conventional DTI model, 

suggested that more elaborate approaches, involving free water modeling, better 

relate to the clinical outcome of the patients. By assessing interhemispheric 



 

 

asymmetry of diffusion measures in patients compared to healthy age-matched 

individuals, superior longitudinal fasciculus was identified as a tract affected by 

stroke in addition to the well-known effects on the corticospinal tract. (Chapter 

3) 

In addition to directly quantifying mean diffusion properties of various tracts, 

WM pathways can be reconstructed based on the computed diffusion directions. 

A novel framework was introduced for probabilistic tractography in complex 

fiber orientations with parsimonious model selection. The proposed approach 

outperforms an existing state-of-the-art method on both phantom and human 

data allowing for in-vivo probabilistic multi fiber tractography. (Chapter 4) 

Previous works on stroke suggested that existence of the intact sensory pathways 

from the periphery to the motor cortex could serve as a proxy for the motor 

function recovery. A novel method was developed combining diffusion-

weighted MRI with electroencephalography (EEG). Responses of different 

cortical areas to the external stimulation were measured using EEG while 

anatomic connections between those areas were estimated using dMRI-based 

tractography. This study demonstrated the feasibility of estimating active 

cortical sources and their dynamic interactions in stroke patients during a 

sensory stimulation task. In the future, this could allow monitoring dynamic 

brain activity and identifying quantitative biomarkers to assess sensory 

impairment following a hemiparetic stroke. (Chapter 5) 

Finally, six stroke patients were tracked with dMRI throughout the recovery 

process starting within five days post-stroke and until six months post-stroke. 

Analysis of the multi-compartment models accounting for the free water 

compartment (determined in Chapter 3) did not reveal a common pattern of 

the recovery in terms of the mean diffusion statistics’ asymmetry of superior 

longitudinal fasciculus and corticospinal tract. However, a rapid decrease in the 

free water asymmetry during the first five weeks post-stroke seemed to be 

coupled with the substantial improvement in the patients’ motor performance. 

This suggests that decrease in tissue swelling is associated with spontaneous 

neurological recovery of the patients. (Chapter 6) 
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To conclude, this thesis related diffusion-weighted imaging measures with 

patient outcomes and introduced frameworks to enhance our insight into the 

impact and recovery of stroke. We anticipate that in the future it may help to 

set realistic rehabilitation goals and to facilitate selection of more personalized 

rehabilitation approaches. 
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