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Background and objective: One of the main problems with biomedical signals is the limited amount of 

patient-specific data and the significant amount of time needed to record the sufficient number of sam- 

ples needed for diagnostic and treatment purposes. In this study, we present a framework to simultane- 

ously generate and classify biomedical time series based on a modified Adversarial Autoencoder (AAE) 

algorithm and one-dimensional convolutions. Our work is based on breathing time series, with specific 

motivation to capture breathing motion during radiotherapy lung cancer treatments. 

Methods: First, we explore the potential in using the Variational Autoencoder (VAE) and AAE algorithms 

to model breathing signals from individual patients. We then extend the AAE algorithm to allow joint 

semi-supervised classification and generation of different types of signals within a single framework. To 

simplify the modeling task, we introduce a pre-processing and post-processing compressing algorithm 

that transforms the multi-dimensional time series into vectors containing time and position values, which 

are transformed back into time series through an additional neural network. 

Results: The resulting models are able to generate realistic and varied samples of breathing. By incorpo- 

rating 4% and 12% of the labeled samples during training, our model outperforms other purely discrim- 

inative networks in classifying breathing baseline shift irregularities from a dataset completely different 

from the training set, achieving an average macro F1-score of 94 . 91% and 96 . 54% , respectively. 

Conclusion: To our knowledge, the presented framework is the first approach that unifies generation and 

classification within a single model for this type of biomedical data, enabling both computer aided diag- 

nosis and augmentation of labeled samples within a single framework. 

© 2021 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Biomedical data is the driving force behind most modern ad- 

ances in medicine. The use of biomedical records is associated 

owever with a series of problems such as the lack of reliable 

odels capable of simulating data with clinical precision, the ab- 

ence of personalized models for diagnosis, or the lack of labeled 

amples since the labels containing personal features that compro- 

ise privacy or simply are not recorded [1] . Some of the initial ef-

orts to model biomedical data include analytical approaches: e.g., 

cSharry et al. [2] developed an electrocardiogram (ECG) model 

ased on three coupled ordinary differential equations, and George 

t al. [3] introduced a sinusoidal model to represent breathing. 
∗ Corresponding author. 

E-mail address: o.pastorserrano@tudelft.nl (O. Pastor-Serrano). 
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Recent advances in Deep Learning and the introduction of algo- 

ithms such as the Variational Autoencoder (VAE) [4,5] and Gen- 

rative Adversarial Networks (GANs) [6] have resulted in a wide 

ariety of methods capable of generating and classifying biomed- 

cal signals, most of them having been applied to ECG data. Re- 

arding classification, Acharya et al. [7,8] , Fujita et al. [9] , Cimr 

t al. [10] and Yildirim et al. [11] present classification Convolu- 

ional Neural Network (CNN) frameworks for computer aided diag- 

osis based on biomedical signals. Yildirim et al. [12] propose an 

fficient algorithm based on autoencoder artificial neural networks 

ANNs) that compresses ECG signals but lacks generative capabili- 

ies. Recent implementations of CNN architectures [13] and a com- 

ination of Long Short Term Memory (LSTM) Networks and con- 

olutional autoencoders [14] result in minimal classification error 

f arrhythmia in ECG signals. With respect to generation, both Zhu 

t al. [15] and Delany et al. [16] propose generative models of real- 

stic ECG signals that combine different ANN architectures (recur- 
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ent and convolutional) under a GAN adversarial training objective. 

olany and Radinsky [17] present a framework where a GAN gen- 

rates data for ECG classification, while Wulan et al. [18] introduce 

n autoregressive model able to produce longer signals with high 

ariability. 

Most of the previously proposed methods focus either on gener- 

tion or classification and result in models that depend on large la- 

eled datasets and supervised training; are resource intensive and 

equire significant amounts of computing power; are inaccurate 

hen the dataset is imbalanced (there are very few labels for some 

lasses of interest), or generate data that lacks variability and has a 

imited temporal dependence [19,20] . Furthermore, most of the ap- 

roaches are not capable of capturing the structure of the data in 

 low-dimensional manifold in which specific regions correspond 

o similar samples. 

In this study, we focus on mechanical breathing signals repre- 

enting the movement of chest markers during respiration. Among 

heir many applications, these type of biomedical signals are of 

reat importance in radiotherapy cancer treatments, where they 

re used to quantify the impact of respiration and to design robust 

ung cancer radiotherapy treatments that withstand the detrimen- 

al effect of breathing motion during treatment delivery. Among 

he most important breathing irregularities are baseline shifts, 

hich are gradual or sudden changes in the exhale position and 

rend of respiration. Baseline shifts negatively affect the outcome 

f radiotherapy treatments [21] . To our knowledge, there are no 

revious studies that develop breathing generative models that re- 

ult in realistic respiratory traces. Likewise, very few computer- 

ided diagnostic tools have been presented for physical breathing 

ignals. Abreu et al. [22] present an autoencoder framework that 

iscriminates between apnea and regular breathing, focusing on 

ating radiotherapy treatments. 

We investigate whether it is possible to combine classification 

nd generation of breathing signals within a single model. We 

ropose a semi-supervised framework that simultaneously classi- 

es and generates breathing motion with high accuracy using a 

mall subset of labeled data, and which outperforms purely dis- 

riminative models, and could in principle be applied to modeling 

ther biomedical signals. The main contributions of this research 

re threefold. First, we investigate the suitability of probabilistic 

enerative models based on one-dimensional convolutional filters 

or the task of modeling breathing signals. Second, building upon 

hese breathing models, we introduce a modified semi-supervised 

lgorithm to train a joint generative-discriminative model using a 

artially-labeled dataset. The proposed model can be used to si- 

ultaneously generate and classify samples of irregular breath- 

ng or samples from a population of patients. Third, we develop 

 pre-processing and post-processing method that transforms back 

nd forth the breathing signals from their original 3-dimensional 

ime series form into a simplified vector form containing pairs of 

osition-time values. This transformation significantly reduces the 

imensionality of the inputs and speeds up training. 

. Background 

robabilistic generative models 

Consider x ∈ R 

M to be a random vector over a vector space X ,

ith unknown underlying probability distribution p data (x ) . Given 

 dataset D = { x (i ) } N D 
i =1 

with N D independent and identically dis- 

ributed (i.i.d) data points, the goal is to model a probability distri- 

ution p θ( x ) that approximates the unknown true probability dis- 

ribution generating the data using a probabilistic graphical model 

ith parameters θ. Let this probabilistic model be a latent vari- 

ble model, which conditions the observed variable x on the unob- 

erved random variable z ∈ R 

N over the latent space Z containing 
2 
latent variables that are assumed to capture the principal factors 

f variation in the data. The latent variable model represents the 

oint distribution of observed and unobserved variables and factor- 

zes as p θ(x , z ) = p θ(x | z ) p(z ) . The (target) marginal distribution of

he observed variables can be recovered as 

p θ(x ) = 

∫ 
Z 

p θ(x , z) dz = 

∫ 
Z 

p θ(x | z) p(z) dz, (1)

here p(z) is the prior probability distribution over Z and p θ(x | z) 
s a conditional distribution that can be parametrized using neu- 

al networks. In principle, the prior could be any function and it is 

ot conditioned on the observations. Point-estimates of the param- 

ters θ of the latent variable model can be obtained via maximum 

ikelihood estimation, i.e., by maximizing the (log-) marginal dis- 

ribution of the observed data 

∗ = argmax 
θ

∑ 

x ∈D 
log (p θ(x )) � argmax 

θ

E x ∼ ˆ p data (x ) log (p θ(x )) , (2) 

here the expected value is computed over the empirical data dis- 

ribution ˆ p data (x ) . The empirical data distribution is different from 

he true underlying data generating distribution p data (x ) to which 

e do not have direct access and we want to approximate. ˆ p data (x ) 

s defined as a mixture of Dirac delta distributions δ(x ) that as- 

igns probability mass 1 /N D to each data point in D as 

ˆ p data (x ) = 

1 

N D 

N D ∑ 

i =1 

δ(x − x (i ) ) . (3) 

In practice, computing the integral over the space Z in Eq. 1 is 

ntractable. Thus, the optimization in Eq. 2 is simplified by maxi- 

izing a lower bound on the marginal distribution. 

ariational Autoencoder 

Kingma and Welling [4] , and Rezende et al. [5] present an al- 

orithm that allows to estimate the latent variable model param- 

ters maximizing the Evidence Lower BOund (ELBO). The algo- 

ithm, known as Variational Autoencoder (VAE), requires an infer- 

nce model that approximates the (also) intractable true posterior 

istribution p θ(z| x ) using a family of probability distributions of 

he latent variables q φ(z| x ) conditioned on observed data points, 

ith parameters φ shared across data points x . By including the in- 

erence model, the ELBO optimization objective is formulated as 

og ( p θ( x ) ) ≥ E z ∼q φ( z| x ) [ log ( p θ( x | z ) ) ] 
− D KL (q φ(z| x ) ‖ p(z)) := ELBO (θ, φ, x ) , (4) 

here the second term is the Kullback - Leibler (KL) divergence, 

enoted D KL (·||·) . Essentially, the KL divergence quantifies ”the dif- 

erence” between distributions. Further details about the ELBO and 

ow to compute the KL-divergence are included in Appendix A . 

In the VAE framework, the prior is the multivariate Gaus- 

ian p(z) = N (z; 0 , I ) , where I is the identity matrix. The likeli-

ood conditional distribution p θ(x | z) is represented as a multi- 

ariate Gaussian probability distribution with identity covariance 

atrix p θ(x | z) = N (x ; f θ(z) , I) , where the function f θ(z) : Z → R 

M 

s parameterized with an ANN referred to as the probabilistic de- 

oder. With this formulation, p θ(x ) is an infinite mixture of Gaus- 

ian distributions. In the same way as with the probabilistic de- 

oder, it is possible to parameterize the inference model condi- 

ional distribution using a neural network that performs a mapping 

 φ(x ) : x ∈ X → (μ(x ) , σ(x )) ∈ R 

2 N and outputs the mean μ(x )

nd standard deviation σ(x ) of the Gaussian distribution q φ(z| x ) =
 (z;μ(x ) , diag σ2 (x )) . 

The ELBO balances two terms: the first term encourages the 

robabilistic decoder to produce samples that resemble the ob- 

erved data, while the second term forces the approximated pos- 

erior distribution obtained from the inference model to be close 
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+ E E η∼p d g ( x , η) (13) 
o the prior distribution. Using the negative ELBO as optimization 

bjective, the minimization problem to solve is: 

∗, φ∗ = argmin 

θ, φ

E x ∼ ˆ p data (x ) [ −E z ∼q φ(z| x ) [ log (p θ(x | z))] 

+ βD KL (q φ(z| x ) || p(z))] , (5) 

here β is a hyperparameter that can be used to weigh the re- 

onstruction and regularization terms [23] . The minimization in 

q. 5 can be performed using first order stochastic methods such 

s Stochastic Gradient Descent (SGD). The reparametrization trick 

s usually employed to propagate the gradients of the weights 

hrough the encoder, as described in [4] . Details on the VAE al- 

orithm and how to estimate its gradients can be found in [4,24] . 

dversarial Autoencoder 

Makhzani et al. [25] propose an alternative formulation to the 

LBO, where the KL divergence is approximated as the optimal 

alue of an adversarial loss that forces the aggregated posterior 

istribution q φ(z) to be close to the prior: 

 φ(z) = 

∫ 
X 

q φ(z| x ) ̂  p data (x ) dx � p(z) . (6)

In the original paper, the authors explore the use of both prob- 

bilistic encoders and deterministic encoders with g φ(x ) as a de- 

erministic mapping. We use a universal approximation probabilis- 

ic encoder that in principle is able to learn any arbitrary poste- 

ior distribution by employing random noise η ∈ H ∈ R with dis- 

ribution p(η) = N (η; 0 , 1) . Such encoders take additional random 

oise values to produce samples z = g φ(x , η) , and can use differ-

nt noise values η to map the same input x to a domain in Z . The

ggregated posterior can be computed as 

 φ(z) = 

∫ 
X 

∫ 
H 

δ(z − g φ(x , η)) p(η) ̂  p data (x ) dηdx , (7)

The adversarial loss is based on GANs. Let the encoder net- 

ork be g φ(x , η) with parameters φ that performs a mapping 

 φ(x , η) : X × H → Z . A discriminator model is introduced, mod-

led also with an ANN with mapping function d ξ(z) : Z → R that

utputs a single scalar logit. The value S(d ξ(z)) ∈ [0 , 1] represents

he probability that z is a sample from the prior distribution p(z) 

true samples) rather than being a latent space mapping from 

he encoder (fake samples), where S(z) := (1 + e −z ) −1 is the logis-

ic sigmoid function. This translates into a min-max optimization 

roblem 

in 

φ
max 

ξ
E z ∼p(z) [ log (S(d ξ(z)))] 

+ E x ∼ ˆ p data (x ) E η∼p (η) 
[ log (1 − S(d ξ(g φ(x , η))))] , (8) 

here first the discriminator is trained to correctly distinguish be- 

ween real and encoder samples by maximizing the probability 

f classifying real samples from the prior z r as real ( S(d ξ(z r ) =
 )) and fake samples from the encoder z f as false ( S(d ξ(z f ) =
 )). Second, the encoder is trained to minimize the probability 

 − S(d ξ(z f )) that the discriminator identifies its samples z f as 

ake, where d ξ(z f ) = 1 means that the discriminator classifies a 

ake sample as a true sample. Training the probabilistic decoder 

p θ(x | z) , the inference model q φ(z| x ) and the discriminator d ξ(z f )

an be done with SGD in two alternating steps: a reconstruction 

hase forces the decoder to produce realistic samples by using the 

 f variables produced by the inference model, and the regulariza- 

ion phase updating the parameters of the encoder and discrim- 

nator. As shown in Appendix B , optimizing the adversarial ob- 

ective results in an approximation to the ELBO, where the opti- 

um discriminator function is d ∗
ξ

= log (q (z) /p(z)) and the regu- 

arization term E x ∼ ˆ p data (x ) [ D KL (q φ(z| x ) || p(z))] in Eq. 5 is replaced

y D KL (q φ(z) || p(z)) . More details about the adversarial objective 

an be found in Appendix B . 
3 
. Joint generative-discriminative models 

One of the advantages of the AAE algorithm is that the stan- 

ard architecture can be slightly modified in order to additionally 

erform semi-supervised classification based on few labeled data 

oints. The most notable difference with respect to the standard 

AE architecture in [25] is the introduction of an extra discrete 

atent variable y ∈ { 0 , 1 } C , which represents the class to which

he input belongs over C classes. The class y is practically imple- 

ented as a sparse one-hot vector with a 1 entry at the position 

orresponding to the class. In the case of breathing, the y vari- 

ble could indicate the presence of irregularities or the patient to 

hich breathing pertains, while for ECG y could represent type of 

eart arrhythmia. The encoder now outputs the joint distribution 

 φ(y, z| x ) that factorizes as 

 φ(y, z| x ) = q c φ(y| x ) q s φ(z| x ) , (9)

here q c 
φ
(y| x ) is a categorical distribution that performs a map- 

ing sof tmax (π(x )) : X → [0 , 1] C based on the input x , and π(x ) is

 deterministic function. The use of the softmax non-linearity and 

ne-hot vectors as a target forces sparsity in q c 
φ
(y| x ) . We use the

umbel-softmax reparametrization trick [27,28] to back-propagate 

he gradients through the categorical distribution. The approximate 

osterior q s 
φ
(z| x ) is either a distribution or a deterministic map- 

ing, as in the standard AAE. In the original paper [25] , the semi-

upervised AAE is trained to perform either clustering or genera- 

ion. Given that our goal is to simultaneously classify and generate 

ew samples given a specific input, we propose a modified AAE 

rchitecture that uses a single discriminator for both the classifi- 

ation and style heads. In this way, the aggregated approximated 

osterior is forced to match the mixture prior distribution 

 φ(z, y) = 

∫ 
X 

q s φ(z| x ) q c φ(y| x ) ̂  p data (x ) dx � p(z, y) . (10)

here the prior distribution factorizes as the mixture 

p(z, y) = p(z) p(y) = N (z; 0 , I) Cat (y; c) , 

With this setup, each label y is associated with an indepen- 

ent low-dimensional space where z is distributed according to 

p(z) . Sampling from each cluster is easy, as opposed to the models 

resented in [25] that are specifically trained either for clustering 

r conditional generation of samples, and where z is jointly dis- 

ributed according to p(z) over all y classes. 

emi-supervised models 

Let ˆ p data (x l , y l ) be the joint empirical distribution of labeled 

ata x l with labels y l . Our variant of the AAE, named Semi- 

upervised AAE (SAAE) in the remainder of the paper, is trained in 

 stages: a reconstruction and regularization phase that are iden- 

ical to the ones in the standard AAE, and a supervised classifi- 

ation phase for the available labels in which the cross-entropy 

· E x l , y l ∼ ˆ p data (x l , y l ) 
[ − log q c 

φ
(y l | x l )] is minimized, where α controls 

he weight of the classification loss. The optimization problem is 

efined as 

egularization: max 
ξ

E z , y ∼p(z, y) [ log (S(d ξ(z, y)))] 

+ E x ∼ ˆ p data (x ) E η∼p (η) 
[ log (1 − S(d ξ(g φ(x , η))))] (11) 

lassification: min 

φ
α · E x l , y l ∼ ˆ p data (x l , y l ) 

[ − log q c φ(y l | x l )] (12) 

econstruction: max 
θ, φ

E x ∼ ˆ p data ( x ) 
E z , y ∼q φ( z, y| x ) [ log ( p θ( x | z, y ) ) ] 

[ ( )]

x ∼ ˆ p data ( x ) ( η) ξ φ
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. Methods and materials 

First, we investigate the benefits of applying VAE and the AAE 

o model respiratory motion of individual patients using few la- 

ent parameters. Second, using the presented SAAE architecture, 

e obtain a population breathing model capable of simultaneously 

lassifying and generating specific types of breathing. We base our 

tudy on breathing signals, which are time series representing the 

osition of chest markers in lung cancer patients. Fig. 1 shows an 

verview of the workflow, including the pre-processing, the mod- 

ls for classification and generations, and the final post-processing 

ime series reconstruction step. 

atient and population data 

Different breathing signals were obtained with the stereotactic 

adiosurgery system Cyberknife® (Accuray Inc., Sunnyvale CA, US). 

yberknife® tracks breathing movement using correspondence of 

arkers positioned on the patient’s chest [29] . The data used in 

ur study consists of long respiratory traces for 21 different pa- 

ients. The optical device tracks data with a 26 Hz frequency, 

or a total duration between ten and thirty minutes. The breath- 

ng signals for 15 out of the 21 patients were obtained from the 

pen-access database recorded at Georgetown University Hospital 

Washington D.C, United States) [30] , with breathing amplitudes in 

he interval (0.5,10) mm. The 6 remaining respiratory traces were 

ecorded during treatments at Erasmus MC (Rotterdam, Nether- 
ig. 1. Summary of the breathing modeling workflow. First, the original time series is

iggest eigenvalue) using Principal Component Analysis (PCA), from which the input vec

se of the (a) VAE, (b) AAE and (c) SAAE with one-dimensional convolutional encoder an

 low-dimensional latent variable z that ideally captures the factors of variation in the 

he inference model generates a class label latent variable y besides vector z. Labeled d

emi-supervised manner. During generation (red dashed square), the sampled latent var

ransformed into a time series with the help of an auxiliary reconstruction neural networ

eferred to the web version of this article.) 

4 
ands) and correspond to 6 patients with much smaller amplitudes 

n the range (0.5,2) mm. The 2 datasets are referred to as the GUH 

nd EMC datasets for the remainder of the paper. 

nput data & pre-processing 

The first step consists of removing obvious errors in the signal 

cquisition process that are usually related to machine recalibra- 

ion during measurement. This results in a 3D time series, where 

ach dimension correspond to a physical dimension in the Carte- 

ian coordinate system. Since the 3D are correlated, the 3D signals 

re further compressed into a 1D signal by using Principal Com- 

onent Analysis (PCA) and projecting them onto the main axis of 

ovement, which is the eigenvector with highest eigenvalue. We 

nd that the projection onto the principal axis retains around 95% 

f the original variance. The resulting trace is divided into differ- 

nt periods τ j , each of them corresponding to the time between 

tart of different inhales. Each period j is discretized into 4 points 

ith A s, j denoting position and a �s, j representing the difference 

n time between consecutive points. Thus, a period is parametrized 

y the vector 

j = (A EE , j , �EE , j , A MI , j , A EI , j , �EI , j , A ME , j ) , (14) 

here s denotes the stage within each breathing period: EE for the 

nd of exhale (or beginning of inhale), EI for the end of inhale (or 

eginning of exhale), and ME, MI for the 2 intermediate points be- 

ween EE and EI. For simplicity, we omit the redundant �ME , j and 
 pre-processed and projected into the main axis of movement (eigenvector with 

tors x are obtained. Patient or population models are then obtained through the 

d decoder models. In the VAE and AAE, the encoder (or inference) model produces 

dataset, such as variations in period, amplitude and exhale position. In the SAAE 

ata can be leveraged during training in order to learn the classification task in a 

iables are transformed into the input vector form. These new vectors ˆ x are then 

k. (For interpretation of the references to colour in this figure legend, the reader is 
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Fig. 2. (a) Discretization of a breathing signal into periods and time-position points. In practice, the time series is discretized into a pair of time-position coordinates that 

are concatenated for a number of periods covering a certain desired time. (b) Transformation of the vector x into a time series. An additional ANN is trained to generate 

realistic breathing signals from linearly interpolated time series. 
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MI , j time coordinates, since they are equal to �EI , j / 2 and �EE , j / 2 , 

espectively. 

Fig. 2 a displays a fragment of the time series and its discretiza- 

ion into time-position points. A breathing sample is obtained by 

oncatenating consecutive periods for the desired length of the sig- 

al. Each sample is assumed to be i.i.d. and is characterized by a 

ector x = (τ1 , τ2 , . . . , τN T 
) ∈ R 

N T ×6 formed by N T discretized peri-

ds. We use vectors of length N T = 25 to model shorter signals of

 to 2 minutes, and N T = 100 for longer signals of several minutes

orresponding to the typical duration of radiotherapy treatments. 

his compression step allows reducing the dimensionality of the 

reathing time series two orders of magnitude. 

The pre-processing step results in 36,430 and 4,468 breathing 

ragments for the GUH and EMC datasets, respectively. Each data 

ample is assigned a baseline shift label according to the slope of 

he signal: if the slope of a sample is above a certain threshold 

alue, the breathing sample is labeled as upwards baseline shift. 

ikewise, if the (negative) slope is below the threshold, the data 

oint is labeled as downwards baseline shift. The threshold values 

orrespond to the 7.5 upper and lower percentile of the distribu- 

ions of slopes in the GUH dataset. 

onvolutional filters 

We use one-dimensional convolutional layers for both the en- 

oder and decoder models under the assumption that these pro- 

ide the encoder and decoder with powerful feature extractors 

hat exploit the order in time and local structure of the periods. A 

ne-dimensional discrete kernel convolution operation (denoted as 

 ∗ K) over an input x ∈ R 

N T ×6 with N T time-steps and 6 channels

or the different time and position values, using a kernel K ∈ R 

K×6 ,

onsists of sliding the kernel matrix through the different j time- 

teps and computing 

x ∗ K)( j) = 

K ∑ 

k =1 

6 ∑ 

h =1 

K k,h x j−k,h . (15) 

atient-specific models 

To investigate the potential and limitations of signal model- 

ng with probabilistic autoencoders, we first apply the standard 

AE and AAE algorithms to model breathing signals from indi- 

idual patients in the dataset separately. We train both the AAE 

nd VAE frameworks using an isotropic Gaussian prior distribution 

p(z) = N (z; 0 , I) . For the VAE, the parameter β in Eq. 5 is normal-

zed with respect to the input dimension M and latent dimension 

(which vary per model) as βn = (M/N) β . 80% of the patient data 

s used to train the model, while the remaining 20% is equally split 
5 
nto a validation and a test set. Both the encoder and decoder con- 

ist of 4 convolutional layers and 2 fully-connected layers. Details 

bout training and the architecture of the different models in the 

AE and AAE are shown in Appendix C . After training the models, 

he input vector x can be reconstructed by sampling the inference 

odel q φ(z| x ) to obtain z, and then sampling the decoder. Artifi- 

ial breathing signals can be obtained by decoding random sam- 

les from the prior p(z) . 

valuating patient-specific models 

A good model is capable of reconstructing unseen signals and 

enerates artificial signals that distribute according to the training 

ata. We perform several tests to asses the generative performance 

f the patient-specific model: 

• Analyzing reconstruction error. To assess the reconstruction and 

generalization performance of the patient-specific models, we 

evaluate the reconstruction error of signals from the test set. 

For a fixed encoder and decoder architecture, we investigate the 

effect that varying the dimensionality of the latent space has 

on the reconstruction error of unseen test data. We verify and 

quantify the advantages of using convolutional layers by train- 

ing models purely based on fully-connected layers and compare 

them to the one-dimensional convolutional models in terms of 

reconstruction performance. 
• Assessing the generative performance. To determine if the 

model captures the data distribution, we train a classifier to 

distinguish between reconstructed and artificial samples from 

the model. Based on the same reasoning as in [34] , we use re-

constructed data instead of the original input vectors, since the 

compression through the latent space usually removes high- 

frequency noise in the original data that can be easily used by 

the classifier to distinguish samples. The classifier performance 

is evaluated for different latent space dimensionalities. 
• Investigating the structure of the latent space. The presence 

of ”empty” regions in the latent space where no encodings z

data are observed often results in low quality and variability of 

training samples. To determine the presence of empty regions, 

we evaluate the distribution of the distance between neighbor- 

ing z from the dataset. Additionally, we evaluate possible mis- 

matches between the aggregated posterior and prior distribu- 

tion by comparing the distribution of the L2 norm of the en- 

codings of the training samples and the samples from the prior. 

oint semi-supervised models of breathing irregularities 

We apply the semi-supervised SAAE framework to model and 

lassify baseline shift breathing irregularities, which are gradual 
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ownward or upward shifts of the exhale position. First, we per- 

orm two simple experiments using an analytical dataset that con- 

ains simplified sinusoidal breathing signals. In the first experiment 

S1), we vary only the slope of the signals. In the second experi- 

ent (S2), we also modify the period and amplitude. The goal of 

1 and S2 is to determine whether it is possible to obtain good 

odels that classify and generate signals with upward or down- 

ard shift, or no shift at all (regular signals). 

In the third experiment, we train the SAAE model using real 

reathing signals, and investigate the number of labeled samples 

eeded to obtain accurate classification. All models are trained us- 

ng the GUH dataset as the training set (with 10% as validation 

ata) and tested on the EMC dataset. 

valuating breathing irregularity models 

The evaluation of the joint models is based on the F1-score, 

hich was first introduced by van Rijsbergen [32] and is computed 

s F1 (p, r) = 2 pr / (p + r ) , where p and r are the per-class precision

nd recall, respectively. For a given class, the precision is the pro- 

ortion of correctly predicted samples over the total number of ex- 

mples labeled as such class, while the recall is the fraction of cor- 

ectly predicted samples over the total number of true samples for 

he given class. For multi-label classification, the macro F1-score 

mF1) can be used, which is the average of F1-scores for the dif- 

erent classes. The baseline shift breathing irregularity models are 

ested with regards to both their classification and generative per- 

ormance. 

• Assessing classification performance. The discriminative perfor- 

mance (i.e., the ability to label signals having upward, down- 

ward or no baseline shift) is evaluated by comparing the clas- 

sification accuracy of SAAE models to other neural network 

models purely optimized for classification. Specifically, convolu- 

tional neural network and fully-connected neural network dis- 

criminators are trained using a labeled subset of the training 

data. This additional convolutional classifier is similar to the en- 

coder and inspired by state-of-the-art one-dimensional convo- 

lutional ECG models in [7,8,13] . We investigate how the number 

of labeled examples used during the supervised phase of train- 

ing affects the classification accuracy of the SAAE by comparing 

its mF1-score to that of pure classifier networks. 
• Evaluating generative performance. Inspired by [33] and [34] , 

we evaluate the generative performance by calculating the Clas- 

sification Accuracy Score (CAS), which allows to gauge whether 

the model generates realistic and varied samples. The CAS is 

obtained by training a discriminative model on data generated 

by the model, and evaluating the mF1-score on the real data 

test set. 
• Analyzing the reconstruction error. Additionally, we evaluate 

the reconstruction performance of the model on GUH and EMC 

test data using 15 and 30 latent variables. 

ime series reconstruction 

The output vectors ˆ x from the models have the same struc- 

ure as the discretized input vector. Therefore, they must be trans- 

ormed back into a time series by reconstructing the position val- 

es between two consecutive points in 

ˆ x . A first order approxi- 

ation is a simple linear interpolation between the four position 

oints in each cycle, which requires little time but lacks accuracy. 

Alternatively, we reconstruct a realistic breathing time series 

sing an additional feed-forward neural network, which we de- 

ote reconstruction ANN . The input is the linearly interpolated se- 

ies, and the ANN learns a general mapping from the linear time 

eries into realistic shapes. The input for the reconstruction ANN is 
6 
o longer a vector of dimension M = 6 × N T , but a fragment of 120

osition values (see Fig. 2 b). The number 120 is a hyperparame- 

er that is selected from a set of different candidate lengths. The 

utput of the ANN is the first 100 transformed values of the input 

eries. By adding 20 extra positions, the network achieves higher 

ccuracy without discontinuities during concatenation of consecu- 

ive fragments. Further description of the ANN architecture is in- 

luded in Appendix C . 

The training data for the reconstruction ANN consists of slices 

ith 120 elements of position values from the recorded breathing 

ignals, and the corresponding linear interpolations. During train- 

ng, the input and output slices are normalized to the interval [0,1]. 

 single general ANN would allow to reconstruct the time series 

rom any patient in the population and make the process highly 

calable. We investigate whether it is possible to train a general re- 

onstruction ANN using only a subset of the data (either data from 

 single patient or a subset of data from all the patients). For this, 

e train the reconstruction ANN using (i) data from one patient 

referred to as PatBR model from on) and (ii) a subset of data from 

he GUH data (referred to as PopBR model), while both models are 

ested using the EMC dataset. The PatBR is trained using a single 

atient from the GUH dataset, while the PopBR is trained on 10% of 

he GUH dataset, instead of on all available samples. This is due to 

he fact that, unlike with the AAE, VAE and SAAE vector inputs, the 

raining dataset for the reconstruction task consists of few million 

ragments of the breathing time series (vectors with 120 position 

alues) obtained from linear interpolation of the generated vectors. 

. Results 

atient-specific models 

The results of the evaluation of the AAE and VAE patient spe- 

ific models in terms of reconstruction and generative performance 

re shown in Fig. 3 for 2 randomly selected patients. The models 

or the first and second random patient were trained using 1890 

nd 2653 samples, respectively. Fig. 3 a displays the reconstruction 

rror on unseen test set data for different latent space dimension- 

lities. The error values are re-scaled to the interval [0,1] to facili- 

ate comparison, 1 corresponding to the maximum error achieved 

t weight initialization. We compare the error achieved by models 

ased on one-dimensional convolutional architectures and models 

urely based on fully connected layers. Although the error always 

ecreases with increasing latent dimension N, the convolutional ar- 

hitectures notably increase the accuracy in the reconstruction. For 

ualitative evaluation, Fig. 4 shows reconstructions of the original 

nputs using a convolutional model with a 5-dimensional latent 

pace ( N = 5 ). 

The generative performance is shown in Fig. 3 b, depicting the 

ccuracy of a CNN classifier trained to distinguish reconstructed 

ata points from artificial samples generated by models with vary- 

ng latent dimensionality. We plot the average and standard de- 

iation of 3 different classifiers trained on distinct artificial data. 

he data is generated either by sampling the prior p(z) , or by tak- 

ng z encodings in the vicinity of q φ(z| x ) , where the latter cover

 much smaller domain of the latent space. The auxiliary classifier 

erforms worse when distinguishing real and AAE samples, hint- 

ng that these better capture the distribution of the data. Note that 

he binary cross entropy loss values are almost always above 1 for 

he p(z) classifier, which indicates the presence of uncertainty and 

ignificant miss classification errors. 

To study the structure of the latent space Fig. 3 c shows the dis- 

ribution of the distance between neighboring encodings. Since the 

 

n -norm distance metric always increases with the number of la- 

ent dimensions N, we divide the L1 norm between nearby z by 

he latent space dimensionality. The plotted distributions indicate 
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Fig. 3. Summary of the patient-specific model evaluation. (a) Reconstruction error on the test set for different latent space dimensionalities N. (b) Performance of an 

additional classifier trained to distinguish samples from the dataset from artificial samples from the model. Shaded regions represent the standard deviation around the 

mean (solid). (c) Distribution of the distance between neighboring encodings, for the AAE (blue) and VAE (red). The L1 norm distance is normalized by dividing by the latent 

space dimensionality. (d) Distribution of the L2 norm of the real data encodings z (yellow) and sampled encodings from the prior distribution (purple). (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. (Top row) Reconstruction of breathing signals from AAE patient-specific models and (bottom row) VAE-based models for (left) a sample from the training set, 

(middle) the worst performing sample from the GUH test set, and (right) and a fragment of the worst reconstructed GUH test sample, with the highest reconstruction error. 

The discretized reconstructed signals are linearly interpolated and transformed back into a time series. 
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hat the AAE encodings are more evenly distributed. This, together 

ith the fact that the classifier in Fig. 3 b struggles to distinguish 

eal signals from samples in the vicinity of q φ(z| x ) hints that the

atent space is more compact in the AAE-based models. On top of 

hat, the AAE algorithm seems to be a more effective latent space 

egularizer, whose models have a latent space that closely resem- 

les the prior distribution. This is deduced from Fig. 3 d, where the 

istribution of the L2 norm of the encodings is compared to the 

istribution of the L2 norm of samples from the prior. The results 

uggest a possible relationship between more compact and similar 

o the prior AAE latent space and the lower classifier performance 

or AAE samples in Fig. 3 b. Appendix D directly shows the distri- 

ution of the encodings, as well as a visualization of how data is 

rganized in the low-dimensional latent space. 

emi-supervised baseline shift population models 

We first evaluate the effect of slope, period and amplitude vari- 

tions on the classification accuracy by using an artificial dataset 

ased on sinusoidal signals. The SAAE models achieve a mF1-score 

f 100% in S1 by using as little as 300 labeled examples during 

he supervised classification phase. Adding period and amplitude 

ariability to the sinusoidal signals in S2 results in additional dif- 

culty, and the models need 1500 labeled examples (around 4% of 
7 
he training data points) in order to achieve null classification er- 

or. 

Based on these results, we train a baseline shift model using 

eal data. The performance and added benefits of jointly classify- 

ng and modeling breathing signals are evaluated by assessing the 

lassification accuracy, generation variability and the reconstruc- 

ion error. The classification performance is assessed by comparing 

he SAAE models to purely discriminative models trained to only 

lassify baseline shifts using a subset of the available labels. Specif- 

cally, a feed-forward (MLP) classifier and a convolutional (CNN) 

lassifier were trained using 4% and 12% of the GUH training la- 

eled data. Fig. 5 shows that our SAAE model with 5 to 15 latent 

ariables outperforms both architectures, achieving a mean mF1- 

core of 94.91 and 96.54 on the unseen test EMC dataset when 

rained with 4% and 12% of the labels, respectively. 

The generative performance and sample variability are evalu- 

ted with the CAS mF1-score. A CNN classifier is trained using 

6,430 randomly generated samples from the SAAE model, which 

llows a fair comparison with the model trained using the real 

UH data. The classifier is then evaluated on EMC data, achieving a 

emarkable 93.90 mF1-score for the model with 10 latent variables 

rained with 12% of the labels, which is on par with the perfor- 

ance of the feed-forward and CNN classifiers trained with real 

ata observed in Fig. 5 (MLP and CNN in the two left plots). As 
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Fig. 5. Classification, generation and reconstruction performance of the SAAE semi-supervised models, for varying latent space dimension. The models use 4% or 12% of 

the training data during the supervised classification phase, which corresponds to 1500 and 6000 data points, respectively. We show the mean, maximum and minimum 

values observed from training 3 independent models with different training-test dataset splits and weight initialization. The relative reconstruction error is expressed as a 

percentage, where 100% corresponds to the maximum error corresponding to a model with randomly initialized weights. 

Fig. 6. (Left) Average absolute error achieved by the PatBR and PopBR models in the reconstruction of breathing time series. The error is shown for the training patient(s), 

the worst-performing patient and the entire set of patients present in each of the GUH and EMC datasets. (Middle) Reconstruction of the EMC signal fragment with highest 

error, using the PatBR model trained with data from the patient with maximum amplitude. (Right) Worst-performing reconstruction over all the EMC dataset using the 

PopBR model. 
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ith the patient-specific models, the generative performance sig- 

ificantly degrades for higher latent space dimensionality. 

Finally, the reconstruction error on test set data is shown in 

ig. 5 . As with the patient-specific models, the error is expressed 

elative to the maximum error corresponding to predictions from 

 randomly initialized model. The models perform similarly when 

sing more than 10 latent variables. Higher latent space dimen- 

ionality seems to beneficial in the complicated task of recon- 

tructing EMC samples that follow a different distribution, where 

he models achieve similar reconstruction performance to the feed- 

orward patient-specific models in Fig. 3 a. 

ime series reconstruction 

Three different PatBR models are trained using the data from 

hree patients: the patients with the largest and lowest breathing 

eriod in the dataset, and one of the patients with an average pe- 

iod. From these PatBR models, the former (largest period) achieves 

he largest error, precisely on signals of the patient with the low- 

st period. For each of the PatBR models and the PopBR model, a 

omparison of the average absolute error (average L1-norm) on the 

raining set, the test set and the worst performing patient from the 

est set is shown in the left plot of Fig. 6 . The average absolute er-

or is calculated as the average L1-norm | w real − w rec | between all 

osition points in the recorded and reconstructed time series vec- 

ors w. The middle and right plots in Fig. 6 show the worst EMC 

est sample reconstruction from the PatBR and PopBR models, re- 

pectively. 

. Discussion 

econstruction accuracy and effect of convolutions 

The standard VAE, standard AAE and SAAE architectures re- 

ult in breathing models that capture the variability of respiration 
8 
hrough few latent variables, as opposed to approaches that use 

mplicit adversarial models [17,18] . The models are easy to sample 

nd the decoders generate realistic breathing samples. The convo- 

utional layers result in 25% reduction of the reconstruction error 

n test data. AAEs outperform standard VAE models in reconstruc- 

ion, generalization and generative performance. Much of the AAE 

uccess seems to be related to their more compact latent space: 

heir aggregated posterior distributions are closer to the prior, 

nd their encodings are more evenly spaced, as seen in Fig. 3 c 

nd Fig. 3 d. The problem of aggregated posterior-prior mismatch 

n VAEs is not new, and our findings support previous studies 

35–37] . 

ffect of latent space dimensionality 

For the set of all possible models, the reconstruction perfor- 

ance is in theory independent of the latent dimension. Very 

owerful autoencoders with deep encoders and decoders could 

erfectly reconstruct the input using as few as one latent dimen- 

ion, but this is not observed in practice. In general, the perfor- 

ance can be practically improved by adding more latent vari- 

bles or increasing the capacity of the model. However, it has 

een observed that very powerful decoder architectures tend to ig- 

ore the information encoded in z [38–40] . In concordance with 

ig. 3 , adding dimensions helps, especially in low-dimensional la- 

ent spaces. Nevertheless, there is a certain latent space dimen- 

ionality beyond which adding more latent units seems to add lit- 

le information. For the VAE, this may manifest as ”inactive latent 

ariables”, where some latent units remain equal to the prior dis- 

ribution during the whole training process [41,42] . For the specific 

ase of breathing and given the presented encoder and decoder 

onvolutional architectures, the limit seems to be around 10 latent 

ariables. This is supported by the fact that the test reconstruction 

rror and classifier performance plateau around N = 10 in Fig. 3 . 
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emi-supervised models 

Even though SAAE models are mainly trained to reconstruct 

reathing signals, they outperform pure discriminative architec- 

ures based on state-of-the-art one-dimensional convolutional 

odels [7,8] . The fact that a single model can (better) classify and 

electively sample types of signals is a novelty with respect to pre- 

ious architectures that specialize in only one of such tasks [15,18] . 

ne interesting remark is the fact that there seems to be a la- 

ent dimension range between 5 and 15 where SAAE models are 

uperior in the classification task. In general, increasing the num- 

er of latent variables means that less information about the input 

s encoded per latent variable. We hypothesize that some of the 

nformation encoded in y may leak into the style variables z and 

ause loss of accuracy for increasing latent space dimensions. Mod- 

ls with a large enough number of latent variables would not ben- 

fit from the joint discriminative-generative modeling task, since 

hey could completely encode the input using z and simply learn 

he label y separately. However, this should be confirmed in future 

esearch. 

The generative performance of the SAAE models degrades with 

ncreasing latent dimensionality. As in the patient-specific models, 

e hypothesize that this is the result of an ”emptier” latent space 

ith larger distance between encodings. This directly follows from 

he increasing volume of the multi-variate Gaussian latent space 

nd the fixed number of samples used to cover such volume dur- 

ng training. Additionally, SAAE models perform similarly to the 

atient-specific models in terms of reconstruction and generaliza- 

ion on test samples from the same distribution, as indicated by 

he reconstruction error on GUH test samples. Although the re- 

onstruction accuracy significantly decreases, the SAAE models also 

erform reasonably well in the much more complicated task of 

eneralizing to test samples from the EMC dataset with different 

istribution, and their reconstruction error is on par with feed- 

orward patient-specific models ( Fig. 3 a). As in the patient-specific 

odels, the SAAE models seem to benefit little from adding extra 

atent variables for latent space dimensionalities above 10. Since 

he classification and generative performance attain their maxi- 

um between 5 and 10 latent variables, we conclude that the op- 

imum latent space dimension lays around 10. 

ime series reconstruction accuracy 

The PopBR reconstruction ANN consistently outperforms the 

ingle patient PatBR networks and opens the door to using a sin- 

le model to reconstruct breathing signals for any patient. PatBR 

odels fail to reconstruct time series from other patients, espe- 

ially when they are evaluated on patients whose period signifi- 

antly differs from that of the samples used for training, as seen 

n the left plot of Fig. 6 . The generalization error of the PopBR

odel is very low and it provides accurate reconstructions for pa- 

ients whose breathing signal was recorded in a different location 

nd machine. The error could in principle be further decreased by 

raining a specific PatBr for each specific patient, at the expense of 

lightly longer computation time. 

sefulness of breathing models 

The models presented in this paper can be applied to a wide 

ange of tasks involving signal generation and classification. Re- 

arding generation, the models can be used to capture the variabil- 

ty in breathing of a patient and generate artificial patient samples. 

ur specific application is proton therapy, where a very narrow (1–

 mm) proton beam is used to actively scan the tumor. The move- 

ent of the beam and the breathing motion are on comparable 

ime scales, leading to the so-called “interplay effect”, which can 
9 
egrade therapeutic effectiveness. The presented generative frame- 

ork presents significant advantages in addressing this problem 

ompared to the commonly used simple sinusoidal artificial sig- 

als that fail to capture irregular motion and the true variability 

f the breathing. The realistic generated samples can be incorpo- 

ated into treatment design in order to make treatments less sensi- 

ive to breathing motion during dose delivery. Since each generated 

reathing sample results in a different virtual delivered dose, re- 

eated sampling allows deriving the distribution of plausible treat- 

ent outcomes, which can subsequently be used to assess treat- 

ent plan robustness before actual delivery or to directly optimize 

reatment plans to be robust against breathing movements. As a 

esult, the desired clinical outcomes can be better ensured or the 

ikelihood that a patient will present a certain type of breathing 

an be estimated - tasks that are infeasible with currently avail- 

ble methods. 

The SAAE framework can in principle be applied for computer 

ided diagnosis of breathing abnormalities, as well as for dataset 

ugmentation when the available data for a patient is scarce. An 

xample is classifying breathing irregularities and generating ad- 

itional samples that present the identified irregularity. One of 

he advantages of training the proposed framework in a semi- 

upervised way is the possibility to build such models requiring 

nly a small subset of labeled data. 

Our models can in principle be applied to any other kind of 

iomedical data that shows a repetitive or periodic structure, much 

ike a breathing signal is composed of well-defined randomly vary- 

ng periods with changing amplitude. To our knowledge, some of 

hese signals could be ECG, electroglottograph (EGG), magnetoen- 

ephalography (MEG) or magnetocardiography (MCG). The added 

dvantage of our generative approach with respect to other mod- 

ls in the literature that do not explicitly model the data distribu- 

ion such as [15] or [16] is the possibility to map the data samples

o specific regions or classes in latent space enabling classification 

nd generation of data by sampling z from the desired regions. 

imitations 

A notable drawback is the uninformative prior p(y) in the semi- 

upervised model, which assumes no previous knowledge about 

he proportion between different classes. For cases when there 

s class imbalance, i.e., many more samples of regular breathing 

ompared to irregular breathing, using such uninformative prior 

ay result in the model miss-classifying some samples in order to 

atch the uniform prior. The solution to this problem is dataset- 

ependent approach and involves determining the naturally occur- 

ing proportion of classes. 

omputational cost 

An important advantage of the presented methodology is the 

act that it achieves feasible compute times. We reduce train- 

ng times by using Graphics Processing Units (GPUs), which are 

eeded to train the presented convolutional architectures due to 

he requirements of the latest version of the Tensorflow package 

43] . We perform most of the training using an NVIDIA® Tesla®

80, and the training times vary around 10 minutes for the VAE 

nd AAE patient-specfic models, 30 minutes for the reconstruction 

opBR and PatBR models, and 20 minutes for the SAAE models. 

enerating and classifying breathing samples is almost instanta- 

eous. 

. Conclusion 

We present a semi-supervised algorithm based on the AAE 

hat allows simultaneous classification and generation of biomed- 
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cal signals within a single framework, using few labeled data 

oints. The resulting models classify signals with greater accuracy 

han discriminative models specifically trained for classification; 

re easy to sample, and compress the data into a reduced latent 

pace with few independent parameters with known probability 

istributions. We show that 10 of such latent variables are able 

o capture most of the variation in the data and achieve excellent 

econstruction and generation of samples. For the particular case 

f breathing, we demonstrate that the adversarial objective used 

n AAEs is a better regularizer of the latent space and overcomes 

ome of the previously studied problems of the VAE framework. 

Given the length of the input time series, we train the models 

n compressed input vectors containing information about the pe- 

iod and amplitude of the biomedical signal. The compressed out- 

ut vectors of the generative models can be transformed back into 

 time series with the help of an additional reconstruction net- 

ork. We demonstrate that a reconstruction model trained with 

he data of a single patient (PatBR) does not achieve good gener- 

lization when evaluated on other patients, and it is outperformed 

y a population model (PopBR) trained with a subset of the data of 

 population of patients. The population model is trained only once 

nd achieves great accuracy when applied to new unseen data. 

ven though we base our study on mechanical breathing signals, 

he framework shows potential applicability to simulation and di- 

gnostic purposes using any other biomedical signal with a quasi- 

eriodic structure. 

. Code availability 

The code implementing training and evaluation of the AAE, 

AE and SAAE, as well as the PopBR and PatBR reconstruc- 

ion networks, is available at: https://bitbucket.org/zperko _ TU/ 

utoencodersforbiomedicalsignals . 
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ppendix A. Evidence Lower Bound 

eriving the ELBO 

Even though there are different ways to obtain the ELBO, the 

ost common derivation is based on Jensen’s inequality. For a con- 

ave function such as the natural logarithm the Jensen inequality 

tates that 

og 
(
E [ x ] 

)
≥ E [ log (x )] . 

tarting from the marginal likelihood of the probabilistic model, 

he expression of the ELBO can be obtained as 

og (p θ(x )) = log 

∫ 
Z 

p θ(x , z) dz (A.1) 

= log 

∫ 
Z 

p θ(x , z) 
q φ(z| x ) 
q φ(z| x ) dz (A.2) 

= log E z ∼q φ(z| x ) 
[ 

p θ(x , z) 

q φ(z| x ) 
] 

(A.3) 

≥ E z ∼q φ(z| x ) 
[ 

log 

(
p θ(x , z) 

q φ(z| x ) 
)] 

(A.4) 

= E z ∼q φ(z| x ) 
[ 

log 

(
p θ(x | z) p(z)) 

q φ(z| x ) 
)] 

(A.5) 

= E z ∼q φ(z| x ) [ log p θ(x | z)] − D KL (q φ(z | x ) || p(z )) , (A.6)

here the KL-divergence D KL is defined as 

 KL (p(x ) || q (x )) = 

∫ 
log 

(
p(x ) 

q (x ) 

)
p(x ) dx = E x ∼p(x ) log 

(
p(x ) 

q (x ) 

)
. 

(A.7) 

issecting the ELBO 

The output of the probabilistic decoder is the likelihood con- 

itional distribution p θ(x | z) . This distribution is represented as 

 multivariate Gaussian probability distribution with identity co- 

ariance matrix p θ(x | z) = N (x ; f θ(z) , I) , where the function f θ(z) :

 → R 

M is parametrized with an ANN and represents the mean. 

he log-likelihood is formulated as 

og (p θ(x | z)) = log 

(
1 √ 

(2 π) M | I| exp 

(
− 1 

2 
(x − f θ(z)) T I −1 (x − f θ(z)) 

))

= C − 1 

2 
‖ x − f θ(z) ‖ 2 2 , (A.8) 

here C is a constant. The result has the same form as the squared 

rror (SE), which is computed for the model output ˆ x approximat- 

ng the true output x as 

E = ‖ x − ˆ x ‖ 

2 
2 . (A.9) 

Thus, minimizing the log-likelihood with respect to the pa- 

ameters θ (which is done by approximating the expectation 

 z ∼q φ (z| x ) log (p θ(x | z)) by taking Monte Carlo samples for z ∼
 φ(z| x ) ) yields the same result as minimizing the SE. On the

ther hand, when p and q are both Gaussian distributions, the 

L-divergence can be computed in closed form. In our case the 

rior is p(z) = N (z; 0 , I) and the encoder distribution is q φ(z| x ) =
 (z;μ(x ) , diag σ(x ) 2 ) . For an N-dimensional latent space, the KL-

ivergence can be analytically computed as: 

 KL (q φ(z| x ) || p(z)) = 

1 

2 

(
−

N ∑ 

i 

( log σ (x ) 2 i + 1) + 

N ∑ 

i 

σ (x ) 2 i + 

N ∑ 

i 

μ(x ) 2 i 

)
. 

https://bitbucket.org/zperko_TU/autoencodersforbiomedicalsignals
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(A.10) 

Note that the contribution of the KL-divergence to the ELBO 

cales linearly with the latent dimensionality, so an increase in 

he ELBO caused by an increase of the latent space dimensionality 

ould in theory be compensated by increasing the variance of the 

pproximated posterior q φ(z| x ) (lower KL-divergence per latent di- 

ension). 

ppendix B. Adversarial variational objective 

AAEs do not exactly optimize the ELBO. This section describes 

he approximated variational objective in AAEs. In [25] , the authors 

ropose to regularize the latent space by introducing a discrimi- 

ator model, modeled also with an ANN with mapping function 

 ξ(z) : Z → R that outputs a single scalar logit. The discriminator

s assumed to be capable of approximating any function. Given the 

ncoder mapping g φ(z| x , η) : X × H → Z , and the approximated

osterior distribution q φ(z| x ) = 

∫ 
H δ(z − g φ(x , η)) p(η) dη, the ad-

ersarial regularization objective maximization can be formulated 

s 

ax 
ξ

E z ∼p(z) [ log (S(d ξ(z)))] + E x ∼ ˆ p data (x ) E z ∼q φ (z| x ) [ log (1 − S(d ξ(z)))] (B.1) 

 max 
ξ

∫ 
p(z) log (S(d ξ(z))) dz + 

∫ ∫ 
ˆ p data (x ) q φ(z| x ) log (1 − S(d ξ(z))) d zd x

(B.2) 

 max 
ξ

∫ [ 
p(z) log (S(d ξ(z))) + 

∫ 
ˆ p data (x ) q φ(z| x ) log (1 − S(d ξ(z))) d x 

] 
d z. 

(B.3) 

In the last step, we applied Fubini’s theorem to change the or- 

er in the integration. As in [6] and [26] , it can be shown that the

iscriminator achieves its optimum value at 

 

∗
ξ (z) = log (p(z)) − log 

(∫ 
X 

q φ(z | x ) ̂  p data (x ) dx 

)
= log (p(z )) − log (q φ(z)) . 

(B.4) 

This follows from the fact that for any (a, b) ∈ R 

2 \ [0 , 0] , a

unction that has the form f (h ) = a log h + b log (1 − h ) attains it

aximum in [0,1] at h = a/ (a + b) . Thus, 

(d ∗ξ(z)) = 

p(z) 

p(z) + 

∫ 
X q φ(z| x ) ̂  p data (x ) dx 

, (B.5) 

hich is equivalent to Eq. B.4 . The ELBO in Eq. 5 can be reformu-

ated based on the definition of the KL divergence in Eq. A.7 as 

 x ∼ ˆ p data (x ) [ log (p θ(x ))] 

≥ E x ∼ ˆ p data (x ) E z ∼q φ (z| x ) [ log (p θ(x | z))] − E x ∼ ˆ p data (x ) [ D KL (q φ(z| x ) || p(z))] (B.6) 

= E x ∼ ˆ p data (x ) E z ∼q φ (z| x ) [ log (p θ(x | z))] 

+ E x ∼ ˆ p data (x ) E z ∼q φ (z| x ) [ log (p(z)) − log (q φ(z| x ))] . (B.7) 

As described in [25] , the AAE algorithm replaces the last term 

n Eq. B.7 (regularization term, equivalent to the KL term) with 

an adversarial procedure that encourages q φ(z)) to match to the 

hole distribution of p(z) ”. Mathematically, this translates into re- 

lacing the KL term with E x ∼ ˆ p data (x ) E z ∼q φ (z| x ) [ d ∗ξ(z)] , effectively ap- 

roximating the variational bound as 

 x ∼ ˆ p data (x ) log (p θ(x )) ≥ E x ∼ ˆ p data (x ) E z ∼q φ (z| x ) [ log (p θ(x | z))] 

+ E x ∼ ˆ p data (x ) E z ∼q φ (z| x ) [ d ∗ξ (z)] (B.8) 

= E x ∼ ˆ p data (x ) E z ∼q φ (z| x ) [ log (p θ(x | z))] 

− D KL (q φ(z) || p(z)) , (B.9) 

here, compared to the ELBO in Eq. B.6 , the term E x ∼ ˆ p data (x ) 

 D KL (q φ(z| x ) || p(z))] is approximated with D KL (q φ(z ) || p(z )) . As a

esult, the AAE translates into a modified variational objective that 

oes not preserve the original formulation. 
11 
ppendix C. Implementation details 

AE architecture 

The architecture of the VAE models is shown in Fig. C.7 . We find

hat using BatchNormalization [31] and Dropout [44] between lay- 

rs significantly improves convergence and results in significantly 

etter generalization. The encoder contains one-dimensional max. 

ooling layers and the decoder uses dilation rates bigger than 1, 

hich seem to positively affect reconstruction performance. A βn 

f 0.02 yields optimum balance between a Gaussian latent space 

hat is closer to the prior and good reconstruction performance, 

ith lower values slightly favoring more accurate reconstructions 

ut aggregated posterior distributions with larger standard devi- 

tions that do not match the prior. We use a batch size of 256 

amples and the Adam optimizer for training [45] , with learning 

ate 10 −4 . 

tandard AAE architecture 

The architecture of the different models composing the AAE is 

hown in Fig. C.7 . For this framework, the order of the Batch Nor- 

alization and activation layers greatly affects conver gence and 

tability during training, with Batch Normalization placed in be- 

ween the activation and Dropout yielding the best results. Using 

eaky ReLU activation functions with slope 0.1 in the discriminator 

lso seems to help to stabilize training, in concordance with [46] . 

he models are trained using a batch size of 256 samples and the 

dam optimizer with unequal learning rates: 2 · 10 −4 in the recon- 

truction phase and 10 −4 for the discriminator. The squared error 

econstruction loss is approximately 4 times lower than the cross- 

ntropy loss used for the discriminator, and therefore multiplied 

y 4 during training. 

emi-supervised AAE architecture 

Fig. C.7 shows the architecture of the encoder, decoder and dis- 

riminator models for the semi-supervised modified AAE archi- 

ecture. We find that Batch Normalization between layers in the 

ncoder and decoder significantly boosts performance and helps 

tabilize training, as well as using unequal learning rates for the 

dam optimizer: 10 −4 in the reconstruction and supervised clas- 

ification phase and 2 · 10 −4 for the discriminator. The models 

re trained using a batch size of 256 samples. As with the stan- 

ard AAE architecture, the cross-entropy loss is approximately 4 

imes higher than the reconstruction error, and so the latter is 

qualized during training. We find that α values of around 5–

0 significantly enhance classification when the number of labels 

s limited, while higher values do not improve and even hinder 

erformance. 

econstruction network 

The architectures for the PatBr and PopBR models are identical 

nd are shown in Fig. C.7 . The learning rate is set to 10 −4 with a

ecay rate of 10 −6 per epoch, and the batch size is 256 samples 

er batch. 

ppendix D. Additional results 

atent space structure 

To visualize how the latent space is structured, we train the 

AE and VAE frameworks using a two-dimensional latent space. 

ig. D.8 a and Fig. D.8 b show samples from a grid of equally spaced

in such latent space. The square grid is defined as 25 equally 
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Fig. C1. Architecture of the different networks used in the AAE and VAE algorithms. (a) Convolutional encoder architecture with 4 one-dimensional convolutional layers 

and 2 fully-connected layers. A 1-D max-pooling layer follows each convolution, and Batch Normalization and Dropout with probability 0.1 are applied after each pooling 

layer. (b) Convolutional decoder architecture, with 2 fully-connected layers followed by 4 up-sampling dilated one-dimensional convolutional layers. Batch Normalization and 

Dropout with probability 0.3 follow each of the convolutions. (c) Color code for the layers used in the different models. (d) Discriminator architecture for the AAE, containing 

4 fully-connected hidden layers followed by a sigmoid unit. (e) Discriminator for the SAAE. (f) Reconstruction network transforming the interpolated time series into realistic 

shapes. 
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paced points between [-1.5, 1.5] in each of the two axis. Accord- 

ng to the prior Gaussian distribution on the latent space, the sam- 

les in the center are more likely to be observed than the ones at 

he corners. Signals from nearby regions in the latent space show 

imilar traits, such as the same type of irregularities or similar am- 

litudes and exhale positions. 

To visualize any possible mismatch between the Gaussian 

rior and the aggregated posterior in the latent space, we plot 

he distribution of the encodings of all points in the dataset 

i.e. the approximated aggregated posterior distribution). Fig. D.8 c 

nd Fig. D.8 d show the distribution over a five-dimensional la- 

ent space for the AAE and VAE, respectively. The encodings of 

he AAE encoder are closely distributed to the prior Gaussian 

istribution. 

emi-supervised population model 

Using the SAAE framework, it is possible to train a population 

odel that classifies and generates data from all the patients in 

he GUH dataset. The encoder classifies each signal into 15 classes 

orresponding to each of the patients in the dataset. The models 

re trained using a 80%-10%-10% train, validation and test set split. 

he population model can be used to classify and assign a new 

reathing sample to the most similar patient, and subsequently 

enerate breathing samples from such patient. Fig. D.9 shows the 

lassification performance using 300 and 600 labeled data points 

er class during the supervised classification training phase, which 

orresponds to approximately 12.5% and 25% of the labels in the 
12 
ataset. For comparison, we plot the performance when the labels 

f all the data points are used during training. The dimensionality 

f the latent space and the classification head is set to 15 ( C = 15 ,

 = 15 ). 

One of the main limitiations when training patient-specific 

odels is the size of the dataset. Deep learning methods are data- 

riven and require a significant amount of different examples to 

chieve good generalization. The GUH dataset is formed by long 

reathing signals (in some cases multiple signals per patient) from 

hich between 1200 and 5000 samples can be obtained for each 

atient. This is not generally the case for the data recorded in clin- 

cs on a regular basis, usually consisting of short breathing signals 

f few minutes, as is the case for the majority of the EMC dataset. 

his highlights the need for population models in the specific case 

f breathing. 

ampling the semi-supervised models 

The SAAE models can generate breathing signals that present a 

ertain type of irregularity or resemble breathing from a certain 

atient. First, a class y is obtained from the encoder or sampled 

rom the categorical prior, and then the Gaussian sub-manifold 

epresenting breathing of that particular class is sampled accord- 

ng to the prior distribution p(z) . Fig. D.10 a displays samples for 

ach of the three classes in the baseline shift model trained using 

2% of labels in the dataset, while Fig. D.10 b shows samples from 

ach patient in the population based model that is trained using 

00 labeled examples per class. 
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Fig. D1. (a, b) Sampled signals corresponding to a grid of evenly spaced encodings in a two-dimensional latent space. The grid consists of 25 equally spaced points covering 

the squared region with corner coordinates (-1.5,-1.5), (-1.5,1.5), (1.5,-1.5), (1.5,1.5). (c,d) Distribution of the dataset encodings in a five-dimensional latent space. 

Fig. D2. Performance of the population SAAE classification head on the test GUH data, when using 300 and 600 labels per class, and all the available labeled samples during 

the supervised training step. The abscissa displays the label assigned by the encoder, while the legend shows the color code for the true labels. The color of each of the bars 

shows the true label of the samples assigned to a certain class by the encoder. 

13 
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Fig. D3. Randomly generated signals for each class y in the baseline shifts and the population model. Each row represents (a) a type of baseline shift — regular (C1), 

downwards baseline shifts (C2) and upwards baseline shifts (C3) — or (b) the patient in a cohort. For each class, different z values are independently sampled from the 

isotropic Gaussian distribution N (z; 0 , I) . Note that amplitudes can sometimes notably differ (P8) and periods are usually similar within each patient (P11). 
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