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ABSTRACT

As the global population continues to increase, so does its dependance on food, which has led to the development of more
efficient food production methods. Greenhouse horticulture and genetically modified seeds have increased crop yield and
decreased water and energy consumption. However, delicate greenhouse-grown vegetables continue to necessitate manual
labour. The purpose of this thesis is to design and evaluate a vision system capable of detecting the spatial structure
of greenhouse vegetation in order to automate plant repositioning, pruning, and leaf removal. The system employs a
robotic arm and a single camera to generate custom plant features, match them, and generate a 3D model of the plant’s
structure. The thesis discusses the system’s requirements, design, and evaluation, including the segmentation of plant
outlines using deep learning networks, the construction of a 2D plant structure using constrained Delaunay triangulation,
and triangulation-based depth calculation. Analysis of three-dimensional precision reveals a correlation between camera
positional errors and the algorithm’s depth estimation. The findings support the viability of using a vision system to
automate greenhouse duties if certain modifications are made. Contributing to ongoing efforts to increase greenhouse
agriculture’s efficiency and reduce manual labour.
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1 INTRODUCTION

ACCORDING to Our World in Data [1], the current global
population is increasing at 1.05 percent, or about 81

million additional individuals year over year. As a result,
there is a constantly increasing demand for food, and thus
the need to produce food as efficiently as possible. This
efficiency can be measured in terms of water [2] or energy
[3] consumption, as well as the amount of labour that is
required [4]. We are now able to produce crops with a higher
yield, all thanks to genetic modification of seeds [5]. Water
usage can be decreased with to greenhouse horticulture [6],
which has also made it possible to cultivate vegetables in
previously impracticable regions [7]. And finally, mostly all
of the world’s field-grown vegetables, such as potatoes [8],
corn [9], rice [10] and low-leaf vegetables like spinach [11]
or cabbage [12], can be harvested semi-automatically, and
thus require a lot less manual labour. As these crops either
have firm fruit or are spread out widely in rows (in the
case of low-leaf vegetables) they allow for an easier way
of automating the harvest and crop care. However many
other produce, especially those grown in a greenhouse, still
require a great deal of human attention. These vegetables
are more delicate, and are mostly farmed vertically when in
a greenhouse. This is done to reduce the footprint, and max-
imize sunlight reaching the plants. Because of the smaller
footprint, the energy usage of the greenhouse is reduced,
as a smaller volume is heated. Figure 1 shows a row of
tomatoes as they are typically grown in a greenhouse.

Fig. 1: A greenhouse row, with tomatoes grown vertically. [13]

Work in a greenhouse is challenging because of the high
CO2 concentration which increases plant growth but in-
duces drowsiness in the workers [14], the warm temper-
atures especially during the summer months, and manual
labour required. This is all for a low wage, which is de-
termined by the price of the vegetables. As a result, there
has been a push in recent years to automate the green-
house. This also holds for Lely, the firm where this research
was conducted. Lely is most recognized for their work in
agriculture, specifically robotics for the dairy industry. Any
device that replaces manual labour in a greenhouse should
be capable of doing any, ideally all, of the functions now
performed by workers: removal of low-hanging leaves as
plants grow, pruning of suckers (small offshoots of the plant
that hamper its growth), and specifically for tomato plants
the repositioning of the plant as it grows. The repositioning
is needed as the plants grow at around 0.25 meter per week,
or about 13 meters in length in a year [15]. For this, the

stem is wrapped around a small wire, as the plants grow the
wire is elongated and moved horizontally at the top of the
greenhouse. This allows the plant to sag as it grows, figure 2
shows a schematic of the tomato plants in a greenhouse.
The repositioning, pruning of suckers, and removal of lower
leaves has to be done every week. However, with current
sizes of greenhouses this is a constant task for growers.

Fig. 2: Schematic visualization of tomato plant growth in a greenhouse,
blue arrows showing the direction of repositioning, wrapping wires
shown in yellow.

State-of-the-art robots as those from Wageningen University
[16] and Chonnam National University [17] have proven
to work. However, they are only designed to pick fruit, be
that of sweet peppers or tomatoes in the cases mentioned.
From this the robot from Wageningen University shows the
most promise, however this comes at the cost of a large end
effector which houses the vision system. The end effector
size can become an obstacle when being used in more
densely packed greenhouses, as is the case with tomato
plants. In order to create a device that can replace most
workers in a greenhouse, a system to detect the spatial
structure of the vegetation could prove to be vital. As having
an understanding of the plant’s structure could allow for
better detection and localization of plant features, such as:
fruit, suckers, branches, and the stem. Which in turn could
lead to solutions for solving the tasks mentioned above. A
system is required to incorporate all these functions, while
being small enough to manoeuver in between plants of the
greenhouse. Thus culminating in the research aim of this
thesis:

Designing and Evaluating a Vision System with the Goal of
Detecting the Spatial Structure of Greenhouse Vegetation.

To accomplish this aim, the report has been structured as
follows. The report starts with an overview of the previous
work on the subject. By providing this background informa-
tion, the current state of the art and the gaps that exist in
the existing knowledge base are stated. Following this, the
next two sections of the report focus on the requirements
and design of the system. Section 3 provides a detailed
description of the requirements of the robot, including the
robot’s design and the acquisition of input data. Section 4
discusses the algorithm’s design, including an explanation
of its building blocks. Once the design has been presented,
the report moves onto an evaluation of the system in sec-
tions 5 and 6. Where the algorithm’s accuracy and speed
are tested and assessed. Ending with the discussion and
conclusion of the report in sections 7 and 8.
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2 PREVIOUS WORK

As stated in the introduction, several research groups are
actively working on greenhouse robotics. The majority of
research is directed toward robotic tomato picking. Most
likely because tomatoes are the most commonly grown
vegetable in greenhouses [18], and the picking of tomatoes
require the most workers. In this section an overview of
other greenhouse robotics research is presented.

Several types of end-effectors have been created to grab
tomatoes for picking. Chiu et al. where a combination of
soft fingers and suction is used to remove tomatoes from
the vine using a twisting motion [19], Gao et al. using two
cups with small curved blades to cut the cherry tomato from
its stem[20], and Jun et al. cutting tomatoes from the vine
using a modified off-the-shelf scissor-like cutter are some of
the studies being conducted in this field [17].

Next to this, full robotic systems to work in a green-
house are also developed. These range from simple systems
to spray pesticides on the crops [21], to fully automated
picking robots like SWEEPER from Wageningen University
[16]. From these, the latter shows the most promise of
all cutting-edge robotics for use in a greenhouse. As it is
the only one where development has progressed to the
point where it can travel autonomously between plants and
harvest fruit. SWEEPER, in contrast to most other studies,
focuses on sweet peppers rather than tomatoes. It is based
on a scissor lift system, which is commonly used by growers
to move around the greenhouse. The end-effector uses a
time-of-flight sensor as well as an RGB camera to detect
the sweet peppers, in combination with a vibrating knife to
cut the pepper stem. This all is attached to a 6-axis robotic
arm in order to position the end-effector. With this design
SWEEPER is able to pick 49% of all ripe sweet peppers in an
average of 24 seconds per pepper. See figure 3 for an image
of the SWEEPER robot.

Fig. 3: The SWEEPER sweet pepper harvesting robot by Wageningen
University [16], currently the most effective greenhouse harvesting
robot.

All of the research mentioned above is for vegetable har-
vesting, however, as stated in the introduction, more tasks
must be completed in order to fully automate a greenhouse.
An understanding of the plant’s spatial structure could
provide the key to solving these tasks. This is referred to
as the plant’s structure in this thesis. Research has been

done in the past to create such structures, however, most
research focuses on the structure of trees. Neubert et al.
uses the density of leaves in conjunction with a particle
flow algorithm to recreate the tree in 3D [22]. Tan et al.
uses a point cloud of a single tree as input and recreates
the tree in 2 steps: first the visible branches (mostly the root
of the tree) are created, followed by the occluded branches.
The latter is recreated by using the location of leaves as an
input [23]. Guo et al. again use a complete point cloud of a
tree in order to recreate its structure [24]. This structure is
constructed differently by limiting the angle between branch
nodes and utilizing a model of tree stems and branches.
By simulating the branch weight, it enhances the original
structure. Next to these tree structure-generating papers is a
paper focussing on plants from Quan et al. where each leaf
is modeled independently and attached to the stem via a
branch [25]. However, this is only shown to work on smaller
plants with relatively large leaves.

Fig. 4: Example of classification of vineyards as done by Dey et al. [26].
Grapes shown in red, leaves in green and plant stems shown in blue.
From this example it can be seen that the wire at the bottom of the
images is wrongly classified as a part of the plant stem.

Opposing these methods is a paper from Dey et al. [26],
where point cloud data of a vineyard – in which plants
are grown in a similar way to a greenhouse – is classified
into: branches, grapes, and leaves. It does this by using
a conditional random field algorithm and custom features
representing the: point-ness, curve-ness, and surface-ness of
a point in the point cloud based on its neighboring points.
It is able to produce an incredible accuracy of 96% in its
classification. See figure 4 for an example of the classification
from this paper. Such an algorithm could be used to only
select points that are part of branches and try to recreate a
structure through these points. From examples in the paper
it can be seen that this classification does make an error with
wires – that are classified as branches– that are used in the
vineyard. As the research was mostly focused on detecting
the grapes, some alterations may have to be done to the
algorithm to provide accurate input data on the branches.
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As shown from the research above the gathering of point
cloud data is essential for these algorithms to work. There
are several ways to accomplish this: LiDAR, radar, stereo-
vision, time-of-flight cameras, structure from motion, struc-
tured light, and the application of a deep learning algorithm
are the most notable examples. A larger literature research,
shown in appendix D, was carried out in order to select
the optimum technique or sensor for usage in greenhouses.
Every technique and sensor’s operation was described in
this study before being compared. A comparison was made
on the following criteria: resolution, accuracy, speed, field of
view, size, cost, and greenhouse usage. The last criterion, in
contrast, was a subjective measure that took into account all
potential barriers to a sensor’s or technique’s performance
in a greenhouse. This analysis showed that stereovision
offers the best method for obtaining depth information in
a greenhouse setting.

3 REQUIREMENTS

The studies above provide us with multiple routes for
creating a plant structure, however they all fall short in
some way. All studies that create a plant structure have
in common that they use a point cloud of a single tree
or plant in its entirety. Typically, a structure-from-motion
system is used to create this data, using images from at
least 120� surrounding the plant or tree. Unfortunately, it
is virtually impossible to gather the same information in a
greenhouse, as the plants are densely packed next to each
other. This makes it extremely complex to determine which
leaves –or in extensions which points in the point cloud–
are connected to a single plant. Next to this, because of the
layout of a typical greenhouse we can only view the plant
from a specific angle, and from a short distance, making
the constrained of at least 120� a challenging one. Even if
all of these obstacles can be overcome, none of the methods
provide a measurement of accuracy when comparing the 3D
model to its real-world counterpart; they merely produce
a representation of the plant. As a result, the structure-
building methods described above would not be effective in
a greenhouse environment. Allowing for this thesis to build
upon these papers. The subsequent sections will examine:
how a plant structure could aid with solving tasks in the
greenhouse, the robot design utilized for this thesis, and
ultimately how data is acquired for our algorithm.

3.1 Greenhouse Tasks
As previously stated in this thesis; for a robotic system to
replace most manual labour in the greenhouse 4 specific
tasks – which take up most of the grower’s time – have
to be performed by the system. These tasks are as follows:

• Repositioning of plants with respect to its growth
• Removal of suckers
• Removal of low-hanging leaves
• Picking of fruit

All of these tasks are highly repetitive, therefore they show
great potential to be automated. With the exception of fruit
picking, getting an understanding of the spatial structure
of the plant could provide vital in solving these tasks. This
thesis defines a plant structure as follows: a list of linked

3D line segments representing the stem and, preferably,
branches. In the following sections, we will illustrate how
a plant structure can aid with the above-mentioned tasks.

Repositioning of the plants as they grow requires a thin
string to be wrapped around the plant. By doing this the
plant’s weight is supported as it grows in a vertical fashion.
Knowing the location of the plant’s stem and branches is
necessary to know where to place the string when wrap-
ping it around the plant. See figure 5a for an example of
this method. There does exist an alternative to this string
method, called the Qlipr. The Qlipr is made by Pellikaan
Gewasklemsystemen [27], and consists of two parts; the
Qlipr itself, and a metal wire with flared endstop. The Qlipr
is a folded metal device with a foam insert, by its design
the plant can be clamped with the foam and hung from
the metal wire. Because of the endstop at the bottom of
the metal wire the Qliprs can not slide off the metal wire.
Two Qliprs are required per plant, as to support the plant
when it is lowered. Although this system costs more and is
less popular than the string system, it does offer a different
method of supporting plants that, at first glance, seems to
be more straightforward to automate. See figure 5b for an
example of a tomato plant supported with the Qlipr system.
For this system to be automated, as with the string system,
an understanding of the plant’s structure is necessary, but
in contrast, branches are less important to be detected.

(a) String method: String is
wrapped around the plant to sup-
port its weight as it grows ver-
tically. String is stored and hung
from a metal hook at the top of
the grenhouse.

(b) Qlipr method: Plant is sup-
ported by two metal clips with
foam on the inside, which are
clamped around a metal wire with
endstop for support.

Fig. 5: Two competing methods for supporting the plants weight for
vertical growth. Where the string method is used most often, however
the Qlipr method shows great potential for being automated.

Next to supporting the plants, the removal of: suckers and,
low-hanging leaves is another task that shows potential
to be automated. Suckers, which always start at the in-
tersection of the stem and branch, are tiny tomato plant
offshoots. If given enough time to develop, these offshoots
can eventually grow into fully-grown tomato plants. With
their own: stem, branches, flowers, and even new suckers.
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As a result, the plant develops into a web rather than a
single stem with branches. This type of tomato plant growth
is not preferred by growers because it makes the plants more
difficult to control. Additionally, because more nutrients and
energy are expended on the plant rather than the growth of
tomatoes, this decreases the overall efficiency of the tomato
plant. Due to the fact that suckers can start at any node —the
intersection of a branch and a stem— of the plant as well
as being very small, finding and removing them requires a
lot of labour. However, since suckers are always found at a
plant node, we could use the structure of the plant to locate
them. As the robot could focus in on these sections of the
plant, allowing for a higher rate of detection.

Lower-placed tomato plant leaves, like suckers, lessen
the plant’s efficiency. Leaves placed lower on the plant
receive significantly less light than those placed higher up
due to the vertical growth and density of a greenhouse.
As a result, the lower leaves of the plant grow larger in
order to receive more light; however, this consumes the
plant’s nutrients and energy. These nutrients and energy,
however, could be used to produce tomatoes; as a result,
growers remove all leaves of the plant below the level of
fully grown tomatoes. The removal of the leaves is again
done at the node of the plant, removing the entire branch
with its leaves in a single cut. Locating this node and branch
using the plant’s structure could provide an effective way of
automating the removal of these leaves.

3.2 Robot Design

At the outset of this thesis, Lely had already designed
and constructed a robot for work in a greenhouse. The
requirements for this were that the robot is around 4 meters
tall in order to reposition plants at the top of the greenhouse.
In addition, the robot must be able to remove suckers and
low-hanging leaves by traversing the entire height of the
plant. These requirements led to the construction of the
robot around a central stabilized pole with robotic arms
that can move up and down using a rack and pinion
system. This is all mounted to a cart that can ride around
the greenhouse using the heating pipes and paths already
available in modern greenhouses. Because of this, it was
decided to use 4 degrees of freedom robotic arms with a
SCARA design, which can only move in a plane parallel to
the ground. In order to speed up operations the proposed
design of the robot will include multiple arms working in
conjunction. However, in order to reduce the complexity of
the system, only one robotic arm was used for this thesis. See
figure 6 for an overview of the robot’s design. On the robotic
arm sensors and an end-effector are placed at the tip, while
an Nvidia Orin AGX single-board-computer [28] is located
near the pole. This provides each robotic arm with enough
computational power to perform tasks independently, while
requiring minimal communication with a hub computer
located in the cart. The end effectors can rotate around an
axis colinear to that of the stabilized pole, which results
in a robot with 5 degrees of freedom. For each of the
tasks –repositioning, sucker removal, and leaf removal– a
custom end effector is created. In order to reach in between
the plants a small end effector is required, because of this
Lely preferred the vision system to be as small as possible.

With an additional preference for a single camera system to
reduce the robot’s cost.

Fig. 6: Schematic overview of proposed greenhouse robot’s design.
Consisting of multiple SCARA robotic arms, which are able to move
vertically on a stabilized pole attached to a motorized cart. The pro-
posed design uses multiple arms to speed up operations. However, this
thesis uses only a single robotic arm to reduce complexity of the system.

3.3 Data Acquisition
In order to start the process of generating plant structures
input data for our system has to be gathered. The most
apparent form of this input data is a point cloud recorded
with a stereovision camera, as explained in the larger lit-
erature research, also found in appendix D. This method
was utilized to collect data, and to do so, the robot arm
was employed to log the stereo camera’s position while
capturing the point cloud. This was done to stitch the point
cloud and to acquire a complete depth image of the plant.
To choose the best stereovision camera, three commercial
models were utilized and compared. The cameras compared
were the Intel RealSense D435i [29], Stereolabs Zed 2 [30],
and the Luxonis OAK-D [31]. But when the data was
analyzed, an unexpected situation occurred; data from all
cameras was insufficient. This is in contrast to what the
earlier search for the best capture technique revealed. Out
of the cameras tested the Luxonis OAK-D showed the best
performance, however, all lacked in depth image detail.
Most detail was unfortunately lost in the stems, which made
them practically unusable for creating plant structures.
A smaller study was carried out to provide an answer to the
following research question:

What is the cause for stereovision’s low-depth sensing
performance in a greenhouse environment?

To begin with, numerous stereovision algorithms exist, and
it was unclear which one was employed by the cameras.
As it could be that another algorithm could outperform it
in a greenhouse environment. To see if another technique
might perform better, the depth estimates were repeated
using OpenCV algorithms. For this, images with both mono
cameras on the OAK-D were captured, and a camera cal-
ibration was done with a standardized camera calibration
checkerboard. For the depth estimation the following algo-
rithms were tested: block matching, semi-global matching
and feature matching. These algorithms were picked for
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Fig. 7: Two examples of the Luxonis OAK-D’s poor depth detection
of stems, which performed the best of the cameras evaluated. Each
example has the color camera at the top, and the bottom depicts the
depth that has been detected; the lighter the pixel, the closer it is.

review as they come supported in the OpenCV library [32],
which makes implementation fast and reliable.

Both block matching and semi-global matching use the
camera’s extrinsics in order to reduce the search field for
the matchers. They both use a set of rectified images for
matching, as here matches always lay on the same height
in the image. Which allows for a small block of pixels to
be compared between both the left and right image. Where
block matching simply slides a block of pixels from the left
image over the right image to find a match, semi-global
matching also uses mutual information theory to improve
matching between blocks [33]. Thus, in theory semi-global
matching should result in better performance. Both speed
and accuracy of the algorithms are greatly influenced by
the size of the block. A smaller block enables for smaller
details to be matched between images, but this implies that
more comparisons must be conducted, slowing down the
algorithm. The theory is that; because these calculations had
to be made on the camera, the block size was constrained,
making it impossible to match minor features on the stem
between images. With the reimplementation we were able
to test if changing the block size would lead to an improve-
ment in the stems’ depth estimation.

The outcomes of OpenCV’s depth-calculating algorithms
for block- and semi-global matching are shown in figure 8.
When compared to the OAK-D camera’s built-in depth
estimation, an improvement can be seen here, as plant stems
are clearly visible in the results. The number of frames per
second at which this depth can be determined did suffer
as a result, though. Because of this, all experiments above
produce too few FPS to be used in combination with robotic
control, with the possible exception of the 7.10 FPS for the
block matching method with a block size of 5. However, this
outlier does result in the lowest depth estimation perfor-
mance across all tests, with particularly high levels of noise.
In contrast to the hypothesis stated above –bigger blocks
would result in higher FPS– the opposite is to be found
true. Bigger blocks reduce the FPS of the algorithm. As the
number of pixel comparisons is defined by the following
equation:

c = B
2(Iw �B + 1)(Ih �B + 1) (1)

Fig. 8: Performance of disparity algorithms is compared. Larger block
sizes perform better, but they can increase computation time and
reduce resolution. Standard block matching on the left side, semi-global
matching on the right.

Fig. 9: Performance of ORB feature detection algorithm. For this ex-
ample only 16 of the best 50 matches turn out to be correct. Correct
matches given in green, incorrect in red, all keypoints show in blue.

With the number of comparisons given with c, block size
B, image width, and height as Iw and Ih. Thus for our
input images we get 6.296.400 and 144.760.000 compar-
isons for block sizes 5 and 25 respectively. An increase of
approximately 23 times the amount of comparisons. Thus
the reason that the OAK-D is not able to detect plant stems
does not seem to be related to the block size that is used, but
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Fig. 10: Architecture of the algorithm used to create a 3D plant structure in a greenhouse environment.

rather has to be found in the implementation of the filtering
algorithms used in the camera. As the code used on the
OAK cameras is proprietary, no further investigation into
the algorithms used can be done.
An alternative to matching image blocks is to match image
features. This would result in a sparse field of depth data,
but could provide enough information to build plant struc-
tures. There exist multiple ways of creating these features,
the most common of which are ASIFT [34], SURF [35] and
ORB [36] features. Literature shows that ORB outperforms
ASIFT and SURF when it comes to both speed and correct
matches [37]. This is also what a brief analysis of these
feature detectors revealed, with ORB outperforming the
previously mentioned detectors. An example of the per-
formance of ORB feature detection and matching can be
seen in figure 9. Even though the ORB feature detector had
the greatest performance, it still leaves a lot of room for
improvement when it comes to our input data. Only areas
with strong contrast allowed for the detection of features;
the image’s lower portions, which are covered in vegetation,
did not. As a result, the plant’s stems nearly entirely lack
features, which prevents us from gathering depth data here.
In addition to this, the matcher has difficulty locating accu-
rate matches even when features are found on both input
photos. Other picture pairs exhibit the same behavior as the
example in figure 9. Merely 12.53% of the matches in an
experiment with 12 image input pairs are valid. Because
of the poor performance, this method of creating the plant
structure will not be investigated further.

4 DESIGN

As previous attempts to collect depth data in the greenhouse
did not produce satisfactory results, a new method must be
developed for constructing plant structures. Using a robotic
arm and a single camera, the objective is to develop an
algorithm that can detect the position of a plant to within
20mm of its actual position. Lely specified 20mm of accuracy
as a design requirement. As the proposed algorithm is
composed of multiple interconnected components, a general
overview of the entire design will be provided first. Each
component will then be detailed in its own subsection.

4.1 Overview
The algorithm is built around creating custom features for
the plant, these 2D features are then matched and combined
to form the plant structure in 3D. For this, different views are
needed from the plant, which is accomplished by moving
the camera instead of using multiple cameras. For this, the
robot’s cameras move in a horizontal straight line parallel to

the row of plants. Due to this movement and the assumption
that the plant does not move, features can be matched based
on the height of the feature in the image. Thus, a feature
matcher can be omitted from the algorithm. The robot’s
design -multiple arms at multiple heights, all with their own
camera- allows us to get the full overview of the plant in
a single pass. Features are created from of a 2D structure
–or skeleton– of the plant. This structure is created after
segmenting the plant from the background with the use
of a deep learning network. As multiple plants can be in
the same view, a tracking algorithm is used to distinguish
and match plants between views. Using these features and
the pinhole camera model the 3D plant structure is created.
Finally, multiple plant structure segments are combined
into a single structure of the full plant. See figure 10 for
a visualization of the algorithm’s architecture, and how its
components are used together.

4.2 Segmentation
As stated in the previous section, in order to create the
2D plant skeleton a segmentation -or outline- of the plant
is used as an input. At the time of writing the best way
to create such a segmentation is by using a deep learning
network [38]. To select the best model for our greenhouse in-
put data, several state-of-art models were trained and their
performance compared. The following networks were used:
Mask R-CNN a traditional convolutional neural network
[39], DeeplabV3+ a transformer-based network [40], and
finally PID-Net a neural network based on a PID controller’s
architecture [41]. The networks were trained on a custom
dataset of about 600 fully annotated images. DeeplabV3+
performed the best of the three tested networks, with an
accuracy of 77.2% and an intersection over union (IoU)
of 83.2%. This model was supplied by Lely for use in
this thesis. Inference of the model is implemented using
Microsoft’s ONNX Runtime Library [42]. ONNX Runtime
enables neural networks built with various frameworks,
such as Pytorch and Tensorflow, to be run and optimized on
a wide range of hardware. Because of these optimizations
and the GPU in the Jetson Orin, the DeeplabV3+ model can
run at nearly 15 FPS. As with most segmentation networks,
the output of the DeeplabV3+ model is in the form of an
image. In order to go from a pixel-based segmentation to an
outline OpenCV’s findContour() function is used.

4.3 Plant Structure
After creating an outline for all of the plants in view, a 2D
structure can be formed. The method for this was adapted
from the work of Lewandowicz et al. [43], in this research a
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centerline is created from the outline of rivers. Lewandowicz
et al. proposes two methods either based on Voronoi dia-
grams [44] or Constrained Delauney Triangulation (CDT)
[45]. For this thesis both methods were tested, in the end
CDT was chosen as it created a more precise representation,
especially when it comes to the thinner parts of the plant-
like branches. The CDT works by splitting up the outline
into triangles, triangles that all cross the centerline of the
shape. By using these crossing edges a centerline can be gen-
erated by using the midpoints of these edges. The algorithm
builds this centerline by first starting at the triangle with the
lowest centroid and adding crossing edge midpoints of its
neighboring triangle. This is done until either one of two
types of triangles gets found, triangles with either 0 or 2
neighbors. As these triangles indicate the start or end of a
branch/stem respectively and thus either ending or starting
a segment of the plant structure. Note that by neighbors
we exclude triangles that are already used in building
the structure. By ”walking” every triangle of the CDT the
complete 2D plant structure is created. See algorithm 1 for
the pseudo code of the plant structure building algorithm,
an example of a fully build plant structure can be found in
figure 11 with all segments shown in a random color.
One disadvantage of utilizing the CDT is that it can produce
a jagged centerline when there are a lot of points on the
plant’s outline, this is something that happens when con-
verting the pixel-based segmentation to an outline. As every
pixel creates a squared bump in the outline. Two methods
of filtering are used to combat this, one on the outline
and one on the final plant structure. The Douglas-Peucker
algorithm is utilized for the outline, which decreases the
points that lie on the outline while maintaining the general
shape [46]. By lowering the number of points on the outline,
we get both a smoother centerline and a reduction in the
calculation required to create it, as fewer triangles must be
validated. The algorithm works by creating a line between
the first and last point of the outline, all points that lay
inside of threshold distance perpendicular from this line
are removed. The point furthest away from this line is then
added, this time all points are checked for a threshold away
from the two lines we just created. This is repeated until we
end up with a simplified outline shape.

Nonetheless, using Douglas-Peucker can still result in a
jagged 2D plant structure; as an illustration, look at the two

Fig. 11: Visualisation of plant structure build with our algorithm.
Black lines show the constrained delauney triangulations and outline,
with all plant structure segments shown in random colors. Note that
the structure splits when the algorithm encounters a triangle without
contour edges.

Algorithm 1: buildPlantStructure():

branches[], stem[];
developing segments[] = lowestTriangle();
while developing segments.length do

for segement : developing segments do

if segment.neighbors == 0 then

segment.add(outsideEdge().midpoint);
branches.add(segment);
developing segments.remove(segment);

else if segment.neighbors == 1 then

segment.add(commonEdge().midpoint);
else if segment.neighbors == 2 then

for neighbor : segment.neighbors do

developing segments.add(
commonEdge().midpoint);

stem.add(segment);
developing segments.remove(segment);

else

return error;

return branches, stem;

points that are near to one another in the purple section of
figure 11. These faults are created as a result of imperfections
in the outline made by the neural network. To filter out these
kinds of irregularities bezier smoothing is applied to all 2D
plant structure segments. Here all points of the segments
are used to create a bezier curve of order n� 1 with n being
the number of points in that segment, resulting us with a
visually smooth 2D plant structure.

4.4 Depth Calculation

To transition from a two-dimensional to a three-dimensional
plant structure, the algorithm makes use of computer vision
triangulation. Note that this is different from the constrained
Delauney triangulation we used in building the 2D plant
structure. This type of triangulation –also known as recon-
struction or intersection– refers to the process of determin-
ing a 3D point from its projection onto a set of images. A
visualization of the function’s workings can be found in
figure 12.

1
Fig. 12: Visualization of computer vision triangulation algorithm calcu-
lating depth at the intersection of lines passing through matched image
points x1 and x2. Where X is the object and C1 and C2 are the respective
camera apertures of both views. [47]
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Triangulation works by projecting lines from the camera’s
aperture through an image point, this is done for all images
in the set. The 3D point we want to calculate lies at the inter-
section of these lines, but only if all image points represent
the same point in 3D space. See appendix A for a mathemati-
cal explanation of how the intersecting lines are constructed.
In order for this equation to function correctly, no distortion
can be present in the images. To combat this, the camera’s
distortion is measured for the camera and removed on the
segmentation image using the rational model as described
by Claus et al. [48]. Both the pinhole model and camera
distortion were implemented using the OpenCV functions
triangulatePoints() and undistort() respectively.

4.5 Feature Creation and Matching
As described in the section above in order for triangulation
to correctly calculate a 3D point, the image pixel on which
it is based, have to represent the same 3D point. In other
words this means picking the same pixel on both input
images corresponding to the same location on the same
plant. We call these corresponding points features of the
plant structure in this thesis. Hence, the issue of selecting
corresponding features can be reduced to two challenges in
the algorithm’s design; plant tracking (to solve the same
plant problem), and feature creation (to solve the same
location on plant problem).

Fig. 13: SORT Tracking algorithm’s architecture, implementing a
kalman filter to track multiple bounding boxes over time. [49]

Tracking was solved using the Simple Online and Realtime
Tracking algorithm, better known as SORT by Bewley et al.
[50]. SORT was designed to track bounding boxes created
by neural networks. It does this by using a hungarian
algorithm with IoU as cost for assigning bounding boxes,
and a Kalman filter to keep track of existing bounding boxes.
The Kalman filter works by trying to predict the movement
of the bounding boxes, it does this with the following state
vector:

x =
⇥
u v s r u̇ v̇ ṡ

⇤T
(2)

Where u and v represent the bounding box’ center position
in its horizontal and vertical components. The states s and
r represent the size (bounding box height times the width)
and aspect ratio (bounding box height divided by width)
respectively. The predictions work by taking the derivative
of the bounding box’s position (u̇, v̇), and size (ṡ). Multi-
plying this with a time step creates a prediction of where
the bounding box is in the next frame, allowing for better
tracking of the bounding boxes. As no derivative is given
for the aspect ratio, this is expected to be constant between
time steps. See figure 13 for an overview of the algorithm’s
architecture.

To go from our segmentation outline to a bounding box
compatible with the SORT algorithm, a box is drawn around
the extremes of the outline. Next, the bounding box’s top
and bottom are stretched to the top and bottom of the image,
to decrease the variability in aspect ratio of the bounding
box. With these adjustments, the SORT algorithm is able to
consistently track multiple plants in the camera’s view.

To solve feature matching between the same plant, we
make use of the special movement that the camera makes in
front of the plants. As described in section 4.1 during plant
structure building the camera’s movement is restricted to
moving horizontally and parallel with the row of plants.
This movement results in the camera seeing the same ver-
tical section of the plant in all input photos. Therefore, the
assumption is made that feature matching can be reduced
to taking features at the same vertical height from the plant
structure. In our algorithm, 24 features equally spaced on
the image’s vertical axis were interpolated from the plant
structure’s bezier curve. The 24 features were then used
as an input for the triangulatePoints() function pro-
vided by OpenCV.

4.6 View Combining
The output of the system described above is likely to be
noisy, as most notably the feature creation and camera loca-
tion can generate noise in the system. Both of these errors are
assumed to be gaussian distributed. As the error in both is a
combination of multiple statistically independent factors. By
taking the mean of multiple plant structure observations the
system should converge to the actual location of the plant.
In order to improve this means every new input is com-
pared with multiple previously created 2D plant structures.
Convergence should be faster and more robust with a bigger
dataset, as described by the central limit theorem [51]. This
is implemented by comparing every new input to at most 20
randomly picked previous observations of the same plant,
we call this view combining. As an example; by having the
camera move a distance of 1 meter in 5 seconds we end
up with 1500 different 3D plant structures, which we then
average to a single structure.

Because of the way triangulation works, the noise on
the computed distance increases as the distance between
the cameras decreases. The error induced can be calculated
with the following equation:

�Z =
Z

2

bf
�D (3)

Here Z is the distance to the object we are measuring, b
and f are the baseline (distance between the cameras) and
focal distance of the camera respectively. Finally, �D is the
disparity error, or the amount of pixels we are incorrect in
our feature matching. Figure 14 shows how the error grows
when we decrease the baseline, for multiple object distances.
Because of this rapid increase of the error for smaller base-
lines, we only combine views when the baseline is at least
100mm. Without it, we introduce a lot of noise into the
system. This is also why, due to the baseline constraint, we
can only obtain 20 random samples at most. Thus limiting
our example above to 1350 3D plant structures, instead of
the 1500 stated earlier.
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Fig. 14: Triangulation distance error for multiple object and baseline
distances. Disparity error is constant with an error of 1 pixel.

4.7 Plant Combining

With the above-described algorithm, we obtain a number of
smaller 3D plant structures. At least one from each robotic
arm’s, as every arm operates at a different height we end
up with 3D plant structures from that height. Multiple
segments can also form per robotic arm when plant parts
are obscured by leaves or other plant parts. We’d like to
combine these plant structure sections into a single large
plant structure encompassing the whole plant. For this
purpose, a metric was developed; when a pair of plant
segments score below a certain threshold, their structures
are merged. In this manner, occluded portions are filled in
or the entire plant structure is lengthened using multiple
camera views. The metric is run for every segment at the
end of the camera’s movement. Because of its shape, it is
referred to as the flame metric, see also figure 15. The flame
metric uses two vectors as input: ~HtLn between the nose
(top) and tail (bottom) of two plant structure sections, and a
normalized vector ~Ln projected out of the nose of the lower
section. We then calculate the flame metric as follows:

FM = | ~HtLn| ·

"
1 + arccos

 
~Ln · ~HtLn

| ~Ln||
~HtLn|

!#
(4)

This equation can be read as the distance between the nose
and tail of a section multiplied by the angle between the
two vectors with an additional distance. See figure 15 for
examples of the metric’s performance. Note that this is a
2D visualization, while the actual metric is calculated in
3D. Through trial and error the threshold for the flame
metric was set at 750, resulting in full plant-length structures
created with our algorithm.

Fig. 15: 2D Visualisation of the flame metric output for three different
~Ln vectors. Metric value given in color, with ~Ln in white.

5 METHOD

Now that the algorithm is designed and implemented, its
performance has to be evaluated. In the following section
the testing method for the algorithm’s dependent variables
speed and accuracy will be explained. Followed by section 6
where the results of the experiments are given and elabo-
rated upon.

5.1 Speed
As stated in section 4.3, the use of the Douglas-Peucker
algorithm did not only result in less jagged plant structures
but also sped up the algorithm. With Douglas-Peucker im-
plemented the algorithm creates fewer triangles, resulting
in a reduced search space while building the plant structure.
The speed of the algorithm was measured in microseconds
per plant structure generation, proportional to the size of the
outline. A dataset of 1386 plant outlines was created from a
recording in the greenhouse. For each of these outlines, the
algorithm’s calculation time was recorded, both with and
without simplifying the outline.

5.2 Accuracy
The proposed robot will use a 3D plant structure to navigate
and locate plant features. Other plant structure generation
algorithms, as described in section 2, did not provide data
on the output’s accuracy. A high level of accuracy is crucial
to the functionality of the robot, as poor accuracy would
result in the robot improperly positioning the end-effector.
In order to demonstrate the efficacy of our algorithm, it is
essential to measure its precision. Experiments to examine
the accuracy of our 2D and 3D plant structures are described
in the following sections.

5.2.1 Two-Dimensional
Due to the fact that the 3D plant structure is composed of
numerous 2D plant structures, it is preferable that the latter
be as precise as possible. For this taking the exact center of
the plant’s outline would result in repeatable features. With-
out repeatable features, feature matching between images
will not work as expected, preventing triangulation from
calculating precise depths. Figure 16 demonstrates a few
examples of 2D plant structures. Upon visual inspection,
the 2D algorithm generates the correct plant structures.
A study was conducted to evaluate the accuracy of the 2D
plant structure algorithm in order to verify our assertions.
For this purpose, a dataset of 482 imitation plants was
compiled, and for each plant outline, three structures were
generated: one with the raw output of the neural network
as the outline, one with Douglas-Peucker simplification
applied to the outline, and one with Bezier-Curve filtering
applied to the output. Imitation plants were used in the
creation of this dataset to negate the variability of the neural
network’s output. Our structure’s centrality in the original
outline served as a metric for measuring precision. The
utilized metric is Mcenter = D

W . Here, W represents the
horizontal distance between the two sides of the outline,
and D represents the horizontal distance from the centerline
to one of the outlines. Thus, the output of the metric is
0.5 when the centerline is precisely in the center, and 0
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Fig. 16: Visualisation of 3 plant structure generated by the 2D algorithm.
Plant structure segments are randomly colored to indicate splitting of
the structure.

or 1 at the plant’s edges. Mcenter was then calculated for
24 measurement locations evenly spaced across the entire
height of the image. As there is more data available to the
algorithm, it is anticipated that the original outline will out-
perform the other two methods. It must be determined if the
accuracy loss caused by simplifying the outline outweighs
the performance increase.

5.2.2 Three-Dimensional
The developed algorithm was designed to precisely detect
the plant’s position in 3D space. To confirm this, two tests
measuring the accuracy of our algorithm were conducted.
For the test setup, a stereovision camera was used to estab-
lish the ground truth for both an imitation plant and a rigid
plant structure. Utilizing a large television as a backlight
allowed for accurate segmentation based on the image’s
brightness. To improve the stereovision camera’s depth-
sensing performance, an image of Gaussian blur was used to
provide texture. Using the brightness-based segmentation as
a mask, the stereovision point cloud was sampled. Resulting
in a point cloud formed around our imitation plant. This is
converted to a ground truth by sampling the mean of this
point cloud at 24 distinct heights, the same as the number
of features we create with the algorithm.

As stated previously, two custom plant varieties were
utilized for the experiments. First, an imitation plant made
from flexible pneumatic tubing was suspended in front of
the television. This was used to visualize the algorithm’s
performance on various plant structure configurations. Four
distinct configurations of this artificial plant, each with
distinct curvatures, were recorded and analyzed.

Secondly, a rigid plant structure comprised of straight,
welded metal rods was utilized. Prior to assembly, the rods
were cut at a 45-degree angle to create a spiral-shaped

Fig. 17: Experiment setup for both imitation and rigid plant structure
accuracy measurements

structure. The purpose of the fixed plant structure was to
test the accuracy as a function of camera-to-plant distance.
As a result, this information could be used to determine how
many cameras and, consequently, arms the robot requires
to cover the entire plant. Two recordings at three distances
from the center of the rigid plant structure were produced
for this purpose. The distances are labeled Close (200mm),
Medium (400mm), and Far (600mm). These distances were
selected because they reflect the actual distances the plant
can be located in the greenhouse. Figure 17 shows the exper-
imental setup for both imitation and rigid plant structures.

For both the rigid, and imitation plant recordings were
made passing the camera in a straight line in front of the
plant. For every matched feature, the algorithm creates its
own point in 3D space at which it detects the plant. We
can measure the accuracy by calculating the error for every
point with respect to the ground truth. This was done by
calculating both the X and Y distance to the ground truth
in a horizontal plane at the point’s Z height. Due to the
fact that the ground truth consists of only 24 specific points,
we interpolate between these points to calculate the error
for each calculated point. For all errors the Mean, Median,
Standard Deviation (SD) and RMSE were calculated.

5.3 Camera positional error

If the results indicate that our 2D plant structure construc-
tion algorithm can correctly identify the plant’s center, then
large errors in depth can only be attributed to an incorrect
camera location. This can occur when the arm’s actuators
and sensors return incorrect angle values, or when flex
occurs in the robot as a whole. Flex has a possibility of
developing in either the arm or more likely the pole it is
affixed to. The segmented point cloud of the plant is utilized
once more to demonstrate that errors are in fact caused by
this positional error. As this point cloud was generated from
a stationary object, each point should be positioned at the
ground truth. Any deviation from this would indicate that
the camera’s position is inaccurate. By calculating the stan-
dard deviation between our ground truth and each point
in the point cloud, we can estimate the camera’s positional
error. The Pearson correlation coefficient will be utilized to
analyze the relationship between the positional error of the
camera and the algorithm.
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6 RESULTS

This results section unveils the findings of this thesis, pre-
senting a concise analysis of the collected data. It highlights
both the 2D and 3D plant structure detection performance.
In addition to the speed enhancements made.

6.1 Speed
In figure 18, the calculation times for a dataset of 1386 plant
structures, taken from real-life recordings in the greenhouse,
are represented graphically. Fitting the data points on the
graph reveals that the calculation time complexity for both
tests is O(n). Note that this is not the actual algorithm’s
complexity, but rather its calculation time; this is merely an
approximation of the algorithm’s complexity.

Fig. 18: Plot of calculation time and fit-line for both the original plant
outline and the Douglas-Peucker simplified outline. By implementing
simplification calculation time is reduced by a factor 3.965. Both scale
with O(n), with n the size of the outline.

Even though the complexity of both versions of the algo-
rithm is identical, the plot reveals a significant difference in
calculation time. To evaluate this mean, the standard devi-
ation was calculated for both datasets. The implementation
of Douglas-Peucker reduces the average calculation time by
396.5%, from 246.63 to 62.197 µs. The standard deviation
decreases from 364.27 to 90.643 µs, a decrease of 401.9%.

6.2 Two-Dimensional Accuracy
The 482 plant outlines were used to collect 5033 centerline
measurement points. For this, the imitation plant was used
to create the dataset. For each of these measurements, we
calculated the centrality metric Mcenter. The outcomes of this
investigation are displayed in table 1, and figure 19.

TABLE 1: Comparison of centrality metric’s Mcenter mean and standard
deviation for three different methods of improving the performance of
the plant structure algorithm. Both metrics given in pixels.

Original Simplified Bezier

Mean 0.4942 0.4976 0.4813
Standard Deviation 0.0601 0.0885 0.1438

In contrast to expectations, the simplified outline outper-
forms the original outline in terms of precision, with a mean
that is closer to 0.50. This can be attributed to the increased
complexity of the original outline, as minor ”bumps” in
this metric can cause a decrease. However, the original
outline outperforms the other two methods in terms of
precision. When the centerline is Bezier-smoothed, there
is a significant loss in measurement performance, both in
terms of accuracy and precision. Contrary to what a visual

Fig. 19: Boxplot of 2D accuracy metric for 3 different methods: Using the
original outline, Simplification of the outline using Douglas-Peucker,
and Bezier smoothing on the generated centerline.

inspection of the plant structures would suggest. In light of
these findings, Douglas-Peucker outline simplification will
be incorporated into the final design, as the speed increase
–explained in the prior section– outweighs the minor loss
in measurement performance. Bezier-smoothing will not be
implemented in the final design, as it does not improve the
algorithm’s measurement performance.

6.3 Three-Dimensional Accuracy
As described in section 5.2.2, two man-made plant struc-
tures where tested. A flexible plant structure made out
of pneumatic tubing being called the imitation plant in
this thesis. Secondly, a rigid plant structure to analyze the
algorithms performance as a function of distance was used.
For all tables and figures, the world frame is defined as
follows: Z is the vertical axis, X is the horizontal axis as
seen from the camera, and the Y -axis is the depth as seen
from the camera, with the frame’s origin at the base center
of the robot’s pole.

6.3.1 Imitation Plant
For the imitation plant, four distinct recordings were pro-
duced, each time altering the shape. Table 2 displays statis-
tics for our recordings. We observe that there is no rela-
tionship between the number of recorded frames and the
generated point. Several factors can explain this, including
segmentation performance, inter-frame recording distance,
and tracking performance.

TABLE 2: Comparison of measured points for every imitation plant
recording

Plant 1 Plant 2 Plant 3 Plant 4

Frames 103 113 112 104
Points 7735 12490 9501 3915

As a preliminary outcome, we will examine the output
of one of the recordings, for which imitation plant 2 was
utilized. See figure 20 for a front and side view of the ground
truth in orange and all measurements from our algorithm in
gray; section B.1 contains graphs for all other recordings.
The variability of depth is significantly greater than that of
width, as depicted in the figure. To support this hypothesis,
we have measured the error for every point in the XY -
plane relative to the ground truth. This study’s results for all
imitation plants are available in table 3 and figure 21. These
support our earlier assumptions, most notably that the stan-
dard deviation in Y is greater than in X . Across all plants,
the standard deviation along the Y axis is roughly twice as



MASTER THESIS - DAAN WIJFFELS 13

Fig. 20: Front (XZ) and side (Y Z) view of the ground truth and
measurements from the same imitation plant.

large. The Pearson r-value for the correlation between the
standard deviations of X and Y is 0.9902 with a p-value
of 0.0098, indicating a positive correlation between errors
in X and the depth estimation in Y . This illustrates that
small errors in either camera position or feature matching
are enlarged in the depth estimation.

With the exception of recording number 4, our mean and
median remain close to the actual values for the majority
of the recordings. Here, the mean and median values are
significantly greater than in all other recordings, with the
majority of deviations in the Y direction.

TABLE 3: Accuracy for errors to the ground truth in imitation plant
structures, all measurements given in mm.

Median Mean SD RMSE

X Y X Y X Y

Plant 1 -1.410 6.911 4.071 16.858 34.88 59.77 71.34
Plant 2 0.656 7.798 1.139 11.79 6.502 23.15 26.81
Plant 3 1.587 7.406 0.643 11.92 8.368 25.05 28.98
Plant 4 12.46 -20.17 22.99 -41.24 27.39 55.96 78.17

All 0.778 6.894 3.066 9.692 20.13 40.44 46.30

Fig. 21: Plot of errors to the ground truth for all fake plants.

6.3.2 Accuracy with respect to distance
As was the case with the artificial plant structures, multiple
recordings were made of the fixed plant structures. Two
separate recordings were made for each distance (200, 400,
and 600mm) with the following names: Close, Medium, and
Far, followed by a number for each cycle. Statistics from the
recordings can be found in table 4.

TABLE 4: Comparison of measured points for every fixed plant struc-
ture recording.

Close Medium Far

1 2 1 2 1 2

Frames 175 174 198 172 177 157
Points 611 5840 179571 71301 142177 189680

We identify a correlation between the recording distance
and the number of measurement sites for the artificial plant
structures. This is due to the inter-frame recording distance;
as we move closer to the plant, a shorter horizontal distance
is captured. When this threshold is exceeded, the forma-
tion of points grows rapidly. As with the artificial plant
structures, the measurement errors between our algorithm
and a real plant were investigated. This study’s findings are
presented in table 5 and figure 22. Figures for all recordings
can be found in section C.2
TABLE 5: Accuracy for errors to the ground truth in fixed plant
structures, all measurements given in mm.

Median Mean SD RMSE

X Y X Y X Y

Close 5.566 24.37 3.919 30.73 10.25 31.09 45.08
Medium 0.984 15.55 -0.066 19.49 10.36 35.75 42.03

Far 0.189 -21.81 -0.808 -19.63 20.84 77.54 82.66

All 0.716 7.424 -0.452 -2.787 17.17 66.07 68.33

Fig. 22: Plot of errors to the ground truth for all fake plants.

Again, these results demonstrate that Y has a larger stan-
dard deviation than X . However, this time by a factor of
3.848, which is nearly double that of the artificial vegetation.
With a Pearson correlation r-value of 0.9671, with a p-
value of 0.00161, these two metrics continue to exhibit a
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strong correlation. Again demonstrating that imperfections
in camera location or feature matching are exaggerated in
depth calculation performance. We also observe another
characteristic of the standard deviation, namely, the rapid
expansion of both metrics in X and Y for far recordings.
Unlike the measurements for the imitation plant, there ap-
pears to be no outlier when examining the mean and median
values.

6.4 Camera positional error
For each recording, the error between the ground truth and
the point cloud was calculated. As an illustration, figure 23
displays the ground truth as well as the point cloud from
which it is derived for the recording Close 1. This example
was selected because it demonstrates that a positional error
occurred during recording, as the point cloud displays three
distinct clusters of the same plant in X . We also observe
that there does not appear to be the same clustering in Y ,
suggesting that the positional error only occurs in the X-
direction.

Fig. 23: Front and side views of the segmentated point cloud which
is used to create the ground truth for recording Close 1. Note the
positional error in X , as 3 clusters of the same plant structure can be
seen.

To demonstrate a correlation between our measurement
error and the positional error of the camera, the Pearson
correlation coefficient is between the standard deviation of
the ground truth’s point cloud and the resulting algorithms
output. With a r-value of 0.7649 and a p-value of 0.00994
correlation between these two metrics is proven. Thus in-
dicating that the error in Y is a result of the camera’s
positional error in X .

7 DISCUSSION

This thesis research has provided insight into the perfor-
mance of an algorithm that detects plant structures using
a single camera and robotic arm. This section presents a
reflection on the research process.

The results indicate that we can precisely create a 2D
plant structure. The 2D algorithm is shown to detect the
centerline of a plant’s outline quickly and precisely. By
utilizing Douglas-Peucker outline simplification, the aver-
age calculation time is reduced by 401.9% to 62.197 µs,
or approximately 16078 plant structures per second. The
algorithm detects the centerline with an average deviation
of less than 1% from the actual center. In addition, it can

differentiate between a stem and a branch of the plant,
which can be used to narrow the search space for the plant’s
suckers.

However, the results for 3D plant detection are less fa-
vorable. Even though the median and mean of our detection
approach the ground truth when taken across all recordings,
the same cannot be said for individual recordings. Where,
a maximal mean offset to the ground truth of 67.68 mm
is identified, with a maximum standard deviation of 83.17
mm. In addition to the fact that not a single RMSE value is
less then the previously established maximum error of 20
mm, it is evident that the required precision for use with a
robot is not met.

The resulting error is shown to be predominantly the
result of improper camera location. Inaccurate actuator mea-
surements or flex in the robotic arm and central pole can
cause errors. In addition to the fact that all measurements for
this thesis were taken with a single robotic arm, mounted on
a 2-meter-high central pole, it is reasonable to assume that
performance in a greenhouse would be worse. In this sce-
nario, the pole height is increased to 4 meters and multiple
moving arms are affixed to it, both of which would cause
the camera’s position to be less accurate.

Inaccurate plant feature matching is also adverse to
depth sensing performance. As matches are based exclu-
sively on height in the image, errors here could induce errors
in our depth estimation. These do not, however, explain the
significant errors we discover in our recordings. Using the
recording Medium 1 as an example, the greatest error in
the Y direction exceeds 600 mm. Using equation (3), we
obtain a maximum error of 1.067 mm per pixel for a 100 mm
baseline. Thus resulting in a match made by our algorithm
that exceeds 562 pixels, or an error greater than the height of
the image. Therefore, it seems highly unlikely that the depth
estimation errors are solely caused by inaccurate feature
matching.

By mounting multiple cameras on the same robotic arm,
future research could eradicate both estimation errors. By
rigidly connecting two or more cameras to one another, the
positional error between the cameras is eliminated. Thus,
significantly decreasing the substantial depth estimation er-
ror. With the implementation of image rectification between
the cameras, feature matching based on height could persist
in the algorithm. As with this method of image reprojection,
corresponding points have identical vertical coordinates in
an image.

A disadvantage of using multiple cameras is that all
output images must be processed by the segmentation
network. As the neural network is currently the system’s
bottleneck, a solution for the network’s speed must be
identified. With the current implementation, the detection
rate of our algorithm for a two-camera system would be
reduced to approximately 7 frames per second. Batching
images in the network could provide a starting point for
this research.

Additionally, future research could concentrate on de-
tecting the structure of branches in three dimensions, since
the present implementation of the algorithm only creates
a structure for the plant’s stem. Given that most of the
branches in the image are horizontal rather than vertical, a
new method of matching these features must be developed.
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8 CONCLUSION

With the global demand for food increasing and labour
costs rising, it is desired to automate this process. With
delicate vegetation found in greenhouses, getting an ac-
curate understanding of plant spatial structure is vital to
creating a solution. This thesis proposes a solution to this
plant structure detection problem. The solution is based on
a robotic arm with a single camera attached. By use of a
neural network to segment plants from the background,
custom features were made on the plant’s stem. Features
were created based on the centerline of the plant’s outline.
By evenly spreading these features across the height of the
image, an approximate match could be made. This was
made possible by only allowing the camera to move in a
straight horizontal path in front of the row of plants. The
custom features allow us to use triangulation to detect the
depth of the plant’s structure.

Analyzing the output of both our 2D and 3D plant struc-
tures to a ground truth gave an insight into the performance
of the designed algorithm. These results show that the algo-
rithm is able to approximate the plant’s structure. However,
the variability in our measurements is too large, and thus
the requirement of an accuracy of 20 mm from the ground
truth is not met. Large errors in depth detection occur due to
inaccurate camera location induced by inaccurate actuator
position or flex in the robot’s component. Future research
could elaborate on these findings by studying the use of
multiple cameras on a single arm. This could provide a way
of eliminating the positional error between the camera views
and thus improve accuracy.
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APPENDIX A
PINHOLE CAMERA MODEL

The pinhole camera model allows us to create projection lines by using the camera’s intrinsic en extrinsic parameters. It
can be written as follows:
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The equation is comprised of 2 homogenous coordinates, a camera matrix and a rotation-translation matrix. Where the
2D homogenous coordinate represents the image point (x, y), with the 3D coordinate representing the line passing both
through the camera aperture and (X,Y, Z). The rotation-translation or extrinsics matrix represents the camera pose as it
relates to a world frame, consequently the line intersection is also in the world frame. The camera or intrinsics matrix is a
3-by-3 matrix comprising of cx, cx, fx and fy . Where c is the principal point –usually the image center– and f is the focal
distance, both given in their x and y components. The line passing through the camera aperture and (X,Y, Z) can then be
used for intersection when used for computer vision triangulation.

APPENDIX B
IMITATION PLANT STRUCTURE

B.1 Front and Side Views

Fig. 24: Front (XZ) and side (Y Z) views for imitation plants 1 in blue and 2 in orange

Fig. 25: Front (XZ) and side (Y Z) views for imitation plants 3 in green and 4 in red
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B.2 Measurement Error to Ground Truth

Fig. 26: Plots of error between measurement and ground truth for imitation plants 1 in blue and 2 in orange

Fig. 27: Plots of error between measurement and ground truth for imitation plants 3 in green and 4 in red

APPENDIX C
FIXED PLANT STRUCTURE

C.1 Front and Side Views

Fig. 28: Front (XZ) and side (Y Z) views for fixed plant structure recording Close 1 in orange and 2 in blue
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Fig. 29: Front (XZ) and side (Y Z) views for fixed plant structure recording Medium 1 in red and 2 in green

Fig. 30: Front (XZ) and side (Y Z) views fixed plant structure recording Far 1 in purple and 2 in pink

C.2 Measurement Error to Ground Truth

Fig. 31: Plots of error between measurement and ground truth for fixed plant structure recording Close 1 in orange and 2 in blue

Fig. 32: Plots of error between measurement and ground truth for fixed plant structure recording Medium 1 in red and 2 in green
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Fig. 33: Plots of error between measurement and ground truth for fixed plant structure recording Far 1 in purple and 2 in pink

TABLE 6: Accuracy for normalized errors in fixed plant structures, all measurements given in mm

Median Mean SD RMSE

X Y X Y X Y

Close 1 4.299 67.81 -0.486 67.68 14.88 38.03 79.05
Close 2 5.771 21.95 4.400 26.71 9.487 27.36 39.64

Mid 1 1.022 17.41 0.560 21.98 7.003 25.29 34.24
Mid 2 0.529 3.032 -1.790 12.65 16.24 54.49 58.28
Far 1 -3.818 16.36 -3.445 16.14 14.41 50.67 55.20
Far 2 4.567 -57.44 1.187 -46.69 24.43 83.17 98.47

All 0.716 7.424 -0.452 -2.787 17.17 66.07 68.33

APPENDIX D
LITERATURE RESEARCH

Full literature research can be found on subsequent pages.
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A Comprehensive Overview of Depth Sensing in

a Greenhouse Environment

Daan Wijffels – 4476247

Abstract—The world’s requirement for food increases along with it’s population. As a result, there is an increasing demand for

automated food production, with greenhouses being specific and hard to tackle example. A depth sensing system is vital for the

operation of a robot in this kind of environment. In order to establish comparisons, this paper provides an overview of the available

sensors and techniques after which they are scored. Scores are given for resolution, accuracy, speed, field of view, sensor size,

compute, and usability in a greenhouse. Due to its excellent resolution, speed, and small size, stereovision was ultimately determined

to be the most effective method.

F

1 INTRODUCTION

ACCORDING to [1, Our World in Data], the current
global population is increasing by 1.05 percent, or

about 81 million additional individuals year over year. As a
result, there is a constantly increasing demand for food, and
thus the need to produce food as efficiently as possible. This
efficiency can be measured in terms of water and/or energy
consumption, as well as the amount labour that is required.
Numerous research has been carried out to enhance each
of these aspects. We are now able to produce crops with
a higher yield, all in thanks to genetic modification of
seeds. Water usage has decreased thanks to greenhouse
horticulture, which has also made it possible to cultivate
vegetables in previously impracticable regions. And finally,
mostly all of the world’s field-grown vegetables, such as for
example potatoes, corn, rice, and low leaf vegetables like
spinach or cabbage, can be harvested semi-automatically,
and thus require a lot less manual labor. As these crops
either have firm fruit or are spread out widely in rows (in the
case of low leaf vegetables) they allow for an easier way of
automating the harvest and crop care. However many other
produce – especially those grown in a greenhouse – still
require a great deal of human attention. These vegetables
are more delicate, and are mostly farmed vertically. As a
result, there has been a push in recent years to automate
the greenhouse. For this to be viable, the solution should
be able to perform specific tasks like: harvesting of fruit,
removal of low hanging leaves as plants grow, pruning
of suckers (small offshoots of the plant that hamper it’s
growth), and especially for tomato plants the repositioning
of the plant as it grows. The repositioning of the tomato
plants is needed because they grow at around 0.25 meter per
week, or about 13 meters in length in a year [2, Dieleman
et al.]. For this the stem is wrapped around a small wire,
as the plants grows the wire is moved at the top of the
greenhouse. This allows the plant to sag as it grows, Figure 1
shows a schematic of the tomato plants in a greenhouse. The
repositioning, pruning of suckers and removal of lower leafs
has to be done every week, however with current sizes of
greenhouses this becomes a consistent task for growers.
State of the art robots as those from [3, Wageningen Uni-

Fig. 1. Schematic visualization of tomato plant growth in a greenhouse,

blue arrows showing the direction of repositioning, wrapping wires

shown in yellow, and plant shown in green.

versity] and [4, Chonnam National University] have proven
to work, however they are only designed to pick fruit, be
that of sweet peppers or tomatoes in the cases mentioned.
In order to create a device that can perform all operations
necessary in a greenhouse, a system to detect the vegetation
is required. This means not only being able to detect and
localize fruit but also the ability to generate the structure of
the plant, such as its stems and leaves. In order to be useful,
the obtained plant structure needs to incorporate a depth
component. In most cases this depth data is obtained as a
point cloud. Previous research - like that of [5, Neubert et
al.] and of [6, Quan et al.] - has even proven that this point
cloud can be used to generate a representation of plants and
trees. This data is vital for an upcoming robot, as without it
moving a machine in 3D space in and around plants would
prove to be a lot more challenging. This is where this paper
steps in, to provide a comprehensive overview of all the
ways that this depth data could be gathered, and to answer
the following question:

What is the optimal technique of obtaining depth data for plant
structure generation in a greenhouse environment?

As there is a wide range of sensors that can estimate depth
we will limit this papers to those that can create a point
cloud, thus sensors that meet the following requirements:
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• Detect the distance of multiple points
• Have a 2D Field of View (FoV)
• Operate without touching the objects

This will limit this paper to the following sensors and tech-
niques: Radar, LiDAR, Time of Flight Cameras, Stereovision,
Structure from Motion, Structured Light and Deep Learning
Depth Estimation. The first three sensors on this list are
based on the time of flight principle, while the last four are
based on computer vision methods using common cameras.
The list was compiled with sensors that are in production or
are in current research.

This paper is structured as follows; in section 2 and sec-
tion 3 an overview of the time of flight sensors and camera
based techniques are given respectively. In section 4 the
sensors will be compared based on the following metrics:
Resolution, Accuracy, Speed, Field of View, Size, Cost and
Greenhouse Usage. Lastly a conclusion will be given in
section 5 to determine the optimal sensor for obtaining plant
structures in a greenhouse.

2 TIME OF FLIGHT BASED SENSORS

Time of flight is one of the oldest techniques of obtaining
a distance measurement. It works by sending out waves or
pulses – be that: pressure (sonar), radio (radar) or light (Li-
DAR) – and timing the return of that wave as it bounces of
an object. The sensor therefore consists of two components:
an emitter that emits waves or pulses, and an observer or
camera that detects the waves or pulses as they return. The
distance can be calculated with the following equation:

d =
ct

2
(1)

Where d is the distance between our object and sensor in
meters, t is the time between send (Tx) and return (Rx)
signals in seconds, and c is the wave speed in meters per
second. The formula is divided by 2 as we measure the
time between sending and return, this means that the wave
has traveled twice the distance that we want to measure.
See Figure 2 for a visualization of this type of sensor. For
sonar, c is the speed of sound, and for radar and LiDAR
this is the speed of light. As the speed of sound is highly
dependent on the density of the air and thus the air tem-
perature (e.g. c0�C = 331.4 m/s and c20�C = 343.3 m/s)
these readings become highly variable without correct air
density measurements. Due to the fact that sound travels
farther than electromagnetic waves in water, sonar is more
frequently used in water than in air. Next to this the speed
of light is at 299, 792, 458 m/s orders of magnitude faster
than that of sound. This implies that these sensors have
significantly lower latency and can sample more points in

tix
 

Fig. 2. Time of Flight sensors visualized, blue is the transmitter, green is

observer, and D is the distance between object and sensor.

the same amount of time. We won’t continue to look into
sonar in this paper as a result.

2.1 Radar
Radio Detection and Ranging or as it is better known by it’s
acronym RaDaR, is a widely used technique of obtaining
distance measurements. But has found most of its use cases
in military, automotive and naval applications. The first
device to detect objects by way of using radio waves was
that of Christian Heulsmeyer in 1904 [7, US Patent 810150].
It used a transmitting antenna with broad coverage, and a
rotating cylindrical parabolic antenna with a narrow focus.
By rotating the receiving antenna the device could detect
objects that reflect the waves of the transmitting antenna.
The device – which Heulsmeyer called the telemobiloscope
– was unfortunately not a true radar as it lacked the ranging
aspect. This would come two years later in 1906 by way of a
new patent [8, DE Patent 169154] also by Heulsmeyer. This
would move the receiving antenna between measurements
and use the angle and trigonometry to calculate the distance
to the object.

Since this time there have been a lot of improvements
made to radar technology, mostly to the way that distance
is calculated. Two main techniques namely, Pulsed radar
and Frequency-modulated continuous-wave radar (FMCW)
have been invented. Both with there own way of solving the
distance problem.

Pulsed Radar

The idea of the pulsed radar was first comprised by the
RAND Corporation – which stands for the Research and
Development Corporation – towards the end of the second
world war, and was commissioned by the US Air Force. The
theory of the pulsed radar was later unclassified in 1960 [9].
As the name implies, this type of radar uses radio frequency
pulses or bursts rather than continuous waves, like the
radar of Heulsmeyer. The distance can than be calculated
with Equation 1, with t the time between sending and
receiving of the radio pulse. However this also means that
the maximum and minimum distance that can be measured
is related to the frequency at which the pulses are sent.
This is because the pulses can not overlap in order for the
system to work, we call this the ”eclipsing” of the pulses.
The maximum and minimum distance can be calculated as
follows:

Dmin =
c⌧

2
, Dmax = c

✓
PRI � ⌧

2

◆
(2)

Where ⌧ is defined as the duration of the pulse and PRI is
the Pulse Repetition Interval or the time between the start of
two pulses. See Figure 3 for a detailed explanation of these
terms. This figure also shows the ambiguity that can occur
when we detect an object with a higher interval than the
RPI. As we can not determine which Tx pulse generated the
orange Rx pulse in the figure, meaning the object could be
at 4 different distances for the graph given.
Later research has shown that the speed of the object can
also be calculated with a single pulse by using the doppler
effect [10]. The doppler effect is a physical phenomenon
in where waves interact with a moving object. One known
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Fig. 3. Visualization of a pulsed radar frequency over time, this figure

also demonstrates the pulse receive ambiguity and doppler effect that

can occur. Tx pulses given in blue and Rx pulses given in orange.

example of this is the passing by of an ambulance or police
car with it’s sirens on. As the vehicle moves towards the
observer the waves get ”bunched” together, making the
pitch of the siren higher. When the vehicle moves away the
observer the waves get ”stretched”, thus resulting in a lower
pitch. This difference in pitch or frequency can be measured
between our Tx and Rx pulses, we call this frequency shift
the doppler frequency or fd. The velocity v of the object can
then be calculated with the following equation [10]:

fd =
2v

�
with fd = fRx � fTx (3)

Where � is defined as the wavelength of Tx pulse. As the
plants we aim to detect are stationary, we can use this to
detect or correct the speed of the robot. The correction can
happen as odometry measurements of robots can differ from
real life movement, due to for example slipping of wheels.

Frequency-modulated continuous-wave Radar

Frequency-modulated continuous-wave radar (FMCW
radar) uses the same basic principles of object detection as
we have seen before. However opposing to pulsed radar;
FMCW uses – as the name implies – a continuous wave.
Simple continuous wave radar systems that use a single
frequency have the downside that they can not detect the
objects distance as it lacks a reference mark to compare
the Rx and Tx signals to. Such a reference mark can be
generated by modulating the frequency of the transmitter,
this modulation can be in any form like that of: sawtooth,
triangular, rectangular or sine modulation. As sawtooth
modulation is the most frequently used [11] we shall use
this in rest of this paper. Figure 4 shows a visualization of
a sawtooth modulated FMCW radar signal, with Tx and Rx
signals.

Fig. 4. Visualization of a frequency-modulated continuous-wave radar

frequency using sawtooth modulation, this figure also show the beat

frequency (�f ), time shift (�t) and doppler frequency (fd). Note that

�f and fd are not the same. Tx given in blue and Rx given in orange.

One of the advantages of this type of radar is that there is
no theoretical limit to the distance we can measure as with
pulsed radar, and is thus only bound by the polling time of
the measurement equipment. The maximum distance for a

FMCW radar is determined by the sweep time (Tsweep) of
the modulation. This is the time between repetition in our
signal, see also Figure 4. We calculate the maximum distance
for a FMCW radar with the following equation:

dmax = c
Tsweep

2
(4)

We calculate the velocity of the object the same way as with
a pulsed radar, thus using Equation 3. Finally, for a FMCW
radar we can calculate the distance to the object with the
following equation.

d =
c|�t|
2

=
c|�f |
2df

dt

(5)

Most modern radar systems use the FMCW model as it
allows more flexibility in the design of the system. As
for example Tsweep can be chosen independently of the
bandwidth of the system, allowing the designer to mod-
ulate at what frequency and thus distance the radar works
optimally. Next to this FMCW radars are more accurate than
its pulsed counterpart [12], and can perform with cheaper
electronics. An FMCW radar does not need an extremely
accurate timing device as we measure between our Tx
and Rx signals, this can be done with analog to digital
converters, which are widely available and at a very low
cost.

Steering and Focussing

The radar discussed in the sections above all use the same
way of detection the position of an object, by way of using a
rotating receiver or transmitter. This technique is still widely
used, mostly in naval applications. However this does come
with some downsides. First of all it’s size and complexity,
as adding rotation means adding bearings and a motor
to the whole assembly. On top of this if we want to also
determine the 3D location –instead of just the angle and
distance between the sensor and the object– we also have
to rotate the sensor in 2 DoF’s instead of 1 making it even
more complex. Over the years new ways of steering radio
waves have been found, eliminating the need for rotating
receivers or transmitters. Which in turn allows for smaller
sensors without moving parts. The solution is that of the
phased-array radar design [10]. Here the diffraction (also
knows as interference) between radio waves of multiple
transmitters is used to ”steer” the radio waves. For this
the transmitters are uniformly a distance d apart, for this
distance it is common to take d = �

2 . As this reduces the
complexity of Equation 6 we use to calculate the phase shift.

�� =
2⇡d sin(✓)

�
(6)

The phase shift �� is as the name implies a shift in phase
between two neighboring transmitters, that is needed to
steer the radio wave front an angle ✓. This is caused by the
fact that with this configuration the phase of the waves of all
transmitters line up at this angel, a further visualization of
this phenomenon and phased array schematic can be seen
in Figure 5. However as we are dealing with waves and
their diffraction the waves do not interact in the same way
as the visualization shows. As with the visualization the
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phase along the axis aligned with ✓ do line up, however
as we move away from this axis the waves start to cancel
out, forming a beam –or as it also known as a lobe– of
radio waves along this axis. We can calculate the diffraction
and thus the gain for any configuration of transmitters
and steering angle. For this it is common to normalize the
calculated lobe gain with the gain of a single transmitter,
to create an ”outline” of the lobe shape. We call this the
array factor or AF of the phased-array. Several examples
of different phased-array configurations have been given in
Figure 6. These plots have been created with Equation 7
below, with ✓ being the steering angle and � being the angle
at which the AF has to be calculated.

AF (�) =
sin

✓
N⇡d

�
[sin(�)� sin(✓)]

◆

N sin

✓
⇡d

�
[sin(�)� sin(✓)]

◆ (7)

From Figure 6 it can be clearly seen that by adding more
transmitter to the array we can narrow the main lobe or
beam of the array. This is advantageous for our sensor as
the smaller the beam, the smaller the detection area. Which
in turn increases the theoretical resolution of our sensor.
However this does come with one side effect: that of the
side lobes, these are smaller less powerful lobes that are
created with the interference of the radar array. The gain of
these side lobes increases as our steering angle ✓ increases.
Because of this we start detecting more unintended objects
as the steering angle increases. Next to this we can also see
that the main lobe becomes less narrow as the steering angle
increases. Combining this we start seeing the limitations of
a sensor using a phased array layout, as we get a significant
drop off in detection accuracy and resolution the bigger our
field of view becomes. Another aspect to keep in mind is
that by adding transmitters our sensor becomes ever more
larger, something that is not desired in our optimal sensor.

Ghost Objects

Another problem for radar systems is the fact that radio
waves don’t just bounce off the target object, but of every
object. This is not a problem for the military usecases of
detecting planes and or boats, as the objects are sparse in a
open space. However when we use radar in a greenhouse
this could cause trouble. As a single radio waves can bounce

Fig. 5. Schematic visualization of a Phased-Array radar with 8 trans-

mitters, also showing the phase shift and corresponding wave steering

angle ✓. Visualization does not show the diffraction between waves. [13]

Fig. 6. Plots of Phased-Array Beam Forming Lobe Shapes. Plotted for:

d = �
2 , multiple steering angles ✓, and multiple transmitters in the array

n ranging between 2 and 16.

of multiple objects back to the sensor, we can measure so
called ghost objects, these are objects that we detect but
which are not there. This problem is in contrast to the
steering problem a lot more difficult to eradicate, and thus
extensive research has been done on the issue. Deghosting
algorithms by [14], [15], [16], and [17] are among the several
that have been developed. For instance in the study by
[15, Yant et al.], an algorithm using Bayes’ theorem and
likelihood function was developed. In the study by [16, Jao
et al.], multiple radars are used to determine between real
and ghost objects. Finally, the paper by [17, Bekiroglu et al.]
shows a algorithm that can determine ghost objects by there
trajectory. As ghost objects are created by multiple radio
wave bounces, there location fluctuates more than others.
The complexity of this trajectory can be calculated and used
to distinguish between real and ghost objects. All of these
algorithms are based on a hand full of objects that we want
to measure, this is something that does not happen in our
greenhouse scenario. As the ”wall” of leaves and plants in
front of the sensor creates an infinite amount of objects that
we want to measure. Adding to that, the loose hanging parts
of the plants allow for a lot of radio wave reflections and
thus results in a lot of ghost objects, something that all above
mentioned algorithms are not meant to handle.

State of Art Radar Sensors
Several businesses have started creating so-called imaging
radar systems in the last few years, primarily for the auto-
motive sector. The terms mmWave and 4D imaging radar
are frequently used to refer to such sensors. Since these
sensors are constrained by frequencies designated for the
automated industry, the name mmWave is derived from
the wavelength of these sensors. This ranges in frequency
from 76 to 81 GHz, or a wavelength of 3.95 to 3.70 mm.
The second name comes from the fact that these sensors can
measure a point in three dimensions while also measuring
its speed, creating a four-dimensional measurement. Three
manufacturers are found most commonly when buying one
of these sensors, that being: Texas Instruments (TI), NXP
Semiconductors, and Vayyar Imaging. With the exception
of NXP, which also creates its own transmitter and receiver,
all of these businesses primarily focus on the development
of the Integrated Circuits or IC’s of these sensors. Table 1



LITERATUURVERSLAG - DAAN WIJFFELS 5

provides a summary of the technical details for the most
cutting-edge sensors produced by these three companies.
Data was gathered from each company’s website.

TABLE 1

Radar Sensor Comparison

Texas Instruments NXP Vayyar

AWR1642 TEF82xx XRR

Radar Type [-] FMCW FMCW FMCW
Transmitters [-] 8 3 48

Receivers [-] 24 4 48
Frequency [GHz] 77 76-81 79
Resolution [°] 1-2 1 1-2

Horizontal FoV [°] 70 65 170
Vertical FoV [°] 40 14 70

By looking at this, we can see that every company uses the
FMCW model for its radar, which is consistent with the
results of prior research presented in this study. Next to this
we also note the correlation between the number of receivers
and the FoV of the sensor, with a higher number meaning
of receivers corresponding to a higher FoV. One part to note
here is the size of the devices, as both the Vayyar and Texas
Instruments use an integrated PCB design, and NXP chose
to split the IC and transceivers, both parts being extremely
small at around the size of a penny. Because of this the NXP
chip is designed to work with multiple transceiver units
to generate a wider field of view. Table 1 also shows us
the biggest downside of using a radar for our greenhouse
usecase, that being the resolution. All sensors appear to be
bounded by a resolution of 1 degree, this meaning that in
the best case – that being the Vayyar sensor – the output
depth image is only 170 by 70 pixels. As the plant stems are
very narrow this could mean that they could go undetected,
or only have a single point of measurement across, making
filtering of this data almost impossible.

2.2 LiDAR
LiDAR, also known as Light Detection And Ranging, was
created not long after the first laser was developed in 1960.
Since methods for determining range by time of flight were
developed far earlier. The Hughes Aircraft Company is
frequently cited as having developed the first laser-based
radar system [18] in 1961. Not by chance, this business was
also the first to develop a functional laser, allowing for the
development of the LiDAR system. As LiDAR and radar
are based on the same time of flight principle, a lot of the
developments made for radar can also be used for a LiDAR
system. Because of this we have two ways of detecting the
distance too an object, that being: Pulsed LiDAR which is
more commonly known as a ToF Camera, and Frequency-
modulated continuous-wave LiDAR (FMCW LiDAR).

Frequency-modulated continuous-wave LiDAR

A FMCW LiDAR operates in the same was as that of
its radar counterpart, by using an frequency swept sig-
nals –more commonly called a chirped signal in a LiDAR
system– to calculate the distance to an object. For this the
sawtooth signal shown in Figure 4 is also used in most
applications. Because of this Equation 4 and Equation 5

still hold for a LiDAR system. The big difference is in
the way that the beat frequency �f is calculated, due to
the magnitudes higher frequencies that a LiDAR system
operates at. Most LiDAR systems work with near visible
light, that being either near Infrared (IR) or near Ultraviolet
(UV) light. Table 2 shows a comparison of the frequencies
used for radar and LiDAR systems. The sampling frequency
is determined by the Nyquist-Shannon Sampling Theorem
[19], this theory states that in order to measure a specific
frequency, the measurement device should sample it at
twice the frequency.

TABLE 2

Frequency Comparison for Radar and IR/UV LiDAR

Radar IR UV

Wavelength [nm] 3.7⇥ 106 700 400
Frequency [Ghz] 81 430 000 750 000

Sampling Frequency [Ghz] 162 860 000 1.5⇥ 106

From Table 2 it is clear that for an UV LiDAR to function
the system should sample at around 10 000 times that of
its radar counterpart. Research has shown that it is possible
to create a terahertz analog to digital convert necessary for
these measurements [20], however they are still experimen-
tal and thus extremely cost prohibitive. Because of this, a
different method of determining the beat frequency must be
developed; interference has provided this method [21]. To
be more specific it is due to the heterodyne beat frequency,
this is created when two signals with equal amplitude but
differing frequency interfere with each other. The combina-
tion of the two input signals creates a new signal with an
envelope that is half that of the beat frequency. As the beat
frequency is given with the following equation:

�f = |fTx � fRx| (8)

We can convert these frequencies to a wave with the follow-
ing equation:

f = cos(2⇡ft) (9)

Interference between two signals can be calculated with:

sin ✓1 sin ✓2 =
1

2
cos(✓1 � ✓2)�

1

2
cos(✓1 + ✓2) (10)

The envelope of the function above is given by its first term
1
2 cos(✓1 � ✓2). Combining all equations above we get:

1

2
cos(2⇡(fTx � fRx)t) !

1

2
(fTx � fRx) =

1

2
�f (11)

For a visualization of these equations as they relate to each
other, see Figure 7.
Since the beat frequency is determined by the difference
between the Tx and Rx signals, it is significantly lower
than that of the signals its comprised of. As well with the
fact that the difference between Tx and Rx –ignoring the
doppler effect– is set by the maximum and minimum of our
sawtooth signal, means that the frequencies we measure can
be designed into the system. Which allows for lower cost
electronics and sensors for LiDAR systems.
In order for this heterodyne interference of our signals to
happen some special optics have been designed. Compris-
ing of two way mirrors and an optical circulator. The first
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Fig. 7. Visualization of a the heterodyne beat frequency for a LiDAR

system. Tx and Rx signals, with Rx being of a larger frequency, shown in

blue and orange respectively. Interference between Tx and Rx is shown

in green, with corresponding envelope shown in red. Beat frequency �f
shown in purple, note the double period of the envelope as compared to

the beat frequency.

two way mirror is a called a splitter, and splits up our signal
as the light either reflects or passes through the mirror. The
portion of the signal that is kept local and does not travel to
the target is called the Local Optical (LO) signal, the second
portion traveling to the target is called the Tx signal. The
circulator is a passive optical component with three or four
ports, designed such that light entering any port exits from
the next port. For our LiDAR setup only 3 ports are needed,
with our Tx signal entering port 1, it exits the device at port
2. Out of this port the light travels to our target and back to
the same port of the circulator. This light now entering port
2 is exited through port 3, effectively splitting our Tx and Rx
signals. The Rx and LO signal are sent through the combiner,
which is another two way mirror combining the two signals.
This final signal is then sent to the detector which converts
it to a digital signal which can be converted to a distance.
For a overview of this optical setup see Figure 8

LiDAR Steering

As with radar systems, in order to generate a point cloud
LiDAR systems have to scan their environment. Most com-
monly this is done by way of a rotating mirror. As the laser
exits the circulator it is reflected of a mirror positioned at
45 degree to the laser, as it rotates the laser is reflected of
objects surrounding the LiDAR. This does mean that devices
are bigger and more prone to vibrations. Opposing this is
are so called solid-state LiDAR systems, here a differentia-
tion can be made between mechanical and non-mechanical
solid-state LiDAR. Of the non-mechanical systems the most
notable is the phased-array design, this functions the same
as with radar. Several of these so-called optical phased-array
systems have been created [22], [23], [24], but only those

Fig. 8. Visualization of a LiDAR optical system.

with a maximum FoV of 20 degrees have been successful
in research [25]. The efficiency of these systems is another
drawback because even the finest ones only achieve 20%
efficiency [26]. Most LiDAR manufacturers have shifted to
mechanical solid-state devices as a result of these shortcom-
ings. The MEMS mirror-based systems are the most com-
mon of these. A microelectromechanical system, or MEMS,
is a tiny silicon-based mechanical component created using
lithography in a manner similar to that of computer chips.
This way of manufacturing also allows for tight knit inte-
gration between the mechanics and electronics of such a
component. The accelerometer, which is frequently found in
smart phones, is a well-known example of a MEMS. Here,
a tiny silicon weight is hung from thin silicon members that
act as springs. Small combs that are surrounding the weight
interact with combs at the sensor’s base create capacitors.
As the sensor is moved, the distance between these combs
varies, affecting the voltage in the capacitors. The MEMS
mirror essentially operates in the other way by applying
voltage to the combs that move the weight that is linked
to the mirror. By angling the mirror the laser beam can be
deflected to scan the environment. This can be either done
by a single point moving both horizontal and vertical with
two MEMS mirrors [27]. It could also be achieved by using
specific optics to create a scanning line as shown by [28,
Druml et al.], using only one MEMS mirror.

2.3 ToF Camera
The Time of Flight Camera (ToF Camera) is an alternative
type of solid-state LiDAR. In comparison to prior kinds
of LiDAR, this one functions a lot more like a regular
camera, as the name implies. Using a CMOS sensor which
is commonly found in cameras of all types, for its laser
detection [29]. Older research used its analog counter part:
the CCD sensor [30]. These kinds of sensors can detect light
in a 2D array, allowing the sensor to capture the whole FoV
in a single shot. The ToF Camera calculates the distance
the same way as previous LiDAR systems by utilizing the
phase shift between Tx and Rx signals. This is accomplished
by employing a modulated laser signal, which is typically
modulated in a square wave [31]. The laser signal is diffused
by use of a lens, to light the whole scene at the same
time. Detection of this signal is done by a CMOS sensor
with two detectors, or ”wells”, per pixel. By timing the
gate of these detectors with that of the laser we can detect
the phase difference over time by the accumulated light
that hit the detectors. Let us call the two detectors A and
B, with A being opened when the laser emits light and
vice versa for detector B. As the light gets slightly delayed
the returned light is split between the two detectors, this
difference can then be used to calculate the phase difference.
This also allows the sensor to compensate for differences
in reflectance. For highly specular objects – like cars – a
technique using different polarizations of light exists [32].
In most systems multiple pulses are used to generate the
phase shift, to improve the accuracy of the measurements. A
visualization of this light energy over time and split between
the detectors can be seen in Figure 9. Because of it’s flood
illumination and needing multiple pulses to detect distance
means that ToF cameras usually have a lower range and
higher power usage compared to other LiDAR systems.
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Fig. 9. Plot of light energy over time for a single pixel in a ToF camera.

The accumulated difference between the two detectors will be the output

of this pixel. [31]

State of Art LiDAR sensors

In the field of LiDAR multiple companies like: Velodyne,
Robosense, Sick and Valeo have started producing LiDAR
sensors. Most having started of creating rotating mechanical
LiDAR’s and just recently releasing solid-state versions. For
comparison of different technologies the top models from
both Velodyne and Robosense have been picked, that being
of the rotating and solid-state type respectively. As ToF cam-
era’s use a completely different technology the four com-
panies named earlier do not offer any options to compare
to. Because of this a sensor from Analog Devices has been
chosen to compare too. Comparison of these sensors can be
found in Table 3. Looking at these results it can be seen
that rotating LiDAR offers a much greater horizontal FoV
than it competitors, this is also the reason this type can be
found mostly on self driving cars. The MEMS type LiDAR
shows great resolution but lacks in accuracy compared to
the other two sensors. Finally we can see that the ToF has
the best resolution and vertical FoV, both important to detect
plant stems. It lacks however in range compared to the other
options, however for the distances between plants en sensor
in a greenhouse a max range of 3 meters is not a problem.

TABLE 3

LiDAR Sensor Comparison

Velodyne Robosense Analog Devices

Ultra Puck LiDAR M1 AD-FXTOF1-EBZ

LiDAR Type [-] Rotating MEMS ToF
Resolution [°] 0.33 0.2 0.14

Horizontal FoV [°] 360 120 87
Vertical FoV [°] 40 25 69

Range [m] 0.5-200 0.5-200 0.2-3
Accuracy [-] ±30mm ±50mm  2%

3 CAMERA BASED TECHNIQUES

With the rise of smaller and better cameras so have the
techniques improved to use the data from these sensors.
We call the extraction of this data from images Computer
Vision. Lots of algorithms have been created in this field and
some are designed to detect depth in images. An overview
of these techniques is given below.

3.1 Stereovision
As with human eyes a stereovision camera uses 2 camera
views to detect depth. We do this by using the pinhole
camera model, a mathematical way of modeling light rays
through the cameras aperture and onto the image sensor.
With this the image is flipped when hitting the sensor,
because of this the image is generally modelled at the focal
distance in front of the camera aperture. By doing this we
can model each pixel on the image as a line starting at the
camera aperture, passing through the pixel and ending at
the object. A visualization of this can be found in Figure 10,
with C1 being the camera aperture and x1 being a pixel on
the image. The mathematical formula for converting image
pixel or point (x, y) to a line passing through a 3D point
(X,Y, Z) is shown in Equation 12, an important variable
in this equation is the camera matrix consisting of focal
distances fx and fy (for a perfect lens these are the same
value) and the shift in camera center in both directions cx
and cy . The camera matrix is unique to each camera, and
are approximated by using multiple images of a chessboard
with known dimensions and the inverse of Equation 12.

2

4
x
y
1

3

5 =

2

4
fx 0 cx
0 fy cy
0 0 1

3

5

2

664

X
Y
Z
1

3

775 (12)

As each image point is modeled as a line we cannot deter-
mine the distance to the object with a single camera, as the
object could be anywhere along this line. This is where the
second camera comes in, as we can use the intersection of
two lines passing through the same point on both images to
determine depth. To further understand this a visualization
of this intersection can be found in Figure 10, here x1 and
x2 represent the same object or location on an object on both
images.

Fig. 10. Visualization of stereovison camera detecting depth at the

intersection of lines passing through matched image points x1 and

x2. Where X is the object and C1 and C2 are the respective camera

apertures of both views. [33]

A common way to calculate matching image points is by us-
ing feature matching. Feature matching is a computer vision
task all on its own and thus research has provided multiple
algorithms to detect and match features on images. [34,
Guoshen et al.] shows feature detection using affine trans-
forms and blurring on specific parts of the image, and is
commonly known as ASIFT. [35, Alcantarilla et al.] showed
a technique called AKAZE, using fast explicit diffusion as
apposed to guassian filtering used in ASIFT, in order to
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speed up calculations. SURF [36], ORB [37], and BRISK [38]
are also among the list of feature matching algorithms. Most
recently SuperGlue was created using a neural network by
[39, Sarlin et al.] outperforming all previous algorithms on
accuracy, but taking a hit on speed.

A downside of using feature matching for stereovision
is that resulting features always result in a sparse field of
matches, in other words we can only calculate the distance
for the features that we detect and match between images.
Thus leaving a lot of points ”empty” in our resulting point
cloud. To combat this specially designed algorithms for
stereovision were invented, all of them using information of
the cameras pose as an extra input to reduce the search space
of the algorithms. This is done by using the rectification of
the input images. Here the location, rotation and camera
matrix of both camera views are used to reproject the images
onto a common plane parallel to the line between camera
apertures [40]. An example of the rectification of two image
views can be found in Figure 11.

Fig. 11. Rectification of images taken from the same objects but at

different locations. Note that after rectification detected features are

always horizontally aligned. [40]

The advantage of the rectified image is that resulting image
point matches always lay on the same height on both
images, we call this epipolar geometry. With this epipolar
geometry our search space is thus reduced from the whole
image to a single scan line on both images. The most
basic form of stereo matching uses a sliding window along
horizontal scan lines to find matches. Most often the metric
used for finding matches is the sum of squared distances
(SSD) together with a small amount of gaussian blur to
reduce noise between windows [41]. The formula for the
SSD metric can be found below, with Wl and Wr being a
window in the left and right image respectively and x and
y the coordinates of the pixel in the window.

SSD =
X

(x,y)2W

[Wl(x, y)�Wr(x, y)]
2 (13)

By using this metric a best match can be found for each
window as it slides over the scan line and create a dense
field of matches for our images. This technique is generally
called block matching. An important aspect of block match-
ing is the size of the sliding window, a smaller window
allows for a higher resolution but introduces noise into the
calculations. This can be tuned on a trail and error basis per
setting that the stereovision camera is deployed. Improve-
ments to the block matching algorithm have been made by
[42, Hirschmuller et al.], with their semi-global matching
(SGBM) algorithm. Here mutual information theory is used
to improve the matching between blocks, and also address
occlusion detection. [43, Amberg et al.] provides another

technique called model based stereo, where the image is
reprojected onto an approximation of the scene to then refine
it with the data that is gathered from the images. In the
paper an example of a face is given, using the approximation
of a face as an initial guess the tool can generate more
detail than with the two images alone. There also exist post
processing steps as that of [44, Boykov et al.] which smooth
out more noise filled depth data, this can be used to create
a better depth image with more resolution and less noise.

One of the main downsides of stereovision is that it
relies on texture in images for its block matching and thus
depth detection. Objects with little to no texture, like that of
a common white wall, have shown to be difficult when it
comes to stereovision. In order to combat this most higher
end stereo vision cameras employ a infrared dot projector,
which can add texture to objects which are hard to detect.
Unfortunately these dot projectors are often low power
because of their size and power constrains, and thus do
not output enough light to be a viable option in a sun lit
environment.

3.2 Structure from Motion
Structure from Motion (SFM) is a close cousin to stereovi-
sion, using multiple views of a single scene to detect depth.
The difference is that SFM uses a single camera at multiple
locations compared to the multiple cameras used in stereo-
vision. Because of this SFM is limited to stationary objects,
as with a moving camera the capture time between images
is not the same. SFM works by using a feature detector and
matcher as described in subsection 3.1. Using the matches
between images and the pinhole camera model we can use a
optimization function (Equation 14) to calculate the location
from which the images were taken. Which will allow us to
generate a 3D scene from these locations and image points.

minimize
{Pj},{Ci}

X

i2j

✓
xij �

CT
i1Pj

CT
i3Pj

◆2

+

✓
yij �

CT
i2Pj

CT
i3Pj

◆2

(14)

In this equation: Cik denotes the k’th row of the camera
matrix, i denotes the camera view, j is a featured matched
point in a view, and P denotes a homogeneous coordinate.
This optimization problem is unfortunately non convex and
in most cases converges to a local minimum, because of
this in most cases other ways of obtaining camera loca-
tion estimation is used [45]. This can be in the form of,
manually capturing the location, using video to observe
camera motion [46], or using odometry from a robot. An-
other constrained that is used is the Cheirality Condition,
this says that all constructed points should be in front of
the camera. Because the camera matrix equation allows for
points to be projected behind the camera, like a mirror at
the focal point of the camera. As outliers are a big problem
for SfM a bundle adjustment operation is commonly added
to the pipeline. Here camera poses are refined by using the
reprojection of known 3D points onto 2D images. With these
refined camera poses the detection of outliers is greatly
simplified. The most commonly used method for bundle
adjustment solving is the Levenberg-Marquardt algorithm
[47]. The main advantage to SFM is that it can work on
any unordered set of images, and no mather the size of the
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object. Because of this it is often used to capture large objects
like buildings or statues. It is also often used when no
information is available about the camera or location of the
images, think of for example smartphone apps that allow
to map a house, or capture objects. The main downsides of
SFM is that it takes a large amount of compute to calculate
and capture the data, which is why SFM data is normally
given in seconds per frame instead of frames per second.
One other downside is its reliance on a feature matching
algorithm, as previously described this will always result in
a sparse point cloud which is undesirable.

3.3 Structured Light
As a light pattern gets shined onto an object this pattern gets
distorted by the shape of the object, as the straight rays of
light wrap around an object. An example of this distortion
and structured light setup can be found in Figure 12. We
can use the inverse of this distortion to derive the shape
of said object. Distance can be derived from this by size of
the pattern. Most often a striped light pattern is used for
this application. We can perceive depth on flat, normally
featureless objects by using a custom light pattern, which
essentially adds our own features to the image. By shifting
this pattern from left to right and combining this with a
phase unwrapping algorithm [48] to derive the shape and
distance of an object. The main advantage of using a phase
unwrapping algorithm is due to its excellent accuracy, speed
and resolution [49]. Special cases that do not use phase
unwrapping have been created, most notably the paper by
[50, Cai et al.], here a special light field camera is used to
overcome the phase ambiguity. A downside of using struc-
tured light is that in order to detect depth the picture has
to be sharp, otherwise the lighting pattern becomes blurry
and unusable. A paper by [51, Hu et al.] has provided a
solution to this problem by using a electronically adjustable
lens, allowing to shift the depth of field. By shifting the
depth of field multiple images can be used as input to
create a sharper image. Another downside is the fact that
the structured light technique technique is based on using
a pattern of light. Because of this, structured light is often
used in light controlled environments. Unfortunately the
greenhouse is not one of these environments. Thus requiring
an extremely bright light pattern – which would require
large amounts of energy – to overcome the light of the sun.
There is research done by [52, Gupta et al.] that provides a
workflow that can compete with sunlight by focussing the
available light on a small part of the image. This also uses
around 32 images of the same object from a single location,
which would severely decrease the speed of the robot.
Another way is to control the sunlight in the greenhouse,
thus meaning that the robot could only work at night as
sunlight is needed for the growth of the plants. As both of
these options severely decrease the speed of the robot the
technique of structured light shows to be less desirable than
other techniques shown in this paper.

3.4 Deep Learning
Over the past few years more and more computer tasks
have been improved or replaced by the use of deep learn-
ing networks. Speech synthesis, image segmentation, object

Fig. 12. Setup used in structured light image capturing, and resulting

distortion of light pattern. [53]

detection, and translation are just a few examples of the
usecases of deep learning. In it’s most simple form these
networks take 2 sets of input x and y, training the network
on this data to create y from x. After training the network
only takes x as an input and predicts y. Taking object
detection as an example, x are images, and y are bounding
boxes on set images correlating with the object that we try
to detect. This same principle has been used to create depth
data from monocular (single camera) images. In this x are
the monocular images and y is corresponding depth data.
The form of this depth data can differ between networks,
however most common are disparity and stereo imaging
as an input. Multiple of these so called monocular depth
networks have been created, the paper by [54, Zhou et al.]
from 2020 gives an excellent overview of these types of
networks. Among these networks are those of: [55, Godard
et al.] using a CNN with stereo imaging and a custom
loss function, [56, Luo et al.] using stereo matching (as
described in 3.1) and view prediction, [57, Aleotti et al.]
making use of a generative adversarial network (GAN), [58,
Pilzer et al.] using a cycled generative network, and finally
[59, Kuznietsov et al.] build on direct image alignment loss.
These are just a small sample of monocular depth networks
that are available, they are mentioned in this paper based
on there performance or special architecture. An overview
of there performance can be found in Table 4.

TABLE 4

Monocular Depth Neural Network Comparison

RMSE Accuracy

Higher is better Lower is better

Godard et al. [55] 5.927 0.803
Luo et al. [56] 4.681 0.872

Pilzer et al. [58] 4.656 0.882

Aleotti et al. [57] 5.998 0.846
Kuznietsov et al. [59] 4.621 0.803

One downside of the use of deep learning networks is their
reliance on input data, the more input data there is, the
better the fit of the model. Multiple large data sets are
available for the training of these networks, but two are
most frequently found: KITTI [60] which mostly contains
data for road settings and was developed for the self-driving
sector, and NYU Depth [61] which primarily contains data
for indoor environments. However no such dataset is avail-
able for a greenhouse environment, and as the KITTI dataset
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TABLE 5

Sensor Comparison

Resolution (2) Accuracy (2) Speed (2) FoV (3) Size (1) Compute (2) Greenhouse (3) Total

Radar 1 3 2 5 3 4 4 44
LiDAR 3 4 2 2 2 4 5 49

ToF Camera 3 4 3 3 3 4 5 55
Stereovision 5 3 5 3 4 3 3 57

Structure from Motion 5 3 1 4 5 2 2 48
Structured Light 5 3 5 3 4 3 1 51

Deep Learning 5 2 3 3 5 1 1 45

alone holds about 13 thousand images, the task of creating
one would be very time consuming. Next to this is the fact
that these networks can only approximate depth from input
data implies that a different type of system has to be used
to capture this data. Combining these two drawbacks raises
the question of whether employing a deep learning network
is more advantageous than utilizing a larger sensor instead
of the single camera.

4 COMPARISON

Now that we’ve covered the sensors and how they function,
it’s time to compare them. For this we will consider the
FMCW Radar, MEMS LiDAR, ToF Camera, Stereovision,
Structure from Motion, Structured Light and Monocular
Depth Deep Learning techniques. The decision was made
to not consider Pulsed Radar, as this technique is almost
unused in currently available radar systems. It was also
decided not to compare rotating LiDAR systems as their
field of view and resolution is less compatible with the
usecases for our greenhouse robot, when compared to the
MEMS LiDAR.

Criteria
A set of criteria has been created in order to evaluate
different depth sensing methods. Weights between 1 and
3 have been assigned to each criteria, see Table 5 for weights
in brackets behind the criteria. Each criteria will be scored
from 1 to 5, the higher the better. The final score will be
calculated by the sum of of score with weight multiplication
for each technique. Thus the higher the final score the better
the technique is for our usecase. Below a list of all criteria
with an explanation can be found.

• Resolution: Since plant stems can be rather thin,
a high sensor resolution is preferred. Resolution is
calculated as the angle between measurement points,
as this can differ for different field of views. The res-
olution is higher and the score is higher the narrower
this angle is.

• Accuracy: High precision is required since we want
to measure the separation between the sensor and the
plants. Estimates have been made for sensors where
accuracy metrics were not available.

• Speed: The robot should move quickly in order to
have a high work rate. In turn, this means that
sensors should have fast polling rates, or high frames
per second. The higher the fps the higher the score.

• Field of View: Getting as much of the plant in
view as possible is desired for the sensors. Most
importantly when the robot moves close to the plants
a bigger FoV will allow the robot to see more of its
surroundings. Scores will be given by multiplying
the horizontal and vertical FoV angles. The bigger
the FoV the higher the score.

• Size: As the intended location of the sensor is on the
robot arm size matters as the robot moves between
plants. A smaller size of the sensor is thus desired.

• Compute: The robot is made to function on battery
power, high amounts of compute use a lot of this
battery power. In order to keep costs and energy
consumption low, lower amounts of compute are
desired per sensor.

• Greenhouse: As the sensors will be used in a green-
house, they have to function optimally in this setting.
As this metric is highly subjective the reasoning for
the score can be found in the section below.

Scores
All scores can be found in Table 5. Scores for most of
the criteria are objective and are rated high to low for all
sensors. Unfortunately this is not the case for the accuracy
and greenhouse criteria. Accuracy is not provided by every
manufacturer or researcher. LiDAR and ToF Camera have
been given a score of 4, as accuracy specifications are pro-
vided by manufacturer. A score of 5 was not given here as
accuracy is still high at 2% or 50mm for these sensors, which
is deemed high for a greenhouse setting. Radar was scored
at 3 as ghost objects degrade its accuracy when compared to
its light based counterparts. As stereovision, structure from
motion, and structured light are all camera based they are
scored the same with a score of 3. Deep Learning was scored
lowest as it is an approximation of other sensors, and thus
the accuracy will always be lower.

The greenhouse usage metric is highly subjective to the
researcher. Structured light and deep learning are scored the
lowest, at a score of 1. This is because of its reliance on
light patterns, and large currently unavailable datasets re-
spectively. This makes them both very unsuitable to current
implementation in greenhouses. We do note that structured
light could provide an option in vertical farms, as this is
already a completely light controlled environment. Structure
form motion and stereovision, do not have the same down-
falls and are thus scored higher. Maximum scores have not
been given here as both techniques rely on computer vision
to solve the depth. Both feature matching and semi-global
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matching rely on color and texture in images to find matches
between multiple images. These methods do not work as
well in a greenhouse as they do in other environments
due to the lack of color variation, as almost everything in
view is green, and the high plant density, which produces a
noise-like texture. As stereovision does not rely on camera
movement it is scored higher then structure from motion.
LiDAR, ToF camera, and radar do not rely on computer
vision techniques, and are thus scored higher. Radar has
been deducted 1 point because of ghosting objects, this
problem is exaggerated in a greenhouse as the sound waves
bounce of all the leaves and stems in view.

5 CONCLUSION

Table 5 shows that, of all the sensors, stereovision has the
greatest overall score, and is thus the most optimal sensor
for use in a greenhouse. Scoring highly on resolution, speed,
and size. The biggest downside of this technique is its
reliance on computer vision. As with the images coming
from the greenhouse the semi-global matching performs less
then optimal. Either creating sparse point clouds or needing
higher amounts om compute which consume more energy,
and or lower the frames per second of the sensor. The use
of a neural network to improve this technique could prove
as an interesting point of research, as great improvements
to for example feature detection have been made in this
field. The ToF camera has shown a good alternative to the
stereovision’s downsides. If the lack in resolution, speed
and size can be improved or overcome in the design of the
robot, the ToF camera could overtake stereovision as the
most optimal sensor.
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