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The modelling of wheel-rail dynamic interactions is crucial for accurately predicting 
wheel/track deterioration and dynamic behaviour. A reliable wheel-rail dynamic interaction 
model requires a careful treatment of wheel-rail frictional rolling contact and a proper 
consideration of dynamic effects related to the contact. Since the wheel-rail interaction due to 
the frictional rolling contact significantly influences the vehicle dynamics and stability, and 
the dynamic effects involved in wheel-rail interactions can be increased by wheel-rail high-
speed rolling, a systematic study of wheel-rail dynamic interactions is highly desired within 
the context of booming high-speed railways. 

Explicit finite element methods (FEMs) are able to handle nonlinear material properties 
and arbitrary contact geometries and consider dynamic effects; thus, the explicit FEMs are 
suitable for predicting wheel-rail frictional rolling contact and high-frequency structural 
dynamic responses. However, existing studies on explicit finite element (FE) wheel-rail 
interactions have generally adopted algorithm-optimised commercial programs to efficiently 
process the large amounts of elements required in the detailed modelling of wheel/track 
structures and perform time integration with small time steps. To facilitate other researchers to 
perform simulations of wheel-rail dynamic interactions with the explicit FEM programs, 
systematic perceptions of the involved algorithms and the modelling know-how should be 
provided. In this context, this study systematically explores the core algorithms employed in 
the explicit FE wheel-rail dynamic interactions and theoretically demonstrates that the explicit 
FEM is an ideal approach because it fully couples the calculation of wheel-rail frictional 
rolling contact with the calculation of high-frequency dynamic responses of wheel and rail 
structures. To promote the broad use of the method, this study also proposes a detailed 
procedure for establishing robust explicit FE wheel-rail dynamic interaction models and 
converting outputs into wheel-rail contact and dynamic responses. 

Three typical numerical examples are presented subsequently to demonstrate the 
effectiveness of the explicit FEM for the modelling of wheel-rail dynamic interactions. The 
first example presents an explicit FE wheel-insulated rail joint (IRJ) dynamic interaction 
model, which is validated against a comprehensive field measurement including a hammer test 
and a pass-by measurement. The simulated transient impact contact solutions tend to vary 
noticeably with the time step, indicating that the dynamic effects play important roles in the 
wheel-IRJ impact contact. The good agreement between the simulated ‘footprints’ of the 
contact patch and the in situ running band implies that the model with the measured geometry 
provides more realistic predictions of the transient solutions of the impact contact at the target 
IRJ. In addition, regular wave patterns are produced both before and during the wheel-IRJ 
impacts in the simulations, and these patterns reflect continuum vibrations excited by wheel-



rail frictional rolling and impact contact and confirm that the simulated transient contact 
solutions are reliable.  

The second numerical example proposes an explicit FE wheel-rail dynamic interaction 
model with wheel lateral motion to investigate wheel-rail squeal-exciting contact with the 
involvement of dynamic effects, unsteady lateral creepage and velocity-dependent friction. 
The proposed model is considered to be capable of reproducing the two commonly considered 
mechanisms leading to squeal: falling-friction and mode-coupling. The analyses of the 
simulated results indicate that the explicit FE dynamic interaction model can comprehensively 
consider and accurately predict the wheel-rail dynamic contact and structural dynamic 
behaviour.  

The third numerical example applies the explicit FEM to simulate the non-steady-state 
transition of wheel-rail rolling from single-point to two-point contact. The stress and adhesion-
slip distribution under the single-point contact condition and the positions and shapes of the 
contact patches under the two-point contact condition correspond well with the results in the 
literature. Wave phenomena are observed in the wheel and rail continua, especially by the 
transition from single-point to two-point contact. Compared to those in single-point contact, 
stronger waves embodied in the alternation of the compression intensification and relaxation 
can be observed upon the occurrence of the second contact point. Moreover, the contact 
transition is found to cause the full slip of the entire wheel-rail contact. These factors may 
contribute to contact instability and consequently squeal and corrugation. 

As main findings of wheel-rail dynamic contact solutions, waves produced by the 
proposed explicit FE wheel-rail dynamic interaction models are then analysed. The simulated 
waves are categorised as the impact-induced wave, the large-creepage-induced wave and the 
perturbation-induced wave. Intrinsically, they are all generated by the dynamic effects of 
wheel-rail interactions. The perturbation-induced wave is suspected to be closely related to the 
dynamic friction-induced instability. According to the characteristics of waves, this study 
corresponds the simulated large-creepage-induced wave to Rayleigh wave: the simulated wave 
is formed in particles with retrograde elliptical motion as Rayleigh wave, and the simulated 
wave speed is also in line with that of Rayleigh wave travelling in steel. The reproduction of 
the Rayleigh wave confirms that the proposed explicit FEM is appropriate and reliable for the 
modelling of wheel-rail dynamic interactions.  

In conclusion, the proposed explicit FEM provides a suitable approach to the modelling of 
wheel-rail dynamic interactions. Improvements may, however, still be required to reproduce 
the ‘enigmatic’ squeal and corrugation, whose occurrences are sensitive to both the structural 
dynamic behaviour and contact conditions. The improvements may include the development 
and implementation of dynamic contact algorithms for more realistic contact solutions, 
proposing more realistic kinematic boundary conditions or a full wheelset model for 
accurately predicting wheel curving motion, and an application of solid rail-pad representation 
that may improve the accuracies of the lateral and longitudinal dynamics simulations.  



Het goed en nauwkeurig kunnen modelleren van de wiel spoor interactie is van grote 
waarde voor het voorspellen van slijtage en degeneratie van het spoor. Hiervoor is een contact 
model nodig wat niet alleen de rekening houdt met de frictie in een rollend contactpunt, maar 
ook de dynamische effecten van dit punt kan berekenen. Daarnaast beïnvloeden deze 
parameters ook het dynamisch gedrag en de stabiliteit van de trein, met name bij hoge 
snelheid. Door de stijgende populariteit van  hogesnelheidstreinen, is het van belang om meer 
inzicht te krijgen in deze parameters. 

Met behulp van eindige elementen modellen en expliciete tijdsintegratie is het mogelijk 
om modellen met niet lineaire materiaaleigenschappen en elke vorm te maken. Hierdoor zijn 
deze modellen geschikt om het rollend contact en de hoog frequente dynamica van het spoor 
te simuleren. In de huidige literatuur over het gebruik van expliciete tijdsintegratie voor wiel 
rail interactie wordt met name gebruik gemaakt van optimalisaties om deze simulaties met 
commerciële software te kunnen doen. Om meer inzicht te verschaffen in deze methode is 
achtergrond informatie over de noodzakelijke algoritmes en kennis over het opzetten van het 
model van groot belang. In dit onderzoek worden de kern algoritmes systematisch toegepast 
op de wiel rail interactie simulatie. Aan de hand hiervan wordt ook aangetoond dat deze 
methode ook direct een gekoppelde oplossing geeft voor zowel de frictie in het contact punt en 
de hoog frequente dynamica van het wiel en de spooronderdelen. Om het gebruik van deze 
methode verder te stimuleren, worden er ook stappen gepresenteerd om een stabiele simulatie 
op te zetten en om de data te verwerken naar contactparameters. 

In deze dissertatie wordt deze methode aan de hand van drie numerieke voorbeelden 
gepresenteerd. In het eerste voorbeeld wordt de dynamische interactie tussen een Elektrische 
Scheidingslas (ES-las) en een rollend wiel gesimuleerd met behulp van een eindige elementen 
model en expliciete tijdsintegratie. Het gebruikte model voor de ES-las is vooraf gevalideerd 
aan de hand van hamer impactmetingen en treinpassages. De resultaten van de simulaties zijn 
sterk afhankelijk van de gekozen tijdstap, waaruit blijkt dat de dynamica een belangrijke rol 
speelt. Verder komen de gesimuleerde vormen van het contact oppervlak goed overeen met 
het verloop van rijspiegel als het gemeten dwarsprofiel voor de ES-las wordt gebruikt voor de 
simulatie, wat er op duidt dat de tijdsresponsie van deze ES-las goed gesimuleerd kan worden 
met dit model. Daarnaast zijn er ook golfpatronen voor en tijdens de impact waargenomen in 
de simulatie. Deze patronen komen overeen met de continuüm oplossing voor een rollend 
frictie contact, wat onderstreept dat deze resultaten betrouwbaar zijn. 

In het tweede voorbeeld wordt de wiel rail interactie gesimuleerd met zijdelingse 
verplaatsing van het wiel. Hierdoor treden extra dynamische effecten, onstabiele kruip en 
snelheidsafhankelijke frictie op, wat piepende wielen veroorzaakt. Met het model kunnen de 
twee belangrijkste oorzaken van piepende wielen worden gesimuleerd; falling-friction en 



mode-coupling. Op basis van de analyse van deze simulatie kan worden geconcludeerd dat het 
eindige elementen model nauwkeurig het dynamisch contact en de structurele dynamica kan 
voorspellen. 

In het derde model wordt een niet stationaire overgang van het wiel rail contact 
gesimuleerd; van een enkel contactpunt naar een tweepunt contact. De spanning en de adhesie-
slip verdeling van het enkele contactpunt en de locaties en vormen van de contactpunten voor 
het tweepunt contact komen goed overeen met de resultaten uit de literatuur. Opnieuw zijn 
golfpatronen waargenomen in het continuüm van het wiel en de spoorstaaf, met name tijdens 
de overgangsfase. Een toename in de intensiteit van de golfpatronen is waargenomen vlak 
voordat het tweede contactpunt ontstaat. Daarnaast blijkt dat tijdens deze overgangsfase het 
contact punt volledig slipt. Deze factoren zouden kunnen bijdragen aan contact instabiliteit 
wat piepende wielen en golfslijtage oplevert. 

Als belangrijkste resultaat van de simulatie, zijn de gesimuleerde golfpatronen verder 
geanalyseerd. Hierin is onderscheid gemaakt tussen golfpatronen veroorzaakt door de impact, 
kruip of verstoring. Elk van deze golfpatronen wordt in principe veroorzaakt door het 
dynamische wiel rail contact. De verstoringspatronen worden waarschijnlijk veroorzaakt door 
de onstabiele dynamische wrijving. De karakteristieke eigenschappen van golfpatronen 
veroorzaakt door kruip zijn gelijk aan die van de Rayleigh golven, daarnaast is ook de 
golfsnelheid hiervan gelijk aan de snelheid van een Rayleigh golf door staal. De goede 
overeenkomst tussen de Rayleigh golven en de gesimuleerde golfpatronen is een extra bewijs 
dat deze methode betrouwbaar is voor het simuleren van wiel rail contact. 

Op basis van deze dissertatie kan worden geconcludeerd dat een eindig elementen model 
in combinatie met een expliciet tijdsintegratieschema goed in staat is om het dynamische wiel 
rail contact te simuleren. Er zijn nog wel vervolgstappen nodig voordat met deze methode 
piepende wielen en het ontstaan van golfslijtage kan worden gereproduceerd. Dit zijn twee 
voorbeelden die typisch afhankelijk zijn van zowel het contact, als de dynamica van het 
systeem. Als verbetering kan een dynamisch contact algoritme worden geïmplementeerd 
waarmee nog realistischere contact simulaties kunnen worden gedaan, een compleet draaistel 
worden gemodelleerd zodat de loop van de wielen beter gedefinieerd is, of realistische 
eigenschappen voor de onderlegplaatjes in laterale en longitudinale richting worden toegepast. 
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1 



Wheel-rail contact is an issue of great concern in the railway research field. As a complex 
and imperfect link between wheel and rail (Iwnicki, 2006), it influences significantly the 
generation and development of wheel/rail defects, e.g., squats, head checks, rail gauge corner 
wear, corrugations, wheel burns and flats (Lundén & Paulsson, 2009), as well as the emission 
of wheel-rail noise including rolling noise, impact noise and squeal noise (Thompson, 2009). 
A study of wheel-rail contact may thus contribute to a more stable, comfortable and 
environmentally friendly railway transport. 

Studies on wheel-rail contact date from the 19th century. Hertz (1882) was among the 
earliest researchers to provide an analytical solution to frictionless normal contact between 
elastic bodies with a half-space assumption. Mindlin (1949) developed the Hertz contact 
theory to treat shifts of contact bodies by a tangential force within its friction limit. Wheel-rail 
friction rolling contact was first studied by Carter (1926), who calculated creepage in the 
rolling direction with a 2D analytical model. Vermeulen and Johnson (1964) then extended 
Carter’s 2D theory to 3D with pure creepage and without spin by assuming an elliptical 
adhesion area. 

With the development of the computer and computational sciences, numerical methods 
have increasingly been employed in the study of wheel-rail contact, and these methods are 
believed to be more appropriate for solving wheel-rail rolling with high complexity in contact 
conditions and material properties (Damme et al., 2003). The numerical methods may be 
divided into two classes (Nackenhorst, 2004): the boundary element method (BEM) for local 
analyses based on the half-space and quasi-quarter-space (Li, 2002) assumptions and the finite 
element method (FEM) for global analyses based on general continuum mechanics. Important 
contributions to the BEM solutions of wheel-rail frictional rolling contact with arbitrary 
creepage and spin were made by Kalker (1990), whose simplified and full theories have been 
implemented in the extensively used computer programs FASTSIM and CONTACT, 
respectively.  

Since the BEM-based approaches discretise the surfaces of contact bodies in only the 
limited domain of potential contact areas (Fig. 1.1 (a)), they are restricted to linear elastic 
contact problems (Knothe et al., 2001) and fail to consider the wheel/rail dynamic effects 
related to contact even in non-steady state contact solutions (Nackenhorst, 2004). Here, the 
dynamic effects denote that the inertia of wheel/rail material elements influences the stress 
field when the elements ‘flow’ through the deforming region (Johnson, 1985). Because the 
analytical methods and the BEM-based approaches only provide solutions of wheel-rail 
contact stress and motion (displacements & velocities) of bodies in contact within the contact 
region, the problems solved by them are known as wheel-rail contact problem. 

In contrast to ‘wheel-rail contact’, the term ‘wheel-rail interaction’ used in this study 
denotes that the whole wheel and rail structures with certain geometric and material properties 
may contribute to and be influenced by wheel-rail contact solutions. The wheel-rail interaction 
problem can be solved by the FEM-based approaches with a discretisation of whole contact 
bodies; see Fig. 1.1 (b). FEM has been demonstrated to be a more flexible tool for modelling 
frictional rolling contact with arbitrary contact geometries, possible material nonlinearities, 
dissipation and bifurcations of solutions and corresponding standing-wave phenomena (Hu & 
Wriggers, 2002). Early finite element (FE) wheel-rail contact models have either assumed 
quasi-static state contact (Telliskivi & Olofsson, 2004; Sladkowski & Sitarz, 2005; Ekberg & 



Sandström, 2009) or applied contact loads independently calculated by other simplified or 
multi-body dynamics models (Ringsberg, 2003; Wiest et al., 2008b; Johansson et al., 2011). 
Because the inertia of wheel/rail material elements is not involved in the contact calculation, 
these studies may not consider the dynamic effects related to contact. 

(a) Wheel-rail contact         (b) Wheel-rail interaction      (c) Wheel-rail dynamic interaction 

Figure. 1.1: From wheel-rail contact to dynamic interaction (Discretised solution regions are 
encircled with red frames) 

When the contact of wheel and rail with the consideration of geometric and material 
properties interacts with their structural dynamic behaviour, the ‘wheel-rail dynamic 
interaction’ should be treated; see Fig. 1.1 (c). The dynamic effects cannot be neglected in the 
wheel-rail dynamic interaction problems such as wheel-rail impact contact, friction-induced 
unstable contact and non-steady-state transition of contact point. Note that in such contact 
situations, increased wear, rolling contact fatigue (RCF) and corrugation are expected (Chen et 
al., 2010) and unpleasant impact and squeal noises may occur (Thompson, 2009). A better 
understanding and reliable modelling of wheel-rail dynamic interactions are hence important 
for the mitigation of wheel-rail deterioration and noise. Moreover, because the dynamic 
effects involved in wheel-rail interactions can be increased by wheel-rail high-speed rolling, a 
systematic study of wheel-rail dynamic interactions is highly desired within the context of 
booming high-speed railways. 

Owing to the capabilities of handling nonlinear material properties and arbitrary contact 
geometries and considering dynamic effects, the explicit FEM has been proven to be suitable 
for tackling the problems of wheel-rail dynamic interactions. The explicit FEMs have been 
successfully applied to various nonlinear transient dynamics problems in recent decades (Wu 
& Gu, 2012) and widely implemented in commercial programs, e.g., LS-DYNA and 
ABAQUS/Explicit, Radios, etc. By avoiding the need for matrix evaluation, assembly and 
decomposition as required by the implicit integration algorithms, the explicit procedure is 
computationally attractive for analysing high-frequency dynamic problems of short-duration, 
especially when the total dynamic response time that must be modelled is only a few orders of 
magnitude longer than the stability critical time step, which is frequently the case in wave 
propagation analyses (Noh & Bathe, 2013). Moreover, in comparison with the implicit FEM, 
the explicit integration scheme is more robust in handling difficult contact problems because it 
avoids the convergence difficulties caused by demanding contact conditions (Mulvihill et al., 



2011) and the regularisation of the friction law required to treat the no-slip condition in the 
adhesion area (Wriggers, 2006). 

Previous studies on wheel-rail dynamic interactions with the explicit FEM are primarily 
categorised into studies of wheel-rail impact contact (at rail joints, squats and crossing noses), 
flange contact, track dynamic behaviour, wheel-rail contact solutions and contact 
characteristics. 

Wen et al. (2005) first applied the explicit FEM to calculate stresses and strains on the 
railhead with wheel-rail contact-impact behaviour at rail joint region. The explicit FE impact 
model was then developed by Cai et al. (2007) to calculate the dynamic impact force, stresses 
and strains when a wheel passes a rail joint with a height difference. 

Li et al. (2008) applied the explicit FEM to investigate the generation mechanism of squat. 
Zhao et al. (2012) later used a validated 3D explicit FE model to evaluate the wheel-rail 
impact at a squat and the resulted high-frequency dynamic forces. Molodova et al. (2011) 
simulated axle box accelerations at a squat also using the explicit FEM. The simulated 
magnitude and frequency contents of the axle box accelerations agreed well with 
measurements. The simulation presented in (Molodova et al., 2014) showed that the dynamic 
features of the ABA related to squats in the high frequency up to 2 kHz can be captured by the 
proposed explicit FE model. 

Wiest et al. (2008a) investigated deformation and damage of a crossing nose with an 
explicit FE wheel-crossing nose dynamic interaction model. Pletz et al. (2012b) also presented 
an explicit FE model to simulate the process of a wheel passing the crossing panel of a turnout, 
which may consider the dynamic process, the elastic deformations of the wheel and the 
elastic-plastic deformations of the crossing. A 3D explicit FE model with the implementation 
of the nonlinear kinematic hardening material was then developed by Xin et al. (2016) to 
simulate the dynamic response of a whole wheelset while it is passing a crossing. Wei et al.
(2017b) applied the explicit FEM to investigate wear and plastic deformation at railway 
crossings due to wheel-rail impacts. The simulated dynamic responses were validated by 
comparing with the in situ measurements of axle box acceleration.  

The explicit FEM was also applied to the analysis of wear and RCF in the wheel curving 
behaviour with two-point contact (Vo et al., 2015). The effects of the angle of attack (AoA) 
were considered, and the contact positions with certain AoAs and wheel/rail profiles could be 
determined. Another application of the explicit FEM to two-point contact was presented in 
(Chongyi et al., 2010) to simulate the wear process on a laboratory twin-disc rig. Good 
agreement was achieved by comparing the simulated wear level with the experimental results. 

To model railway fastenings more realistically for the purpose of high-frequency dynamics 
between vehicle and track, Zhao et al. (2014a) developed different fastening models with the 



explicit FEM to include the non-uniform pressure distribution and the constraints at the rail 
bottom. Oregui et al. (2015b) then presented a 3D explicit FE model with different fastening 
representations to investigate the influence of fastening models on the vertical dynamics of 
railway tracks with monoblock sleepers. A hammer test was reproduced by an explicit FE 
model in (Oregui et al., 2016) to derive the stiffness and damping parameters involved in the 
track model. 

Zhao and Li (2011) produced physical contact solutions of wheel-rail friction rolling with 
the explicit FEM. Wheel-rail contact was rigorously treated in their explicit FE models. The 
quasi-steady contact solutions obtained with the explicit FEM corresponded well to those 
obtained with well-established approaches, i.e., Hertz contact theory and CONTACT, in both 
the normal and tangential directions, whereas the explicit FE solutions were believed closer to 
the reality because the dynamic effects stemmed from the inherent vibration of wheel-rail 
rolling were perceived. Deng et al. (2015) later used explicit FEM to study the wheel-rail 
frictional rolling contact solutions with spin. The calculated explicit FE contact solutions have 
also been shown to be accurate via comparisons with Hertzian and CONTACT solutions. 

Investigations of wheel-rail contact characteristics using the explicit FEM include the 
simulations of the transient wheel-rail rolling contact in elastoplasticity (Zhao & Li, 2015), in 
the presence of rail contamination (Zhao et al., 2014b), under high and low adhesion 
conditions (Vo et al., 2014), as well as with the consideration of velocity-dependent friction 
(Zhao & Li, 2016). These studies indicate that the explicit FEM is capable and suitable for the 
modelling of wheel-rail dynamic contact. 

Nevertheless, the aforementioned explicit FE studies have generally employed algorithm-
optimised commercial programs, e.g., ANSYS/LS-DYNA or ABAQUS/Explicit, to efficiently 
process the large amounts of elements required in the detailed modelling of wheel/track 
structures and perform time integration with small time steps. To facilitate other researchers to 
perform simulations of wheel-rail dynamic interactions with such software or alternative 
explicit FEM programs, systematic perceptions of the involved algorithms and modelling 
know-how should be provided. This thesis in Chapter 2 systematically explores the core 
algorithms employed in the explicit FE wheel-rail interaction analyses, mainly the 
mathematical model and numerical solution procedure implemented in the solvers of 
commercial programs. Chapter 2 also theoretically demonstrates that the explicit FEM is an 
ideal approach for modelling wheel-rail dynamic interactions by fully coupling the calculation 
of wheel-rail frictional rolling contact with the calculation of high-frequency dynamic 
responses of wheel and rail structures. To promote the broad use of the method, Chapter 3 
proposes detailed procedures for establishing robust explicit FE wheel-rail dynamic 
interaction models (pre-processing) and converting outputs into wheel-rail contact and 
dynamics solutions (post-processing). 

Chapters 4~6 then present three typical numerical examples of modelling of wheel-rail 
dynamic interactions: wheel-rail impact at an insulated rail joint (IRJ), wheel-rail contact with 
unsteady lateral creepage and contact transition from single-point contact to two-point contact. 
Taking arbitrary contact geometries, nonlinear material properties and dynamic effects into 



consideration, the presented numerical examples further demonstrate that the explicit FEM is 
appropriate and reliable for the wheel-rail dynamic interaction analyses. 

Regular wave patterns that indicate wave generation, propagation and reflection are 
produced by the explicit FE simulations presented in Chapters 4~6. Chapter 7 summarises and 
categorises the simulated dynamic-interaction-induced waves, and investigates the generation 
mechanisms and types of the simulated waves. Chapter 8 presents the concluding remarks and 
discusses potential improvements in the methodology required to address controversial issues 
related to wheel-rail dynamic interactions, such as squeal and corrugation. The outline of this 
thesis is summarised in Fig. 1.2. 

Figure. 1.2: Outline of the thesis 

The novelty of this thesis mainly includes three aspects: 1. the exploration of the 
methodology, 2. the modelling approach and 3. the findings.  

Firstly, this thesis systematically explores the methodology of the explicit FEM dedicated 
to the analysis of wheel-rail dynamic interactions. On one hand, the illustrations of the 
numerical model and the solution procedure lead to a better understanding of the modelling of 
wheel-rail dynamic interactions with the explicit FEM; on the other hand, on the basis of the 
explored numerical solution procedure, an indirect method for validating the dynamic contact 
solution is proposed, as shown in Fig. 1.3. Because the explicit FEM may fully couple the 
calculation of wheel/rail dynamic responses with the calculation of wheel-rail contact (see 
later in Table 2.1), the reliability of the wheel-rail dynamic interaction solutions may be 
confirmed by separately validating the quasi-steady contact solutions and wheel/rail dynamic 
responses. The former part has been accomplished by the aforementioned studies (Zhao & Li, 
2011; Deng et al., 2015), whereas the abilities of the method to reproduce wheel/track 
dynamic behaviour have been reported in (Molodova et al., 2011; Molodova et al., 2014; 
Oregui et al., 2015b; Oregui et al., 2016; Wei et al., 2017b; Yang et al., 2018). 



Figure. 1.3: Indirect validation of the dynamic contact solution 

Fig. 1.3 indicates that as long as the quasi-steady-state contact solution and the structural 
dynamic responses are verified and validated, the nodal force and nodal motion calculated by 
the explicit FEM can be considered reliable. The dynamic interaction solutions obtained by 
post-processing the calculated nodal force and motion are hence validated indirectly. 
Simultaneously, the physical problem can be considered to be appropriately represented by the 
mathematical model and the errors caused by the numerical approximations are regarded as 
acceptable. 

Secondly, this thesis robustly models wheel-rail dynamic interactions under three typically 
non-steady-state contact conditions: impact contact, contact with unsteady lateral creepage and 
contact transition from single-point to two-point. Taking into account real contact geometries, 
nonlinear material properties and dynamic effects, the presented numerical examples further 
demonstrate that the explicit FEM is appropriate and reliable for the analysis of wheel-rail 
dynamic interactions. 

The first numerical example presents an explicit FE wheel-insulated rail joint (IRJ) 
dynamic interaction model (see Fig. 1.4 (a)), which is comprehensively validated against a 
hammer test and a pass-by measurement conducted on a typical IRJ in the Dutch railway. This 
numerical example provides an overall understanding of the wheel-rail dynamic contact 
behaviour due to impacts by calculating transient frictional impact contact solutions. 

The second numerical example proposes an explicit FE wheel-rail dynamic interaction 
model with wheel lateral motion (Fig. 1.4 (b)) to investigate wheel-rail squeal-exciting contact 
with the involvement of dynamic effects, unsteady lateral creepage and velocity-dependent 
friction. The proposed model is considered to be capable of reproducing the two commonly 
considered mechanisms leading to wheel squeal noise: falling-friction and mode-coupling. 
This numerical example contributes to a better understanding and modelling of frictional 
instability and consequent wheel squeal from the perspective of wheel-rail dynamic contact. 



The third numerical example uses an explicit FE model to simulate the non-steady-state 
transition of wheel-rail rolling from single-point to two-point contact (Fig. 1.4 (c)). This 
numerical example develops the understanding of wheel-rail frictional rolling with two-point 
contact and its resulting wear (including fretting) and RCF, and may contribute to the study of 
the ‘elusive’ short-pitch corrugation and ‘erratic’ flange squeal. 

(a) Wheel-IRJ impact              (b) Contact with unsteady lateral creepage 

(c) Contact transition 
Figure. 1.4: Numerical examples presented in Chapters 4~6 

Thirdly, this thesis reveals wave phenomena caused by wheel-rail dynamic interactions. To 
the knowledge of the author, the time-domain wave, as a typical dynamic contact solution, has 
rarely been reported in the previous researches of wheel-rail contact. The reproduction of the 
large-creepage-induced Rayleigh wave confirms the reliability of explicit FEM for the 
calculation of high-frequency wheel-rail dynamic interactions (see Fig. 1.3). In addition, the 
perturbation-induced wave is considered to be related to the occurrence of stick-slip rolling, 
which might subsequently result in squeal and corrugation.  



2 



ALGORITHMS OF THE EXPLICIT FINITE ELEMENT ANALYSIS OF WHEEL-RAIL 
DYNAMIC INTERACTION

This chapter systematically explores the core algorithms employed in the explicit FE 
wheel-rail interaction analyses with a focus on the mathematical model and the numerical 
solution procedure implemented in the solvers of commercial programs. The reviews of the 
algorithms are mainly based on the theories illustrated in several FEM books (Bathe, 1996; 
Wriggers, 2006; Wu & Gu, 2012) and articles (Hughes et al., 1976; Oden & Pires, 1984; 
Hallquist et al., 1985; Wu, 2003, 2009) and the theoretical manuals of commercial explicit FE 
programs (Hibbitt & Sorensen, 2001; Sarl, 2005; Hallquist, 2006). In addition, the 
applicability of the explicit FEM to wheel-rail dynamic interaction analyses is demonstrated 
from a theoretical perspective. 

In the formulas presented in this thesis, vectors, matrices and tensors are mainly 
represented by index notation, and sometimes by bold-faced variables when the numbers of 
components and operations are not confusing. Lowercase subscripts (i, j, k) are used for spatial 
components, lowercase superscripts (t) for time points, capital subscripts (M) for hourglass 
mode numbers, and capital superscripts (J, M, N) for nodal/element numbers.  

Lagrangian formulation typically used for transient structural dynamic problems is 
employed for wheel-rail dynamic interaction analyses. When adopting the Lagrangian 
formulation, the time-dependent displacement  in a fixed rectangular Cartesian coordinate 
system can be expressed in terms of the convected coordinates  in the same coordinate 
system and time  as follows: 

                                                    (2.1)
A general 3D transient structural dynamics problem may then be described by constrained 

partial difference governing equations as follows: 

Momentum conservation equations:                     (2.2a) 

Displacement boundary conditions:                                                      (2.2b) 
Traction boundary conditions:                                                            (2.2c) 

Contact discontinuity conditions:                                          (2.2d) 

Initial conditions:                                      (2.2e) 

Material constitutive relation:                                            (2.2f) 

Strain-displacement relation:                                                                 (2.2g) 

where  is Cauchy stress tensor;  is the current density;  is the body force density;  is 
the prescribed displacement boundary conditions on part of the boundary ;  represents the 
components of the traction boundary conditions on part of the boundary ;  is a unit 
outwardly normal to a boundary element on ;  and  are the initial displacements and 
velocities, respectively; and  and  are the Young’s modulus, Poisson’s ratio and tangent 
modulus of the material, respectively. The rate form adopted in Eqns. (2.2f) and (2.2g) may 
take nonlinearities into account.  

The displacement-based FEM (compared with the force-based FEM) is employed to solve 
the dynamic problem described in Eqn. (2.2). By removing all displacement constraints and 
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assuming that the reactions are known, the variational governing equation can be derived by 
Hamilton’s principle as follows: 

   (2.3) 

Eqn. (2.3) is a statement of the principle of virtual work, in which  is the variation of 
displacement. By applying the Gauss divergence theorem to convert the surface integral to the 
volume integral, the following is obtained: 

                       (2.4) 

Noting the mathematical identity: 

                                                (2.5) 

Then, the weak form of the equilibrium equation can be derived as follows: 

                       (2.6) 

To solve Eqn. (2.6) numerically, a spatial discretisation may be used to express the 
equilibrium equation in terms of time-dependent nodal unknowns and base functions. A mesh 
of finite elements interconnected at nodal points on the reference configuration is thus 
superimposed, and particles are tracked through time: 

where  is the shape function in the parametric coordinates ( , , ) and  is the number of 
nodal points defining the element. Summing over all  elements of a FE model, the semi-
discrete equation of motion in the matrix notation becomes: 

where  is the Cauchy stress vector, and ;  is the nodal 
acceleration vector;  is the shape matrix constructed by the shape functions;  is the strain-
displacement matrix containing the first spatial derivatives of the shape functions; and and 
are the prescribed body load vector and traction load vector, respectively. Because the 
hexahedral solid elements ( =8 in Eqn. (2.7)) are mostly used in explicit FE wheel-rail 
interaction models, they are taken as examples to illustrate the theories summarised here. For 
the hexahedral elements: 

                                             (2.8a)

                    (2.8b) 
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                                             (2.8c)

Note that the time dimension in Eqn. (2.8) is still continuous, and the semi-discrete 
equation of motion for a general transient structural dynamics problem may thus be rewritten 
in a shorthand format: 

                                                          (2.9) 
in which ,  and  are the mass matrix, internal force vector and external force vector, 
respectively, and they are defined as follows: 

By adding two extra terms  and , to the right-hand side of Eqn. (2.9), the semi-
discrete equilibrium equation for the wheel-rail dynamic interaction problem is obtained as 
follows: 

                                               (2.10) 
where  is the anti-hourglass vector that only occurs in the reduced integration to control the 
zero-energy modes, and  is the contact force vector, which can be included as a 
contribution to the externally applied tractions (Bathe, 1996; Wu & Gu, 2012). These two 
terms will be explicated in Sections 2.5 and 2.6, respectively. 

Among the various numerical approaches developed for solving the dynamic interaction 
problem formulated by Eqn. (2.10), this study focuses only on the explicit integration scheme 
using the central difference to approximate the acceleration vector . The explicit schemes 
calculate the values of dynamic quantities at time step based entirely on the available 
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values at time step . Eqn. (2.10) discretised by the central difference scheme at time step 
may be written as follows: 

                                      (2.11) 
The velocity and displacement vectors may then be obtained using the central difference 

time integration: 
                                              (2.12a) 

                                                 (2.12b) 
where  is the time step size, which is constant in the linear analysis but may vary in the 
nonlinear analysis (Bathe, 1996), and 

                                                        (2.13) 

The equilibrium Eqn. (2.11) discretised in both the space and time domains indicates that 
the numerical solutions of a wheel-rail dynamic interaction problem are dependent on a 
constant mass matrix and four time-dependent force vectors. Therefore, the numerical solution 
procedure for the explicit FE wheel-rail dynamic interaction analysis is mainly composed of 
mass matrix and force vector calculations. A lumped mass matrix can be constructed by a row 
summation scheme (Wu, 2006) prior to the iteration to promote the efficiency and practicality 
of the explicit FEM. For the force vectors, the external force vector may be calculated 
directly by the given load conditions (see Section 2.3); the internal force vector 
contributed by stresses may be calculated by the constitutive and strain-displacement 
formulations built in the element and material models (see Section 2.4); and the anti-hourglass 
force vector  and the contact force vector may be calculated by the Flanagan-
Belytschko scheme (Flanagan & Belytschko, 1981) (see Section 2.5) and penalty contact 
method (Hallquist et al., 1985) (see Section 2.6), respectively. Table 2.1 outlines a numerical 
procedure for the explicit FE wheel-rail dynamic interaction analysis. This procedure has been 
implemented in commercial explicit FE programs and used in previous wheel-rail contact and 
dynamics studies, although variations are possible, e.g., processing contact with a ‘predictor-
corrector method’ (Attaway et al., 1998; Wu, 2009): 1. Predict nodal 
accelerations/velocities/displacements before step (d) in Table 2.1 by assuming no contact 
occurs; 2. Check the contact conditions in step (d) with the predicted displacement field; and 3. 
Enforce contact forces and correct the nodal motions, i.e., the acceleration, velocity and 
displacement. 

The numerical solution procedure presented in Table 2.1 contains two loops. The outer 
loop is constructed mainly by formulating the equation of motion and solving the equation 
with the central difference scheme, whereas the inner loop calculates the wheel-rail contact, 
which is called as a subroutine at each time step prior to the updates of the structural dynamic 
responses. The calculation of wheel/rail dynamics and the calculation of wheel-rail contact are, 
therefore, coupled in the numerical algorithm, which provides the theoretical basis for the 
indirect validation of the wheel-rail dynamic interaction solutions mentioned in Section 1.4.  
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Table 2.1: Numerical procedure for the explicit FE wheel-rail dynamic interaction analysis 

Initialise algorithm: 

• Apply initial conditions  and  (by Eqn. (2.2e));  
• Set  and ;  
• Define the slave/master nodes/segments for wheel-rail contact pairs; 
• Construct the lumped mass matrix ;  
• Set the termination time: . 

LOOP1 0, 2,…, n (time step number) 

(a) Apply load conditions to construct the external force vector  (see Section 2.3); 

(b) Process elements to construct the internal force vector  (see Section 2.4); 
(c) Construct the anti-hourglass vector  (see Section 2.5); 

(d) Construct the wheel-rail contact force vector  (see Section 2.6); 
     LOOP2 N=1, 2,…, m (slave wheel node number) 
     I. Locate the corresponding master segment on the rail for slave wheel node N; 
     II. Locate the wheel-rail contact point (projection of the slave node on the master segment); 
     III. Check for penetration; 
        IF penetration occurs, 

            i. Calculate the normal contact forces ; 

            ii. Calculate the tangential contact forces ; 
        END IF 
     END LOOP2 
(e) Update time step size  to prevent unstable contact or integration (see Section 2.2.3); 
(f) Update nodal accelerations  (by Eqn. (2.11)); 
(g) Impose displacement constraints (see Section 2.7); 
(h) Update nodal velocities  (by Eqn. (2.12a)); 
(i) Update nodal displacements  (by Eqn. (2.12b)); 
(j) Update structural geometries (by Eqn. (2.15)); 
(k) Update time  and check for termination: IF  STOP 
END LOOP1 
Output: wheel/rail nodal force and nodal motion ( ,  and )  

The explicit integration scheme has a simple and neat solution procedure but is 
conditionally stable: the integration is only stable if the time step size used is smaller than the 
critical time step size. The Courant-Friedrichs-Lewy stability condition (Courant et al., 1967) 
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can be used to guarantee convergence, which requires that a sound wave may not cross the 
smallest element within one time step: 

                                                              (2.14) 
where  is the critical time step size;  is the shortest characteristic dimension of the 
element; and  is the dilatational wave speed of the material. For hexahedral elements: 

                                                          (2.14a) 
where  is the element volume, and  is the largest surface area. For elastic materials: 

                                       (2.14b) 
In the calculation of wheel-rail interactions, the wheel and rail are generally considered to 

be steel with nominal values of =210 GPa,  and =7800 kg/m3; thus,  is equal to 
approximately 6 km/s. The critical time step  characterised in inequality (2.14) may vary in 
nonlinear dynamic analyses because of changes in the material parameters and/or geometry. 
The time step  should be correspondingly adjusted in a conservative manner so that the 
condition in inequality (2.14) is satisfied with certainty at all time steps. To guarantee the 
stability and simultaneously decrease the solution time, a suitable scale factor  may be 
employed to control the time step, i.e., . A detailed discussion about the scale 
factor  used in the wheel-rail dynamic interaction analysis is given in Section 3.3.6.  

Because the numerically obtained highest natural frequency of a structure is bounded by 
the highest frequency of any individual element in the FE discretisation (Hallquist, 2006), as 
long as the elements and time steps are sufficiently small, an explicit FE model may include in 
its solution all the relevant vibration modes of structures and continua and associated wave 
propagations (Zhao & Li, 2015). In addition, small time step sizes can reduce the truncation 
errors but increase the round-off errors. By adding displacement increments to the initial 
geometries: 

                                                           (2.15) 
in the geometry updating step (step (j) in Table 2.1), rather than to the geometries obtained at 
the previous time step, solutions turn out to be much less sensitive to the round-off errors 
(Hallquist, 2006).  

The external force vector in Eqn. (2.11) can be directly constructed by the prescribed load 
conditions. Common external loads applied to wheel-rail dynamics and contact models 
include gravitational loads, hammer impulse loads and driving torques. The first two may be 
regarded as the body forces and surface nodal loads contributing to the first and second terms 
of Eqn. (2.9b), respectively. The driving torque is discussed in Section 3.3.3. 

Gravitational loads are generally applied to wheel-rail interaction models to initialise 
internal forces before proceeding with calculations of dynamic responses. The gravitational 
loads are applied as body forces by setting a fixed gravitational acceleration  as follows: 
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Hammer impulses may be applied to the explicit FE wheel/track models as surface nodal 
loads to characterise the dynamic behaviour of structures (Oregui et al., 2015; Oregui et al., 
2016). The prescribed surface nodal loads at the Nth node of a surface segment  may be 
converted to the traction boundary conditions as follows: 

where  is the unit normal vector to the surface segment; see Eqn. (2.26b) in Section 2.6.1. A 
Gaussian one-point quadrature may then be used to conduct the surface integration in Eqn. 
(2.9b) as follows: 

in which is the surface Jacobian matrix and  approximates the element surface. 

To construct the internal force vector given in Eqn. (2.9c), the strain-displacement matrix 
 and the stress vector  are required. Continuing to take the hexahedral element as examples, 

the Jacobian matrix  is used to relate the displacement in the parametric coordinate system to 
the global coordinates system: 

The strain-displacement matrix  may then be obtained with Eqn. (2.8c), and the strain 
rate  and stress rate are readily calculated by applying the strain-displacement relation and 
the material constitutive relation in Eqns. (2.2g) and (2.2f), respectively. The material 
constitutive relation expressed in Eqn. (2.2f) can be either linear or nonlinear. See (Wu & Gu, 
2012) for an additional discussion of the material constitutive relations. The Cauchy stresses 
may be calculated using explicit time integration as follows: 

Because =  is defined over the volume, the internal forces of structures may 
be updated with a Gaussian one-point quadrature analogous to Eqn. (2.18) as follows: 
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in which  approximates the element volume. 

Explicit FE wheel-rail interaction analyses have generally adopted the one-point 
quadrature scheme (Eqns. (2.18) and (2.21)) for the sake of computational efficiency, which 
may also avoid the shear locking issue. The one-point reduced integration, however, leads to 
spurious zero-energy modes or ‘hourglass’ modes for hexahedral and quadrilateral elements. 
For hexahedral elements, the hourglass modes are present whenever diagonally opposite nodes 
have identical velocities, which give zero strain rates according to Eqn. (2.2g). The anti-
hourglass force vector  is thus introduced in Eqn. (2.10) to avoid the undesirable hourglass 
modes from growing large and destroying solutions. An orthogonal Flanagan-Belytschko 
hourglass control scheme (Flanagan & Belytschko, 1981) may be used in the explicit FE 
wheel-rail dynamic interaction analysis. The anti-hourglass forces are given by: 

where  is the hourglass coefficient, and the nodal velocities  are the sum of the 
hourglass field  and the linear portion of the nodal velocities : 

The hourglass shape vectors  are defined in terms of the hourglass base vectors 
given in Table 2.2: 

Table 2.2. Hourglass base vectors for hexahedral elements 
Node (N) 

1 
2 
3 
4 
5 
6 
7 
8 

1 
1 
-1 
-1 
-1 
-1 
1 
1 

1 
-1 
-1 
1 

-1 
1 
1 
-1 

1 
-1 
1 
-1 
1 
-1 
1 
-1 

-1 
1 

-1 
1 
1 

-1 
1 

-1 

Note that the hourglass shape vectors  are orthogonal to the linear velocity field , 
which makes the anti-hourglass force vector  also orthogonal to the linear velocity field 

 and is necessary for accurately detecting an hourglass. Therefore, the hourglass control 
scheme avoids transferring energy to or from the rigid body and uniform strain modes. 
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Because of its iterative nature (Bathe, 1996; Wu & Gu, 2012), the penalty contact 
algorithm is considered to be suitable for solving explicit FE contact problems and has been 
broadly proposed to enforce the wheel-rail contact constraints. As indicated in Table 2.1, the 
penalty contact algorithm can be straightforwardly implemented in the explicit FE programs 
as a subroutine. Penetration is allowed and represents the key to the penalty method (Wu & 
Gu, 2012). The penalty algorithm checks each slave node for penetration through the master 
surface. This study refers to the wheel surface as the slave surface and to the rail surface as the 
master surface; the symmetry of the approach eliminates any bias in this choice.  

In a wheel-rail contact simulation, a slave wheel node is seldom in exact contact with a 
master rail node. Instead, the slave wheel node usually ‘contacts’ a segment composed of four 
rail surface nodes. At each time step, the contact segments on the rail surface need to be 
searched for. For an arbitrary slave node Ns defined on the prospective wheel contact surface, 
the closest master node and segment on the rail surface need to be first located. As shown 
schematically in Fig. 2.1 (a), the slave node Ns is denoted as a red spot, and its closest master 
node Nm is stored by segments Si (i=1,2,3,4). If the nodes Ns and Nm do not coincide, Ns can 
be shown to lie in one of the segments Si via the following tests: 

                (2.23) 
The vectors  and  are along the edges of Si and point outwards from Nm, and the 

vector is the projection of the vector beginning at Nm and ending at Ns onto the closest 
segment (S2 in this demonstration). The inequalities of Eqn. (2.23) ensure that the vector is 
between the vectors  and  and is thus located within the segment Si. If the inequalities 
are not satisfied, another master segment containing Nm will be checked. The algorithm does 
not limit the number of segments containing Nm, and the master segment determined at the 
previous time step is preferentially checked at each time step. 

(a)                                                                                (b) 
Figure. 2.1: Parametric representation of wheel-rail contact 

The ‘contact point’ Nc is the projection of the slave wheel node Ns on the master rail 
segment (S2 in this demonstration). The determined master segment has a bilinear parametric 
representation in a local coordinate system as follows: 
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where  represents the master segment;  represents unit direction vectors; and 
represents the nodal coordinates of the nodes contained by the segment. Let  be a vector 
drawn to the slave node Ns. The contact point Nc with coordinates  on the master 
segment can be determined by satisfying the following:  

The coordinates  in Eqns. (2.25a) and (2.25b) may be solved numerically with 
Newton-Rapson iterations. Since the method may diverge with distorted elements (Hallquist, 
2006), a careful treatment of mesh in the wheel-rail contact region, especially in the solution 
zone, is highly desirable. Penetration of the slave wheel node through its master rail segment 
may then be judged by a scalar : 

If , no penetration occurs and nothing will be done; if , an interface force vector 
 normal to the master segment will be applied to the contact point, and its magnitude is 

proportional to the amount of penetration: 

Hence, interface springs may be assumed between the penetrating slave wheel nodes and 
rail contact surface as shown in Fig. 2.1 (b), and the penalty contact (spring) stiffness  is 
intrinsically the combination of a geometrical penalty term and a velocity penalty term (Wu, 
2009). For the hexahedral elements containing the master segments used in the wheel-rail 
contact surfaces,  may be given in terms of the bulk modulus , the element volume  and 
the face area  as follows: 

where  is a scale factor for the penalty contact stiffness. The choice of its value in wheel-rail 
interaction simulations will be discussed in Section 3.3.1. The equal and opposite contact 
forces distributed over the master segment nodes  may also be obtained as follows: 
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The penalty contact algorithm implemented in the explicit FEM can treat an arbitrarily 
shaped surface by representing the surface with a faceted mesh. 

The Coulomb friction law is available to solve the wheel-rail tangential contact. A trial 
tangential contact nodal force  at time step  may be defined as follows: 

where  is the tangential contact force calculated at time step ;  is the penalty contact 
stiffness; and  is the incremental movement of the slave wheel node along the rail surface: 

The traction bound  at time step  in the Coulomb friction law is the product of the 
magnitude of the normal force  at the same time step and the coefficient of friction (COF) 

: 

The tangential contact force at time step  may thus be written as follows: 

The COF , which is considered a constant in the classical Coulomb’s law, may vary with 
various factors in wheel-rail contact such as sliding speed, contact pressure, surface 
lubrication or contamination, roughness, temperature, and humidity (Zhao & Li, 2016). 
Section 2.2.2 demonstrated that the explicit FEM couples the calculation of wheel/rail 
dynamic responses with the calculation of wheel-rail contact in the time domain. Thus, a 
velocity-dependent Coulomb’s law with a functional COF may be implemented in the explicit 
FEM. The COF updated at each time step may be expressed in terms of the static and dynamic 
friction coefficients  and , respectively, a decay constant  and wheel-rail relative sliding 
velocities  between the slave nodes and master segments at the same time step as follows: 

The decay constant  describes how fast the static coefficient approaches the dynamic 
coefficient and may be determined by fitting the measured results (Zhao & Li, 2016). Because 
the wheel-rail contact forces can be physically interpreted as externally applied tractions 
(Bathe, 1996; Wu & Gu, 2012), the contact force vector required in Eqn. (2.11) may be 
expressed as follows: 

The traditional division of an elastic contact problem into a normal problem and a 
tangential problem is based on an assumption that the friction transmitted between elastic 
contact bodies has a negligible influence on the normal contact solutions (Poritsky, 1950). In 



ALGORITHMS OF THE EXPLICIT FINITE ELEMENT ANALYSIS OF WHEEL-RAIL 
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the explicit FEM, the normal and tangential contacts are calculated successively and 
dependently at each time step, which is necessary for solving inelastic contact problems. 
Studies with the explicit FEM (Deng et al., 2015; Zhao & Li, 2015) have indicated that the 
tangential elastoplastic wheel-rail contact solutions have noticeable effects on the normal 
solutions: an increase in tangential force increases plastic flow, and the contact patch tends to 
become larger in size and shifts forward more. 

The contact-based critical time step determined by the penalty contact algorithm is 
proportional to , where  (J=1,2) is essentially the mass attached to the contact 
‘spring’ and  is the penalty contact stiffness given in Eqn. (2.26d). The time step size  used 
in the explicit FEM should not exceed the contact-based critical time step to avoid contact 
instability. The easiest method of increasing the contact-based critical time step is to scale 
down the penalty contact stiffness . 

Suitable displacement constraints are necessarily defined as essential boundary conditions 
in the mathematical model of wheel-rail dynamic interactions and are largely applied to 
structural boundaries, such as the inner end of wheel half-axles, the rail ends and the rail 
bottom surfaces (see Section 3.3.4). These constraints can be imposed by setting the 
constrained acceleration components to zero (Hallquist, 2006). Since the prescribed nodal 
displacement constraints are imposed in the local coordinate system, an orthogonal matrix 
constructed by the normalised unit vectors in the local axes needs to be employed to transform 
the global nodal acceleration vectors  (for node N) updated by Eqn. (2.11) to the local 
system as follows: 

After the constrained acceleration components are zeroed, the modified vectors  can 
be transformed back to the global system: 

where  in Eqn. (2.31b) is the finally updated nodal acceleration vector of the time step, 
which will further be integrated to approximate the nodal velocities and displacements by 
Eqns. (2.12a) and (2.12b). 

By systematically exploring the core algorithms employed in the explicit FE wheel-rail 
interaction analyses, this chapter enhances the understanding of the explicit FE wheel-rail 
interaction studies and shows the applicability of the explicit FEM to the wheel-rail dynamic 
interaction analyses from a theoretical perspective. The advantages of using the explicit FE 
algorithm to solve the wheel-rail dynamic interactions may thus be summarised as follows: 
• The explicit FEM couples the calculation of wheel/rail structural dynamic responses with 

the calculation of wheel-rail contact, which makes the explicit FEM an ideal approach for 
solving wheel-rail dynamic interactions and provides a theoretical basis for the indirect 
validation of the wheel-rail dynamic contact solution.  



ALGORITHMS OF THE EXPLICIT FINITE ELEMENT ANALYSIS OF WHEEL-RAIL 
DYNAMIC INTERACTION

• The explicit FEM is capable of treating nonlinearities in materials, geometry and 
boundary conditions. The implemented penalty contact algorithm can handle arbitrarily 
shaped contact surfaces, and it calculates normal and tangential contact successively and 
dependently at each time step, which is necessary for solving inelastic wheel-rail contact 
problems.  

• By avoiding the need for matrix evaluation, assembly and decomposition as required by 
implicit integration algorithms, the explicit procedure is computationally attractive for 
analysing high-frequency dynamic problems of short duration, especially when the total 
dynamic response time that must be modelled is only a few orders of magnitude longer 
than the stability critical time step, which is frequently the case in wave propagation 
analyses (Noh & Bathe, 2013). The explicit wheel-rail FE model may include in its 
solution all the relevant vibration modes of structures and continua and associated wave 
propagations. 

The conditionally stable explicit FEM is, however, less efficient than the implicit FEM for 
static equilibrium analyses or low-frequency dynamics problems lasting for a much longer 
time period (Zhao et al., 2016). Implicit-explicit sequential approaches may thus be employed 
to minimise both the solution time and the dynamic effects induced by the initialisation of 
wheel-rail interaction analysis. The implicit-explicit sequential approach involves performing 
an implicit static equilibrium analysis followed by an explicit transient dynamics analysis. The 
modelling procedure is elaborated in the next chapter. 
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This chapter first discusses in Sections 3.1~3.3 how to establish robust explicit FE wheel-
rail dynamic interaction models. A basic explicit FE wheel-rail dynamic interaction model 
may contain a half-track model and a half-wheelset model with its share of the sprung mass of 
a car body and a bogie. The modelling procedure may be divided into three stages in a 
physical sequence: Stage 1. build wheel and rail models; Stage 2. let the wheel and rail come 
into contact and achieve static equilibrium; and Stage 3. let the wheel roll along the rail. The 
commercial programs ANSYS/LS-DYNA were employed to demonstrate this modelling 
procedure, and other programs with implementations of implicit-explicit sequential 
approaches, such as ABAQUS/Explicit, may also be applied. Sections 3.4~3.5 introduce post-
processing approaches to converting the output of numerical programs for wheel/rail nodal 
forces and nodal motions into wheel-rail contact and dynamics solutions. 

The geometries of wheels and rails, including the contact profiles, should be modelled as 
realistically as possible because they may influence both the structural dynamic properties and 
contact solutions. The detailed nominal geometries of a wheel radial section and a rail cross 
section may initially be created in a graphical software (e.g., AutoCAD; see Fig. 3.1 (a)). 
Based on these geometries, the wheel and rail volumes can subsequently be generated in the 
pre-processing FE software (e.g., ANSYS; see Fig. 3.1 (b)) by rotating the wheel radial 
section with respect to the central line of the wheel axle and extruding the rail cross section 
longitudinally. The wheel/rail volumes are suggested to be generated after meshing the wheel 
radial section and rail cross section for modelling convenience. 

(a) Generated in AutoCAD                            (b) Generated in ANSYS 
Figure. 3.1: Modelling of wheel and rail geometries

Adequately fine mesh is needed for a robust FE wheel-rail interaction model, especially 
when precise contact solutions and high-frequency dynamics are desired. Zhao and Li (Zhao 
& Li, 2011) report that the element size of approximately 1/20 of the minor axis of the contact 
patch tends to provide accurate contact solutions, whereas approximately 1/10 of the minor 
axis may be acceptable for many engineering problems. To obtain an optimal mesh in the 
sense of cost effectiveness and acceptable error, a partially refined mesh as shown in Fig. 3.2 
may yield a better approximate solution (Hu & Wriggers, 2002). Fine special discretisation 
should be concentrated on the prospective contact regions. Another meshing method balancing 



the efficiency and accuracy of contact solutions uses the surface-based tie constraints to refine 
the mesh in the contact regions (Pletz et al., 2012b, 2012a). The tetrahedral or wedge elements 
with triangular faces, which have indeterminate contact condition at the corners, are not 
suitable for analysing contact problems and should be avoided (Hibbitt & Sorensen, 2001). 

(a) Mesh of rail cross section    (b) Mesh of wheel tread   (c) Overview of wheel & rail meshes 
Figure. 3.2: Wheel and rail meshes 

Profiles with geometric irregularities are generally considered in the wheel-rail impact 
contact simulations (Li et al., 2008; Molodova et al., 2011; Zhao et al., 2012; Molodova et al., 
2014; Yang et al., 2015; Wei et al., 2017b). One example of the measured rail top surface with 
geometric irregularities at an insulated rail joint (IRJ) is shown in Fig. 3.3. The rail surface 
geometric irregularities measured by Railprof (Molodova et al., 2014) or HandySCAN (Wei et 
al., 2017a) may be imposed on the originally smooth surface of the model by adjusting the 
nodal coordinates in the input files of the dynamic analysis solver. 

(a) Nominal geometry                                 (b) Applying the measured geometry 
Figure. 3.3: Measured geometry applied to a wheel-insulated rail joint impact model (Yang et 

al., 2018) 

In addition to the wheel and rail, other train/track components such as the car body, 
primary suspension, sleepers, fastenings and ballast, may be modelled for different study 
purposes. The sleepers may also be modelled with hexahedral elements as well as different 
material properties than those used in the rail and wheel models; the ballast is generally built 
as spring-damper pairs with a fixed foundation; and the fastening models may significantly 
influence the track dynamic behaviour, whose modelling techniques were comprehensively 



discussed in (Zhao et al., 2014a; Oregui et al., 2015b). Because the car body and the bogie 
frame have a negligible influence on high-frequency wheel-rail dynamic interactions, they are 
normally simplified as mass elements connected to the wheelset by the primary suspension 
with parallel linear springs and viscous dampers.  

The explicit FE wheel and rail models generally adopt either elastic or elastoplastic steel 
with nominal values as the material; and the sleeper models normally adopt elastic timber or 
concrete as the materials, although inelastic models can be conveniently used. Because the 
parameters used in fastening and ballast models can rarely be directly measured in the field, 
they are generally calibrated by fitting the simulated frequency response functions to the 
measured values (Oregui et al., 2015b; Oregui et al., 2016). Typical values of the parameters 
employed in the explicit FE wheel-rail interaction models can be found in (Zhao et al., 2012; 
Molodova et al., 2014). 

A wheel-rail static equilibrium analysis may be performed to obtain the deformation of 
structures caused by the gravitational load, which will subsequently be considered the initial 
conditions for the wheel-rail dynamic interaction analyses. The augmented Lagrangian contact 
algorithm is recommended for the wheel-rail static contact analysis, which is intrinsically an 
iterative series of penalty methods with automatic updates of penalty values (Mijar & Arora, 
2004). The contact pair with a static COF needs to be defined, and it consists of the wheel and 
rail surface nodes that may be within the static wheel-rail contact patch. 

In the wheel-rail static contact analysis, the rail ends, half-wheel-axle ends and car body 
should be constrained in the lateral (Ux) and longitudinal (Uz) directions. To prevent the 
wheel model from undesired rolling, its central radial section (normal to the rail longitudinal 
direction) can be constrained in the longitudinal direction (Uz); see Fig. 3.4. By applying the 
gravitational load, the static contact solutions can be obtained. Fig. 3.5 shows the distribution 
of the vertical components of the stresses on a piece of rail model that was in contact with the 
wheel model in a static contact analysis. An elliptic contact patch can be clearly seen at the top 
of the rail. 

Figure. 3.4: Displacement constraints            Figure. 3.5: Static contact solution 



As indicated by the numerical solution procedure presented in Table 2.1, definitions of the 
wheel-rail rolling contact pair, the initial conditions, and the load and displacement boundary 
conditions are required to proceed with an explicit FE wheel-rail dynamic interaction analysis.  

A rolling contact pair needs to be defined in the wheel-rail transient frictional rolling 
calculation. To employ the penalty contact algorithm introduced in Section 2.6, the master and 
slave segments of the rolling contact pair defined on the rail top and wheel tread should 
contain the whole prospective rolling contact region; however, the defined contact regions 
should be as small as possible to reduce the computation costs caused by contact searching. 
One example of the contact pair defined for an explicit FE wheel-rail dynamic interaction 
analysis is shown in Fig. 3.6. 

Figure. 3.6: Contact pair defined for the explicit FE wheel-rail dynamic interaction analysis 

Either constant or variable COFs may be used in wheel-rail rolling simulations. Zhao and 
Li (Zhao & Li, 2016) studied wheel-rail dynamic contact solutions that implemented a 
velocity-dependent COF and concluded that the velocity-dependent COF may mimic a more 
realistic contact condition and provide a less regular adhesion-slip distribution pattern 
compared with the constant COF. 

Sections 2.6.1 and 2.6.3 mentioned that the scale factor of the penalty contact stiffness 
plays an important role in the penalty contact algorithm. Ideally, a sufficiently high and low 
contact stiffness is required so that the penetration and slip distance are acceptably small and 
the problem can be well-behaved in terms of convergence, respectively. Fig. 3.7 compares the 
wheel-rail contact solutions obtained with different scale factors of the penalty contact 
stiffness: =1, 0.5 and 0.1. The contact pressure magnitudes are indicated by contour lines, 
and the tangential stresses are indicated by red arrows. The arrows point in the directions of 
the tangential stresses, and their lengths are proportional to the magnitude. This figure shows 
that with decreasing scale factor  (from Fig. 3.7 (a) to (c)), the obtained contact patch areas 
increases while the contact pressure decreases. A value of  is recommended for wheel-
rail dynamic interaction analyses. The contact solutions provided by  are consistent 
with those obtained by the Hertz contact theory and CONTACT (Zhao & Li, 2011; Deng et al., 
2015); moreover, when applying 1 mm or even finer wheel/rail surface meshes,  may 



require the time step size to be scaled down for computational stability, which decreases the 
efficiency of the explicit integration.  

   (a) Contact stress ( =1)        (b) Contact stress ( =0.5)      (c) Contact stress ( =0.1) 
Figure. 3.7: Contact solutions with different  values (contour graph unit: MPa) 

By applying the implicit-explicit sequential analysis, the initial nodal displacements of the 
wheel-rail transient rolling simulation can be obtained by the wheel-rail static equilibrium 
analysis illustrated in Section 3.2. The initial nodal velocities of the wheel in both rotation and 
forward translation should be prescribed, and the value of the applied wheel rotational velocity 
equals the quotient of the applied translational velocity and the wheel radius. The equivalent 
translational nodal velocities should also be applied to the primary suspensions and sprung 
mass because they travel forward together with the wheel.  

In addition to the gravitational load illustrated in Section 2.3.1, the driving torque is 
another widely used load boundary condition in the simulation of wheel-rail tractive frictional 
contact (Li et al., 2008; Molodova et al., 2011; Zhao et al., 2012; Molodova et al., 2014; Yang
et al., 2015; Wei et al., 2017b). Because the hexahedral elements used to construct wheel 
models have only translational freedom, the Hughes-Liu (H-L) beam elements (Hughes & Liu, 
1981) degenerated from the hexahedral element can be employed to take the externally 
exerted torque. As shown schematically in Fig. 3.8, four H-L beam elements with length L are 
used. The  value should not be too small because the critical time step size of the H-L beam 
element for integration stability is . Each H-L beam element consists of 
three nodes: Ij (j=1,2,3,4), J and K. Nodes I1~ I4 and J are all attached to the wheel model and 
located in the same plane S. Node J is the driven node located at the wheel axial centre and 
shared by the four beam elements. Node K is also shared by the four beam elements, and it is 
required to define the axis system of beam element. The vector pointing from K to J is normal 
to plane S. A driving torque  in plane S is applied to the driven node J, and its direction is 
determined by the right-hand rule.  



Figure. 3.8: Driving torque applied to four H-L beam elements 

Driven by the torque, the wheel rolls along the rail with a consequently generated 
longitudinal creep force between the wheel and rail, which satisfies the requirement that 
the traction coefficient  is less than the COF . The traction coefficient is distinguished 
from the COF in wheel-rail rolling contact studies by its definition in Eqn. (3.1): 

where  and  are the longitudinal and normal contact forces, respectively, and  is the 
overall COF of the contact pair that limits the traction force transmitted in the contact. The 
overall COF may be different from the local COF at certain nodes when the velocity-
dependent friction is considered (Zhao & Li, 2016). In addition, the traction coefficient may 
be assumed to be constant in stationary rolling, whereas it varies with time in dynamic rolling 
because of vibration, and its nominal value is proportional to the applied driving torque (Eqn. 
(3.1)). 

A sudden exertion of driving torque may bring significant excitation to the wheel-rail 
rolling system. A gradually increased driving torque is thus suggested to avoid excitation as 
much as possible (Wei et al., 2016) and minimise the dynamic relaxation process (see Section 
3.3.5). A functional driving torque  is investigated here and is expressed as follows: 

  

where  is the maximum value of the torque and  is the duration required to reach . Fig. 
3.9 graphically shows the loading function with =20 kN·m and =6 ms. Fig. 3.10 
compares the calculated wheel-rail normal loads and creep forces with the applications of the 
loading function in Eqn. (3.2) and a constant driving torque =20 kN·m. This figure 
shows that the functional driving torque significantly damps the undesired excitation on the 
creep force, whereas it has less, if any, effect on the normal load. 



     Figure. 3.9: Functional driving torque      Figure. 3.10: Forces obtained with 
                                             different torque functions 

Different displacement boundary conditions may be applied to the explicit FE wheel-rail 
interaction models according to different research objectives. When the structural dynamics 
are of less concern or quasi-steady-state contact solutions are desired, the bottom surface of 
the rail foot may be fully constrained as in the models presented in (Zhao & Li, 2011; Deng et 
al., 2015). When the dynamic effects must be considered and captured, a more detailed 
modelling of the track substructure is necessary (Li et al., 2008; Molodova et al., 2011; 
Molodova et al., 2014; Oregui et al., 2015b; Oregui et al., 2016; Yang et al., 2016; Zhao et al., 
2016; Wei et al., 2017b). The fastening models simplified as spring-damper pairs may be 
constrained in the lateral and longitudinal directions if only the vertical dynamics are of 
concern (Oregui et al., 2016). More complex boundary conditions are required when solid 
rail-pad representations of rail fastenings are used (Oregui et al., 2015b). Because the ballast 
has less influence on the wheel-rail dynamic contact solutions, it is normally constrained in 
both the lateral and longitudinal directions and fixed at the foundation. 

When only a half wheelset is modelled, the inner end of the wheel half-axle can be 
constrained in the lateral direction to keep the rolling wheel from toppling over. The ends of 
the finite-length rail models are generally constrained in the lateral and longitudinal directions, 
which may cause reflective waves that influence the solutions, especially when the track 
models are insufficiently long. A numerical experiment conducted in (Molodova, 2013) 
indicated that a FE track model with a length of 20 m is considered sufficiently long to reduce 
the influence of wave reflection, whereas a length of 10 m may meet engineering requirements 
for reproducing the measured axle box acceleration. Non-reflective boundary conditions have 
also been implemented in certain commercial FE programs (Hibbitt & Sorensen, 2001; 
Hallquist, 2006), and their application on wheel-rail dynamic interactions is currently under 
development.  

In the analysis of wheel-rail dynamic interactions, a certain length of rolling distance from 
the wheel initial position to the solution zone is necessary to damp the oscillations caused by 
the wheel/rail initial kinematic and potential energy from imperfect static equilibrium (Zhao & 
Li, 2011). This process is called dynamic relaxation. Because the wheel-rail rolling contact 
physically excites vibrations of the structures and waves in continua, the quasi-steady state 
may be considered to be achieved by the dynamic relaxation when the oscillations are damped 



out to less than 10% of the static values (Yang et al., 2016). The wheel-rail dynamic 
interaction solutions obtained after the process of the dynamic relaxation can be output for 
post-processing.  

As mentioned in Section 2.2.3, a scale factor  is employed to control the time step and to 
guarantee the stability of the explicit integration, and  has been widely used in 
previous explicit FE wheel-rail interaction studies. Applying smaller time steps in the explicit 
FEM may produce better accuracy as reported in (Wu & Gu, 2012). Fig. 3.11 compares the 
contact solutions obtained with =0.9 and 0.6 (used for explosive problems), where , , 
and are the amplitudes of the contact pressure, surface shear stress, and COF, respectively. 
The excellent consistency of the results obtained with different value of  indicates that a 
scale factor of 0.9 is acceptable for wheel-rail interaction analyses, and it guarantees 
integration stability and simultaneously decreases the solution time. 

Figure. 3.11: Comparison of contact stresses calculated with = 0.9 and 0.6 

The wheel-rail contact solutions of interest generally include the contact patch area, 
normal and shear contact stresses, and micro-slip and adhesion-slip distributions within the 
contact patch. These solutions can be obtained by post-processing the nodal force and nodal 
motion simulated by the wheel-rail dynamic interaction models. 

The contact patch area may be determined with surface nodal forces: a surface node is in 
contact if the nodal force in the direction normal to the local surface is non-zero (Zhao & Li, 
2011; Deng et al., 2015; Yang et al., 2016). Hence, the first step is to convert the output 
surface nodal forces in the global coordinate system into those in the local coordinate system. 
Because inertia force is included in the dynamic analyses, the force of a surface node outside 
the contact may be small but non-zero; thus, a non-zero threshold (e.g., 0.001 N) is used in 
practice to determine whether a node is in contact. Fig. 3.12 shows one example of the wheel 
and rail nodes in contact determined by this rule. 



Figure. 3.12: Wheel/rail nodes                       Figure. 3.13: Nodal forces 
      in the contact patch                             converted into contact stresses 

The contact stresses, including the surface normal stress and shear stress, may be 
calculated with the nodal forces in the local coordinate system. For the generally used 
quadrilateral segments:  

where  is the contact stress vector on the Mth segment of the wheel/rail surface and the 
spatial components, with  representing the normal, lateral and longitudinal directions 
in the local coordinate system, respectively;  is the local nodal force vector, with 

 representing the number of the nodes constructing segment  as shown schematically 
in Fig. 3.13; and  is the dimension of the quadrilateral segment. According to Newton's third 
law, the contact stresses may be calculated with either the wheel nodal forces or rail nodal 
forces. Fig. 3.14 compares the contact stresses calculated with the wheel and rail nodal forces 
and indicates that the choice has negligible influence on the calculated contact stresses. 

Figure. 3.14: Contact stresses calculated with wheel and rail nodal forces 



The micro-slip refers to the tangential relative velocity between two particles in contact. 
As explained in Section 2.6.1, a rail surface contact node is actually in contact with the 
‘contact point’ rather than a wheel surface node; thus, interpolations are required to convert 
the velocities of wheel nodes into the velocities of the ‘contact points’. Fig. 3.15 schematically 
shows a length-weighted linear interpolation scheme. In Fig. 3.15 (a), the red cross represents 
an arbitrary rail node  and the four blue spots  represent the four wheel 
nodes composed of the wheel surface segment in contact with the rail node . Another blue 
spot overlapping the red cross in Fig. 3.15 (b) denotes the interpolated ‘contact point’  on 
the wheel surface and in contact with rail node ; and  indicates the distances 
from the ‘contact point’  to the four sides of the wheel surface contact segment. 

(a) Before interpolation                    (b) After interpolation 
Figure. 3.15: Interpolated wheel nodal coordinate/motions into rail 

The interpolated velocities  of the ‘contact point’  may be obtained by the length-
weighted linear interpolation as follows: 

where  represents the nodal velocities of the wheel nodes . The micro-slip 
may then be calculated as follows: 

where are the nodal velocities of the rail node . The length-weighted linear interpolation 
scheme is also applicable to the calculations for the displacement, acceleration and vertical 
coordinate (normal to the local contact surface) of the ‘contact points’ on the wheel. The 
accuracy of the length-weighted linear interpolation scheme may conveniently be estimated by 
comparing the wheel vertical coordinates before and after interpolation. Fig. 3.16 shows that 
the interpolated wheel surface formed by the ‘contact points’ overlaps the original wheel 
surface, indicating that the interpolation scheme is reliable. In addition, note that the 
calculated wheel-rail contact patch is not flat but saddle shaped. This result confirms that the 



explicit FEM drops the half-space assumption and the non-flat contact patch may cause 
geometric spin (Zhao & Li, 2011; Deng et al., 2015).  

Figure. 3.16: Positions of the wheel/rail nodes and interpolated ‘contact points’ 

The division of the adhesion and slip regions in the contact patch is an important feature of 
the frictional rolling contact. The slip region can be distinguished from the adhesion region 
either by comparing the surface shear stress  with the traction bound  or by calculating 
the micro-slip  within the contact patch. A node is in a slip region if: 

where  and  are the tolerances of the two approaches. A value of 0.3 percent of the 
maximal tangential nodal force in the contact patch is suggested for  (Zhao & Li, 2011; Wei
et al., 2016; Zhao & Li, 2016), whereas a value of 0.05 m/s is suggested for  (Zhao & Li, 
2016). For a robust wheel-rail dynamic interaction model, the calculated adhesion-slip 
distribution determined by both approaches should be consistent with each other. 

To obtain the structural dynamic responses, which are generally the vibration acceleration 
and velocity, the nodes enclosed by the part of the structure of interest need to be selected. The 
structural vibration accelerations , for example, may then be calculated by averaging the 
accelerations of the nodes enclosed by the structural part in the global coordinate system : 

where  is the total number of nodes enclosed by the structural part.  
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This chapter gives the first numerical example – simulating wheel-rail impacts at a typical 
Dutch insulated rail joint (IRJ) – to demonstrate the effectiveness of the explicit FEM for the 
modelling of wheel-rail dynamic interactions. Fig. 4.1 shows the outline of this chapter. 
Section 4.1 reviews previously published analytical and numerical studies of wheel-IRJ 
impact; To take dynamic effects due to impact into account, Section 4.2 presents a 3D explicit 
FE wheel-IRJ dynamic interaction model; Section 4.3 validated the dynamic behaviour of the 
IRJ the wheel sub-models against a comprehensive hammer test and a reported measurement, 
respectively, to qualify the model for the simulation of train pass-by interaction; Good 
agreements achieved in Section 4.4 comparing the simulated rail vertical and lateral vibrations 
up to 10 kHz due to the wheel-IRJ impact with the pass-by measurement results indicate that 
the explicit FEM is reliable for the prediction of high-frequency structural dynamic responses; 
Section 4.5 presents wheel-rail dynamic impact contact solutions simulated by the validated 
explicit FE wheel-IRJ interaction model; The impact-induced wave generation and 
propagation captured by the wheel-rail dynamic contact solutions are analysed in Section 4.6; 
A summary of this chapter is given in Section 4.7. 

Figure. 4.1: Outline of Chapter 4 

As essential track components for rail connections and signal transmission and control, 
insulated rail joints (IRJs) have been widely used in both traditional and high-speed railways. 
The performance of IRJs directly influences railway transportation safety. However, due to the 
significant stiffness and geometric discontinuities, the IRJ is considered as one of the weakest 
parts of railway track structures. When a train runs over an IRJ, wheel-rail impact occurs. This 
impact consequently leads to vibration and noise and accelerates track deterioration in the 
vicinity of the IRJ.  

Numerous modelling works have been carried out to simulate wheel-rail impacts generated 
by IRJs. Because impact problems are inherently non-linear, the simulation models are 
required to be solved in the time domain. Computationally efficient analytical models have 
been applied to calculate wheel-rail interactions when material complexity and detailed 
contact solutions are of less concern (Kerr & Cox, 1999; Wu & Thompson, 2003; Kitagawa et 
al., 2015; Mandal et al., 2016). Considering a reduction of bending stiffness at a joint, Kerr 
and Cox (1999) simplified the joint of a track model as a gap and connected rails and 
fishplates with Winkler-type springs, whose stiffness was calibrated by a static load 
measurement. Mandal et al. (2016) idealised the dipped rail joint with a sinusoidal profile to 
analyse the impact forces considering both track design and operational parameters. Wu and 
Thompson (2003) treated the joint of their model as a pin between two semi-infinite 
Timoshenko beams and calculated the wheel-IRJ interaction by a relative displacement 
excitation model proposed by Grassie et al. (1982). Kitagawa et al. (2015) modified Wu and 



Thompson’s model by replacing the pin with a complex spring to represent the joint, whose 
vibratory behaviour level was validated against a field test. However, these analytical models 
fail to address the issues of the complex wheel-IRJ impact contact solutions and high-
frequency impact dynamics over 5 kHz. 

With the development of computer technology, the numerical finite element method (FEM) 
has increasingly been used to predict degradations of IRJs due to complex wheel-IRJ impact 
contact (Chen & Kuang, 2002; Wen et al., 2005; Chen & Chen, 2006; Kabo et al., 2006; Cai et 
al., 2007; Himebaugh et al., 2008; Sandstrom & Ekberg, 2009; Mandal & Dhanasekar, 2013; 
Mandal, 2016). A 3D FE analysis performed by Chen and Kuang (2002) indicated that the 
traditional Hertzian contact theory (Hertz, 1882) is inadequate to predict wheel-rail contact 
pressure distributions around IRJs. Chen and Chen (2006) established a 2D FE model to study 
the effects of an IRJ on wheel-rail contact stresses distributions under the condition of partial 
slip and suggested that Carter’ theory (Carter, 1926) is no longer effective to predict the 
tangential stress distributions of wheel-rail contact at IRJs. Wen et al. (2005) applied an 
explicit FEM for the contact-impact stress analysis at rail joint regions, which can take 
dynamic effects into account. The explicit FE model was then developed by Cai et al. (2007) 
to calculate the dynamic impact force, stresses and strains when a wheel passes an IRJ with a 
height difference. Sandstrom and Ekberg (2009) employed a 3D elastoplastic FEM model to 
predict plastic deformation and fatigue due to wheel-IRJ impacts by capturing the 
accumulation of plastic strain. Mandal and Dhanasekar (2013) proposed a sub-modelling FE 
strategy to examine the ratcheting failure of IRJs. The same strategy was adopted by Mandal 
(2016) to study the influences of end-post materials on railhead deterioration at IRJs. Zong 
and Dhanasekar (2013) employed genetic algorithms coupled with FEMs to reduce impact 
stress through shape optimization of railhead at joints. On the basis of the coupled genetic 
algorithm and a parametric FEM, Zong and Dhanasekar (2017) also developed a new design 
of IRJ; the design relied on embedding gapped rails within one sleeper to provide sufficient 
rigidity to the rail ends, and may eliminate a number of components of IRJ and their 
associated modes of failure. Owing to the capability of coping with non-linear material 
properties and arbitrary discontinuous contact geometries, finite element contact models are 
considered capable of providing more accurate and detailed contact solutions. 

To take account of complex impact contact and high-frequency wheel/rail dynamic effects, 
this study simulates a wheel-rail impact at a typical IRJ in the Dutch railway network by an 
explicit FEM. Performing the integration in the time domain with an explicit central difference 
scheme, the explicit FEM manages to reproduce high-frequency dynamic effects by detailed 
modelling of the structure of wheel/track system and employing a small time step. Compared 
to the explicit FE impact models proposed in the previous research (Wen et al., 2005; Cai et 
al., 2007; Li et al., 2008; Pletz et al., 2012; Molodova et al., 2014; Yang et al., 2015), the 
explicit FE dynamic interaction model presented in this study is more sophisticated in track 
dynamics and comprehensively validated. The validity of the transient impact contact 
solutions simulated in this study is confirmed from the following three aspects:  

1. Quasi-static frictional rolling contact solutions calculated by the explicit FEM have been 
shown to be accurate via comparisons with Hertzian and CONTACT solutions (Zhao & Li, 
2011; Deng et al., 2015).  

2. Dynamic effects up to 10 kHz involved in the wheel-IRJ impact contact solutions have 
been validated against a comprehensive field measurement (see Section 4.4) because the 



calculations of wheel/rail dynamic responses and contact forces are automatically coupled in 
the explicit FEM. 

3. Regular wave patterns observed in the simulated transient contact solutions (see Section 
4.5.3) reflect continuum vibrations excited by wheel-rail frictional rolling contact (Zhao & Li, 
2011) and provide more evidence for the reliability of the calculated transient solutions of 
impact contact.  

A typical Dutch IRJ without visible damage was selected as the study target in the trunk 
line Amsterdam-Utrecht of the Dutch railway network. The IRJ locates on a straight track with 
a maximum one-directional train speed of 130 km/h. In the track, UIC54 rails with an 
inclination of 1/40 are supported by NS90 sleepers every 0.6 m except in the proximity of the 
IRJ, where a pair of adjacent timber sleepers with a distance of 0.24 m are employed to reduce 
the deflection of the joint and absorb vibration caused by wheel-IRJ impacts. Fig. 4.2 shows 
the in situ condition of the target IRJ. 

(a) General condition                                     (b) Close-up of the end-post 
Figure. 4.2: In situ condition of the target IRJ 

Fig. 4.3 (a) shows the 3D explicit FE wheel-IRJ dynamic interaction model established in 
this study. This model is composed of a 10-m-long half-track with an IRJ in the middle and a 
half-wheelset with the sprung mass of the car body and bogie. The wheel geometry 
corresponds to that of a passenger car wheel of the Dutch railway with the standard profile of 
S1002. The IRJ, composed of 2 fishplates, 4 pairs of bolts and a 6-mm gap, was modelled in 
detail with fine meshes (see the close-up view at the upper left corner of Fig. 4.3 (b)). Because 
the value of elastic modulus of the end-post (insulation layer between two rail ends) is much 
lower than those of the rails and the presence of air gap (shown in Fig. 4.2 (b)) may result in 
free rail-end (Zong & Dhanasekar, 2014), the end-post layer was omitted in the model and 
simplified as a gap. Free boundaries were used on the rail ends at the joint, whereas non-
reflecting boundaries were defined at the far ends of the rails. The wheel, rails, and sleepers 
were modelled using 8-node solid elements. Non-uniform meshing was used, and regular 



discretization with a mesh size of 1 mm was allocated at the initial wheel-rail contact area and 
within the 0.2-m-long solution zone around the joint. The car body and bogie were modelled 
as mass elements connected to the wheelset by the primary suspension of the vehicle with 
parallel linear springs and viscous dampers. The two neighbouring timber sleepers beneath the 
IRJ and the concrete sleepers modelled elsewhere were differentiated by their geometries and 
material properties. The baseplate fastening system used on the timber sleepers and the 
Vossloh fastening system on the concrete sleepers were modelled by crossed spring and 
damper elements (see the close-up at the lower right corner of Fig. 4.3 (b)), and adopted 
different linear stiffness and damping parameters (see Table 4.1). The ballast was simplified as 
vertical spring and damper elements, with the displacements constrained in the lateral and 
longitudinal directions. Since the stiffness and damping parameters used to model the 
fastenings and ballast can hardly be measured directly in the field, these parameters were 
calibrated in this study by fitting the simulated frequency response functions (FRF) to the 
measurement results, which will be illustrated in detail in Section 4.3.2. Bi-linear elastoplastic 
material properties were applied to the wheel and rail models in the simulation of wheel/rail 
structural dynamic responses. The calibrated stiffness and damping parameters, as well as the 
nominal material properties applied in the model, are listed in Table 4.1. 

(a) Wheel-IRJ interaction model               (b) Track model with IRJ (IRJ sub-model) 
Figure. 4.3: Finite element wheel-IRJ dynamic interaction model 

The transient impact contact simulation first employed a dynamic relaxation to allow the 
wheel-track system to reach an equilibrium state under gravity. The initial position of the 
wheel model was 1.32 m away from the IRJ (two standard sleeper spans and half a timber 
sleeper span as shown in Fig. 4.3). The rotation and forward translation movements of the 
wheel were applied as the initial conditions. Coulomb’s law of friction was implemented for 
the wheel-rail contact pair with a friction coefficient of 0.35 (a typical intermediate value of 
rail top friction (Eadie et al., 2003)). The wheel was subsequently driven by a torque applied 
on the axle to roll along the rail from the initial position towards the joint, thus generating a 
longitudinal creep force between the wheel and rail that satisfies the requirement that the 
traction coefficient is below the friction coefficient. Referring to the measurement, the 
simulated pass-by speed was 100 km/h and the impact vibration responses were calculated at 
the rail foot immediately after the joint in the model.  
  



Table 4.1: The values of parameters used in the model 

Parameters Nominal 
values Parameters Calibrated 

values 

Rails and 
fishplates 
material 

Young’s 
modulus 210 GPa 

Baseplate 
fastening 

Vertical 
Stiffness 86.7 MN/m 

Poisson’s 
ratio 0.3 Damping 45000 Ns/m 

Density 7800 
kg/m3

Lateral 
Stiffness 150 MN/m 

Yield 
stress 500 MPa Damping 40000 Ns/m 

Tangent 
modulus 21 GPa 

Vossloh 
fastening 

Vertical 
Stiffness 195 MN/m 

Timber 
sleeper 
material 

Young’s 
modulus 20 GPa Damping 67500 Ns/m 

Poisson’s 
ratio 0.3 

Lateral 
Stiffness 100 MN/m 

Density 1300 
kg/m3 Damping 40000 Ns/m 

Concrete 
sleeper 
material 

Young’s 
modulus 38.4 GPa 

Ballast Vertical 
Stiffness 45 MN/m 

Poisson’s 
ratio 0.2 Damping 32000 Ns/m 

Density 2520 
kg/m3 bolt pretension 12.5 kN 

Fig. 4.4 (a) and (b) show the meshes of rail top surface in the proximity to the joint before 
and after applying the measured geometry, respectively. The in situ geometry of the target IRJ 
was measured by a HandySCAN 3D laser scanner. The measured geometry is applied only to 
the vicinity of the joint rather than to the whole modelled rail surface for the simulations of 
wheel-rail dynamic interaction, because the impact vibration occurs transiently just when the 
wheel rolls over and hits the joint. 

(a) Nominal geometry at an IRJ                 (b) Measured geometry at the target IRJ 
Figure. 4.4: Applying the realistic geometry to the IRJ (the size of the irregularity is 

exaggerated) 



In order to accurately predict the dynamic behaviour of the wheel-IRJ dynamic interaction 
model, this section first validated the dynamic behaviour of the track and wheel sub-models. 
The sub-model of the track with an IRJ, IRJ sub-model for short, was established 
corresponding to the target IRJ of Fig. 4.2. As shown in Fig. 4.3 (b), the IRJ sub-model 
excludes the wheel-sub model and car bodies presented in Fig. 4.3 (a). 

The dynamic behaviour of track structures is generally characterised by frequency 
response functions (FRFs) due to the infinite structural nature (Thompson, 2009). Typical 
resonant frequencies of a track can be deduced according to its FRFs (Thompson & Vincent, 
1995). Hammer test is a widespread method for the identification of the FRFs of track 
structures (Vincent & Thompson, 1995; De Man, 2002; Kabo et al., 2006; Oregui et al., 
2015a), but its application specifically to IRJs is limited. Oregui et al. (2015c) performed a 
systematic hammer measurement on IRJs to assess their health conditions, but their work only 
investigated dynamic behaviour of the IRJs in the vertical direction. 

This study conducted a more comprehensive hammer test to measure the FRFs, in terms of 
accelerances, of the target IRJ not only in the vertical direction but in the lateral direction as 
well. In this study, the measured direct accelerances (response and excitation are measured in 
the same direction and location (Maia & Silva, 1998)) are used to calibrate the stiffness and 
damping parameters involved in the FE IRJ sub-model by fitting their levels and resonant 
frequencies to the simulation results, as described in (De Man, 2002; Kabo et al., 2006; Oregui
et al., 2015b; Oregui et al., 2016); the measured transfer accelerances (response and excitation 
are measured in the same direction but different locations (Maia & Silva, 1998)), cross-
accelerances (response and excitation are measured in different directions (Maia & Silva, 
1998))) and decay rate of the track are then used to validate the dynamic behaviour of the 
calibrated track sub-model.  

Fig. 4.5 shows the set-up of the hammer test employed to identify the accelerances of the 
target IRJ. The FRFs of tracks without IRJs are normally measured at two track sections: on-
support and mid-span (Thompson & Vincent, 1995; Vincent & Thompson, 1995; De Man, 
2002; Kabo et al., 2006; Oregui et al., 2015a; Oregui et al., 2015c), where different responses 
are expected. This study added a third section around the rail-end just after the IRJ along the 
train travel direction, where a significant dynamic impact can be expected during a train pass-
by. Six accelerometers (B&K 4514, denoted as 1~6 in Fig. 4.5) were placed at the three 
sections: three on the rail top and the other three on the field side of the rail head (see the 
close-up of Fig. 4.5), respectively, used to measure the vertical and lateral responses. Two 
accelerometers (IMI623C00, ensuring electric insulation between two rails in the 
measurement, denoted as 7 and 8 in Fig. 4.5) were placed on the rail top before the joint, 
respectively at the sections of rail-end and on-support, to detect vibration transmission to the 
other side of the joint.  

A hammer (PCB 086D05) with a hard metal tip (PCB 084B03) was used in the 
measurement to obtain high-frequency excitations. The hammer excitations were conducted as 
close as possible to the accelerometers 1~6, indicated by the red arrows 1~6 in Fig. 4.5. The 
excitation and response signals of 10 impacts were recorded at each hitting position. The 
spectra of the excitation loads at the six hitting positions, produced by averaging 10 impacts, 
are depicted in Fig. 4.6. The 3 dB drop (limit of very reliable range (De Man, 2002)) and 10 



dB drop (limit of sufficiently reliable range (De Man, 2002)) occur at about 3.5 kHz and 5 
kHz, respectively, indicating that the valid frequency range of the hammer-excited signals can 
reach up to 5 kHz. 

Figure. 4.5: Distribution of accelerometers and force excitation points 
(The yellow numbers 1~8 denote the accelerometers placed at the IRJ and the red arrows 1~6 

indicate the positions and directions of the hammer excitations) 

Figure. 4.6: Valid frequency range determined by the spectra of excitation forces 
(within 3 dB drop: very reliable range; within 10 dB drop: reliable range (De Man, 2002)) 

The reliability of hammer test can be assessed by the coherence of the response signals 
excited by hammer impacts. Because the dynamic behaviour of the target IRJ under wheel-rail 
impacts is of particular interest in this study and wheel-rail impacts occur more or less at the 
rail-end section after the joint, the coherence of the response signals under the vertical hammer 
excitations at the position 1 (see Fig. 4.5) is presented here. The coherence curves of the 
response signals of the eight measurement points (denoted as 1~8 in Fig. 4.5) excited by the 
10 hammer impacts at the position 1 are depicted in Fig. 4.7 (a) and (b). Excellent coherence 
over 0.9 in the whole frequency range of interest was obtained for the vertical responses 
(positions 1, 3, 5, 7, 8), whereas for the lateral responses (positions 2, 4, 6) lower coherence 



was observed at certain frequency bands: around 360 Hz, 1160 Hz and over 3 kHz, probably 
due to that the cross-accelerance is more sensitive to the positions and directions of excitations 
and responses (Vincent & Thompson, 1995). The good coherence of the lateral responses 
excited by the hammer in the lateral direction in Fig. 4.7 (c) indicates the testing signals in the 
lateral directions are also reliable. 

(a) vertical responses                    (b)  lateral responses                  (c) lateral responses 
by the vertical excitation at 1        by the vertical excitation at 1        by the lateral excitations 

Figure. 4.7: Coherence curves of the responses at the eight measurement points 

As indicated by the coherence analysis, the direct accelerances and transfer accelerances 
were more reliably measured than the cross-accelerances. This study thus applied the 
measured direct accelerances as the reference to calibrate the stiffness and damping 
parameters involved in the FE IRJ sub-model. The accelerances of the IRJ sub-model were 
calculated by reproducing the hammer test with an explicit time integration method, as 
illustrated by Oregui et al. (2016). The simulated excitations were applied in both the vertical 
and lateral directions at the three sections of the IRJ sub-model, respectively, as the 
measurement. 

The closest fits of the simulated and measured vertical and lateral direct accelerances are 
depicted in Figs. 4.8 and 4.9, respectively. The measurement results shown here are the 
averages of the 10 times hammer-excited signals. Fig. 4.8 shows that the tendencies and 
resonant frequencies of the simulated vertical accelerances match the measurement. The 
measured typical track (anti-) resonances of the f2 (rail mass on the fastening stiffness 
(Vincent & Thompson, 1995)), fa (sleepers vibrate on the ballast and pad stiffness (Vincent & 
Thompson, 1995)), first and second order vertical pinned-pinned of the target IRJ are 280 Hz, 
440 Hz, 1050 Hz and 2750 Hz, respectively, whereas those from the simulation are 260 Hz, 
460 Hz, 1100 Hz and 2550 Hz, respectively. The vertical accelerance of the rail-end section is 
similar to that of the on-support section between 200 and 600 Hz, in which frequency range a 
rail behaves like a mass and its dynamic behaviour is mainly dominated by supports 
(Thompson, 2009). Over 4 kHz, the response of the rail-end section is evidently higher than 
the other two sections, presenting a high-intensity dynamic feature. That is probably related to 
the reduction of the vertical structural stiffness at the joint, which is similar to the free end of a 
cantilever beam (Kitagawa et al., 2015). 



(a) Rail-end (position 1)         (b) On-support (position 3)        (c) Mid-span (position 5) 
Figure. 4.8: Fitting vertical accelerances (red line: simulation; blue line: test) 

The general levels of the lateral direct accelerances shown in Fig. 4.9 are higher than the 
vertical ones shown in Fig. 4.8. The tendencies and levels of the measured and simulated 
lateral direct accelerances are well fitted in Fig. 4.9. The lateral pinned-pinned resonance, less 
pronounced than the vertical one, occurs at about 550 Hz in the measurement and 600 Hz in 
the simulation. More oscillations can be observed in the simulation results between 600-1300 
Hz, which could be influenced by the modelling of the fastening systems. Although an 
improved fastening model represented by crossed linear spring and damper elements managed 
to take account of the lateral dynamics, it failed to fully reproduce the modes of real fastenings 
comprised of rail pads and clamps (Oregui et al., 2015b). The deviation at the low frequency 
below 200 Hz is probably related to the simplification of the ballast model, whose 
displacements were constrained in the lateral and longitudinal directions. 

(a) Rail-end (position 2)        (b) On-support (position 4)       (c) Mid-span (position 6) 
Figure. 4.9: Fitting lateral accelerances (red line: simulation; blue line: test) 

It can be concluded from the analysis of the direct accelerances that the dynamic behaviour 
of the rail-end section has a high-intensity feature due to the reduction of bending stiffness. 
The stiffness and damping parameters calibrated by the direct accelerances are then adopted in 
the simulations of the transfer accelerances and cross-accelerances, track decay rate and 
wheel-rail impact at the target IRJ.

The vibration responses of the IRJ under the vertical hammer excitation at the rail-end 
section (position 1 in Fig. 4.5) are studied for the IRJ sub-model validation. The transfer and 
cross-accelerances, including phases, simulated by the calibrated IRJ sub-model are compared 
with the measurement in Fig. 4.10. Good agreements for the transfer accelerances and 
reasonable agreements for the cross-accelerances are achieved. The deviations of the cross-
accelerances at 120 Hz and 500-1300 Hz are believed caused by the simplification of the 



ballast model and the linear spring/damper representations of the rail pads models, 
respectively, as analysed in the lateral direct accelerances. 

(a) Rail-end (position 1)       (b) On-support (position 3)      (c) Mid-span (position 5) 

(d) Rail-end (position 2)       (e) On-support (position 4)      (f) Mid-span (position 6) 

(g) Rail-end (position 7)             (h) On-support (position 8) 
Figure. 4.10: Validations of transfer and cross-accelerances (red line: simulation; blue line: 

test. transfer accelerances: (a)-(c) and (g)-(h); cross-accelerances: (d)-(f)) 



The validation of track decay rate influenced by the damping of the track system (Yang & 
Thompson, 2014) is also important for the accurate prediction of track dynamic behaviour. 
Owing to the reciprocity, the decay rate of a track with periodical structural characteristics is 
normally measured by a roving hammer method for operational convenience ("Railway 
applications - Noise emission - Characterisation of the dynamic properties of track sections for 
pass by noise measurements," 2010). The comparison of the transfer accelerances measured at 
the on-support (position 3) and mid-span (position 5) sections shown in Fig. 4.11 (a) indicates 
the reciprocity can be basically obeyed there, whereas Fig. 4.11 (b) and (c) show that the 
reciprocity can hardly be satisfied at the rail-end section in the high-frequency range over 3 
kHz. Therefore, this study employed a roving sensor approach to measuring the decay rate of 
the target IRJ. The hammer excitations were exerted at the rail-end section after the joint 
(position 1 in Fig. 4.5), where wheel-IRJ impacts are expected to occur; Nine accelerometers 
(B&K 4514, denoted as 1~9 in Fig. 4.12) were employed in the measurement and a 5-meter 
section of the track (8 sleeper spans) just after the IRJ could be covered by roving the sensors 
once. Referring to the hammer excitation positions suggested in the roving hammer test of 
decay rate ("Railway applications - Noise emission - Characterisation of the dynamic 
properties of track sections for pass by noise measurements," 2010), the sensor distribution 
schemes adopted in this study are shown in Fig. 4.12 (a), and the corresponding in situ 
conditions are shown in Fig. 4.12 (b) and (c). 

(a) Position 3 & 5                      (b) position 1 & 3                 (c) position 1 & 5 
Figure. 4.11: Comparisons of measured transfer accelerances 

(a) Sketch of sensor distributions before (upper graph) and after (lower graph) roving 



             (b) Sensor distribution before roving                   (c) Sensor distribution after roving 
Figure. 4.12: Sensor distribution schemes in the decay rate test 

The hammer test of the decay rate was also reproduced by the proposed FE IRJ sub-model 
with an explicit time integration method. Fig. 4.13 compares the time histories of the 
simulated vibration of the 18 response positions (9 sensors × 2 rounds) with those obtained by 
the measurements. The measurement results shown here are also the averages of the 10 times 
excitations, as the accelerances analysed above. Good agreements can be observed in the vast 
majority of the comparisons. The simulated and measured vertical decay rates of the target IRJ 
are calculated based on these vibration responses (Jones et al., 2006) and compared in Fig. 
4.14. Good agreements in terms of the peak, trough and average level in the comparison of the 
decay rate again validate the dynamic behaviour of the presented FE IRJ sub-model. The 
decay rate peaks at about 3 kHz and troughs at about 900 Hz and 4 kHz. 

Figure. 4.13: Comparison of acceleration responses (red line: simulation; blue line: test) 



Figure. 4.14: Validation of decay rate (red line: simulation; blue line: test) 

Although the dynamic behaviour of wheels may also be characterised by FRFs (Wu & 
Thompson, 2002), this study (also for the wheel models used in Chapter 5 and 6) characterised 
the dynamic behaviour of the FE wheel sub-mode by the modes and corresponding natural 
frequencies and validated them against a measurement reported in (Thompson, 2009), because 
the material damping of a wheel is generally very low and the exact value of the wheel modal 
damping is not critical (Thompson, 2009). The frequency range of interest is 10 kHz in this 
study. All modes of the wheel sub-model within the frequency range of interest were 
identified by a modal analysis. For this, the same half-wheelset model as the explicit FE model 
shown in Fig. 4.3 (a) was used with the inner edge of its hub clamped. The calculated wheel 
modes under such a boundary condition can adequately represent the wheel dynamics under 
contact with the rail (Glocker et al., 2009). The identified natural frequencies of the axial and 
radial wheel modes are plotted in Fig. 4.15. Good agreement is observed when comparing the 
calculated results with the experimental wheel natural frequencies from (Thompson, 2009), in 
which an NS-intercity wheel is measured for up to 5 kHz. All of these physical modes can be 
naturally included in the transient dynamic simulation when using the full FE model and a 
small time step (Zhao & Li, 2011). 

(a) Zero-nodal circles                          (b) Radial 



(c) One-nodal circles                        (d) Two-nodal circles 
Figure. 4.15: Wheel modes calculated by a finite element modal analysis (blue) compared with 

the measured results (red, from (Thompson, 2009)) 

The validations of the IRJ and wheel sub-models enable the FE dynamic interaction model 
for a transient impact simulation. The simulated pass-by impact vibration is compared to the 
measurement results from a pass-by measurement in this section. A pass-by measurement with 
a travelling speed of about 100 km/h was performed on the target IRJ on 19th February 2015. 
The vertical and lateral impact vibration, collected on the rail foot just after the joint (see Fig. 
4.16), were measured by accelerometers PCB 352A60 (measurement range: ± 4950 m/s2; 
frequency range (± 3 dB): 5 Hz-60 kHz) and B&K 4514 (measurement range: ± 980 m/s2; 
frequency range (± 6 dB): 5 Hz-10 kHz), respectively.  

Figure. 4.16: Set-up of accelerometers used to measure impact vibration 

The pass-by measurement conducted at the target IRJ was reproduced by the 3D FE wheel-
IRJ dynamic interaction model shown in Fig. 4.3 (a) with explicit time integration. A small 
time step (49 ns) was employed to meet Courant stability condition (Courant et al., 1967). 
This, together with the fine meshing scheme applied in the model, guaranteed that high-
frequency dynamic effects up to 10 kHz or higher can be reproduced. The effects of transient 
wheel rotation were also included inherently. 

Wavelet power spectrum (WPS) is considered appropriate for the investigation of non-
stationary signals with local changes in the frequency components (Molodova et al., 2014). 
The WPSs of the simulated and measured impact vibration up to 10 kHz are compared on the 
same scale in Fig. 4.17. The results of the four pass-bys shown in Fig. 4.17 were successively 
measured when the four wheelsets of a coach passed the target IRJ. It can be seen that the 



simulated impact vibration agrees well with the pass-by measurement results in both the time 
domain and frequency domain. The good agreement of the impact vibration is based on the 
results of the sub-models validation and also demonstrates the accuracy of them. Both the 
measurement and simulation indicate that energy of the vertical impact vibration (upper row in 
Fig. 4.17) mainly concentrate on around 300 Hz and 1 kHz, corresponding to the f2 and first 
order pinned-pinned resonance, respectively. Typical impact vibration feature is shown by the 
WPSs of the vertical rail vibration: a prominent high-frequency energy concentration with a 
broadband from 4 kHz to 10 kHz or higher occurs transiently just at the wheel-IRJ impact. 
The WPSs of the lateral impact vibration (lower row in Fig. 4.17) imply that the dominant 
frequencies of the simulated lateral impact vibration range from 600-1200 Hz, slightly higher 
than the measurement results of 550-1000 Hz. These dominant frequency ranges may be 
associated with the lateral pinned-pinned resonance, as the simulated and measured lateral 
pinned-pinned resonances occur at approximately 600 Hz and 550 Hz, respectively, in line 
with the lower boundaries of the dominant frequency ranges of the lateral impact vibration. 
High-frequency components in the lateral impact vibration are much less pronounced than the 
vertical ones and vary to some extent in the frequency range. This variation can be attributed 
to the randomness of the traffic, such as differences in wheel (worn) profile, suspension 
condition, hunting motion etc.  

(a) Simulation    (b) First pass-by   (c) Second pass-by   (d)Third pass-by  (e) Fourth pass-by 
Figure. 4.17: WPSs of the simulated and measured pass-by impact vibration 

(upper row: vertical impact vibration; lower row: lateral impact vibration; the unit of the 
colour bar is m/s2) 

The ability of the wheel-IRJ dynamic interaction model in simulating the dynamic 
behaviour of an IRJ has been validated in previous sections. This section presents and analyses 
transient contact solutions of wheel-rail frictional rolling impacts calculated by the validated 
model. The time histories of the normal contact forces calculated by the three simulations 



tabulated in Table 4.2 are presented at the beginning of this section in order to provide a broad 
overview of the wheel-rail impact contact at an IRJ. Typical transient contact solutions 
calculated within the solution zone are then analysed, including the contact patch area, stress 
magnitude and direction, micro-slip and adhesion-slip distributions. The influences of the rail 
surface geometries and material models on the wheel-rail contact solutions are also discussed. 
The transient contact solutions obtained in this study captured wave phenomena, which will be 
presented and analysed in Section 4.6. 

Because the railhead surface geometries vary with the operational time and each IRJ, the 
measured geometry may impose randomness on the simulated impact contact solutions. 
Moreover, the material properties of contact bodies also influence the wheel-rail contact 
solutions (Deng et al., 2015; Zhao & Li, 2015). Therefore, in addition to the simulation 
conducted by the measured-geometry model in Section 4.4, two additional simulations were 
performed using nominal-geometry models, with one simulating elastic materials and the 
other simulating elastoplastic materials, to gain an overall understanding of the transient 
contact behaviour of wheel-IRJ impacts.  

The setup parameters of the three simulations conducted in this study are listed in Table 
4.2, and simulation 3 was the one performed to predict impact vibration. Table 4.3 lists the 
values of the material parameters used in the simulations. The elastoplastic material model 
applied in the study corresponds to the R260Mn rail steel that is widely used in the Dutch 
railway. 

Table 4.2: Parameters of the                            Table 4.3: Values of the materials 
        simulations with different set ups 

 Material Profile 
Simulation 1 Elastic Nominal 
Simulation 2 Elastoplastic Nominal 
Simulation 3 Elastoplastic Measured 

The time histories of the normal wheel-rail contact forces calculated by the three 
simulations are plotted in Fig. 4.18 (a), which shows that obvious impact contact occurred 
when the wheel rolled over the joint at approximately 47 ms. The damping in the system 
dissipated the initial kinetic and potential energy originating from any initial in-equilibrium of 
the system such that the oscillations were damped out to less than 10% of the static values 
upon arriving at the solution zone. The close-up view of the time histories around the impact 
plotted in Fig. 4.18 (b) shows the simulated normal impact loads within the solution zone. The 
figure shows that the impact simulated with the measured geometry (simulation 3) was much 
larger than those simulated with the nominal geometry. In addition, a comparison of the 
normal loads calculated by simulations 1 and 2, which only differ in the material properties, 
shows that the elastoplastic material model (simulation 2) provided a slightly higher impact 
magnitude than the elastic model (simulation 1). 

Elastoplastic material parameters Values 

Elastic 
part 

Young’s modulus 210 GPa 
Poisson’s ratio 0.3 

Density 7800 kg/m3
Plastic 

prat 
Yield stress 500 MPa 

Tangent modulus 21 GPa 



(a) Overview of the simulated contact forces      (b) Impact contact forces in the solution zone 
Figure. 4.18: Time history of the wheel-rail contact force 

As reported in Section 4.4, the wheel-IRJ dynamic interaction simulation in this study 
employed a small computational time step (49 ns). By applying explicit central difference time 
integration and a surface-to-surface contact-searching scheme illustrated in Chapter 2, nodal 
force and motion in the solution zone were calculated for each time step. Certain nodal force 
and motion were subsequently output and used to calculate the transient solutions of impact 
contact. A small output time step (1 μs) was used in this study to capture high-frequency 
dynamic effects up to 500 kHz in the transient solutions of impact contact. Transient contact 
solutions of 6300 output time steps, specifically from 43.5 ms to 49.8 ms (abscissa range of 
Fig. 4.18 (b)), were calculated for each simulation. 

Figure. 4.19: Example of the transient contact solution (graphs from top to bottom: stress 
distributions along the longitudinal centre line, stress distributions within the contact patch, 

micro-slip distribution, and rail surface nodal velocities within the whole solution zone) 



An example of a transient contact solution calculated by simulation 3 that was output at 
instant 45.613 ms (output time step=2113) is displayed in Fig. 4.19. From the top to the 
bottom, the graphs show the simulated stress distributions along the longitudinal centre line of 
the contact patch, stress distributions within the contact patch, micro-slip distributions and rail 
surface nodal velocities within the whole solution zone. Animations ("Animation for Fig. 4.25, 
https://youtu.be/tWyWKw9XxRI ; ," ; "Animation for Fig. 4.27, https://youtu.be/fAg99j6kquI ;  
[accessed 16.11.22]  "; "Animation for Fig. 4.28, https://youtu.be/eHh24SnWDFQ ; [accessed 
16.11.22] ") were created from the plots of the contact solutions of a certain amount of time 
steps, and they clearly show the evolution of the contact solutions along with certain high-
frequency dynamic effects. Typical transient contact solutions are selected and analysed in the 
following sections to demonstrate the characteristics of the transient solutions of impact 
contact. 

The evolution of the contact pressure together with the direction and magnitude of the 
surface shear stress calculated by the three simulations are plotted in the contour/vector 
diagrams in Fig. 4.20. The contact patch area can be determined via the contact pressure: an 
element is in contact if the contact pressure is non-zero. Thus, the evolution of the contact 
patch area can also be observed from Fig. 4.20. Eight time steps (t1~t8) with a fixed interval 
of 0.77 ms (770 times the output time step) between two consecutive time steps are displayed 
for each simulation to show the main characteristics of the impact contact area and the stress 
evolution. The origin of the coordinate system was at the centre of the rail bottom surface at 
the initial position of the wheel-rail contact. Because the coordinate system included the rail 
inclination of the track, the longitudinal centre lines of the contact patches shown in Fig. 4.20 
are at approximately -3 mm in the lateral direction rather than at 0 mm. The contact pressure 
magnitude corresponds to the depth of colour within the contact patch as indicated by the 
colour bar. The surface shear stresses are indicated by blue arrows. The arrows point in the 
direction of the shear stress and the arrow length is proportional to the magnitude. 

In Fig. 4.20 (a) and (b), other than the discontinuous contact at the joint at t4, the contact 
patch areas calculated by both the elastic (simulation 1) and elastoplastic models (simulation 2) 
correspond well with those reported in (Deng et al., 2015; Zhao & Li, 2015). The wheel-rail 
contact areas simulated by the elastic model have elliptical shapes, whereas those simulated by 
the elastoplastic model have ‘egg’ shapes, with the trailing parts of the contact patches 
enlarged because plastic deformation has occurred in the rear (Zhao & Li, 2015). 

Although simulation 1 produced the smallest impact force (Fig. 4.18 (b)), the amplitudes 
of the contact pressures calculated by simulation 1 are larger than those calculated by the other 
two simulations as indicated by Fig. 4.20 because simulation 1 had the smallest contact areas. 
The magnitudes of the contact pressure located approximately in the middle of the contact 
patch in Fig. 4.20 (a) but in the leading section in Fig. 4.20 (b) are also consistent with the 
results reported in (Deng et al., 2015; Zhao & Li, 2015). The simulated contact patch areas in 
Fig. 4.20 (a) and (b) basically remain steady and increase to some extent during the impact at 
t4 and t5. This phenomenon is more evident under the elastoplastic material condition. 



(a) Simulation 1 (elastic material & nominal geometry): elliptical contact patch 

(b) Simulation 2 (elastoplastic material & nominal geometry): ‘egg-shaped’ contact patch 

(c) Simulation 3 (elastoplastic material & measured geometry): non-steady-state contact patch 
Figure. 4.20: Evolution of the impact contact area and stresses distribution 

Simulation 3 provided more obviously non-steady-state contact solutions as shown in Fig. 
4.20 (c). The contact areas and stress distributions vary considerably with the time step due to 
the geometric irregularity of the rail top surface and significant impact. The contact patches at 



t1 and t2 in Fig. 4.20 (c) are similar to those at the same time steps in Fig. 4.20 (b). 
Subsequently, the area of the contact patch decreases at t3 and t4 because of the geometric 
declivity before the joint (see Fig. 4.4 (b)). The contact area increases remarkably during the 
impact contact at t5 and then shrinks at t6, when the wheel has a tendency to bounce. The rail 
surface geometric irregularity contributes to the irregular shapes of the contact patches, which 
are neither elliptical nor ‘egg’ shaped, as well as the irregular stress distributions in Fig. 4.20 
(c). 

(a) ‘Footprints’ of the contact patch calculated by simulation 3 (the colour differentiates an 
individual contact patch from the others, and the interval between each two consecutive 

patches is 0.3 ms) 

(b) In situ condition of the running band around the target IRJ 
Figure. 4.21: Comparison of the simulated contact patch ‘footprints’ and in situ running band 

By plotting a trail of transient contact areas, the ‘footprints’ of the contact patch calculated 
by simulation 3 are presented in Fig. 4.21 (a). The interval between each two consecutive 
contact patches is 0.3 ms (300 times the output time step). Good correspondence can be 
obtained by comparing the simulated ‘footprints’ to the in situ running band of the target IRJ 
shown in Fig. 4.21 (b). The ‘footprints’ become narrow at the region just before the joint 
(1310-1317 mm) in Fig. 4.21 (a), which corresponds to the cut-off of the running band (at 
approximately 1310 mm) in Fig. 4.21 (b). Wheel-IRJ impacts (the first peak of the contact 
force in Fig. 4.18 (b)) occur at approximately 1330-1350 mm, where the ‘footprints’ are larger 
in Fig. 4.21 (a), and a broader running band and a brighter spot can be found in Fig. 4.21 (b). 
The second wheel-rail impact (the second peak of the contact force in Fig. 4.18 (b)) occurs at 
approximately 1380-1390 mm, where larger than usual contact patches and a brighter spot can 
be observed in Fig. 4.21 (a) and (b), respectively, although they are less pronounced than those 
in the first impact. The good correspondence between the simulated contact patch ‘footprints’ 
and in situ running band implies that simulation 3 (with the measured geometry) can more 
accurately reproduce the transient impact contact solutions at the target IRJ, which is likely in 
a non-steady state. 



When a wheel rolls along a rail driven by a torque at the axle, the shear stress direction on 
the rail surface is generally opposite to the wheel rolling direction. An example is shown in 
Fig. 4.22 (a), in which the rail surface shear stress distribution was calculated via simulation 2 
at instant 46 ms (output time step=2500). By extracting the surface shear stress along the 
longitudinal centre line of the contact patch and comparing it to the traction bound (the 
product of the contact pressure Fn and friction coefficient f), the distribution of the adhesion-
slip regions can be obtained, as shown in Fig. 4.22 (b). The maximum amplitude of the surface 
shear stress is located at the juncture of the adhesion and slip regions. The adhesion-slip 
distribution within the contact patch will be analysed in detail in the next section. 

(a) Distribution within the contact patch     (b) Distribution along the longitudinal axis 
Figure. 4.22: Example of the surface shear stress distribution 

In this study, the direction of the surface shear stress opposite to the direction of wheel 
rolling is defined as negative and that along the direction of wheel rolling is defined as 
positive. A review of the evolution of stress distribution shown in Fig. 4.20 indicates that as 
the counterforce of the traction causes the wheel to move forward, the simulated surface shear 
stress points in the negative direction for the majority of graphs except at the regions 
immediately after the joint (roughly 1323-1327 mm) at t4. To show this phenomenon more 
clearly, an evolution of the surface shear stress distribution within the contact patch calculated 
by simulation 2 with a smaller time step (0.1 ms, 100 times of the output time step) than that 
used in Fig. 4.20 (0.77 ms) is depicted in Fig. 4.23. The evolution calculated by simulations 1 
and 3 (not presented here) shows the same trend. 

As shown in Fig. 4.23, when the wheel just touches the right rail after the joint (T1~T3), 
the shear stress vectors on the right rail are positive, whereas those on the left rail are negative. 
From T4 to T6, as the contact patch moves, the amplitudes of the positive shear stresses on the 
right rail between 1325 mm and 1329 mm decrease to zero and then become negative. Graphs 
of T4 and T5 also indicate that the lateral shear stress plays an important role at these 
moments, especially at locations close to the top and bottom edges of the contact patch, where 
the surface shear stress vectors point outwards. Such stress may exacerbate material flow on 
the railhead and consequently widen the running band at the impact location as shown in Fig. 



4.21 (b). At the instances of T7 and T8, the contact patch has exited the positive surface shear 
stress region and all the stress vectors point in the negative direction. The occurrence of 
transient positive surface shear stress on the right rail end is shown to result from the impact 
contact at the IRJ with discontinuous geometry. In the region immediately after the joint, the 
amplitudes of the positive shear stresses caused by the wheel-IRJ impact are larger than the 
amplitudes of the original negative shear stresses (counterforce of the traction), thus making 
the resultant surface shear stresses positive. 

Figure. 4.23: Evolution of the surface shear stress calculated by simulation 2 

This study on the wheel-IRJ impact modelled a wheel driven by a torque on its axle. When 
a braking wheel rolls on a section of track with an IRJ, the original direction of the rail surface 
shear stresses is expected to be positive (counterforce of the braking force). In such cases, the 
positive shear stresses imposed by impact will be added to the original positive shear stresses. 
To what extent an impact between a braking wheel and an IRJ can influence the surface shear 
stress distribution and the consequent wear behaviour on the railhead after the joint should be 
studied in the future. 

The division between adhesion and slip regions in the contact patch is an important feature 
of frictional rolling contact. The transient contact solutions that indicate the adhesion-slip 
distribution during the wheel-IRJ impact predicted by simulation 3 are presented in this 
section. The adhesion-slip distribution can be determined either by comparing the surface 
shear stress with the traction bound or by calculating the micro-slip within the contact patch 
(see Section 3.4.3). The simulated adhesion-slip distributions determined by these two 
approaches are consistent with each other, as shown in Fig. 4.24. 

Fig. 4.24 (a) displays comparisons of the surface shear stress and traction bound along the 
longitudinal centre line of the contact patch at 15 instants. Instant t1 is equal to 44.4 ms, and 
the interval between each two consecutive instants is 0.3 ms (300 times of the output time 
step). Fig. 4.24 (b) shows the evolution of the micro-slip distribution within the contact patch 
at the same 15 instants. The red arrows point in the direction of the micro-slip and the arrow 
length is proportional to the magnitude. The micro-slip vectors (slip region) occur at the 



trailing part of the contact patch, and their directions largely correspond to the wheel rolling 
direction. The colour depth within the contact patch indicates the magnitude of the normal 
wheel-rail relatively velocity. The colour outside the contact patch corresponds to a zero 
relative velocity, whereas that at the leading and trailing edges of the contact patch are lighter 
and darker, indicating a positive and negative normal relative velocity, respectively.  

(a) By stress distribution (A: adhesion region; S: slip region) 

(b) By micro-slip distribution 
Figure. 4.24: Evolution of the adhesion-slip distributions calculated by simulation 3 



The adhesion-slip distributions shown in Fig. 4.24 are non-steady during the wheel-IRJ 
impact, and the proportion of contact patch occupied by the adhesion and slip regions vary 
greatly with the time step from t8 onwards. The most significant variation occurs from t9 to 
t13. At instant t9, the adhesion region accounts for almost the entire contact patch. Next, the 
adhesion zone shrinks gradually and the slip region reaches its maximum occupation at instant 
t12, when the bounce tendency of the wheel comes to an end and the wheel is nearly at the 
second impact, which corresponds to the contact force trough at approximately 47.7 ms in Fig. 
4.18 (b). The good consistency between the adhesion-slip distributions calculated by the 
contact stresses and the micro-slips support the conclusion that the explicit FEM can solve the 
transient impact contact problem with non-linear material properties and arbitrary 
discontinuous contact geometries. 

Compared with the contact force and stress, the surface nodal vibration velocity is found to 
be more sensitive to dynamic effects excited by wheel-rail contact (Yang et al., 2016; Zhao & 
Li, 2016). The rail surface nodal velocity calculations in this study revealed wave phenomena 
excited by wheel-rail frictional rolling impact contact, and the results were based on the fine 
mesh of the FE model, small computational and output time steps, and full coupling of the 
contact and dynamics in the explicit integration. The size of the fine mesh is based on the 
requirement that the size of the elements should be no larger than half a wavelength. The small 
computational time step enables the calculations to capture high-frequency dynamic effects, 
and the small output time step facilitates the observation of the generation and propagation 
processes of the simulated waves. The full coupling means that the contact force and wheel-
rail dynamics are updated simultaneously in every time step, thereby allowing the dynamic 
effects to be fully considered when calculating the contact solutions. Certain wave patterns 
that indicate wave generation, propagation and reflection were excited by wheel-rail contact 
produced in the solution zone, and they are presented and analysed in this section. More 
evident wave phenomena can be observed in the animations ("Animation for Fig. 4.25, 
https://youtu.be/tWyWKw9XxRI ; ," ; "Animation for Fig. 4.27, https://youtu.be/fAg99j6kquI ;  
[accessed 16.11.22]  "; "Animation for Fig. 4.28, https://youtu.be/eHh24SnWDFQ ; [accessed 
16.11.22] "). 

The wave phenomenon discussed here was first observed before the wheel-IRJ impact. Fig. 
4.25 (a) and (b) show the rail nodal velocities in the solution zone simulated by simulation 3 at 
instants 43.615 ms (output time step=115) and 43.640 ms (output time step=140), respectively. 
The colour depth in the figure indicates the magnitude of the normal nodal velocity, which can 
be used to identify the approximate position of the wheel-rail contact patch. The darker and 
lighter semi-ovals indicate the leading and trailing parts of the contact patch, respectively. The 
tangential nodal velocities are indicated by blue arrows. The arrows point in the direction of 
the tangential velocity and the arrow length is proportional to the magnitude. The stripe in the 
middle of each graph shows the position of the joint. 

A regular wave pattern propagating from the wheel-rail contact area towards the joint can 
be observed in Fig. 4.25 (a). The wave with a wavelength of approximately 6 mm is stronger 
around the contact patch and dissipates when propagating. When the wavefront reaches the 
joint, a reflective wave occurs under the free boundary condition defined on the rail end at the 



joint. The reflective wave extends from the joint back to the contact patch and interferes with 
the original wave as indicated in Fig. 4.25 (b). More obvious wave interference can be 
observed in the corresponding animation("Animation for Fig. 4.25, 
https://youtu.be/tWyWKw9XxRI ; ,"). 

(a) Wave propagation 

(b) Wave reflection 
Figure. 4.25: Patterns of wave propagation and reflection produced by simulation 3 

The wave phenomena discovered here are transient and normally take less than 0.1 ms 
from generation to disappearance. The generation process of the wave shown in Fig. 4.25 (a) 
is displayed with an output time step of 1 μm in Fig. 4.26. The instant of the first graph (T1) is 
43.603 ms, which is 0.012 ms (12 output time steps) earlier than that of Fig. 4.25 (a). At T1, 
the rail surface nodal velocities appear to be distributed symmetrically with respect to the 
longitudinal centre line. The leading and trailing parts of the contact patch can be identified by 
the darker and lighter semi-ovals, respectively. The region ahead of the contact area is slightly 
darker than that behind the contact area. The tangential velocities are mainly concentrated on 
the trailing part of the contact patch, and their directions are largely consistent with the wheel 
rolling direction. The lateral components of the tangential velocities increase with the distance 
to the longitudinal centre line of the contact patch. At instant T2, perturbation of the nodal 
velocity suddenly occurs in the leading part of the contact patch. The perturbation spreads 
radially and consequently develops into a wave in the following instants. This perturbation is 
suspected to be related to the wheel-rail friction-induced instability and stick-slip rolling 
contact, which will be discussed in Chapter 7. 

Graphs of instants T3 and T6 indicate that the wave patterns are embodied in both the 
normal and tangential nodal velocities, and the direction of the tangential velocities are 
consistent with the wave propagation direction. The wave is initiated at the longitudinal 
position of 1244 mm (T2), and within 3 time steps, its front reaches 1254 mm (T5). 
Neglecting the wheel rolling distance in such a short period (less than 0.1 mm), the wave 
speed is estimated as 3 km/s. Both the propagation form and the speed of the produced wave 
are consistent with the properties of Rayleigh waves (Telford et al., 1990). 



Figure. 4.26: Generation process of a wave 

The simulation of wheel-IRJ impact also revealed that an impact wave can be generated 
when the wheel rolls over the joint and just touches the rail on the other side. Fig. 4.27 
displays an impact wave produced by simulation 3 at instants 46.390 ms (output time 
step=2890), 46.395 ms (output time step=2895) and 46.400 ms (output time step=2900). At 
these instants, the wheel was rolling from the left rail to the right rail, and it was in contact 
with both rail ends. As shown in Fig. 4.27, an obvious wave occurs and propagates on the rail 
after the joint. Compared with the wave patterns displayed in Fig. 4.25, the impact wave 
patterns displayed in Fig. 4.27 are mainly formed by the normal nodal velocities, and the 
wavelength is approximately 10 mm. The contributions of the tangential nodal velocities to 
the wave patterns are much less pronounced. More evident impact wave propagation can be 
seen in the animation ("Animation for Fig. 4.27, https://youtu.be/fAg99j6kquI ;  [accessed 
16.11.22]  "). 

In addition to the wave types displayed in Fig. 4.25 and 4.27, simulations 1 and 2 also 
produced waves with longer wavelengths. Fig. 4.28 (a) and (b) show two examples produced 
by simulation 2 at instants 46.74 ms (output time step=3240) and 46.762 ms (output time 
step=3252), respectively. These two waves appear immediately after the whole contact patch 
is transferred to the rail after the joint, and their wavelengths, which are shown in Fig. 4.28 (a) 
and (b), are approximately 40 mm and 20 mm, respectively. The animation ("Animation for 
Fig. 4.28, https://youtu.be/eHh24SnWDFQ ; [accessed 16.11.22] ") shows a more clear 
depiction of these waves. The longer-wavelength wave was not observed in simulation 3. The 
cause of these longer-wavelength waves must be further studied. 



(a) An impact wave at instant 46.390 ms 

(b) An impact wave at instant 46.395 ms 

(c) An impact wave at instant 46.400 ms 
Figure. 4.27: An impact wave pattern produced by simulation 3 

(a) Wave with a wavelength of approximately 40 mm 

(b) Wave with a wavelength of approximately 20 mm 
Figure. 4.28: Wave patterns with longer wavelengths produced by simulation 2 

This chapter investigated the transient contact solutions of wheel-IRJ frictional rolling 
impacts with dynamic effects simulated by an explicit FE wheel-IRJ dynamic interaction 
model, which was validated against a comprehensive field measurement including a hammer 
test and a pass-by measurement. The presented explicit FEM is proven to be sufficient and 
accurate for solving wheel-IRJ impact problems by fully coupling the high-frequency 
dynamics of wheel and rail continua with the complex transient impact contact in one 
simulation. 



The transient solutions of impact contact with small time steps calculated in this study 
include the contact patch area, stress magnitude and direction, micro-slip distribution, and rail 
surface nodal velocity in the vicinity of a joint. The simulated contact solutions tended to vary 
noticeably with the time step, indicating that dynamic effects play important roles in the 
wheel-IRJ impact contact. Transient positive surface shear stress, whose direction is opposite 
that of shear stress under ordinary tractive rolling, was discovered on the rail surface 
immediately after the joint. The simulated transient adhesion-slip distributions determined by 
the contact stresses and micro-slip solutions were verified by each other.  

The influence of the wheel-rail contact geometry on the transient contact solutions was 
also investigated in this study. The contact solutions calculated with the nominal geometry 
correspond well with those reported in the literature, whereas those simulated with the 
measured geometry show obviously non-steady-state impact effects. The good agreement 
between the simulated ‘footprints’ of the contact patch and the in situ running band implies 
that the model with the measured geometry provides more realistic predictions of the transient 
solutions of the impact contact at the target IRJ. Without considering the realistic contact 
geometries, the impact contact force and impact contact area fluctuations may be significantly 
underestimated. 

In addition, regular wave patterns were produced both before and during the wheel-IRJ 
impacts in the simulations, and these patterns reflect continuum vibrations excited by wheel-
rail frictional rolling and impact contact and confirm that the simulated transient contact 
solutions are reliable.  





5 



This chapter gives the second numerical example of modelling of wheel-rail dynamic 
interactions with the explicit finite element method (FEM) – simulating the squeal-exciting 
frictional rolling contact. Fig. 5.1 shows the schematic logic of this chapter. Section 5.1 first 
reviews two widely accepted generation mechanisms, i.e., falling-friction and mode-coupling, 
and also the modelling approaches of wheel unstable vibration and the consequent squeal. 
Section 5.2 presents an explicit finite element (FE) wheel-rail dynamic interaction model with 
wheel lateral motion. Section 5.3 then analyses the simulated contact forces (Subsection 5.3.1), 
the dynamic contact solutions (Subsection 5.3.2) and the wheel dynamic behaviour 
(Subsection 5.3.3). The analyses suggest that the explicit FE model may reproduce the falling-
friction effect and the wheel mode-coupling behaviour and thus confirm that the explicit FEM 
is suitable for modelling squeal-exciting contact. The aim of this chapter is to contribute to 
better modelling and understanding of friction instability and squeal generation from the 
perspective of wheel-rail dynamic interaction. 

Figure. 5.1: The schematic logic of Chapter 5 

Squeal noise can occur when a railway vehicle negotiates tight curves. Because the leading 
wheelset fails to align itself tangentially to the rail, large lateral creepage occurs at the contact 
between the tread of the inner wheel and the top surface of the low rail, and the flange of the 
outer wheel contacts the gauge corner of the high rail. During this process, two types of high-
frequency curve squeal effects, which share certain features, can be induced: the tonal ‘wheel 
squeal’ (studied in this chapter) and the more broad-band ‘flange squeal’ (the flange contact 
will be discussed in Chapter 6). 

Squeal, which is an intrinsically nonlinear and transient phenomenon, poses great 
challenges in modelling (Pieringer, 2014). Systematic studies on curve squeal noise began in 
the 1970s, when Rudd (1976) described the wheel-rail frictional characteristic (the functional 
dependence between friction force and wheel-rail relative velocity) in terms of ‘negative 
damping’ (generalised as full ‘stick-slip’) or ‘falling friction’ and associated this characteristic 
with the mechanism of wheel squeal. Since then, various increasingly sophisticated theoretical 
models have adopted parts of this mechanism based on Rudd’s seminal model (Remington, 



1987; Fingberg, 1990; Périard, 1998; Heckl & Abrahams, 2000; de Beer et al., 2003; Huang, 
2007).  

Analytical research (Graf & Ostermeyer, 2015), however, revealed that instability can also 
occur with constant or even positive creep force characteristics when additional mechanical 
degrees of freedom are considered. Similarly, FE analyses by the complex eigenvalue 
approach revealed that instability arises when two modes coalesce, or couple, in the presence 
of friction (Ouyang et al., 2005). To consider the influence of vertical dynamics on friction, 
the ‘mode-coupling dynamic instability’ or the ‘sprag-slip’ mechanism have been employed in 
combination with falling-friction theories to predict friction-inducted instability (Eadie et al., 
2005; Iwnicki, 2006; Huang, 2007; Anderson & Wheatley, 2008). Chiello et al. (2006) 
concluded that the two types of destabilization, i.e., that caused by the falling-friction 
mechanism and that caused by the mode-coupling mechanism, may be combined in each 
particular situation of squeal; thus, both should be explored. The generation of squeal is 
characterised as ‘enigmatic’ (Jiang et al., 2015) or ‘erratic’ (Vincent et al., 2006; Glocker et 
al., 2009) in railway research, because field observations of squeal phenomena often fail to be 
explained by the existing theories. 

The contact model accounting for the frictional instability of a vibrating wheel is 
considered the central part of the squeal prediction model (Zenzerovic et al., 2016). This 
chapter presents an explicit FE wheel-rail dynamic interaction model to simulate wheel-rail 
squeal-exciting contact with unsteady lateral creepage. The dynamic wheel and rail interaction 
is considered to be directly related to squeal generation (Huang et al., 2008); moreover, 
unsteady lateral creepage, particularly between the leading inner wheel and low rail, is thought 
to be the main cause of squeal (Thompson, 2009). Because the explicit FEM fully couples the 
calculation of wheel-rail frictional rolling contact with the calculation of wheel/rail structural 
dynamics (see Chapter 2), the proposed explicit FE model can accommodate the dynamic 
effects involved in wheel-rail interactions and is intrinsically suitable for modelling wheel-rail 
friction-induced unstable vibration and the resulting squeal.  

Fig. 5.2 (a) shows the employed three-dimensional explicit FE wheel-track dynamic 
interaction model with wheel lateral motion. A 10 m length of half-track and a half wheelset 
with sprung mass of the car body and the bogie were considered. The wheel, the rail and the 
sleepers were modelled using 8-node solid elements. To achieve high solution accuracy with a 
reasonable model size, non-uniform meshing was used. The mesh size around the initial 
position of the wheel-rail contact and the 150 mm length of the solution zone was 1 mm. The 
lumped mass of the car body and bogie were modelled as mass elements that were connected 
to the wheelset by the primary suspension of the vehicle with parallel linear springs and 
viscous dampers. Because the sleepers and ballast have little influence on the high-frequency 
dynamic behaviour under study, each sleeper model contained only 12 solid elements, and the 
ballast was simplified as vertical spring and damper elements with the displacement 
constrained in the lateral and longitudinal directions. The parameters involved in the track 
model are taken primarily from Table 4.1. The wheel-rail contact was defined with real 
geometry and with the wheel flange being included. The wheel geometry corresponded to a 
passenger car wheel of the Dutch railway with the standard profile of S1002; the rail was 
UIC54E1 with an inclination of 1:40. No geometry irregularities were considered on the 
surfaces of the wheel or rail. 



(a)                                                     (b) 
Figure. 5.2: Wheel-rail interaction model 

In the transient dynamic simulation, the wheel rolled from its initial position at time t0=0 s 
to the solution zone with an initial speed of 100 km/h along the rail, as shown in Fig. 5.2 (b). 
The dynamics arising from the wheel/rail initial kinematic and potential energy due to 
imperfect static equilibrium (Zhao & Li, 2011) have relaxed at time t1=15 ms. The wheel 
lateral motion was subsequently simulated from time t2=16 ms by applying the prescribed 
displacement boundary conditions listed in Table 5.1 to both ends of the wheel half-axle, 
except for simulation case 1. Note that in this study, the angle of attack was approximated to 
zero because in the simulations, the initial angles of attack were zero and both ends of the 
wheel half-axle model applied the same displacement boundary condition during the transient 
rolling. Figs. 5.3 (a) and (b) present the prescribed displacement boundary conditions applied 
in the simulations and the resulting lateral wheel displacements, respectively. The two graphs 
share the same trend, but the simulated displacements fluctuated due to the flexibility of the 
wheel and axle; the unsteady lateral creepage was thus simulated. The wheel entered the 
solution zone at time t3=16.5 ms and exited at t4=18.7 ms. The dynamic evolution of the 
contact solutions was captured between t3 and t4.  

Table 5.1 Prescribed displacement boundary conditions applied to different simulation cases 
Prescribed displacement 

boundary conditions 
Simulation cases 

with a constant COF 
Simulation case 

with a velocity-dependent COF 
No lateral motion of wheel Case 1  

Small lateral motion of wheel Case 2  
Medium lateral motion of wheel Case 3 Case 5 

Large lateral motion of wheel Case 4  

The wheel was driven by a cosine-functional driving torque (Eqn. (3.2)) applied on the 
wheel axle. The torque increased gradually before reaching its maximum value at 6 ms. A 
longitudinal creep force was thus generated and the traction coefficient was below the COF 
before the wheel entered the solution zone at time t3=16.5 ms. The traction coefficient varies 
with time in dynamic rolling because of vibration, and its nominal value is approximately 0.27. 
A constant COF=0.45 was used for simulation cases 1~4. Knothe et al. (2001) reported that 
the falling-friction characteristic can be reproduced only by assuming that the COF depends 
on the wheel-rail sliding velocity; an additional simulation, i.e., case 5 listed in Table 5.1, was 
therefore conducted with a velocity-dependent COF. Simulation case 5 shared the same 
configuration as case 3 except for the COF. When a velocity-dependent COF is applied, the 
overall COF may differ from the local COF at a node (Zhao & Li, 2016).  



(a) Prescribed displacement boundary conditions  (b) Resulted wheel lateral displacements 
Figure. 5.3: Time histories of the prescribed displacement boundary conditions and the 

resulted wheel lateral displacements 

This section first analyses the contact forces calculated by the explicit FE model in 
Subsection 5.3.1 to provide a broad overview of the wheel-rail dynamic interaction with wheel 
lateral motion. To reproduce the two potential mechanisms of squeal introduced in Section 5.1, 
i.e., falling-friction and mode-coupling, the simulated wheel-rail dynamic contact solutions 
and structural dynamic responses are analysed in Subsections 5.3.2 and 5.3.3, respectively. 

Figs. 5.4 (a) and (b) show the time histories of the contact forces simulated without wheel 
lateral motion (case 1) and with medium lateral motion (case 3), respectively. Before time 
t1=15 ms, the simulated contact forces fluctuated mostly due to vibrations excited by initial 
kinetic and potential energy in the un-relaxed system. The traction bound (denoted by the cyan 
curve) fluctuated around the static value 50 kN. After the oscillations were damped to less 
than 10% of the static values at time t1, a quasi-steady state could be assumed to have entered 
into. The creep force is the resultant force of the lateral and longitudinal contact forces. In Fig. 
5.4 (a), the simulated creep force (denoted by the red curve) almost overlaps the longitudinal 
force (denoted by the green curve) because the value of the lateral force (denoted by the blue 
curve) is small. By contrast, as shown in Fig. 5.4 (b), the lateral force simulated by case 3 
jumped to large value after t2=16 ms due to the enforcement of a prescribed displacement 
boundary condition; consequently, the creep force reached the traction bound, and friction 
saturation occurred at approximately 19 ms. The dynamic evolution of the contact solution 
between times t3=16.5 ms and t4=18.7 ms were output and are analysed in the next subsection. 

(a) Contact forces simulated by case 1 



(b) Contact forces simulated by case 3 
Figure. 5.4: Time histories of the simulated contact forces 

This subsection analyses the dynamic contact solutions calculated using the proposed 
explicit FE wheel-rail interaction model, including contact stresses and the distributions of 
micro-slip and adhesion-slip regions within the contact patch. This subsection also discusses 
the influences of lateral creepage and velocity-dependent COF on the dynamic contact 
solutions.  
5.3.2.1 Contact solutions with dynamic effects 

Fig. 5.5 (a) shows a magnified view of the time histories of the contact forces calculated by 
case 1 between times t3=16.5 and t4=18.7 ms (within the solution zone). The close-up view 
shows that the simulated traction bound and creep force oscillated periodically but were not 
exactly in phase. Eight time points with a fixed interval (0.06 ms) were selected from a certain 
period of the creep force fluctuation, designated 1~8 in the magnified view in Fig. 5.5 (a). Fig. 
5.5 (b) plots the distributions of the simulated surface shear stress (red curve) and traction 
bound (blue curve) within the contact patch at these eight selected time points. The adhesion 
and slip regions determined by the contact stress are denoted ‘A’ and ‘S’ in the figure, 
respectively. A comparison of the stress distributions calculated at the eight time points in Fig. 
5.5 (b) indicates that the surface shear stress within the adhesion region increased gradually 
from the first time point to the 4th time point and decreased from the 5th time point to the 8th

time point. This trend is in accordance with the variation in the creep force shown in the 
magnified view of Fig. 5.5 (a). The animation displaying the variation in the surface stress 
with time ("Animation for Fig. 5.5, https://youtu.be/3jeei3NTP84,") indicates that the surface 
shear stress and the traction bound varied periodically with the contact forces. As reported by 
Ouyang et al. (2005), the interface pressure distribution varies with time during vibration; thus, 
the periodic variation in the surface normal and shear stresses reproduced in this numerical 
example may reflect the dynamic effects involved in the explicit FE contact solutions.  

In addition, a moving local peak of the shear stress, indicated by the green arrows in Fig. 
5.5 (b), was observed within the adhesion region in the variation process of the contact stress. 
The peak starts at the leading edge of the contact patch, moves towards the trailing part, and 
ultimately exits the adhesion region at the juncture of the adhesion-slip regions. Because the 
shear stress is close to the traction bound when close to the leading edge of the contact patch 
and when close to the juncture of the adhesion-slip regions, sudden friction saturation, or a 
perturbation of micro-slip, may arise when such a local peak of shear stress appears or exits 
the adhesion region. This will be illustrated in more detail in Section 7.1.3. 



(a) Magnified view (within the solution zone) of the time histories of the contact forces for 
simulation case 1 

(b) Stress distributions calculated at corresponding time points denoted by 1~8 in (a) (blue 
curve: traction bound; red curve: surface shear stress; A: adhesion region; and S: slip region) 

Figure. 5.5: Periodical surface stress distribution for simulation case 1 

5.3.2.2 Contact solutions with lateral creepage 
Contact stress and micro-slip are symmetrically distributed with respect to the longitudinal 

axis within the contact patch when creepage exists only in the longitudinal direction. When 
simulating wheel lateral motion in this study, the resulting wheel-rail lateral creepage caused 
asymmetric distributions of contact stress and micro-slip within the contact patch, as shown in 
Fig. 5.6. To compare contact solutions with a broad range of lateral creepage, Fig. 5.6 plots six 
typical contact solutions obtained with different simulation cases: (a) and (b) were obtained 
with simulation case 1 at 17.58 ms and case 2 at 17.58 ms, respectively; (c) and (e) were 
obtained with case 3 at 17.58 ms and 18.54 ms, respectively; and (d) and (f) were obtained 
with case 4 at 17.07 ms and 17.94 ms, respectively. From top to bottom, the graphs in Fig. 5.6 
display the simulated stress distributions along the longitudinal centre line of the contact patch 
(first row), stress distributions (second row) and micro-slip distributions (third row) within the 
contact patch, and shear stress and adhesion-slip region distributions obtained with Kalker’s 
boundary element method program CONTACT (Kalker, 1990) (fourth row). The 
corresponding creepage values (lateral creepage  and longitudinal creepage ) are presented 
in the captions below the graphs (except for Fig. 5.6 (f)). 



(a)  =0.019 %  (b)  =0.080 %  (c)  =0.185 %    (d)  =0.199 %   (e)  =0.440 %        (f) 
      =0.304 %         =0.308 %         =0.317%           =0.331 %          =0.326 % 

Figure. 5.6: Simulated contact solutions with lateral creepage (first row: stress distributions 
along the longitudinal center line; second row: stress distributions within the contact patch; 
third row: micro-slip distributions within the contact patch; and fourth row: shear stress and 

adhesion-slip region distributions calculated with Kalker’s CONTACT (Kalker, 1990).  and 
 are lateral and longitudinal creepage, respectively.) 

Table 5.2 Input forces in the simulations with CONTACT 
Graph Numbers 

in Fig. 5.6 
Corresponding forces 

(a) (b) (c) (d) (e) (f) 

Normal load 
 Fn (kN) 126.68 125.61 123.87 102.60 116.19 106.46 

Lateral creep force  
Fty (kN) 2.19 9.30 20.27 18.41 36.83 47.04 

Longitudinal creep force  
Ftx (kN) 39.46 39.19 38.12 33.59 34.01 6.09 

The velocities of material particles vary with their locations due to vibration in a flexible 
finite element contact body (wheel or rail), as happens in reality. The creepage should thus be 
calculated with the velocities of the parts of the wheel and rail encompassing a certain number 
of elements at the contact, rather than with the velocities of the whole wheel and rail, as has 
been done so far in the literature. However, this study found that the size and location of the 
contact parts considered for the calculations of creepage may significantly influence the 
calculation results and cannot be easily determined. Considering that the explicit FEM and 
CONTACT should provide similar creepage-creep force relations, as reported in (Vo et al., 
2014), this study estimated the corresponding creepage values of the explicit FE contact 
solutions using CONTACT: the creep forces calculated with the explicit FE model (see Table 
5.2) were input into the simulations with CONTACT as the prescribed tangential forces, and 



the other input parameters used in the CONTACT simulations were the same as those 
involved in the explicit FE simulations. Contact solutions and the creepage values were then 
obtained with CONTACT and presented in the fourth row of Fig. 5.6. Note that no creepage 
value was presented below Fig. 5.6 (f); that is because when friction saturation occurs, a 
prescribed creep force corresponds to non-unique creepage. 

In the contour/vector diagrams showing the stress distributions (second row), the pressure 
magnitude corresponds to the depth of the colour; the blue arrows indicate the direction of the 
shear stress, and their lengths are proportional to the shear stress magnitude. Similarly, in the 
contour/vector diagrams showing the micro-slip distributions (third row), the depth of the 
colour within the contact patch indicates the magnitude of the normal wheel-rail relative 
velocity; the red arrows indicate the directions of the micro-slip, and their lengths are 
proportional to the micro-slip magnitude. The asymmetry of the distribution of the contact 
patch can be characterised by an orientation angle , as shown in 5.6 (c). The orientation angle 
increases with the lateral creepage from Fig. 5.6 (a) to (f). For the solutions calculated with 
CONTACT (fourth row), the black arrows indicate the direction of the shear stress, and their 
lengths are proportional to the shear stress magnitude. The orientation angles obtained with 
CONTACT are consistent with those obtained with the explicit FEM. 

The distributions of the adhesion-slip regions determined by the simulated explicit FE 
contact stresses in the first row and micro-slips in the third row are in line with each other. 
They are also in reasonable agreement with the distributions of adhesion-slip regions 
determined by CONTACT in the fourth row. In the graphs of the micro-slip distribution (third 
row), the slip regions covered with micro-slip vectors are located at the trailing part of the 
contact patch, while the adhesion regions ‘A’ indicated by dashed ovals shrink with increasing 
lateral creepage from Fig. 5.6 (a) to (e). Fig. 5.6 (f) shows friction saturation. 

The colour depth outside the contact patch corresponds to a zero normal relative velocity 
in the graphs of the micro-slip distribution (third row). Thus, the colour depths at the leading 
and trailing edges are lighter and darker, respectively, indicating a positive and negative 
normal relative velocity. Wave phenomena indicated by the variation in colour depth can be 
observed in the micro-slip distributions calculated with the explicit FEM in Figs. 5.6 (e) and 
(f). Because the surface elements of the wheel and rail were in contact, further movement 
towards or away from each other caused transient intensification or relaxation of the contact, 
respectively (see also Section 6.3.5.3). The waves were therefore essentially embodied in the 
alternation of compression intensification and relaxation. The generation mechanism and 
property of the wave will be discussed in Chapter 7.  
5.3.2.3 Contact solutions with a velocity-dependent COF 

A velocity-dependent COF defined in Eqn. (2.29a) was adopted in the simulation case 5. 
The decay coefficient , static COF  and dynamic COF  were set to 6, 0.5 and 0.32, 
respectively, as those used in (Zhao & Li, 2016). Fig. 5.7 presents one example of the contact 
solutions calculated with the simulation case 5 at 16.68 ms. Although simulation case 5 shared 
the same configuration as case 3 except for the COF, the orientation angle shown in Fig. 5.7 (b) 
is much smaller than those shown in Figs. 5.6 (c) and (e). That is because the lateral creep 
force increased when the wheel passed the solution zone (see the blue curve between time t3
and t4 in Fig. 5.4 (b)), and the contact solution presented in Fig. 5.7 was calculated at an earlier 
time step than those of Figs. 5.6 (c) and (e) and thus had a smaller lateral creepage.  



(a) Adhesion-slip division determined by the micro-slip         (b) Stress distribution 

(c) Adhesion-slip division determined by the stress distribution 
Figure. 5.7: One example of the contact solutions calculated using a velocity-dependent COF 

(simulation case 5) 

Fig. 5.7 (a) shows the simulated micro-slip distribution within the contact patch. Compared 
to the adhesion-slip distributions simulated with a constant COF shown in Fig. 5.6, the 
adhesion-slip distribution in Fig. 5.7 shows a less regular pattern: the slip regions denoted by 
the black ovals S1, S2 and S3 scatter in the trailing part of the contact patch. However, this 
result is believed to be a more realistic contact condition (Zhao & Li, 2016). 

The contact pressures and surface shear stresses plotted in Fig. 5.7 (c) were extracted from 
the stress distribution shown in Fig. 5.7 (b) along the four longitudinal lines of contact patches 
indicated by blue arrows. In Fig. 5.7 (c), the red and blue curves indicate the simulated surface 
shears stresses Ft and the traction bound (the product of the contact pressure Fn and the 
velocity-dependent COF ), respectively; the green curve indicates the product of the 



contact pressure and the static COF ; and the yellow curve indicates the product of the 
contact pressure and the dynamic COF .  

According to Coulomb law for statics, the blue curve in Fig. 5.7 (c) should coincide either 
with the green curve for adhesion regions or with the red curve for slip regions. Discrepancies 
were, however, observed in the numerical solutions at two data points, as indicated by the two 
red arrows: the blue curves at these two data points should have overlapped with the red 
curves because the calculated micro-slips at these locations are nonzero in Fig. 5.7 (a), as 
indicated by the two green arrows. These discrepancies may stem from two aspects. First, the 
shear stress and traction bound shown in Fig. 5.7 (c) were obtained at different time steps. 
Because the velocity-dependent COF  used to calculate the traction bound (Eqn. 
(2.28c)) and tangential force (Eqn. (2.28d)) at a certain time step relies on the nodal 
displacements obtained at the previous time step (see Eqns. (2.28) and (2.29) and Table 2.1), 
the traction bound displayed in Fig. 5.7 (c) was in fact calculated one time step later than the 
shear stress. Considering that the time step used in the simulation was small (approximately 86 
ns), the second aspect is expected to dominate: the discrepancies were due to the different 
sensitivities of the approaches used to determine the slip region. The micro-slip shown in Fig. 
5.7 (a) and the velocity-dependent COF  used for Fig. 5.7 were calculated using the 
wheel-rail relative velocities, whereas the shear stress Ft was obtained using the relative 
displacement (Eqn. (2.28a)). Because the displacement was obtained by integrating the 
velocity (Eqn. (2.12b)) and the integration can act as a filter, the traction bound shown in Fig. 
5.7 (c) is expected to reflect dynamic effects more sensitively than the surface shear stress 
calculated using the displacement. 

The adhesion-slip distribution determined using the calculated contact stresses in Fig. 5.7 
(c) is in reasonable agreement with that determined using the calculated micro-slip in Fig. 5.7 
(a), indicating that the explicit FEM can predict wheel-rail dynamic contact solutions with 
velocity-dependent COFs. Because the falling-friction characteristic can be reproduced only 
by the velocity-dependent COF (Knothe et al., 2001), the explicit FEM is expected to be 
capable of reproducing the falling-friction characteristic. 

Based on the analysis of the simulated wheel-rail dynamic contact solution with velocity-
dependent COF, the preceding subsection indicated that the explicit FEM is capable of 
addressing the falling-friction generation mechanism of wheel squeal. As illustrated in Sec. 
2.2.3, an explicit FE model may include in its solution all the relevant vibration modes and 
associated wave propagations as long as the elements and time steps are sufficiently small. 
The computational time step (  in Eqn. (2.12)) of the transient analyses in this study 
fluctuated around 86 ns; thus, the vibration frequency up to 5.8 MHz can theoretically be 
predicted. This subsection analyses the wheel dynamic behaviour and compares the wheel 
dynamic responses simulated with and without lateral motion to address the other generation 
mechanism of squeal, namely, mode-coupling. 
5.3.3.1 Validation of wheel dynamic behaviour 

Wheel dynamic behaviour plays a more important role in the generation of high-frequency 
squeal noise than track dynamic behaviour (Thompson, 2009). Each tonal frequency of squeal 
is expected to relate to a wheel mode (Vincent et al., 2006; Squicciarini et al., 2015). To 
accurately simulate wheel dynamic responses during rolling, this study first validated the 
dynamic behaviour of the explicit FE wheel sub-model with a laboratory hammer test. The 



wheel dynamic behaviour can be characterised by the modes and the corresponding natural 
frequencies (see Section 4.3.5). A typical NS-intercity wheel used in the Dutch railway was 
measured. Fig. 5.8 compares the wheel vibration modes measured by the hammer test and 
those identified through the FE modal analysis within the frequency range of squeal (up to 10 
kHz), and reasonable agreement was reached. All these physical modes were thus included in 
the transient dynamic simulation by virtue of the full FE model and the small time step (Zhao 
& Li, 2011). 

Figure. 5.8: Comparison of the calculated and measured wheel modal frequencies 

5.3.3.2 Squeal-like wheel vibration 
After the validation of wheel dynamic behaviour, wheel dynamic responses were simulated 

using the proposed explicit FE wheel-rail dynamic interaction model. Figs. 5.9 (a) and (b) 
show the time histories and the corresponding power spectrum densities (PSDs), respectively, 
of the lateral vibration of the rolling wheel calculated in simulation cases 1~4. The squeal-like 
vibration signals represented by large amplitude limit-cycles were produced by the explicit FE 
model when applying the wheel lateral motion. The amplitudes of the limit-cycles of the time 
histories increased with increasing amplitude of the lateral motion applied to the wheel model. 
The three dominant frequencies of the squeal-like vibration signals shown in PSDs in Fig. 5.9 
(b) are 163 Hz, 1172 Hz and 1921 Hz. Comparing these frequencies to the wheel modal 
frequencies identified in Subsection 3.3.1, the wheel modes excited in the simulations of 
wheel-rail dynamic interaction with wheel lateral motion can be determined: the mode with 
zero nodal circle and zero nodal diameter (0,0), the mode with zero nodal circle and three 
nodal diameters (0,3), and the mode with zero nodal circle and four nodal diameters (0,4), as 
shown in Fig. 5.9 (b) and Table 5.3. The results correspond well to the conclusion that zero-
nodal-circle modes tend to be excited in squeal (Thompson, 2009). 



(a) Time histories 

(b) PSDs 
Figure. 5.9: Time histories and PSDs of the simulated wheel lateral vibration during rolling 

Table 5.3: Corresponding dominate frequencies of the simulated vibrations and wheel modes 
Dominant frequency 

in PSDs 
Corresponding modal 

frequency 
Corresponding mode 

163 Hz 183 Hz 0 nodal circle, 0 nodal diameter 
1172 Hz 1075 Hz 0 nodal circle, 3 nodal diameters 
1921 Hz 1934 Hz 0 nodal circle, 4 nodal diameters 

5.3.3.3 Mode-coupling behaviour 
Fig. 5.10 compares the wheel vibrations calculated with no lateral motion (case 1) and with 

large lateral motion (case 4). The comparison of the simulated wheel lateral vibrations in Figs. 
5.10 (a) and (d) indicates that the enforcement of the lateral displacement boundary condition 
at time t2=16 ms excited the out-of-plane axial modes (0,0), (0,3) and (0,4), as denoted in Fig. 
5.10 (d). The comparisons of the simulated wheel vertical and longitudinal vibrations in Figs. 
5.10 (b) and (e) and in Figs. 5.10 (c) and (f) indicate that the prescribed wheel motion in the 
axle direction may also excite the in-plane radial wheel modes with one nodal diameter and 
two nodal diameters, which are denoted by Radial 1 and Radial 2 in Figs. 5.10 (e) and (f), 
respectively. The coupling of the axial and radial dynamics shown in Fig. 5.10 suggests that 



the mode-coupling mechanism can be reproduced by the proposed explicit FE wheel-rail 
dynamic interaction model. 

(a) Lateral vibration: case 1   (b) Vertical vibration: case 1   (c) Longitudinal vibration: case 1 

(a) Lateral vibration: case 4   (b) Vertical vibration: case 4   (c) Longitudinal vibration: case 4 
Figure. 5.10: WPSs of the simulated wheel vibration

The dominant frequency component of approximately 150 Hz in Fig. 5.10 (f) was excited 
mainly by the longitudinal creep force, which generally fluctuated in antiphase with the lateral 
creep force after time t3 (see Fig. 5.4 (b)). The dominant frequency of the creep force 
fluctuations can be estimated by Fig. 5.4 (b) as approximately 150 Hz. However, because the 
axial wheel mode ((0,0): 183 Hz) with a close modal frequency was excited, the energy 
amplitude of the calculated wheel lateral vibration concentrated at approximately 150 Hz was 
much larger than that of the longitudinal vibration, as indicated by the colour bars of Figs. 
5.10 (d) and (f). 

As the second numerical example of the modelling of wheel-rail dynamic interactions, this 
chapter has proposed an explicit FE wheel-rail dynamic interaction model with wheel lateral 
motion to simulate the squeal-exciting frictional rolling contact. The two commonly 
considered mechanisms leading to noise, namely, falling-friction and mode-coupling, were 
rigorously considered in the explicit FE model. The simulation results indicated that the 
proposed model can reproduce both mechanisms, thus confirming that the explicit FEM is 
reliable for predicting wheel-rail squeal-exciting contact and is promising for the accurate 
prediction of squeal. 

This chapter analysed the dynamic contact solutions calculated by the explicit FE wheel-
rail interaction model, including contact stresses and the distributions of micro-slip and 
adhesion-slip regions within the contact patch. The contact solutions obtained with the explicit 
FE are in agreement with those obtained with Kalker’s boundary element program CONTACT. 



The influences of the wheel lateral motion and the velocity-dependent COF on the dynamic 
contact solutions were also discussed.  

Wave phenomena caused by large lateral creepage were observed in the analysis of the 
distribution of micro-slip. A moving local peak of shear stress was discovered within the 
adhesion region in the variation of contact stress, which was concluded to relate to the 
generation of perturbation-induced wave discussed in Chapter 7.  

Applying the velocity-dependent COF resulted in a less regular adhesion-slip distribution 
pattern, which may show a more realistic contact condition. The distributions of the adhesion-
slip regions determined by the simulated contact stresses and micro-slips with the contact COF 
were mutually consistent, whereas small discrepancies were observed when the velocity-
dependent COF was used. The discrepancies were concluded to stem from the different 
sensitivities of the approaches used to determine the slip region. 

The dynamic behaviour of the FE wheel model was validated through a laboratory hammer 
test. By relating the dominant frequencies of the simulated squeal-like vibration to the 
identified wheel modal frequencies, three zero-nodal-circle modes prone to be excited in 
squeal were determined and found to correspond well to previously reported results. 
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This section gives the third numerical example of wheel-rail dynamic interaction 
modelling – simulating the non-steady-state transition of wheel-rail rolling from single-point 
to two-point contact. Section 6.1 reviews studies on wheel-rail two-point contact. Section 6.2 
presents a 3D explicit FE wheel-track dynamic interaction model for the simulation of contact 
transition. Section 6.3 carefully examines the calculated evolution of the wheel-rail contact 
position, stress magnitude and direction, adhesion-slip distribution, and wheel-rail relative 
velocities in the two contact patches to investigate the transient dynamic effects during the 
contact transition. 

Complex two-point contact is difficult to model, as it involves arbitrary wheel and rail 
geometries, large creepage and spin. Traditional approaches based on the half-space 
assumption, such as Hertz’s analytical method, virtual-penetration-based methods (Ayasse & 
Chollet, 2006; Piotrowski & Kik, 2008), and Kalker’s program FASTSIM and CONTACT 
(Kalker & Johnson, 1993), are considered inaccurate because the radii of curvature of the 
contact bodies at the flange-gauge corner contact can be of the same size as the contact patch 
and the patch may be non-planar. ANALYN (Sh. Sichani et al., 2014) and FaStrip (Sh. 
Sichani et al., 2016), though also limited to the half-space assumption, were proposed as 
alternatives to the virtual-penetration-based methods and FASTSIM, with higher accuracies in 
terms of both creep force estimation and shear stress distribution, especially when the contact 
patch is non-elliptic. By extending the CONTACT to include quasi-quarter-spaces, Li (2002) 
presented the program WEAR to cope with conformal contact, including two-point contact. Its 
application to contact between a wheel and the switch blade of a turnout is presented in 
(Burgelman et al., 2014).  

As CONTACT and WEAR are based on the boundary element method (Li, 2002), they can 
only treat linear-elastic materials and idealised contact geometry, limiting their accuracy in 
analyses of wear and rolling contact fatigue (RCF) with large plastic deformation and arbitrary 
contact geometry. The use of the finite element method (FEM) was proposed to overcome 
these problems. The elastic half-space contact solutions calculated by the FEM correspond 
well with those obtained from Hertz contact theory (Yan & Fischer, 2000). The FEM was also 
proven to be applicable to two-point wheel-rail contact, as satisfying solutions have been 
obtained for contact points on the rail top and gauge corner (Telliskivi & Olofsson, 2004; 
Ringsber & Josefson, 2005; Sladkowski & Sitarz, 2005; Magheri et al., 2011). A good 
integration between 3D FEM and multibody modelling is archived in (Meli et al., 2011) to 
have a full description of vehicle dynamics. 

The models in (Yan & Fischer, 2000; Telliskivi & Olofsson, 2004; Ringsber & Josefson, 
2005; Sladkowski & Sitarz, 2005; Magheri et al., 2011; Meli et al., 2011) all assumed quasi-
static state contact between the discretised wheel and rail models. However, dynamic effects 
may play significant roles under certain circumstances, such as impact contact at geometric 
irregularities of the wheel and rail surfaces. To consider such dynamic effects, the explicit 
FEM was adopted to simulate the fatigue and wear of the rail joint (Wen et al., 2005), the 
growth of squat (Li et al., 2008) and damage to the crossing nose (Wiest et al., 2008a; Pletz et 
al., 2012b). The transient elastic-plastic stress-strain states in the contact were calculated by 
employing elastoplastic materials in the models. By accounting for the normal load and creep 
force as well as a realistic contact geometry, the transient explicit FEM has been proven to be 
effective and accurate for solving single-point frictional rolling contact between the wheel 



tread and rail with small (Zhao & Li, 2011) or large spin (Deng et al., 2015) by comparing its 
quasi-static state solutions with those of Hertz and CONTACT. In comparison with the 
implicit FEM, the explicit integration scheme avoids the regularization of the friction law 
(Wriggers, 2006) required to treat the no-slip condition in the adhesion area and the 
convergence difficulties caused by the demanding contact conditions (Mulvihill et al., 2011). 
Moreover, the computation efficiency is considerably improved when considering high-
frequency vibrations. 

In addition to impact, dynamic effects may also need to be considered when unstable 
vibration of the wheel (e.g., during curve negotiation) is present. In such a situation, increased 
wear, RCF and corrugation are expected (Chen et al., 2010), and a squeal noise may occur 
(Thompson, 2009). The occurrence of unstable wheel vibration can be significantly influenced 
by the transition from single-point to two-point contact during wheel curving through curved 
tracks.  

The explicit FEM has been applied to the analysis of wear and RCF in wheel curving with 
two-point contact (Vo et al., 2015). The effects of the angle of attack (AoA) were considered, 
and the contact positions with certain AoAs and wheel/rail profiles could be determined. 
Another application of the explicit FEM to two-point contact was presented in (Chongyi et al., 
2010) to simulate the wear process on a laboratory twin-disc rig; good agreement was 
achieved by comparing the simulation results with the experimental results. However, in both 
cases, no dynamic effects were considered in the simulations, as the wheel motion was 
considered to be in the steady state and no unstable vibration occurred. 

The chapter studies the transition from single-point to two-point rolling contact by 
employing the explicit FEM. The transition is a non-steady-state process and occurs in a short 
period of time. The appearance of the second contact point may cause sudden changes in the 
normal and tangential forces at the two contact patches, exciting waves and friction-induced 
unstable vibrations. First, an explicit FE model is presented to reproduce such a transient 
dynamic process numerically. Then, the contact solutions are carefully examined in terms of 
the evolution of the contact position, the stress magnitude and direction, the adhesion-slip 
distribution, and the wheel-rail relative velocities in the two contact patches. The analyses 
show that waves are indeed excited in the contact patches when two-point contact occurs. The 
ability to analyse the generation and propagation of the waves in rolling contact will enable a 
better understanding of dynamic rolling and its resulting wear (including fretting (Wei et al., 
2016)) and RCF and may provide a basis for the study of the ‘elusive’ short-pitch corrugation 
and ‘erratic’ squeal noise, both of which are consequences of dynamic frictional contact. 

The 3D explicit FE wheel-rail dynamic interaction model presented in Chapter 5 (see Fig. 
5.2 (a)) was developed in this chapter to simulate non-steady-state transition from single-point 
to two-point contact by applying different boundary conditions to the wheel in the manner 
shown in Fig. 6.1 (a). The lateral displacement was constrained at the inner side of the wheel 
half-axle, and the outer end of the axle was free. In the transient dynamic simulation, the 
wheel rolled from its initial position to the solution zone with an initial speed of 80 km/h along 
the X direction, forming an AoA with respect to the rail longitudinal direction. It was driven 
by a torque applied on the axle, thus generating a longitudinal creep force between the wheel 



and rail, which satisfies the requirement that the traction coefficient be below the friction 
coefficient. The friction coefficient was set to 0.6 to represent dry friction. 

(a) Boundary condition                                    (b) Wheel-rail profile/interaction 
Figure. 6.1: Wheel-rail interaction model 

The wheel-rail contact was defined with real geometry, including the wheel flange and rail 
gauge corner, as shown in Fig. 6.1 (b), enabling the creepage and spin motion caused by the 
flange rubbing to be fully considered. The wheel rolled with single-point contact between the 
wheel tread and rail crown before entering the solution zone. The damping in the system 
dissipated the initial kinetic and potential energy originating from any initial in-equilibrium of 
the system such that the system reached a quasi-steady state upon arriving at the solution zone. 
Starting from this state, the wheel-rail rolling entered into the transition from single-point to 
two-point contact. This transient evolution was captured and analysed in the solution zone.  

The integration was performed in the time domain with an explicit central difference 
scheme (see Section 2.2.1). A small time step (86 ns) was employed for the model to meet the 
Courant stability condition (Courant et al., 1967). This, together with the detailed modelling of 
the structure and continuum of the wheel/track system, guaranteed that high-frequency 
dynamic effects up to 10 kHz were reproduced. It is commonly believed that the dynamic 
effects during wheel curving are mainly generated by the vibration of the wheel (Thompson, 
2009). The dynamic behaviour of the FE wheel model has been validated in Section 5.3.3.1. 

To study the dynamic transition from single-point to two-point contact, the contact 
positions between the wheel and rail must be identified first. Then, the time histories of the 
normal and tangential contact forces of the two contact points were calculated to present a 
load transmission during the contact transition. The emphasis of the contact solution was on 
the evolution of the distributions of the pressure, surface shear stress, adhesion-slip region and 
wheel-rail relative velocities in the contact patch. The solutions of 9 continuous time steps, 5 
before and 4 during the occurrence of the two-point contact, were included in the analyses. 
The main purpose was to gain an insight into the dynamic effects during the wheel/rail contact 
transition. 



Three different AoAs – 15, 20 and 25 mrad – were adopted in the simulations to 
emphasise the dynamic effects brought about by the unstable vibrating wheel. The simulated 
wheel-rail contact positions in the solution zone with AoA=20 mrad are presented in Fig. 6.2 
(a). The yellow area represents the rail surface in the solution zone. The origin of the 
coordinate system is at the centre of the rail bottom surface at the initial position of the wheel-
rail contact. Hereafter, the coordinate system already includes the rail inclination in the track.  

(a) Contact patch ‘footprints’ on the rail  
(Blue for single-point contact and red for two-point contact) 

(b) Coordinates of nodes in/around Patch 1              (c) Coordinates of nodes in/around Patch 2 
Figure. 6.2: Contact patches in the solution zone 

By applying explicit central difference time integration and a surface-to-surface contact-
searching scheme based on a master-slave algorithm (see Section 2.6), the nodal forces in the 
solution zone in each time step can be calculated. The positions, shapes and areas of the 
contact patches were determined with the normal nodal force: a surface node is in contact if 
the normal nodal force is non-zero (Zhao & Li, 2011). Initially, the wheel-rail contact 
occurred only between the rail top and wheel tread. A trail of blue patches represents the 
‘footprints’ of the single-point contact in a series of time steps. Due to the presence of an AoA, 
the wheel flange moved towards the gauge corner as the time step goes on and the second 
contact patch starts to appear. The ‘footprints’ of the contact patches in the case of two-point 



contact are shown as two trails of red patches on the rail top and gauge corner. The 
coordinates of the wheel/rail nodes in and around the two oval-shaped contact patches 
(labelled as ‘Patch 1’ and ‘Patch 2’ in Fig. 6.2 (a)) from the same time step are plotted in Fig. 
6.2 (b) and (c). The contact angle within the range of ‘Patch 2’ was between approximately 65° 
and 75°. The local lateral and longitudinal directions of Patches 1 and 2 on the rail surface are 
denoted by vectors x1 and y1 and vectors x2 and y2, respectively, as shown in Fig. 6.2 (a). 

The time histories of the normal load and the lateral and longitudinal creep forces at the 
two contact patches are plotted in Fig. 6.3 with different AoAs. With the same initial wheel-
rail clearance and train speed, a larger AoA leaded to a larger lateral speed and consequently 
an earlier occurrence of the two-point contact. This can be identified according to the positions 
of the sudden jumps and drops of the curves in Fig. 6.3. The earliest two-point contact 
occurred at 0.29 m, when AoA=25 mrad. A non-steady-state feature (inconstant statistical 
properties along the time history) of the contact forces can be observed during the contact 
transition. 

(a) Normal load of Patch 1       (b) Lateral force of Patch 1     (c) Longitudinal force of Patch 1 

(d) Normal load of Patch 2       (e) Lateral force of Patch 2      (f) Longitudinal force of Patch 2 
Figure. 6.3: Time history of the wheel-rail contact force 

The oscillations of the curves before 0.29 m in Fig. 6.3 (a), (b) and (c) are due to vibrations 
excited by the initial kinetic and potential energy in the unbalanced system. Because the 
oscillations are damped out to less than 10% of the static values at 0.29 m, they have only a 
slight influence on the contact solutions presented in the following sections. The wheel-rail 
rolling always physically excites vibrations of the structure and waves in the continua. Thus, 
the real-world quantities fluctuate around their equilibrium values. When flange contact arose, 
the normal load and longitudinal creep force of Patch 1 in Fig. 6.3 (a) and (c) decreased, 



whereas those of Patch 2 in Fig. 6.3 (d) and (f) increased, indicating that they were transmitted 
from Patch 1 to Patch 2. The time histories of the lateral creep forces follow a different trend; 
specifically, they jump at both contact patches, as shown in Figs. 6.3 (b) and (e). 

It can be expected that under the prescribed boundary condition shown in Fig. 6.1 (a), the 
wheel will tend to climb up on the rail when flange contact occurs. In this process, the contact 
forces of Patch 2 in all 3 directions will continue to increase, whereas those of Patch 1 will 
gradually decrease to zero. Then, the wheel tread will lose contact with the rail top, and all 
contact loads will be supported by Patch 2. This entire process was reproduced by the 
simulation with AoA=25 mrad. The simulated rolling distance in all 3 cases is sufficient to 
cover the transition from single-point to two-point contact. 

In reality, the non-steady-state transition may last for a given period of time and then 
become (quasi-) steady at a certain moment when the transient effects decay. This 
phenomenon leads to research questions that should be addressed in future studies. For 
example, future studies should consider investigating the boundary conditions under which 
and at which moment a (quasi-) steady state can be achieved and to what extent the frictional 
rolling contact may affect this process. 

As shown in Fig. 6.3, the main trends of the simulated contact forces with different AoAs 
are similar. This is also true for the contact solutions analysed in the following sections. 
Therefore, only the results with AoA=20 mrad will be presented unless additional information 
can be provided by other simulations. 

Stress analyses are crucial to understanding and predicting wheel/rail damage, such as 
wear and RCF (Zerbst et al., 2009). The evolution of the contact pressure, together with the 
direction and magnitude of the surface shear stress, are plotted in the contour/vector diagrams 
in Figs. 6.4 and 6.5 for Patches 1 and 2, respectively. The pressure magnitude corresponds to 
the depth of colour within the contact patch, as indicated by the colour bar. It shows that the 
size of Patch 1 shrinks and the size of Patch 2 expands once it has arisen at (f). Fig. 6.5 (i) 
only shows a part of Patch 2; the other part is out of the solution zone, i.e., beyond 0.45 m. 
Due to the existence of the AoA, the symmetrical axes of Patch 2 (if they exist) are not 
parallel to the lateral and longitudinal axes of the coordinate system, as in the case of Patch 1; 
in addition, the centres of Patches 1 and 2 from the same time step are not aligned along the 
lateral direction, as indicated in (Vo et al., 2015). The maximum pressures of both patches are 
approximately in the middle of the respective patches.  

(a)                                      (b)                                       (c) 



(d)                                      (e)                                       (f) 

(g)                                      (h)                                       (i) 
Figure. 6.4: Evolution of pressure and surface shear stress distributions in Patch 1 

(Blue colour for shear stress indicates single-point contact; red indicates two-point contact) 

Figure. 6.5: Evolution of pressure and surface shear stress distributions in Patch 2 
(Red colour for shear stress indicates two-point contact) 

The surface shear stresses in single-point and two-point contact are indicated by blue and 
red arrows, respectively. The arrows point in the direction of the shear stress, and their lengths 
are proportional to the magnitudes. To characterise the direction of the surface shear stress, the 

(f) 

(g) 

(h) 

(i) 



orientation angle between the stress vector and the negative direction of the longitudinal axis 
is denoted as 1 and 2 in Patches 1 and 2, respectively, as labelled in Figs. 6.4 (e) and 6.5 (f). 
1 is typically small under a single-point contact (Fig. 6.4 (a)-(e)), but it increases rapidly to 

approximately 90° under two-point contact (Fig. 6.5 (f) - (i)) and as the participation of the 
second contact patch increases (Fig. 6.5 (f) - (i)). 1 decreases from the leading part to nearly 
zero in the trailing part, when single-point contact occurs; this gradual change in 1 is likely 
caused by the geometry spin near the flange root in combination with the AoA with which the 
wheel negotiates a curve. Fig. 6.5 illustrates that 2 changes only slightly from the first 
occurrence of Patch 2 onwards. 

The change in the directions of the surface shear stress when two-point contact occurs 
results from the changes in the magnitude of the stresses in the lateral and longitudinal 
directions. The specific changes in the magnitude of the surface shear stress in the lateral and 
longitudinal directions, as well as 1 and 2, are presented in Fig. 6.6 for 3 different AoAs.  

(a) AoA=15 mrad                    (b) AoA=20 mrad                      (c) AoA=25 mrad 
Figure. 6.6: Changes in the surface shear stresses and orientation angles with different AoAs 
 (upper graphs: lateral stress; middle graphs: longitudinal stress; bottom graphs: orientation 

angle) 
The values adopted in Fig. 6.6 are the average of all elements within the contact patch. The 

abscissa of the figures is the serial number of the contact patch in the evolution (from a series 
of time steps), with an interval of 6.7 mm. For all three AoA values, the lateral shear stress 
(upper row of Fig. 6.6) increases dramatically when Patch 2 arises, and the lateral shear stress 
of Patch 2 is larger than that of Patch 1. As shown by Figs. 6.3 (c) and (d), the lateral creep 
forces at the two contact patches are similar in the early period of the transition (within 0.1 m 
after the jumps of the curves), whereas the lateral shear stress of Patch 2 is larger because of 
its smaller size. In the middle row of Fig. 6.6, the longitudinal shear stress of Patch 1 declines 
to a certain extent because of the participation of Patch 2. The bottom row shows that the 
absolute value of 1 stays in the range of less than 20° in the stage of single-point contact, 
jumping to approximately 70° in 2~3 output time steps once Patch 2 appears. 2 is always 
between 60° and 70°. This narrow range of high values may be related to the initiation and 



growth of head checks, whose orientation is also typically within a narrow range of angles, 
and their developments are approximately perpendicular to the direction of the surface shear 
stress (or tangential force) (He et al., 2015). In addition, the calculated large pressure (up to 
1,500 MPa) and surface shear stress (up to 450 MPa) with a large orientation angle 2 at Patch 
2 may lead to severe wear (Sundh & Olofsson, 2008) and downwards plastic flow at the rail 
gauge corner (Li, 2002). A typical rail sample with severe wear and downwards plastic flow at 
the gauge corner can be found in Fig. 6.7.  

A comparison of the shear stresses under different AoAs in Fig. 6.6 illustrates that with 
increases in the AoA, the lateral shear stress of Patch 2 increases but the longitudinal shear 
stress decreases, causing an increase in 2. For Patch 1, the longitudinal shear stress is slightly 
raised by applying a larger AoA, as shown in the middle row of Fig. 6.6, because a smaller 
longitudinal load is transmitted to Patch 2 (compare Figs. 6.3 (e) and (f)). This comparison 
must be made at the incipient moment of the two-point contact, that is, the curves in Figs. 6.3 
(e) and (f) should be shifted such that the jumps of the curves between 0.2 and 0.6 m coincide 
to render the difference at the jump visible. 

Figure. 6.7: severe wear and downwards plastic flow at the rail gauge corner 

The division of the adhesion and slip regions in the contact patch is an important feature of 
the frictional rolling contact. It can be derived by comparing the value Fn × f - Ft with a 
tolerance , where Fn, Ft and f are the pressure, surface shear stress, and friction coefficient, 
respectively, and  is set as a percentage of the largest tangential nodal force in the contact 
patch (see Section 3.4.3). The pressure and surface shear stresses plotted in Figs. 6.8 and 6.9, 
respectively, under single-point and two-point contact conditions were extracted from the 
stress distribution graphs in Figs. 6.4 and 6.5 along the longitudinal centre lines of the contact 
patches. 

Because the stress and adhesion-slip area distributions in single-point contact have been 
well studied in the literature (Zhao & Li, 2011; Deng et al., 2015), only the results of one 
time-step (extracted from Fig. 6.4 (b)) are presented in Fig. 6.8. These results correspond well 
with the results in (Zhao & Li, 2011; Deng et al., 2015).  



Figure. 6.8: Stress distribution along the longitudinal axis under single-point contact 

(a) 

(b) 

(c) 

(d) 
Figure. 6.9: Stress distribution along the longitudinal axis under two-point contact condition 

(left-hand side graphs: Patch 1; right-hand side graphs: Patch 2) 



The adhesion-slip area distributions in Figs. 6.9 (a), (b), (c) and (d) for two-point contact 
correspond to the stress distributions in Figs. 6.4 (f), (g), (h) and (i), respectively. The left-
hand side graph of Fig. 6.9 (a) is similar to that of single-point contact in Fig. 6.8. With the 
progression of the transition, the adhesion area in Patch 1, indicated by the gaps between the 
two curves, is reduced in Fig. 6.9 (b) and has completely vanished in Figs. 6.9 (c) and (d). 

The right-hand side graphs of Fig. 6.9 (a) show that when the second patch has just come 
into being, its size is small and its pressure and surface shear stress are low compared to those 
in Figs. 6.9 (b), (c) and (d). For the same reason as in Fig. 6.5 (i), only a part of Patch 2 is 
included in Fig. 6.9 (d). The graphs also show that Patch 2 is fully in slip so far, namely, Fn × f
= Ft, according to the Coulomb’s law employed in the model.  

Figs. 6.9 (c) and (d) illustrate that due to the two-point contact, the entire contact area, 
including Patches 1 and 2, evolved into complete slip. This may further lead to unstable stick-
slip rolling, an important cause of ‘rutting’ (a specific type of short-pitch corrugation in curves) 
(Grassie, 2009) and curve squeal noise (Thompson, 2009). 

The analyses of the wheel-rail relative velocities in the contact patch were distinguished in 
the normal and tangential directions. The evolution of the distributions of the wheel-rail 
relative velocities in both directions are combined in the contour/vector diagrams in Figs. 6.10 
and 6.11 for Patches 1 and 2, respectively. 
6.3.5.1 Micro-slip 

The tangential wheel-rail relative velocity, the so-called micro-slip, refers to the relative 
velocity between two contact particles. The adhesion-slip area distribution can also be derived 
from the micro-slip analysis. The contact and adhesion regions of Patch 1 are indicated by 
black ovals in Fig. 6.10. The adhesion-slip distributions shown here are in line with the results 
obtained by the stress analyses in Figs. 6.8 and 6.9. 

Similar to the stress distribution shown in Figs. 6.4 and 6.5, the micro-slips under single-
point and two-point contact conditions are also indicated by blue and red arrows, respectively. 
The arrows point in the directions of the micro-slip, and their lengths are proportional to the 
magnitudes. A comparison of the micro-slip graphs with the surface shear stress graphs 
illustrates that the general direction of the micro-slip is opposite to and changes together with 
the direction of the surface shear stress: as the transition proceeds, the direction of the micro-
slip in Patch 1 changes from in the longitudinal direction ( 1 0°) to in the lateral direction 
( 1 90°), whereas the change in direction for the Patch 2 micro-slip is less pronounced. 

(a)                                      (b)                                        (c) 



(d)                                      (e)                                      (f) 

(g)                                      (h)                                         (i) 
Figure. 6.10: Evolution of the distribution of the wheel-rail relative velocity in Patch 1 

Figure. 6.11: Evolution of the distribution of the wheel-rail relative velocity in Patch 2 

(f) 

(g) 

(h) 

(i) 



6.3.5.2 Normal relative velocity 
The magnitude of the normal relatively velocity is indicated by the colour depth within the 

contact patches in Figs. 6.10 and 6.11 for single-point and two-point contact, respectively. The 
colour outside the contact patch corresponds to a zero relative velocity, whereas a positive 
(lighter colour) or negative (darker colour) relative velocity corresponds to the condition that 
the wheel and rail surface elements move towards or away from each other, respectively. The 
colours at the leading and trailing edges of the contact patch are lighter and darker, 
respectively. 
6.3.5.3 Local intensification and relaxation of compression 

Because the surface elements of the wheel and rail were in contact, the further movement 
towards or away from each other caused the transient intensification or relaxation of the 
contact, respectively. Therefore, the lighter or darker areas within the contact patches in Figs. 
6.10 and 6.11 reflect the transient local compression intensification or relaxation, respectively. 
6.3.5.4 Contact perturbation and waves 

Figs. 6.10 and 6.11 illustrate the influence of the transient dynamics on the wheel-rail 
contact. Such local dynamics, coming from the wheel-rail vibrations and wave propagation, is 
less visible in the stress analyses of Figs. 6.4 and 6.5 because the vibrating displacements in 
the contact patch are not sufficiently large to cause a clear stress perturbation, although they 
do affect the stress distribution, as reported in (Zhao & Li, 2011). As the first-order derivative 
of the displacement, the vibrating velocity is more sensitive to the dynamic perturbation. 

Comparing Figs. 6.10 (f) and (g) illustrates that under the two-point contact condition, a 
perturbation of micro-slip, i.e., the chaotic direction of the micro-slip, is likely to be initiated 
next to the juncture of the adhesion and slip regions, where the maximum surface shear stress 
is located, as shown in the yellow ovals in Fig. 6.10 (g). Moreover, this tangential perturbation 
arises together with the transient local compression intensification and relaxation at the same 
location of contact patch, indicated by the lighter and darker spots, respectively, in the yellow 
ovals.  

Figs. 6.10 (a) to (e) for the single-point contact illustrate that a perturbation of an (irregular) 
micro-slip distribution appears to start at the leading bottom part of the contact patch and 
propagate upwards and towards the trailing direction. The expansion of this perturbation, 
together with the increasing geometrical spin when approaching flange contact, causes the 
adhesion region to move upwards in the contact patch, similar to the micro-slip distribution 
simulated with the large lateral creepage shown in Fig. 5.6. 

Compared to the single-point contact condition, a more obvious local compression 
intensification and relaxation is observed in the two-point contact condition. Embodied in the 
alternation of the compression intensification and relaxation, an intensification-relaxation 
wave can be observed within the contact patch. The wave appears to propagate radially, as 
shown in Fig. 6.10 (h), or parallel to the micro-slip vectors, as shown in Fig. 6.12, calculated 
for the case of AoA=25 mrad. According to the vibration frequencies of the surface nodes and 
the wavelengths observed in Fig. 6.10 (h) and Fig. 6.12, the wave propagating speed can be 
estimated as about 3 km/s, close to Rayleigh wave speed in steel. Moreover, the phase 
difference between normal and tangential surface nodal vibrations is approximate /2, 
corresponding well with the feature of Rayleigh wave. The properties of the observed waves 
will be discussed in detail in Chapter 7. 



Figure. 6.12: Distribution of wheel-rail relative velocity in Patch 1 under two-point contact 
condition with AoA=25 mrad 

As shown in Figs. 6.11 (d), (g), (h) and (i), as well as in Fig. 6.13, the perturbation of the 
micro-slip always comes together with the transient local compression intensification and 
relaxation at the same location. Moreover, the micro-slips in the relaxation areas are normally 
larger than those in the adjacent intensification areas. This inhomogeneous distribution of 
reciprocating motion within the wheel-rail contact could cause fretting. 

This chapter simulated non-steady-state rolling contact with a transition from single-point 
to two-point contact by an explicit FEM. The structural dynamics of the wheel-track system 
was coupled with the continuum dynamics of frictional rolling. The stress and adhesion-slip 
distribution under the single-point contact condition and the positions and shapes of the 
contact patches under the two-point contact condition corresponded well with the results in the 
literature. The major findings of the chapter are as follows: 
• Transient dynamic effects were captured by the relative velocity in the wheel-rail contact. 
• Wave propagation was excited in the wheel and rail continua, especially by the transition 

from single-point to two-point contact. The vibrations and waves may cause local 
compression intensification and relaxation of the contact, as well as local perturbation of 
the micro-slip. 

• The compression intensification and relaxation and the micro-slip perturbation always 
occur simultaneously and at the same locations, and they are likely initiated next to the 
juncture of the adhesion and slip regions in the contact patch, where the maximum 
surface shear stress is located. 

• The intensification-relaxation wave appears to propagate radially or parallel to the micro-
slip vectors. The micro-slip in the relaxation area is larger than that in the adjacent 
intensification area. This phenomenon may cause fretting. 

• Compared to those in single-point contact, stronger waves, the resulting micro-slip 
perturbation, and the transient local compression intensification and relaxation can be 



observed upon the occurrence of the second contact point. Moreover, the contact 
transition can cause the full slip of the entire wheel-rail contact. These factors may 
contribute to contact instability and ultimately squeal and corrugation. 

• The intensification and relaxation may reflect certain important wheel-rail dynamic 
characteristics, whereas the irregular micro-slip mirrors the frictional contact 
perturbation. Thus, the calculated wheel-rail relative velocities appear to connect the 
wheel-rail dynamic properties to the frictional rolling contact, plausibly providing a more 
physical and sensitive method than those relying on the steady-state contact force 
calculation. 
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Chapter 2 has illustrated theoretically that the explicit FE wheel-rail dynamic interaction 
model is computationally attractive for analysing high-frequency dynamic problem especially 
in the case of wave propagation. The explicit FE contact solution may include all the relevant 
vibration modes of structures and continua, and the associated wave propagations. This 
chapter investigates the generation mechanisms (Section 7.1) and types (Section 7.2) of the 
dynamic-interaction-induced waves produced by the numerical simulations presented in 
Chapters 4~6, and proposes a potential application of the wave study for rail crack detection 
(Section 7.3). 

The waves observed in the wheel-rail dynamic contact solutions presented in Chapters 4~6 
may be categorised according to the generation mechanism as impact-induced wave (Section 
7.1.1), large-creepage-induced wave (Section 7.1.2) and perturbation-induced wave (Section 
7.1.3). The generation mechanisms of the former two are evident: wheel-rail impacts and large 
creepage cause significant dynamic effects, which result in large oscillations of nodes on 
wheel and rail surfaces in the vicinity of the contact patch. The large nodal oscillations then 
propagate radially and form regular wave patterns. The generation mechanism of the 
perturbation-induced wave is, however, less apparent because the perturbation may arise in 
seemingly ‘steady-state’ rolling. 

The contour graphs in Fig. 7.1 present two examples of the impact-induced wave, i.e., the 
wave generated by wheel-rail impacts. Because impact excitations are normal to the wheel-rail 
contact surfaces, the normal nodal vibrating velocities play more important roles than the 
tangential ones in the formation of the impact-induced wave (see Fig. 4.27). The magnitude of 
the normal nodal velocity on the rail surfaces is indicated by the colour depth of the contour 
graphs; the leading and trailing parts of the contact patch may thus be identified by the blue 
and red colour, respectively. 

Fig. 7.1 (a) shows an impact-induced wave produced by the wheel-IRJ impact simulation 
with measured contact geometry presented in Chapter 4. When the wheel rolled over the IRJ 
and hit the rail ends on the other side of the joint, an impact-induced wave occurred at the 
leading part of the contact patch and propagated forward along the wheel rolling direction. Fig. 
7.1 (b) shows another impact-induced wave produced by the contact transition model 
presented in Chapter 6. The impact-induced wave arisen at contact patch 2 at the moment that 
the wheel flange came into contact with, or hit, the rail gauge corner. The corresponding 
animations of Figs. 7.1 (a) and (b) can be found at ("Animation for Fig. 4.27, 
https://youtu.be/fAg99j6kquI ;  [accessed 16.11.22]  ") and ("Animation for Fig. 7.1 (b), 
https://youtu.be/KKSV7A1tCD0,"), respectively, displaying the generation and propagation of 
the impact-induced wave. 



(a) Produced by the wheel-IRJ impact simulation 

(b) Produced by the contact transition simulation 
Figure. 7.1: Impact-induced wave patterns 

When large creepage occurs between wheel and rail, wave patterns embodied in the 
alternation of the compression intensification and relaxation (see Fig. 5.6 (f) and Fig. 6.12) 
may be generated. Two examples of the large-creepage-induced wave are presented in the 
contour/vector diagrams in Fig. 7.2. The large-creepage-induced wave shown in Fig. 7.2 (a) 
was simulated with the model with large lateral motion of wheel (simulation case 4 presented 
in Chapter 5) and the one shown in Fig. 7.2 (b) was simulated by the model of contact 
transition (presented in Chapter 6), in which large creepage occurred between the rail top 
surface and wheel tread when the wheel negotiated with the rail via flange contact. The 
corresponding animations of Figs. 7.2 (a) and (b) displaying the generation and propagation of 
the large-creepage-induced wave can be found at ("Animation for Fig. 7.2(a), 
https://youtu.be/yRD9EDasMmU,") and ("Animation for Fig. 7.2(b), 
https://youtu.be/tQwWTc-GfHw,"), respectively. 

As Figs. 5.6 and 6.12, the contour/vector diagrams in Fig. 7.2 indicate the magnitudes of 
the normal relatively velocities by the colour depth within the contact patches and indicate the 
micro-slips by arrows. The blue arrows point in the directions of the micro-slip, and their 
lengths are proportional to the magnitudes. Both the normal and tangential nodal velocities 
contribute to the formation of the large-creepage-induced wave (elaborated later in Section 
7.2). The large-creepage-induced wave appears to propagate parallel to the micro-slip vectors 
and the micro-slip in the relaxation area is larger than that in the adjacent intensification area. 



             (a) Simulated by the model with               (b) Simulated by the model of 
              wheel lateral motion (Chapter 5)              contact transition (Chapter 6) 

Figure. 7.2: Large-creepage-induced wave patterns 

The perturbation-induced wave has been frequently observed in the three numerical 
explicit FE examples: perturbation of nodal velocity suddenly occurred within contact patch 
and spread radially, consequently developing into a wave pattern. As indicated by a typical 
example presented in Section 4.6.1, the main difference of the perturbation-induced wave with 
the former two wave types is that the perturbation-induced wave, or the perturbation to be 
precise, may be initiated in a seemingly ‘steady-state’ rolling without involving significant 
dynamic effects caused by non-steady-state contact conditions, e.g., impact contact, contact 
with unsteady creepage and contact transition. 

In addition, the initiation of the perturbation has been found either close to the leading 
edge of the contact patch (see Fig. 4.26) or at the juncture of the adhesion-slip regions (see Fig. 
6.10 (g)). Two animations of the generation and propagation of the perturbation-induced wave 
are presented at ("Animation for Fig. 7.3 (a), https://youtu.be/BqFapqG8D-Q,") and 
("Animation for Fig. 7.3(b), https://youtu.be/CE1rB0N-IVk,"). They were simulated with the 
wheel-rail interaction model without significant dynamic effects (simulation case 1 presented 
in Chapter 5). The perturbation initiates close to the leading edge of the contact patch in 
("Animation for Fig. 7.3 (a), https://youtu.be/BqFapqG8D-Q,") and at the juncture of the 
adhesion-slip regions in ("Animation for Fig. 7.3(b), https://youtu.be/CE1rB0N-IVk,").  

Each animation consists of two windows: the upper window displays the simulated 
evolution of wheel-rail relative velocities within the contact patch and the lower window 
displays the simulated evolution of the normal and tangential velocities of the rail surface 
nodes within the whole solution zone. The evolution of the rail surface nodal velocities may 
indicate the wave propagation more obviously, while the distribution of the wheel-rail relative 
velocities may clearly indicate the range of contact patch and adhesion-slip regions, and thus 
locate the initiation position of the perturbation. Fig. 7.3 shows the generation processes of the 
two perturbation-induced waves extracted from the upper windows of animations ("Animation 
for Fig. 7.3 (a), https://youtu.be/BqFapqG8D-Q,") and ("Animation for Fig. 7.3 (b), 
https://youtu.be/CE1rB0N-IVk,"). The range of the contact patch is indicated by dashed black 
ovals and the ‘initial’ adhesion and slip regions are divided by dashed curves. The interval 
between each two consecutive graphs in Fig. 7.3 as well as the time step of the animations in 



("Animation for Fig. 7.3 (a), https://youtu.be/BqFapqG8D-Q,") and ("Animation for Fig. 
7.3(b), https://youtu.be/CE1rB0N-IVk,") is 1 μs. The perturbation occurred at instant t2 close 
to the leading edge of the contact patch in Fig. 7.3 (a) and at the juncture of the adhesion-slip 
regions in Fig. 7.3 (b), and then spread gradually at instants t3~t6. 

(a) Perturbation initiates at the leading edge of contact patch 

(b) Perturbation initiates at the juncture of adhesion-slip regions 
Figure. 7.3: Generation processes of two perturbation-induced waves 

In Fig. 7.3, the adhesion-slip regions determined by the wheel-rail micro-slip varied 
significantly after the perturbation occurred, whereas that determined by comparing the 



calculated traction bound and shear stress (not shown here) were largely in line with the 
‘initial’ adhesion-slip regions divided by the dashed curves. The discrepancy is attributed to 
the different sensitivities of the approaches to determining slip region mentioned in Section 
5.3.2.3: the micro-slip calculated with the wheel-rail relative velocity may reflect dynamic 
effects more sensitively than the contact stress calculated with the relative displacement. 

In addition, note that the shear stress is close to the traction bound at the initiation 
locations of the perturbation-induced waves, i.e. near the leading edge and near the juncture of 
the adhesion-slip regions; therefore, the contact nodes originally in adhesion at these locations 
are more likely to slip due to an increase of shear stress or decrease of traction bound (or 
decrease of pressure since constant friction coefficient is used) that possibly occurs in the 
wheel-rail dynamic interaction. Fig. 5.5 has indicated that the surface shear stress and the 
traction bound varies periodically but are not exactly in phase, and in each period a local peak 
of shear stress starts at the leading edge of the contact patch and exits the adhesion region at 
the juncture of the adhesion-slip region. This local peak of shear stress seems thus to cause a 
sudden slip in the original adhesion area, acting as a perturbation within the wheel-rail contact 
patch and then develops into a wave. Because the variation of stress distribution is caused by 
the dynamic effects of wheel-rail interaction, the perturbation-induced waves seem also to be 
generated intrinsically by the dynamic effects. The dynamic effects that trigger the 
perturbation-induced waves are less significant than those initiating the impact-induced wave 
or large-creepage-induced wave, though.  

The initiation location of the perturbation-induced wave was found to be influenced by the 
traction condition of wheel model. Fig. 7.4 (a) and (b) extracted from animations ("Animation 
for Fig. 7.4 (a), https://youtu.be/nC4szzxeJQw,") and ("Animation for Fig. 7.4 (b), 
https://youtu.be/1vb_xsv5jvI,") show the perturbation-induced waves simulated by a wheel 
braking model and a traction model, respectively. The wheel braking condition was simulated 
by applying an opposite-direction torque to the wheel axle, the directions of the micro-slip 
vectors within the slip regions in Fig. 7.4 (a) are thus opposite to the wheel rolling direction. 
Fig. 7.4 and the corresponding animations indicate that the perturbation-induced wave 
occurred generally at the leading edge of the contact patch in the wheel braking condition, 
whereas it occurred more often at the juncture of the adhesion-slip regions in the wheel 
traction condition. The correspondence between the traction/braking condition and the 
initiation of the perturbation-induced wave suggests that the simulated waves should 
physically exist but not occur randomly as numerical errors. Experimental observation and 
validation should be conducted in the future to clarify this correspondence. 

The perturbation occurred periodically in the animations ("Animation for Fig. 7.4 (a), 
https://youtu.be/nC4szzxeJQw,") and ("Animation for Fig. 7.4 (b), 
https://youtu.be/1vb_xsv5jvI,") with periods of approximately 0.6 ms (20 time steps), 
corresponding to the period of the stress oscillation shown in Fig. 5.5. This confirms that the 
perturbation may be generated when the local peak of surface shear stress passes the boundary 
of adhesion region also periodically. Moreover, Fig. 7.3 shows that the adhesion region 
decreased gradually with the spread of the perturbation. It can be expected that the adhesion 
region may vanish under certain dynamic contact condition (not simulated in this study), and 
the periodical friction saturation, the so-called stick-slip rolling contact, may thus occur with 
the periodical stress oscillation. This may further result in the wheel-rail friction-induced 
instability. Therefore, the frictional perturbation discovered in this study may be closely 
related to the dynamic friction-induced instability. Because the initiation of perturbation may 
be influenced by wheel traction condition, based on a better understanding of this wave 



phenomenon, traction and braking control strategies may be optimised to mitigate squeal and 
corrugation in the future. 

(a) Wheel braking condition: perturbation initiated at the leading edge 

(b) Wheel traction condition: perturbation initiated at the juncture of adhesion-slip regions 
Figure. 7.4: Perturbation initiated simulated by wheel braking and traction conditions 

The wave reflection due to the joint (see Fig. 4.25 (b)) and wave interference due to two 
contact points (see ("Animation for Fig. 7.2(b), https://youtu.be/tQwWTc-GfHw,")) cause 
superposition of the waves simulated by the wheel-IRJ model and the contact transition model; 
the study of surface nodal motion forming the waves thus became complex, posing challenges 
in identifying the simulated wave type. This study, therefore, has so far been limited to the 
investigation of the wave type simulated by the model with wheel lateral motion, i.e., the 
large-creepage-induced wave.  

A typical large-creepage-induced wave pattern simulated by the model with large lateral 
motion of wheel (simulation case 4 presented in Chapter 5) is presented in the contour/vector 
diagrams of Fig. 7.5 (see also ("Animation for Fig. 7.5, https://youtu.be/jTbWh-FGxPc,") for 
the corresponding animation with a time step of 0.3 μs). The wave phenomenon can be 
observed from the distribution of wheel-rail relative velocities within the contact patch shown 
in Fig. 7.5 (a) as well as the distribution of the rail surface nodal velocities within the whole 
solution zone shown in Fig. 7.5 (b). The contact patches are indicated by dashed black ovals in 
Fig. 7.5. As Figs. 5.6 and 6.12, the contour/vector diagrams indicate the magnitudes and 
directions of the normal (relatively) velocities by the colour depth, and those of the tangential 
(relatively) velocities by arrows. The wave in Fig. 7.5 (a) is embodied in the alternation of the 
compression intensification and relaxation within the contact patch, whereas the wave in Fig. 



7.5 (b) is indicated by the vibrations of rail surface nodes. The wavelengths can be estimated 
to be approximately 6 mm. 

(a) Distribution of wheel-rail relative velocities within the contact patch  

(b) Rail surface nodal velocities within the whole solution zone 
Figure. 7.5: Large-creepage-induced wave simulated by the model of wheel lateral motion 

Assuming that the time step used in the animation ("Animation for Fig. 7.5, 
https://youtu.be/jTbWh-FGxPc,") – 0.3 μs – is sufficiently small for capturing the main 
characteristics of the wave, e.g., wave speed and traveling direction, and thus for identifying 
the wave type (this assumption will be proven to be valid in Section 7.2.3), three pieces of 
evidence may preliminarily attribute the simulated large-creepage-induced wave to Rayleigh 
wave. First, the observed wave is formed by the simulated rail surface nodal velocities, which 
can thus be considered as a type of surface wave; second, both the normal and the tangential 
nodal motion contribute to the formation of the wave, and the direction of the tangential nodal 
motion is roughly parallel but opposite to the wave propagation direction; third, the wave 
speed estimated by dividing the wave travelling distance 1 mm within each time step by the 
time step size 0.3 μs approximates to the Rayleigh wave speed in the steel (about 3 km/s).  

Rayleigh wave is a commonly known type of surface waves. It is formed by the retrograde 
elliptical particle motion on the surface as shown in Fig. 7.6: the surface particles move in 
both the tangential (parallel but opposite to the direction of wave propagation) and transverse 
directions (normal to the surface), and the phase difference between the tangential motion and 
the transverse motion is /2. The travelling speed of Rayleigh wave in steel is approximately 3 
km/s. 



Figure. 7.6: Retrograde elliptical particle motion of Rayleigh wave 

The inference attributing the simulated large-creepage-induced wave to Rayleigh wave is 
based on the assumption that the time step is sufficiently small. If this is false, the estimated 
travelling speed and direction of the wave may be wrong. The simulated rail surface nodal 
motion is analysed in this subsection to confirm the inference of wave type. 

The normal and tangential velocities of three rail surface nodes N1~N3 located 
approximately along the lateral centre line of the contact patch, denoted by the blue stars in 
Fig. 7.5, were analysed. N1 and N2 are within the contact patch while N3 is outside the 
contact patch. The longitudinal coordinate of the selected nodes is 510 mm, while the lateral 
coordinates are 0 mm, -4 mm and -10 mm, respectively.  

Time histories of the simulated normal and tangential velocities of the three selected nodes 
during the period of 18.18 s~18.27 ms (the same with the period of animation ("Animation for 
Fig. 7.5, https://youtu.be/jTbWh-FGxPc,")) are plotted in Fig. 7.7 (a). The tangential nodal 
velocities have trend components because of the large lateral motion of the wheel. The PSDs 
(power spectrum density) of the time histories shown correspondingly in Fig. 7.7 (b) indicate 
that all the nodal velocities are narrow-banded signals and have a dominant frequency around 
0.495 MHz. The travelling speed of the simulated wave may thus be calculated by multiplying 
the wavelength  mm and the frequency  MHz as:  

The agreement of the wave speed calculated by Eqn. (7.1) and that estimated by animation 
("Animation for Fig. 7.5, https://youtu.be/jTbWh-FGxPc,") indicate that the time step of the 
animation is sufficiently small for capturing the main characteristics of the wave. The band-
pass filtered time histories around the dominant frequency (between frequencies 0.48 and 0.51 
MHz) are shown in Fig. 7.7 (c) and their close-up views are shown in Fig. 7.7 (d). Fig. 7.7 (e) 
indicates that the phases out of the tangential and normal signals of N1 and N2 inside the 
contact patch are approximately /2, corresponding well to that of particles of Rayleigh wave, 
whereas that of N3 outside the contact patch is about 0.65 , possibly influenced by the 
involvement of other types of wave or the deformation of rail surface around the contact patch. 
Fig. 7.7 (f) shows that the coherence of the tangential and normal signals of N1~N3 are over 
0.8 in the frequency range of interest. The Rayleigh-wave-like elliptical nodal motion of 
N1~N3 in displacement is plotted in Fig. 7.7 (g) (see also ("Animation for Fig. 7.7, 



https://youtu.be/XWyuY70mKI4,") for the animations of the corresponding nodal motion). 
The elliptical trails of each node in different rounds do not exactly overlap due to the dynamic 
effects of wheel-rail interaction. The analysis of Fig. 7.7 confirms that Rayleigh wave may be 
generated in wheel-rail dynamic interactions and can be reproduced by the proposed explicit 
FEM. 

(a) Time histories 

(b) PSDs 

(c) Band-pass filtered time histories 

(d) Close-ups of the filtered time histories 

(e) Phases out of the tangential and normal signals



(f) Coherence of the tangential and normal signals 

(g) Rayleigh-wave-like elliptical nodal motion 
Figure. 7.7: Simulated surface nodal motion (Left, middle and right graphs are for the rail 

surface nodes N1, N2 and N3, respectively ) 

Rayleigh waves have been widely used for discovering the mechanical and structural 
properties of the object being tested, e.g., crack detection. As the proposed explicit FEM can 
capture Rayleigh wave phenomenon, an explicit FE wheel-rail dynamic interaction model 
with a crack on the rail top is presented to investigate the wave generated by the crack, which 
may contribute to the early-stage detection of cracks in the rail surface. The model was 
developed from the wheel-rail interaction model with no lateral motion of wheel (simulation 
case 1 presented in Chapter 5) by adding a ‘seam’ in the rail top, as shown in Fig. 7.8 (a). Fig. 
7.8 (b) shows the size and accurate position of the modelled crack. A contact pair with a static 
COF 0.35 was defined between the crack surfaces.  

(a) Adding a ‘seam’ to the rail top             (b) The size and position of the modelled crack 
Figure. 7.8: wheel-rail interaction model with a crack on the rail top surface 



The contour/vector diagrams in Figs. 7.9 (a) and (b) show the distribution of the rail 
surface nodal velocities within the whole solution zone when the wheel was approaching and 
rolling over the crack in the simulation. The contact patch is indicated by the dashed black 
oval; the crack is denoted by the bold black line. The wave patterns observed in Fig. 7.9 were 
generated at the location of the crack and propagate radially. The wave generated when the 
wheel was rolling over the crack is more significant than the wave generated when the wheel 
was approaching the crack. See ("Animation for Fig. 7.9(a), https://youtu.be/lYq0A5twj7Q,") 
and ("Animation for Fig. 7.9(b), https://youtu.be/w64p_5XHjrg,") for the corresponding 
animations with a time step of 1 μs. The characteristics of the waves generated by cracks 
should be investigated and experimental validation is required in future studies to develop a 
wave-based rail crack detection method.  

(a) Wheel approaches the crack 

(b) Wheel rolls over the crack 
Figure. 7.9: Waves excited by the crack 

This chapter analysed the generation mechanisms of the waves produced by the explicit FE 
wheel-rail dynamic interaction models. According to the analysis, the waves were categorised 
as the impact-induced wave, the large-creepage-induced wave and the perturbation-induced 
wave. All the three types of wave are generated intrinsically by the dynamic effects of wheel-
rail dynamic interactions. The dynamic effects initiating the perturbation-induced wave are 
less significant than those initiating the impact-induced wave or large-creepage-induced wave. 
The initiation location of the perturbation-induced wave may be influenced by the traction 
condition of a wheel model: the perturbation occurs generally at the leading edge of the 
contact patch during wheel braking, whereas it occurs more often at the juncture of the 
adhesion-slip regions during wheel traction. In addition, the frictional perturbation discovered 
in this study is suspected to be closely related to the dynamic friction-induced instability. 
Because the initiation of perturbation may be influenced by the wheel traction condition, 
traction and braking control strategies may be optimised based on this new insight to mitigate 
squeal and corrugation in the future. 



This chapter also studied the characteristics of the simulated large-creepage-induced wave. 
The large-creepage-induced wave may be attributed to Rayleigh wave because the simulated 
wave is formed in rail surface nodes with retrograde elliptical motion and the simulated wave 
speed is in line with the speed of Rayleigh wave travelling in steel. The reproduction of the 
Rayleigh wave confirms that the proposed explicit FEM is appropriate and reliable for 
simulating wheel-rail dynamic interactions with the involvement of wave phenomena. 

An explicit FE wheel-rail dynamic interaction model with a crack in the rail top was 
proposed in this chapter to investigate waves generated by the crack. Waves were generated at 
the location of the crack and propagate radially when the wheel approached and rolled over 
the crack in the simulation. With a further investigation of the characteristics of the waves 
generated by cracks and experimental validation, this study may contribute to a wave-based 
method for the detection of early-stage rail cracks. 
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This study has theoretically demonstrated that the explicit finite element method (FEM) is 
an ideal approach for solving wheel-rail dynamic interactions by fully coupling the calculation 
of wheel-rail frictional rolling contact with the calculation of high-frequency structural 
dynamics. To facilitate other researchers to perform simulations of wheel-rail dynamic 
interactions with commercial explicit FEM software, systematic perceptions of the involved 
algorithms and modelling know-how are provided. This study has proposed an indirect 
validation method for wheel-rail dynamic contact solutions. The reliability of the wheel-rail 
dynamic interaction solutions may be confirmed by separately verifying the quasi-steady-state 
contact solutions against Hertz contact theory and CONTACT and validating wheel/rail 
structural dynamic responses with measurements. To put the method to broad use, this thesis 
has also proposed a procedure for establishing robust explicit finite element (FE) wheel-rail 
dynamic interaction models and converting outputs into solutions of wheel-rail contact and 
dynamic responses. 

Three typical numerical examples have been presented to demonstrate the effectiveness of 
the method for the modelling of wheel-rail dynamic interactions.  

The first numerical example presented an explicit FE wheel-insulated rail joint (IRJ) 
dynamic interaction model, which was validated against a comprehensive field measurement 
including a hammer test and a pass-by measurement. The simulated transient impact contact 
solutions tended to vary noticeably with the time step, indicating that dynamic effects play 
important roles in the wheel-IRJ impact contact. Transient positive surface shear stress, whose 
direction is opposite that of shear stress under ordinary tractive rolling, was discovered on the 
rail surface immediately after the joint. The influence of the wheel-rail contact geometry on 
the transient contact solutions was also investigated. The good agreement between the 
simulated ‘footprints’ of the contact patch and the in situ running band implied that the model 
with the measured geometry provided more realistic predictions of the transient solutions of 
the impact contact at the target IRJ. In addition, regular wave patterns were produced both 
before and during the wheel-IRJ impacts in the simulations, and these patterns reflected 
continuum vibrations excited by wheel-rail frictional rolling and impact contact and confirmed 
that the simulated transient contact solutions are reliable.  

The second numerical example proposed an explicit FE wheel-rail dynamic interaction 
model with wheel lateral motion to investigate wheel-rail squeal-exciting contact with the 
involvement of dynamic effects, unsteady lateral creepage and velocity-dependent friction. 
The proposed model is considered to be capable of reproducing the two commonly considered 
mechanisms leading to squeal: falling-friction and mode-coupling. The analyses of the 
simulated results indicated that the explicit FE dynamic interaction model can 
comprehensively consider and accurately predict the wheel-rail dynamic contact and structural 
dynamic behaviour.  

The third numerical example used an explicit FE model to simulate the non-steady-state 
transition of wheel-rail rolling from single-point to two-point contact. The stress and adhesion-
slip distribution under the single-point contact condition and the positions and shapes of the 
contact patches under the two-point contact condition corresponded well with the results in the 
literature. Transient dynamic effects can be captured by the relative velocity in the wheel-rail 
contact. Wave propagation was excited in the wheel and rail continua, especially by the 
transition from single-point to two-point contact. The vibrations and waves may cause local 



compression intensification and relaxation of the contact, as well as local perturbation of the 
micro-slip. Compared to those in single-point contact, stronger waves embodied in the 
alternation of the compression intensification and relaxation can be observed upon the 
occurrence of the second contact point. Moreover, the contact transition can cause the full slip 
of the entire wheel-rail contact. These factors could contribute to contact instability and 
ultimately squeal and corrugation. 

This study finally analysed the generation mechanisms of the waves produced by the 
explicit FE wheel-rail dynamic interaction models. The waves were categorised as the impact-
induced wave, the large-creepage-induced wave and the perturbation-induced wave. All three 
types of wave were generated intrinsically by the dynamic effects of wheel-rail interaction. 
The frictional perturbation discovered in this study was suspected to be closely related to the 
dynamic friction-induced instability. Because the initiation of perturbation may be influenced 
by the wheel traction condition, traction and braking control strategies may be optimised 
based on this new insight to mitigate squeal and corrugation in the future. The analysis of the 
characteristics of the simulated large-creepage-induced wave suggested that the large-
creepage-induced wave can be attributed to Rayleigh wave. The reproduction of Rayleigh 
wave confirmed that the proposed explicit FEM is appropriate and reliable for simulating 
wheel-rail dynamic interactions with the involvement of wave phenomena. 

Dynamic contact algorithms should further be studied and developed for more sensitive 
and realistic dynamic contact solutions. When employing the penalty contact algorithm 
implemented in the currently used general-purposed explicit FEM programs, the calculated 
contact stress has been proven to be less sensitive to the high-frequency dynamic effects than 
the calculated contact nodal vibrating velocity. This may constrain the method from accurately 
predicting and reproducing the ‘enigmatic’ squeal and corrugation, whose occurrences are 
quite sensitive to both the structural dynamic behaviour and contact condition.  

The displacement boundary conditions applied to the proposed explicit FE wheel (axle) 
model may not be sufficient for simulating wheel curving behaviour and the rolling contact on 
the curve tracks. More realistic kinematic boundary conditions or a full wheelset model may 
be required to reliably calculate unstable wheel vibration and consequent squeal. Moreover, 
solid rail-pad representations with proper material parameters proposed in (Oregui et al., 
2015b) may be adopted in future studies of wheel-rail dynamic interactions to improve the 
accuracies of the lateral and longitudinal dynamics simulations. In addition, the creepage 
value calculated with the explicit FEM should be determined in future study and compared to 
those estimated using CONTACT with the same input parameters. 

An explicit FEM solver dedicated to the analysis of the wheel-rail dynamic interaction 
may be developed in the future. On one hand, the computation cost is expected to be reduced 
by eliminating redundant conditional statements in the general-purposed explicit FE 
commercial programs; on the other hand, a newly developed solver may provide more 
convenience and flexibility to future amendments to the algorithm: the penalty contact 
algorithm with nonlinear or functional penalty contact stiffness, more sensitive dynamic 
contact algorithms, and the coupling with multi-body dynamics analyses may be implemented 
for future analyses of wheel-rail dynamic interactions. 

The investigation of waves caused by wheel-rail dynamic interactions will continue, 
including the generation mechanism of the perturbation and its correspondence to the 



traction/braking condition. Experimental validation of the waves simulated by the proposed 
explicit FE models should be conducted. In addition, waves have been found to be generated 
at a crack and to propagate radially when the wheel approaches and rolls over the crack in the 
simulation. With further investigation of the characteristics of the waves generated by cracks 
and experimental validation, a wave-based method for the detection of early-stage rail cracks 
may be developed in the future. 
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