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In this paper, we derive a sensor-based nonlinear dynamic inversion (NDI) control law for a nonlinear system
with first-order linear actuators, and compare it to incremental nonlinear dynamic inversion (INDI), which has
gained popularity in recent years. It is shown that, for first-order actuator dynamics, INDI approximates the
corresponding NDI control law arbitrarily well under the condition of sufficiently fast actuators. If the actuator
bandwidth is low compared to changes in the states, the derived NDI control law has the following advantages
compared to INDI: 1) compensation of state derivative terms, 2) well-defined error dynamics, and 3) exact tracking
of a reference model, independent of error controller gains in nominal conditions. The comparison of the INDI
control law with the well-established control design method NDI adds to the understanding of incremental control.
It is additionally shown how to quantify the deficiency of the INDI control law with respect to the exact NDI law for
actuators with finite bandwidth. The results are confirmed through simulation results of the roll motion of a fixed-

wing aircraft.

Nomenclature

C(D;R) = space of functions differentiable r times with con-
tinuous derivatives, and D is the domain and R the
range

e, = error in the output

F, input effectiveness (B matrix in linear system)

F, = system dependence (A matrix in linear system)

1 = identity matrix

L,m = identity matrix of size m rows and m columns

K; = error gain matrix in alternative error dynamics
k; = error gain matrix

L = Laplace transform

L, = roll damping

Ly = desired roll damping

L, = aileron effectiveness

M = any right inverse matrix of M

p = roll rate

Pe = roll rate command

K = Laplace variable

u = input vector

v = pseudocontrol

x = state vector

x() = derivative of x with respect to time r times
y = output vector

Ye = input to reference model

Yref = output reference

A = input scaling gain matrix

Q = matrix of actuator bandwidths

Q, = matrix of desired inner-loop bandwidths
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1. Introduction

NE of the cornerstones of nonlinear control theory is nonlinear

dynamic inversion (NDI), also called output feedback lin-
earization, which has found applications in many different fields
[1-5]. The concept is based on inverting the nonlinearities of a
system, such that the relation between a virtual control input and
the output behaves as a linear system, in particular a cascade of
integrators. This transformed system is straightforward to control
with a linear control law. Very complex nonlinear systems can be
controlled perfectly through this method in theory, but the results
deteriorate if the model is not accurate, if some of the system states
cannot be measured accurately, or actuator dynamics exist that are
not considered [6].

Incremental nonlinear dynamic inversion (INDI) is a control
method that uses a local linearization of the model to derive a control
law to control the defined output and its derivatives, by computation
of an increment in the control input, neglecting any state-dependent
terms [7]. Using the feedback of derivatives of the system output,
such as angular accelerations, unmodeled effects and disturbances
are directly measured and compensated for in the next control incre-
ment. This led to an increased popularity of the concept in flight
control applications [8—14]. In [15] it is shown that under certain
simplifying assumptions, the closed-loop system responds to dis-
turbances or unmodeled dynamics with the combined dynamics of
the actuators and any filtering that is done on the output. This has also
been observed in practical experiments as well [15].

It would seem that if one were to include the partial derivatives of
the states with respect to the states in the INDI control law, one
would obtain better performance in both tracking and disturbance
rejection. Wang et al. [16] suggest keeping a term with the state
change “Ax” over one time step as part of the control law. The
drawback of this approach is that when actuator dynamics cannot be
neglected, the computed increment in input is not realized within
one time sample. That makes the considered anticipation of the state
change insufficient. In fact, this problem is hard to solve if one
follows the “traditional” derivation of the INDI control law, as will
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be further detailed in Sec. III. Li et al. [17] propose to add a large
gain, such that if the actuator behaves as a first-order system, the
system will achieve the desired value within one controller time
step, effectively removing any actuator dynamics. This approach is
not realistic, as controllers typically run at a frequency much higher
than the bandwidth of the actuators.

Zhou et al. [18] describe a method of including state-dependent
terms in the INDI control law in discrete time. The drawback of this
approach is that, due to the discrete formulation, a control input is
calculated that will solve for the virtual control within one time step.
In most cases, the time constant of the actuators is larger than one time
step of the controller, which would lead to large inputs to the actuators
and possibly hidden oscillations between samples.

Several concepts have been proposed that scale the control effec-
tiveness matrix, for different reasons. Cordeiro et al. [19] noted that
an input gain scaling, which was used to reduce the influence of
noise, can reduce the closed-loop bandwidth. In [20], it was shown
that the input scaling also increases robustness with respect to time
delays. Pfeifle and Fichter [21] proposed an additional gain that
depends on the sampling time and the actuator time constant based
on an alternative derivation of the incremental dynamic inversion
control law. Raab et al. [22] related the meaning and value of an input
gain scaling to the actuator parameters.

Raab et al. [22] also suggested that actuator dynamics can be
included in the derivation of the controller, by taking an additional
derivative of the system output. Essentially, this is achieved by
considering the actuator dynamics as a part of the system dynamics;
hence the control law then also inverts the actuator dynamics. The
main benefits of this approach are the ability to incorporate actuator
rate constraints in the control allocation and artificially choose faster
or slower effective actuator dynamics, which is especially useful if
actuators with different effective bandwidth are used to control
coupled outputs. However, the state-dependent effects are not taken
into account in Raab et al. [22].

In an extension, Bhardwaj et al. [23] based a reference model design
on dynamic inversion including the actuator dynamics. From this
physical reference model a feed-forward control signal is generated
that accounts for state-dependent model effects. This theoretically
leads to perfect tracking of the reference model if the reference model
equals the plant and if the states of the reference model equal the plant
states, e.g., if there are no model uncertainties and no disturbances.
However, the benefit of this approach is deteriorated if the plant is not
exactly following the reference model. If the reference model states are
different from the plant states, the feed-forward command will not be
correct, and this will lead to unpredictable error dynamics. Further-
more, the plant states that are not controlled (zero dynamics) might
differ from the corresponding states of the reference model in case that
they are directly influenced by certain control effectors. In case this
influence is incorporated in the reference model, some sort of feedback
from the control allocation is required to make sure that these uncon-
trolled states do not diverge from the respective plant states such that an
accurate feed-forward command can be achieved, which has not been
shown how to be accomplished.

The contribution of this paper is based on an alternative derivation
of a set of incremental control laws using nonlinear dynamic inver-
sion. In particular, note the following:

1) This paper formulates a novel sensor-based incremental non-
linear dynamic inversion control law taking into account state-
dependent terms in a consistent and straightforward manner.

2) It formulates error dynamics split into actuation and system
dynamics. This allows specifying actuation dynamics according to
actuator limitations and system dynamics according to vehicle eigen-
response requirements.

3) An alternative derivation of the incremental nonlinear dynamic
inversion control law is presented based on the above-mentioned
error dynamics. The derivation shows that in case the actuators can be
assumed to be fast in relation to the state dynamics the traditional
INDI law approximates the derived exact NDI control law.

4) In addition, an alternative derivation of incremental nonlinear
dynamic inversion with input scaling gain is presented together with an
associated interpretation of inner-loop bandwidth reduction/increase.

In Sec. II we derive the proposed incremental NDI control law for a
nonlinear system with first-order linear actuators. In Sec. ILB we
derive the resulting control law with error dynamics split between
actuation and system dynamics. In Sec. III we compare the conven-
tional INDI and INDI with input scaling gain to the derived NDI
control law. In Sec. IV, we compare the derived INDI control law to
existing INDI control laws that take into account the actuator dynam-
ics. In Sec. V we compare the derived NDI with the INDI control laws
on a simple example of the rolling motion of a fixed-wing aircraft. In
Sec. VI we discuss the results and in Sec. VII we give the concluding
remarks.

II. Nonlinear Dynamic Inversion Control Law with
First-Order Linear Actuator Dynamics

To introduce the concept, consider the general system with first-
order linear actuator dynamics given by

x = f(x,u)
Yy =hx) (1

wherex € R" is the system state, u € RF is the actuator state, y € R”
is the output, f € CC+D(R” x R¥;R"), and h € CUTD(R"; R™).
The actuator dynamics are given by

u=Qu,—u) @

where Q € R®¥) is a diagonal matrix with constant elements rep-
resenting the bandwidth of the different actuators. Assume the system
to have a relative degree of r € N with respect to u for all elements of
y; i.e., r is the number of times the output y has to be differentiated
with respect to time for the input u to appear explicitly. The rth
derivative can be expressed as follows:

¥y = F(x,u) 3)

with F € C'(R" x R¥; R™). Traditionally, this expression for the rth
derivative of y is used to obtain the control law by inverting for # and
by relating ¥y to the virtual control v; see, e.g., [6]. In those cases,
actuator dynamics are not considered, or assumed to be relatively fast
such that they can be neglected. Instead, in this paper the nonlinear
dynamic inversion is continued through the actuator dynamics by
performing one more differentiation w.r.t. time:

Yt =Fox + Fu 4)

where F,:= (0F(x,u))/ox and F,:= (0F(x,u))/ou. Now the
actuator relation in Eq. (2) is substituted into Eq. (4) to obtain a
relation for yU+1 that includes the actuator command.

Yt = Fox + F,Q(u, —u) ©)

Note that traditionally the relation for x would be substituted into
Eq. (5). Here, we keep x to allow it to be possibly determined by
measurements. Choose now y+1 = p, where v is a virtual control
command. If it is assumed that F,Q has full row rank, the following
choice of u, will make yU+! = p:

u, = (F,Q (v-F.X) +u (6)

where (F,Q)" denotes a right inverse matrix that solves the linear
equation system given in Eq. (5). The control signal u, linearizes the
response from the virtual control input v to the output y to a chain of
integrators.

A. Desired Error Dynamics

Often a linear controller is used to regulate the output y. In this
paper, for the next step, the virtual control input » is designed using a
linear error controller such that the specified error dynamics are
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achieved. The order of the error dynamics in y will correspond to the
sum of the relative degree and the order of the actuator dynamics,
such that the error dynamics could be specified by

eyt Zk e)) =0 )

where e, = y,.r — y is the error in y, e(yi) is the ith derivative with

respect to time, and y"*+ is chosen as the virtual control » such that
(r+1
v= yrelc ) 4+ Zk e(') (8)

Inserting v into Eq. () results in the control law:

= (F, Q) (yref*” + Zk el — ) +u )

The resulting control law is an NDI control law with linear error
controller, where the actuator dynamics were additionally included in
the system dynamics and inverted. By inserting Eq. (9) into Eq. (3),
the desired error dynamics are obtained as designed, because F,Q
has full row rank such that (F,Q)(F,Q)" = 1,5,

yt) = Fx + F,Q(F, Q) (yr;” + Zk el — )
=y 4 Zk el (10)

This leads to tracking of the corresponding derivative of a reference
(r+1)
ref

model y
Eq. (D).

This control law can be compared to the control law proposed by
Bhardwaj et al. [23], where the state-dependent term F, X in the
control law in Eq. (9) is generated by a physical reference model
using an additional feed-forward term corresponding to F, X,.. In
that case, the feed forward from the reference model is only correct if
the system is tracking the reference model and the states correspond-
ing to the zero dynamics are matching the respective plant states. In
addition, in case of disturbances that lead to a perturbation with
differences between the desired and actual trajectory, the actual error
dynamics will differ from the desired error dynamics, because they
will be excited by the term F,(x — X,¢) as can be seen in Eq. (10).
However, in the proposed inversion-based control law, where the
state derivatives are used, the error dynamics will correspond to the
desired error dynamics. A possible drawback of this approach could
be reduced stability margins when analyzing the linearized closed-
loop system due to the additional feedback, but this requires further
investigation. It will become apparent in Sec. III that the classical
INDI approximates this NDI law under the condition that the actua-
tors are fast with equal bandwidth.

, and the resulting error dynamics will correspond to

B. Consideration of Actuator Dynamics in the Error Dynamics

In this section we propose a particular structure of the error
dynamics in order to split up the error tracking in terms of actuators
and system dynamics. This new formulation also serves effective in
deducing the approximations required to obtain the popular INDI
control law, as will be shown in Sec. III. The error dynamics in Eq. (7)
has a generic form and is shaped by choice of the gains k;. Some
choices of these gains could lead to error dynamics that cannot be
realistically obtained with real-world actuators, due to physical con-

*Another subtle issue that can arise is if the system B matrix and the F,
matrix used for control allocation are different, because the system contains
states that are not directly controlled by the inversion law, then the dynamics of
the states in the reference model that are not controlled can depend on the
control allocation.

straints in the actuators. It therefore makes sense to design the error
controller such as to include actuator dynamics with a bandwidth
equal or comparable to the real actuators. Furthermore, as will be
shown in Sec. III, the proposed formulation of the error dynamics
allows a direct comparison to the INDI control law.

The order of the error dynamics in y corresponds to the sum of the
relative degree of y and the order of the actuator dynamics. The
desired dynamics can therefore be interpreted as cascaded dynamics
composed of the slower desired system error dynamics and a faster
desired inner-loop dynamics with bandwidth Q,, corresponding to
the actuator dynamics. It can hence make sense to express the desired
error dynamics Eq. (7) in the Laplace domain as the product of
dynamics due to the system physics and due to the actuators as
follows:

y(v)('I-I—ZK )(:1+Q) 0 (11)

where e, = y..s — y is the error in y with Laplace transform E (s),
(s’ I+320K ,-s") describes the desired error dynamics with

respect to the system, (s + Q) is the desired error dynamics due
to the first-order actuators, and K; are the new error controller gains
defining the desired system error dynamics. The system error dynam-

ics E,(s) (s’ I+>- K ,si) can be formulated in the time domain

as

r—1
-1 (Ey(s) (s’I + ZKiSi)) =e) + ZK el =0 (12
i=0

where K; are the error gain matrices and £~! is the inverse Laplace
transform. Using Eq. (12), the combined error dynamics from
Eq. (11) can be described in the time domain by

r—1
( 0 ZK e(')) y(e§” . ZKie}”)
i=0
r—1
eyt +ZK, el +Q ( O+ ZK,.ey)) =0 (13)

i=0

Note that if a formulation as given in Eq. (7) is preferred, Eq. (13)
can be reformulated as

(r+l) + (K, +Qy)e(r) +Z((K' 1+ Q K,)e )+Q KOey =0
i=1

(14)

and the gain matrices k; can be obtained directly. Inserting e( =

ng) y+D into Eq. (13) and solving for y"+) provides the

pseudocontrol input v that can be used in Eq. (6):

ZK e(')) (15)

(r+1) -
v=y. +ZK ,ey>+9( 3

with reference dynamics given in terms of the respective derivatives
of Y, and error controller gains given by Q, and K;. The final
control law is then given by

. = (F,Q (yrei“ + ZK, ey

( )+ZK <’)) xfc)—i—u (16)
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The resulting error dynamics will correspond to Eq. (11), which
can be interpreted as cascaded dynamics composed of the slower
desired system dynamics and a faster desired inner-loop dynamics
bandwidth Q,, due to the actuator dynamics. Since Eq. (16) essen-
tially inverts the actuator dynamics as well, the system could be made
arbitrarily fast through the choice of €,. However, for practical
applications, the actuators were designed to operate up to a certain
bandwidth, and the choice Q, should be limited to the design
bandwidth of the actuators accordingly. In some cases, the dynamics
of a control effector is limited by the effector dynamics and not the
physical actuator. Here an increase in effector bandwidth can be
obtained by selecting Q, larger than the actuator bandwidth in the
considered direction. The second degree of freedom consists of the
choice of the error gain matrices K;’s. The K; matrices should be
chosen to satisfy requirements on the error dynamics related to the
system dynamics. This will be demonstrated in the example in Sec. V,
where the roll damping is increased for a fixed-wing aircraft. At last,
the closed-loop dynamics from reference input y, to response y is
determined by the choice of reference model dynamics, i.e., the
dynamics from y, to y .

III. Comparison with Incremental Nonlinear Dynamic
Inversion

This section compares the NDI control law, which was derived in
Sec. II, to an INDI controller, which has been derived, e.g., by Bacon
and Ostroff [7] and Sieberling et al. [24]. The INDI controller will be
derived along the same lines, keeping the nomenclature the same as in
the previous section, such that the controllers can be effectively
compared. The classic INDI derivation contains some inaccuracies,
which are pointed out in this section as well.

Again, consider the system in Eq. (1), and the rth derivative of the
outputas in Eq. (3). Take the Taylor expansion of F(x, u) with respect
to x and u:

¥y (1) = F(x(1), u(t)) = F(xo,ug) + Fy(x(1) — xo)
+ F,(u(t) —uy) + O(Ax, Au) 17

where F, = (0F (x,u))/ox and F,, := (0F (x,u)) /ou and O denotes

higher-order terms. The term F(x, #,) can also be denoted by y(()r) Lt
should be noted that x and u are functions of time. The Taylor
expansion in Eq. (17) is performed with respect to x and u. For x,
and u it makes sense to choose a state and control input, correspond-
ing to the system, a small time instance ago; i.e., define

xo = x(t — Ar)
uy = u(t — Ar) (18)

If y) is chosen as virtual control » and u is chosen as the control
signal u,, the following relation is obtained:

v =3 + Felx =x0) + Fy(u, —up) + O(Ax, Au) (19
It is assumed that the higher-order terms can be neglected. The
control law is obtained by solving Eq. (19) for u,:

u, = Fyv -y — Fo(x —x0)) + g (20)

The term F,(x —x,) is usually neglected, with several different
arguments involving the bandwidth of the actuator and a sufficiently
small sample time [24,25], leading to the following control law:

= Fiw—y) +uy Q1)

If the term F . (x — x;), or some approximation of this, is sought to be
included, it is not clear how Ax in Eq. (20) should be chosen. Wang
et al. [16] proposed to use Ax = x(z — Ar)At with Az chosen as the
sample time. However, because the actuator command, Eq. (20), will

not be instantaneously reached by the actuator, due to the actuator
dynamics, the F(x — x,) term in the y dynamics of Eq. (17) will
not be exactly canceled by the control signal u(#). The resulting
stability properties of the INDI control law are unclear, neither is it
clear what was neglected from the Taylor expansion. The virtual
control v in Eq. (21) is derived by specifying the desired error
dynamics in y. Usually, the desired error dynamics are specified by
Eq. (12), such that the virtual control is given by

r—1
v=y"+ Z K:e) (22)

Combining Eqgs. (21) and (22), the following INDI control law is
found:

we= (¥ -

\) +2Ke )—l—uo
= F*( ey + ZK e(’)) +uy (23)

i=0

By comparing the above control law with the exact NDI law in
Eq. (16), it is possible to identify which part was neglected. In the
following, it is shown that under certain conditions relating to the
actuators and the NDI control law parameters, the INDI law approx-
imates the exact NDI law. Assume the following:

1) All actuators have the same bandwidth, i.e., Q = @Iy, where
 is a positive scalar.

2) Choose Q, = w5,

Then

. 1
(FuQ)TQy = (Fuwlkxk)Twlmxm = (Fuw)fw = Fufgw = F'uT

(24)
Hence, the control law from Eq. (16) evaluates to
u, = 1 ylrr 4 ZK e
¢ 60 ref i-1 .Y
r-1 .
+F,} (e§’> +y Kl»e(y')) +u (25)
i=0

It is seen here that, in the limit where the actuator bandwidth @
approaches infinity, the NDI law turns exactly into the INDI control
law of Eq. (23):

1 J i
_ (r+1) 0 :
u, = al)Lngo(;Fu*(yref + E K, ey — Fxx)

i=1

r=1
F,,*(ey) + ZK,-eS)) + u)
i=0
( D+ ZK e(”) (26)

The NDI law of Sec. II perfectly inverts the system, so by comparing
the INDI law given in Eq. (23) with the exact sensor-based NDI law
given by Eq. (25) reveals exactly which part is neglected by applying
the INDI control law, namely, the first term in Eq. (25). These missing
terms will lead to errors in reference model tracking, and lead to error
dynamics that are different from the designed error dynamics. It is
seen that the mismatch between the INDI law and the exact sensor
based NDI law is vanishing for sufficiently large actuator band-
width @.

This comparison shows that the derivation that was performed in
Sec. II is a useful alternative to arrive at the incremental nonlinear
dynamic inversion law as it does not require any ad hoc arguments.
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As such, the derivation provides new theoretical support for the INDI
control method, while also providing a means to compensate for
model-dependent terms (F,x) in the control law. In INDI, these terms
are not compensated for, and depending on the system, this may lead
to significant errors in tracking and unpredictable error dynamics.

As shown in the Appendix, the INDI law does not hold in the limit;
i.e., it is only valid for @ < oo; hence the above equation essentially
states that, for a fixed time, the INDI law approximates the true
NDI law arbitrarily well by the choice of sufficiently high actuator
bandwidth.

It can further be shown that the input scaling as suggested by
Cordeiro et al. [19,20] for reducing the influence of noise and
increasing the robustness with respect to time delays can be inter-
preted as a modification of the innermost bandwidth of y: Q, = Aw,
where the input scaling gain matrix A € R™ " is diagonal. If this
relation is inserted into the NDI control law in Eq. (16), and it is
assumed that the actuators have equal bandwidth, i.e., Q@ = @I}y,
and taking the limit of the bandwidth w going to infinity, we obtain
the conventional INDI control law with the scaling gain matrix that
was proposed by Cordeiro et al. [19]:

1 ,
e = (31_{210( ( :ez—l) + ZKI ley xx)
+— 'r TAw( el +ZK e(')) +u)

i=0
=F, ‘A( )+ZK e">) 27

Cordeiro et al. [19] observed that choosing the diagonal elements
of A smaller than 1 reduces the closed-loop bandwidth. With this
formulation of the control law, the scaling gain can be directly iden-
tified as a modification of the desired innermost bandwidth. If the
scaling factor is 1, as in conventional INDI, this corresponds to a
desired innermost bandwidth equal to the actuator bandwidth.

IV. Comparison with Incremental Nonlinear Dynamic
Inversion Including Actuators

Smeur et al. [15] showed that when actuator dynamics are present
and the INDI control law in Eq. (21) is applied, then y( follows »
with the dynamics of the actuator, in the case that the term F,x in
Eq. (4) is neglected, and when all actuators have the same bandwidth,
i.e., Q = wl;y,. For linear first-order actuators, Eq. (4) can then be
expressed by

y(r+l) = Fuu = Fuw(uc - u) (28)

where the actuator relation in Eq. (2) was substituted. Inserting the
INDI control law from Eq. (21) into Eq. (28) results in

Y =@ - y) (29)

ie., y follows v with the dynamics of the actuator. Based on
Eq. (29) a new control law can be derived. First the virtual control
is defined by

1
v =—yrth 4y (30)
w

Choosing the same error dynamics like in the NDI control law, given
by Eq. (14) with Q, = wl,,y,,; solving for y"*1); substituting this
relation for y"+1 in Eq. (30); and inserting the resulting v into the
INDI control law given by Eq. (21) result in the control law

1
—Fl (r+1) 0] @ (@
"”_F"w(f;f +§ K, e +w(e’+§ Ke'))+u0

i=0
BD

This control law equals the NDI control law in Eq. (16) if Q = w1,
Q) = wl,y,, and F.x is neglected. This approach requires all
actuators to have the same bandwidth; otherwise Eq. (29) does
not hold.

In Ref. [22] an approach can be found to resolve this problem. With
the error dynamics proposed in Eq. (14), the control law proposed in
[22] can be formulated using the notation of this paper as

r—1
ofir o)
i=0

(32)

= (F, Q) (y,ef+ e ZK, ey +

This is again equal to the corresponding NDI law in Eq. (16) with F .
neglected. Compared to Eq. (31), it does not have the assumption of
equal actuators and it offers the option to specify a desired €2,,.

V. Simple Example
A. Derivation of Roll Rate Control Law
In the following, the mechanics of deriving the control law is
demonstrated on a simple single-input—single-output (SISO) linear
system. The roll rate of a fixed-wing aircraft is to be controlled.
Consider the roll dynamics given by

p=L,p+Lyu (33)

where p is the roll rate, L, <0 is the roll damping, u is the aileron
deflection, and L, < 0 is the aileron roll effectiveness. L, is usually
large and hence contributes significantly to the dynamics. This
example demonstrates how it is taken into account by the proposed
control concept. The ailerons are driven by an actuator with the
following first-order dynamics:

i =w(u,—u) (34)
where u,. is the actuator command and w is the actuator bandwidth.
The output to be controlled is y = p. The relative degree r of the
system is 1 as given by Eq. (33). The control relation as given by
Eq. Q) is

1.7. = Lpp + Luw(uc - M) (35)

Solving for u, as explained in Eq. (6) gives the following control
law:

u

c = LMCU (pd _Lpp) +u (36)

As depicted in Fig. 1, a reference model is chosen based on the
desired dynamics:

pref = _L,rul(‘S - pref)
5= wy(p. —9) 37

where L, ; < 0 is the desired roll damping and 4 is a generalized roll
acceleration due to the aileron deflection.

The dynamics of § is given by the desired buildup in roll accel-
eration due to the aileron dynamics w,; p. is the pilot roll rate
command, since in steady state, p..; = p.. Note that p.; can easily
be calculated using the reference dynamics in Eq. (37):

pe + 5 - Pref

1 1
_f?’wd" = T:?’Lm* < T—»

Fig.1 Block diagram of the reference model.
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ijref = _Lp,d(wd(pc - 6) - pref) (38)
To choose p,, the desired error dynamics have to be formulated.
Since the actuators are of first order and the system dynamics are first
order, a product of two first-order systems is chosen as follows:
E,(s+w)(s—L,s) =0 39
where e, = p.s — p, which in the time domain is
ép +wyé, =L, (¢, +wqe,) =é,+kié, + ke, =0 (40)

where

ky = (wg—L,q)
ko = =L, 404 41

Solving for p = py,
ijd = ﬁref_i'klép +k06p (42)
will lead to the final control law by substituting Eq. (42) into Eq. (36):

1
- L,

u (I'jref + klép + koep - Lpp) +u (43)

c

which can be ordered in terms of the contributions:

ﬁref + klép + k()ep - Lpp +u (44)

Feed-forward Error control Model part.
This can be compared to the standard INDI control law (23) for the

same example

U, =

r .
L—(e,, —L,qe,) +u 45)

with reference dynamics:

pref = _Lp.d(pc - pref) (46)

B. Simulation Results

For the example described above, simulations were conducted to
validate the approach. In the simulations, it was assumed that state
information was available without noise, and there were no uncertain-
ties in the parameters. The parameters were L, = 0.25 (deg /s2)/ deg,
L,=—-66 (deg/s?)/(deg/s), L,,=2L,=—132 (deg/s*)/
(deg /s), and @ = 20 rad/s. In the following we will compare

1) NDI as given in Sec. 11, for this example given by Eq. (43), with
reference dynamics given by Eqgs. (37) and (38),

2) INDI as given in Sec. I1I, for this example given by Eq. (45) with
reference dynamics given by Eq. (46), and

3) INDI with actuators as given in Sec. 1V, for this example given
by Eq. (43) without L , p, with reference dynamics given by Eqs. (37)
and (38).

Figure 2 compares the responses in roll rate p to a step input of
5°/sin p, for the INDI and NDI control law. The NDI law makes the
plant correctly follow the reference model with reference inputs,
while this is not the case for INDI with its corresponding reference
dynamics.

Figure 3 reveals the error dynamics of the classical INDI control
law in Eq. (45) and the proposed NDI law in Eq. (44). The closed-
loop system response for both control laws was simulated with a
roll rate command p, = 0°/s for an initial value perturbation of
p = 5°/s;i.e., the initial value of the plant was 5° /s, while the initial
value of the reference model was p,.; = 0°/s. The simulation shows
that the resulting error dynamics of the NDI controller correspond

6 -
5 e
% 4+ // ///
) /
=, '
) ///
= 3 ///
= i
—_— 2 L /I
Q% /Ill Reference model INDI
,I' — — -Response INDI
1r / Reference model NDI
// — — -Response NDI
0 1 1 1 1
0 0.2 0.4 0.6 0.8

Time ]
Fig. 2 Step response of the INDI and NDI control law.

1 , . .
™ Qf S oEEee———————————
=2 ==
?)D // //
e
=l /
=t P
. 7/
S i/
g 1/
= -2 //
® "
+ V4
< 3t v 4
= /4 Desired error dynamics INDI
:o ,/I — — —Error dynamics INDI
e -4 'I Desired error dynamics NDI | ]
— — —Error dynamics NDI
_5 1 1 1
0 0.2 0.4 0.6 0.8

Time [s]

Fig.3 Comparison of desired and actual error dynamics considering a
5°/s initial value perturbation.

exactly to the desired error dynamics given by Eq. (40). The resulting
error dynamics of the INDI controller do not correspond to the
specified error dynamics ¢, — L, 4e,, = 0.

Figure 4 compares the NDI control law with the INDI control law
where actuator dynamics are taken into account in the error controller
design. Both laws use the same reference dynamics. This extended
INDI controller still does not realize perfect tracking of the reference
signal of the NDI law, the reason being that in the INDI controller the
L, p term is neglected. In [23], this issue was fixed for the extended
INDI controller by adding an additional reference-model-based feed-
forward term. The resulting control law in [23] can be reformulated

5¢ e
/ g : £
4+ /o
o /s
~ /s
&0 3r /r
e /
., 1/
/
22 I
é ll/
— /
g/
/
/ Reference model
oy — — -Response INDI w. Actuators
— — -Response NDI
_1 1 1 1 1
0 0.2 04 0.6 0.8

Time [s]

Fig. 4 Step response of the INDI with actuators in the design and NDI
control law.
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Fig. 5 Comparison of desired and actual error dynamics considering a
5°/s initial value perturbation.

to resemble the NDI control law given by Eq. (44), with the only
difference that the term L, p is substituted with L, p; from a phy-
sical reference model, such as the one given in Eq. (37). Under the
condition that p = p. (i.e., no error exists) and the plant is exactly
equal to the reference model, this leads to perfect tracking of refer-
ence inputs, similar to the NDI law. However, the condition that F,.x%
equals F' ... might not hold in the following cases: 1) dynamics and
couplings that are not modeled in the reference dynamics but are
present in the plant; 2) a control allocation mismatch for the reference
model and the INDI controller due to disturbances, model uncertain-
ties, and utilization of overactuated channels for secondary control
objectives, leading to different responses; and 3) disturbances.

In Fig. 5 the discrepancy is shown for the case that the reference
model state is zero, but the plant state is not. Here, the closed-loop
system responses of the NDI control law and the INDI with actuators
were simulated for a roll rate command p. = 0°/s with an initial
value of the plant of 5°/s, while the initial value of the reference
model was p..s = 0°/s,suchthat p # p.; = 0.Itisrevealed that, for
the NDI law in Eq. (44), the dynamics with which the error p s — p
declines corresponds exactly to the desired error dynamics specified
by Eq. (40). The INDI control law with actuators was designed with
the same desired error dynamics like the NDI law, and it is seen that
the resulting error dynamics do not correspond to these desired
dynamics.

Finally, Figs. 6 and 7 investigate the influence of the actuator
bandwidth on the error dynamics of the classical INDI and the NDI
control laws. The same simulations as before with p. = 0°/s and an
initial condition p = 5°/s was performed, but with varying actuator
bandwidth. The simulations show the following:

1) For the INDI law in Eq. (45) the dynamics of p.s — p do not
exactly correspond to the error dynamics that were specified in the

0.5 T T :
= 0
&0
9)
<.
g
0.5 ——w = b5 rad/s
—w = 10 rad/s
w = 20 rad/s
——w = 50 rad/s
1 . . :
0 0.2 0.4 0.6 0.8

Time [s]

Fig. 6 Difference between actual INDI error dynamics and design INDI
error dynamics.
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-1.5 : : : !
0 0.2 0.4 0.6 0.8

Time [s]

Fig. 7 Difference between NDI error dynamics and design INDI error
dynamics.

design, i.e., é — L, 4e,, = 0, but for increasing actuator bandwidth
these dynamics are approached by the resulting error dynamics.

2) The desired NDI error dynamics given by Eq. (40) approach the
INDI error dynamics given by é — L, ;e,, = 0, for increasing actuator
bandwidth. Because the INDI error dynamics do not explicitly con-
sider actuator dynamics, then when the actuator bandwidth incre-
ases, the actuator part of the error dynamics in the NDI law becomes
negligible and hence approaches the INDI error dynamics.

For statement 1, consider Fig. 6, which reveals the difference
between the error e, resulting from simulation of the closed-loop
system with the INDI control law, and the initial value response of the
desired error dynamics ¢ — L, se,, = 0. It shows that for increasing
bandwidth of the actuator this difference decreases, meaning that the
resulting error dynamics approach the specified desired dynamics of
the INDI law. For statement 2, consider Fig. 7, which depicts the
difference between the desired INDI error dynamics and the desired
NDI error dynamics, for increasing actuator bandwidth. Hence, the
conclusion can be drawn that, with increasing actuator bandwidth,
the actuator part of the error dynamics in the NDI law becomes
negligible, and the NDI error dynamics approach the INDI error
dynamics.

VI. Discussion

One of the potential issues that could be raised with the proposed
sensor-based NDI control law as given in Eq. (6) is the reliance on
additional state information. The question is if the respective signals
can be measured or otherwise obtained. This is something that is
dependent on the system under consideration. In terms of the system
output, Eq. (26) shows that the requirement is the same as for an INDI
controller; the output up until y") should be available. Additionally,
the NDI control law requires the state derivative information x.
Depending on the system, this may overlap with the derivative of
the output. In many cases, the requirements on available signals may
therefore be the same, or slightly increased compared to a regular
INDI controller.

In some cases, filtering of these noisy derivative signals may be
required. Filtering leads to delay, which will lead to deterioration of
the controller performance. For an INDI controller, this problem can
be circumvented with filter synchronization of output and input filters
[15], but that particular method cannot be applied to the feedback of x
in the proposed controller, as there is no signal to synchronize with.
Instead, a complementary filter could be used, where the high
frequencies are coming from a model, and the low frequencies from
the filtered measurement [26,27]. If the system under consideration is
already stable, the proposed method could improve the tracking
behavior, but the feedback of the state derivatives could influence
the stability and robustness in the case of model uncertainty and
measurement errors. How this compares to classical INDI has to be
compared on a case to case basis and should be further investigated in
future research. The proposed NDI control law additionally requires
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information about the actuator bandwidth, which might also be
uncertain. In addition, the actuators might not be first order. In that
case, an effective bandwidth of the actuator can be used for the control
law design.

VII. Conclusions

The proposed derivation of the NDI control law considering first-
order linear actuator dynamics, which one could call actuator NDI
(ANDI), theoretically provides a perfect inversion of a system with
such actuators, also in case the actuators do not all have the same
bandwidth. It allows to assign an innermost desired bandwidth for the
tracking variable different from the actuator bandwidth. The ANDI
control law leads to an INDI control law if infinitely fast actuators are
considered. This provides a better theoretical foundation for INDI
control, from which it can be readily seen what the impact is of the
terms that are neglected in the INDI derivation. Moreover, the derived
NDI control law compensates for state-dependent terms, which are
not taken into account with the classical INDI formulation. Com-
pared to the reference-model-based feed-forward control from liter-
ature, the benefit of the proposed control law is twofold. First, the
inversion is based on the actual vehicle states, and therefore provides
exact tracking performance without the reference model having to
exactly model and match all plant states. Secondly, it provides pre-
dictable and consistent error dynamics.

Appendix: NDI and INDI Limit

Here it is shown how the error dynamics of NDI and INDI behave
in the limit of the actuator bandwidth going to infinity. Consider first
the NDI law from Eq. (25) together with the system output dynamics
as given in Eq. (5), with the same assumptions as in Sec. III:

1) All actuators have the same bandwidth, i.e., Q = @I}, where
o is a nonzero scalar.

2) Choose Q, = @l

By inserting Eq. (25) into the system dynamics given in Eq. (5), the
error dynamics can be deduced:

y(H—l) = in' + Fquka(uc - u)

. I , i N
y(r+1) = Fxx + Fulkxka)(; (Fu)+ (yse?]) + ZK,-_18§,) - Fxx)
i=1

r—1
+(F)* (e‘y” + Z&e&”) +u- u)
i=0

.1 - i .
YD = Fox + gw(ygfﬂ) + ZKi—le,(vI) - xx)

i=1

r—=1
+ a)(e;r) + Z K,-e;'))

i=0
r r—1
r 1 i r i
= (o - K)o+ o)
i=1 i=0
r r—1
eyt > Kl + w(e§” +3 Kl.eg”) =0 (A1)
i=1 i=0

which is the desired error dynamics given in Eq. (13).
If the INDI law from Eq. (26) is inserted into Eq. (), the following
can be derived:

r—1
Yt = F 3% + Fulkka((Fu)T (ey) + Z K,-e&”) +u-— u)
i=0

r—1
WD = Bkt F,,Ikka((Fu)T (e&” +y Kl-eﬁ’)))

i=0

r—1
—yrt) 4 Fox + w(e(y’) + ZKieg)) =0 (A2)
i=0

When taking the limit of @ tending to infinity, Eq. (48) does not tend
to the desired error dynamics. Hence, even in the limit, the INDI does
not produce the correct error dynamics. INDI only approximates the
true NDI control law signal u, arbitrarily well as given in Eq. (26).
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