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Abstract. We present a novel Lagrangian finite element method for simulating sus-

pensions of particles in viscoelastic fluids. We solve the flow in a unit cell containing a

small number of particles with doubly periodic boundary conditions on a self-replicating

two-dimensional lattice to replicate a suspension on an infinite domain. The method uses

a Lagrangian finite element grid that deforms with fluid combined with a quotient repre-

sentation of the periodic lattice.

We show that qualitatively different results are obtained for the shear-thinning pompom

constitutive equation compared to those obtained using the Oldroyd B fluid. For the pom-

pom fluid we show that the changes to shear viscosity with the addition of particles can be

obtained by a simple shifting of the shear-rate and shear-stress.

1 INTRODUCTION

In many polymer processing applications filler particles such as glass beads are added to
the polymer matrix. One approach to studying the rheology of such multiphase systems is
to perform direct simulations of the motion of the suspended particles when subjected to
an external flow. In studying the bulk rheology of a suspension it is convenient to consider
an infinite domain of suspension undergoing homogenous shearing flow. In numerical
simulations the infinite domain is replaced by a spatially periodic structure based upon a
unit cell containing a limited number of particles. Under shear flow these unit cells slide
relative to one another and this relative momement must be taken account of in applying
the periodic boundary conditions [10].

Hwang et. al.[7] developed a simulation technique for sheared suspensions in Newtonian
fluids based on the distributed Lagrangian multiplier method of Glowinski et. al.[5] by
using Lagrangian multipliers to impose both the sliding biperiodic boundary conditions
and the boundary conditions at the particle surface. In a subsequent paper they extended
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this technique to viscoelastic fluids described by the Oldroyd B equation [8]. This allows
the solution to be solved on a fixed grid.

In this paper we describe an alternative approach based upon a Lagrangian simulation
in which the grid deforms with the fluid. This approach was pioneered for viscoelastic
fluids by Rassmussen and Hassager [13] and has the advantage that the constitutive
equation is solved in its natural frame. Our method is based upon the Lagrangian-Eulerian
method of Harlen et. al.[6], which uses Delaunay reconnections to preserve grid quality.
In this application we enforce the periodic boundary conditions using a quotient space
representation in which each point in the unit cell is replicated at corresponding image
points in the lattice. Another advantage of using this approach is that the connectivity
of the grid then automatically enforces the correct periodic boundary conditions.

In analysing the effect of fillers on the nonlinear shear properties of viscoelastic fluids
we consider two different viscoelastic constitutive equations. In order to benchmark our
results with those of Hwang et. al.[8], we consider the Oldroyd B constitutive equation.
In the absence of particles this constitutive model has a constant shear viscosity and the
addition of particles produces a shear-thickening fluid. This behaviour is not typical of
polymer melts, which are strongly shear-thinning, and to investigate these we consider
the pom-pom constitutive model of McLeish and Larson [12] which is a more appropriate
model for polymer melts. For the pompom fluid we find that the changes in the shear
viscosity can be accounted for by a simple shifting of the shear-rate and shear-stress.

2 FLOW GEOMETRY

The idealised problem we wish to consider is a two-dimensional unbounded domain
containing hard particles suspended in polymeric fluid under simple shear flow. However,
in order to make the computations tractable we approximate this domain by a periodically
replicated unit cell of size H × L, containing N particles. Under the action of a shear
flow each cell within the lattice translates along the shear direction so that the cells slide
relative to on another as illustrated in figure 1. The particles are also able to move across
the cell boundaries. To implement this periodic structure we define an equivalence class
of points in the infinite domain Ωinf (t) that correspond to the same point in the unit cell,
Ω(t),

S(t) = {(ximage, yimage) = (xcell + nγH + mL, ycell + nH)}. (1)

Here the integer pair (m, n) denotes the shift in the periodic image and γ the shear strain,
γ = γ̇t. (For numerical convenience the strain maybe reset to zero after each period of
the lattice, L/(Hγ̇)) The original unit cell corresponds to the points m = 0, n = 0 except
for points on the top and righthand edges, which are respectively the n = 1 and m = 1
images of the points on the bottom and lefthand edges. Figure 2 shows an illustration
of a very simple mesh of this form consisting of eight triangular elements connecting four
replicated points and their appropriate images. Note that after one strain period the unit
cell may be recovered by choosing appropriate images.
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Figure 1: Sketch illustrating the relative motion of the cells in a biperiodic lattice under shear flow.
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Figure 2: Sketch showing a simple example of a unit cell made up of eight triangular elements formed
from joining four points and their appropriate images. After one strain period the original unit cell may
be recovered by choosing appropriate images.

The external shear flow is imposed by the condition that the velocity of the (m, n)
image is given by

u(ximage, yimage) −→ u(x, y) + m(γ̇H, 0), (2)

while all other variables, including those governing polymer microstructure are the same
at each image point. The unit cell is divided into triangular finite elements labelled by
the vertex points. As each vertex moves with the fluid velocity the biperiodic structure
is maintained by the grid connectivity.

3 GOVERNING EQUATIONS

The flow is assumed to be incompressible, isothermal and interialess, so that the equa-
tions of conservation of mass and momentum are given by,

{

∇ · σ = 0
∇ · u = 0,

(3)
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where u is the fluid velocity and σ is stress tensor. For a polymeric fluid the stress is of
the form

σ = −pI + 2µsD + σP , (4)

where p is the pressure, 2µsD is the Newtonian stress due to any low molecular weight
solvent or fast relaxing modes which has a viscosity µs and σP is the viscoelastic com-
ponent. The form of σP is dictated by the choice of constitutive equation. Differential
constitutive equations are of the generic form

σP = G(T), (5)

where T is a set of internal variables describing the microstructure. These variables
evolve as a consequence of the local strain-rate history of the fluid element and so satisfy
an evolution equation of the generic form

DT

Dt
= F(T,∇u). (6)

This is a hyperbolic equation with characteristics given by the particle paths.

4 CONSTITUTIVE EQUATIONS

In this study we consider two particular constitutives equations, the Oldroyd B and
pompom models. The Oldroyd-B model may be derived from the kinetic theory of a
suspension of linear elastic dumbbells [3]. The viscous drag on the molecule is represented
by the drag on the dumbbell ends and the entropic force restoring the molecule to an
equilibrium configuration is represented by a Hookean spring. The polymeric stress σP

is given by
σP = G(A− I), (7)

where G is the elastic modulus and the second rank tensor A is the second moment of the
dumbbell end-to-end vector distribution. The evolution equation for A corresponding to
equation (6) is given by

▽

A= −
1

τ

(

A− I
)

, (8)

where
▽

A=
∂A

∂t
+ u · ∇A −A · ∇u− (∇u)T · A (9)

is the upper convected time derivative of the A, and τ is the relaxation time of the polymer.
In steady shear flow the shear stress in this fluid at steady state is equal to (µs + Gτ)γ̇
so that this fluid has a constant shear viscosity of µs + Gτ . However, it also possesses a
postive normal stress difference N1 = σxx − σyy = 2Gγ̇2τ 2.

This model has three parameters, the solvent viscosity µs, the relaxation time τ and the
elastic modulus G from which we can obtain two dimensionless groups: the Weissenberg
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number We = γ̇τ measures the ratio of the shear-rate to the relaxation rate of the fluid;
and β = Gτ/(µs + Gτ) measures the fraction of the shear viscosity contributed by the
polymer. The limits We → 0 or β → 0 correspond to a Newtonian fluid, while the limit
β = 1 is the upper convected Maxwell model.

Dumbbells models such as the Oldroyd B model ignore intermolecular interactions and
so are strictly only applicable to dilute polymer solutions. In concentrated solutions and
melts the motion of single polymer is constrained by its neighbours, which introduces
new physics into the constitutive equation. A simple model that includes these effects is
the pompom model introduced by McLeish and Larson [12]. We will use the differential
version of the original pompom model, but with the modification introduced by Blackwell
et al [4]. The model is obtained by considering a melt of ‘pompom’ molecules formed by
connecting two q-armed star polymers with a backbone chain. The presence of the branch
points at the ends of the backbone chain inhibits its motion along its tube, so that stretch
and orientation relaxation times of the backbone, τs and τ respectively, are controlled by
the relaxation of the star arms. We shall consider a single pompom mode together with
a solvent term so that

σP = 3Gλ2 A

Tr(A)
. (10)

The tensor A remains given by equation (8) where τ is now the orientation relaxation
time, while the backbone stretch, λ, is given by

Dλ

Dt
=

λ

TrA
A : ∇u−

e2(λ−1)/q

τs
(λ − 1), (11)

up to the maximum stretch, q. We use the same non-dimensionalisation used for the
Oldroyd B model, so that the Weissenberg number is based upon the orientation relaxation
time, τ . We now have two additional dimensionless groups: q, the number of arms and
Wes = Weτs/τ , the Deborah number based upon the stretch relaxation time. This fluid
also has a positive first normal stress difference, but unlike the Oldroyd B model it is
strongly shear-thinning.

5 PARTICLES

The filler particles are assumed to be rigid circular particles that are force and couple
free. Assuming that there is no slip between the filler particles and the matrix the fluid
velocity at the surface of particle i is given by

u = Ui + Ωi × (x − Xi), (12)

where Ui and Ωi are the unknown velocity and angular velocity of the particle. To enforce
these boundary conditions we introduce a surface force density f i(s) around the surface
of the particle i which acts as a Lagrange multiplier to force the fluid inside particle i
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to behave as a rigid solid. The angular velocity Ωi and velocity Ui are found from the
conditions of no net force and torque on each particle,

Fi =

∫

∂Pi

f i ds = 0, (13)

Ti =

∫

∂Pi

(x −Xi) × f i ds = 0. (14)

The average stress in the suspension can be found using the formula given by Batchelor
[2],

< σ >=
1

V

[

∫

Vf

σdVf +
∑

particles

Si

]

(15)

where Vf is the volume of the fluid phase and Si is the particle stresslet from particle i
given by

Si
jk =

1

2

∫

∂Pi

[

(xj − Xj)fk + fj(xk − Xk)ds
]

. (16)

6 NUMERICAL METHOD

The numerical method is based on the split Eulerian-Lagrangian technique of Harlen
et. al.[6]. In this method we first find the fluid velocity and pressure for the current values
of microstructural variables A, λ and positions of the particles. We then step forward in
time to find the new values of A, λ and particle positions.

We follow Glowinski et. al.[5] by using the combined equation of motion to derive the
weak form of the governing equations (3), (12), (13) and (14). The natural combined
velocity spaces for the fluid and particles equations is given by

V = {(v, Vi, ξi)|v ∈ H1(Ω))2, Vi ∈ R
2, ξi ∈ R,

v = Vi + ξi × (x − Xi) in Pi(t), and v biperiodic on ∂Ω},
(17)

In the distributed Lagrange multiplier method the extended weak form for whole domain
can be obtained by removing the constraint (12) from the velocity space and enforcing it
weakly as a side constraint. This is done by introducing a Lagrange multiplier, which can
be interpreted as an additional surface force required to maintain the rigid-body motion
of particle Pi(t). In our methodology the constraints (13) and (14) are used to determine
the unknown Ui and Ωi and therefore they must be incorporate into the final weak form.

For a given finite element mesh, the discretisation of the weak form of equations (3),
(12), (13) and (14) leads to a symmetric indefinite linear system of algebraic equations.
These are solved using a preconditioned conjugate residuals method with block precondi-
tioner of the form suggested by Silvester & Wathen [16].

The microstructure variables A and λ are updated using a first-order time-step in
a frame which is deforming with the fluid. The vertices of the triangles are material
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points and so each triangle is a material volume. Consequently, the fluid strain within
each triangle can be found from its deformation. The sides of the triangles are material
line elements, so they rotate and stretch as co-deforming vectors. Hence we can choose
vectors p, q along two sides of the triangle as base vectors in a codeforming frame. In
these triangle (p,q) coordinates, the components of A and the identity tensor I are given
by

Ã = Q−1A{Q−1}† Ĩ = Q−1{Q−1}† (18)

respectively, where the Q is the transformation matrix from the co-deforming to the
Eulerian frame. In the codeforming frame, the evolution equation (8) for Ã is

dÃ

dt
= −

1

τ

(

Ã − Ĩ
)

. (19)

Thus the constitutive equation is reduced to a simple ordinary differential equation.
A grid which is fixed in the fluid will be distorted by velocity gradients within the fluid,

which will ultimately degrade the accuracy of the finite element solution. To overcome
this without having to resort to introducing an entirely new mesh we employ the following
methods of grid improvement.

1. At each time step the existing nodes are reconnected where necessary to form a
Delaunay triangulation, using an iterative algorithm.

2. Edges shorter than a minimum length are removed by removing one of the nodes.

3. Triangles with areas greater than a maximum area are split by introducing a new
node at the centroid.

4. After any addition or deletion of nodes the Delaunay triangulation is restored by
running the iterative algorithm again.

When particles become close together the minimum length and maximum area measures
in the region between the particles is reduced so as to increase the resolution in this
region. However, even with increased resolution it proves necessary to include a short-
range repulsive force between particles to prevent overlap.

7 RESULTS AND DISCUSSION

The main rheology measurements of interest are the average shear stress < σxy > and
average first normal stress difference < N1 >=< σxx − σyy >. For the Oldroyd B model
we can compare these to the values obtained from the fluid alone by defining the average
relative viscosity as,

η =
< σxy >

(µs + Gτ)γ̇
,
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Figure 3: Comparison of our results for a mesh with 2652 elements and timestep 0.005 to results obtained
by Hwang et. al.( in fig 4 of reference [8]) for We = 0.5 and β = 0.5.

and average relative first normal stress difference coefficient as

Ψ1 =
< σxx − σyy >

2Gτ 2γ̇2
,

so that in the absence of particles both η and Ψ1 tend to unity as t → ∞. We first
consider the case of a single particle of radius r = 0.2 at the centre of a square cell of unit
length. This case was also studied by Hwang et. al.[8] and so provides us with a means
of benchmarking our code. In figure 3 we compare our results for η and Ψ1 to those
obtained by Hwang et. al. for We = 0.5 and β = 0.5. Our results were obtained with
a mesh containing 2652 elements and a timestep of 0.005 and are in excellent agreement
with those published by Hwang.

In figure 4 we show the variation in the results for η and Ψ1 for different values of
the Weissenberg number. For a Newtonian fluid there is an oscillation in the relative
viscosity caused by the periodic variation in the cellular structure. For non-zero Weis-
senberg numbers this is superimposed on the usual viscosity increase at start-up seen
with the Oldroyd fluid. Note that the eventual steady state oscillation is above that of a
Newtonian fluid indicating that the shear viscosity is increasing with Weissenberg num-
ber. This shear-thickening behaviour has been recently reported by Scirocco et. al.[15] for
polystyrene spheres suspended in Boger fluids. (A Boger fluid is a dilute solution of a very
high molecular weight polymer in a highly viscous solvent, producing an viscoelastic fluid
with an almost constant shear viscosity whose rheology is close to that of an Oldroyd B
fluid). The average value of the relative first normal stress difference also increases with
Weissenberg number, while the magnitude of the oscillations decreases. The latter is the
result of the definition of Ψ1 which is inversely proportional to We squared.

The shear-thickening and increases in first normal stress difference with the addition
of particles is a consequence of the way the particles modify the flow field. The velocity
gradient ∇u can be decomposed into the sum of a symmetric strain-rate tensor D and
an anti-symmetric vorticity tensor ζ. In simple shear flow the magnitudes of D and ζ are
equal so that the averages of D and ζ over the whole domain of the fluid plus the particles
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must be equal. However, while the interior of the particles is strain-free the particles are
free to rotate and so the vorticity inside the particles is non-zero. Consequently in order
to maintain the global balance the magnitude of the strain-rate must be larger than the
vorticity in the fluid. This change in the strain-vorticity balance in the fluid has a very
strong influence on the viscoelastic stress, since fluid particles separate exponentially in a
strain-rate dominated flow causing dumbbells to become highly extended.
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Figure 4: Plot of the relative shear viscosity and first normal stress coefficient as a function of strain
γ = γ̇t for an Oldroyd B fluid with β = 0.5 for a particle size of r = 0.2.

A question arises as to whether this transition phenomenon also occurs in other consti-
tutive models, particularly those more appropriate to polymer melts such as the pompom
model. For the pompom model there are no analytic solutions available for the stress in
simple shear flow, so rather than showing the relative viscosity and first normal difference
we will plot the values of < σxy > and < N1 >=< σxx − σyy > relative to the Newtonian
shear stress µsγ̇. To obtain steady state values for these quantities we average over the
period of oscillation after the steady state regime has been established. In figure 5 we
show the average steady state shear and normal stress differences as a function of We
for two different particle radii, r = 0.2 and 0.3 corresponding to particle area fractions
Φ = 0.1257 and Φ = 0.2827 respectively. In this figure we have chosen Gτ = 3µs, q = 2
and Wes = 0.5We. However, we find virtually no effect of the values of q or We/Wes on
the results (for q > 1 and Wes < We). This is because the parameters q and Wes control
the evolution of the backbone stretch, λ, but in this model, unlike the Oldroyd B fluid,
there is little if any molecular extension taking place and in most of the fluid λ is close
to unity.

In contrast to the case of the Oldroyd B fluid, where the greatest increase in viscosity
occurred at high Weissenberg numbers, with the pompom model the largest increase in
viscosity occurs in the Newtonian limit. Also, whereas before we saw an increase in normal
stress difference with the addition of particles for the pompom model this is only true for
Weissenberg numbers less than unity. At higher Weissenberg numbers the normal stress
difference descreases with the addition of particles. The pompom model show the same
qualitative changes in rheology seen in experiments on shear-thinning polymeric fluids (as
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opposed to Boger fluids), which were recently reviewed by Barnes [1].
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Figure 5: Plot of the steady state shear stress < σxy and first normal stress difference < N1 >=<
σxx − σyy > as a function of Weissenberg number for different particle concentrations for the pompom
model with Gτ = 3µs, Wes = 0.5We and q = 2.

A highly desirable objective of these simulations is to find a simple way of accounting
for the effects of adding particles on the fluid rheology. In his review Barnes notes that
the effect of adding particles to a shear-thinning fluid is both to shift the shear viscosity
upwards, but also to shift the onset of shear-thinning to lower shear-rates, so that a
simple vertical shift in viscosity such as that used for suspensions in Newtonian fluids is
insufficient. To overcome this we will attempt to superimpose the data for different values
of Φ by shifting both the viscosity and shear-rate.

As discussed above, the strain-rate within the particles is zero, and so consequently
the average strain-rate in fluid must be larger by a factor of 1/(1−Φ). Thus the effective
Weissenberg number in the fluid is

Weeff =
We

(1 − Φ)
. (20)

If we also divide < σxy > /µsγ̇ by the relative change in viscosity of a Newtonian fluid,
µ(Φ)/µs then we find that the shear stress data for different values of Φ do indeed su-
perimpose, as can be seen in figure 6. This figure also shows the effect of applying the
shear-rate, but not the shear-stress shift, to the first normal stress difference. However,
the superposition is less convincing in this case.

The apparent success of this simple shifting model for the pompom fluid appears to
contradict the results for the Oldroyd model where shear-thickening is observed. While
the Oldroyd B model is very sensitive to the balance between straining and vorticity, the
pompom model is not because it is only velocity gradients in the direction of the backbone
orientation that can produce extension. This is confirmed by our results for other consti-
tutive models that show a distinction in behaviour between dumbbell based constitutive
equations such as the Oldroyd model and tube-theory models like the pompom fluid.
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Figure 6: Plot showing the effect of the shifting the steady state shear stress results of figure 5 using the
effective Weissenberg number defined in equation (20) and scaling the shear viscosity with the relative
change in the Newtonian viscosity. The righthand figure shows the first normal stress difference plotted
against effective Weissenberg number.

8 CONCLUDING REMARKS

Although all the results described in this paper are for a single particle per unit cell we
can also perform simulations with multiple particles per cell. The results for multiparticle
simulations are harder to analyse because the structure is no longer replicated periodically.
However, such simulations can be used to investigate the phenomenon of particle chaining
observed by Lyon et. al.[11]. Intriguingly Scirocco et. al.[14] did not observe chaining in
Boger fluids, but only in shear-thinning fluids. Our numerical method can also be used
to study the rheology of suspensions under planar extensional flow, by using the spatially
periodic lattice structure of Kraynik and Reinelt [9]. Work on both these fronts is cur-
rently underway. It is also possible to extend this method to non-rigid filler particles such
as elastic particles or droplets. The current method is however limited to two dimensional
simulations while the real systems are three-dimensional. Fully three-dimensional calcu-
lations are challenging but may be necessary particularly for investigating interactions
between particles such as those responsible for chaining.
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