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Abstract: Proper monitoring of large complex spatially critical infrastructures often requires
a sensor network capable of inferring the state of the system. Such networks enable the design
of distributed estimators considering only local (partial) measurements, local communication
capabilities with nearby sensors, as well as the system model. Solutions often assume perfect
knowledge of the system model, and white process and measurement noise, which are limiting
in engineering settings. In this paper, we consider the minimum energy setting where the model
uncertainty and process and measurement noises are bounded but unknown. We provide the
first distributed minimum energy estimator for discrete-time linear time-invariant systems, and
we show that the error dynamics is input-to-state stable. Lastly, we illustrate the performance
in some pedagogical examples, and compare the performance with respect to the centralized
implementation of the minimum energy estimator.
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1. INTRODUCTION

Large-scale dynamical systems, such as power networks
(Xie et al., 2012), increasingly have many distributed sen-
sors and actuators that need to communicate to estimate
the global state of the system and regulate it, respectively.
In the presence of a central coordination unit that receives
information from all the sensors, the global state of the
system can be estimated (provided that certain certain
conditions are met). This is called centralized state esti-
mation, or simply state estimation (Rego et al., 2019).

The problem with centralized state estimation in large
complex spatially critical infrastructures is that they of-
ten require the aid of a wireless sensor network where
sensors are located at relatively large distances from each
other, and wireless communication is costly, privacy sen-
sitive, and possibly prone to errors (Kar and Moura,
2013). To address these challenges, we need a different
approach, namely distributed estimation. This method
aims to asymptotically reconstruct the centralized state
estimate at each sensor using solely its own measurements
and limited information from neighbouring sensors (Mitra
and Sundaram, 2018).

Typically, distributed approaches are based on central-
ized estimation approaches such as Kalman filters and
Luenberger observers for systems under stochastic noise or
noiseless processes, respectively (Rego et al., 2019). These
approaches are often adapted by integrating a consensus
protocol that reaches agreement on measurements or esti-
mates while simultaneously performing a filter update on
the state estimate. In particular, we are interested in single
time-scale filters that minimize the communication load.

Under certain assumptions on the noise, the Kalman filter
offers an optimal (i.e., minimum variance) estimate of the
state according to the conditional maximum likelihood.
Distributed Kalman filtering schemes have been studied
extensively, see for instance Khan et al. (2010), Kar and
Moura (2013), Olfati-Saber (2007), and Mosquera and
Jayaweera (2008). Nevertheless, the use of Kalman filter
requires the use of exact descriptions of the system model
and the knowledge of the statistical characterization of
the white noise describing the process disturbances and
measurement noises. As such, hereafter we adhere with a
setting where the model uncertainty (as long it is bounded)
can be captured as part of the process and measurement
errors, and refrains from any statistical assumptions.

A possible approach is to consider a minimum energy esti-
mator. The earliest references to the minimum energy type
estimators are made by Mortensen (1968) and Swerling
(1971), where they propose a recursive solution to the
state estimation problem without the use of any statis-
tical concepts. Later, Willems (2004) argues for the use
of the deterministic interpretation over the probabilistic
one, suggesting that it is more pragmatic as it avoids any
claims of knowledge on the statistical properties of the
uncertainty in a model. Simply said, there are only few
applications for which one could justify any sort of precise
knowledge on the distribution of the noise.

Up until recently, studies on the minimum energy esti-
mator have upheld the assumption that the discrete-time
version of the estimator follows from the continuous-time
version straightforwardly, without any additional deriva-
tion. However, recently, Buchstaller et al. (2021) has ar-
gued that this is not the case. In their work they pro-
vide an alternative comprehensive proof that establishes a
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mator have upheld the assumption that the discrete-time
version of the estimator follows from the continuous-time
version straightforwardly, without any additional deriva-
tion. However, recently, Buchstaller et al. (2021) has ar-
gued that this is not the case. In their work they pro-
vide an alternative comprehensive proof that establishes a
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1. INTRODUCTION

Large-scale dynamical systems, such as power networks
(Xie et al., 2012), increasingly have many distributed sen-
sors and actuators that need to communicate to estimate
the global state of the system and regulate it, respectively.
In the presence of a central coordination unit that receives
information from all the sensors, the global state of the
system can be estimated (provided that certain certain
conditions are met). This is called centralized state esti-
mation, or simply state estimation (Rego et al., 2019).

The problem with centralized state estimation in large
complex spatially critical infrastructures is that they of-
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sensors are located at relatively large distances from each
other, and wireless communication is costly, privacy sen-
sitive, and possibly prone to errors (Kar and Moura,
2013). To address these challenges, we need a different
approach, namely distributed estimation. This method
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estimate at each sensor using solely its own measurements
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and Sundaram, 2018).

Typically, distributed approaches are based on central-
ized estimation approaches such as Kalman filters and
Luenberger observers for systems under stochastic noise or
noiseless processes, respectively (Rego et al., 2019). These
approaches are often adapted by integrating a consensus
protocol that reaches agreement on measurements or esti-
mates while simultaneously performing a filter update on
the state estimate. In particular, we are interested in single
time-scale filters that minimize the communication load.

Under certain assumptions on the noise, the Kalman filter
offers an optimal (i.e., minimum variance) estimate of the
state according to the conditional maximum likelihood.
Distributed Kalman filtering schemes have been studied
extensively, see for instance Khan et al. (2010), Kar and
Moura (2013), Olfati-Saber (2007), and Mosquera and
Jayaweera (2008). Nevertheless, the use of Kalman filter
requires the use of exact descriptions of the system model
and the knowledge of the statistical characterization of
the white noise describing the process disturbances and
measurement noises. As such, hereafter we adhere with a
setting where the model uncertainty (as long it is bounded)
can be captured as part of the process and measurement
errors, and refrains from any statistical assumptions.

A possible approach is to consider a minimum energy esti-
mator. The earliest references to the minimum energy type
estimators are made by Mortensen (1968) and Swerling
(1971), where they propose a recursive solution to the
state estimation problem without the use of any statis-
tical concepts. Later, Willems (2004) argues for the use
of the deterministic interpretation over the probabilistic
one, suggesting that it is more pragmatic as it avoids any
claims of knowledge on the statistical properties of the
uncertainty in a model. Simply said, there are only few
applications for which one could justify any sort of precise
knowledge on the distribution of the noise.

Up until recently, studies on the minimum energy esti-
mator have upheld the assumption that the discrete-time
version of the estimator follows from the continuous-time
version straightforwardly, without any additional deriva-
tion. However, recently, Buchstaller et al. (2021) has ar-
gued that this is not the case. In their work they pro-
vide an alternative comprehensive proof that establishes a

minimum energy formulation for discrete-time linear time-
invariant (LTI) systems.

That said, whereas a distributed minimum energy esti-
mator was proposed by Zamani and Ugrinovskii (2014)
for continuous-time case LTI systems, to the best of the
author’s knowledge, there are currently no existing results
and studies on the derivation and application of a dis-
tributed minimum energy estimator for discrete-time LTI
systems.

The contribution of this paper is as follows: we propose
a distributed minimum energy estimator. Additionally, we
show that it converges to the centralized state estimate
with bounded error under mild conditions, i.e., the error
dynamics are input-to-state stable (ISS).

The rest of the paper is structured as follows. In Section 2,
we introduce the problem statement and the concept of
minimum energy estimation and its recursive formulation
for a centralized problem. Subsequently, in Section 3, we
firstly implement a consensus protocol in combination with
the minimum energy recursion to obtain a distributed
algorithm. Secondly, we show that the error dynamics are
stable and the estimates converge to within the neighbour-
hood of the true state. Finally, in Section 4, we provide a
simulated example to show the convergence of the estima-
tor.

2. PROBLEM STATEMENT

Consider a large-scale dynamical system with spatially
distributed sensors where each sensor is able to monitor a
subset of the states of the system at all times (see Fig. 1).

Specifically, consider a discrete-time LTI system

xk+1 = Axk +Bdwk, (1a)

yk = Cxk + vk, (1b)

where A ∈ Rm×m, Bd ∈ Rm×nw , and C ∈ Rny×m.
Moreover, in contrast to the approach taken in much
of the literature on distributed estimation, we do not
state any assumptions on the stochastic nature of the
disturbances on the system. Instead, we simply assume
that the input and output disturbances, wk ∈ Rm and vk ∈
Rn respectively, are unknown, bounded, and deterministic.

2.1 Minimum energy estimation

Minimum energy estimation involves finding the most
probable state trajectory based on measurements by min-
imizing the unknown disturbances through a weighted
least-squares. Specifically, let us define a weighted least-
squares objective for k ∈ [0, τ ],

J(τ, x0, w
τ
0 , v

τ
0 ) = ||x0 − x̂0||2Σ−1

0

+

τ∑
k=0

(
||wk||2Q−1 + ||vk||2R−1

)
,

(2)

for which we seek a minimal solution (x̃0, w̃
τ
0 , ṽ

τ
0 ) that

defines the trajectory x̃τ
0 (i.e., the evolution of the state

xk over the interval [0, τ ]). This trajectory is the minimum
energy trajectory compatible with data yk (Zamani and
Ugrinovskii (2014)).

The problem of minimizing (2) is a quadratic program
that grows in complexity as time progresses. Therefore,

Fig. 1. A schematic illustration of a communication graph
with six nodes (numbered circles) and six edges (blue
arrows) and its interaction with the dynamical sys-
tem.

minimum energy estimation seeks a recursive algorithm
to reduce the computational complexity. In continuous-
time, the recursion for the minimum energy estimator
is obtained using Hamilton-Jacobi theory, see Mortensen
(1968). As previously argued, the discrete-time mini-
mum energy does not follow straightforwardly from the
continuous-time version. Yet, there exists also a recursive
algorithm to compute x̃τ

0 which we present in the next
result.

Theorem 1. (Buchstaller et al. (2021)). Consider the sys-
tem described in (1), and let the current state estimate
of the system, corresponding to the solution of (2), be
denoted by xk|k−1. Then, the discrete-time recursion can
be described as

xk+1|k = Axk|k−1 +Kk(yk − Cxk|k−1), (3)

with
Kk = Σk|k−1C

⊺
[
CΣk|k−1C

⊺ +R
]−1

, (4)

and recursively updates the intensity gain matrix, Σ, by

Σk|k = (I −KkC)Σk|k−1,

Σk+1|k = AΣk|kA
⊺ +BdQB⊺

d ,
(5)

where the remaining matrices have appropriate dimen-
sions.

2.2 Distributed setting: wireless sensor network and
communication graph

The result from Theorem 1 applies only to single entity
systems that collect measurements centrally as in (1b). We
assume that gathering all sensor information by a central
coordinator is not possible, or undesirable. Therefore,
in the design of our estimator we want to employ a
wireless sensor network to allow communication between
neighbouring sensors. We would like each sensor to be able
to infer the global state (i.e., all states) of the system
in order to provide any local controllers with sufficient
information about the system.

Therefore, we assume a wireless sensor network where each
sensor (or, agent) collects the following set of measure-
ments:

yik = Cixk + vik, i = 1, . . . , n. (6)
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for continuous-time case LTI systems, to the best of the
author’s knowledge, there are currently no existing results
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with bounded error under mild conditions, i.e., the error
dynamics are input-to-state stable (ISS).
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for a centralized problem. Subsequently, in Section 3, we
firstly implement a consensus protocol in combination with
the minimum energy recursion to obtain a distributed
algorithm. Secondly, we show that the error dynamics are
stable and the estimates converge to within the neighbour-
hood of the true state. Finally, in Section 4, we provide a
simulated example to show the convergence of the estima-
tor.
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Consider a large-scale dynamical system with spatially
distributed sensors where each sensor is able to monitor a
subset of the states of the system at all times (see Fig. 1).

Specifically, consider a discrete-time LTI system

xk+1 = Axk +Bdwk, (1a)

yk = Cxk + vk, (1b)

where A ∈ Rm×m, Bd ∈ Rm×nw , and C ∈ Rny×m.
Moreover, in contrast to the approach taken in much
of the literature on distributed estimation, we do not
state any assumptions on the stochastic nature of the
disturbances on the system. Instead, we simply assume
that the input and output disturbances, wk ∈ Rm and vk ∈
Rn respectively, are unknown, bounded, and deterministic.

2.1 Minimum energy estimation

Minimum energy estimation involves finding the most
probable state trajectory based on measurements by min-
imizing the unknown disturbances through a weighted
least-squares. Specifically, let us define a weighted least-
squares objective for k ∈ [0, τ ],

J(τ, x0, w
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0 ) = ||x0 − x̂0||2Σ−1
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+
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(
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)
,

(2)

for which we seek a minimal solution (x̃0, w̃
τ
0 , ṽ

τ
0 ) that

defines the trajectory x̃τ
0 (i.e., the evolution of the state

xk over the interval [0, τ ]). This trajectory is the minimum
energy trajectory compatible with data yk (Zamani and
Ugrinovskii (2014)).

The problem of minimizing (2) is a quadratic program
that grows in complexity as time progresses. Therefore,
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minimum energy estimation seeks a recursive algorithm
to reduce the computational complexity. In continuous-
time, the recursion for the minimum energy estimator
is obtained using Hamilton-Jacobi theory, see Mortensen
(1968). As previously argued, the discrete-time mini-
mum energy does not follow straightforwardly from the
continuous-time version. Yet, there exists also a recursive
algorithm to compute x̃τ

0 which we present in the next
result.

Theorem 1. (Buchstaller et al. (2021)). Consider the sys-
tem described in (1), and let the current state estimate
of the system, corresponding to the solution of (2), be
denoted by xk|k−1. Then, the discrete-time recursion can
be described as

xk+1|k = Axk|k−1 +Kk(yk − Cxk|k−1), (3)

with
Kk = Σk|k−1C

⊺
[
CΣk|k−1C

⊺ +R
]−1

, (4)

and recursively updates the intensity gain matrix, Σ, by

Σk|k = (I −KkC)Σk|k−1,

Σk+1|k = AΣk|kA
⊺ +BdQB⊺

d ,
(5)

where the remaining matrices have appropriate dimen-
sions.

2.2 Distributed setting: wireless sensor network and
communication graph

The result from Theorem 1 applies only to single entity
systems that collect measurements centrally as in (1b). We
assume that gathering all sensor information by a central
coordinator is not possible, or undesirable. Therefore,
in the design of our estimator we want to employ a
wireless sensor network to allow communication between
neighbouring sensors. We would like each sensor to be able
to infer the global state (i.e., all states) of the system
in order to provide any local controllers with sufficient
information about the system.

Therefore, we assume a wireless sensor network where each
sensor (or, agent) collects the following set of measure-
ments:

yik = Cixk + vik, i = 1, . . . , n. (6)
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Additionally, each sensor also has communication capa-
bilities and can communicate with a set of neighbouring
sensors. We consider the wireless sensor network repre-
sented by a connected directed graph G = (N,E) with
nodes N = {1, . . . , n} and edges E ⊆ N × N . Fig. 1
depicts the interaction of the communication graph with
the dynamical system.

Therefore, the problem we seek to address in this paper is
as follows:

Problem statement: Determine a distributed solution to
the minimum energy estimator problem for discrete-time
linear time-invariant system described in (1a), where mea-
surements are collected by different agents as in (6) who
are capable of exchanging data with their neighbors de-
fined by the communication graph G.

Notice that the original measurement equation from (1b)
can be recovered when we consider yk = [y1k, . . . , y

n
k ]

⊺,
C = [C⊺

1 , . . . , C
⊺
n]

⊺, and R = diag(R1, . . . , Rn). Denote
the estimate of xk ∈ Rm at node i using xi

k|k. Then, xk|k

now denotes the stacked vector of xi
k|k, for i = 1, . . . , n.

Furthermore, we do not require that (A,Ci) is observable
(or even detectable), only that the centralized system (i.e.,
if all measurements are collected by a central coordinator)
is detectable. Hence, we explicitly state the assumption
that is required to ensure asymptotic stability of the
estimator error dynamics and boundedness of Σ (Anderson
and Moore, 2012).

Assumption 1. The system (A,C) is detectable. Specifi-
cally, this means that

rank(


λiI −A

C


) = m, if |λi| ≥ 1. (7)

Furthermore, if G is directed, we must also have that
the subsystem associated with each source component is
detectable. For a given G = (N,E), a source component
(Ns, Es) is a strongly connected component for which there
exist no edges from the nodes in N \ Ns to those in Ns

(Mitra and Sundaram, 2018).

The proposed solution is presented in the next section.

3. DISCRETE-TIME LINEAR TIME-INVARIANT
DISTRIBUTED MINIMUM ENERGY ESTIMATOR

Firstly, we apply the theory of discrete-time minimum
energy estimation and distributed estimation to obtain
a distributed version of the minimum energy estimator,
given in Algorithm 1. Secondly, we show that the proposed
implementation works by showing that the error dynamics
satisfy input-to-state stability assumptions. Specifically,
in Theorem 2, we provide bounds on the error between
centralized and distributed implementations.

3.1 Distributed minimum energy recursion

The discrete-time static consensus iteration is formulated
by

xk+1 = Pxk, (8)

where P = I − ϵL is the Perron matrix. Here, ϵ ∈
(0, 1/∆) is the discretization step-size, and ∆ represents

the maximum degree of G (Olfati-Saber et al., 2007).
The matrix P is irreducible and stochastic. The condition
ϵ < 1/∆ is necessary to ensure that the largest eigenvalue
of P has modulus 1.

In particular, we consider a distributed recursive esti-
mation algorithm that follows a single time-scale com-
munication scheme that requires only a single consensus
update step at each iteration of the estimator update,
drawing inspiration from works such as Khan et al. (2010),
Kar and Moura (2013), and Xie et al. (2012) that focus
on distributed Kalman filter solutions. Specifically, we
propose the following discrete-time linear time-invariant
distributed minimum energy estimator.

First, the estimator update as a weighted combination of
a consensus step and an innovation update is formulated
by

xi
k+1|k = ak


j∈Ni

wij

×


xj

k|k−1 + bk

l∈Nj

C⊺
l R

−1
l (ylk − Clx

j
k|k−1)


 ,

(9)

where ak, bk > 0 are potentially time-varying weights
that relate to the system dynamics and the confi-
dence in local estimate, respectively. The weights wij

are part of consensus (Perron) matrix P = {wij} and
Ni := {j ∈ N : (j, i) ∈ E}.
To this end, we introduce a distributed recursive scheme
to update locally the state estimate based on exchange of
measurements and estimates. The estimation scheme that
we adopt to solve the problem is described in Algorithm 1.
Within the algorithm, we briefly describe the steps taken
to compute the estimate.

Algorithm 1 Estimation scheme

1: for each agent i ∈ N do:
2: Initialize xi

0|0 = x̂0 and Σi
0|0 = Σ0.

3: Predict

Σi
k|k−1 = AΣi

k−1|k−1A
⊺ +BdQB⊺

d ,

xi
k|k−1 = Axi

k−1|k−1.
(10)

4: Exchange CiR
−1
i yik and CiR

−1
i Ci with all j ∈ Ni.

5: Estimate

ψi
k|k = xi

k|k−1 +Σi
k|k(s

i
k − Si

kx
i
k|k−1), (11)

where ψ is a local estimate and

Si
k =


j∈Ni

C⊺
j R

−1
j Cj , sik =


j∈Ni

C⊺
j R

−1
j yjk,

and Σi
k|k =


(Σi

k|k−1)
−1 + Si

k

−1

.

6: Exchange local estimates ψi
k|k with all j ∈ Ni.

7: Consensus

xi
k|k =


j∈Ni

wijψ
j
k|k. (12)

8: end for

Remark 1. We have opted to go for a separation between
the estimator update in (11) and the consensus update in
(12), rather than a combined consensus and innovation

approach used in Khan et al. (2010), Kar and Moura
(2013), and Xie et al. (2012), which can be described by

xi
k+1|k = ak

∑
j∈Ni

wijx
j
k|k−1

+ bk
∑
j∈Ni

C⊺
j R

−1
j (yjk − Cjx

i
k|k−1).

(13)

While this approach may be more convenient for com-
munication and simplicity, it has negative impact on the
stability of the error dynamics compared to the adopted
method. In other words, the error dynamics of the method
from (13) are more likely to have eigenvalues larger than 1
in absolute value compared to the separate update result-
ing in (9). This is likely due to the extended propagation
of information that occurs in (9) by having a separate
instance of communication. Consequently, when consensus
is performed, the agent has access to a more accurate
representation of the state, resulting in a better estimate.
Nonetheless, this observation requires further investigation
that lies outside the scope of the present paper. ◦
Next, we discuss notions of stability which ensure that
the minimum energy estimator converges within the neigh-
bourhood of the optimal solution.

3.2 Error analysis

First, we rewrite (11) using the matrix inversion lemma.

Let us consider a vector Ci = col(Cj)j∈Ni
∈ Rnyni×m,

diagonal matrix Ri = diag(Rj)j∈Ni
, and combined mea-

surement vector yi
k = col(yjk)j∈Ni

. Then, the measurement
and consensus update equations for a single agent are

Ki
k = Σi

k|k−1C
⊺
i

[
CiΣ

i
k|k−1C

⊺
i +Ri

]−1

,

Σi
k|k = Σi

k|k−1 −Ki
kCiΣ

i
k|k−1,

xi
k|k =

∑
j∈Ni

wij

[
xj
k|k−1 +Kj

k(y
j
k −Cjx

j
k|k−1)

]
.

(14)

Note that we study the expression in this form solely for
analysis of the error, hence, we are able to use information
here (i.e., Ci,Ri, and yi

k) that is not available to a single
agent at each time instance.

Subsequently, let us define xk|k = col(xi
k|k)i∈N ∈ Rmn,

yk = col(yi
k)i∈N ∈ Rnyn, Kk = blkdiag(Ki

k)i∈N , C =
blkdiag(Ci)i∈N ∈ Rnynin×mn, and R = blkdiag(Ri)i∈N ∈
Rnynin×nynin. Furthermore, we define the consensus ma-
trix P = I − ϵL. This results in the combined update step

xk|k = (P ⊗ Im)
[
xk|k−1 +Kk(yk −Cxk|k−1)

]
. (15)

Then, we can describe the error dynamics at all agents as

ek+1 = (1n ⊗ xk+1)− xk+1|k,

ek+1 = (In ⊗A)(1n ⊗ xk) + (In ⊗Bd)(1n ⊗ wk)

− (P ⊗A)
[
xk|k−1 +Kk(yk −Cxk|k−1)

]
,

ek+1 = (P ⊗A)ek + (Imn − P ⊗ Im)(1n ⊗ xk)

+ (In ⊗Bd)(1n ⊗ wk)

− (P ⊗A)Kk

(
Cxk1n + vk −Cxk|k−1

)
,

(16)

where the term (Imn − P ⊗ Im)(1n ⊗ xk) = 0. Finally, we
express the dynamics of the error as a linear time-varying
system as follows:

ek+1 = Fkek +Gkdk, (17)

with

Fk = (P ⊗A)(I −KkC),

Gk = [In ⊗Bd, −(P ⊗A)Kk] , and

dk =

[
1n ⊗ wk

vk

]
.

3.3 Time-invariance of the estimator

Due to the time-varying component of the system matri-
ces Fk and Gk, we cannot use straightforward stability
arguments applicable to LTI systems. Results on stability
for time-varying systems exist but are generally complex
(Anderson and Moore, 2012). Therefore, we formulate a
time-invariant notion of stability for the error dynamics of
the minimum energy estimator.

First, we proceed with two results before giving a formal
definition of stability.

Proposition 1. For any A,Bd, and C satisfying Assump-
tion 1, and for any Σ0 ≥ 0, we have that

lim
k→∞

Σk+1|k = Σ̄, (18)

where Σ̄ is constant and independent of Σ0, and Σk+1|k
follows the recursion from (10).

Proof. Following the analysis in Anderson and Moore
(2012), page 78, we can readily obtain the result in Propo-
sition 1. In short, the result is derived by showing that for
an arbitrary Σ0, any subsequent Σk|k−1 is bounded for all
k. Under global detectablility of (A,C), there exists a sub-
optimal estimator with gain Ks for which ρ(F s) < 1. The
stability of the suboptimal estimator implies boundedness
of the solution on Σs

k|k−1. If we compare the suboptimal

estimator with the optimal estimator with the same ini-
tial values, we must have that the optimal estimator is
bounded by Σs

k|k−1 ≥ Σk|k−1 ≥ 0. Secondly, one can prove

by induction that Σk|k−1 is monotonically increasing by
keeping fixed initial conditions but shifting backwards the
initial time. Together, these results imply that the Riccati
equation has a steady state solution. ◦

The second result requires that the matrix Fk is stable
in the limit. Using Proposition 1, we define time-invariant
matrices F and G for which we substitute in a constant
intensity gain matrix K which is the limiting solution of
the recursive update Kk from (14).

Additionally, building upon the results in Khan et al.
(2010), we can readily obtain the following proposition.

Proposition 2. For any estimator that satisfies Proposi-
tion 1, such that F = (P ⊗ A)(I − KC) with K =

Σ̄C⊺
[
CΣ̄C⊺ +R

]−1
, the nominal error dynamics from

(17) are asymptotically stable if matrices A and P are
contained in the set

S := {A,P : ρ(F ) < 1}. (19)

Proof. For a constant Σ̄, we have a constant K gain.
Hence, the internal dynamics of the error can be described
by a LTI system with F = (P ⊗A)(I−KC). Thus, any A



	 M. Sibeijn  et al. / IFAC PapersOnLine 56-2 (2023) 3856–3861	 3859

approach used in Khan et al. (2010), Kar and Moura
(2013), and Xie et al. (2012), which can be described by

xi
k+1|k = ak

∑
j∈Ni

wijx
j
k|k−1

+ bk
∑
j∈Ni

C⊺
j R

−1
j (yjk − Cjx

i
k|k−1).

(13)

While this approach may be more convenient for com-
munication and simplicity, it has negative impact on the
stability of the error dynamics compared to the adopted
method. In other words, the error dynamics of the method
from (13) are more likely to have eigenvalues larger than 1
in absolute value compared to the separate update result-
ing in (9). This is likely due to the extended propagation
of information that occurs in (9) by having a separate
instance of communication. Consequently, when consensus
is performed, the agent has access to a more accurate
representation of the state, resulting in a better estimate.
Nonetheless, this observation requires further investigation
that lies outside the scope of the present paper. ◦
Next, we discuss notions of stability which ensure that
the minimum energy estimator converges within the neigh-
bourhood of the optimal solution.

3.2 Error analysis

First, we rewrite (11) using the matrix inversion lemma.

Let us consider a vector Ci = col(Cj)j∈Ni
∈ Rnyni×m,

diagonal matrix Ri = diag(Rj)j∈Ni
, and combined mea-

surement vector yi
k = col(yjk)j∈Ni

. Then, the measurement
and consensus update equations for a single agent are

Ki
k = Σi

k|k−1C
⊺
i

[
CiΣ

i
k|k−1C

⊺
i +Ri

]−1

,

Σi
k|k = Σi

k|k−1 −Ki
kCiΣ

i
k|k−1,

xi
k|k =

∑
j∈Ni

wij

[
xj
k|k−1 +Kj

k(y
j
k −Cjx

j
k|k−1)

]
.

(14)

Note that we study the expression in this form solely for
analysis of the error, hence, we are able to use information
here (i.e., Ci,Ri, and yi

k) that is not available to a single
agent at each time instance.

Subsequently, let us define xk|k = col(xi
k|k)i∈N ∈ Rmn,

yk = col(yi
k)i∈N ∈ Rnyn, Kk = blkdiag(Ki

k)i∈N , C =
blkdiag(Ci)i∈N ∈ Rnynin×mn, and R = blkdiag(Ri)i∈N ∈
Rnynin×nynin. Furthermore, we define the consensus ma-
trix P = I − ϵL. This results in the combined update step

xk|k = (P ⊗ Im)
[
xk|k−1 +Kk(yk −Cxk|k−1)

]
. (15)

Then, we can describe the error dynamics at all agents as

ek+1 = (1n ⊗ xk+1)− xk+1|k,

ek+1 = (In ⊗A)(1n ⊗ xk) + (In ⊗Bd)(1n ⊗ wk)

− (P ⊗A)
[
xk|k−1 +Kk(yk −Cxk|k−1)

]
,

ek+1 = (P ⊗A)ek + (Imn − P ⊗ Im)(1n ⊗ xk)

+ (In ⊗Bd)(1n ⊗ wk)

− (P ⊗A)Kk

(
Cxk1n + vk −Cxk|k−1

)
,

(16)

where the term (Imn − P ⊗ Im)(1n ⊗ xk) = 0. Finally, we
express the dynamics of the error as a linear time-varying
system as follows:

ek+1 = Fkek +Gkdk, (17)

with

Fk = (P ⊗A)(I −KkC),

Gk = [In ⊗Bd, −(P ⊗A)Kk] , and

dk =

[
1n ⊗ wk

vk

]
.

3.3 Time-invariance of the estimator

Due to the time-varying component of the system matri-
ces Fk and Gk, we cannot use straightforward stability
arguments applicable to LTI systems. Results on stability
for time-varying systems exist but are generally complex
(Anderson and Moore, 2012). Therefore, we formulate a
time-invariant notion of stability for the error dynamics of
the minimum energy estimator.

First, we proceed with two results before giving a formal
definition of stability.

Proposition 1. For any A,Bd, and C satisfying Assump-
tion 1, and for any Σ0 ≥ 0, we have that

lim
k→∞

Σk+1|k = Σ̄, (18)

where Σ̄ is constant and independent of Σ0, and Σk+1|k
follows the recursion from (10).

Proof. Following the analysis in Anderson and Moore
(2012), page 78, we can readily obtain the result in Propo-
sition 1. In short, the result is derived by showing that for
an arbitrary Σ0, any subsequent Σk|k−1 is bounded for all
k. Under global detectablility of (A,C), there exists a sub-
optimal estimator with gain Ks for which ρ(F s) < 1. The
stability of the suboptimal estimator implies boundedness
of the solution on Σs

k|k−1. If we compare the suboptimal

estimator with the optimal estimator with the same ini-
tial values, we must have that the optimal estimator is
bounded by Σs

k|k−1 ≥ Σk|k−1 ≥ 0. Secondly, one can prove

by induction that Σk|k−1 is monotonically increasing by
keeping fixed initial conditions but shifting backwards the
initial time. Together, these results imply that the Riccati
equation has a steady state solution. ◦

The second result requires that the matrix Fk is stable
in the limit. Using Proposition 1, we define time-invariant
matrices F and G for which we substitute in a constant
intensity gain matrix K which is the limiting solution of
the recursive update Kk from (14).

Additionally, building upon the results in Khan et al.
(2010), we can readily obtain the following proposition.

Proposition 2. For any estimator that satisfies Proposi-
tion 1, such that F = (P ⊗ A)(I − KC) with K =

Σ̄C⊺
[
CΣ̄C⊺ +R

]−1
, the nominal error dynamics from

(17) are asymptotically stable if matrices A and P are
contained in the set

S := {A,P : ρ(F ) < 1}. (19)

Proof. For a constant Σ̄, we have a constant K gain.
Hence, the internal dynamics of the error can be described
by a LTI system with F = (P ⊗A)(I−KC). Thus, any A
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and P that ensure that the spectral radius of F is smaller
than one, implies that the system driven by F is globally
asymptotically stable at zero (0-GAS). ◦

3.4 Input-to-state stability

In the previous section, we show that the error dynamics
are asymptotically stable at zero. However, due to the
deterministic assumptions on the disturbance, we cannot
guarantee convergence to zero in general. Hence, the
notion of input-to-state stability (ISS) can be used to
define the bound on the error.

To this end, we can say that the error dynamics are
asymptotically ISS if and only if Proposition 1 and Propo-
sition 2 (0-GAS) hold, and the asymptotic gain property
is satisfied, i.e., there is some γ ∈ K∞ such that:

lim
k→+∞

|ek| ≤ γ(||dk||∞), ∀e0, dk, k ∈ N. (20)

Due to nominal stability of the dynamics, the error will
converge to a neighborhood around the origin, with the
bound depending on the disturbance. Therefore, we can
find γ as a function of the disturbance.

Now that we have formulated the notion of ISS, we can use
it to specify the bounds on the error between distributed
estimates, as well as between any distributed estimate and
the centralized estimate.

Theorem 2. Considering the distributed implementation
of the minimum energy estimator provided in Algorithm 1,
the following ISS expression for the error between any local
state estimate holds:

lim
k→+∞

|ϵijk | ≤ γi(||dik||∞) + γj(||djk||∞),

∀ϵ0, dik, d
j
k, k ∈ N, i, j ∈ N, γi, γj ∈ K∞.

(21)

Similarly, we can use an identical argument to show that
the error between the centralized estimate and any local
distributed estimate is bounded in the limit by

lim
k→+∞

|ϵcjk | ≤ γc(||dck||∞) + γj(||djk||∞),

∀ϵ0, dck, d
j
k, k ∈ N, j ∈ N, γc, γj ∈ K∞.

(22)

Proof. We define the error between two estimates to be

ϵijk = xi
k|k−1 − xj

k|k−1, i, j ∈ N, j ̸= i. (23)

On the other hand, we know that the error with respect
to the true state is

eik = xk − xi
k|k−1, i ∈ N, (24)

as defined in (16). Therefore, we can substitute (24) into
(23) to get the following expression:

ϵijk = ejk − eik. (25)

From this result, it follows straightforwardly that

|ϵijk | ≤ max(|ejk|+ |eik|). (26)

Replacing the local estimate i with the estimate of the
centralized solution and applying the exact same reasoning
results in

|ϵcjk | ≤ max(|ejk|+ |eck|). (27)

Therefore, equations (21) and (22) from Theorem 2 follow
readily from (26) and (27), respectively, by substituting in
(20). This concludes the proof. ◦

Ultimately, we have defined a notion of input-to-state
stability for the error between the distributed estimate
and the true state, the error between the consensus error
(i.e., the error between estimates), and the error between
the centralized and distributed estimates. As expected, the
bounds on the error dynamics depend on the size of the
unknown disturbances acting on the system.

4. EXAMPLE

Consider a system with dynamics according to (1a) with
m = 11, and measurements according to (6) with n = 6.
Firstly, we generate an A matrix with a specific diagonal
structure with three sparsely connected subsystems,

A =


A11 0 0
0 A22 A23

A31 0 A33


. (28)

Entries of Aii are generated by placing a set of randomly
generating poles using the MATLAB place command. We
set the eigenvalues to be γ1(A11) = 1.05, γ1,2(A22) = 0.9±
0.5i, and all others |γj(Aii)| < 1. For reference, the full A
matrix is given here:




1.57 −0.36 0.28 0 0 0 0 0 0 0 0

2.18 −0.675 0.6 0 0 0 0 0 0 0 0

0.74 −0.78 0.7 0 0 0 0 0 0 0 0

0 0 0 0.998 −1.6 −0.16 3.0 −0.46 0 0 0

0 0 0 0.76 −0.3 1.05 3.03 −2.02 0 0 −0.03

0 0 0 1.29 −0.815 1.38 1.41 −1.38 0 0 0

0 0 0 0.33 −0.53 0.07 1.32 −0.3 0 0 0

0 0 0 1.68 −1.37 0.83 1.58 −1.15 0 0 0

0 0 0 0 0 0 0 0 0.68 0.05 0.005

0.115 0 0 0 0 0 0 0 0 0.21 0

0 0 0 0 0 0 0 0 0 0 0.265




  
A

.

Remark 2. This specific structure is chosen because it
allows us to create a dynamical system for which (A,C)
is detectable but not observable, and such that (A,Ci)
is not locally detectable for any i. Specifically, by keeping
A12 = A21 = 0, any node that measures a state related to a
subsystem A11 or A22 will not be able to observe any states
from the other subsystems. Hence, those nodes cannot
have local detectability as A11 and A22 both contain at
least one unstable mode. Furthermore, we ensure that the
entire system is not globally observable because there is no
node that measures any states represented in A33. That
said, since A33 is stable, all the unobservable modes will
vanish, rendering the system (A,C) detectable. As a result,
under specific conditions on matrices A31 and A23 we have
the desired properties for our matrix. ◦

4.1 Network

We consider a circularly shaped network represented by a
strongly connected directed graph G = (N,E) with nodes
N = {1, . . . , n} and edges E ⊆ N × N . Each node is
connected with a neighbour in an ascending order (i.e,
node 1 connects to node 2, node 2 connects to node 3).
The circle is closed by connecting node 6 to node 1, see
Fig. 1 for a schematic depiction. Each nodes measurement
model (Ci) is represented by a row of the global C matrix

C =




1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 −1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0



.

Furthermore, we set disturbances wk and vk to vary
randomly over time according to a uniform distribution
on [−0.3, 0.7] and [−0.5, 0.5], respectively.

Finally, we choose the following parameters for the algo-
rithm:

ϵ = 0.1,

x̂0 = 0, x0 = rand(m, 1), x0 ∈ [−10, 10],

Σi
0 = 10Im, Q = Im, and R = In.

4.2 Error comparison

Due to the instability of the dynamical system, we consider
a performance metric that evaluates the error of the
estimator in a relative fashion. Specifically, we consider the
average absolute error between the centralized estimate
and any local estimate of the nodes in G. The metric is
defined by

πj
k =

1

m

m
p=1

|xp,j
k|k − xp,c

k|k|
1 + |xp,c

k|k|
. (29)

Fig. 2. The average state estimation error for all states
over time according to relative error metric given in
(29).

The results are plotted in Fig. 2, where it is clear that
πj
k converges to (the neighbourhood of) zero for each of

the nodes. Notably, the error trajectories show oscillatory
behaviour which is caused by the complex eigenvalue pairs
present in the system.

5. CONCLUSION

We propose for the first time a distributed implementation
of a minimum energy estimator for discrete-time LTI

systems. We provide the equations needed to conduct a
single time-scale recursion that is of bounded complexity.
Furthermore, we offer a comprehensive analysis on the
error convergence of the proposed estimator, showing
that it is input-to-state stable with a bound depending
on unknown input and output disturbances. Finally, we
present a simple pedagogical example to demonstrate the
performance of the estimator.
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