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1 Introduction

1.1 Overview

Scientific computing and applied mathematics enable the exploration of and,
sometimes even, the simplification of complex systems through various opti-
mized modeling and simulation methods. These fields create and utilize com-
putational resources to do so. Many problems, however, are still unsolvable
or very difficult to solve with current well-established methods – be it algo-
rithms or computers. Quantum computers were theorized and are now being
realized to extend computational abilities. Though commercially available and
widely researched, quantum computers today are still more proof-of-concept
than ”universally” applicable tools. A major part of the problem is these sys-
tems are riddled with noise, hence the phrase noisy intermediate scale quantum
(NISQ) devices is commonly used to refer to current day devices. There are
many approaches to mitigating the effects of noise in quantum systems from
both hardware and software perspectives. This work focuses on optimizing the
device hardware by combining aspects of two already well-explored systems –
superconducting quantum integrated circuits and topological insulators.

The former are relatively easy to fabricate and have become one of the main
focuses of today’s industry, including competitive involvement from IBM and
Google [1, 2]. The heart of superconducting quantum circuits is found in two
circuit elements: the quantum bit (qubit) and the resonator. The qubit man-
ages quantum information processing. The resonator is a simple inductor and
capacitor (LC) in parallel and is a well understood classical circuit element.
Resonators play a key role in this research. In contrast, topological quantum
systems are incredibly difficult to fabricate, having only recently been demon-
strated for the first time by Microsoft [3]. In theory, however, topological insu-
lators promise a strong shield against noise across the device [4]. By leveraging
the simplicity and ease of simulating classical LC resonators and combining this
with the noise-protection introduced in topological systems, this project lays
the groundwork for developing a model supporting how such a hybrid hardware
could process and protect quantum information [5]. This thesis presents the
characterization of how a two-dimensional array of LC resonators could behave
similarly to a qubit when demonstrating the topological property known as edge
modes (see figure 1) and proposes an approach for how to model such systems.

Understanding how to control these modes, though, requires a familiarity
with the theory behind quantum integrated circuits, circuit quantum electro-
dynamics (CQED) (see chapter 2), as well as the importance of energy band
gaps and symmetries in topological systems (see sections 3.1 and 3.2). After an
introduction to these topics, section 3.3 presents an overview of experimental
evidence of edge modes on pendula (the mechanical equivalent to LC resonators)
as motivation for how to demonstrate edge modes in two-dimensional classical
resonator systems [6]. Chapter 4 serves as a brief introduction to two common
optimal control methods for pulse design: gradient ascent pulse engineering
(GRAPE) [7] and derivative removal by adiabatic gate (DRAG) [8]. While
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neither were directly applied in this work, the two methods inspired the im-
plemented optimization technique. Chapter 5 introduces the specifics of how
the system was simulated. It begins with highlighting the use of the mean field
approximation for ease of solving the system numerically and continues with
discussing the specifics around the lattice architecture and pulse shaping. Sec-
tion 5.4 discusses which metrics – namely, the transmission coefficient – should
be used to determine the quality of the system. Results on simulations of an
array of resonators connected to a single qubit and two qubits are presented and
discussed in chapters 6 and 7, respectively. Finally, recommendations for how
to continue studying these systems are outlined in chapter 8. Prior to any of the
particularities of this work, though, it is useful to become familiar with some
standard notation, vocabulary, and visualization methods of quantum comput-
ing.

Figure 1: A sketch of the proposed hardware. A two-dimensional array of
resonators, which is designed in such a way as to demonstrate topological edge
modes, is attached to two control qubits. The two edge modes of the array act
as ground and excited states, causing the array to behave like a qubit itself [5].
Image is from Greplová (2021) [5].

1.2 Bra-Ket/Dirac Notation

Quantummechanics is, in its mathematical essence, an elegant discussion around
linear algebra. Quantum states are represented by vectors and operators by ma-
trices. Often times these states and operators are commonly found throughout
many different quantum systems, so rather then re-write the lengthy linear al-
gebraic representation, the bra-ket notation is used. This is also known as Dirac
notation. In this a vector is written as a ket, shown as

0⃗ = |0⟩ =
[
1
0

]
(1)
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This state is known as the ground state of a qubit, whereas

|1⟩ =
[
0
1

]
(2)

is the excited state [9]. Note that a qubit only has two energy states of interest
– |0⟩ and |1⟩ – in the same way that its classical counterpart, the bit, only
considers 0 and 1; if more states are accessible then it is no longer a qubit,
e.g. a qutrit actively considers gates on |0⟩, |1⟩, and |2⟩ [9]. When discussing
the superconducting qubit called a transmon, as in section 2.3, however, the |2⟩
state is included in some calculations as the energetic boundary whose condition
must be considered to understand the two lower energetic states of interest. The
conjugate transpose, or Hermitian conjugate, of a ket is known as a bra, or

0⃗H = 0⃗∗ = 0⃗† = ⟨0| =
[
1 0

]
(3)

A bra and ket put immediately next to each other represent an inner product
[9]. It is easy to see, then, that ⟨x|x⟩ = 1 for any state |x⟩ and that ⟨x|y⟩ = 0 for
any orthogonal states |x⟩ and |y⟩. Though it may seem superfluous to recreate
a notation for already well-established linear algebraic methods, this notation
greatly simplifies equations when considering larger systems beyond a single
qubit. For example, given a two qubit system of qubits a and b, the state of
the whole system could be written as the tensor product of the two respective
states [9].

|a⟩ ⊗ |b⟩ = |a⟩ |b⟩ = |ab⟩ (4)

Operators, of which quantum gates are a subset, are often denoted with a hat
and represent matrices. One example of a quantum gate acting on a single qubit
is the X gate

X̂ = σx =

[
0 1
1 0

]
(5)

which will flip the qubit it acts on from |0⟩ to |1⟩ and vise versa. This is also
known as the Pauli matrix σx and is known in classical computing as the NOT
gate [9]. As quantum gates have common labels (e.g. X, Y, Z, H, CNOT, etc.),
the hat notation highlighting their responsibility as operators is dropped. The
X gate is also defined as a rotation of π about the x-axis of the Bloch sphere,
which is useful tool for visualising the evolution of a single qubit’s state.

1.3 Bloch Sphere and Single Qubit Gates

If one drew a connection between the two possible values of a classical bit, it
would be a line as there are only two possibilities: 0 or 1. Though a qubit can
be 0 or 1 (written in Dirac notation that is |0⟩ or |1⟩), it also can be what is
called a superposition of the two states, or rather some combination of the two

|ψ⟩ = α |0⟩+ β |1⟩ (6)
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Figure 2: The Bloch sphere helps visualize how the state of a single qubit
evolves. The north pole is the ground state and the south pole is the excited
state. Where a classical bit could only exist on these poles, the qubit’s state,
|ψ⟩, can be anywhere on the the surface of the sphere. Image is from Nielson
and Chuang (2010) [9].

where α, β ∈ C. The tricky thing with quantum information, however, is that
it cannot be directly observed. If one were to measure |ψ⟩ in Equation 6, one
would get the result |0⟩ with probability of |α|2 or |1⟩ with probability of |β|2
[9]. The probabilities of measurement must sum to 1, |α|2 + |β|2 = 1, implying
that |ψ⟩ is normalized, much like a unit vector [9]. When expressing the state in
terms of spherical coordinates, any global phase is ignored as it has no physical
significance [9].

|ψ⟩ = cos

(
θ

2

)
|0⟩+ eiφ sin

(
θ

2

)
|1⟩ (7)

θ is the angle from the z-axis and φ is the angle from the x-axis. With this, it is
easy to see that qubit state |ψ⟩ can be anywhere on the Bloch sphere’s surface
(see figure 2). This is a very easy way to see how single qubit gates affect a
state. Let’s revisit the example of the X gate in equation 5 to see this clearly.

When an X gate is applied on a quantum state, the state flips about the
x-axis of the Bloch sphere. For example, if |ψ⟩ = |0⟩ to start and an X gate is
applied, then |ψ⟩ = |1⟩.

X |0⟩ =
[
0 1
1 0

] [
1
0

]
=

[
0
1

]
= |1⟩ (8)

Similarly, X |1⟩ = |0⟩ [9]. The Z gate is similar and is defined by it’s Pauli
matrix.

Z = σz =

[
1 0
0 −1

]
(9)
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Figure 3: A Hadamard gate acting on initial state |0⟩+|1⟩√
2

results in final state

|0⟩. The evolution of the state is marked by the black dot in each frame. Image
is from Nielson and Chuang (2010) [9].

In this case, Z |0⟩ = 0 and Z |1⟩ = −1 [9]. There is also a Y gate, which
behaves in a similar fashion to the X and Z. What is even more interesting, is
the Hadamard gate, H, which is known for generating a superposition state.

H =
1√
2

[
1 1
1 −1

]
(10)

where

H |0⟩ = |0⟩+ |1⟩√
2

H |1⟩ = |0⟩ − |1⟩√
2

(11)

These superposition states are on either end of the x-axis of the Bloch sphere.
If a Hadamard gate is run on a qubit that is already in a superposition state

directly along the x-axis, for example |0⟩+|1⟩√
2

, then the gate causes the state to

return to |0⟩, as is demonstrated in figure 3. In this way, applying two Hadamard
gates to initial state |0⟩ results in an identical final state, i.e. H2 = I [9]. This
is in contrast to the other gates, where XX† = ZZ† = I. This touches upon
the single rule for quantum gates: they must be unitary [9].

While mapping quantum gates on the Bloch sphere is useful, it does not
explain how to actually run gates on quantum hardware. This project studies a
model for a new type of hardware in anticipation of implementing single qubit
gates – namely the X, Z, and H gates. As the hardware in question is rooted
in superconducting qubits, it is useful to understand the foundational theory
behind that field, namely, CQED.
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2 Circuit QED

2.1 Overview

Superconducting quantum circuits have become one of the central quantum
hardwares of today largely for the ease in fabrication and scalability. These
devices are made based on well-established lithography processes. Nonetheless,
it is still difficult to properly model and fabricate these systems, specifically
related to a particular circuit element crucial to creating a qubit: the Josephson
junction (JJ). JJs determine the frequency of a qubit and, thus, if and how
it will interact with its neighbors. This project’s array of resonators would
bypass this problem. Resonators are easier for classical computers to model
and are more robust against fabrication errors compared to JJs. If using a
two-dimensional array of resonators as a qubit (rather than the commonly used
transmon, which contains JJs) works well, then it would be easier to simulate
and build more reliable and larger quantum systems. The motivation for how a
block of resonators could demonstrate single qubit gates is rooted in work done
by Süsstrunk and Huber (2015) and requires an understanding of topological
systems [6]. This will be addressed in the next chapter. Prior to that, though,
it is important to understand how resonators themselves work, as well as how
a special type of superconducting qubit called a transmon works and how these
two elements and their interaction can be described by the Jaynes-Cummings
Hamiltonian.

2.2 Lumped Element Resonators

Figure 4: The LC resonator is comprised of an inductor, L, and capacitor,
C, in parallel. On the left-hand side, the system is expressed in terms of flux
about the inductor, charge across the capacitor, and current, I; whereas on the
right-hand side, the system is explained by a flux, ϕ, at the node north of the
capacitor and a voltage, V , across the capacitor. Both diagrams portray the
same system, but expressed with different degrees of freedom: charge and flux
on the left and right respectively. Image is from Girvin (2014) [10].
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Resonators in circuit QED are often called cavities, a term that was borrowed
from cavity QED. These circuit elements behave as harmonic oscillators and are
traditionally used to read out qubit states without probing and, thus, disturb-
ing the quantum information directly. In this project, however, resonators are
considered for a different purpose: to generate a new kind of qubit more robust
to environmental noise. Resonators can be considered protectors of quantum
information in integrated circuits. Though they typically have been used to
protect quantum information from destruction, we explore how they may also
further protect quantum information from noise.

When it comes to microwave engineering and superconducting quantum cir-
cuits, there are two common types of resonators used: lumped element res-
onators and coplanar waveguides. The former will be the focus of this project,
though exploration into the latter may prove interesting for future work and
should fit within the framework of the methods presented.

A lumped element resonator is comprised of an inductor, L, and a capacitor,
C, in parallel (see figure 4), forming a simple electrical LC harmonic oscillator.
The name ”lumped element” refers to the fact that the physical size is much
smaller than the associated wavelength and that the voltage and current are
relatively steady across the element [11]. The Lagrangian of such a resonator is

L =
LI2

2
− q2

2C
(12)

where q is the charge of the capacitor and I is the inductor’s current. Recalling
from charge conservation that I = q̇, which means the Lagrangian may be
rewritten as

L =
L

2
q̇2 − 1

2C
q2 (13)

Now this looks remarkably similar to the classical problem of a mass on a spring;
here, instead of distance the degree of freedom is charge, rather than mass there
is inductance, and the inverse capacitance replaces the spring constant [10]. This
similarity is not only incredibly helpful for further analysis of resonators, but
will come into play again in section 3.3. Following the Euler-Lagrange equation
of motion ∂L

∂q − d
dt
∂L
∂q̇ = 0 equation 13 becomes

q̈ = − 1

LC
q = −ω2

rq (14)

where ωr =
1√
LC

is the natural frequency of the resonator [10]. ∂L
q̇ defines the

conjugate or generalized momentum [12], which, as seen in equation 13, is Lq̇
or LI, also known as the inductor’s flux, Φ [10]. The resonator’s Hamiltonian
is then expressed as

H = Φq̇ − L =
Φ2

2L
+

1

2C
q2 (15)

If, however, the flux of the node next to the capacitor, ϕ, see Figure 4, is used
as the degree of freedom instead of charge and the negative charge, Q = −q,
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becomes the conjugate momentum, then the Hamiltonian may be expressed as

H = Qϕ̇− L =
1

2C
Q2 +

ϕ2

2L
(16)

In either case, by following the canonical commutation relation, the degree of
freedom and the conjugate momentum may be expressed as operators that are
Fourier transforms of each other

[q̂, Φ̂] = ih̄ = [ϕ̂, Q̂] (17)

Now equation 16 can be expressed in terms of raising and lowering operators
[10].

â = i
1√

2Ch̄ωr
Q̂+

1

2Lh̄ωr
ϕ̂

â† = −i 1√
2Ch̄ωr

Q̂+
1

2Lh̄ωr
ϕ̂

[â, â†] = 1

(18)

Now the Hamiltonian of the resonator can be written as [10]

H =
h̄ωr
2

(a†a+ aa†) = h̄ωr(a
†a+

1

2
) (19)

Expressing the resonator Hamiltonian in terms of raising and lowering operators
will come up again when the Jaynes-Cummings Hamiltonian is discussed, which
explains the interactions between qubits and resonators.

LC resonators are often referred to as quantum harmonic oscillators as they
can be expressed by an evenly spaced (harmonic) potential energy well. This
means that the energy levels of a resonator are evenly spaced by h̄ωr. Qubits,
however, should only have two energy levels, the ground and first excited state,
as was discussed in the introduction; therefore, transmons – a commonly used
type of superconducting qubit – are anharmonic quantum oscillators, meaning
they have unevenly space energy levels. This allows access to the first two energy
levels in isolation from the rest (see figure 5). Next, a deeper understanding of
the transmon is presented.
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Figure 5: The energy potentials for a quantum harmonic oscillator (resonator)
and transmon. The former shows energy levels evenly spaced by h̄ωr, where
ωr is the frequency of the resonator. The transmon energy levels are unevenly
spaced. They depend on the frequency associated with transitioning between
each respective energy level, e.g. the gap between the first two levels is propor-
tional to ω0→1, the frequency of the transmon transitioning from the ground
to the first excited state. Other spacings between energy levels are not propor-
tional to this same frequency, though. Image is from Hoffer (2021) [13].
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2.3 Transmon and Jaynes-Cummings Hamiltonian

Figure 6: The Cooper pair box circuit (left) is the same as the LC resonator,
but with the inductor of the resonator replaced by a Josephson junction, which
is marked by the box with an x in it. The transmon circuit (right) is similar to
the Cooper pair box, but includes a shunt capacitor, Csh, to minimize charge
noise. EJ and CJ refer to the Josepshon energy and capacitance respectively
[13, 14]. Image is from Hoffer (2021) [13].

Superconducting qubits grew out of a simple arrangement referred to as
the Cooper pair box, which looks like the LC resonator already discussed, but
with a JJ replacing the inductor (see figure 6). “The Josephson junction is
the only known dissipationless non-linear circuit element” [14]. As previously
discussed, if one considers the simple LC resonator, as introduced in section 2.2,
with a Josephson junction replacing the inductor, then the harmonic oscillations
become non-linear, meaning that its associated energy levels are no longer evenly
spaced. Thus, if the Cooper pair box is engineered with specific capacitance and
inductance, then the energy levels can be designed in such a way where the first
two states are within frequency range of experimental interest (gigahertz) and
the higher energy bands are out of range [14]. With the first two non-linear
energy levels – the ground state, |0⟩, and first excited state, |1⟩ – accessible, this
circuit element now behaves as a physical qubit when cooled down to roughly
10mK and manipulated with microwave pulses.1

The transmon is a widely used updated version of the Cooper pair box in
that it is less sensitive to charge noise compared to its predecessor [14]. It is
characterized by the ratio of its Josephson energy, EJ , to its charging energy,
EC . The former relates to when a pair of spin-1/2 particles tunnel across the
JJ. This tunneling generates ”charge difference” between the two capacitors of

1Please note that the word “physical” is consciously included as often times when quantum
computers are discussed in terms of use cases, the size or number of qubits is described in
terms of logical qubits. A single logical qubit is made of several physical qubits along with
some error correcting code to mitigate natural, unavoidable errors that arise in the system. As
this project is considering hardware and not quantum algorithms, when qubits are mentioned
the implication is that they are physical qubits, not logical ones.
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the JJ, thus determining the qubit state [14]. Charging energy, on the other

hand, relates to the total capacitance of the transmon EC = e2

Csh+CJ
[13, 14].

Transmons have a ratio of Josephson energy to charging energy such that EJ

EC
> 4

[14]. Increasing EJ/EC decreases tunneling and the charge noise across the
junction [14]. For this reason, some researchers use EJ

EC
= 50 [13]. The bare

qubit frequency – i.e. the frequency of a single qubit in isolation, not coupled to
any other qubits or resonators – is also dependent on the Josephson and charge
energies, ωq ≈

√
8EJEC [13].

Josephson and charge energy also help describe a transmon’s rate of inter-
action with a resonator, often called the coupling, g [14].

gi,j =
√
2g(

EJ
8EC

)1/4 ⟨i| (b− b†) |j⟩ (20)

b and b† are the raising and lowering operators of the qubit, while |i⟩ and |j⟩
refer to the two qubit states of interest. If these two states are nearest neighbors,
then this expression simplifies to the following [14].

gj,j+1 = g(
√
2(j + 1)(

EJ
8EC

)1/4) (21)

Though it is nice to express the coupling between a qubit and resonator,
what is measured is actually another parameter called the dispersive shift, χ,
which is expressed in terms of the coupling, as well as the difference between
qubit and resonator frequencies, ∆ = ωij − ωr. ωij is the frequency of a qubit
shifting between states |i⟩ and |j⟩. ∆ is often called the detuning. As qubits
cannot be measured directly without destroying their quantumness, they are
attached to resonators. A resonator is then measured and if its frequency has
shifted slightly, it is indication that it is attached to a qubit. This shift marks
not only the presence of a qubit, but also which state the qubit is in and how
strongly coupled the resonator and qubit are. This shift is the dispersive shift.
If the resonator’s frequency decreases by χ then the qubit is in the ground state
whereas if it increases by χ, then the qubit is in the excited state.

χij ≡
g2ij
∆ij

(22)

Using equation 20, then this becomes

χij = 2

√
EJ
8EC

g2| ⟨i| (b− b†) |j⟩ |2

∆ij
(23)

To further simplify things, an effective dispersive shift can be defined as follows
[14].

χeff = χ01 +
χ12 + χ02

2
∝ g2

∆
(24)
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The effective dispersive shift is useful for properly expressing the effective Hamil-
tonian of the single qubit-single resonator system.

Heff =
h̄(ω01 + χ01)

2
+ h̄((ωr − χ01 − χ02) + χeffσz)a

†a (25)

This expresses the state of the qubit in the first term and the resonator in the
second term with a and a† as the lowering and raising operators associated with
the photon or resonator, as was noted in section 2.2. The χeffσz term repre-
sents the interaction between the two elements. This Hamiltonian is commonly
referred to as the Jaynes-Cummings Hamiltonian and is visulaized using a ”lad-
der” as seen in figure 7 [14]. The Jaynes-Cummings Hamiltonian derivation is a
thorough method for understanding the dynamics of a transmon-resonator sys-
tem and may very well be useful for future generations of the two-dimensional
LC resonator lattice; however, this thesis implemented a more general qubit-
resonator coupling scheme that is not necessarily within the dispersive regime
introduced by the derivation above (see section 5.1).

Superconducting qubit-resonator systems are excited and controlled using
microwave pulses. That is how qubit gates are run and, consequently, how
qubit states are changed. In this project the new proposed qubit is actually a
bunch of resonators and we study how to control this array using transmons. In
this way microwave pulses may excite the array’s edge mode, which subsequently
could excite the attached qubit(s), which in turn could change the chirality of
the edge modes. Modeling this proposed process requires an understanding of
edge modes and, thus, properties often associated with topological insulators.
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Figure 7: Interactions described by the Jaynes-Cummings Hamiltonian of a
single qubit and resonator pair can be represented in a ladder schematic. The
blue lines on the left represent when a qubit with bare frequency ωa is in the
ground state, |g⟩, and the red lines are when it is in the excited state, |e⟩.
The dashed lines represent the uncoupled Hamiltonian’s eigenstates, whereas
the solid lines are the energies when considering coupling. |n⟩ is the photon
number. Note that a true qubit would only consider the first two states, |0⟩ and
|1⟩, but higher order levels are included for completeness. This image considers
the situation known as the dispersive limit, where ωa − ωr = ∆ > g; g is the
coupling between qubit and resonator. In this scenario, the ”effective” resonator
and qubit frequencies shift. The bare qubit and resonator frequencies are shown
by both ωa and ωr marked by the lower most vertical arrows between |0⟩ and
|1⟩ depicting the frequencies in terms of the uncoupled states. The shifted
frequencies associated with the coupled system are noted in terms of coupling

and detuning, g2

∆ . This also refers to the dispersive shift, χ. These shifted
frequencies are marked by the arrows relating the solid lines. When the qubit
is in the ground state, the resonator’s frequency decreases slightly (as is seen in
the shift between the dashed and solid blue lines at |1⟩). In contrast, when the
qubit is in the excited state, the resonator’s frequency increases (as is seen in
the shift between the dashed and solid red lines at |1⟩). Image is from Schuster
(2007) [14].
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3 Topological quantum systems

Although this project focuses on the behavior of quantum circuits, it is mo-
tivated by properties commonly found in topological systems, particularly the
appearance and robustness of edge modes along a lattice. While traditionally
these edge modes appear in quantum systems, they have recently also been
demonstrated on an array of classical mechanical oscillators that displayed two
modes in the clockwise and counter-clockwise directions [6]. As LC resonators
are the electrical equivalent to mechanical oscillators, we believe achieving such
edge states on a two-dimensional array of resonators is also possible. Topologi-
cally non-trivial systems can host edge modes. For a system to be topological,
there must be an energy band gap between what is considered the physical bulk
of the system versus its edges and symmetry projection must be present. If
both of these conditions are upheld, the system will be exceptionally robust to
perturbations, or rather any noise occurring in the environment.

Recent encouraging research has introduced how two one-dimensional chains
of LC resonators connected by a qubit can be entangled while preserving topo-
logical edge modes on each chain [15]. Such a one-dimensional chain is explained
by the Su-Schrieffer-Heeger (SSH) model. Though the proposed work of this
thesis is not in one-dimension and, thus, cannot directly utilize the SSH model,
the SSH model is a simpler, perhaps even more intuitive presentation of the
importance of energy band gap and chiral symmetry. A further analysis of
topological systems continues with a focus on a more directly relevant model:
the quantum spin Hall effect (QSHE) [16]. For this, a quick introduction to
time-reversal symmetry and Kramers pairs is provided. Finally, a review of
Süsstrunk and Hubers’ (2015) work demonstrating chiral edge modes on me-
chanical oscillators is presented [6]. This serves as a guidance for how to set up
the Hamiltonian of our proposed two-dimensional LC resonator system.

3.1 SSH Model

The SSH model describes the topological behavior of a one-dimensional chain
of particles or atoms. A common physical example for which the SSH model
applies is polyacetylene [18]. Polyacetylene is a chain of carbon atoms, each
with one hydrogen atom hanging off. When the chain is broken up into sites –
each with one unique pair of carbon atoms – then two types of general bonds
can be identified: inter- and intra-site bonds, whose strengths are denoted w
and v respectively [17, 19]. These are shown as a single (w) and double (v)
line connecting the carbon atoms in figure 8. Thus, a single site or unit cell is
comprised of one atom on the bottom connected to one atom on top by a double
line (v). All “bottom” (“top”) particles comprise what is considered a sublattice.
Each sublattice’s particles do not interact with one another. A particle can only
interact with its nearest neighbor, which is of opposite sublattice type (i.e. top
only interacts with its nearest neighbor bottom particles and vise versa). This
sublattice symmetry is the SSH model’s chiral symmetry [17, 19]. It is useful to
note that this scenario considers non-interacting electrons, thus each electron
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Figure 8: A chain of carbon atoms known as polyacetylene is a common physical
example of the SSH model. Atoms are categorized into sub-lattices. This is
demonstrated by the staggering of the lattice showing half the particles on
”top” and half on ”bottom.” One unit cell is comprised of one particle from
each sublattice, i.e. one ”top” and one ”bottom.” The bond of two atoms
within a cell is denoted by a double line and is referred to as v. The intercell
bonds are shown as a single line and called w. v and w are referred to as hopping
amplitudes [17].

can be considered a single particle [19]. The Hamiltonian for such a system is
given as

H = v

N∑
m=1

|m,B⟩ ⟨m,A|+ |m,A⟩ ⟨m,B|

+ w

N−1∑
m=1

|m+ 1, B⟩ ⟨m,A|+ |m,A⟩ ⟨m+ 1, B|

(26)

where N is the number of sites in the chain and A and B (what was previously
referred to as top and bottom) denote which sublattice, as seen in Figure 8 [19].

The Pauli exclusion principle requires that no two fermions, or spin-half
particles, which includes electrons, exist in the same state at the same time in
the same system [20]. Given no potential energy and zero temperature, this
means all eigenstates of the SSH Hamiltonian are limited to single occupancy
as each cite has one particle of each spin; this is also known as half-filling [19].
Expressing the Hamiltonian in terms of internal and external degrees of freedom
will become useful as the system is described in terms of bulk and edges. The
internal degree of freedom indexes the unit cells and the external degree of
freedom identifies the sublattices [19]. These are m and α respectively, such
that |m,α⟩ = |m⟩ ⊗ |α⟩ ∈ Hinternal⊗Hexternal [19]. Now the SSH Hamiltonian
can be written as

H = v

N∑
m=1

|m⟩ ⟨m| ⊗ σ̂x

+ w

N−1∑
m=1

|m+ 1⟩ ⟨m| ⊗ σ̂x + iσ̂y
2

+ |m⟩ ⟨m+ 1| ⊗ iσ̂x − σ̂y
2

(27)

15



where σ̂x and σ̂y are the Pauli matrices, with σ̂x defined in Equation 5 and

σ̂y =

[
0 −i
i 0

]
(28)

In this expression, the hopping amplitudes look like operators on their respective
bonds [19].

The Hamiltonian for the bulk should be irrespective of the edges, as the idea
that we can distinguish clearly between these two modes is central to topological
insulators. The bulk is thus given periodic boundary conditions, letting us
effectively treat it as a ring [19]. The bulk Hamiltonian now is

Hbulk =

N∑
m=1

v(|m,B⟩ ⟨m,A|+ |m,A⟩ ⟨m,B|)

+ w(|m mod N + 1, A⟩ ⟨m,B|+ |m,B⟩ ⟨m mod N + 1, A|)

(29)

where

Hbulk |Ψn(k)⟩ = En |Ψn(k)⟩ ,
n ∈ 1, ..., 2N

(30)

with wavenumber or, as is more commonly referred to in condensed matter
theory, crystal momentum k [17, 19]. As the bulk is translationally invariant,
Bloch’s theorem allows expressing the state in terms of a plane wave in the first
Brillouin zone, k ∈ δk, ..., δkN where δk = 2π

N ,

|k⟩ = 1√
N

N∑
m=1

eimk |m⟩ (31)

with Bloch eigenstates |Ψn(k)⟩

|Ψn(k)⟩ = |k⟩ ⊗ |un(k)⟩ (32)

|un(k)⟩ = an(k) |A⟩+ bn(k) |B⟩ ∈ Hint (33)

|un(k)⟩ are the eigenstates of the bulk momentum-space Hamiltonian

H(k) |un(k)⟩ = En(k) |un(k)⟩ (34)

where

H(k) = ⟨k|Hbulk |k⟩

=
∑

α,β∈A,B

⟨k, α|Hbulk |k, β⟩ · |α⟩ ⟨β| (35)

[19].
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Figure 9: (a) to (e) show the energy as a function of wavenumber for varying
relations between inter- and intra-cell hopping amplitudes, w and v: (a) v =
1, w = 0, (b) v = 1, w = 0.6, (c) v = w = 1, (d) v = 0.6, w = 1, (e) v =
0, w = 1 [19]. The smallest gap between the energy bands is equal to twice the
absolute value of the difference between the hopping amplitudes. Note that (c)
shows a conductor as the energy bands connect allowing electrical flow without
tunneling. In the insulator case, as the gap increases the number of occupied
energy states decreases. (f) to (j) show the circular d(k) path for the bulk
momentum-space Hamiltonian as k crosses through the Brillouin zone from 0
to 2π for each respective situation shown above in (a) to (e) [19]. Image is from
Asbóth, Oroszlány, Pályi (2016) [19].

The function un,k(x) (where Ψn,k(x) = eikxun,k(x)) demonstrates periodic-
ity in real space, but not in the Brillouin zone; however, the Fourier transform
from real space to Brillouin zone is on the external degree of freedom only, thus
periodicity in the Brillouin zone is maintained [19].

H(k + 2π) = H(k)

|un(k + 2π)⟩ = |un(k)⟩
(36)

The bulk momentum-space Hamiltonian has a zero diagonal. This reflects that
there is no interaction among particles within a given sublattice. Particles in
an SSH chain only interact with their nearest neighbors [19]. This localized
interaction denotes a chiral symmetry in the system. The Hamiltonian can
then be written as

H(k) =

(
0 v + we−ik

v + weik 0

)
(37)

Given Equation 34, H(k)2 = E(k)2Î2,

E(k) = ±|v + weik| = ±
√
v2 + w2 + 2vwcos(k) (38)

This allows us to see beauty of the SSH model, which arises when the hopping
amplitudes v and w are staggered [19]. To fully appreciate when staggered
v and w give rise to a topologically invariant system (as opposed to a trivial
one), though, the Hamiltonian can be rewritten in terms of something called
the d-vector, d(k).
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Given |un(k)⟩ ∈ Hinternal provides information on the internal structure,
the bulk momentum-space Hamiltonian for a system with two states per cite
(i.e. two particles per unit cell) can be expressed as

H(k) = d0(k)σ̂0 + dx(k)σ̂x + dy(k)σ̂y + dz(k)σ̂z

= d0(k)σ̂0 + d(k)σ̂
(39)

where
d0(k) = 0

dx(k) = v + wcosk

dy(k) = wsink

dz(k) = 0

(40)

Thus, the direction of d(k) determines the internal structure of eigenstates and
the magnitude of the vector determines the energy. The radius of the circle is
of size w and the center sits at v. d(k) must be a closed loop and encircle the
origin for the lattice to maintain chiral symmetry and be considered topological
[19]. This becomes clear in figure 9, in which the top row shows energy plotted
against wavenumber for varying values of v and w and the bottom row plots the
associated d(k) to the image above it. The image to the far right (e) reflects
a system in which there is no intra-cell hopping, i.e. the two particles within
a unit cell are fully disconnected. In this case it is clear how there would be a
separation in what is considered the bulk compared to the edges as there is a
physical break in the connections. The next image to the left (d) demonstrates
a system in which the intra-cell hopping has been slightly turned on, but is still
weaker than inter-cell hopping. The particles that were physically separated in
(e) on the edges are now connected again; however, the energy band gap is still
present and d(k) still encircles the origin. As both chiral symmetry and the
energy band gap have been maintained, this still reflects a topological system.
The central image (c), however, shows a system in which v = w and, thus,
there is closure to the energy band gap. This gap closure demonstrates the
topological phase transition between v < w and v > w or rather between the
system behaving topologically or trivially. The following systems (a) and (b)
restore the band gap, but d(k) no longer contains the origin and, therefore, are
considered trivial rather than topological; they no longer display separation in
bulk and edge modes [19]. By mapping the energies for various combinations
of hopping amplitudes and d(k) of the bulk momentum-space Hamiltonian, we
begin to see the significance of bulk versus edge modes.

Figure 10 further emphasizes how when the intra-cell hopping amplitude,
v, is turned on and increased, the system still remains topologically invariant
until it equals w [19]. This is visible in figure 10(a), in which there is a line
around E = 0, which is separate from the rest of the energy spectrum. This line
reflects the energy of the edge mode. It starts at 0 when v = 0 and increases
exponentially as v increases. Recall that when v = 0 the edges of the lattice are
physically separated from the rest of the system, hence zero energy. The delayed
union of the edge and bulk modes maintains a gap between the two energies
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Figure 10: (a) The energy mapped as a function of intra-cell hopping, v, of
a ten-cell lattice described by the SSH model with inter-cell hopping w = 1.
When v = 0, the cells along the chain are broken apart, thus creating physically
separated edges. As v increases, however, the energy of the edge – denoted by
the seemingly horizontal line at E = 0 – exponentially increases. Until v = 1,
the edge cells – though physically connected again – still maintain their own
distinguishable energy separate from the bulk of the lattice. After v = 1, the
distinct edge modes disappear and the system is no longer topological. (b) -
(c) These plots highlight how a wavefunction associated with the edge mode in
(a) are indeed isolated to the edge cells. (d) When a wavefunction is considered
along the bulk of the system, it is spread amongst all cells and not isolated in
the same way it is for edges as shown in (b) and (c) [19]. Image is from Asbóth,
Oroszlány, Pályi (2016) [19].

even as v increases (but is still less than w). This allows the system to remain
topologically nontrivial. Figure 10(b) and (c) highlight how a wavefunction
associated with the zero energy edge modes of the topological system indeed are
isolated to the edges. Whereas figure 10(d) demonstrates how a wavefunction
associated with the bulk states is spread across the entire bulk and not isolated
to any particular cells in the chain. Once v = w, however, and as it continues
to increase, the system loses its topological classification and becomes trivial;
the edges are indistinguishable energetically from the bulk [19].

After examining this one-dimensional example of the SSH model, it is clear
how edge modes can exist in topological systems. It is also clear how main-
taining an energy band gap and symmetry is crucial to maintaining topological
invariance [19]. Where the SSH model represents these features in terms of
hopping amplitudes that have simple-to-understand physical meaning (e.g. the
bond strength between two carbon atoms in polyacetylene), other symmetries
in higher dimensional systems may not be as obvious at first. One of them,
time-reversal symmetry, is certainly not as intuitive as bond strengths, but is
critical for demonstrating the QSHE, which describes how spin-up and spin-
down particles can exist in the same system at the same time.
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3.2 Time-Reversal Symmetry and Quantum Spin Hall Ef-
fect

Symmetry operators, which are unitary, do not disturb the inner product of two
states

⟨Uψ|Uϕ⟩ = ⟨ψ|U†U |ϕ⟩ = ⟨ψ|ϕ⟩ (41)

and, thus,
U†HU = H (42)

where H is a Hamiltonian with symmetry U [21]. Anti-unitary symmetry op-
erators, Ω, however, do not preserve inner products and instead produce the
complex conjugate [21].

⟨Ωψ|Ωϕ⟩ = ⟨ϕ|ψ⟩ = ⟨ψ|ϕ⟩∗ (43)

Similarly, where symmetry operators are linear U(α |ϕ⟩ + β |ψ⟩) = αU |ϕ⟩ +
βU |ψ⟩, anti-unitary operators are anti-linear

Ωα |ϕ⟩ = ΩαΩ−1Ω |ϕ⟩ = α∗Ω |ϕ⟩ = α∗ |Ωϕ⟩ (44)

where α ∈ C [21]. Rather, an anti-unitary operator transforms a complex num-
ber into its complex conjugate, which agrees with the same behavior seen in
relation to an inner product. Given this, we can say that Ω = K, where K is the
complex conjugation operator with K2 = I and K = K−1 [21]. To see how this
affects quantum mechanical systems, the simplest thing to do is to consider K
on one-dimensional Schrödinger’s equation, ih̄∂ψ(x,t)∂t = Hψ(x, t)

Kih̄
∂ψ(x, t)

∂t
K = KHK ·Kψ(x, t)K (45)

− ih̄
∂ψ∗(x, t)

∂t
= H∗ψ∗(x, t) (46)

ih̄
∂ψ∗(x, t)

∂ − t
= H∗ψ∗(x, t) (47)

WithH = H∗, then ψ∗(x, t) is the solution to the time-reversed one-dimensional
Schrödinger’s equation [21]. In a system with spin, the Hamiltonian to describe
spin orbit coupling is dependent on the Pauli matrices; however, σy is not K
invariant [21]. Therefore, to maintain time-invariance for spin systems, another
anti-unitary operator, T , is defined [6, 21].

T = iσyK (48)

When considering how T works with eigenstates, T |ψ⟩ = λ |ψ⟩, it becomes
evident that it cannot have any [21]. This is seen by adding an extra time-
reversal operator, T 2 |ψ⟩ = T λ |ψ⟩. By definition, the left-hand side should
equal − |ψ⟩. The right-hand side, however, does not [21].

T 2 |ψ⟩ = T λ |ψ⟩ = λ∗T |ψ⟩ = |λ|2 |ψ⟩ ≠ − |ψ⟩ (49)
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In this way there are two degenerate eigenstates. |ψ⟩ and |ϕ⟩ are referred to as
a Kramers pair [21].

T |ϕ⟩ = − |ψ⟩
T |ψ⟩ = |ϕ⟩

(50)

These states are orthogonal as

⟨ψ|T ψ⟩ =
〈
T 2ψ

∣∣T ψ〉 = −⟨ψ|T ψ⟩ (51)

Additionally, the time-reversal symmetry operator does not have a Hermitian
conjugate [21].

⟨ψ|T ϕ⟩ ≠
〈
T †ψ

∣∣ϕ〉 (52)

This equation would require that the left and right hand sides demonstrate
anti-linear and linear relationships, respectively [21].

Applying time-reversal symmetry to a Hamiltonian describing a system with
spin demonstrates the existence of a Kramers pair; one eigenstate may be spin up
with the other is spin down and while they exist at the same energy, they do not
interact. This phenomenon is known as the quantum spin Hall effect [16]. QSHE
demonstrates topological systems through time-reversal symmetry. Projecting
this concept onto a system of LC resonators, there are two chiral edge modes
– clockwise and counter-clockwise – that exist at the same frequency but do
not cancel each other out. This application of QSHE in classical oscillators was
first demonstrated on a lattice of mechanical pendula by Süsstrunk and Huber
(2015) [6]. To understand what the Hamiltonian looks like for a two-dimensional
array of LC resonators mimicking the QSHE, it is useful to understand the
Hamiltonian for such a mechanical system.

3.3 Quantum Spin Hall Effect in the Classical Realm

The motivation behind finding topological edge modes in LC resonators came
from results showing such behavior in a two-dimensional array of pendula cou-
pled by springs [6]. Neither of these systems are ruled by the laws of quantum
mechanics, yet given that the electrical oscillators behave in a similar manner
to the mechanical ones (see section 2.2), it is believed that such methods can
be extended to electrical oscillators. The overview of how such mechanical sys-
tems are compared to quantum-associated topological insulators is as follows:
QSHE reflects a separation between edge and bulk modes in a system with two
degrees of freedom reflecting two spin modes. Classical oscillators naturally
only describe systems with one degree of freedom. To remedy this, consider the
Hamiltonian describing the classical oscillator system, Hϕ; when the complex
conjugate of the original Hamiltonian, H∗

ϕ, is also included, then requirements
for comparing to QSHE are met as there are now two degrees of freedom con-
tained in the whole system’s Hamiltonian, H [6, 19, 22]. This is illustrated in
equation 53. Hϕ is taken from Hofstadter’s model (see equation 54), which is
used in condensed matter theory to describe flux under a very strong magnetic
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Figure 11: Four deformations of a two-dimensional lattice of pendula are shown.
Each deformation of the physical edge is considered a perturbation to the sys-
tem. The system, however, is undisturbed by such environmental changes as it
is topologically protected. The red and blue coloring around the edges denote
the two circular edge modes observable after exciting the site furthest to the
bottom right. Image is from Süsstrunk and Huber (2015) [6].

field. Though there is no exceptional magnetic field in the case of mechanical or
LC oscillators, there is still a flux acquired from the phase in both systems that
can be described the same way as in Hofstadter’s model [6, 23]. As the system
is mimicking the QSHE on spin-1/2 particles, the associated flux is ϕ = 2π

3
[6]; a single unit cell has flux ϕ and three unit cells make up a flux cell, which
collectively has a flux of 2π.

H =

(
Hϕ 0
0 H∗

ϕ

)
(53)

Hα,ϕ = f0
∑
r,s,α

|r, s, α⟩ ⟨r, s± 1, α|+ |r, s, α⟩ ⟨r ± 1, s, α| e±iαϕs (54)

where α represents what is commonly refered to as the spin of the electron, but
here differentiates between Hϕ and H∗

ϕ. (r, s) designate the location of the cell
of interest in the lattice (as is noted in figure 12), f0 is the hopping amplitude,
and ϕs = ϕs [6]. In this convoluted way, condensed matter theory is used to
describe a classical system that exhibits behavior previously expected only of
quantum systems.

Now H describes the whole system with two degrees of freedom and it should
be possible to see how edge modes arise. The problem, however, is that H
is complex, but mechanical oscillators are described by Newton’s equation of
motion, ẍi = Dijxj , with x the coordinate of the pendula. This expresses a real,
not complex system. The Hamiltonian expressing the couplings, D, within the
mechanical oscillator array must be real, symmetric, and positive semi-definite.
By applying a unitary transformation, U , on H, the classical system is finally
described fully as both real and with two degrees of freedom [6]. Equations
55 and 56 demonstrate how this transformation maps the quantum, complex
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description of the system (i.e. in terms of Hamiltonian H with ψ+
r,s and ψ

−
r,s as

the wavefunctions at lattice site (r, s) with spin + or −) to the real domain of
D (with xr,s and yr,s representing each pendulum at lattice site (r, s)) [6].

U =
1√
2

(
1 −i
1 i

)
(55)

(
xr,s
yr,s

)
=

1√
2

(
1 1
i −i

)(
ψ+
r,s

ψ−
r,s

)
(56)

where now

U†HU =

(
ReHϕ ImHϕ

−ImHϕ ReHϕ

)
≡ D (57)

The diagonal elements of the coupling matrix, D, represent coupling between
two pendula, either xx or yy, or in terms of the language discussed in the SSH
model, two atoms on the same sublattice type in neighboring unit cells [6].
Please remember that as we are no longer ruled by the SSH model, this type

Figure 12: Two mechanical oscillators attached by a series of pairs of springs.
The two oscillators create one site or cell in the same way that two carbons
create a unit cell in polyacetylene chain. Image is from Süsstrunk and Huber
(2015) [6].

of coupling is not forbidden; where the SSH model’s chiral symmetry related
to sublattice isolation, the QSHE relates to preserving pseudo-spin [6, 19]. The
off-diagonal, or imaginary parts, correspond to xy coupling [SH]. Suppose (r,s)
is a lattice site. xr,s and yr,s are 1D oscillators in one unit cell at location
(r,s); therefore, one cell is a two-dimensional oscillator [6]. U allows us to see
how the array’s eigenmodes are associated with clockwise and counter-clockwise
polarized motion, defined as α = ±; ”the existence and properties of edge modes
are features of the eigenstates of H or D” [6]. These chiral modes are to this
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classical oscillator problem as pseudo-spin up and down are to the quantum
problem presented in the QSHE. What QSHE would consider spin up (down),
this problem considers right (left) polarized edge mode [6]. It is D that will
demonstrate QSHE properties through time reversal symmetry and the two
chiral edge modes [6, 22].

To understand how time reversal and pseudo-spin symmetries observed in
the QSHE for a spin-1/2 quantum state are understood in the case of classical
mechanical oscillators, a latitude and longitude are mapped on the Bloch sphere.
These are φ = [−π2 ,

π
2 ] and θ = [0, 2π) respectively [6]. Such a state can be

written as

|ψ⟩ = sin(
φ+ π

2

2
) |↑⟩+ eiθcos(

φ+ π
2

2
) |↓⟩ (58)

Time reversal moves a point on the Bloch sphere to its anti-nodal point, or a
flip along both the latitude and longitude of the sphere T : (φ, θ) → (−φ, θ +
π), whereas pseudo-spin symmetry only causes a flip along the longitude σz :
(φ, θ) → (φ, θ + π) [6]. In this way, the mapping of time reversal symmetry in
QSHE to symmetries in an array of mechanical oscillators is

T → s ◦ T (59)

where s represents the symmetry found in local modes of a unit cell, such that
s : (x, y) → (y,−x) [6].

The assumption Süsstrunk and Huber make is that both s and T are inde-
pendently true, or rather that there is no coupling between the left and right
circular modes. They do briefly mention the possibility that this is not true.
In such an instance s ◦ T is still a symmetry of the system, but s and T are
not symmetries on their own [6]. Süsstrunk and Hubers’ consensus is that this
latter symmetry scenario is not applicable to pendula [6]. Whether or not it is
applicable to an array of LC resonators is something to be determined. What is
definitely applicable, though, is the general symmetry analysis comparing clas-
sical oscillators to the QSHE, as well as how the coupling matrix or Hamiltonian
of the system is generated. Precisely how an array of LC resonators behaves in
a similar set up is outlined in chapter 5.
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4 Optimal Control

Pulse optimization can take the form of manipulating the pulse’s shape (e.g.
Gaussian or square), amplitude, and frequency. Determining the optimal con-
trol values for the pulse can greatly affect the observed behavior of the sys-
tem in question and, thus, optimal control is an active area of research [7] [8]
[13] [24]. Commonly used methods relate to incorporating the gradient of the
pulse into the pulse itself [7] [8] [24]. One of these methods is known as gra-
dient ascent pulse engineering (GRAPE) [7] [24]. This method discretizes the
pulse in time, whereas the second method, derivative removal by adiabatic gate
(DRAG), maintains a continuous pulse shape, e.g. a Gaussian, and was in-
troduced to minimize qubit information leakage – for example, when a qubit
accidentally excites into the |2⟩ state – but could also be used for undesir-
able couplings between qubits or qubits and resonators [8]. A DRAG-inspired
method was implemented, rather than either technique in its pure form. In
this chapter GRAPE and DRAG are introduced for the sake of completeness
regarding motivation, as well as potential future use; section 5.3 will discuss
what pulse optimization method was used.

4.1 GRAPE

Figure 13: GRAPE algorithm in a single iteration. Each slice in time, j, has
a constant control value, uk, and width ∆t. There are N slices total. Each j
then has its own gradient calculated, identifying how to adapt the next iteration
appropriately. In this way GRAPE addresses all of time in a single iteration.
Image is from Khaneja, Reiss, Kehlet, et al (2005) [7].

Traditionally, optimization techniques that utilize a system’s gradient use
difference method protocols. These methods require discretization of the sys-
tem into a grid. Consider an example of 500 time steps, N , all of equal size
∆t = T

N , where T is the total time of interest. There are m = 4 number of
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control variables (e.g. amplitudes / size of amplitude vector/control vector). A
difference method would require 500 × 4 + 1 = 2001 ”full time evolutions” to
see the system advance from time t = 0 to T [7]. A gradient assessment method
that discretizes the system in constant time steps and evaluates all times steps
at once, though, as is done in GRAPE, only require two steps: one to propagate
time forward from 0 to T and a second to propagate backwards [7]. GRAPE
was first introduced as a method of pulse engineering for nuclear magnetic reso-
nance (NMR) [7]. It works better than difference methods because it takes time
slices of (pixelates) the control amplitude over all time. Each of these slices is
of constant value with respect to the control variable. The gradient of each slice
is calculated; the next increment in the algorithm will produce a sum of the
respective previous slice value and its gradient [7]. Consider a time-dependent
density operator defined as

ρ̇(t) = [(H0 +

m∑
k=1

uk(t)Hk), ρ(t)] (60)

where H0 is the free evolution Hamiltonian of the system, Hk is the kth radio-
frequency Hamiltonian, and uk(t) is the kth entry in the control vector u(t)
that is to be optimized such that ρ(t) transitions from ρ(t) = ρ0 to ρ(T ) in
time T , where ρ(T ) is as close as possible to a desired operator, C. Often, and
as is introduced in Khaneja, Reiss, Kehlet, et al (2005) [7], u(t) refers to the
amplitude of the pulse. If both the density and desired operators are Hermitian,
the overlap – or how close ρ(T ) is to C – can be expressed as the inner product

⟨C|ρ(T )⟩ = tr(C†ρ(T )) (61)

If these operators are non-Hermitian, however, then the inner product defines a
new variable known as the performance index can be introduced, Φ0, such that

Φ0 = ⟨C|ρ(T )⟩ (62)

The system’s time evolution in a given time step, j, is defined by propagator,
U , such that

Uj = exp

{
−i∆t(

m∑
k=1

uk(t)Hk))

}
(63)

allows us to express the final density operator as

ρ(T ) = UN ...U1ρ0U
†
1 ...U

†
N (64)

This can then be plugged into the definition for the performance function (equa-
tion 62) and together with equation 61, the performance function can be rewrit-
ten as

Φ0 = ⟨λj |ρj⟩ (65)

where λj and ρj are respectively the backpropagated desired operator, C, and
the density operator, ρ(t), both at time t = j∆t [7]. Thanks to ”the fact that
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the trace of a product is invariant under cyclic permutations of the factors,” [7]
these can be defined as

λj = U†
j+1...U

†
NCUN ...Uj+1 (66)

ρj = Uj ...U1ρ0U
†
1 ...U

†
j (67)

The goal of GRAPE is to find the best pulse, or controls uk(t), that will drive
the density operator, ρ(t), to as close to the desired value, C, as possible over
time T. In other words, the algorithm should find the ideal controls uk that
maximizes the performance index, Φ0 [7]. That algorithm is as follows.

The user starts with an initial guess of the controls, uk(j), for time step j
then calculates ρj following equation 67 for all j ≤ N , where N is the total
number of time steps. Then the backward propagation is calculated according
to equation 66 for all j ≤ N (the initial starting point for λj is C). The
derivative of the performance index with respect to the controls at each time
step is calculated according to

δΦ0

δuk(j)
= −⟨λj |i∆t[Hk, ρj ]⟩ (68)

and, thus, the controls may be updated as

uk(j) = uk(j) + ϵ
δΦ0

δuk(j)
(69)

where ϵ is the step size. This process is repeated, starting again with the
calculation of equation 67, until Φ0 surpasses a predetermined threshold [7].
GRAPE’s assessment of the control vector over all time all at once enables great
optimization over many control parameters in a computationally cost-effective
manner (as was demonstrated earlier with the example of 4 parameters over 500
time slices). While GRAPE can be used for optimizing many systems beyond
NMR-specific use cases, a more recent variation of the GRAPE algorithm is
specifically useful for protecting qubits from leaking information to other circuit
components or higher energy levels. This method, introduced next, is known as
derivative removal by adiabatic gate (DRAG).

4.2 DRAG

Quantum systems are known for being imperfect. Qubits – often referred to as
two-level systems to acknowledge that they have two energy levels of interest –
often leak energy or information into other channels. As the lattice of resonators
is meant to behave as a two-level system, it, too, could possibly experience such
leakage. While the lattice demonstrates the robustness of topologically-inspired
edge modes, thus preventing its signal from leaking into alternative nearby cir-
cuit elements, the signal in one lattice mode (e.g. clockwise) can still leak into
the other mode (e.g. counterclockwise). Initial simulations show that this hap-
pens when the lattice is connected to a qubit. After the qubit gets excited, there
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Figure 14: Right: DRAG. Left: GRAPE. Blue lines show Ex control and green
lines are the Ey control. The red line shows the detuning between the frequen-
cies of the qubit’s first excited state and the drive. DRAG is continuous and
instantaneous, whereas GRAPE is pixelated (here by 1 ns) and may require
multiple iterations to compensate for leakage. Also important to note is that
a DRAG pulse always starts and stops at 0. Image is from Motzoi, Gambetta,
Rebentros, et al (2009) [8].

is a backpropagation of the signal into the opposite chiral edge mode. While
GRAPE could be useful to fix this, there is another quantum optimal control
method known as the derivative removal by adiabatic gate (DRAG) [8]. An adi-
abatic transformation is one that describes a system changing slowly from one
Hamiltonian to another; or rather the system is first described by a more easily
understood Hamiltonian, then is slowly transformed into the desired Hamilto-
nian [19, 25]. DRAG pulses are known for minimizing the effect of leakage into
higher energy states of qubits, thus it is a good candidate for improving the
lattice’s response after an attached qubit has been excited [8, 26]. It was also
originally suggested that this method may be useful in ”turning off unwanted
coupling in multi-qubit and qubit-oscillator systems for single and two-qubit
operations” [8].

The essential process of DRAG is to simply add the derivative of the initial
pulse to the pulse itself. More thoroughly, introducing an adiabatic transforma-
tion allows the system to be expressed in the qubit subspace (when considering
the traditional scenario of leakage into a qubit’s third energy level) and, thus,
enable easy removal of unwanted leakage. Starting with a Hamiltonian in the
lab frame

H = h̄
∑
j=1,2

[ωjΠj + E(t)λj(σ+
j + σ−

j )] (70)

by applying the rotating wave approximation (i.e. ignore terms which oscillate
very rapidly) [27] and moving into the drive frequency’s interaction frame, the
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Hamiltonian becomes

HR =
∑
j=1,2

[δjΠj +
Ex(t)
2

λjσ
x
j−1,j +

Ey(t)
2

λjσ
y
j−1,j ] (71)

where ωj is the frequency of the jth energy level (ground energy level set to
zero). Πj = |j⟩ ⟨j| and σ−

j = |j − 1⟩ ⟨j| and σ+
j = |j + 1⟩ ⟨j| are the projector

and ladder operators for the jth level, respectively. σxj,k = |k⟩ ⟨j| + |j⟩ ⟨k| and
σyj,k = i |k⟩ ⟨j| − i |j⟩ ⟨k|. λj denotes the ”relative strength of the 0-1 and 1-
2 transition” such that λ1 = 1 and λ2 = λ [8]. δj is the difference between
the frequency of the jth level and the drive frequency. If the drive and qubit
frequencies are resonant, then δ1 = 0 and δ2 = ω2 − 2ω1, which is a feature
of the qubit known as the anharmonicity, η [8]. Anharmonicity measures how
nonlinear a qubit’s energy levels are. The drive and control is described by
E(t) = Ex(t)cos(ωdt) + Ey(t)sin(ωdt) when 0 < t < tg where tg is the time for
running one gate. In the situation of a NOT gate, which is of particular interest
to this project as well as what was presented in Motzoi, Gambetta, Rebentrost,
et al. (2018) [8], Ex = Eπ and Ey = 0, where

∫ tg
0

Eπ = π. For a Gaussian pulse,

this becomes Eg(t) = A exp

{
− (t− tg

2 )2

2σ2

}
−B, where σ is the standard deviation

and B ensures the pulse starts and ends at zero [8].

The adiabatic transformation V (t) = exp
{
−iEx σ

y
0,1+λσ

y
1,2

2η

}
allows analysis

of the system in the qubit subspace [8]. When using DRAG, the pulses must
always start and end at zero, or rather V (0) = V (tg) = I, which is done by
forcing Ex(0) = Ex(tg) = 0. The effective Hamiltonian under the adiabatic
transformation is now

HV = V HRV + ih̄V̇ V † (72)

or, fully written out, this can be expressed as follows.

HV

h̄
≈ Ex

2
σx0,1 +

λE2
x

8η
σx0,2 + (δ2 +

(λ2 + 2)E2
x

4η
)Π2+

(δ1 −
(λ2 − 4)E2

x

4η
)Π1 + [

Ey

2
+

Ėx

2η
](σy0,1 + λσy1,2)

(73)

The last two terms in equation 73 reflect the leakage, thus by setting δ1 =
(λ2−4)E2

x

4η ) and Ey = − Ėx

η , the leakage can be negated. Of particular note is the

last term, which explicitly shows how information can transfer into |2⟩ by the
presence of σy1,2. In this way, by adding a second control, Ey, proportional to the
derivative of the original pulse, leakage can be ”instantaneously” reduced [8].
While a Gaussian shape was used in this project, if future work determines there
is a better pulse shape, DRAG may still be useful as it ”is largely impervious
to envelope shape, provided it has the right area and starts and ends at 0” [8].
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5 Implementation

5.1 Mean Field Approximation

This project simulated a two-dimensional lattice of LC resonators in an arrange-
ment that mimics the pendula studied in Süsstrunk and Huber (2015) [6]. The
resonators, much like the pendula, are dictated in pairs, or unit cells. The lattice
is 45 by 45 unit cells or 90 by 45 resonators. If this lattice were to be fabricated
and tested, each individual coupling between every resonator would need to be
designed. This is an inefficient method for simulation purposes, so instead the
mean-field approximation is introduced in the numerical analysis [28]. This al-
lows us to analyze the system in simulation without tuning up every individual
coupling.

The system Hamiltonian for a driven lattice with one qubit attached to one
of the resonators is generalized to

H =
∑
i

h̄ωra
†
iai + h̄

ωq
2
σz + gr′,q(a

′σ+ + a′†σ−) + f(t)(ad + a†d) (74)

where ωr is the resonator frequency, ai and a†i are the raising and lowering
operators of resonator i with a′ and a′† denoting the raising and lowering op-
erators for the specific resonator r′, which is connected to the qubit. ωq is the
frequency of a qubit connected to resonator r′, gr′,q is the coupling between the

resonator and the qubit, f(t) describes the drive and ad and a†d are the raising
and lowering operators for the resonator that is initially driven by the pulse.
The mean-field approximation dictates that the time derivative of any of these
ladder operators for resonators or qubits is defined as

dai
dt

=
i

h̄
[H, ai] (75)

This also applies to the qubit operators, such that

dσi
dt

=
i

h̄
[H,σi] (76)

where i ∈ {z,+,−}. Note that in the numerical analysis conducted, h̄ = 1.
By stepping through each operator for each component in the Hamiltonian, the
system’s time derivative can be integrated over. This is done using the packaged
odeintw, a wrapper around SciPy’s integrate.odeint. Odeint finds the integral
of ordinary differential equations. Odeintw enables the same calculations on
complex-valued systems [29]. While the transformation from H to D introduced
by Süsstrunk and Huber (2015) puts the complex Hofstadter’s model into a real
space [6], qubits by nature are complex and so including even a single qubit
in the Hamiltonian makes the system at large complex, again. For this reason,
SciPy’s odeint is insufficient as it does not handle complex differential equations
well. The code for this project can be found at https://gitlab.tudelft.nl/
qmai/master-theses/genyacrossman.
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5.2 The Lattice
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Figure 15: The couplings among resonators within two flux cells. Each square
(sublattice 0, i.e. pendulum x in [6]) and circle (sublattice 1, i.e. pendulum
y in [6]) form a unit cell. All squares form sublattice 0 and all circles form
sublattice 1. Three unit cells together in the s direction form a flux unit cell.
In other words, the flux among three unit cells is 2π. This is a property of

the Hofstadter model. All couplings are proportional to f = 1
2π

√
1
LC , as was

introduced in equation 14. The blue lines show couplings equal to f , red lines

represent couplings that are one half of f , and green lines are
√
3
2 f , which is the

only coupling connecting the two sublattices. Upward bending arcs represent
positive couplings, whereas downward arcs are negative couplings. All blue
couplings are positive.

In an effort to mimic the pendula system presented in Süsstrunk and Huber
2015 [6], the couplings between the resonators in the array are implemented in
exactly the same way, as shown in figure 15. In the pendula system, f is related
to the moment of inertia and torque constant of the springs [6]. In this circuit
scenario, f is related to the inductance and capacitance of the resonators. The
couplings between two flux cells – i.e three unit cells or pairs of resonators – are
described as follows: the coupling between resonators of the same sublattice in
a single flux cell are all equal to f (see blue lines in figure 15). This is also the
coupling connecting the resonators of the same sublattice in two neighboring flux
cells at the lowest r. The couplings between resonators of the same sublattice in
neighboring flux cells of higher r values is proportional to −f

2 . Figure 15 denotes
these couplings in red. The downward arc of the connections represents the fact
that these couplings are proportional to negative f . Lastly, the only way the two

sublattices are connected is through
√
3f
2 – both positive and negative, again,

reflected in the upward or downward arc of the connection, respectively. These
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connections are also only on the two higher r unit cells (see the green lines in
figure 15).
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Figure 16: The full LC resonator lattice with two qubits attached. In the one-
qubit study, only qubit 1 is used; qubit 0 is not introduced until the two-qubit
system. The pulse enters at lattice site (0,22).

The lattice studied is comprised of 45 unit cells, or pairs of resonators, which
means 90x45 resonators, as in the r direction there are two resonators for every
unit cell, but only one in the s direction, as shown in figure 16. Thus, each
column in ŝ is comprised of resonators all from the same sublattice, whereas
every row in r̂ contains elements from both sublattices. Moving forward, an
individual resonator will be denoted as (r, s, l) where r and s are its locations
in r̂ and ŝ, respecitvely, and l ∈ {0, 1} denotes which sublattice the resonator
belongs to. If only two indices are given, e.g. (3,25), then it implies a unit cell
(both resonators) at this location. The orientation has been chosen such that
the left-hand resonator in a pair is from sublattice 0 and the right-hand from
sublattice 1. This means that the start of the lattice at the bottom left is a
sublattice 0 resonator, (0,0,0), and the top right of the lattice is a sublattice 1
resonator, (44,44,1). When a single qubit is added, it is connected to the top-
right most resonator (44,44,1). When considering a second qubit, it is attached
to (44,44,0) so that it can easily interact with the original qubit from sublattice
1. The system is excited with a pulse at (0,22). Exactly how the system is
excited will be discussed next.
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5.3 Pulse Shaping

Previously, a Gaussian pulse was loosely tuned up for this lattice size such
that the initial excitement from the pulse finished prior to the subsequent wave
hitting a corner of the lattice. Such Gaussian parameters are t0 of 10ns, 2σ2 of
36, and an amplitude, A, of 1. As the immediate goal of this work is not to fine
tune the pulse parameters, but to understand at a higher level the interaction of
the pulse and lattice, changing these parameters were not within scope of this
work. Thus, the original Gaussian pulse, fd(t), can be described as it’s effect
on each sublattice, f0d and f1d , as

f0d (t) = A exp

{
− (t− t0)

2

2σ2

}
sin(

θ

2
)sin(ωdt) + cos(

θ

2
)sin(−ωdt+ φ) (77)

f1d (t) = A exp

{
− (t− t0)

2

2σ2

}
sin(

θ

2
)cos(ωdt) + cos(

θ

2
)cos(−ωdt+ φ) (78)

where ωd is the frequency of the pulse and θ and φ are the polarization angles.
θ works such that when it is zero, the signal travels clockwise, when it’s π the
signal travels counterclockwise, and when it is π

2 it is split and goes in both
directions. θ was kept at 0 in these simulations. This means that to enact
an X gate, for example, the signal effectively needs to flip it’s θ by π. Or, if
an H gate is desired, then the signal needs to be changed somehow by θ = π

2 .
Understanding how to do this requires a sense of how to measure when the edge
mode flips in chirality. Such metrics are discussed in the following section.

Prior to exploring this, though, when looking at the whole lattice with a
qubit, an unwanted backpropagation of the signal is seen after the qubit in-
teracts with the excited lattice. Thus, prior to considering any methods for
enacting a gate, first understanding how to get a strong initial continuous sig-
nal is important. To do this, a DRAG inspired pulse was used (see chapter
4). GRAPE could be implemented, but it does not appear to require the pulse
start and stop at 0. This system requires a temporary initial excitation to the
system, not a continuous one. Additionally, the result of GRAPE depends on
the discretization of the signal in time. As there are already many unknowns
about how parameters interact in this system, introducing another uncertainty
at this stage of developing a toy-model could threaten increasing the complexity
of the case. DRAG appears to be the ideal candidate for this scenario given its
design for minimizing information leakage into unwanted states, but it heavily
relies on the qubit-specific parameter anharmonicity, which does not exist for
linear elements like LC resonators. DRAG does, however, remove the concern
of discretization presented by GRAPE and ensures the signal starts and stops
at zero through its ”instantaneous” addition of terms [8]. As the point is also
not to fully optimize the system as is exactly presented currently, but merely
demonstrate that backpropagation can be minimized, a simple method of adding
the derivative of the Gaussian pulse (introduced in equations 77 and 78) to the
Gaussian itself was implemented. So long as the backpropagation is minimized,
then the rest of the system can be more thoroughly studied. Once the system is
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better understood (e.g. the architecture and Hamiltonian parameters are well
defined), more thorough optimal control methods, such as GRAPE or DRAG,
should be implemented as is necessary. Going forward, the original Gaussian
pulse will be referred to as the ”unoptimized” pulse whereas the Gaussian with
its derivative will be called the ”optimized” case.

To understand to what extent this method changes the system, several per-
spectives were considered. Of course, first off, the backpropagation was studied
to see if its effect was minimized. Then how the signal strength varied from
the edge of the lattice in comparison to the center was considered; were edge
modes maintained even with an optimized pulse? How does the signal after the
qubit compare to the signal before the qubit? And how does adding the pulse’s
derivative impact a system when 2 qubits are involved? The following chapters
will present the results to address these questions.

5.4 Metrics

When comparing quantum states, the metric to determine how much informa-
tion was preserved in transitioning from one state to the next is referred to as
fidelity. For pure states, this calculation is simply F = |

∫
⟨Ψstart|Ψend⟩ |2 where

Ψstart and Ψend refer to the starting and ending quantum states. While the edge
modes of the lattice are expected to mimic quantum states, the fidelity calcula-
tion is not an optimal choice for determining how much of the signal passes the
qubit and continues onward as the lattice is not producing pure states. Calcu-
lating the fidelity for mixed (non-pure) states requires knowledge of the system
that may be commonly accessible in traditional quantum systems, but is not
currently in this setup. There is, however, another metric common in quantum
systems, as well as in microwave engineering.

The transmission coefficient is often introduced in introductory quantum
mechanics as a method for determining how much of a wave transmits past
a potential barrier [25]. In microwave engineering, it is similarly used to de-
termine how much a wave transmits past a specific circuit element, such as
a resonator [30]. In essence, it is a description of how much a wave contin-
ues past some barrier. For simplicity, consider simple plane waves, such that
ΨL = Aeikx+Be−ikx is the expression of the wave to the left of the barrier and
ΨR = Ceikx +De−ikx is the wave to the right of the barrier. Both ΨL and ΨR
contain information about the ingoing and outcoming waves. The system can
be rewritten as Ψin = Aeikx +De−ikx and Ψout = Ceikx + Be−ikx. Then con-
sider the situation in which the wave approaches the barrier from the left-hand
side, therefore there is no incident wave approaching the barrier from the right
and, thus, D = 0. As the transmission coefficient is simply a comparison of how
much of the original incident wave continues onwards after the barrier, it can
be expressed in terms of the amplitudes, A and C [25].

TC =
|C|2

|A|2
(79)

This means that so long as the amplitudes of the wave before and after the
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barrier are known, one can determine how much of the wave was transmitted.
This works wonderfully for the lattice system, if the qubit is considered a barrier.
Understanding how much of the original signal is transmitted past the qubit will
help determine how robust the system is. For example, if an X gate was run,
ideally there should be none of the original wave passing the qubit; it should all
be reflected. The transmission coefficient in this case ideally would be zero. In

this situation, the reflection coefficient, RC = |B|2
|A|2 , would be 1 as the wave is

fully reflected and TC +RC = 1 [25]. If, however, the qubit was not supposed
to interfere with the system, then the ideal transmission coefficient would be 1.
While the transmission coefficient itself is a very good metric for this system
and its future incarnations, determining exactly which amplitudes to use is not
immediately obvious. A discussion around this can be found in chapter 6.
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6 One Qubit

The first step to checking how the system behaves is analyze the behavior of
the edge modes. Verifying that the signal decays as it progresses away from the
edges and into the bulk is essential before considering a more complex system
with multiple qubits. Thus, first results presented relate to characterizing the
edge signal versus the bulk signal. This includes studying how an optimized
pulse may impact the system. Then the a single qubit’s response is considered
in both the unoptimized and optimized scenarios for when the qubit is attached
at the top right corner of the lattice on sublattice 1, i.e. at resonator (44,44,1).
The qubit frequency is set to the drive frequency; both are 2.2Ghz. These two
features were tested in resonance as that is the point at which the qubit is
likely to be maximally excited. It is unknown, yet, whether an LC lattice fully
functioning as a qubit should have its control qubit maximally or minimally
excited. This will likely depend on the type of gate being run. By studying
the maximally excited control qubit, however, the extreme condition of qubit
excitation is better understood. Section 6.3 covers the results of the transmission
coefficient – as was introduced in section 5.4 – for both the unoptimized and
optimized pulses. These are shown for time scales of 1σ, 3σ, and 5σ centered
about the respective peaks, as well as for 0 to 100ns. The transmission coefficient
is calculated twice: first comparing four unit cells before and after the qubit then
comparing the center of the top edge of the lattice to the center of the right
edge of the lattice. A discussion around the limitations of these results is also
presented. Finally, the qubit-resonator coupling was studied to ensure that this
parameter is not limiting the Hamiltonian prior to complicating the system by
adding a second qubit. Indeed, the qubit-resonator coupling, g, is not currently
a limiting factor in the current setup, so it is considerably safe to add a second
qubit to the lattice. Two-qubit results are presented and discussed in chapter
7. For the following results, the drive’s amplitude is 1.0, its phases, θ and φ, are
both zero, t0 = 10ns, and σ =

√
18. The qubit-resonator coupling is 0.8 GHz.

6.1 Edge Modes

As mentioned, adding a qubit to the lattice – attached to sublattice 1 at the
top right of lattice, i.e. resonator (44,44,1) – most notably caused a backprop-
agation along the edge of the lattice. This was mitigated using an optimized
pulse, as was introduced in section 5.3), and which will be discussed at the end
of this section. Adding a qubit, however, also served as a check to see how the
topological edge modes hold up when the edge shape changes. In Süsstrunk
and Huber (2015), this was tested by removing pendula [6]. With integrated
circuits, though, LC resonators are well defined and easily fabricable compo-
nents, which is a large part of the motivation in using them for this research.
Removing resonators, thus, would not mimic a truthful experimental change
in the definition of an edge, as resonators are not likely to ”disappear” from
a device. What is more likely, is that the edge is extended by being attached
to another element, such as a qubit. Attaching a single qubit to the system
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Figure 17: The average amplitude of each resonator of a given sublattice over
all time when one qubit is attached to sublattice 1 at the top right corner, i.e.
(44,44,1). Results are shown for both sublattices under two different conditions:
an unoptimized pulse and an optimized pulse.

physically extends the edge of where the signal can travel, while also tests out
the foundations of the lattice-with-qubit dynamics in anticipation of a two-qubit
system. As expected, attaching the qubit does not disturb the observation of
topological edge modes (see figures 17 and 182). There is a very slight diagonal
signal that travels through the bulk from where the qubit sits in the top right
corner to the bottom left corner of the lattice after the qubit becomes excited.
This is present with or without the pulse’s derivative, but is more visible with
it as the optimized pulse amplifies the entire signal. Nonetheless, the strength
of this diagonal wave is negligible in comparison to the main signal, so it can
be ignored for the purposes of this project. Also, as the qubit is set at the same
frequency of the drive, it is maximally excited; therefore, future studies of this
system with different qubit frequencies will likely demonstrate a lower diagonal
bulk signal, if not remove it entirely.

2Gif files for these results are in the Images folder under the file
names Unopt sublattice0 Qat(44, 44, 1), Unopt sublattice1 Qat(44, 44, 1),
Optimized sublattice0 Qat(44, 44, 1), Optimized sublattice0 Qat(44, 44, 1),
Unopt UnitCell Qat(44, 44, 1), and Optimized UnitCell Qat(44, 44, 1). These can be
found at https://gitlab.tudelft.nl/qmai/master-theses/genyacrossman
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Figure 18: The average amplitude of each unit cell over all time when one qubit
is attached to sublattice 1 at the top right corner, i.e. at (44,44,1). One unit
cell’s amplitude is the average of the responses of the two resonators – one
from sublattice 0 and one from sublattice 1 – that comprise that cell. Results
are shown for under two different conditions: an unoptimized pulse and an
optimized pulse.

What matters more is how the signal decays into the bulk or how it behaves
along the edge after it hits the qubit. The signal drops by about one half
when only one resonator in from the edge, regardless of sublattice. This decay
is not linear, however, as can be seen in figures 17 and 18. Roughly every 3
layers in from the edge, there is a slight increase in the signal on an order of
magnitude similar to about 3 layers previous. While the particular dynamics
of this nonlinear decay into the bulk have not yet been characterized, it is not
concerning as the magnitude of the wave amplitude anywhere in the bulk is still
significantly less than (at least half of) that at the edge.

While the edge modes exhibit similar robustness given both the unoptimized
and optimized pulse conditions, the effect of the backpropagation along the top
edge of the lattice caused by the qubit differs between these two conditions.
Figure 19 shows the response of resonator half-way along the top edge and on
the same sublattice as the qubit, i.e. resonator (22,44,1). The dashed yellow and
orange vertical lines denote when the qubit’s amplitude is greater than 10−10

and 10−5 respectively. Thus, as expected, this resonator is maximally excited
before the qubit’s response is substantial. This initial peak is part of what looks
like the only clean Gaussian in all time for both the unoptimzed and optimized
scenarios. The rest of the response is comprised of the backpropagation from
the qubit then the subsequent moments the main pulse hits same resonator
again after making its way around the lattice and the related backpropagations
from each of those rotations. Considering the signal gets messy at later points
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in time and that these later time frames are likely irrelevant to this project3,
a resonator’s response will only be considered for the first 100ns, as seen in
figure 20. Almost immediately after the initial pulse passes the resonator, right
when one would hope the resonator would then become relatively dormant,
there is another messier signal that passes through. This is easier to see in
figure 20b, which shows the same resonator response, but only for the first
circulation of the signal around the lattice. The optimized pulse (light blue
line in the figures) does not get rid of the backpropagation in this system,
rather it diminishes its continuity of amplitude in comparison to the unoptimized
pulse. More importantly, the backpropagation amplitude is significantly less in
comparison to the peak of the main signal from an optimized pulse. In the
unoptimized case, the backpropagation is nearly the same amplitude as the
original signal. In the optimized case, the backpropagation is not even half of
the maximum amplitude of the original signal. So while the optimized pulse does
not make backpropagation disappear for the lattice with a maximally excited
control qubit, it does make it negligible in comparison to an unoptimized pulse.
Additionally, the backpropagation may diminish in future studies if the qubit
and drive frequencies need to be detuned.
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Figure 19: Sublattice 1 response at half-way across the top edge, i.e. at (22,44,1),
over all time. The yellow and orange dashed vertical lines show when the qubit
is excited to an amplitude greater than 10−10 and 10−5, respectively.

3Current two-qubit gates in superconducting systems are on the order of magnitude of
100ns [26]
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(a) Sublattice 0
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(b) Sublattice 1

Figure 20: Responses of the two resonators – one of each sublattice – at the
center of the top edge. a) Resonator of sublattice 0, i.e. (22,44,0). b) Resonator
of sublattice 1, i.e. (22,44,1). Yellow and orange dashed vertical lines denote
when the qubit’s amplitude is at least 10−10 and 10−5, respectively. The original
pulse’s signal is clearly seen as the initial Gaussian and the remainder of what
looks like noise is the backpropagation from the qubit.

6.2 Qubit Response

After checking the edge modes, it was important to ensure the qubit is being
properly excited. While this project did not get into the specifics of optimizing
the qubit behavior, it is still crucial to understand that the qubit is ”alive,”
or rather that it is observed oscillating between the ground and the excited
state. Figure 21 shows the qubit attached to the lattice that is excited by an
unoptimized pulse. The qubit starts in the ground state. Once it is significantly
excited, shortly before 50ns, it begins to oscillate. It does not, however, return
fully to the ground state; rather, it appears to oscillate between the almost-
excited state and a mixed state, i.e. some state between the ground and excited
state. Similarly to the resonator’s argument of only considering the first 100ns of
time, here it is more obvious how at longer time scales the quality of the control
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Figure 21: The control qubit’s response for a system excited by an unoptimized
drive.

qubit decays as its oscillations become less pronounced. Figure 22 shows the
qubit responses to both unoptimized and optimized pulses on this time scale.
While it was not expected for the optimized pulse to impede any qubit activity,
it is good to confirm this (see figure 22b). It also appears that the optimized
pulse helps the qubit get closer to oscillating fully back to its ground state,
which is what would ideally happen after running a gate – the control qubit
would return to its initial starting point. Understanding the dynamics of why
the control qubit has one extra oscillation with an optimized pulse requires
further investigation.
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Figure 22: The control qubit’s response for a system excited by a) an unopti-
mized or b) optimized pulse.

6.3 Transmission Coefficient

As introduced in section 5.4, the transmission coefficient is a good metric for
determining how much of a wave has continued past a barrier. In this case, the
barrier is the control qubit. While taking the maximum amplitude of a given
unit cell before the qubit and comparing it with the maximum amplitude of a
given unit cell after the qubit may seem sufficient enough for calculating the
transmission coefficient of the system, it does not take into account how the
shape of the signal changes after the qubit. This change in shape is particularly
pronounced when using an optimized pulse, see figures 23 and 24. For this
reason, the integral of the amplitude of a specific unit cell’s response was taken
and used instead of a single amplitude at a single point in time. It is not obvious
exactly what time frame to integrate over, however. Particularly for any sites on
the top edge, it will be difficult to find a window of time at which it is guaranteed
there is no backpropagation being accidentally added into the integral of the
”original” wave. Thus, the integral was calculated four times, each for different
time frames. At first the time-width considered equated to σ, 3σ, and 5σ, where
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(a) Half-way across top edge
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(b) Half-way across right edge

Figure 23: Unit cell responses at the center of the lattice before and after
the qubit, i.e. at (22,44) and (44,22), respectively. Yellow and orange dashed
vertical lines denote when the qubit’s amplitude is at least 10−10 and 10−5,
respectively.

σ refers to the standard deviation of the Gaussian of the drive, centered about
the respective peaks of the lattice sites. Please note, though the optimized pulse
incorporates the derivative of the Gaussian (so its standard deviation may not be
exactly σ), these same time frames were still used for the sake of simplicity and
getting ballpark estimates. Luckily, the transmission coefficient is independent
of the standard deviation, this is merely a practice for appropriately highlighting
the part of the signal of interest, therefore even if the optimized pulse has
a different standard deviation, this should not wildly affect the results. The
fourth time frame considered was 0 to 100ns. These four time frames were used
to integrate the signal at four different lattice sites to calculate two transmission
coefficients for each combination of time frame and pulse type (unoptimized and
optimized). Table 1 shows the resulting transmission coefficients for comparing
four lattice sites before the qubit, (40,44), with four lattice sites after the qubit,
(44,40), corresponding to figure 24. Table 2 shows the transmission coefficients

43



0 20 40 60 80 100
Time (ns)

0.0

0.2

0.4

0.6

0.8

1.0

W
av

e 
am

pl
itu

de

Unoptimized
Optimized

(a) Half-way across top edge, i.e. before qubit.
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(b) Half-way across right edge, i.e. after qubit.

Figure 24: Unit cell responses at four lattice sites before and after the qubit,
i.e. at (40,44) and (44,40), respectively. Yellow and orange dashed vertical lines
denote when the qubit’s amplitude is at least 10−10 and 10−5, respectively.

for comparing lattice sites at the center of the edge before the qubit, (22,44),
and the center of the edge after the qubit, (44,22), corresponding to figure 23.

First, it is important to note that as expected, the unoptimized transmission
coefficients are less than the optimized results. The exception to this is with the
1σ values when comparing lattice sites at the center of the edges before and after
the qubit (see table 2). The fact that the unoptimized transmission coefficient is
larger here indicates that 1σ is too small of a window. The rest of the numbers,
however, generally agree with the idea that the optimized pulse enables more
of the signal to continue onwards past the control qubit. The 0 to 100ns results
for both four unit cells from the qubit and centers of the edges show roughly
the order of magnitude expected. This time frame, however, is not perfect. It
likely could contain the backpropagation into the ”before” signal, especially in
the study of four unit cells away from the qubit as presented in table 1. Ideally,
the backpropagation should be extracted from any ”before” amplitudes prior to
any further calculations for the purposes of the transmission coefficient. This
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Time slice
1σ 3σ 5σ 0 to 100 ns

Unopt. 0.89 0.6 0.5 0.52
Opt. 1.07 0.82 0.98 0.93

Table 1: Transmission coefficients for both unoptimized and optimized solutions
four unit cells before and after the qubit, i.e. (40,44) and (44,40), for varying
lengths of time. σ, 3σ, and 5σ are centered about the respective peaks.

Time slice
1σ 3σ 5σ 0 to 100 ns

Unopt. 0.98 0.75 0.69 0.35
Opt. 0.8 0.86 1.07 0.74

Table 2: Transmission coefficients for both unoptimized and optimized solutions
half-way across the top and right edges, i.e. (22,44) and (44,22), for varying
lengths of time. σ, 3σ, and 5σ are centered about the respective peaks.

would make the results more accurate. Hopefully such improved transmission
coefficients would be no more than 1, as the current values greater than 1 are not
physical. As mentioned in section 5.4, a transmission coefficient of 1 implies that
the entire wave was transmitted past the qubit. A transmission coefficient larger
than 1 here likely indicates that both the time frame considered is not the best
and/or that the backpropagation is erroneously included in the ”before” wave
amplitude. It also possibly indicates that a further normalization step is likely
required after the integration of the signal and before the final transmission
coefficient computation.

6.4 Qubit-Resonator Coupling

Lastly, the qubit-resonator coupling was varied to ensure that this parameter is
not limited while in the simplest case of connecting a single qubit to the lattice.
At first, the unoptimized system was varied from g = 0.2 to g = 1.2 GHz. After
seeing that the qubit was too weakly coupled to the system to properly oscillate
between the ground and excited state when g < 0.6 GHz, the optimized system
was considered for g = 0.6 to g = 1.2 GHz. Both the qubit and the resonator
attached to the qubit were considered for each coupling strength to ensure their
respective responses were not negatively impacted. After confirming that the
Hamiltonian for a lattice with one control qubit is not limited with respect to
the qubit-resonator coupling strength, a two-qubit setup was studied. It is im-
portant to note that while the qubit-resonator coupling strength was studied,
it was not optimized. Full-system Hamiltonian optimization is a complex pro-
cess; tuning up one parameter, such as the qubit-resonator coupling, in isolation
does not optimize the system as a whole. For example, adding a second qubit
will further constrain the Hamiltonian and, thus, it is not useful to optimize
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the qubit-resonator coupling in a single qubit system when the anticipated final
system will contain two qubits.

7 Two Qubits
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Figure 25: Average signal across the lattice of resonators when two qubits are
attached at the top right corner and the system is excited by an optimized pulse.
One qubit is attached to sublattice 0 (at resonator (44,44,0)) and the other is
attached to sublattice 1 (at resonator (44,44,1)). The unit cell result shows the
average of the two sublattices’ responses.

Once understanding that a single qubit can be attached to a lattice of LC
resonators without wildly disturbing the edge modes, a system with two qubits
was studied. Two qubits will likely be necessary for enacting gates on the lattice
as both sublattices need to be controlled. It is logical, then, to consider one qubit
attached to each sublattice and the two qubits coupled together. In this section
the results of such a system are presented with qubit 0 – the qubit attached to
sublattice 0 – having a frequency of 2.2 GHz and qubit 1 – the qubit attached
to sublattice 1 – having a frequency of 2.0 GHz. All other parameters remain
the same as in chapter 6. Only the optimized pulse was studied as the one-qubit
results indicate that this minimizes the affects of backpropagation and helps the
control qubits to oscillate closer to the ground state.

In a similar method to exploring a one-qubit system, first the edge modes
of the lattice were considered. Again, the signal was found to decay in a non-
linear manner into the bulk, but significantly enough such that any bulk-signal
is negligible in comparison to an edge-signal (see figure 25). Next, again, much
like in the one-qubit case, the excitation of the qubits were considered. As was
seen in the one-qubit scenario, the optimized pulse appears to assist the qubits
in getting closer to oscillating properly between the ground and excited state.
Also, similarly, at longer time scales past 100ns, the quality of qubit oscillation
decays for both qubits, but particularly so for the qubit attached to sublattice 1,
which has the lower frequency. While the apparent extreme excitation of qubit
1 at longer time scales appears alarming, these are not time scales of concern for
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Figure 26: Qubit responses when qubit 0 is attached to sublattice 0 and qubit
1 to sublattice 1. The two qubits are also coupled to each other. Both qubits
start in the ground state.

this project. Nonetheless, it should be noted that this behavior may also further
highlight the fact that the Hamiltonian has not been fully optimized. Simply
applying the optimized pulse does not solve all woes. For example, qubit 1 does
not seem to entirely reach its excited state during its first oscillation (see figure
27). Future work must consider the proper allocation in frequency space of the
drive pulse, the qubits, and the various couplings.

Figure 28 shows the unit cell response at the center of the top and right
edges for a two-qubit system. The shape of these signals and their amplitudes
are quite similar to the single qubit case as shown in figure 23. These results
serve as good sanity checks that the anticipated eventual two-qubit system will
not behave in a wildly different manner than its simpler predecessor, the one-
qubit system. With that said, there are still aspects to further study in the
single qubit system prior to optimizing for two qubits. For example, given
that the proper implementation of the transmission coefficient requires more
thorough consideration, it was not implemented here for the two-qubit case
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Figure 27: Qubit responses over the first 100ns when qubit 0 is attached to
sublattice 0 and qubit 1 to sublattice 1. The two qubits are also coupled to each
other. Both qubits start in the ground state.

even though the transmission coefficient would be a good metric to characterize
this system. Such further considerations and suggested next steps are outlined
in the following chapter.
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(a) Half-way across top edge, i.e. before qubits.
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Figure 28: Unit cell responses at the center of the top, (22,44), and right-hand,
(44,22), edges. Yellow and orange dashed vertical lines denote when qubit 1’s
amplitude is at least 10−10 and 10−5, respectively.
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8 Conclusion

Studying the proposed LC resonator two-dimensional lattice with control qubit(s)
from the perspective of architecture, optimal control, and then metrics pro-
duced encouraging results indicating that such a classical array can demonstrate
topological-inspired edge modes. The two sublattices were verified to react to
an excitation pulse in a similar manner even if only one sublattice was connected
to a qubit. When a single qubit was connected to one sublattice, the qubit’s
state oscillated as one would hope, although does not fully oscillate between
the ground and excited state. Additionally, it ends in the excited state, whereas
ideally, once a single qubit gate is run, it should end in the ground state where it
originally started. This, however, does not necessarily indicate a problem with
the layout, moreover it points to a need to find a better relationship between
the qubit and the rest of the system; in this work the qubit is in resonance with
the drive frequency to become maximally excited such that the system studied
is in some type of known ”boundary condition” Hamiltonian-wise. Additionally,
if the qubit is moved off resonance from the drive pulse, the backpropagation
observed in the unoptimized system may diminish. Nonetheless, the backpropa-
gation in this maximally-excited-control-qubit system was minimized by adding
the derivative of the Gaussian excitation to the pulse.

While putting the qubit and drive pulse in resonance implies a maximally
excited qubit, the qubit-resonator coupling does not necessarily have an prior
known maximum (or minimum); however, by changing this variable, it was
found that the response of the circuit is not immediately limited by qubit-
resonator coupling. This is as one would hope, but was a good check prior to
making the system more complex with a second qubit.

When a second control qubit was added to the other sublattice and coupled
to the original qubit, the system behaved similarly to the single-qubit system.
The oscillations of the lower frequency qubit, however, were further from full
ground-to-excited state oscillations. Once again, this indicated the need for
optimizing the full Hamiltonian. Optimization of the Hamiltonian will require
an understanding of how a ”good” system behaves. For this the transmission
coefficient was introduced to compare the signal after the qubit to the signal
before the qubit. While this method is applicable as it stems from both mi-
crowave engineering [11] and quantum mechanics [25] and it is agnostic of the
drive pulse shape, the first results of using this metric are not physical. This
indicates further consideration is required regarding exactly what part of the
response signal is used, as well as the need to introduce normalization into this
calculation.

An immediate next step for a cleaner signal for the transmission coefficient
would be to extract the backpropagation from the signal on the top-edge such
that all that is left is the top edge’s response to the original drive pulse. Ideally,
this should be done in such a way that is agnostic to the shape of the drive pulse.
That way any possible changes to the pulse (e.g. using a non-Gaussian shape)
would not impact such a method for quantifying the quality of the system.
This would likely solve the problem of choosing a proper time-window over
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which to integrate. The transmission coefficient, however, is meant to compare
amplitudes, not necessarily the integral of amplitudes. Further consideration of
how to properly normalize these integrals will enable better implementation of
the transmission coefficient.

In parallel to determining a reliable metric, the architecture of the system
itself should be considered in greater detail. While qubit interaction proves
that it is possible to reverse the edge mode chirality (as is evident in the back-
propagation), it is not studied how this manipulation would work. The qubits
presented in this thesis were of a fixed frequency, meaning that their ground
and excited states were hard-coded. It is possible and actually common place in
quantum integrate circuits to use tunable qubits [14]. Such qubits’ frequencies
may be shifted when excited by an extra external flux that is only applied to
the individual qubit in question. By modulating a qubit’s frequency, it could
be tuned in such a way that is does and does not interact with the lattice at
the exact opportune moments. Whether both qubits or only one would need to
be tunable for the final working system is to be determined. It is possible that
both options are functional. The simplest, case, though, is to have one tunable
qubit and one fixed.

To understand how changing the frequency of a single tunable qubit could
flip the edge mode, it is suggested that only a single sublattice with one at-
tached qubit is studied in detail. This means that a single Hofstadter model
as presented in equation 54 may be modeled directly (with a qubit attached, of
course) and the unitary transformation presented in equations 55 to 57 can be
ignored. In this pre-transformation subsystem, it would be easier to study how
the qubit could ”absorb” and ”inject” the signal in such a way, for example, as
to flip the edge mode’s chirality, which is equivalent to changing the Gaussian’s
phase θ by π, or enact an X gate. Such a sublattice simulation has been set up,
but not yet studied in detail.

Another architecture choice is whether or not the lattice and control-qubit
system should be able to easily manage several different single qubit gates.
The alternative would be to design several of these systems each specifically
optimized to enact one type of single qubit gate. The eventual processor made
up of many of these lattices would then hard-code a particular set of gates.
This decision between universal or application-specific focus is not of immediate
concern, though.

With a proper metric and set architecture, the full Hamiltonian may then
be optimized. Numerical methods such as automatic differentiation may prove
incredibly efficient in determining optimal parameters for the pulse, qubit fre-
quencies, and various couplings. Such a method, though, requires a reliable
loss function (e.g. transmission coefficient). For example, in the case of an
X gate, the transmission coefficient would ideally be 0 as the signal should be
completely reflected into the opposite circular edge mode. In this case, auto-
matic differentiation would run the simulation of the full system to find optimal
Hamiltonian parameters that would bring the transmission coefficient as close
to zero as possible. If an H gate was being studied instead, then the same
method could be used, but with an ideal transmission coefficient of 0.5. While
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the unoptimized one-qubit system demonstrated a backpropagation that one
may consider a preliminary indication of a Hadamard gate, the qubit’s oscilla-
tions did not land in the ground state. The parameters for this system could,
however, serve as a good starting point for a Hamiltonian optimization process
focused on tuning up a Hadamard gate. In the case of the H gate, GRAPE
may also be implemented on the unoptimized system (for which the reflection
was observed) such that it adjusts the pulse until the qubit ends in the ground
state, i.e. C = |0⟩ ⟨0| and the Hk is the terms of the full Hamiltonian related
to the qubit. GRAPE, however, will only optimize the pulse for the sake of
the qubit. Automatic differentiation could optimize many parameters for the
sake of the entire system’s response. The idea to use automatic differentiation
for optimizing quantum systems has already been introduced for steady state
systems [31] so could be extended to this use case.

Additionally, detailed characterization of the topological edge modes of such
systems should be conducted. For example, one may study the energy as a
function of the wave number, similar to as is present in figure 9. It should even-
tually be confirmed that there is indeed an energy band gap between the bulk
and edge. The introductory study of the signal decay from the edge into the
bulk presented in this thesis may be convincing enough to support continuing on-
wards with further detailed analysis of a lattice connected to qubit(s); however,
as these systems become more defined, it will be helpful to have more thorough
quantification of the topological features central to this proposed hardware’s
success. Another topological feature that may be considered is that expressed
in equation 59. The assumption is that there is no coupling between the two
edge modes. It could be possible, however, that there is some degree of inter-
action between the two system while still maintaining the overall time reversal
symmetry of the system as a whole.

While the results of this thesis are preliminary with respect to the larger
development of this new quantum hardware, studying the resonator responses
on the edges and in the bulk, as well as the qubit responses in both one and two
qubit cases, lays down the groundwork towards enacting single qubit gates on
these systems. The results have not identified any major road blocks preventing
the hypothesis that an LC resonator array with control qubit(s) could serve
as a more robust qubit. Once better metrics have been established and the
proposed Hamiltonian optimization techniques implemented, it is possible that
single qubit gates may be realized on such a system.
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