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Abstract
Multi-Server Federated Learning (MSFL) is a de-
centralised way to train a global model, taking a
significant step toward enhanced privacy preser-
vation while minimizing communication costs
through the use of edge servers with overlapping
reaches. In this context, the FedMes algorithm fa-
cilitates the aggregation of gradients, contributing
to the convergence of the global model. Attacks
that aim to reduce the accuracy of the global model
are called untargeted attacks. One such attack that
is particularly difficult to detect is the Min-Max at-
tack. This paper explores the extension of exist-
ing defenses to enhance the robustness of MSFL
against the Min-Max attack.
To do this, existing state-of-the-art defenses, in-
cluding Median, Krum, Multi-Krum, Trimmed-
Mean, Bulyan and DnC are extended and examined
for their adaptability to this context. We refer to
the extended versions of these defenses as FMes-
Defenses.
Our results indicate that FMes-Defenses are inef-
fective in preventing the Min-Max attack from di-
minishing the accuracy of the global model. Sur-
prisingly, we find even FMes-DnC is inadequate
despite it’s Single-Server counterpart (DnC) being
renowned for mitigating the Min-Max attack.
These findings emphasise the need for novel de-
fenses specifically tailored to the nuances of MSFL.
While representing a significant stride in commu-
nication efficiency, MSFL, complemented by the
FedMes algorithm, may require additional mea-
sures to ensure robust security against sophisticated
untargeted attacks. This research contributes valu-
able insights into the challenges and importance of
enhancing the security of MSFL in its ongoing de-
velopment.

1 Introduction
With rising awareness and concerns about data privacy, in
2016 Google introduced Federated learning (FL) [1]. A new
decentralised approach to machine learning where in contrast
to distributed learning, the data used in training never leaves
the device it comes from. Instead, devices receive a global
model from a server, train it locally with their respective data,
then send the updates back to the server which aggregates all
the updates it received to get a new global model.

Multi-Server Federated Learning (MSFL) is proposed for
scenarios where there are multiple edge servers, each can
reach a subset of the participants and the server-reaches over-
lap in certain regions. In MSFL using the FedMes aggrega-
tion, devices in regions where server reaches overlap (devices
reached by more than one server) are given additional weight
to their updates during aggregation [2]. This allows for re-
duced communication between the servers and in many cases
results in MSFL with FedMes outperforming alternatives like
Hierarchical and Single-Server FL.

Various types of attacks on FL exist and they differ by pur-
pose. Though FL was devised to keep data private, inference
attacks can be employed in attempts to derive client devices’
data by monitoring the gradient updates [3]. Free-rider at-
tacks, where users pretend to be contributing to training can
be used to gain access to commercially high valued global
models [4]. Poisoning attacks aim to reduce the robustness
of the global models [3]. Targeted poisoning attacks (back-
door attacks) aim to manipulate the global model into gen-
erating a specific erroneous output upon receiving a specific
input, while not affecting the models performance on other
inputs. Untargeted poisoning attacks on the other hand at-
tempt to generally decrease the accuracy of the global model.

All the different types of attacks pose threats to the sanc-
tity of FL but untargeted attacks can corrupt a relatively large
population of clients and be very hard to detect [5]. Mak-
ing them a serious threat to production FL. Additionally, if
the FedMes aggregation gives added weight to a malicious
update from an untargeted attack, this update in turn has a
greater impact on the global accuracy. Making the attack
more potent. This increase in potency is not so clear with
the other types of attacks.

In Single-Server FL, an untargeted attack known as Min-
max, is very effective against the common state-of-art de-
fenses [6]. However a state-of-art defense called DnC(divide-
and-conquer) is presented as the solution that effectively mit-
igates the effects of the Min-Max attack[6] when data is iid.
What happens when an attack such as this is launched from
the most overlapping regions in MSFL with the FedMes ag-
gregation, such as in Figure 1? The devices in these regions
are given more weight to their updates based only on their
geographical location. Can the DnC defense be adapted to
effectively work in this context?

Figure 1: Visualisation of attackers in most overlapping areas of
Multi-Server Federated Learning.

Research question: ”How effectively can state-of-the-
art defenses, originally designed for Single-Server Federated
Learning, be extended to Multi-Server Federated Learning
with FedMes, to mitigate the Min-Max attack’s impact on
the accuracy of an image classifier’s global model? To an-
swer this question a quantitative approach will be taken. The
common state-of-art defenses (Median, Krum, Multi-Krum,



Trimmed-Mean, Bulyan) as-well as DnC are extended to the
new setting of MSFL with FedMes. We refer to the extended
versions of these defenses with the prefix ’FMes-’ (e.g. the
extended version of DnC is FMes-DnC). A series of exper-
iments are run on these FMes-Defenses (the term we use to
refer to all the defenses we extend to this setting) in order to
collect data to answer the following sub-questions:

1. Is MSFL with FedMes vulnerable to the Min-Max attack
when no defense is present?

2. How effective are FMes-Defenses based on common
state-of-art defenses at preventing the Min-Max attack
from reducing the global model accuracy?

3. To what extent does the FMes-DnC defense succeed in
preventing the Min-Max from reducing the global model
accuracy?

Contribution: Existing research on untargeted attacks and
their respective defenses have mostly been centered around
Single-Server and Hierarchical FL [7] [8]. MSFL algorithms
such as FedMes are promising new concepts that have poten-
tial to be relevant to the future of machine learning. This pa-
per for the first time applies existing defenses for untargeted
attacks to MSFL, in order to investigate the difficulties this
novel setting presents for security. Ensuring MSFL can be
made robust to attacks is crucial if it’s ongoing development
is to progress.

The structure of the following sections is as follows. Sec-
tion 2 will go into further detail of relevant concepts and re-
lated work. In section 3, specifics of the system model can be
found. Following this section 4 will describe the methodol-
ogy used in creating the FMes-Defenses. Section 5 continues
on with the specifics of the implementation used for experi-
ments. Then in section 6 is where the analyses of the exper-
iment results can be found. In section 7 the ethical aspects
and steps taken to ensure reproducibility of the research will
be discussed. Followed by the limitations of the research in
section 8. Finally, section 9 contains the conclusion accom-
panied by suggestions for future work.

2 Related Work
The Related Works section introduces foundational concepts
for this paper. Subsection 2.1 explores MSFL and FedMes.
Subsection 2.2 describes common state-of-the-art defenses
examined in a new context. Subsection 2.3 discusses two
common state-of-the-art attacks and compares their effective-
ness with Min-Max, detailed in Subsection 2.4. Subsection
2.5 presents the theory behind the DnC defense.

2.1 Multi-Server Federated Learning and FedMes
Fundamentally, FedMes is an aggregation strategy proposed
for MSFL, in which the regions of server reaches overlap [2].
To understand what this entails, it’s helpful to highlight why
it was created and how it differs from alternatives such as
Single-Server and Hierarchical FL. Then the exact algorithm
and it’s advantages in intended contexts can be appreciated.

Single-Server FL is the simplest from of FL. In it, all up-
dates from client devices ultimately need to communicate
with a single server [2]. This server aggregates the global

model using the updates from all clients. Due to the constant
communication (downloading/updating of models) between
clients and this server, it can cause communication bottle-
necks. Furthermore, if we consider this central server to be
a cloud server (being in the cloud would allow it reach many
client devices), the distance between clients and the server
causes propagation delay during communication [9].

Edge computing offers a solution to tackle the latency of
cloud computing architectures [10]. Edge servers can be used
to replace the relatively slow single-cloud-server architecture.
Due to the relatively small number of clients a single edge
server can reach, multiple edge servers would need to be
utilised [2].

Hierarchical FL is a popular way to train a global model
through these edge servers [11]. In each epoch clients down-
load a model from their edge server, train it with their data,
then send the updated model back to their edge server. Pe-
riodically the edge servers will send their global models up-
stream, where global models of multiple servers will be ag-
gregated and sent back downstream to the edge servers and
further to the clients those edge servers reach.

MSFL is a novel alternative which reduces communication
costs further [12]. It avoids communication between edge
servers completely up until the end of training. By having the
edge servers’ regions overlap, devices in these regions act as
a sort of bridge of communication. Edge servers’ global mod-
els to impact each other without having to send their models
further upstream periodically.

FedMes is an aggregation strategy that’s proposed for this
setting [2]. When an edge server is aggregating all of it’s
received updates into an average, a weight is given to each
update. This weight is proportional to the size of the data-
set that trained the update, as-well as the number of servers
that reach the client it comes from. A benefit of this aggre-
gation is not only the reduced communication costs, but also
the speed of convergence. Particularly with non-iid data and
topologies with densely populated regions with many clients
in overlapping regions.

2.2 Common State-of-Art Defenses
In the following chapters, ’common state-of-art defenses’
will refer to those described in this subsection. That is not to
say that other researched defenses do not exist but they are be-
yond the scope of this paper as they are not as common in re-
search papers as the ones mentioned. Some of the techniques
not covered include those that employ clustering, coordinate-
wise median, geometric median and norm-bounding [3].

In addition the Median aggregation, the relevant common
state-of-art defenses include:

• Krum - Uses Euclidean distance between the updates
sent in by clients to identify the gradient-update least
likely to be malicious [13]. Where n is number of up-
dates and m the upper bound of malicious clients, it se-
lects the gradient closest to it’s n−m− 2 neighbours.

• Multi-Krum - A variant of Krum, designed to increase
speed of convergence [13] by incorporating aggregation
of multiple updates. The implementation used itera-
tively selects updates to aggregate and removes them



from a list called ’remaining updates’. The stopping
condition is when the number of ’remaining updates’ is
equal to 2 ·m+ 2, where m is the upper bound of mali-
cious clients.

• Trimmed Mean - A coordinate-wise aggregation, it ex-
cludes specific weights of updates as opposed to en-
tire updates themselves [14]. The largest and small-
est weights along each dimension are excluded. The
updates are refactored such that they are sorted along
each dimension (e.g. update in first position contains the
smallest weights of each dimension which could have all
correlated to updates sent in by differing clients before
refactoring. The implementation used then excludes up-
dates in the first m/2 and last m/2 positions, where m
is the upper bound of malicious clients.

• Bulyan - A combination of Multi-Krum and a
coordinate-wise aggregation similar to Trimmed Mean,
it was designed to catch even those malicious updates
close to benign updates in the square Euclidean norm
space [5]. After performing Multi-Krum to exclude dis-
tant updates, the coordinate-wise median is found. Then
a coordinate-wise sort is performed based on distance to
the median. After which the weights at the end of this
sorted list of updates are excluded such as in Trimmed
Mean.

2.3 Less Effective State-of-Art Untargeted Attacks
These state-of-art attacks will not be evaluated in this paper
due to superior performance of the min-max attack [6]. How-
ever, since the comparison to these attacks is made, the spe-
cific attacks being referred to are the following:

• LIE(Little is enough) - An untargeted attack that finds
malicious gradients close to the average of benign clients
by adding small perturbations to this average [15]. It as-
sumes knowledge of benign clients’ updates but does not
make assumptions about the aggregation strategy in use.
In the single server the min-max was found to signifi-
cantly outperform LIE, despite both assuming the same
threat model [6].

• Fang - This untargeted attack is one that finds malicious
gradients targeting a specific aggregation strategy, with
knowledge of the benign client’s updates [16]. In spite
of this added knowledge of aggregation strategy, it is
shown to be quite ineffective for iid and very imbalanced
non-iid datasets [6].

2.4 Min-Max Attack
An untargeted attack created with the consideration that ”FL
platforms can conceal the details and/or parameters of their
robust AGRs to protect the security of the proprietary global
models” [6]. Even without knowledge of the specific aggre-
gation (such as those in subsection 2.2), it is capable of sig-
nificantly reducing the global accuracy of a FL model (except
for non-iid data with Multi-Krum). Making it more realistic
and harder to defend then commonly researched untargeted
attacks such as fang.

However, the attack presupposes that in an epoch, mali-
cious clients possess knowledge of all the updates benign

clients transmit to the servers before the malicious clients
send their update. In reality, there are a number of prac-
tices that could be deployed to prevent this. One of which
is Secure Multi-Party Computation [17]. A form of encryp-
tion that could be used to protect the privacy of the benign
updates.

The attack finds a malicious gradients that is in closer prox-
imity to every benign gradient than the maximum distance
of any two benign gradients. Every malicious client has the
same gradient update in an epoch.

2.5 DnC Defense
The DnC defense is proposed as a defense which addresses
the issue of common state-of-art defenses not being effective
against attacks like the Min-Max attack (at least for iid data)
[6].

It employs SVD (Singular Value Decomposition) to detect
outliers [18]. This is done by assigning outlier scores based
on how much a gradient deviates along the dimension of max-
imum variance (found by projecting updates on the 1st Princi-
pal Component). However, due to the large memory require-
ment, dimensionality reduction must first be performed. Only
then is SVD performed on the reduced set of dimensions.

3 System Model
The System Model section contextualizes the topics dis-
cussed in Section 2 and outlines the study’s assumptions.
Subsection 3.1 details the components and interactions within
the MSFL system. Subsection 3.2 presents the implemen-
tation of the FedMes aggregation used in the experiments.
Subsection 3.3 addresses assumptions regarding malicious
clients.

3.1 Multi-Server Federated Learning Components
and Interactions

In our MSFL model there are really only 2 types of compo-
nents. The servers and the clients.

The clients refer to the devices that hold the data. Only
on these devices is the image classifier being trained. They
only communicate with the servers that can reach them. From
which they download a model, that they use as a starting point
for their training. If multiple servers can reach them their
starting model before training is the average of the models
those servers send them. After they are done with training,
they send their model back to the server(s).

The servers refers to edge servers. They can reach a subset
of the clients. They first send an initial model to the clients
they reach. After training is complete, they receive updated
models from those clients. Using the aggregations described
in subsection 3.3, they aggregate the multiple update models
into an average. Trying to do so in a Byzantine-Safe manner.

3.2 FedMes Implementation
The implementation, inspired by the original pseudocode pro-
vided for FedMes was designed to work with cases when
there is coordinate-wise aggregation [2]. Algorithm 1 is
pseudocode for the implementation of the FedMes aggrega-
tion used in the study. selected updates refers to the list of



all updates used in aggregation (a tensor of tensors). se-
lected indices is a list of lists, in which every element in in-
ner lists represent the client id that the element in the same
position in selected updates comes from. The last parameter
overlap weight index is a list where the client id is the index
for the weight associated with how overlapping of a region
the client comes from. In it we associate a weight 1 wit a
non-overlapping region, 2 if it has 2 overlaps and 3 if it has 3
overlaps. Note: since data-set sizes of clients is equal in this
study, the implementation omits the consideration it.

Algorithm 1: fedmes elementwise
1 Input: selected indices, selected updates,

overlap weight index;
2 Output: a fedmes aggregate;

3 total selected weight← list of zeros with dimensions of
selected indices;

4 fedmes mean selected← list of zeros with dimensions
of selected indices;

5 foreach i in range(len(selected indices)) do
6 client weights←

overlap weight tensor[selected indices[i]];
7 fedmes mean selected

+= selected updates[i]× client weights;
8 total selected weight += client weights;

9 Return
fedmes mean selected÷ total selected weight;

3.3 Threat Model
Malicious Client’s Goal:
Find gradients that when aggregated into the global model,
will reduce it’s accuracy.

Malicious Client’s Knowledge:
• Does not know the defense mechanism used in the

aggregation process (since min-max attack is AGR-
agnostic).

• Knows the updates sent in current epoch by benign
clients that share an edge server with them.

• Knows how the reaches of servers overlap, so that they
know where the most overlapping areas are.

Malicious Client’s Capabilities:
• Is selected in each epoch.
• Cannot control more than 10% of selected clients in an

epoch. A constraint decided upon due the critic of mod-
ern research into FL attacks, assuming unrealistic capa-
bilities of malicious participants when it comes to con-
trol over benign clients [5].

4 Methodology
The Methodology section outlines the approach used to ex-
tend state-of-the-art defenses to MSFL with FedMes. Sub-
section 4.1 gives a general overview of the process for de-
veloping FMes-Defenses. Subsection 4.2 provides detailed
information on FMes-DnC.

4.1 The FMes-Defense Aggregations
This study introduces several new aggregation strategies.
More accurately it introduces a framework to extend exist-
ing defenses to FedMes. Current state-of-art defenses have
not been implemented to run in a MSFL setting, let alone
with FedMes as the underlying aggregation methodology. To
evaluate the effectiveness of techniques introduced by the
common state-of-art defenses (sub-section 2.2) and DnC in
this unique context, required the introduction of distinctive
changes to these aggregations. Once the framework is ap-
plied, since the fundamentals of the aggregation are changed,
they can be considered as FMes-Defense aggregations.

Accounting for Multi-Server: As opposed to the Single-
Server FL setting, when working with MSFL, multiple edge
servers perform aggregations on their clients independently.
Each FMes-Defense is therefore called by each edge server
and aggregates only the updates of clients that server reaches.
Since an Edge server reaches less clients the question of if the
upper bound of malicious client for the specific edge server (a
hyper-parameter of the defenses) needs to be lower than when
considering an aggregation for all clients? The locations of
attackers cannot be assumed however, and all attackers could
be attacking the same server. Therefore, we determine the
upper bound must effectively remain unchanged.

Incorporating FedMes: The general approach used in the
study to make a defense FMes is illustrated by algorithm 2. In
it all updates is the list of all updates from clients the server
reaches. n attackers is the aforementioned mserver and over-
lap weight index is the same as from algorithm 1.

Algorithm 2: General FMes-defenses
1 Input: all updates, n attackers, overlap weight index;
2 Output: a more robust fedmes aggregate;

3 selected updates← empty list;

4 selected indices← empty list;

5 Use techniques from state-of-art defense of choice to add
updates from all updates that pass to selected updates,
while keeping track of the client each parameter (of each
update) comes from in selected indices

6 Return fedmes elementwise(selected indices,
selected updates, overlap weight index);

The reasoning behind this algorithm is to try mitigate the
effects of the added weight due to overlapping regions. That
is why we first attempt to prune the malicious updates with
the outlier detection technique before adjusting for fedMes.
Though in some cases this is not possible.

For FMes-Median and FMes-Krum the generic framework
from algorithm 2 doesn’t apply since they pick a single up-
date to use as the aggregate. Instead the update of clients are
re-added to the updates list based on the client’s region. After
this the Median or Krum of the updates list is taken. This is
done to incorporate the bias of FedMes for overlapping re-
gions. Though it is important to note that FedMes is clearly
described to use an average more inline with a mean.



4.2 FMes-DnC Defense

The FMes-DnC Defense uses the outlier detection techniques
introduced by the DnC Defense (subsection 2.5). As we can
see in algorithm 3, this algorithm takes additional parameters
compared to the normal FMes-defenses. n iters determines
how many iterations of dimensionality reduction and SVD
outlier detection are performed. filter frac is used to con-
trol the number of updates that are pruned in a single iteration.
Finally subsample size is used to determine the dimensions
that the updates should be reduced to before performing SVD.

The values for n iters, filter frac and subsample size
used in the implementation are 2, 2 and 10000. These values
were determined empirically by considering. By observing
which provided the best accuracy, while considering the run-
time of the algorithm which scales quite poorly with n iters
and subsample size.

Algorithm 3: FMes-DnC
1 Input: all updates, n attackers, overlap weight index

n iters, filter frac, subsample size;
2 Output: a robust fedmes aggregate;

3 selected indices sets← empty list;
4 gradient dimension← size of the second dimension of

all updates;

5 for in range(niters) do
6 random dimensions← sort (randomly selected a total

of subsample size dimensions);
7 subsampled gradients← all updates[:,

random dimensions];
8 mean gradients← mean gradient of

subsampled gradients;
9 centered gradients← subsampled gradients -

mean gradients;
10 , , right singular vector← SVD(centered gradients);
11 top right singular vector← first column of

right singular vector;
12 outlier scores← squared projections of

centered gradients along top right singular vector;
13 selected indices sets.append(indices of lowest outlier

scores);

14 selected indices← intersection of selected indices sets;
15 selected updates← subset of all updates using

selected indices;

16 Return fedmes elementwise(selected indices,
selected updates, overlap weight index);

5 Experimental Setup

The Experimental Setup section details the specifications uti-
lized in the experiment implementation. Subsection 5.1 out-
lines the datasets and their usage. Subsection 5.2 provides in-
formation on the learning models and their parameters. Sub-
section 5.3 describes the network topology and attack cases
evaluated in the study. Subsection 5.4 summarizes how ex-
perimental results are gathered.

5.1 Data-sets and Distribution
CIFAR10 is an iid data-set with 60,000 RGB 32x32 images
of the 10 digits[6]. 50000 samples are used for training the
global model. 20 clients are assigned 2500 samples each.
5000 of the remaining samples are used for testing and the
last 5000 used for validation.

Fashion-MNIST is an iid dataset consisting of 70,000
28x28 grey-scale images of the 10 digits [19]. 60,000 sam-
ples are used for training and the remaining samples are split
into two randomly sampled equal-sized sets. One to be used
for validation and the other for testing. Again the training
data is spread equally among the client devices, which each
get 3000 samples.

5.2 Learning Model and Hyper-parameters
AlexNet and VGG11 will be used as the CNN models for
both data-sets. AlexNet is a large CNN with 8 layers [20].
VGG11 is the 11 layered variant of the VGG CNN[21] [22].

For all data-set-learning-model combinations, the maxi-
mum epochs is set to 1500. There are early stopping condi-
tions which can result in training stopping before epoch 1500.
The first is if the loss in the model rises above 10. The sec-
ond is if neither best loss or best accuracy improve for 250
epochs. Additionally an SGD optimizer is consistently used
with a decay factor of 0.5.

For Cifar10 with AlexNet batch sizes of 250 samples are
used. Additionally, the learning rate starts of at 0.8. The
decay factor is applied epoch 1000 and 1200.

With Cifar 10 and VGG11, the batch size is 165 samples.
The learning rate is 0.5 at epoch 0. Then the decay will be
applied at epoch 800, 900, 980 and 1000.

For Fashion-MNIST and AlexNet the batch size is 200.
Learning rate starts at 0.5 and the decay factor is applied to it
at epoch 600 and 800. When VGG11 is used, the only thing
that’s different is the batch size is 150.

5.3 Network Topology, Client Selection & Attack
cases

In figure 2a, we can see the layout of the topology. Its a sym-
metric topology which consists of 3 servers that in each epoch
will select a total of 20 clients. Each server selects 2 client
that’s only in their region, 8 clients that are in their and an-
other server’s regions and 2 clients that all the servers reach.
The reason for having many of the selected devices be in over-
lapping regions is as mentioned in the background section,
FedMes works particularly well when there are many clients
within the overlapping regions. An assumption worth men-
tioning about the implementation of this topology, if a client
in an overlapping region is selected in an epoch, it is selected
by all servers that reach it.

The server topology will be modified to accommodate two
attack cases which will be used to examine the effect of hav-
ing malicious clients launching attacks from more heavily
overlapping regions. The First attack case can be seen in fig-
ure 2b. It consists of an attacker that’s in a region where two
servers overlap and an attacker in a region where there’s no
overlaps.

The second attack case (figure 2c) is where there’s again
one attacker in a region where two servers overlap, but now



(a) Network Topology (b) Attack case 1 (c) Attack case 2

Figure 2: Visualisations of relevant Network Topology with grey squares as benign clients and red squares as malicious clients.

the other attacker is the one device in the region where all the
server’s regions overlap.

5.4 Gathering Experimental Results
First Experiment 1 will be conducted with no defense and
the two attack cases from subsection 5.3, as-well as the case
with no attackers. Each case will be run 3 times, retraining
the model ab initio each time.

Experiment 2 is run 3 times for each of the relevant ag-
gregation strategies (FMes-Median, FMes-Trimmed-Mean,
FMes-Krum, FMes-Multi-Krum, FMes-Bulyan and FMes-
DnC) and dataset-model combinations (cifar10-Alexnet,
FashionMNIST-VGG, etc). In each run, the model is trained
from the beginning. In a single run this is done for the
stronger attack case (determined by Experiment 1).

During a run the validation accuracy and loss of the global
model are measured at each epoch. Additionally, the test ac-
curacy of the gradient with the best validation accuracy dur-
ing training is recorded. These metrics are all considered in
the next Section.

6 Evaluation of Results
In the Evaluation of Results section the experimental re-
sults are presented and used to motivate answers to the sub-
questions mentioned in section 1. Subsection 6.1 addresses
sub-question 1. Subsection 6.2 addresses sub-question 2 and
subsection 6.3 addresses sub-question 3. Subsection 6.4 fur-
ther discusses and reflects on the results.

6.1 Is Multi-Server Federated Learning with
FedMes Vulnerable to Min-Max?

To evaluate if MSFL with FedMes is vulnerable to the Min-
Max attack, we conduct Experiment 1 (subsection 5.4). The
results from this experiment can be seen in table 1.Comparing
the no attack accuracy to both attack cases’ accuracy for each
scenario reveals the attack cases are very capable at reducing
the accuracy of the MSFL global model’s when no defense
is present. Proving FedMes is vulnerable to the Min-Max
attack

Table 1 illustrates that attack case 2 tends to impact ac-
curacy more compared to attack case 1. Considering the at-
tacker topology (Subsection 5.3) and the weighted updates
from overlapping regions in FedMes, the difference in perfor-
mance between the two cases was surprisingly modest, except
for the Fashion-MNIST and AlexNet scenario (where the gap
in achieved test accuracy is 12.0).

Despite attack case 2 generally appearing more potent,
Fashion-MNIST-VGG is interesting since it’s the only sce-
nario where the best achieved test accuracy indicates that is
not the case. However, looking at the performance against the
validation set in figure 3 paints a different picture. We see at-
tack case 2 reaches a lower peak validation accuracy of 14.0
while attack case 1 reaches 15.1. Additionally, attack-case
2 causes loss in the model to get high enough to trigger an
early stopping condition by epoch 92, while attack case 1’s
loss reaches this threshold at epoch 157.

Figure 3: Validation Accuracy against Epochs for most effective
runs of Attack case 1 and Attack case 2 against FedMes with no
defense (Fashion-MNIST with VGG case)

.

With all this in mind we can conclusively determine that



Table 1: Table of Mean Test Accuracy and Standard Deviation from 3 runs of each attack case from section 5.3 and the case with no attackers.
No Defense is present in these runs. Results from all runs can be found in Appendix A.

Cifar10 Fashion-MNIST
AlexNet VGG AlexNet VGG

Aggregation Strategy Accuracy σ Accuracy σ Accuracy σ Accuracy σ
No-Attack 50.9 0.34 52.6 0.4 82.6 1.05 81.9 0.16

Attack case 1 20.6 0.31 15.2 1.06 35.5 3.9 14.8 0.7
Attack case 2 19.5 0.34 15.1 1.21 23.5 3.47 16.0 0.93

our MSFL model with FedMes is highly vulnerable to Min-
Max. Furthermore, we conclude that attack case 2 is the more
potent attack and continue with it in our next Experiment.

6.2 How effective are the Common Defense
techniques?

The results used to evaluate performance of the common
state-of-art defenses against the Min-Max attack, are gathered
by Experiment 2 (subsection 5.4) with attack case 2. They can
be seen in table 2. Ultimately the results show that the FMes-
Defenses based on the common state-of-art defenses are
ineffective against the Min-Max attack.

Whats interesting to observe about the results is the cases
in which the defenses on average perform even worse against
the Min-Max then when no defense is present. In table 2
these are marked in red. And we can see that Multi-Krum
and Bulyan are outperformed by no defense in 3 out of the 4
examined data-set-learning-model combinations. Suggesting
perhaps that the Multi-Krum approach might fundamentally
not be suitable for MSFL with FedMes (Bulyan’s first step is
Multi-Krum, see subsection 2.2).

All of the common based FMes-Defenses are not robust
enough. Based on the test accuracy in table 2, the best of them
are FMes-Krum and FMes-Trimmed-Mean, as they generally
achieve the best accuracy. However, even in the best scenario
of FMes-Trimmed-Mean for Fahion-MNIST with VGG, the
average 40.0 accuracy achieved is not even 50% of the accu-
racy when no attack is present(found in table 1). The standard
deviation for it is also very large at 8.49, showing instability.
When we compare this to what is considered robust in com-
parable literature it is far from it [5].

6.3 Is FMes-DnC Defense Robust?
To understand the effectiveness of FMes-DnC against the
Min-Max attack, table 2 can be inspected. It’s apparent by
observing the test accuracy achieved by FMes-DnC that the
FMes-DnC Defense is not robust against the Min-Max at-
tack.

In table 2 it can be seen that it’s outperformed by FedMes
with no defense for Cifar10 with Alexnet. This is a dras-
tic contrast to this data-set-learning-model combination with
DnC in Single Server FL with iid data. There DnC ’effec-
tively filters malicious gradients’ and mitigates attack impact
[6].

Even the best run of the best data-set-learning-model com-
bination (Fashion-MNIST with VGG) for FMes-DnC is lack-
luster. We can see this by observing figure 4. The global

model’s validation accuracy steadily increases for 200 epochs
before experiencing a strong crash. It however shortly recov-
ers and for the next 200 epochs seems to be learning well.
Ultimately, learning stops prematurely due to loss in model
getting too high, with Test accuracy peaking at 53.3. This
accuracy is considerably higher than that of the other FMes-
Defenses but it’s rendered less impressive by the instability
of the defense as concluded by a large standard deviation of
10.5 for Fashion-MNIST with VGG.

Figure 4: Validation Accuracy against Epochs for most effective
runs of FMes-DnC and no-defense-no-attack, and the most potent
run of attack case 2 with no defense. This graph uses a rolling mean
to better visualize the training.

.

6.4 Discussion
FWhile we expected MSFL with FedMes to be vulnerable
to the Min-Max attack, the magnitude of the threat to secu-
rity surpassed predictions. The common state-of-art defenses
to untargeted attacks are less than effective against Min-Max
in Single-Server FL, therefore their failure when adapted to
MSFL was foreseen. However, it was curious to observe that
sometimes these defenses were inferior in mitigating the Min-
Max than FedMes without any defense. This was then super-
imposed by the failure of to safeguard the global model. This
underscores the potential insufficiency of existing defenses
tailored for Single Server FL when applied to MSFL.

Our study, while informative, does not definitively answer
the central research question outlined in Section 1. As it is



Table 2: Table of Mean Test Accuracy and Standard Deviation from 3 runs of each FMes-Defense with Attack case 2.

Cifar10 Fashion-MNIST
AlexNet VGG AlexNet VGG

Aggregation Strategy Accuracy σ Accuracy σ Accuracy σ Accuracy σ
FMes-Median 19.4 0.69 16.5 0.56 26.1 3.44 17.3 1.23
FMes-Krum 25.2 7.65 19.1 1.34 30.7 4.97 25.5 8.2

FMes-Multi-Krum 18.8 0.42 12.9 1.09 24.7 14.08 15.7 1.85
FMes-Trimmed-Mean 20.7 1.06 14.8 1.48 40.0 8.49 16.2 2.96

FMes-Bulyan 20.4 1.0 11.9 2.01 23.0 1.79 13.0 1.18
FMes-DnC 19.3 1.06 17.4 0.36 39.4 10.5 17.4 1.56

possible that alternative approaches to extending the exam-
ined defenses could produce different results. Nevertheless, it
suggests that extending Single-Server FL defenses to MSFL
effectively is a difficult task to say the least. Highlighting
the nuanced challenges introduced by MSFL, which existing
defenses are ill-prepared to mitigate.

7 Responsible Research
The attack and defense nature of the paper raises questions
surrounding the ethically of conducting such research. The
primary concerns revolve around:

• Potential Exploitation by Malicious Parties - There is a
risk that malicious parties could exploit the findings of
our research to target vulnerabilities in future produc-
tion MSFL. This poses implications, including financial
losses and potential threats to the integrity of critical sys-
tems. With potential widespread adoption of MSFL with
FedMes, it is imperative to conduct thorough research
on its robustness against attacks before it’s deployment.
Despite the evident benefits of such an algorithm, the ab-
sence of published research addressing its security since
it’s initial publication in December 2021 is concerning.
Therefore, it is paramount to investigate these risks dili-
gently to prevent ambitious businesses from deploying
MSFL with FedMes without fully comprehending the
associated vulnerabilities.

• Integrity in Reporting - Ensuring the utmost integrity in
reporting our research findings is essential to prevent the
fabrication of a false sense of security or insecurity re-
garding the robustness of MSFL with the FedMes ag-
gregation. As neutral researchers, free from external in-
fluences or motivations, our commitment lies solely in
the pursuit of truthful and transparent inquiry. To up-
hold this integrity, our study prioritizes transparency by
openly addressing the limitations of our research. Ad-
ditionally, to facilitate reproducibility and scrutiny, we
have made the experimental environment, including all
code and raw results, freely accessible on GitHub[1].

By addressing these ethical considerations conscientiously,
we aim to contribute meaningfully to the advancement of
knowledge while mitigating potential risks and promoting in-
tegrity in research practices.

8 Limitations
The main identified limitations are:

1. The experiments were only run on iid data. Especially
given the fact that MSFL in practice would likely work
with non-iid. To note is DnC in Single-Server FL is not
robust against Min-Max with non-iid data.

2. Only one symmetric topology was used in the experi-
ments. In addition to other symmetric topologies, eval-
uating performance of defenses for asymmetric topolo-
gies could reveal new interesting insights.

3. The study was limited to image classification tasks. Per-
haps trying similar experiments with language models
would yield different results.

4. Evaluating the alternative to FedMes, Multi-Server Fe-
dAvg aggregation would be a valuable addition [12]. We
focus only on FedMes as we hypothesise it is more vul-
nerable due to the weights associated with overlapping
regions. So if it could be made safe, we assume FedAvg
can too.

5. The extended defenses could have also been evaluated
against other untargeted attacks as-well as other types of
attacks.

6. More state-of-art defenses can be extended to the setting.

7. We did not investigate effects of applying a defense on
the aggregation that happens on the client devices when
they aggregate updates from the edge servers they reach
before training. This too could have undiscovered posi-
tive effects on robustness.

9 Conclusion
In conclusion, this study investigated the effectiveness
of state-of-the-art defenses originally designed for Single-
Server Federated Learning (FL) in mitigating the Min-Max
attack in the context of Multi-Server Federated Learning
(MSFL) with FedMes. Despite developing the new FMes-
Defenses by extending existing defenses (FedMes, including
Median, Krum, Multi-Krum, Bulyan, Trimmed-Mean, and
DnC) to MSFL, none were able to adequately preserve the
accuracy of the global model.

Notably, DnC, which is effective in the Single Server FL
context, proved ineffective against the Min-Max attack when

https://github.com/Todor-cmd/rp-msfl[1]

https://github.com/Todor-cmd/rp-msfl


adapted to MSFL as FMes-DnC. Suggesting defenses de-
signed for Single-Server FL are ineffective against Min-
Max in MSFL with FedMes. Within the constraints of the
defenses evaluated and approach used to used to extend them
to MSFL.

The research highlights a need for novel defense mecha-
nisms tailored to the unique challenges of this setting. Future
research should focus on addressing the limitations identified
in this study (section 8) and developing innovative defenses
specifically designed to mitigate the effects of the Min-Max
attack on the global model in MSFL with FedMes.
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A Results from all runs

Table 3: Test Accuracy for all cases and all runs.

Cifar10 Fashion-MNIST
AlexNet VGG AlexNet VGG

Aggregation Strategy/
Attack Case Run 1 Run 2 Run 3 Run 1 Run 2 Run 3 Run 1 Run 2 Run 3 Run 1 Run 2 Run 3

No-Attack 50.5 50.9 51.3 52.7 53.0 52.0 81.9 81.8 84.0 82.0 82.1 81.7
Attack case 1 21.0 20.7 20.3 13.8 15.6 16.3 40.8 31.5 34.0 15.8 14.5 14.2
Attack case 2 12.1 20.0 19.4 13.7 16.7 14.9 20.7 28.3 21.2 16.8 16.5 14.7
FMes-Median 19.6 20.2 18.6 16.9 16.8 15.7 2.8 28.3 21.2 16.9 16.0 19.1
FMes-Krum 36.0 19.6 19.9 18.7 20.9 17.7 24.2 36.3 31.6 36.9 21.3 18.2

FMes-Multi-Krum 18.8 18.3 19.4 13.3 13.9 11.4 16.5 44.5 13.1 16.1 17.8 13.3
FMes-Trimmed-Mean 22.6 20.5 20.2 16.3 15.3 12.8 42.2 49.1 28.7 15.1 20.3 13.3

FMes- Bulyan 21.0 19.0 21.2 9.4 14.3 12.0 22.3 21.3 25.6 13.1 14.4 11.6
FMes-DnC 18.3 20.6 20.6 17.8 17.0 17.6 37.1 27.9 53.3 15.6 18.8 18.3
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