Anti-Pattern Scanner: An Approach to
Detect Anti-Patterns and Design
Violations

Master’s Thesis

Ruben Wieman






Anti-Pattern Scanner: An Approach to
Detect Anti-Patterns and Design
Violations

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
in
COMPUTER SCIENCE
by

Ruben Wieman
born in Alkmaar, the Netherlands

]
TUDelft

Software Engineering Research Group
Department of Software Technology
Faculty EEMCS, Delft University of Technology
Delft, the Netherlands

www.ewl.tudelft.nl



© 2011 Ruben Wieman.



Anti-Pattern Scanner: An Approach to
Detect Anti-Patterns and Design
Violations

Author: Ruben Wieman
Studentid: 1150812
Email: Ruben.Wieman@Gmail.com

Abstract

In this Master’s Thesis Project, two Code Smells, four Anti-Patterns and four types
of Design Principle violations have been examined. We developed a detection program
called the Anti-Pattern Scanner. This scanner has been used in an empirical evaluation
where five open-source Java projects have been examined and scanned for these ‘pat-
tern’ problems. The results are that the examined problems generally do occur in
software systems. The problems are estimated to be inconvenient to software develop-
ment, depending on the strength of their presence. Based on the Anti-Pattern Scanner
and the results from this evaluation, suggestions for follow-up studies are offered.

Thesis Committee:

Chair: Prof. Dr. A. van Deursen, Faculty EEMCS, TU Delft
University supervisor: Dr. M. Pinzger, Faculty EEMCS, TU Delft
Committee Member:  Dr.ir. A.J.H. Hidders, Faculty EEMCS, TU Delft






Preface

This Thesis document is the complete research report of the Master’s Thesis Project. This
Thesis is meant to support the candidature for an academic degree at the Delft University
of Technology. This document describes the exploratory research towards detection and
evaluation of software design problems, such as Anti-Patterns and sofware Design Principle
violations. This research aims to answer questions regarding whether these design problems
do occur in professional software projects and to provide an indication whether the problems
can be harmful to such a project. This work is based on tools being developed by the
Software Engineering Research Group (SERG) at the Delft University of Technology. This
research also aims to complement related work and to provide a basis for further research.

I would like to thank Dr. M. Pinzger for his supervision, assistance and expertise in the
field of patterns and their detection. I would also like the thank Prof. Dr. A. van Deursen
for supervision and for helping me set up this project and Dr.ir. A.J.H. Hidders for his work
as committee member.

Ruben Wieman
Delft, the Netherlands
April 19, 2011

iii






Contents

Preface iii
Contents v
List of Figures vii
1 Introduction 1
1.1 Introduction . . . . . . . . . . . ..
1.2 Introduction to patterns, smells and principles . . . . . ... .. ... ... 2
1.3 Researchquestions . . . . . . ... ... .. .. ... .. 3
1.4 Contributions . . . . . . . ... 3
2 Related Work 5
2.1 Approaches for detecting patterns . . . . . . . ... ... 5
2.2 Earlier work on detecting Code Smells and patterns . . . . . . . ... ... 9
2.3 Fault prediction and analysis . . . . . ... ... ... ........... 13
2.4 Evaluating existing tools forreuse . . . . .. .. ... ... ... 17
3 The Anti-Pattern Scanner 21
3.1 Globaldesign . . . . .. ... ... 21
3.2 Implementation . . . . . . ... ... 28
4 Detection strategies 33
41 CodeSmells . . . . . . . . . 34
4.2 Anti-Patterns . . . . ... 39
43 Class Design Principles . . . . . . . ... ... ... L oL 52
4.4 Package Cohesion Principles . . . . . ... ... ... ... ........ 60
4.5 Package Coupling Principles . . . . . .. ... ... ... .. ... ... 62
4.6 OtherPrinciples . . . . . . . . . . . . .. 65



CONTENTS

5 Empirical evaluation 67
5.1 Casestudy Setup . . . . . . o v e e e e 67
5.2 Detected cases . . . . . . . e e e e e e 71
5.3 StatiStiCsS . . . . . . . e e e e e e e e 89
6 Discussion of results 95
6.1 Evaluationofresults . . . . ... . ... ... ... 95
6.2 Answersandvalidity . . .. ... ... ... L 100
7 Conclusion and future work 103
7.1 Conclusion . . . . . . . . . . e 103
7.2 Futurework . . . . . . . 104
Bibliography 107
A Glossary 113
B Data sets 115
B.1 The Anti-Pattern Scanner . . . . . . . . . . ... ... .. ... ... ... 118
B.2 RaceCreationTool . . . . . . . . . . . . . ... 120
B.3 NewNomadsDesktop . . . . . ... ... ... ... ... ... 122
B4 Tomcat . . . . . . . . . . e 124
B.S5 JForum . . . . . . . . e 126
B.6 JUnit. . . . . . e e 128
B.7 JHotDraw . . . . . . . . . . e 130
B.8 JMonkeyEngine . . . . . . .. ... 132

vi



3.1
32
33
34
35
3.6
3.7

4.1
4.2
4.3
44
4.5
4.6
4.7
4.8
4.9
4.10
4.11

5.1
5.2
53
54
55
5.6
5.7
5.8
59
5.10

List of Figures

Source code to model conversion. . . . . . ... 23
The model is the input of the Anti-Pattern Scanner. . . . . . .. ... ... .. 24
Rating mappings for combining two scanner results. . . . . . . ... ... ... 26
Anti-Pattern Scanner run procedure. . . . . . ... ... ... 29
Ascanresult OVerview. . . . . . . . ... L. 29
A heuristic decision tree for The Blob Anti-Pattern. . . . . . . ... ... ... 30
An explanation dialog of an aspectof the SRP. . . . . . . ... . ... .. ... 30
Data Class scanner layout. . . . . ... ... ... ... ... ... ..., 35
Large Class scanner layout. . . . . . . . .. .. ... .. .. ... ....... 38
Database Class expected structure. . . . . . . .. ... ... ... ... ... 39
Database Class scanner layout. . . . . . . . . ... ... ... . ........ 41
Ravioli Code scanner layout. . . . . . .. ... ... ... ... ........ 45
The Blob scanner layout. . . . . . ... ... ... ... L. 48
Tower of Voodoo scanner layout. . . . . . ... ... ... ... ........ 50
Single Responsibility Principle scanner layout. . . . . .. ... ... .. ... 53
Interface Segregation Principle scanner layout. . . . . . ... ... ... ... 57
Dependency Inversion Principle scanner layout. . . . . . . .. ... ... ... 59
Acyclic Dependencies Principle scanner layout. . . . . . . ... ... ..... 63
Amounts of Famix entities found in each project. . . . . ... ... ... ... 70
Scan results for the Data Class Code Smell. . . . . . ... ... ... ..... 71
An example Data Classand aLarge Class. . . . . . . ... ... ........ 72
Scan results for the Large Class Code Smell. . . . . . . ... ... ....... 74
Scan results for the Database Class Anti-Pattern. . . . . . .. ... ... ... 75
Part of a logic module in the NewNomads Desktop. . . . . ... ... ..... 76
Scan results for the Ravioli Code Anti-Pattern. . . . . . . . .. .. ... .... 77
The SelectionTool from the JHotDraw project. . . . . . . .. . ... ... ... 78
Scan results for The Blob Anti-Pattern. . . . . . . . ... .. ... .. ..... 78
An illustrative example of a potential Blob. . . . . . .. ... ... ...... 79

vii



L1ST OF FIGURES

5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24

B.1

viii

Scan results for the Tower of Voodoo Anti-Pattern. . . . . . . ... ... ... 80
A Tower of Voodoo example from the JMonkeyEngine test games. . . . . . . . 80
Scan results for the Single Responsibility Principle. . . . . . . ... ... ... 81
A class that violates the SRP principle. . . . . . . .. ... ... ... ..... 82
Scan results for the Interface Segregation Principle. . . . . . . ... ... ... 84
A small violation of the ISP in the Anti-Pattern Scanner. . . . . . ... .. .. 85
Scan results for the Dependency Inversion Principle. . . . . . ... ... ... 86
The Request class from the JUnit project. . . . . . . .. ... ... ...... 87
Scan results for the Acyclic Dependencies Principle. . . . ... ... ... .. 88
An example cyclic relations between packages. . . . . ... ... ... .... 89
Average scan results for the eight scanned projects. . . . . ... ... ..... 91
Conditional probabilities of the ]MonkeyEngine project. . . . . ... ... .. 92
Sample runtime requirements (milliseconds) for the JHotDraw project. . . . . . 93
Average scan time for the JHotDraw project (parsing excluded). . . .. .. .. 93
Amounts of FAMIX entities found in each project. (This figure is a copy of

figure 5.1.) . . . . . L e 116



Chapter 1

Introduction

1.1 Introduction

The quality of software is affected by many aspects of the development. Design, program-
ming and testing are some of the most important aspects of software engineering. Also the
team management, product maintenance, the availability of examples such as algorithms,
known working solutions and tools is important. Many helpful tools are available for soft-
ware developers. Starting from pen & paper, simple text editors to large and possibly dis-
tributed development environments. Using the proper tools and technologies is as important
as proper management, good requirements communication and proper user acceptance test-
ing. However, maintenance on software products can take more than half the resources
and funds of the entire product lifecycle (Vliet [44]). Making the right decisions early can
greatly reduce costs later. It is in these decisions that there is a lot to gain.

There are many known good or bad practices in software engineering. In the field
of software design and source code quality, these practices are called Design Patterns for
‘good’ practices and Bad Smell or Anti-Pattern for ‘bad’ practices. Many of these practices
are theoretical approaches developed by software engineers. They cannot always guarantee
what they promise to do. Thus, a lot of research has already been done into finding proof
of the effect of these good or bad solutions. This report summarizes some of the scientific
work that describes these known practices. It contains information about which practices
are known, what they promise to do and summarizes some of the scientific work that shows
the actual effects of these practices.

The goal of this research project is to gain further understanding of the occurrences of
bad design decisions in software projects. This research builds upon related research such
as [31] and [8] as it complements earlier work and adds new ideas to this field of research. It
combines existing concepts and approaches to find where Anti-Patterns occur, as well as to
find violations to Design Principles in general. In this research, occurrences of these design
problems are discovered and explained. Their malicious nature is evaluated and possible
relations between problem types are examined. The result of this research are new ideas,
information about these design problems, directions for future research as well as a usable
tool for detecting these design problems.



1. INTRODUCTION

The content of this document is as follows: This chapter explains the basic concepts
of good design as well as bad design. Based on these concepts, the goals of this project
are formulated. Chapter 2 goes into more detail about earlier work that has examined the
properties of good and bad design. It provides an explanation of techniques that can be used
to find concrete examples of design problems. Descriptions of related work are given and
tools for examining design problems are evaluated. Chapter 3 explains the design of the
design problem detection program that is used in this research. It explains all major design
decisions and presents an overview of the implementation. Chapter 4 explains the design
problems in more detail and suggests heuristics that can be used for automated detection.
Heuristics that have been implemented for this project are explained in detail. Chapter 5
describes the empirical evaluation that is performed using the program developed during
this project. Studied cases are explained and the results are presented. Chapter 6 evaluates
the results of all studied cases. It concludes with threats to validity for this study. Chapter 7
concludes with the results of this project and suggestions for future work.

1.2 Introduction to patterns, smells and principles

Design Patterns are known solutions to common design problems in software engineering.
They are known good solutions for general design problems. Design patterns are usually
defined as a relations between communicating objects of a software system or the way
classes are structured [17]. For example, the Decorator pattern can be used to dynamically
add responsibilities to an object, rather than having the responsibilities predefined through
inheritance. This can add flexibility to objects at runtime which cannot be fixed at compile
time.

Using Design Patterns correctly should improve the internal reuse of code (such as less
duplicate code and more reusability of code) and improve maintainability. It makes extend-
ing a product easier and reduces coupling between components so they can be modified
without affecting each other. At least, these are some of the claims of various books and
papers about Design Patterns, such as [17]. Although Design Patterns should intuitively
improve the quality of code, there are doubts about the actual usefulness of Design Patterns
in many situations. Also due to these doubts, research has already been done into the actual
effects of Design Patterns. Some of these researches are described in the next chapter.

Opposed to Design Patterns are Anti-Patterns. Anti-Pattern are patterns (e.g., known
strategies) that are applied in an inappropriate context [5]. Based on this definition, there are
two types of Anti-Patterns. The first is Design Patterns that are used in the wrong context.
The other variant is known bad patterns or Anti-Pattern that are used anywhere. Patterns
that are known to be wrong are introduced by [5] in a similar way as Design Patterns were
introduced by [17].

Another bad coding practice is the Bad Smell [14]. Bad Smells (or Code Smells) are
code taints such as long methods, code duplication and data classes. The difference between
Bad Smells and Anti-Patterns is that Bad Smells tend to be local code taints within methods
or classes. Anti-Patterns are usually more structural problems, such as classes using an
inappropriate hierarchy. Furthermore, Code Smells are usually implementation problems

2



Research questions

where Anti-Patterns are design problems. For this reason, Anti-Patterns are sometimes
called Design Smells.! In many cases, it is not clear whether a problem is a Bad Smell or
an Anti-Pattern. Those cases are open to interpretation.

Design Principles are good practices that complement Desing Patterns. These principles
do not directly present known solutions or known bad solutions, instead they provide guide-
lines for how software should be designed. Violations of the principles might make code
difficult to understand or maintain. Design principles have been formulated by different
authors and have been discussed by many software design enthusiasts. What are nowadays
seen as the core design principles have been summarized and bundled in various software
design books, most notably the book Agile Software Development [26]. Additional design
principles can be found on discussion fora on the Internet, such as the Anti-Pattern wiki
found at http://c2.com/cgi/wiki?OoDesignPrinciples.

1.3 Research questions

This project aims at examining Anti-Patterns and Design Principle violations. It is an ex-
ploratory study that aims to answer the following questions:

* Can heuristics be formulated that can be used to automatically detect Anti-Patterns
and Design Principle violations in software systems?

* Can a program be built that can use these heuristics to find the design problems auto-
matically and that can tell the reasons why it has found any problem?

* Do Anti-Patterns and Design Principle violations occur in software systems? Are
they common or rare?

* Are they as severe and full-featured as described in literature?

* For those occurrences, can an indication be given whether they are malicious to a
project?

With this exploration of design problems, our research also aims to provide a basis for
possible future research.

1.4 Contributions

The contributions of this project are as follows:

* A set of heuristics for the detection of four Anti-Patterns and multiple Design Princi-
ple violations (Chapter 4).

* A tool that can automatically detect a selection of these design problems (Chapter 3).

 Evaluation of the heuristics and the occurrences of the design problems in eight soft-
ware systems (Chapter 5 and 6).

'In this report, Bad Smell always refers to a Code Smell and the term Design Smell is never used.






Chapter 2

Related Work

This chapter summarizes earlier work on detecting Code Smells and patterns. It explains
a number of techniques for detecting smells and patterns. It also describes earlier work
on examining smells and patterns. Each of the works explained in this section includes
a short description of their approach and the technique used in the research. Section 2.3
explains work on fault prediction or on the use of repository mining techniques. Section 2.4
presents an overview of pattern detection tools. Some of these tools have been evaluated
and considered for reuse in this research.

2.1 Approaches for detecting patterns

There are many ways for systematically finding software problems. This section presents
an overview of the most common methods for detecting Code Smells and patterns. The
concepts of static and dynamic analysis are explained. Some possible representations of
Code Smells and patterns are given for use in such analysis approaches. This section also
explains the method of repository mining which is occasionally used in combination with
the analysis methods. The approaches explained in this section are used by the related
works that are listed in the next chapter. These approaches and the related works are used
as a basis or as inspiration for this project.

2.1.1 Static and dynamic analysis

Patterns can be found using two types of program analysis: static and dynamic analysis.
Static analysis is the analysis of program code or documentation. This includes examin-
ing source code or abstract representations of source code. Inspecting documentation or
code can be used to find intentional and unintentional patterns. It can easily cover all avail-
able documents. The advantage of examining source code is that no information is lost by
compiling. Examining abstract representations or meta-models of the source code has the
advantage that the detection approach is programming language independent. The disad-
vantages are that information may be missed in complex situations that are affected by the
different possible runtime environments or the use of reflection. Also, if every detail avail-



2. RELATED WORK

able in the source code is included in the search space, the detection process can be slow.
Static analysis is the most common way to find patterns and smells.

Dynamic analysis is the inspection of a running program. This is usually achieved by
injecting detection routines in the program binaries, thereby creating additional output when
that section of the program is invoked. The advantage of this method is that it reveals the
‘true’ effect of the program and the way the objects interact. It may also reveal depen-
dencies that cannot be seen in the source code, such as dynamically loaded properties or
components that are configured using separate configuration files. The disadvantages of
dynamic analysis are that it may be slow due to overhead of inspection, it may interfere
with the program behavior and it is very difficult if not impossible to manage the program
execution in such a way that it covers all code segments and patterns.

Gathering information through dynamic analysis should always be done in an automated
way. Running a program and inspecting it by hand is too complex for humans to do manu-
ally. It would also be very time consuming. Gathering information through static analysis
can be done in many ways. One of the most basic techniques is examining the design doc-
uments in search for potential problems. This strategy requires complete, up-to-date design
information about the system. When such documents are available, reading techniques [41]
can be used to inspect them. Alternatively, code metrics can be used to automatically find
smells and patterns based on heuristics or by visualising properties of the code [8]. Another
alternative is to transform the information into an alternative representation such as SQL
[45] so the properties can be accessed through queries. Code layout can also be represented
as a graph [1] to attempt ‘pattern matching’ of known pattern graphs.

Bad smells are usually found using static analysis because those smells are merely
present in the code. They are difficult to detect at runtime because compilers usually re-
move information about code layout.

Methods can be combined to reduce the amount of false positives or negatives. Further-
more, there may be information available that cannot be automatically processed, such as
documentation or version control histories. Such information can be used to help validate
the results.

2.1.2 Definitions for patterns and smells

Code Smells and patterns have been described many times in literature. Most of these
descriptions are somewhat informal, explaining the idea behind such code problems and
presenting overviews. For research, it is often useful to provide a formal definition of a
code problem, especially if that definition can be used by a detection program. Most of the
papers and tools presented in this document have their own way of formulating patterns and
smells. This section presents an overview of the most common ways to describe patterns
and smells.

Creating a definition of a pattern can be done in several ways. There are various text-
book sources ([17], [5], ...) that describe patterns, a lot of information is available on
the Internet and intuition can help making a proper description of a pattern. Having some
sample pattern instances to test any recognition program on can help greatly. Complete
definitions of patterns or smells are usually presented as a descriptive text, complemented

6



Approaches for detecting patterns

with a formal definition such as UML Class diagrams, mathematical relation operators such
as propositional logic, detection rules or a combination of the basic building blocks as de-
scribed below.

Code metrics are probably the most common way to describe a code problem. They
do not describe relations between objects, they simply indicate quantities of specific mea-
surements. These measurements can be taken by compilers, many IDE’s and by almost any
debugging tool. There are numerous code metrics and they can be combined to create new
metrics. Some of the most common metrics are Number of Methods (NOM), Lines of Code
(LOC) and Cyclomatic Complexity (Cyclo). Some of the features that can be measured by
metrics:

Standard quantities Counts of lines of code, methods, classes, packages, ...

Complexity Calls fan in, fan out, cyclomatic complexity, amount of coupling, number of
loops, ...

Communication Number of socket endpoints, dynamic classloading options, message chain
length, ...

Expectations Expected bugs, estimated difficulty, volume of program, effort required, vo-
cabulary needed, . ..

Duplication Duplicate code, reused code, naming overlap, ...

Other Number of specific statements, lines of comment, ...

For most of these metrics, the min, max, averages etc are also available.

Furthermore, a number of Object-Oriented metrics exist. These metrics apply exclu-
sively to Object-Oriented systems. These metrics include: Weighted methods per class,
depth of inheritance tree, Number of children, Coupling between object classes, Response
for a class and Lack of cohesion in methods [6].

One of the main problems of using metrics is that good rules and thresholds for the rules
are needed to ensure that the rulebase is able to produce any valid results. The research [29]
provides a way to automatically calculate usable thresholds. The problem with determining
good threshold values for metric-based rules is that a lot of false positive and false negative
samples are needed as data set. Collecting and examining the samples usually translates to
a lot of manual labor and thus a lot if time. Yet well-tuned detection rules might pay off in
the long run. The book ‘Object-Oriented Metrics in Practice’ [23] describes many practical
approaches for using metrics and defining software properties based on metrics. This book
also discusses in more detail the use of thresholds for rules.

An alternative to metrics is the Elemental Design Pattern (EDP) [38]. EDPs are solu-
tions to the most common design problems, such as ‘Class A extends class B’ as a basic
inheritance rule. EDPs are the building blocks of Design Patterns. They are the solution
to every day source code problems. EDPs are more suitable for describing patterns than
smells because they can describe where and how classes interact. Metrics are more suitable
for code smells because they describe quantities and frequencies of implementation char-
acteristics. Although metrics can also describe how often objects relate to each other (such
as the Fan In metric), they do not describe specific relations between classes in a way that
Design Patterns do.



2. RELATED WORK

When MSR is used in the research, changes across versions can be used to formulate
and detect the presence of code problems. This is particularly true for Anti-Patterns because
many of their characteristics are about change-proneness, causing maintenance problems
or requiring specific types of maintenance patterns. If change characteristics are used to
describe a pattern, the change taxonomy [13] can be used as basis. This taxonomy described
source code change types as Abstract Syntax Tree (AST) editing operations and provides a
formal definition for every possible change.

2.1.3 Including software history in the detection process

To gain additional information about the detected patterns or smells, the history of the soft-
ware system can be included. Examining the history can yield additional information such
as the evolution of the detected item, when it was introduced into the software system and
whether it affected other components of the system over time. To include the history of a
software system, multiple revisions of the software from the software repository are exam-
ined. Typical approaches are to examine weekly software builds or all major releases.

The paper [20] describes the classes of questions that can be answered by Mining Soft-
ware Repositories (MSR). The first class of questions is the Market-Basket Question (MBQ)
which can be formulates as: “When X occurs, what else occurs on a regular basis?”. The
second class is the Prevalence Question (PQ) which includes boolean and metric queries. A
combination of these questions may be needed to uncover the information that is sought for
and to find relations.

The basic methods for answering these questions can be categorized as follows: Changes
to properties strategy involves computation of individual properties of the sources for mul-
tiple releases, then comparing the computed properties with their changed versions. The
changes to artifacts strategy involves examining the evolution that took the system to the
next version. This includes tracking changes, bugs and additions from one version to the
next.

In the past, industrial software projects were the only available sources for MSR. Nowa-
days, publicly available repositories such as SourceForge' are often used for such researches.
There are a number of pitfalls and limitations to MSR [20]. The source that can be mined
often contains a lot of hidden properties, such as inline communication comments (TODO,
FIXME comments) that developers use as part of their task communication. Hidden in-
formation can be used in MSR research although it should be noted that it only grants a
narrow view of the actual knowledge behind the system. Similarly, commit metadata (e.g.,
commit comments) captures only a fraction of the knowledge about the system. It is often
incomplete, poorly formulated or left out entirely. Also, the data often needs normalization
before it becomes usable. For example, a CVS repository registers every committed file as
a separate commit, thus a sliding window normalization should be used to capture commits
that belong to the same actual commit. More details about MSR and a good overview of
methods and reasons for mining repositories is given in [20]. This paper explains how MSR
has evolved over time.

Thttp://sourceforge.net



Earlier work on detecting Code Smells and patterns

The MSR taxonomy [20] also provides a good summary of the basic building blocks
for MSR and can be considered an important guide to MSR. The paper also provides an
overview of all researches that used MSR up to 2006.

2.2 Earlier work on detecting Code Smells and patterns

Bad Smells and Design Patterns have already been examined in detail. Anti-Patterns have
also been evaluated although to a lesser extend. Many of the works on these patterns are
interesting for this research as they can provide insight in feasible solutions for examining
the patterns and can provide directions for this research.

2.2.1 Detecting Bad Smells

Matthew James [32] built a tool that detects Bad Smells by using static analysis. This tool
analyzes the Abstract Syntax Tree (AST), calculates metrics and uses a rulebase to detect
Code Smells based on the metrics. The paper presents the results of the detection tool for
two of the ten design problems that were detected. Examining the approach and conclu-
sions, it becomes clear that a metric-based rulebase can be unreliable. The rules that are
needed to detect the smells are open to interpretation because the design problems them-
selves can be described in many ways. Also the thresholds for the rules require tinkering
and may not always be reliable. The problem of finding good rules and thresholds may be
a threat to validity for some works.

Van Emden et al. [43] developed the jCosmo tool. This tool parses source code into an
abstract model (similar to the Famix meta-model). It uses primitive and derived smell as-
pects (e.g., rulebase-like) to detect the presence of smells. The meta-model is used as a basis
to extract primitive smell aspects from, such as “Method M contains a switch statement”.
These primitive smells are then used to generate derived smell aspects such as “Class C
does not use any of the methods offered by it’s superclasses”. The jCosmo tool can visu-
alize the code layout and smell locations. The goal of this tool is to help developers assess
code quality and help in refactorings. The main difference compared with other detection
tools is that jCosmo tries to visualize problems by visualizing the design. As explained in
[43], most other tools visualize the problems on a much more technical level, often at a
programming instruction level.

Naouel et al. [31] describe a Smell detection program named DECOR. The program
can detect Smells by static analysis. Smells are defined using a textual formal description
and they are automatically converted to detection algorithms. The program runs these al-
gorithms and returns the candidate classes that are found smelly. This program is used as a
basis for [21] and for the DETEX tool explained in Section 2.2.2.

The Integrated Platform for Software Modeling and Analysis (iPlasma) tool described
in the book ‘Object-Oriented Metrics in Practice’ [23] can be used for Code Smell analysis.
This tool can calculate metrics from C++ or Java source code and apply a rulebase to detect
smells. These rules combine the metrics to and are used to find code fragments that exceed
the smell thresholds. These features and others are explained in detail in the book [23], as
well as the rules and much practical information for using metrics.



2. RELATED WORK

2.2.2 Detecting patterns
Detecting Design Patterns

Bieman et al. [4] examined intentional patterns in software systems. These are the patterns
that the developers intentionally chose and documented. The detection of these patterns is
done by performing textual search in the documentation and examining the program code
to find pattern candidates. Because the textual search yielded some false positives, a manual
inspection of the model is used to verify which of the candidate classes actually participate
in detected Design Patterns. Manual inspection is a commonly used method to verify the
accuracy of an automated or semi-automated detection approach.

Costagliola et al. [7] use UML Class Diagrams to detect the presence of patterns. The
class diagrams can be generated from source or recovered from documentation. These
diagrams are stores as a Scalable Vector Graphics (SVG) format. The diagram is parsed
and converted to sentences that express the relations of object, called Extended Positional
Grammar (XPG). The sentences of the resulting class diagram are transformed in such a
way that they can be matched against templates of Design Patterns. The templates describe
small class diagrams such as an inheritance relations between multiple objects. Patterns are
detected by examining every class object in the class diagram and attempting to match it’s
inheritance structure with a template description. If a match is found, other rules are also
tested for matches because a class can participate in multiple patterns.

In [40], Stotts et al. examine small C++ programs to find Design Patterns. The authors
have created a formal definition of the Design Patterns by combining Elemental Design
Patterns with relation operators. This definition captures the concept of the Design Pattern
and allows for identification of instances of the patterns. This enables their tool to detect
patterns that have not been strictly implemented as proposed by the GoF. The data extraction
process uses the gcc parse tree and converts it into a meta-model of the source code. The
pattern descriptions are matched against the meta-model to find candidate patterns.

In [42], Tsantalis et al. use a graph matching method to find Design Patterns that are
similar to template Design Patterns, by finding similarities in matching edges in the graph
representation of the classes. The graph matching algorithm is inexact, meaning that it can
also identify graphs that ‘look like’ the template (cliché) graphs. This allows the identifica-
tion of patterns that do not perfectly match the template patterns. The graph representation
is created from UML Class diagram. One of the disadvantages of this approach is that only
the class relations are captured and some contextual information is not included. Some
patterns cannot be differed from each other because their class relations are the same. The
relation graphs map into square matrices, these matrices capture the relations between ob-
jects. Zero-entries in the matrices can be used for optimizing the matching algorithm as
they can be skipped. The authors put a lot of effort into optimizing the program to be able
to quickly process large systems, such as splitting the graphs into smaller hierarchies to
prevent search space explosion. The program has been used to examine the jUnit, jHotdraw
and jRefactory projects.

The ‘Web of Patterns’ project [9] describes a Java program the can be used to detect
Design Patterns. The program uses a rulebase to describe the patterns. The patterns are
described using Web Ontology Language. This approach also allows ‘the community’ to

10



Earlier work on detecting Code Smells and patterns

describe custom patterns and publish them on the web. Internally, the descriptions are
translated to detection rules which can be processed using a Prolog-like fact resolver. The
fact base is programming language dependent because not all languages support the same
fact types. References to artifacts such as classes are not supported in all languages. A
reference implementation for the Java language is available and is described in this paper.
The scanner uses the AST representation that is built in Eclipse as a source for facts.

DeMIMA [18] is a tool that can be used to recover design motifs and trace the presence
of these motifs over multiple software releases. Design Motifs are essentially the observ-
able effects of Design Patterns in source code. DeMIMA uses multiple layers of abstraction
which the user can use to describe the model of the motif that has to be detected. These
layers abstract from the source code to a meta-model to an explanation based programming
language that identifies the motif. The advantage of this abstraction is that the model de-
scription can be used to identify variations of the motif and not just exact matches. This
property is also demonstrated in an example where DeMIMA identifies a variation to the
Singleton pattern. The detected variation was an implementation of the Identity Map pat-
tern.

The Pattern Modeling Framework (PMF) [10] is an Eclipse plugin that functions as a
Design Pattern detection tool, integrated with the popular Eclipse IDE. The pattern tem-
plates are defined as UML diagrams and the tool uses static analysis to recover the Design
Patterns from source code. A graph matching algorithm is used on the AST to detect the
patterns.

Lee et al. [24] provide a new classification of the GoF patterns. They categorize the
patterns based on how they can be detected. Some patterns can be detected by static analy-
sis. For example, the Visitor pattern can be recovered from source code. Other patterns are
best detected using dynamic analysis such as the Decorator pattern. The behavior of such
patterns are best captured at runtime. Some patterns are strictly implementation specific.
For example, the Iterator pattern is highly implementation-dependent and is unlikely to be
implemented as described in textbook [17]. They also built a detection tool that uses this
categorization to detect the patterns. This tool uses static analysis to detect the patterns cate-
gorized as detectable using static analysis. The detection rules are generated from the XML
representation of the patterns. During static analysis, candidate classes for the dynamic
analysis are also sought. This preparation step is implemented to reduce the search space
of the dynamic analysis thereby making it faster. For dynamic analysis, the program has
to be executed by the user and call traces are recorded by the tool. Call traces that satisfy
the pattern constraints result in positive pattern matches. Keyword search and code-style
matches are used to find implementation specific patterns.

Nija et al. [37] present PINOT, a Design Pattern detection tool that can recognize all
GoF patterns that are structure or behavior driven. As explained in this paper and to some
extend in other work [24], the GoF patterns can be categorized by their implementation char-
acteristic and thus the way they can be recognized. Language-provided patterns are included
in the programming language itself, such as the Iterator in Java. Structure-driven patterns
are defined by inter-class structures, e.g., the overall system architecture. Behavior-driven
patterns specify how objects interact, such as the Singleton pattern. Domain-specific pat-
terns often combine other patterns into a domain-specific language and also require domain-

11



2. RELATED WORK

specific knowledge to detect, making them harder to detect by generic tools. The PINOT
tool can detect the patterns in the structure- and behavior-driven categories. It does so by
examining the Java AST. PINOT determines for each known pattern what would be the best
characteristic to identify the pattern: delegations, associations or declarations. It prunes the
search space based on that criteria and attempts to detect common (known) implementation
variants of the criteria. By using known variants only, it is able to detect patterns that deviate
from the textbook version but it can miss some rare implementation variants.

Niere et al. [33] present the tool FAJUBA. This pattern detection tool uses the Ab-
stract Syntax Graph (ASG) representation rules to identify patterns in the ASG. It’s search
algorithm uses multiple passes to identify patterns. Every pass consists of an information
gathering phase and a detection phase. The tool annotates the ASG to reduce the search
space and to gather information. It attempts to find matching patterns based on their ASG
representations. The core concept of this tool is that it is interactive. The software engineer
can interrupt it between the phases and change the ASG representations or steer the search
process. This way it aims to be more interactive, perform faster and be a better help for
reverse engineering.

Prolog rules can also be used to find occurrences of Design Patterns and Anti-Patterns.
Stoianov et al. [39] use Prolog predicates to describe both behavioral and structural De-
sign Patterns as well as Anti-Patterns. Such rules use a fact database to find all possible
combinations of facts as long as they match the rules. Using these rules, Java components,
Apache Ant and JHotDraw have been examined for occurrences of both Design Patterns
and Anti-Patterns.

CrocoPat [3] is a tool that can detect patterns. The pattern templates are written in
Relation Manipulation Language (RML). It can also detect code clones. A scanned program
is represented as a set of relational expressions. CrocoPat tries to find tuples that match the
given predicative expressions. This approach can be used to find generic patterns including
some design patterns. For example, the Composite Design Pattern can be detected using
this CrocoPat.

Detecting Anti-Patterns

Similar approaches can be used to detect Anti-Patterns. At the time of writing, only few
researches have investigated Anti-Patterns. Dhambri et al. [8] examined the Blob and the
Functional Decomposition Anti-Patterns. These patterns were identified although no further
examination was done on their effects. Anti-Patterns are also mentioned to be detected by
Gall et al. [15] although the Anti-Patterns were not the main focus. Van Emden et al. [43]
mention Anti-Patterns. These bad patterns cannot be detected by jCosmo because they are
usually on a higher level than metrics or Code Smells.

The DETEX tool is a detection program built on top of the DECOR [31] Smell detection
tool. Using domain-specific descriptions based on Code Smells (called Design Smells in
[31]), Anti-Pattern detection rules have been formulated and their detection algorithms can
be generated by DECOR. This tool has been used to detect instances of Spaghetti Code,
The Blob, Functional Decomposition and Swiss Army Knife Anti-Patterns.

12



Fault prediction and analysis

An alternative to DECOR is an approach using B-Splines [34]. This approach uses
fuzzy thresholds instead of the crisp ‘Yes or No’ thresholds used by many tools. In general,
this approach outperforms the crisp threshold approach. However, it is sensitive to the size
of the training set, meaning that a small training set can severely reduce accuracy.

The Prolog fact resolver used by [39] can detect Design Patterns as well as some Anti-
Patterns. Some of the Anti-Patterns that Stoianov et al. have included are regarded as Code
Smells in this report. The Anti-Patterns that have been detected are Data Class, Call Super,
Constant interface, The Blob, Refused Interface, Yoyo Problem and Poltergeist. Tests on
various open-source projects show that these Anti-Patterns do occur and can be detected.

Meyer [28] proposes an approach for automatic refactoring of Anti-Patterns. This theo-
retic approach describes how Anti-Patterns can be detected by examining the Abstract Syn-
tax Graph (ASG). The patterns are defined as ASG rules that describe their graph layout.
These patterns can be recovered by using a graph matching algorithm. Next, transformation
rules described using UML can be applied to automatically transform the Anti-Patterns into
normal non-Anti-Pattern classes or even Design Patterns.

Detecting Design Principle violations

Design Principles, as explained before, are clearly defined guidelines for software design.
Violations to these guidelines can be detected in ways similar to Code Smells or Anti-
Patterns because all of the Design Principles describe relations between program compo-
nents or contents of those components. Despite the similarities and the relevance of these
guidelines, there is no known research or tool that can detect such violations. Some of the
tools listed in Section 2.4.2 might be able to detect some violations implicitly as those viola-
tions are actually aspects of an Anti-Pattern, but no known program is able to tell explicitly
whether a principle has been violated.

2.3 Fault prediction and analysis

Fault prediction is useful in helping a software engineer to find potential problems before
they actually occur. Research has been done to find how and whether fault prediction is pos-
sible. The faults themselves are also subject to research, as well as their relations with pat-
terns. To get hard facts about whether design problems are actually malicious to a program,
the data of detected problems can be mapped to software bug databases or maintenance in-
formation. Acquiring such information is a technique called Mining Software Repositories
(MSR). Without such information, only estimates can be given about possible consequences
of design problems. Researches regarding fault prediction and fault analysis are presented
in this section.

2.3.1 Metrics as fault predictor

Metrics can be used for general purposes such as showing class sizes, giving an overview
of large components in the system and to some extend, as fault predictors. Basili et al. [2]
examined the usefulness of code metrics. They did not use the metrics to detect patterns

13



2. RELATED WORK

or Bad Smells, instead they used them as generic fault predictors. They tested six Object-
Oriented metrics for being able to predict fault-proneness during various design phases of
the product lifecycle. Five of these specific metrics were found to be useful for this task.
They also suggest that their models can be used to guide development in an automated way.
Using their development models, the metrics can be used to reduce fault-proneness in early
as well as late stages of software development.

A number of other works support the claim that metrics can be used to indicate fault-
proneness. Gyimothy et al. [19] built a tool that can automatically calculate useful data
(including metrics) from C++ source code. They analyzed the Mozilla project in order to
investigate whether metrics can be used as fault predictors. Although the authors consider
their results as inaccurate, it does indicate that metrics can be used as fault predictors in
some cases. For example, they find that the rather simple Lines of Code (LOC) metric
already seems to be a good fault indicator. They conclude that multivariate models based on
metrics may perform better than using a single metric as estimator. The problem with such
models is that they are harder to calculate. They also show that not all of the investigated
metrics can be used as fault predictors, some are utterly unreliable.

Fenton et al. [12] investigated how often faults occur in a system and if this can be
predicted by metrics. They found that a small amount of modules contain the majority of
faults pre-release of a software product and an even smaller amount of modules contain
most of the faults post-release of the product. The modules that contain the faults pre-
and post-release are often not the same. They found no support for the claim that the fault
density can be predicted by metrics. Complexity measures or the LOC metrics can only
indicate the absolute number of faults and not the fault density.

Emam et al. [11] indicate that the size of classes can be a threat to the validity of
using metrics as fault-indicators. They show that, once calculations have been normalized
for class size, some metrics can no longer be used as fault predictor. A consequence is that
some of the results and conclusions from earlier works might be invalid because metrics that
were found to be indicators in those researches were not always normalized for class size.
It also shows that special care should be taken when drawing conclusions about measured
properties from software systems as it is not always certain whether these properties (such
as metrics) can be used to draw conclusions about the system.

Menzies et al. [27] examine multiple methods for using metrics as fault predictor. Their
best predictor is a machine learning method combined with a filter that selects a subset of
the attributes that match the dataset best. They explain that traditional approaches based
on attribute subsets will not predict defects properly. The attributes that are usable for fault
prediction vary per dataset and the chance that any given approach will perform well is
small. A lot of approaches have to be explored before a good one can be selected. In their
research, only one of the six explored approaches performs satisfactory.

2.3.2 Repository mining

Repository mining is a technique that can be used to recover the history of a software sys-
tem. As examining a program or it’s source can reveal patterns and smells, examining the
history of a software system can reveal properties such as changes, change coupling and

14



Fault prediction and analysis

reasons for change. This information can be used to explain why patterns are used and
changed the way they are. It can give insight into aspects of patterns that cannot be seen by
looking at one snapshot of a software system. Repository mining has been used in many
researches. Some of the earlier works that used MSR to find information about pattern and
smell behavior are listed below. The following papers are examples where versioning data
or metadata is used to find additional information about patterns and smells in software.

A simple approach to identifying change ratio of classes is downloading the versioning
information and then counting the number of changes to classes. This data can then be
associated with other properties of these classes, such as Design Patterns. This simple
approach is used by Bieman et al. [4] and Khombh et al. [22] [21] (based on DECOR [31]).

A research that uses DeMIMA is [22] (see previous section for DeMIMA [18]). This
research goes into more detail on the roles that classes play in design motifs. They examine
how often classes participate in motifs and how this affects the change-proneness on the
classes and on related classes. They create sets of classes that participate in zero, one or
two motifs according to DeMIMA. These sample sets are tested for candidate classes that
participate in motifs and a voting process among developers is used to increase the accuracy
of the sets. The percentages of participating classes from the sample sets are extrapolated
to get the number of classes in the tested systems that participate in one or two motifs. The
results show that the percentage of classes that participate in one or two of the detected
motifs varies between 4% to 30%. In many cases, the percentage of classes that participate
in two motifs is much higher than that of one motif. Further analysis also reveals that classes
that participate in multiple motifs have a much higher chance to cause change-proneness
classes the participate in one or no motifs. Those classes that do participate in multiple
patterns often have greatly increased values for their metrics and are thus more complex
than classes that do not. Developers should be wary of such classes as they can greatly
increase the maintenance effort of the software system.

The versioning metadata can be used to complement the tools being used to find pat-
terns or smells. This is done by Mockus et al. in [30]. Tools can examine every software
version for the presence of the pattern and then the versioning metadata can be used to get
additional information about the background of that version. To extract metadata from a
software versioning system, the changes must have comments about what was changed for
that revision. If the changes are properly commented, domain specific keyword matching
tools can be used to extract the revision metadata. For example, the words “Fix”, “Fixes”
and “Fixing” can be associated with corrective maintenance. This information can then be
associated with the files that were changed during that revision, thus allowing automated
identification of changes that are corrective. This approach also offers an interesting way to
examining application evolution. It also allows identification of components that require a
lot of effort to repair or maintain. Components that require a lot of fixing can be identified
and refactored if necessary.

Gall et al. [15] use CVS history to observe at what rate classes change and whether other
classes are influenced by the changes. The relational analysis can reveal several interesting
properties of the analyzed project. In [15], each of the three following techniques com-
plement each other. Quantitative Analysis (QA) focuses on change and growth rates. CVS
history is used to analyze change frequencies on a class level. QA can indicate which classes

15



2. RELATED WORK

have abnormal growth or change rates thus revealing area’s of interest. Change Sequence
Analysis (CSA) uses the CVS history to find classes that commonly change. Modules of
the system are compared to each other based on their change patterns. Modules that fre-
quently change together or follow the same change commit pattern are likely to be coupled
together. Relation Analysis (RA) is used to find dependencies. RA goes into more detail
than CSA because it uses versioning metadata to identify which modules depend on each
other. This technique can also be used to find some Anti-Patterns such as bad inheritance or
Spaghetti Code. Overall, this paper describes a method for identifying change frequencies
and coupling. This information can be used to assess the usefulness and effectiveness of
Design Patterns used in the software system.

Livshits et al. [25] explain how revision history can be mined for usage patterns, such
as “Method call foo() always precedes bar()”. These patterns are neither Design- nor Anti-
Patterns. They are application specific usage patterns, such as locking and unlocking within
an application. The Dynamine tool can also detect cases where the pattern is violated.
The authors describe an algorithm for mining repositories, examining method transactions
within the program and generating a ranking for common transactions. The authors examine
Eclipse and jEdit, both of which are large systems. Their algorithm does a lot of filtering,
such as leaving out common method calls such as logging methods. Without filtering,
the algorithm would produce too many candidate patterns and too much noise. Dynamic
analysis is used to verify that the pattern candidates are really usage patterns. By injecting
additional inspection code at runtime, traces are generated to count the actual usage of the
patterns. This runtime validation ensures that the detected patterns are ‘real’ patterns thus
greatly reducing the need to deal with false positive patterns. Because the usage count of
a pattern depends on how the program is used at runtime, only the number of unique ways
of invoking the pattern is counted. This also results in a more effective count of pattern
violations.

Vokac [45] detects Design Patterns and associates them with defects. An automatic
code parser is used to parse the code into an abstract model which is kept in a database.
Database query representations are provided for the Factory, Singleton, Observer, Template
Method and Decorator patterns. Patterns are extracted from the meta-model by querying the
database. False positive pattern candidates are detected by manual source code inspection.
Because checking an entire software project for false negatives is not possible for large
software systems, a sample set of the source is used to estimate the false negative rate. The
defect frequency is determined by examining the source code over multiple CVS revisions.
A Defect Tracking System is used to track the defects across versions. For components that
did not have direct links from this tracking system, the defect rates were extrapolated. Also,
because a class can participate in multiple Design Patterns or it can be a generally big or
complex class, it is not always certain whether the defect rate of that class can be associated
with a design pattern.

Di Penta et al. [35] based their research on DeMIMA. In addition to detecting the
Design Patterns, change sets are identified and assembled as sets of multiple delta’s. A
delta is a set of changes that have been committed by the same user, within a few seconds
and that all share the same commit comment. The changes are defined in terms of source
code lines added, changed or removed. The authors compare the results of the frequencies

16



Evaluating existing tools for reuse

of specific changes with what they expected from these patterns.

A similar approach is used in [1]. Aversano et al. use the tool presented in [42] and use a
similar change-detection approach as [35]. Their approach also identifies co-change. Some
classes that participate in Design Patterns are shown to have a higher co-change than others.
By examining the changes and co-changes, it is shown that some patterns, expecially the
ones with crucial roles, often have a higher co-change than those which are less crucial.

2.4 Evaluating existing tools for reuse

2.4.1 Choosing an existing tool for future research

This section explains some of the selection criteria for tools that can be used for Anti-
Pattern detection. The task of finding Anti-Patterns should be automated where possible,
thus allowing a quicker and broader search for Anti-Patterns. Software should be reused
where possible, thus reducing the need to design and build programs that already exist.
Many general problem detection tools already exist, such as PMD? or FindBugs®. However,
only few of these tools can detect Anti-Patterns. Tools that can be used for future research
should satisfy the following conditions:

* The tool should be well-documented both in the detection strategy it employs and
how to modify it. Preferable the source code should be available or alternatively it
should have a good way of modifying the pattern detection logic.

* Preferably, the tool should show some signs of life. Recent developments or commu-
nity support would be best. A tool that has not been maintained for years may not be
the best option.

* If additional tools will be used for research methods such as MSR, statistical analysis
or other input / output steps, then it would be helpful if the detection tool can be
integrated with programs for those research methods. If that is not possible then the
programs should at least provide input and output in a format that can be used in the
next program in the chain.

Most programs produced for earlier researches are typical prototypes that were designed
to do exactly what they were needed for and nothing more. Those programs often exactly
fit the scope of the research and are hard to adapt for further use. For this reason, most of
the programs described earlier are not suitable for use in this project. Other works produced
tools just for the purpose of producing a generic tool that is usable in future research or for
(non-)commercial purposes. These tools may be more suitable than prototype tools because
they are more generic. Some of these tools are listed here:

* The program described as ‘Design Pattern Detection using Similarity Scoring’ [42]
can be found at the author’s homepage.* The program can be tested on examples® or
on custom source code.

Zhttp://pmd.sourceforge.net/
3http://findbugs.sourceforge.net/
“http://java.uom.gr/ nikos/pattern-detection.html
Shttp://www.vincehuston.org/dp/

17



2. RELATED WORK

* Another Design Pattern detection tool.®
+ The CrocoPat project’ offers a tool [3] that can detect patterns.
» The Web of Patterns project [9] can be found on their homepage.®

There is no off-the-shelf program that can be used to detect Anti-Patterns. There are
various candidates that might be able to do the job if some changes can be made to the
program. Those tools are listed in the next section.

2.4.2 Summary of pattern detection tools

Below is a table that summarizes the detectable patterns of the tools discussed earlier. The
information in this table is based on what is described in the papers or official documents
provided with the tool. Some papers explicitly state that the tool can be adapted and in
those cases, a ‘Y’ is given for custom patterns. Using custom patterns should also give
some room for detecting Anti-Patterns although that can only be said with certainty after
the Anti-Patterns have been defined using a formal definition that can be implemented in
such a program.

From Table 2.1 it becomes clear that there is no single tool that can detect all GOF
Design Patterns. Combining strategies is promising as is done by [24] where static and
dynamic analysis have been combined. For complete coverage of all Design Patterns, a new
strategy might need to be designed or existing tools have to be combined. Anti-Patterns
have the same problem as Design Patterns. To cover all possible Anti-Patterns that can be
found in a program, combined detection approaches are probably necessary. Existing tools
that are adaptable can probably detect a subset of the Anti-Patterns, depending on their
chosen pattern detection strategy.

Where possible, these tools have been examined and tested for the criteria listed in
Section 2.4.1. The conclusion of this test is that there is no tool that satisfies all criteria
(e.g., good documentation, recent development, adaptability and possibly integration with
other tools). The lack of any directly usable tool for detection of custom Anti-Patterns and
Design Principle violations is the main motivation for building a detection program from
scratch. The program that has been developed for this purpose is described in Chapter 3.

Ohttp://www.sesa.dmi.unisa.it/dpr/
http://www.sosy-lab.org/ dbeyer/CrocoPat/
Shitp://www-ist.massey.ac.nz/wop/

18



WIONEJ-DUY 10 WOISNYD) [ P et e Z 00 P O O P e e e P P P O
IONSIA [J= = Z Z Z P M N ZZ 2 Z N N Z 7 Z
POURIN QR[AWR, (= Z Z Z Z = b~ = Z Z Z Z Z = Z e
ABNRNS b~ = Z. Z Z N Z = ZZZ Z e N Z
IS | = Z Z Z o Z = ZZZZ ™~ ZZZ
UOISULS [ P Z Z Z o= = P~ Z0 Z0 Z0 Z0 3= = e e e
KXOIJ |ZpM ZLZ W Z = Z.ZZ Z Z - = Z Z Z
AW | Z Z Z Z R Z N ZZ 2 Z N 222 Z
PARSAO |~ Z Z Z Z. »= Z = Z Z Z Z = = = =
OWOWON |Z, Z Z Z Z Z. Z. Z. Z. Z Z Z Z Z »~ Z Z
IORIPIN |Z Z Z Z Z. Z Z Z Z Z Z Z = = = Z Z
IR |Z = 2 Z Z Z Z Z Z Z Z Z ™ Z = Z Z
WoidloW] |z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
WSOMAJ |Z Z Z Z Z Z Z Z Z Z Z Z = = = Z Z
WS |Z Z Z Z N Z ZZ Z Z Z Z o Z Z
POURIN AIOWR | b= Z Z Z Z. Z p Z. Z Z. Z = = - Z Z
I0RIOOX([ |pn Z Z0 Z 3= 9= Z BN Z ZZ o e e e e e
ANSOdWIO)) [P Z = Z P e e P ZZZ Z e 2 Z
PUBLIWOD) (= = Z, Z, Z = Z ™ Z Z. Z. Z. N Z Z Z Z
AN[IQISUOdSOY JOUIRYD) (Z Z Z Z Z Z Z Z Z Z Z Z = = = Z Z
PpiNg |z = Z2 Z Z Z Z Z Z Z Z Z = Z Z Z Z
WPUG |[Z Z = Z N Z N ZZZ Z Z = N Z Z
INARPY | Z b= b= Z P P B B ZZZZ e B N Z
1WR[QOOANIY |~ Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
KI010RJ 10VNSAY |Z Z. Z Z. Z. b= 9= = Z ZZ Z A e e 2
= _
-
f=2 502 - 1B .
ExEF ELg xEEQgoy
822352 :2500:e8255 2]
3ESE5558K2R25 55848

Table 2.1: Detection tools and their out-of-the-box detectable patterns.

“http://www.sesa.dmi.unisa.it/dpr/

bNeither the paper [33] nor the FAJUBA web site specify any of the patterns that it can detect although [37] compares against it and it does list many patterns






Chapter 3

The Anti-Pattern Scanner

Because this thesis aims to explore Anti-Patterns, Design Principles and similar properties
that manifest in a program’s source, it is necessary to have a proper tool that can detect these
properties. Such a tool has been developed in this Thesis project.

The first ‘proof of concept’ goal of this tool was to demonstrate that a simple heuristic
can be used to detect Anti-Patterns. Additional patterns were implemented over time and
discussion about the results suggested that it can do more, better and with proper result
reporting. For this reason, the original prototype ‘Anti-Pattern Scanner’ has been designed
incrementally to also include Code Smells and Design Principles. This chapter contains the
latest design information for this Anti-Pattern Scanner.

3.1 Global design

3.1.1 Requirements

As explained in Section 2.4, the three requirements for reusing a pattern detection tool are:

* Good documentation about how it works and about the detection approach. In addi-
tion to that, some way to edit the tool or to add custom patterns. The tool must be
capable of detecting the patterns because not all detection approaches work well for
patterns.

 Signs of life. Compatible with recent versions of the Eclipse IDE, active development
or active support.

* A proper interface to process input and output, also with respect to compatibility with
an approach for Mining Software Repositories (MSR).

Evaluation of existing tools has shown that there are no available tools that support all
requirements. There are available tools that can be downloaded from the Internet. Some of
these tools can detect patterns when used on a Java project. Usually these tools also have
some documentation such as a research paper describing their detection approach. However,
there are no tools that satisfy all of the requirements for an Anti-Pattern detection tool.

21



3. THE ANTI-PATTERN SCANNER

In addition to the requirements stated earlier, we added requirements that should make

it convenient to use and to open up possibilities for future use. The functional requirements

are:

» Be able to detect as accurate as possible instances of chosen Anti-Patterns. It’s deci-
sions about what is and what is not an Anti-Pattern should be near-equivalent of what
a programmer might decide after examining a program.

* The program must be able to tell how and why it found a problem and why it did not.
Reporting should be clear and precise. The user should not need to delve through
documents, stacktraces or chunks of code to review the scan results.

In addition to the functional requirements, there are a number of non-functional require-
ments:

22

e The program is allowed to be a prototype program for research. It is not meant to
be developed in a large team or to see everyday use by non-developers. To increase
development speed, it does not need to be fully documented in every detail or to have
professional versioning and release management. However, it should have an overall
clear structure and proper use of Object-Oriented programming principles. It should
not be necessary to completely redesign and rebuild it before it can be used outside
of the current scope.

* Runtime should be fast. A scan should be able to complete in the order of seconds
to minutes thus allowing quick adjustments and re-scanning of sources. This require-
ment is for convenience. It is not a problem to leave a computer running for an
overnight scan however fast scans greatly increase usability.

* A scan must be able to run in the background. Most users have other things to do
than staring at a ‘scan in progress’ dialog.

* Because the current version is still a prototype and is meant to be used in research,
it is acceptable that it will not be suitable for a wide audience. It will require some
domain knowledge from the user, such as a basic understanding of Design Patterns,
Anti-Patterns and Eclipse IDE usage. It is not meant to be a programming assistant
for everyday use. Assumption is that the user does know the limitations of his or her
hardware.

* A normal desktop computer or workstation must be able to run the program properly.
Assumptions are that a reasonable amount of memory is available to the Java VM,
such as more than one gigabyte. This is expected to be reasonable for development
machines.

* Because modern computers often have more than one processing core, multicore pro-
cessing should be available unless there is proof that the chosen detection approach
is not suitable for parallel processing. It will not be optimized for high-performance
computing.



Global design

Future versions of the program might also be used for an additional purpose: to detect
Anti-Patterns while the system engineer builds or refactors a software system. It might be
a helpful tool to detect some design problems and it can be used to complement existing
Code Smell and problem detection tools.

3.1.2 Basis and core components

The input for the program is a Famix! Eclipse Modeling Framework (EMF?) meta-model
as included in Evolizer® [16]. There are three reasons for this decision. First, this model is
an existing, working and proven abstract model that contains virtually all of the information
necessary to perform static analysis. Because it offers a convenient file-based database of
source-code entities (e.g., an .emf file), it also opens up possibilities for storing input data
for repeated analysis. Second, it has an existing approach for MSR. A repository can be
analyzed and releases can be stored as EMF files. This feature will not be used in this
project although it opens up possibilities for further research. Last but not least, active
support is available for this product. Figure 3.1 shows where the Famix parser fits in the
flow of information. A program’s source code is parsed and converted to the abstract model.
This model containing all the Famix EMF entities can either be stored as a database file or
fed directly to the Anti-Pattern Scanner as shown in Figure 3.2.

Famix Parser Entity Database

Source
Code

Figure 3.1: Source code to model conversion.

Given a Famix EMF model, the program will scan the entities of the model using all
of the pattern scanners. The intermediate and final results are cached to allow quick access
to them. The entire cache can be passed to an output generator, such as an Eclipse View
component. For an example of what this process looks like, see Section 3.2.1.

The current version of the Anti-Pattern Scanner does not use any frameworks except for
the provided Famix EMF and the Eclipse IDE. Smell detection, metric generation etcetera
is done manually by any component that needs it. The reason for this is that the only source
of information is the provided EMF model, meaning that any library should be able to use
this. Furthermore, each of the heuristics developed so far are rather simple and do not need
third-party programs to run. A manual implementation using the available system might
also be faster in many cases.

Thttp://www.moosetechnology.org/docs/famix
Zhttp://eclipse.org/modeling/emt/
3https://www.evolizer.org/

23



3. THE ANTI-PATTERN SCANNER

Entity Database

Anti-Pattern Results
Scanner

Figure 3.2: The model is the input of the Anti-Pattern Scanner.

There are two important aspects of this program. The first is the rating system, the
second are the scanners. The program works by using a tree structure of scanners to examine
all the aspects of an Anti-Pattern. The root scanner of the Anti-Pattern accepts a Famix EMF
model as input and provides a rating as output. The rating gives an indication of how much
and how certain the model contains instances of the Anti-Pattern. The scanner can construct
this rating by delegating subtasks to other scanners and combining the results.

3.1.3 Rating

A Rating is a container for information that describes how strong a Famix EMF entity
resembles an aspect of an Anti-Pattern. It contains a rating value that identifies the strength
of the indication and it can contain a reason for that value. For example, a scanner might
identify how many system calls a class has. Assuming that many calls would be bad, the
scanner can give a ‘strong’ rating when it identifies a class that performs many calls or a
‘negative’ rating if the class does not.

The ratings have some advantages over other approaches presented in related works.
The values are fuzzy, meaning that the program is not limited to thresholds that result in
a crisp Yes or No. This should provide more freedom in the implementation of heuristics.
The fuzzy values are not completely free either. The choice of results is limited to a small
number of ratings, each having a meaning instead of being just a variable for a formula. The
available values should make it clear whether a design problem aspect evaluates to true or
false while maintaining some of the benefits of fractional values. It is meant to simplify the
heuristics where possible while keeping the freedom and imagination of the user.

The main purpose of the rating is that it allows passing of judgements between scanners.
The second purpose of the rating is that the Rating container can help to combine ratings.
Every rating contains a value that follows certain guidelines. The container offers functions
for combining ratings on various scales. The default scale uses integers to set an indication
level:

Strong Negative A value of -10 indicates that the given entity is unable to possess the
scanned aspect of the Anti-Pattern. It indicates a high certainty that the pattern will
not be found in the given structure. This rating should be used with care because it
will severely reduce the likelihood of a positive indication when combined with other
ratings.

24



Global design

Negative A value of -2 indicates that the given entity does not indicate the presence of the
aspect at all. In fact, it might be a textbook example proper design.

Neutral A value of 0 means that the scanner cannot provide a judgement or that it’s value
is neither positive nor negative. It is often better to provide a positive or negative
judgement just to ensure that the final judgement goes the direction determined by
the heuristic. Returning a neutral value makes the scanner look indecisive and could
make the final calculation less confident.

Weak A value of +1 indicates that the entity shows some hints of the scanned aspect. Only
weak indications should not be enough to accuse the entity of participating in an
Anti-Pattern.

Strong A value of +3 indicates that the entity has exceeded thresholds for the heuristics
and that the scanned aspect is most likely violated.

Very Strong The entity exceeds threshold values by a high amount and certainly possesses
the scanned property. This indication has a value of +6.

The reason for not choosing a linear scale is that this scale makes the Strong Negative and
Very Strong outliers have a heavier impact on the final calculation.

The Rating container also provides functions for using the given indication levels on a
linear scale from Strong Negative (-2) to Very Strong (+3). It also provides utility functions
for fractional calculations, such as providing a weighted average for multiple ratings and
float rounding to one of the indication levels.

The NestedRating is a container for bundling multiple ratings and other nested ratings
into a final judgement rating. It is used by complex scanners that generate their judgement
based on the results of other scanners. These nested ratings are meant to create a one-to-
one mapping of ratings to their scanners. A tree structure of ratings uses nested ratings as
intermediate nodes and single ratings as leaf nodes.

Many of the scanner implementations combine rating values to create new values. Com-
bining the values is usually implemented as either a fuzzy ‘and’ condition or a fuzzy ‘or’
condition. The ‘and’ condition consists of averaging the input values, the ‘or’ condition
takes the strongest of the values. The resulting value is usually rounded to one of the
crisp values listed above although scanners do not strictly need to round. Rounding can
be skipped during intermediate steps where scanners need to continue working with fuzzy
values. Figure 3.3 shows the resulting values for the combination of two input values (the
X and Y axis). The table on the left shows the combination values for an average (‘and’)
condition, the table on the right shows the combination values for the maximal (‘or’) condi-
tion. Scanners are not restricted to using only two input values and they can add weights to
input values if needed.

3.1.4 Scanners

Every pattern consists of multiple aspects. A combination of problems of design decisions
together makes a pattern, with each individual problem or decision an aspect. The approach
of the Anti-Pattern Scanner is to examine a class and to answer the question whether that
class participates in an Anti-Pattern or not. This question can be answered by splitting
the problem into the different aspects of the Anti-Pattern. Each aspect can be examined

25



3. THE ANTI-PATTERN SCANNER

Very Strong| 6 6 Very Strong| 6 6
Strong' 3 3.6 Strong 3 3.6

Weak 1 1 S Weak 1 1 3 6

Neutral 0 o 1 1 3 Neutral 0 0 1 316
Negative -2 2 0 1 = Negative -2 -2 0 1 3 §F6
Strong Negative -10(-10 -2 -2 -2 -2 -2 Strong Negative-10(-10 -2 0 1 3 "6
Average|-100 -2 0 1 3 ' 6 Max|-10 -2 0 1 3 | 6

Figure 3.3: Rating mappings for combining two scanner results.

and if the class possesses all (or any) aspects of the Anti-Pattern then a heuristic can be
used to determine how strongly the class participates in the pattern. Each of the aspects
can be treated as a new question. Many of the aspects can be split into smaller questions
again. This can be repeated until only very basic questions remain. These are usually metric
questions that can be retrieved from the model without complicated if-then-else routines. In
general, an Anti-Pattern can be represented as a tree structure of properties, with each of
those properties being an intermediate or leaf node in the tree structure. The root node of
the tree returns a single rating which tells the user how strongly the Anti-Pattern is present
in the model.

The program layout is similar to the tree structure of questions. This enables the ques-
tion implementation to be simple, either using a heuristic to answer a simple question or to
delegate and combine questions. This mapping of a pattern to questions also enables some
re-use of questions between different Anti-Patterns, it allows for parallel processing and
generally makes the program easy to design and understand. The execution of the heuristics
are the tasks for ‘scanner’ components. There are three types of scanners: Pattern scanners,
simple scanners and complex scanners.

A pattern scanner is tasked with performing all scan operations for a single Anti-Pattern.
The input is the Famix EMF model and the output is a rating that describes the pattern
presence indication for the model. Most pattern scanners delegate the task to a complex
scanner that determines the pattern strength for a single class. The pattern scanner can
return the average rating for all classes or use a heuristic if the average would not be relevant.
Parallelism is usually implemented by the pattern scanner. Running a scan per class can be
done in parallel. Although every step in a decision tree can be done asynchronously, it is
easier to manage the scheduling of parallel tasks at a single and high level. Merging parallel
threads is necessary before any result can be returned to the parent of a scanner.

Simple scanners are used to answer a single query, or multiple closely related queries.
A simple scanner usually inspects a part of a single aspect of an Anti-Pattern. For example,
in The Blob Anti-Pattern, the ManyMethodsScanner is part of the implementation of the
class size aspect. Within that aspect, it rates the number of methods.

Complex scanners also answer queries, but do so by splitting the query into subqueries.
The tasks are delegated to other complex scanners and eventually to simple scanners that
provide the answer for the most basic queries. The complex scanners combine the ratings
using their own heuristics.

26



Global design

There are some guidelines for scanners. The pattern scanner should be named after
the pattern that it detects. All complex and simple scanners should be named after the
aspect that they process. Also, a pattern scanner should always be the root scanner of
the decision tree. Except for the task of performing parallel scheduling, it is similar to
a complex scanner. ‘Complex scanner’ should not mean ‘difficult scanner’. A complex
scanner that uses if-statements in a loop or vice versa can probably be split into two complex
scanners: one for the loop and the other for the decisions. Tasks can be delegated that way.
Most complex scanners either delegate a task to multiple different scanners and compute a
weighted average of the results, or run one other scanner in a loop and return an averaged
rating. Other heuristics are allowed although often not necessary. Simple scanners are
not allowed to delegate tasks. They answer a single question or multiple closely related
questions, which must be as small and as simple as convenient.

The tree structure of scanners has a number of advantages over a ‘flat’ rulebase. It
provides derived answers by combining properties. Because the derived answers are con-
structed using a tree structure of queries, the rules are easy to understand. The tree structure
allows for easy identification of which scanner provided what answer. The resulting tree
structure of ratings is useful for feedback and for tuning the heuristics. The concept is that
scanners are small, modular and that the technique can be mapped to any step in an Anti-
Pattern detection approach. Anti-Patterns that share aspects might even be able to reuse
some of the scanners. Another theoretical advantage of the scanner implementation is that
almost every step can be done in parallel.

The scanner architecture also offers caching opportunities. When a scanner is asked
for it’s judgement twice, the second time it can return a cached result. A simple caching
layer can optimize runtime speed for scanner-to-scanner communication. This ensures that
complex scanners can be simplified by not having to worry about invoking other scanners
too often. Furthermore, when a model scan is complete, a complete memory with all results
including intermediate results is available.

In some cases, the search tree can be pruned. For example, when a scanner high in the
search tree decides that an entity cannot participate in the pattern (e.g., a ‘Strong Negative’
rating), it could skip scanning all other aspects of the pattern for that entity. Search tree
pruning is optional. In a few cases it will grant a performance boost. The disadvantage
is that not all aspects are examined, possibly leading to a biased result. Furthermore, one
of the features of the search tree approach is that even when the final result is that there is
no pattern, intermediate ratings might indicate that there is some problem if an entity does
possess some pattern aspects. This might be missed if the search tree is pruned.

3.1.5 Testing and tuning

There are two types of tests. The first is to actually test the scanners and ensure that they
work as designed, the second is to tune the heuristics and thresholds.

Testing the scanners is done by feeding them specially prepared Anti-Pattern samples
as well as non-Anti-Pattern samples. The Anti-Pattern samples should contain at least one
implementation of every major case of the pattern. Manually selected entities can be fed to
separate scanners and their output can be verified manually.

27



3. THE ANTI-PATTERN SCANNER

Tuning the scanners should be done in steps. The initial thresholds and heuristics are
designed by examining the pattern, listing target values* for the metrics and using intu-
ition. Beginning with small models (such as the samples), some thresholds can be verified.
When the rate of true and false positives and negatives is satisfactory, larger models can be
examined. This process can be repeated multiple times, each time stepping up a model size.

3.2 Implementation

This section contains a demonstration of the Anti-Pattern Scanner. The design described in
the previous section has been implemented and the heuristics described in the next chapter
have been implemented in this program. The example in this section shows how the program
is used and what the output looks like.

3.2.1 Anti-Pattern Scanner user experience

The Anti-Pattern Scanner is an Eclipse IDE plugin that can work with any Java project.
Starting the program is simple but analyzing the results is far from trivial. The figures
3.4(a) to 3.4(c) show the process of scanning a project. An example result overview is
shown in Figure 3.5.

Analyzing a project requires some specific knowledge about the reasoning behind the
patterns. The detected occurrences can give a basic explanation about why they are detected
but this information is rather limited. This document or even a simple web search should
yield much more information than what the plugin can tell.

Analyzing the reasoning tree (see next section) will also require some conceptual knowl-
edge about the layout of the scanners. All information can be found in this document. Due
to the limited information and short explanations, the program is good enough for research
but it is not user-friendly enough to publicate it as is.

3.2.2 [Evaluation of Anti-Pattern Scanner design

Some of the heuristics described in Chapter 4 have been implemented and evaluated. They
have been tested and used in the empirical evaluation (Chapter 5) and this section describes
some of the impressions of their performance.

The Anti-Pattern Scanner was originally designed for scanning Anti-Patterns, hence
the name. The patterns can be split into multiple, smaller fragment scanners that each
determine values for aspects of a pattern. An example result of combined scanner effort
is shown in Figure 3.6. The output contains values ranging from very strong positive to
negative indications. Leaf nodes are more towards the bottom and the combined result
value is displayed on top. A mix of many positive and negative indications is typical for
patterns where many aspect scanners are used.

Combining scanner heuristics works very well. It does require careful evaluation of out-
put values for the lower-level scanners and combination formula for higher level scanners

“http://www.aivosto.com/project/help/pm-list.html

28



Implementation

e Package Explorer 5 Profile As Famix EMF model:

Validate Project Anti-Pattern scanner

4 ZZ Anti-Pattern scann) £ Parse project and scan Anti-Patterns... Ul'stress:
2 =

- = Plug-in Depen Compare With Threads:
b B sre

Restore from Local History... Search tree pruning

- =4, Referenced Lib
(= config EEeckenvEe Indication details:
b (= img PDE Tools Po—
» = META-INF A Evolizer
(= schema Confiaure

(a) Java project context menu.

Scanning for Single Respensibility Principle

[] Always run in background

Anti-Pattern scanner

Scanning model: Scanning for Single Responsibility Principle

Scanning Single Responsibility Principle instances 1 of 2

Running scanner: Scanning AbstractSavelnsavedChangesAction

Scanning Single Responsibility Principle instances 2 of 2
=

[Run in Background] [ Cancel ] [ << Details ]

(c) Scan in progress. ..

Figure 3.4: Anti-Pattern Scanner run procedure.

§ Scenesutet i progress O« ALLABARLX-C
Target Indication  Source scanner Description

I Single Responsibility Principle - Result overview  Strong Single Responsibility Principle Found 0 very strong, 1 strong and 2 weak candidates

3 Interface Segregation Principle - Result overview  Strong Interface Segregation Principle Found 0 very strong, 1 strong and 0 weak candidates

[ Dependency Inversion Principle - Result overview  Strong Dependency Inversion Principle  Found 0 very strong, 2 strong and 2 weak candidates

> The Blob Anti-Pattern - Result overview Weak The Blob Anti-Pattern Found 0 very strong, 0 strong and 1 weak candidates

b Acyclic Dependency Principle - Result overview  Weak Acyclic Dependency Principle Found 0 very strong, 0 strong and 4 weak candidates

b Data Class Code Smell - Result overview Weak Data Class Code Smell Found 0 very strong, 0 strong and 2 weak candidates

Ravioli Code Anti-Pattern - Result overview Negative Ravicli Code Anti-Pattern Found 0 very strong, 0 strong and 0 weak candidates

Tower of Voodoo Anti-Pattern - Result overview  Megative Tower of Voodoo Anti-Pattern Found 0 very strong, 0 strong and 0 weak candidates

Database Class Anti-Pattern - Result overview Negative Database Class Anti-Pattern Found 0 very strong, 0 strong and 0 weak candidates

Large Class Code Smell - Result overview Negative Large Class Code Smell Found 0 very strong, 0 strong and 0 weak candidates

4 [ | ]

Figure 3.5: A scan result overview.

but it has the advantage that it can keep the scanners small and modular. Some of the prin-
ciples cannot be implemented using modular scanners because the principles are elemental
aspects themselves. Some cannot be split into smaller aspects and will need to be treated as

29



3. THE ANTI-PATTERN SCANNER

£ Scan results £ 9'1|AAL |X':'E'

Target Indication  Source scanner Description
4 The Blob Anti-Pattern - Result overview Strong The Blob Anti-Pattern Found 0 very strong, 1 streng and 43 weak candidates
4 A Pagelnfo <FamixClassEMF= Strong TheBlob Indication that the target class is a Blob class.Weighted combination of scannt
4 ™ pagelnfo <FamixClassEMF> Wery Strong  SingleResponsibility Average rating of responsibilities of methods and attributes.
Pagelnfo <FamixClassEMF> Very Streng  MethodUsageSetScanner Number and types of independent sets of methods (40) offered by this class. Il
Pagelnfo <FamixClassEMF> Strong UnrelatedAttributes Unrelated sets of attributes (2) and dangling attributes (11), ignoring static anc
4 " Pagelnfo <FamixClassEMF> Strong LargeClass Indication that the class is large. L
Pagelnfo <FamixClassEMF> Wery Strong  ManyMethods High amount of methods (84)
== Pagelnfo <FamixClassEMF> Weak ManyAttributes High amount of attributes (45)
4 “™ pagelnfo <FamixClassEMF> Meutral BlobRelations Indication that the given class uses simple classes as dependencies.There are 9—
Pagelnfo <FamixClassEMF> Meutral ManyDistinctRelations Proper amount of distinct class relations: 9.
4 "% ExpressionFactery <FamixClassEMF= Strong SimpleClass Combined rating of class properties.
ExpressionFactory <FamixClassEMF>  Very Strong  SimpleMethods Ratio of simple metheds (3) versus non-simple metheds (0).5imple methods:{
ExpressionFactory <FamixClassEMF>  Meutral PrimitiveAttributes Mo attributes found.Ignoring final attributes (0).
» "8 Mark <FamnixClassEMF> Weak SimpleClass Combined rating of class properties.
» " Node <FamixClassEMF> Weak SimpleClass Combined rating of class properties.
» "8 Taglibrarylnfo <FamixClassEMF> Weak SimpleClass Combined rating of class properties.
4 ™ ErrorDispatcher <FamieClassEMF> Meutral SimpleClass Combined rating of class properties.
== ErrorDispatcher <FamixClassEMF> Wealk PrimitiveAttributes Weighted sum of proper (1), primitivefunprotected (1) and improper (0) attrib
== ErrorDispatcher <FamixClassEMF> Megative SimpleMethods Ratio of simple methods (1) versus non-simple methods (23).5imple methods:
» ™ BeanRepository <FamixClassEMF> Megative SimpleClass Combined rating of class properties.
» ™ ExpressionFactorylmpl <FamixClassEMF> Megative SimpleClass Combined rating of class properties.
» " NodeSPageDirective <FamixClassEMF>  Megative SimpleClass Combined rating of class properties.
> A AbstractReplicatedMap <FamixClassEMF> Weak TheBlob Indication that the target class is a Blob class.Weighted combination of scannt
‘ . & AorEndooint <FamixClassEMF> Weak TheBlob Indication that the taraet class is a Blob class.Weiahted combination of scanne ™
< . r

Figure 3.6: A heuristic decision tree for The Blob Anti-Pattern.

a bottom-level scanner.

Even though not all problem types can benefit from modularity of the system, they can
still give a clear indication of their reasoning. An example reasoning a subcomponent of
the Single Responsibility Principle is shown in Figure 3.7. All entries from any scanner
can produce such a dialog, meaning that all scanners can provide an explicit explanation in
addition to the reasoning tree structure.
alA g AR[A[Z X =0

£ Scan results 5

3

Target

Rating for entity org.apache jasper.compiler.Mode <FamixClassEMF>

— - didates
The indication value is Very Strong (+6). tribut
A Very Strong indication means that the given entity violates scanned rules by a significant amount and f oriroutes.
posesses the scanned property with high certainty.

[

Single Responsibility Pri
&+ AbstractReplicated
£ Connector <FamixC|
£+ JkMain <FamixClassH
£ JspCompilationCont

d attributes.

d attributes.

This is an indication that has been constructed from a bottom-level heuristic, It has been determined by the ] attributes.

scanner MethodUsageSetScanner. As explained by the scanner: i attributes.

ds (16) offered by this class. It

butes (5), ignoring static and/

d attributes,

The reason for this value is: ] attributes,

MNumber and types of independent sets of methods (16) offered by this class. It offers a high amount of i attributes.

dangling methods and a high amount of sets of multiple methods,

There are 13 dangling methods: jetributes.

{getText, getTextAttribute, getRoot, setBeginlavaline, getTaglibAttributes, getlnnerClassMame, accept,

getEndlavaline, setEndlavalineg, isDummy, getNonTaglibXminsAttributes, setAttributes, setlnnerClassMName} ] attributes.

There are 3 sets of multiple methods: d attributes.

{getMNamedAttributeModes, getBody, getMamedAttributeMode, getittributeValue, setBody, getParent} 1 attributes.

{getStart, getAttributes, getBeginJavaline}

{getQNan?E, gathcaINa%na} ? i attributes.
d attributes,

d attributes.
d attributes.

attribudar

hlodecEamb iy Determines the amount of sets of related methods in a class. When only some of the methods of a class are

used by a client class, it might indicate that the class has multiple responsibilities,

&+ StandardServer <Fa
£ StandardWrapper <F
L AjpiprProtocol <Fal
L AjpProcessor <Fami
A AjpProtocol <Famixg
A AprEndpoint <Famix]
A Aprmpl <FamixClasg
A& Arg <FamixClassEMHA
A& BaseDirContext <Fa
A BaseEndpoint <Farmi

d attributes.

Entity reference: /apache-tomcat-6.0.29/java/org/apache/jasper/compiler/Mode java

[ Close

Figure 3.7: An explanation dialog of an aspect of the SRP.

30



Implementation

The Anti-Pattern Scanner and the heuristics are as effective as expected and as accurate
as hoped for. The requirements stated in Section 3.1 have been met. The current version
should be seen as a prototype for research purposes and does have some severe shortcom-
ings, even though the results so far are satisfactory. Potential improvements for this program
are reduction of the amounts of false-positive indications (see Section 5.2), improvements
to user experience (previous section) and possible tweaks to the heuristics such as solutions
to the detected false-positives. In general, should development continue on this program,
virtually every aspect of the program could be improved.

Possibly the most significant design decision for the Anti-Pattern Scanner is that this
program uses Java classes to implement the heuristics. The heuristics are scripted inside
the scanner classes. Other, similar programs (see Section 2.4) use alternative approaches,
such as providing template graphs of patterns and matching the graphs against source code,
or by providing a library of operators and allowing the user to specify formula using these
operators. The main advantages of the approach of the Anti-Pattern Scanner is that any Java
programmer can contribute to scanners, without having to learn alternative representations
or languages. A design of a pattern can be coded directly into scanner classes. The disad-
vantages are that this approach does not allow for simple externalization or distribution of
the detection logic. Instead of using templates or formula sheets, the Java approach requires
hard-coded heuristics. The decision for choosing this approach is probably the best, given
the availability of an abstract model (the Famix model) and the ease of programming. This
choice has affected the entire approach of this project as all heuristics have been designed
to match this approach.

31






Chapter 4

Detection strategies

This chapter contains an overview of the Code Smells and Anti-Patterns that have been
included in the Anti-Pattern Scanner. It also contains an overview of Design Principles even
though not all of them have been implemented. Most of the principles could be implemented
in the scanner as it is, some would require the addition of Mining Software Repositories
(MSR). In some cases, no heuristic is available that could work with the implementation
of the Anti-Pattern Scanner. All of the principles and patterns contain an explanation, a
description of the suggested heuristic and implementation information. If the heuristic has
been implemented, that information describes the scanners and ratings that resemble the
heuristic.

All suggested heuristics are designed to work with the abstract meta-model that is used
for scanning. This abstract model was chosen as a basis for the scanner design because it
makes the scan procedures considerably easier. The limitations of this model are that some
exact numbers are no longer available, such as the amount of lines of code in a class, the
number of words etc.

Many of the heuristics mention ‘relations’, ‘references’ or ‘dependencies’. The relations
of a class are the other classes that it depends on. For example, in the Java programming
language, ‘String’ depends on ‘Object’. The relations are found by examining the way
entities of the meta-model relate to each other. The relations of a class are defined as the
sum of the following:

* The types of the attributes of the class.

* (Anonymous) inner classes.

* The relations of (anonymous) inner classes.

* The types of attributes accessed by the methods of the class.

* The types of parameters of the methods.

* The class types in instance-of checks in the methods.

* The types of local variables in the methods.

* The types of type-casts in the methods.

* The types of any class or object on which methods are invoked.
¢ The return types of the methods.

33



4. DETECTION STRATEGIES

The resulting list of class types are the relations or dependencies of a class. The set of
unique relations is the same list without any duplicate types. A ‘custom class’ relation is
a relation to any class that is defined in the project source, meaning that does not originate
from the programming language or a library package.

4.1 Code Smells

For use in Anti-Pattern detection heuristics, two Code Smells have been included to the list
of heuristics. This section contains an explanation of the suggested heuristics and of the
reasoning behind the suggested strategy. Only ‘used’ smells are explained, more smells can
be found in the book ‘Refactoring. Improving the Design of Existing Code’[14].

Code Smells are often very easy to implement because many of them can be based
on metrics and thresholds. Example metric heuristics can be found in the book ‘Object-
Oriented Metrics in Practice’[23]. Most of the listed heuristic parts can be converted to
concrete implementations for the Anti-Pattern Scanner. Heuristic parts can be combined us-
ing fuzzy ‘and’ conditions (typically averaging them) and ‘or’ conditions (taking the worst
rating). For more information on the implemented ‘and’ and ‘or’ conditions, see Section
3.1.3.

4.1.1 Data Class

The Data Class Code Smell [14] is an indication that a class is only used to store data.
The class has attributes which contain the data. The attributes are either not kept private or
there are getter and setter methods that allow access to the data. The class itself does not
do anything with the data. Processing and checking of data is done by other classes that
control the data class.

Heuristic

To find Data Classes, the following properties are checked:

* A class has attributes.
* The class does not appear to have responsibilities, such as calculations or complex
operations on the data.

In addition to checking those conditions, the number of false-positive and false-negative
cases can be reduced by using additional constraints. To find less and more probable cases,
the following properties can also be checked: Classes that have only very few attributes,
such as only two, are less likely to be Data Classes because they cannot have much data.
Also, classes that do not protect their attributes (e.g., public attributes) are more likely to be
Data Classes because they cannot bear responsibility for the values of the attributes. When
a class only has primitive attributes, such as integer or boolean, it has a higher probability
of being a Data Class. In such a case, the class might look like a universal data container.

34



Code Smells

Implementation

The initial version of The Blob Anti-Pattern included a heuristic for determining whether a
class is simple. Simple classes are easily used as ‘slave’ classes, classes that are just used
for storing data or for some minor task. The heuristic for determining whether a class is
simple also doubles as a heuristic for detecting classes with the Data Class Code Smell.
Figure 4.1 shows the implementation of this smell. This implementation consists of two
parts. The first part is a filter that removes any obvious false-positives from the results. The
second part contains a heuristic for finding suspicious ‘simplistic’ classes.

| DataClassSmellScanner |

| DataCIassFiIterScanner|

| SimpleClassScanner |

N

PrimitiveAttributesScanner | | SimpleMethodsScanner |

Figure 4.1: Data Class scanner layout.

Simple classes

Simple ‘slave’ classes can typically be found near a Blob. The classes are expected to
possess all properties of a Data Class, except for those cases for which a filter has been
applied. Determining whether classes are ‘simple’ is done in three steps.

The first step is to determine, whether a class uses simple attributes. The PrimitiveAt-
tributesScanner produces a rating for this step. The following attribute types are considered
simple: String, Object, byte, short, int, long, float, double, boolean and char. These types
are either primitives or universal objects that are commonly used in applications. Types
that extend Object are not simple. This scanner also determines whether the attributes are
properly protected. If attributes are not private, it might suggest that the class does not bear
responsibility for them. Slave classes for The Blob typically have no responsibilities. The
PrimitiveAttributesScanner classifies the attributes in a class:

* Attributes declared ‘final’ are ignored because they are less suspectable to abuse by a
Blob and they probably have a special purpose in the class.

* Non-simple, well-protected types are considered ‘good’. These attributes indicate
some deeper responsibility for a class.

35



4. DETECTION STRATEGIES

* Types that are either simple or that are not private are considered ‘bad’. They increase
the probability that a class can be used as slave.

» Types that are both simple and not private are ‘very bad’. This indicates that the class
is used as a simple storage structure.

A ‘balance’ calculation determines how strongly an entity tilts towards ‘good’ or ‘bad’. This
balance calculation is formulated as follows: Balance = |Bad|+ 3 x |Verybad| — |Good).
The scanner produces a rating based on the following heuristic:

Strong Negative N/A.
Negative Either of these:

* Only ‘good’ attributes in the class: |Bad|+ |Verybad| = 0 and |Good| > 0.
* Balance of ‘good’ versus ‘bad’: Strongly towards ‘good’ (<= —3).

Neutral No attributes or only final attributes.
Weak Positive Balance of ‘good’ versus ‘bad’: Slightly bad or better balance (<= 3).
Strong Positive Either of these:

* No ‘good’ attributes in the class and no ‘very bad’ attributes: |Bad| > 0 and
|Verybad| + |Good| = 0.
* Balance of ‘good’ versus ‘bad’: Strong favor for ‘bad’ attributes (<= 10).
Very Strong Positive Either of these:

* No ‘good’ attributes in the class and some ‘very bad’ attributes: |Verybad| > 0
and |Good| = 0.
* Balance of ‘good’ versus ‘bad’: Very strong favor for ‘bad’ attributes (> 10).

The next step is to determine ratings for each of the classes for how simple their methods
are. This operation is performed by SimpleMethodsScanner. A method is considered simple
when each of the following conditions are met:

* It does not invoke any other methods.
¢ It does not use more than two local variables.
¢ It does not use more than one class attribute.

Given the amount of simple and non-simple methods, the following heuristic is used to
produce a rating:

Strong Negative N/A.
Negative Either of these:

* Only non-simple methods.
* The ratio of simple versus non-simple methods is better than 2 : 1 (on average,
there is more than one non-simple method for every two simple methods).

Neutral No methods.

Weak Positive The ratio of simple versus non-simple methods is better than 3 : 1.

Strong Positive The ratio of simple versus non-simple methods is 3 : 1 or worse (X : 1
where X >=3).

36



Code Smells

Very Strong Positive Only simple methods.

The last step is to combine the first two steps into a final judgement about the simplicity
of all of the related classes. This judgement is calculated by SimpleClassScanner. This
class controls the first two scanners and provides input for them. The rating is weighted
with a factor 1 for simple attributes and 1.5 for simple methods. Methods are considered
to be more important because they reflect the simplicity of the class better. The weighted
average is calculated as the sum of ratings each of which are multiplied with their respective
weights. The sum of all weighted ratings is divided by the sum of weights.

Filtering

The top scanner DataClassFilterScanner scans for candidates that either have no attributes
or only ‘final’ attributes. Such entities can never be Data Class entities because they cannot
be used as data classes. They can only be used for definitions (final attributes) or to execute
logic. All other cases fall through the filter and are scanned by the SimpleClassScanner.

4.1.2 Large Class

The Large Class Code Smell [14] applies to classes that have grown very long. This smell
is similar to the God Class Code Smell [23] although a Large Class does not necessarily try
to control other classes like a God Class does.

Heuristic

Class size can be measured in multiple ways, such as by using the metric ‘number of lines
of code’ or ‘number of methods’. The suggested heuristic for determining class size is by
counting the number of methods in a class and the number of attributes. The class size
can be determined by evaluating both properties using an ‘and’ condition. This means that
a class is considered large with strong confidence when both attributes exceed threshold
values and the confidence decreases when either attribute does not exceed threshold values.
Vice versa, there is strong confidence that the class is not a large class when both attributes
are far below the thresholds. For more details about this averaging, see Section 3.1.3. This
representation is a very rough estimate of class size because it does not take into account the
size of the methods, complexity of the methods or other characteristics. If such properties
are also needed for a pattern or combined smell then a threshold function can be added for
that metric and added to the ‘and’ function.

Threshold values need to be determined for the threshold of any chosen metric. Tech-
niques are available for finding good threshold values [29], although examples of average
and outlier metric values can also be obtained in other ways. This matter has also been dis-
cussed in [23]. Baseline values have been obtained by using examples provided in literature
and by numbers found on web sites about metrics.! Keeping in mind that the Anti-Pattern
Scanner can determine weak, strong and very strong cases, the baseline values are used to
find neutral to weak cases (e.g., those just above average) and multitudes of the baseline

IFor example http://www.aivosto.com/project/help/pm-list.html

37



4. DETECTION STRATEGIES

values are used to find stronger cases. The suggested strategy for finding large classes is to
find classes that have both many attributes and many methods. Baseline values can be 20
attributes and 15 methods.

Implementation

The Large Class Code Smell is a basic threshold-based heuristic. Figure 4.2 shows the
layout of two threshold scanners and their combination.

LargeClassSmellScanner

LargeClassScanner

N

ManyMethodsScanner ManyAttributesScanner

Figure 4.2: Large Class scanner layout.

Thresholds

The class size thresholds are determined by the ManyMethodsScanner for the number of
methods threshold and the ManyAttributesScanner for the number of attributes. The re-
turned ratings are determined as follows for methods:

Strong Negative There are no methods.

Negative All other cases (less than 15 methods).
Neutral There are 15 or more methods.

Weak Positive There are 30 or more methods.
Strong Positive There are 60 or more methods.
Very Strong Positive There are 75 or more methods.

Ratings for number of attributes:

Strong Negative There are no attributes.

Negative All other cases (less than 20 attributes).
Neutral There are 20 or more attributes.

Weak Positive There are 40 or more attributes.
Strong Positive There are 60 or more attributes.
Very Strong Positive There are 80 or more attributes.

38



Anti-Patterns

Combining the thresholds

The results of the two scanners described above is averaged and the result is returned by
the LargeClassScanner. Hence, the implementation of this Code Smell is very simple: Two
scanners base their judgement on a metric threshold, a third scanner combines the result
into a single answer. This scanner structure is among the simplest implementations possible
yet it works surprisingly well. It can also be easily adjusted, for example by modifying the
threshold values or by adding weights to the averaging process.

4.2 Anti-Patterns

Four Anti-Patterns have been chosen from a long list of patterns. These patterns are imple-
mented in the Anti-Pattern Scanner. Suggestions for more Anti-Patterns can be found on the
Internet as well as in literature [5]. The chosen patterns are diverse and are expected to have
little overlap. This diversity increases the chance of finding cases of an Anti-Pattern in the
software projects that are examined in the empirical evaluation. Also, the chosen patterns
should cover a wide range of potential design problems. This allows more problem area’s
to be discovered that could be examined later, such as in a more focused study. The cho-
sen Anti-Patterns are ‘Database Class’, ‘Ravioli Code’, ‘The Blob’ and ‘Tower of Voodoo’.
Each of those are explained in the next sections.

4.2.1 Database Class

The Database Class Anti-Pattern? is about poor abstraction of a database. It occurs when the
database layer or connector classes offer methods that use a query string as input and returns
the table contents as output. This is not a problem if used inside a database abstraction layer
although it is a problem if it is used to let client classes access a database. It is good practice
to create an abstraction of a database, such as by providing a structure of custom objects
that do match the data model inside the application, keeping the underlying database table
structure hidden from clients.

R
ClientClass ConnectorClass Driver L Database |

Figure 4.3: Database Class expected structure.

The layout in Figure 4.3 provides an overview of how a Database Class might fit in an
application. Every block in the diagram could represent a software entity or a layer in the
application. From left to right: Application logic layer, Database abstraction layer, Driver
layer, Database layer. The client class(es) contain the application logic and need to tell the
lower-level database connector class which queries need to be executed, which operations
need to be performed etc. The connector class controls the database driver, such as a driver

Zhttp://c2.com/cgi/wiki?DbClass

39



4. DETECTION STRATEGIES

provided by the database manufacturer. The driver connects to the database itself. In this
figure, it is good practice if the connector class would provide an abstract model of the
database to ensure that the client class does not directly know and manage the database
layout. It would be bad practice if the connector class provides generic access methods
to the database, causing the client to do query and fault handling. In the latter case, the
connector class is a Database Class according to this Anti-Pattern. A class that directly
connects to a database by using a driver will be called a ‘connector class’ in the context of
this heuristic.

Heuristic

The concept of the strategy is to find methods that expose a database or allow interac-
tion with a database on a low level. Classes that expose the database without providing
an abstraction are marked as ‘Database Classes’. The strategy essentially consists of two
parts: finding classes that connect to a database and finding methods that directly expose
the database.

Finding classes that connect to a database is context sensitive. Such classes can be rec-
ognized by analyzing their dependencies. Connector classes usually depend on a database
driver provided as a library. The context is the programming language and the type of
database used at bottom level. For example, a Java program might connect to a database by
using the java.sql.* package. At this stage, an implementation of the detection strategy may
have to be customized for a specific target language.

Finding methods that expose a database without providing an abstraction is more diffi-
cult than finding a database connector class. To find such methods, examine all methods of
connector classes. Methods that return primitive types, textual strings, arrays of primitive
types or language-specific lists are suspicious. The same holds for methods that accept such
types as parameters. Methods that either return or have parameters consisting of custom
objects are not suspicious because they probably return a specialized structure such as an
abstraction. Connector classes that provide suspicious methods are Database Classes.

To reduce false-positive cases in the detection of Database Classes, methods that are
only used internally by a connector class can be ignored. Because database abstraction lay-
ers or connection managers typically consist of multiple classes, the dependencies should
only matter on a package level. To achieve this, packages can be marked as ‘packages that
contain connector classes’ and ‘packages that do not contain connector classes’. Packages
with connector classes manage the database and can legally use low-level database state-
ments. Packages that do not directly connect to the database should not do so, they should
only use abstractions. This rule also provides a good separation between the database layer
and the logic layer of an application. The final heuristic is simple: when any class from a
non-database connector package invokes any suspicious method from a class in a database
connector package, the latter class can be considered a Database Class.

40



Anti-Patterns

Implementation

The Database Class is the most complicated Anti-Pattern of all implemented patterns. It
attempts to automatically identify which packages can legally use direct database commu-
nication by examining which packages use the java.sql package. This approach works best
if the database connector packages are properly located in a few packages. All classes that
do not directly access the database (e.g., logic or UI classes) should not be placed in those
packages and they should not directly catch any SQLExceptions. If package allocation is
not done properly, there might be more false negative candidates for this Anti-Pattern.

The layout of the scanners is displayed in figure 4.4. The scanners are explained in the
sections below.

| DatabaseClassAntiPatternScanner |

| DatabaseClassScanner |

| UniversalDatabaseMethodScanner |

T~

| DatabasePackagelnvocationScanner | | UniversalDataStructureScanner

| DatabasePackageScanner |

\

| DatabaseConnectorClassScanner

| ElementalDatabaseClassScanner

Figure 4.4: Database Class scanner layout.

Database connector classes

The ElementalDatabaseClassScanner determines whether a given class is a core java.sql.**
class. It identifies classes by matching the name of the class against a list of known sql
classes that are unique by name (e.g., the name is only found in the java.sql package). This
way, it should not confuse sql classes with non-sql classes although it might miss a few cases

41



4. DETECTION STRATEGIES

because of naming conflicts. This scanner has a binary output: either ‘no’ or ‘certainly yes’.
The rating will be returned as listed below:

Strong Negative N/A.

Negative The given class is not an elemental database class.
Neutral N/A.

Weak Positive N/A.

Strong Positive The given class is an elemental database class.
Very Strong Positive N/A.

The DatabaseConnectorClassScanner examines a class and returns a positive rating if
the class uses java.sql components. It invokes the ElementalDatabaseClassScanner on each
of the class’ relations and returns a rating as listed below:

Strong Negative N/A.

Negative None of the relations is an elemental database class.

Neutral N/A.

Weak Positive One of the relations is an elemental database class.

Strong Positive Two of the relations are elemental database classes.

Very Strong Positive Three or more of the relations are elemental database classes.

The cases of ‘weak’ and ‘strong’ ratings might trigger on classes that handle only excep-
tions. Some classes handle the generic SQLException, causing them to be rated as ‘weak’.
Classes that are more focused on database interaction usually need more components from
the java.sql package and automatically classify as ‘strongest’.

A package that contains a class that has direct database communication (e.g., a con-
nector class) is considered a database package. All classes in that package should be seen
as database connector classes because all of the classes in the package either use direct
database access or are helper classes for doing so. The DatabasePackageScanner examines
a package and rates the package according to the strongest database connector class rating
found in that package.

Invoking a database connector class

Whenever a non-database-connector class invokes a method that belongs to a database con-
nector class, the method should return an abstracted result. This prevents non-database-
connector classes from having to deal directly with the database layout or problems. The
NonDatabasePackagelnvocationScanner can only be invoked on methods that belong to a
database connector class or a class in a database connector package. This scanner returns
a rating that describes how inappropriate the invocations on the scanned method are. To
do so, it examines invocations from all other methods in the model. Depending on the
package in which the method resides, a score is calculated. The rating obtained from the
DatabasePackageScanner is used to increment the score with the following value:

Strong Negative 5.
Negative 5. This means that a non-database-connector package invokes a database connec-
tor method.

42



Anti-Patterns

Neutral 4.

Weak Positive 3.

Strong Positive 1.

Very Strong Positive -1. This means that a database connector package invokes a database
connector method, which is completely safe.

Using this score, the NonDatabasePackagelnvocationScanner calculates the rating for the
method:

Strong Negative N/A.

Negative All other cases.

Neutral N/A.

Weak Positive The score is greater or equal to 2.
Strong Positive The score is greater or equal to 5.
Very Strong Positive The score is greater or equal to 9.

A positive indication means that invocations on the scanned method are inappropriate. This
occurs when the method is in a database connector class and it is being invoked from a
non-database-connector class.

The UniversalDataStructureScanner examines the return type of a method. It returns a
rating that indicates how ‘bad’ it is to use a given data structure as database abstraction.

Strong Negative N/A.

Negative All other cases.

Neutral Return type ‘void’.

Weak Positive Return type is a simple type according to PrimitiveAttributesScanner.
Strong Positive Return type is one of the Java List variations.

Very Strong Positive Return type is a java.sql.ResultSet.

For any given method, the UniversalDatabaseMethodScanner returns the average rat-
ing of the NonDatabasePackagelnvocationScanner and the UniversalDataStructureScan-
ner. A strong rating indicates that the method is being invoked by methods in non-database-
connector packages and that it returns a generic result type.

Database Class candidates

The DatabaseClassScanner scans a given class for the Database Class Anti-Pattern. Any
class that is not a database connector class is automatically rejected. If a class is a database
connector class, this scanner returns the average rating of all of the NonDatabasePackageln-
vocationScanner invocations on each of class’ methods.

The DatabaseClassAntiPatternScanner returns the strongest rating of all of the classes,
as rated by the DatabaseClassScanner. There is a known problem at this point: if database
connector classes do not include exception handling then invoking classes are required to do
so. This means that classes that are not database connector classes still might use SQLEx-
ception types. In that case, the DatabaseConnectorClassScanner identifies the classes as
connector classes because they use classes from the java.sql package. This automatically

43



4. DETECTION STRATEGIES

makes their package a database connector package (decided by DatabasePackageScanner)
and it causes the NonDatabasePackagelnvocationScanner to qualify methods are ‘good’
when invoked from those packages. If the specific SQLExceptions are handled at every
package in a program, every package is marked as a database connector package, thus the
separation of database connector classes and non-database-connector classes is never seen.
There is a simple solution for this problem. When this problem occurs, too many of the
packages are rated as database packages. This can be detected and the rating can be ad-
justed. The DatabaseClassAntiPatternScanner the following rating: either the strongest
candidate of all classes rated by DatabaseClassScanner, or one of the following (whichever
is stronger):

Strong Negative N/A.

Negative All other cases.

Neutral N/A.

Weak Positive 20% or more of the packages is a database connector package.
Strong Positive 30% or more of the packages is a database connector package.
Very Strong Positive 40% or more of the packages is a database connector package.

4.2.2 Ravioli Code

Ravioli Code? is the Object-Oriented alternative of Spaghetti Code. Ravioli Code occurs
where many little classes are related to each other, use many abstractions and delegation. It
is not necessarily an Anti-Pattern because it has many of the good aspects of proper Object-
Oriented programming: abstraction, delegation, small manageable classes. However, it
might be a problem if it is overdone: too many small classes that do virtually nothing or
where the user cannot find where an operation actually occurs due to vague abstractions.
The problem with Ravioli Code is that the program source can be difficult to comprehend,
which may cause problems to a programmer who is new to the program’s source. It is
unclear whether this pattern is an Anti-Pattern or good practice thus it might be interesting
to examine any detected cases.

Heuristic

The question that drives this heuristic is “Is it clear what the given class is doing?”. When
it is not clear, it might be Ravioli Code. The focus is on the usage of abstract classes and
interfaces. Using many of these will make the code loosely coupled, using many concrete
classes makes it tightly coupled. To get an indication of how loosely coupled a class is,
count the number of loosely coupled relations. If there are many loosely coupled relations,
the class might be vague. If the related classes are also vague then the entire structure might
be unclear about what it is doing.

Unlike The Blob Anti-Pattern (see below), this pattern is not focused on a central class.
The focus is on the related classes because the entire group of relations could be the prob-
lem, not just the class in the center of attention. When there are many dependencies, there

3http://c2.com/cgi/wiki?RavioliCode

44



Anti-Patterns

is an increased probability that the given class is not focused and not clear about what it
is doing. If those relations are doing rather abstract things, such as by being dependent on
many abstract classes or interfaces, then the probability increases. The suggested heuristic
for determining whether a class is or participates in Ravioli Code is to focus on the classes it
depends on. If those classes are rather abstract, such as by having half or more abstract class
or interface dependencies, then they might be vague. Then if there are many of such vague
classes that the given class depends on, typically 7 or more unique custom defined types,
then the indication for this Anti-Pattern should be positive. If the examined class itself is
also vague then this indication can be even stronger. Weighting should be such that if there
are few and/or mostly concrete dependencies, then the implementation is focused and clear.
If there are many and/or vague dependencies, then the implementation is unfocussed and
maybe vague.

Implementation

The Ravioli Code Anti-Pattern scanner implementation examines a given class and deter-
mines whether it and directly related classes resemble Ravioli Code. The scanner layout is
displayed in Figure 4.5. Details of these scanners are explained in the following sections.

| RavioliCodeAntiPatternScanner |

RavioliCodeScanner

| LooselyCoupledRelationsScanner | |SomewhatAbstractScanner| | ManyDistinctRelationsScanner

| LooseCoupIingScanner|

Figure 4.5: Ravioli Code scanner layout.

Ravioli classes

The LooseCouplingScanner identifies whether a class is loosely coupled. Loosely coupled
classes depend on abstract classes or interfaces. In the context of Ravioli Code, loosely
coupled also means that a class does do something although it does so in a vague way:
it uses abstracts or interfaces to acquire information, delegate work etc. Therefore, this
scanner determines how vague the class is. It ignores relations with primitive types or Java
system classes because those are not vague, even though they are loosely coupled. This
scanner examines the relation with custom classes and gives a strong rating when most of
those classes are vague. Using concrete custom classes reduces vagueness.

45



4. DETECTION STRATEGIES

Strong Negative N/A.

Negative All other cases.

Neutral There are no relations to other classes.
Weak Positive Either of these:

¢ There are no custom class relations and three or less loose relations.
* More than three loose relation for every custom class relation.

Strong Positive Either of these:

¢ There are no custom class relations and four or five loose relations.
* More than five loose relation for every custom class relation.

Very Strong Positive Either of these:

¢ There are no custom class relations and more than five loose relations.
* More than ten loose relation for every custom class relation.

The class that is examined for presence of this Anti-Pattern needs to have it’s relations
examined for vagueness. The LooseCouplingScanner scans each of the relations for this
property. These operations are coordinated by the LooselyCoupledRelationsScanner which
iterates over all the relations of the given class. This scanner returns the average of all
ratings. Having many vague classes as relations could mean that there are many Ravioli
classes as relations.

Center class

The class that is examined for this Anti-Pattern can also be vague itself. In addition to
having Ravioli classes as relations, being somewhat vague by itself can increase the con-
fidence that a class participates in the Anti-Pattern. This property is not essential and it
should not weight heavily compared to the ratings of relations. The scanner SomewhatAb-
stractScanner determines how vague a class is. This scanner is less restrictive than the
LooseCouplingScanner because it does not determine whether the class is loosely coupled.
It just determines whether it is somewhat vague, in addition to all the other properties.

Strong Negative N/A.

Negative N/A.

Neutral All other cases.

Weak Positive Number of abstract or interface dependencies equal or greater than 3.

Strong Positive Number of abstract or interface dependencies equal or greater than 7.

Very Strong Positive Number of abstract or interface dependencies equal or greater than
10.

If the class has many relations, there is an increased chance that the structure is not prop-
erly designed. The ManyDistinctRelationsScanner uses a threshold heuristic to determine
whether a class has many unique dependencies.

Strong Negative N/A.
Negative All other cases.

46



Anti-Patterns

Neutral Number of dependencies equal or greater than 7.

Weak Positive Number of dependencies equal or greater than 10.
Strong Positive Number of dependencies equal or greater than 14.
Very Strong Positive Number of dependencies equal or greater than 20.

Rating the Ravioli Code

For any given class, the RavioliCodeScanner determines how heavily it participates in the
Anti-Pattern. It’s rating is based on a weighted average of all of the results. The number of
distinct referenced types has a weight of 1, the rating of the current class being somewhat
abstract has a value of 0.8 and the outcome of the number of somewhat abstract relations
(LooselyCoupledRelationsScanner) is weighted by the number of relations. This means that
the weight of the relations increases when there are many. The relations are considered a
very important measurement to decide how ‘Ravioli’ they are. The weight is calculated as
14+ 0.2« N where N is the number of relations. This value is capped at 5.

The final rating is equal to the strongest rating found in all results of class scans. This
result is determined by the RavioliCodeAntiPatternScanner. De design of this Ravioli Code
scanner is such that at a low number of dependencies, the result is rated down by the Many-
DistinctRelationsScanner. At a high number of dependencies, the result is mainly deter-
mined by the LooselyCoupledRelationsScanner, meaning that the rating is strongly influ-
enced by how vague the relations are.

4.2.3 The Blob

The Blob[5] is probably the most well-known Anti-Pattern of all. A large class contains
most of the logic of the application and uses small ‘slave’ classes to store data. This classic
Anti-Pattern is expected to be present in many software projects, either in lesser or full form.

Heuristic

A Blob class contains a large portion of the responsibilities of a system. Other classes
have far less responsibilities and are simply used as data containers. To get a positive
indication of a class being a Blob class, a number of properties have to be checked. The
first is to verify that the class has multiple responsibilities. A heuristic for estimating the
number of responsibilities is explained in the design principles section later in this chapter.
In addition to checking for multiple responsibilities, it can be verified that the class is very
large. Large classes are more suspectable to becoming a Blob. Next, all dependencies
should be examined. Many distinct dependencies can be interpreted as the class having
multiple responsibilities and even worse, the class having a central role or controller role in
the system. If the dependencies themselves do not have many responsibilities then there is
a strong indication of unbalanced class roles within the system. In that case, the Blob class
has all of the responsibilities and the dependencies having none. Dependencies that only
contain data, such as classes with the Data Class Code Smell also contribute to this.
Optionally it can also be checked whether the Blob class is actually a controller for the
other, smaller classes. This property however is not crucial because the earlier checks have

47



4. DETECTION STRATEGIES

already shown that class size may be unbalanced, which will cover the most significant
aspects of the Blob Anti-Pattern. The proposed strategy for detecting whether a class is a
controller of another class is to check that the controller class uses most of the functions
or attributes offered by the class being controlled. If the controller class is the only user of
those functions or attributes, the indication will be even stronger.

If all of the criteria evaluate positively then there is a strong indication of the class being
a Blob. If only some of the criteria evaluate positively then there may be a lesser form of a
Blob such as a cluster of classes having unbalanced class size and responsibilities.

Implementation

Figure 4.6 shows the layout of the scanner structure for The Blob detection. The top level
scanner is the TheBlobAntiPatternScanner which is a pattern scanner. Intermediate and leaf
nodes scan aspects of The Blob and those scanners will be explained in this section.

TheBlobAntiPatternScanner

TheBIOba

SRPScanner | BlobRelationsScanner | | LargeCIassScanner|

T~

| SimpIeCIassScanner| | ManyDistinctReIationsScanner|

Figure 4.6: The Blob scanner layout.

The Blob class size

The candidate Blob class is scanned for class size and for unbalanced role assignments.
The size and behavior are determined by two scanners: the SRPScanner which determines
whether the class has too many responsibilities, and the LargeClassScanner which deter-
mines whether the class has the Large Class Code Smell. For more information about these
scanners, see the Single Responsibility Principle further in this chapter and the Large Class
Code Smell earlier in this chapter.

Slave classes

If the role assignments are not properly balanced in the application, classes related to the
potential Blob class may have too few roles. The SimpleClassScanner determines whether
related classes are being used as slave classes by examining how much logic they possess.

48



Anti-Patterns

This scanner is part of the Data Class Code Smell presented earlier. The main difference
with this smell is that in the context of The Blob, slave classes are not limited to Data
Classes. Instead, any simplistic class will do.

To BlobRelationsScanner averages the simplicity rating for all classes that the candidate
class depends on. It returns a positive indication if many of the related classes could be slave
classes. This scanner filters out library and system classes because those classes would
cause false-positives. Such classes are always simple because their member attributes and
functions are not included in the model.

If there are very few related classes and those few are considered simple, then averag-
ing the ratings would result in a biased rating. To prevent the BlobRelationsScanner from
reporting a positive result if only a few relations are found, the ManyDistinctRelationsScan-
ner is added to the averaging process. This is the same scanner as included in the Ravioli
Code Anti-Pattern and it is added for the same reason: to limit positive indications if the
amount of sampled classes is small. The

Rating a Blob

The final Blob rating is a combination of each of the previous scanners. The scanner The-
BlobScanner controls each of the other scanners. The simplicity of related classes weights
heavily compared to the size of the Blob class itself. The TheBlobScanner weights the rat-
ing of the relations 150% of that of the class size. These relations are considered the most
important aspect of the Anti-Pattern because without slave classes, a Blob would just be a
Large Class.

4.2.4 Tower of Voodoo

A Tower of Voodoo* is an inheritance structure where multiple, possibly badly designed
wrapping or extension layers are built upon a well-designed foundation. Unnecessary and
poorly defined extensions are supposed to complement the base class. The problems with
such extensions are that it might lose the intended meaning of the structure, it might perform
poorly and require more extension to suit new goals.

There are two variations of the Tower of Voodoo. The first is encapsulation, where a
class has another class as attribute and maps it’s own functions to those of the encapsulated
class, possibly modifying, removing or adding to the functions offered by the encapsulated
class. The second variation is inheritance, where a class extends another class, adding to
or modifying the functions of the base class. Only a heuristic for the second version is
presented in this document.

Heuristic

The goal of this heuristic is to find extension structures that appear to not be well-defined.
Structures that contain multiple levels of inheritance are considered suspicious. Inheritance
is a core feature of Object-Oriented programming and the heuristic should not punish proper

“http://c2.com/cgi/wiki?TowerOf Voodoo

49



4. DETECTION STRATEGIES

usage. Improper usage, thus badly defined structures typically occur when the designer or
programmer has not taken the time to properly evaluate the added value and design of
the new level of inheritance. Also, it might occur if the designer has not read the design
information of the base class or not understood it’s working. In such a case, the added
level can be a quick fix to get the base class working for a specific purpose. Due to the
lack of a heuristic to find ‘quick fixes’ or ‘dirty solutions’, the suggested heuristic is limited
to evaluating depth of inheritance, taking into consideration the use of abstract levels and
implemented interfaces.

To find poor inheritance structures, number of inheritance levels is counted. Extending
a base ‘Object’ can be ignored. Three levels of inheritance is already poor because there
is rarely a reason to create three levels. Four levels of inheritance is considered to be bad.
These numbers are deducted from levels of inheritance found on web sites with metric
overviews. There are a number of important exceptions. Extending an abstract class, thus
an abstract level, should not count towards the threshold. Abstract classes are usually well-
defined and explicitly meant to be extended. The same holds for interfaces. Any extending
class that implements one or more interfaces should not count towards the threshold. The
interface clearly defines the added value of the class thus it is a sign of good practice instead
of Tower of Voodoo. Remaining candidates typically have unnecessarily high extension
levels or they are not explicitly defined using abstract or interface definitions.

Implementation

The current implementation of the Tower of Voodoo Anti-Pattern identifies long inheritance
structures. This might not cover all cases of Tower of Voodoo as creating a ‘quick and dirty’
extension to a Java core component could also be considered a Tower of Voodoo. There is
currently no heuristic for ‘quick and dirty’. Such cases might be related to the Anti-Pattern
‘Junk Yard Coding’.

The layout of the Tower of Voodoo scanners is shown in Figure 4.7.

TowerOfVoodooAntiPatternScanner

TowerOflnheritanceScanner

InheritanceTargetScanner

Figure 4.7: Tower of Voodoo scanner layout.

50



Anti-Patterns

Inheritance severity

The InheritanceTargetScanner examines the type of class of the entity it receives as input.
Based on that type, it returns a rating of how ‘bad’ it is to inherit from that type. It is
good practice to implement an interface because interfaces are meant to be implemented.
Extending an abstract is neutral behavior because they are meant to be extended although it
does add a level of complexity. Other cases are weak, meaning that extending such classes
results in adding complexity to a structure, using classes that are not explicitly meant to be
extended.

Strong Negative N/A.

Negative N/A.

Neutral Class is an abstract or it is ‘Object’.
Weak Positive All other cases.

Strong Positive N/A.

Very Strong Positive N/A.

Inherited severity

Given a class, the TowerOfInheritanceScanner scans all inheritance structures of a class.
It does so by recursively invoking itself on the supertype of the class. It takes that result
and adjusts it by the rating as given by the InheritanceTargetScanner for that superclass
as explained above. This means that the base class is evaluated using the InheritanceTar-
getScanner, that rating is adjusted by the rating for the child and these adjustments are
repeated up to the parent of the given class. The adjustments stack, meaning that multiple
levels of ‘weak’ ratings from the InheritanceTargetScanner will eventually result in a ‘very
strong’ rating. One exception is that, if a class does implement interfaces, it’s adjustment
value is lowered by one. This is to encourage the use of interfaces in inheritance structures
since interfaces can provide clear definitions of what the implementing class adds to the
structure. The adjustment values are:

Strong Negative -2.
Negative -1.

Neutral 0.

Weak Positive 1.
Strong Positive 2.
Very Strong Positive 3.

The resulting rating is the worst rating for all inheritance structures. If no inheritance struc-
ture is found, the rating will be negative. This ensures that all inheritance structures start
at negative, allowing to the first level of inheritance to be ‘free’. Extending a class once is
considered good practice, hence the first level results in a negative indication.

The final result is returned by the TowerOfVoodooAntiPatternScanner. This scanner
returns the worst result of all invocations of the TowerOfInheritanceScanner, meaning that
it will return the rating of the worst Tower of Voodo instance found.

51



4. DETECTION STRATEGIES

4.3 Class Design Principles

There are five class design principles, also called the S.O.L.I.D. principles. These princi-
ples suggest how classes should be designed, how they should interact with each other and
which conditions should hold for good reusability. Suggested heuristics for these princi-
ples are explained in the following sections. Details and reasoning behind the heuristics are
not included in these sections, more information about the principles can be found in the
textbook [26].

4.3.1 Single Responsibility Principle

The Single Responsibility Principle (SRP) states that every class should only have one rea-
son for change. Every responsibility of a class is an axis of change. Classes that have
multiple responsibilities can be split into multiple classes, each having only one reason for
change [26].

Heuristic

To find axis of change, software can be analyzed over multiple versions to see which pieces
change together. When a single change to the design would cause a number of small changes
to the implementation, those changes can be grouped as a change set or axis of change.
Finding change sets requires MSR. Even more difficult is to find actual reasons for change,
which is needed for determining the responsibilities of a class. Instead of using MSR, an
alternative heuristic can be used to estimate the responsibilities of a class. The strategy is
to examine how a class is used. Every way of using a class can be associated with one
responsibility for that class.

A strategy without MSR is to determine sets of responsibilities by determining which
components of a class are used together. There are two indicators for class usage that can be
placed in sets: the attributes and the methods. The concept is the same for both however the
methods are slightly more difficult to implement because they can be used in more different
ways than the attributes. The strategy is to determine which items are used together and to
place them in the same set. For example, attribute A and B are used in the same method,
attribute C is not. That would place attribute A and B in one set and C in another. That
means that A and B probably belong to the same responsibility because they are related by
being necessary within one method body. Attribute C stands alone, which indicates that it
is not directly related to A and B.

Attributes or methods that ‘stand alone’ are expected to occur frequently. Many opera-
tions need only one of the methods or operations offered by a class and the class might offer
overloaded versions of which only one is needed in any given situation. Having multiple
stand-alone attributes or operations still might be an indication that the class is offering mul-
tiple services and thus having multiple responsibilities. Multiple sets of multiple attributes
or methods is a better indication because it provides a stronger evidence that a given service
consisting of multiple elements, is different from another service that consists of multiple
elements. For example, a set of [A, B, C] and [D, E, F] would indicate that A+B+C are
together one service and D+E+F another.

52



Class Design Principles

The heuristic boils down to identifying the sets of attributes and methods. One set per
type can be considered good practice because the class would have exactly one responsi-
bility. Two sets is in violation with this principle because that would mean the attributes
or method sets are not directly related. More than two sets is bad and the severity of this
principle violation increases as more sets are identified.

Implementation

The Single Responsibility Principle scanners can give an approximation of the number of
responsibilities of a class. Figure 4.8 shows the layout of the scanners for this principle.
The heuristic for finding violations of this principle works by finding independent sets of
attributes and of methods in a class.

SingleResponsibilityPrincipleScanner

SRPScanner

UnrelatedAttributesScanner | | MethodUsageSetScanner

Figure 4.8: Single Responsibility Principle scanner layout.

Responsibilities

The responsibilities of a class are determined by identifying independent sets of attributes
and methods. The approach is to find attributes that are used inside methods. Attributes
that are used fogether in the same method are placed in the same set. This yields sets of
attributes that can indicate the amount of responsibilities. The UnrelatedAttributesScanner
finds sets of attributes.

Strong Negative There are no attributes.

Negative There is exactly one set of attributes (e.g., all attributes are used in a combination
with at least one other).

Neutral There are up to five sets of attributes, one of which can be of any size, the others
are no larger than one attribute.

Weak Positive More than five sets of attributes, one of which can be of any size, the others
are no larger than one attribute.

Strong Positive There are three or less sets that contain more than one attribute.

Very Strong Positive Any number of sets with more than one attribute.

As can be seen from this list, cases where multiple large sets of attributes are found have
a stronger indication towards a violation of the principle. Stand-alone ‘dangling’ attributes

53



4. DETECTION STRATEGIES

are considered less severe. The scanner ignores static or final attributes because they are
expected to have a special meaning in the class, such as defining constants. It may not be
appropriate to consider them to be a responsibility, especially because tracking of system-
wide constants may be inaccurate.

The MethodUsageSetScanner applies a similar tactic to methods. This scanner identifies
which program components could use the methods, taking into account package placement
and method visibility according to the Java Language Specification. Then, it groups usable
methods into sets similar to those of attributes.

Strong Negative N/A.
Negative All other cases.
Neutral N/A.

Weak Positive Either of these:

» Some classes use all of the methods offered by the given class, some use only a
subset of the methods.

* There are no classes that use all of the methods offered by the given class al-
though there are not many sets of methods (see points below).

Strong Positive There are no classes that use all of the methods offered by the given class.
Furthermore, there are either 12 or more sets of 1 ‘dangling’ methods or there are 3
or more sets of multiple methods.

Very Strong Positive There are no classes that use all of the methods offered by the given
class. Furthermore, there are both 12 or more sets of 1 ‘dangling’ methods and there
are 3 or more sets of multiple methods.

Combined rating

The scanner SRPScanner calculates the average of the two previous scanners. This average
is the resulting judgement of the given class. An exception is that this scanner returns
Strong Negative if the given class is not directly placed in a package. This is typically the
case for anonymous inner classes or system classes. This exception is implemented because
the underlying scanner MethodUsageSetScanner expects that classes are directly inside a
package. This is necessary to determine method visibility for client classes.

4.3.2 Open-Closed Principle

The Open-Closed Principle (OCP) states that a reusable class should be open for extension
but closed for modification. Code that is working should not be changed. Functionality
can be added by extending the code instead of changing it. This principle prevents the
introduction of new bugs in existing code. It also prevents fixing bugs in existing code.
Mainly for this reason, true closure may not be fully achieved although it is a good class
design guideline.

54



Class Design Principles

Heuristic

There are two strategies for detecting violations of the OCP. The first is by finding symptoms
of violations such as changes to code caused by the implementation to dependent code. The
second is to find bad design decisions that could potentially cause closure to fail in the
future.

The first strategy is to apply MSR to find violations. A class or package that has been
introduced in an early generation of the project should remain unchanged after it has been
completed. If another class or package is introduced to the system, and the earlier package
needs to be updated to ensure proper working, then the closure principle of the first class or
package has been violated.

The second strategy is to look inside the program’s code to find potential problems that
could cause the closure principle to fail. Variables that are not kept private, instance-of
checks that do not refer to abstract types or dependencies on concrete classes outside the
current package are potential troublemakers. Such concrete dependencies can cause the
constant and ‘closed’ behavior of the implementation to fail. Instead, it should depend
on abstract types to allow for open modifications without disturbing existing functionality.
The heuristic is simple: the more of such problems are found, the higher is the chance
to cause the closure principle to fail. A suggested relaxation of this heuristic is to ignore
dependencies within the package as packages are often seen as one software entity.

Implementation

No implementation of this heuristic exists. The second version could be implemented in the
Anti-Pattern Scanner as it is now, the first version would require MSR.

4.3.3 Liskov Substitution Principle

The Liskov Substitution Principle (LSP) states that an instance of a derived class should be
able to replace any instance of its superclass. To comply to this principle, functions that use
references to a base class must be able to use objects of a derived class without knowing
it. Furthermore, derived functions can have equal or weaker preconditions and equal or
stronger postconditions.

Heuristic

The first part of this principle is to ensure derived classes do not harm the behavior of base
classes. Within the context of this project, taking into consideration the use of the abstract
Famix model and the limitations of static analysis, a reliable heuristic is not possible. Thor-
ough analysis of class behavior and the effects in inheritance structures is very complex and
out of the scope of this project.

The second part of this principle is to ensure preconditions and postconditions are com-
patible and not more restricting in overridden methods or extended classes. Like class
behavior analysis, pre- and postcondition analysis is out of the scope of this project. Thus,
no heuristic is available.

55



4. DETECTION STRATEGIES

Implementation

Most compilers have checks to enforce overriding methods is safe with respect to signature
equivalence. More extensive checks would require good heuristics which are not available.

4.3.4 Interface Segregation Principle

According to the Interface Segregation Principle (ISP), client classes should not be forced to
depend upon interfaces that they do not use. Some clients might be enforced to implement
interfaces or parts of interfaces that they do not need but that other clients do need. In
such a case, the implementations become more tightly coupled than would be necessary
and changes to one of the classes might require changes to the other classes even though
they themselves have no reason for it.

Heuristic

Violations of the ISP occur when an interface is ‘fat’, causing it to define multiple groups of
methods that are intended for different clients. Interfaces with different groups of methods
should have been different interfaces, each with one group of methods. To find different
groups of methods, the usage of the interface and implementing classes has to be analyzed.

Classes may depend on an interface or on classes that implement the interface. For this
reason, for every method defined by an interface, all signature equivalent implementations
of that method in both implementing and extending classes should be treated as the same
method. Client classes that use one of those interface methods (or overriding methods)
should use all of the other methods defined by the interface. If they do then the interface is
not ‘fat’ because all clients use it in the same way. When any of the clients do not use all of
the methods, that is an indication that the interface contains some redundant methods or that
some methods are not strictly needed in all situations. Even worse, if there are disjunct sets
of methods with one type of client using one set and another type of client using another
set, then it is a clear signal that the interface provides different services. Those disjunct sets
should be defined in different interfaces.

This heuristic yields four levels of severity of ISP violations. The first is non-violation:
client classes use all of the methods defined by the interface. The second case is a neutral
case where client classes depend on the interface but do not use any of the methods. The
third case is a weak indication of the interface containing redundant methods. This occurs
if some clients do not use all of the methods. The last case is that of the interface having
disjunct sets of methods. This occurs when different clients use the interface for different
purposes. The indication of this case grows stronger as more disjunct sets are identified.

Implementation

The Interface Segregation Principle scanners attempt to identify ‘fat’ interfaces. Such inter-
faces define more methods than some of the interface clients use thus the interface is forcing
implementing classes to have methods that are not used. Figure 4.9 shows the layout of this
scanner.

56



Class Design Principles

InterfaceSegregationPrincipleScanner

ISPScanner

Figure 4.9: Interface Segregation Principle scanner layout.

Interface scanning

The ISPScanner examines how interfaces are used. This scanner examines all classes in
the model to find which classes extend or implement the methods of the interface. All
overridden or implemented versions of any method are treated as the same method for this
heuristic. All classes that depend on the interface (and implementing classes) are examined
to find which of these methods they use. The result of this scanner is as follows:

Strong Negative FEither of these:

* The given class is not an interface.
* The interface does not define any methods (ignoring blacklisted or private meth-
ods).

Negative All other cases (there are no cases where only a subset of the methods are used).

Neutral N/A.

Weak Positive None of the dependent classes use any of the methods.

Strong Positive Some dependent classes use all of the methods, some use only a subset.

Very Strong Positive None of the dependent classes use all of the methods, some use only
a subset.

4.3.5 Dependency Inversion Principle

The Dependency Inversion Principle (DIP) states that the modules that implement a high
level policy should not depend on the modules that implement the low level policies, but
rather, they should depend on some well-defined interfaces. Both classes and packages can
be treated as modules for this heuristic as packages are often used to separate high level
policies from low level policies. Policies typically translate to the separation of framework
and application logic as well as other components of an application.

Heuristic

This principle can be formulated as three different rules. The first rule is that high level
components should not depend on low level components. The second rule is that abstrac-
tions should not depend upon details. The last rule is that details should depend upon
abstractions. In fact, both high and low level components should depend upon abstractions
whenever dependencies are necessary.

57



4. DETECTION STRATEGIES

To examine the dependencies between high and low level components, a heuristic is
needed to identify high and low level components. High and low levels typically map
from framework to application logic layers. This means that framework levels should not
have dependencies in the direction of application logic and the logic can have dependencies
upwards towards framework levels, keeping in mind that these dependencies should be on
abstractions. Using this concept, high and low levels can be visualized, either on paper on
in computer memory. The suggested visualization is that all classes of an application could
be considered nodes in a graph and the dependencies between the classes can be modelled
as directional edges. When drawing this graph, nodes that are at a higher levels should be
drawn above nodes in a lower level. This height metric can be determined by examining the
dependencies: when a class depends on another class, the first should be below the latter.
This should place logic below framework levels. This relation should be transitive, placing
classes that depend on other classes through multiple node hops lower in the graph.

In the ideal case, such a graph should be easy to draw, all low levels should appear
below high levels with only dependencies pointing up. In that case, the component design
adheres to the DIP. If the graph cannot be perfectly drawn for some classes, those classes
might violate the Dependency Inversion Principle. When summing up all the dependencies
of a class, some might point upwards and some might point downwards. In that case, the
DIP is violated with the strength of the violation dependent on the amount of levels that the
dependency edge spans across the graph. If drawing this map is necessary then the height
metric must be made mode robust so it can be used even when there are DIP violations. This
could be achieved by averaging the dependencies or by drawing the violating dependencies
towards dummy nodes. One special case of dependencies is a threat to this heuristic, that
case is any violation of the Acyclic Dependency Principle (ASP). The problem with cyclic
dependencies is that it makes the graph hard to draw because the height metric cannot be
calculated. For more details on this principle, see the ASP section below.

An alternative, very simple although very unreliable heuristic to determine high and low
level components is to look at their package naming. Many software designers put high level
components in packages named ‘my.application.component.**’ and low level components
in packages named ‘my.application.component.subcomponent.category.**’. The heuristic
would simply be to count the number of package separator dots, with more dots yielding
lower level components. The heuristic for detecting DIP violations would simply be that
any class that depends on another class with more dots is in violation with this principle.
The reason why this heuristic is unreliable is because package naming does not necessarily
reflect how system components relate to each other. Furthermore, package names may not
have a meaning, such as in the Java programming language where package names do not
have any meaning’ except to provide namespace separation. Even though the language
specification and convention do not add meaning to these package names, many system
designers do. For this reason, the heuristic might work just as a rough indication.

The second rule is much easier to check. The rule is that abstractions should not depend
upon details. The suggested heuristic is to count the number of concrete dependencies of
any interface or abstract class. Dependencies on concrete classes like as language specific

5See Java Language Specification (JLS) http://java.sun.com/docs/books/jls/

58



Class Design Principles

classes do not count as they do not add (significant) coupling to the application. Depen-
dencies on ‘final’ classes should not weight as heavily as other concrete classes because
those constant classes often reflect a special meaning in the application, such as containing
constant definitions or serving as an application-wide utility class. Any remaining concrete
classes are bad and the violation gets worse as the abstraction is more tightly coupled with
concrete classes.

The third rule is that details should depend upon abstractions. Obviously, the heuristic
for this rule could simply be the opposite of that of the second rule. By determining how
many dependencies a concrete class has on other concrete classes, the severity of any viola-
tion can be indicated. To reduce the reporting of non-severe cases of concrete dependencies,
this heuristic could be restricted to just examining dependencies between classes in different
packages, thus ignoring dependencies within a package. Furthermore, in combination with
the first rule, the severity might be increased if dependencies span many levels of high and
low components.

Implementation

As this principle consists of three different rules, three implementations are necessary. The
first rule has not been implemented because the heuristic is expected to be very unreliable,
especially in the current empirical evaluation where many Acyclic Dependency Principle
violations are found. Furthermore, time limitations prevent implementation of all heuristics.
This heuristic could be implemented as suggested in the Anti-Pattern Scanner.

The implementation of the Dependency Inversion Principle is very limited as it only
implements one of the three rules of DIP. Only the rule ‘Abstractions should not depend
upon concrete classes’ has been implemented. Figure 4.10 shows the layout of this scanner.

DependencylnversionPrincipleScanner

ConcreteDependentAbstractionScanner

Figure 4.10: Dependency Inversion Principle scanner layout.

Concrete dependencies

The ConcreteDependentAbstractionScanner examines abstract classes and interfaces. The
process is very simple: the scanner counts all unique dependencies. From those depen-
dencies, abstract classes, interfaces, system classes and concrete classes within the current
package are removed. The rating is then determined by the number of remaining dependen-
cies:

Strong Negative The class is not an abstract class and it is not an interface.

59



4. DETECTION STRATEGIES

Negative There are no concrete dependencies.

Neutral N/A.

Weak Positive There are three or less concrete dependencies.
Strong Positive There are four or more concrete dependencies.
Very Strong Positive There are ten or more concrete dependencies.

The removal of concrete classes within the package of the examined class serves to ignore
excessive positive matches for dependencies within the package. These dependencies are
usually not problematic. Dependencies on other packages are considered a violation of this
principle.

4.4 Package Cohesion Principles

The category Package Cohesion Principles contains three principles that suggest what should
or should not put in the same package. These principles are meant to help design the pack-
ages optimally for reuse and reduce the impact of changes.

4.4.1 Reuse-Release Equivalence Principle

The Reuse-Release Equivalence Principle (REP) states that the granule of reuse is that same
as the granule of release. In other words, for packages to be reused, they should be released
as a library and not as separate classes.

Heuristic

This principle focuses on how software components should be packaged, released and
reused as one entity. Packages that are released to be used as a library should by imported
as a whole and updates should occur to the package as a whole. To check this, libraries and
their package or class structures may have to be analyzed, which is not possible with the
current setup of the abstract Famix model. Furthermore, MSR may or may not be enough
to examine if packages are updated and reused because libraries are often not stored in the
same repository as the code that uses the library. For these reasons, there is no heuristic for
determining whether packages are properly distributed and used as a library.

Implementation

No implementation possible.

4.4.2 Common Closure Principle

The Common Closure Principle (CCP) states that all classes in a package should be closed
against the same kinds of changes. When a change occurs, the change should only affect
classes within the package where the change is relevant and it should not affect classes
across the program.

60



Package Cohesion Principles

Heuristic

To find violations of the CCP, changes can be backtracked and examined. Changes can be
associated with each other, such as when a class field changes and methods that depend on
that field change to be compatible with the field. Such backtracking is probably the easiest
and safest way to identify sets of change. With such information, it can be verified that
changes only occur within packages and that a change to one package does not affect other
packages. If it does, it would be a violation of the CCP. Also, the change should affect all
classes in the package because all of them are closed for the same kinds of changes.

An alternative solution to finding violations would be to scan for change sets before a
change actually occurs. However, no reliable heuristic is available for this solution because
searching for potential changes or change sets may yield a near infinite search space. Alter-
natively, it would be possible to verify that changes cannot ripple through to other packages
such as by ensuring that no concrete dependencies exist between packages. However, any
heuristic for this has a strong overlap with heuristics for DIP and various Package Coupling
Principles.

Implementation

Using MSR could yield a good indication of packages adhering to the CCP. Alternative
solutions such as scanning the code for potential violations are not implemented although
the implementation of DIP can find some violations of this principle.

4.4.3 Common Reuse Principle

According to the Common Reuse Principle (CRP), classes in a package are always reused
together. If one of the classes is reused, all are reused.

Heuristic

The word ‘reuse’ may be associated with exporting a component and using it in another
application as though it were a code library. Or, it could be associated with having imple-
mented a component as some point for some purpose and in a later version of the software,
using the same component again at another place in the program for nearly the same pur-
pose. However, the problem with those interpretations of reuse is that they would require
some way to analyze libraries or to use MSR, neither of which are included in the current
design of the Anti-Pattern Scanner. Instead, reuse will be defined as ‘every time the same
component is used in the current system snapshot’, where usage is defined as another class
depending on the component.

Using this approach of reuse, the principle will not be violated if and only if, at every
time a class depends on some class of a package, it directly or indirectly uses all other
classes of that package. In that case, it reuses all classes of the package. This reasoning can
be translated to a heuristic: Look at every class in a package. If any class outside the current
package is depending on that class, mark that class. Otherwise, ignore that class (because it
is not directly reused). Next, check that any marked class depends on all other classes in the

61



4. DETECTION STRATEGIES

same package, either directly or indirectly. Any class that is not reused from the viewpoint
of the marked class is in violation with this principle. That means that the class is not in the
reuse set of the package and it should have been in a different package.

Violations of this principle do not indicate bad design. Instead, they indicate that a
package is not meant to be released because some of the classes are not in every reuse set.
It could be in the package for different reasons which cannot be detected by this heuristic.
Therefore, this heuristic only applies to packages that are meant to be released or that are
meant to be reused within the same application. Furthermore, dependencies between pack-
ages are not automatically taken into account. Any dependency from the current package
on another package should trigger the heuristic to run on that package too, ensuring that all
released packages on their own comply to this principle.

Implementation

The suggested heuristic can be implemented in the Anti-Pattern Scanner. In the current
version, it has not been implemented.

4.5 Package Coupling Principles

The category of Package Coupling Principles contains principles that can be used as guide-
lines to improve package stability and to determine dependencies. This section contains
three principles.

4.5.1 Acyclic Dependencies Principle

The Acyclic Dependencies Principle (ADP) states that the dependency structure between
packages must not contain cyclic dependencies. This means that the dependency structure
between packages can be drawn as an acyclic directed graph.

Heuristic

The description already suggests the solution for detection of violations. The package de-
pendency graph should be an acyclic directed graph. When constructing this graph, if the
dependency structure would attempt to add an edge to the graph that would create a cycle,
all packages participating in that cycle violate this principle.

Implementation

The Acyclic Dependencies Principle states that the dependencies between packages should
be an acyclic directed graph. To find violations of this principle, a scanner has been con-
structed. Figure 4.11 shows the layout of the scanners.

62



Package Coupling Principles

AcyclicDependencyPrincipleScanner

CyclicPackageDependencyScanner

Figure 4.11: Acyclic Dependencies Principle scanner layout.

Cycle detection

The scanner CyclicPackageDependencyScanner constructs a tree of package dependencies.
The root node of the tree is the current package and the nodes directly connected to the root
are the packages that the root package depends on. For every node, this process is repeated
until all of the indirect package dependencies have unfolded. For each node, packages that
are already in the branch up to the root node are not included thus every package occurs
only once in every branch. There is one exception: when the root node is found in the list
of dependencies, it is added to the branch and thus terminates that branch.

The tree structure contains all unique dependency structures. By counting the number
of possible cycles and the length of the longest cycle, the strength of any indication can be
determined. The underlying idea is that a long cycle could impact many more levels of an
application compared to just two packages having a cyclic references.

Strong Negative N/A.

Negative There are no cyclic package dependencies.

Neutral N/A.

Weak Positive The longest cycle is of length 2, such as ‘self” depends on ‘other’ depends
on ‘self’ and there are 3 or less such cycles.

Strong Positive Either of these:

* The longest cycle is of length 3 or more.
* There are 4 or more unique cycles.

Very Strong Positive Both the longest cycle is of length 3 or more and there are 4 or more
unique cycles.

4.5.2 Stable Dependencies Principle

The Stable Dependencies Principle (SDP) states that dependencies between packages should
be such that a package can only depend on packages that are more stable than it is. This
means that packages should only depend on packages that are changed less frequently than
itself.

Heuristic

A solution without MSR is that speculations about where, which and how often compo-
nents would need to be modified can be made. Such speculation might be very hard to

63



4. DETECTION STRATEGIES

design because there are numerous reasons and ways components can change. However,
the Engineering Notebook® that is also used as a basis for [26] offers a metric to estimate
stability. This metric is:

Ca : Afferent Couplings The number of classes outside the package that depend on classes
inside the package.

Ce : Efferent Couplings The number of classes inside the package that depend on classes
outside the package.

I : Instability A metric in the range of [0,1] where O indicates maximally stable and 1
indicates maximally instable.

The formula for is / = Ce/(Ce + Ca). With this (in)stability metric, it is easy to determine
whether package dependencies violate this principle.

An alternative heuristic is to measure the frequency of changes to packages over a period
of time, such as every major software release. This change frequency could also be used as
an indicator for /. Furthermore, MSR information can be used to extrapolate the change
frequency to determine whether the design adheres to this principle in further software
releases.

If a map of all dependencies and stability metrics in the system must be drawn then
the graph could be similar to that of the DIP heuristic explained earlier. Instead of using
the height metric, a stability metric could be used, such as the amount of changes per time
period.

Implementation

No implementation exists.

4.5.3 Stable Abstractions Principle

According to the Stable Abstractions Principle (SAP), an architecture should contain as
many stable abstractions as possible, and these abstractions should be isolated from the
ones that are more likely to change. This means that stable packages should be as abstract
as possible, causing them to preserve stability while being able to be extended.

Heuristic

This principle can be rewritten to three rules. The first is that packages that are maximally
stable should be maximally abstract. The second is the instable packages should be con-
crete. The last rule is that package abstraction should be proportional to it’s stability. The
concept of (in)stability and the corresponding metric / was introduced in the heuristic for
SDP as presented earlier. In addition to this metric, the author of the Engineering Notebook
suggests that the abstractness of a package can be formulated as the amount of abstract
classes in the package divided by the amount of total classes in the package. Obviously,
using these metrics, an ordering of abstractness and instability can be created. The three
rules can be easily checked using this ordering.

Ohttp://objectmentor.com/resources/published Articles.html, category Object-Oriented (Robert C. Martin).

64



Other Principles

Implementation

This strategy has not been implemented.

4.6 Other Principles

The Law of Dementer (LOD’) is an interesting principle that does not fit in the categories
mentioned above. The next section contains a description of the suggested heuristic for
finding violations for this principle. Open discussion on web sites like the Anti-Pattern
Catalog Wiki® yields the categorization used in this chapter. Suggestions for other principles
can also be found there.

4.6.1 The Law of Dementer

The Law of Dementer (LOD) states that classes should only talk to their closest friends,
who share it’s concerns. This means that units should only have limited knowledge about
other units such as only information about the units that are directly related.

Heuristic

The LOD can be applied to classes. In that case, it can be formulated as follows: Inside
operation O of class C, we should only call operations of the following classes:

* Classes of immediate subparts, either computed or stored, of the current object.
* Classes of the argument objects of O, including C.
* Classes of the object created by O.

The heuristic for the LOD is trivial as all of these properties can be checked. All violations
count towards violations of the LOD.

Implementation

Checks for LOD have not been implemented.

http://www.ccs.neu.edu/home/lieber/LoD.html
8http://www.c2.com/cgi/wiki?PrinciplesOfObjectOrientedDesign

65






Chapter 5

Empirical evaluation

This chapter describes the empirical evaluation that has been performed using the Anti-
Pattern Scanner. First, the approach of this evaluation is explained. Next, a description of
the cases is given. Last, we discuss the positive occurrences of the Anti-Patterns and Design
Principle violations as reported by the program.

5.1 Case study setup

5.1.1 Goals

As explained in Chapter 1, the goal of this Thesis Project is to examine Anti-Patterns and
Design Principles. The Anti-Pattern Scanner has been developed for this purpose. Using
this program, case studies are performed. The goal of this evaluation is to explore the
occurrence of Anti-Patterns and Design Principle violations. In concrete terms, the goal of
this evaluation is to answer the following questions:

* Do Anti-Patterns and Design Principle violations occur in software systems? Are
they common or rare?

* Are they severe and full-featured as described in literature or are their occurrences
minor problems?

* For those occurrences, can an indication be given whether they are malicious to a
project?

¢ Is the approach of modular ‘scanner’ components and the use of fuzzy ratings effec-
tive?

During this study, the performance of the heuristics will be evaluated. The effectiveness
of the heuristics is determined, especially with respect to the recall of implemented patterns
and the amount of reported false-positive cases. Effective heuristics can be reused in future
research and ineffective heuristics can either be abandoned, redesigned or replaced by other
approaches.

The study is set up to explore multiple problem aspects in different types of projects.
The types of problems are diverse: the selected patterns and principles cover class design,
class relations, package cohesion and the occurrence of smells. The results are expected to

67



5. EMPIRICAL EVALUATION

differ from type to type and some may be more significant than others. Should one type
stand out, it may be interesting to focus future studies on that type.

5.1.2 Approach

The evaluation starts out small with specially prepared samples being examined. Stepwise,
the examined projects are scaled up from projects that the author has co-developed to larger
open-source projects that are developed by other, larger teams. With each iteration, the ef-
fectiveness of the heuristics is evaluated and project statistics are being collected. Heuristic
designs and implementations are updated between every iteration. After each iteration, the
Anti-Pattern Scanner is re-run on the projects of the earlier iterations to see the effect of the
updated heuristics. Every case study involves one software system being examined. Cases
within each case study, such as entities with positive or negative indications, should provide
the sought information during this evaluation.

Detected cases are manually examined. For those projects and problem types where
only a few cases have been found, each of the cases is examined. If many cases are found,
only ten are selected, both randomly and some selectively. Cases being examined include
both positive and negative indications. Affected entities are examined by looking at the
source, reviewing the explanation offered by the Anti-Pattern Scanner and examining the
properties and relations of the entity. The source is browsed using the Eclipse IDE and
relations are visualized using Dependency Analysis for Java (DA4Java) [36]. Examining
every case, the following questions are asked:

* By looking at the source, what is the first impression? Is the code clear and self-
explanatory? Is the code understood and is the purpose clear?

* Looking at the indication of the Anti-Pattern Scanner, is this case a positive, negative
or neutral case? Is this indication correct or incorrect?

* Compare the case reasoning with the source code of the candidate. Is the reasoning
correct or does the reasoning mismatch the purpose and characteristics of the source?

* Having compared both the reasoning, the code layout and entity purpose in details,
is the indication correct? Is the entity a positive, negative or neutral case? Is the
indication strong or weak?

* If the case is positive, false-positive or false-negative, visualize the source. Does it
have the properties of the sought pattern? Is there a characteristic that could be added
to the heuristic?

* Look at the purpose of the project, the general layout and try to get a feeling for the
quality of the implementation. Is a detected case expected or unexpected? Is it a
unique case?

In addition to evaluating the heuristics and the projects, the Anti-Pattern Scanner is be-
ing evaluated too. The requirements in Chapter 3 are used as a checklist for determining
the usability of the tool. Important aspects of the scanner are the processing speed require-
ments, the effect of having weak and strong cases and the correctness of fuzzy reasoning.
The latter is one of the main features of the program and it requires careful evaluation to
work correctly. The implementations and use of fuzzy and- and or-conditions, the choice

68



Case study setup

of rating values and weights is carefully being evaluated after every iteration. The values
are verified against expected and occurring cases. These features must function properly to
ensure that the modular implementations together realize the proposed heuristics.

5.1.3 Studied projects

Eight Java projects have been selected to be examined and scanned for patterns. Sample
Anti-Patterns have also been examined for testing purposes although they are not part of the
evaluation. Most projects have a practical motivation for examining them, some even have
a personal motivation. The following projects are chosen to be studied:

The Anti-Pattern Scanner The first pick is the scanner itself. The reason is that this is the
project in which the author has most up-to-date build knowledge. Examining this tool
will quickly allow verification of true and false detection candidates.

Race Creation Tool A small Content Management System (CMS) Java Applet that was
built to administrate a simple web-based game. While no longer in use, this program
was one of the first carefully designed programs that the author wrote. The author has
extensive knowledge of it’s code. There are a few known problems with this program
and it is interesting to see these problems translated to design principles.

The NewNomads' Desktop A server-side application framework. This platform has been
under development from 2005 to 2010. It has been developed by the author and his
colleagues and at the moment of writing, it is still in use although it is no longer
being further developed. The reasons for choosing this program are that the author
has extensive knowledge about it’s structure, it is the work of multiple people and
there are some known design problems with it.

Apache Tomcat This application platform is an open-source implementation of the Java
Servlet and JavaServer Pages technologies. The author has used this project for many
years and has used it’s APL. It is interesting to examine this project more closely. The
version being examined is V6.0.29. For more information about this project, visit
http://tomcat.apache.org/

JForum This open-source forum is a popular discussion board application. It is being used
by many hosters, both for small and large companies. This product is receiving active
development. The version being examined is V3.0 beta. For more information, visit
http://iforum.net/

JUnit JUnit is a testing framework for Java applications. It is being used all over the globe
for software projects of all sizes. It is also being used for the Anti-Pattern Scanner.
The version being examined is V1.8.2. For more information, go to
http://www.junit.org/

JHotDraw This is a GUI framework for drawing technical and structured graphics. The
main reason why this project is included in the empirical evaluation is because it
has a strong focus on Design Patterns. It was originally being developed for trying
out Design Patterns and building an application that could utilize Design Patterns as
effectively as possible. The version being examined is V7.5.1. For more information,
visit
http://sourceforge.net/projects/jhotdraw/

69



5. EMPIRICAL EVALUATION

JMonkeyEngine JMES3 is an open-source game engine for 3D games. It is receiving active
development and it is being used by various game companies. The version being
examined is V3 beta. For more information, see
http://jmonkeyengine.org/

5.1.4 Project size

Project sizes range from a few classes to thousands of classes. The numbers per project are
shown in figure 5.1. Project size is determined by the number of Famix entities. Based on
this metric, the Race Creation Tool can probably be considered the smallest of all projects
and JMonkeyEngine the largest.

9 %
%, B 4
(o3 ) <%
% C %
e A ) o,
¥, ) (A Qf
% % s %, o
% ‘o, o@ 2 S o, e
9, % 3, ° o % 20) %
T R, T 2y %, Y, %
Amount of FAMIX entities <. o ) % % 7 4 ®
AbstractFamixEntityEMF 1,985 2,804 19,333 60,257 12,682 3,552 31,829 56,419
FamixPackageEMF 15 4 34 99 35 27 64 156
FamixClassEMF 187 104 428 2,018 1,146 291 1,558 2,252
FamixClassEMF Abstract 3 1 18 71 11 17 45 99
FamixClassEMF Interface 8 6 20 206 54 17 110 99
FamixEnumEMF 0 0 2 6 3 0 15 42
FamixMethodEMF 820 619 3,944 20,723 5,625 1,634 11,694 18,814
FamixInheritanceEMF 45 17 159 592 600 109 630 976
FamixInvocationEMF 1,636 7,862 26,341 61,276 19,133 2,213 36,785 74,547
FamixAccessEMF 1,038 5,349 13,559 50,041 8,749 748 25,508 69,853
AbstractFamixVariableEMF 963 2,077 14,927 37,417 5,876 1,600 18513 35,197
FamixFormalParameterEMF 303 624 4,876 14,460 2,123 996 8,055 12,027
FamixLocalVariableEMF 435 1,001 7,613 15,484 2,176 394 7,432 14,342
FamixAttributeEMF 225 452 2,438 7,473 1,577 210 3,026 8,828
FamixInstanceOfEMF 23 14 76 1,030 24 25 362 359
FamixSubtypingEMF 16 31 33 687 125 45 485 531
FamixCastToEMF 49 640 582 3,728 181 42 2,324 2,702

Figure 5.1: Amounts of Famix entities found in each project.

The list in Figure 5.1 contains the class names of the Famix entities. More information
about the entity types can be found at the Famix Importer WIKI:
https://www.evolizer.org/wiki/bin/view/Evolizer/Features/Famix. The AbstractFamixEnti-
tyEMF is the superclass of all source entity types: packages, variables, classes and methods.
Within this abstraction, the AbstractFamix VariableEMF serves as a superclass for the local
variables, formal method parameters and class attributes. The FamixClassEMF is also a
superclass for the Enum type and the Interface type.

70



Detected cases

5.2 Detected cases

The implemented patterns listed in Chapter 3 have been used to scan each of the selected
Java projects. The results have been evaluated and a selection of the results are presented
in this section. Every section that follows contains a quick overview of some of the entities
that are found positive by the Anti-Pattern Scanner. Where relevant, false-positive cases are
also described. These are the cases that are still being marked as ‘positive’ by the scanner
but that are known to be false. Visualizations of the patterns are included to illustrate what
the heuristics are meant to detect as positive cases. The results presented in this section are
the results after all the iterations of improving the scanner implementation.

For the projects ‘Race Creation Tool’ and ‘NewNomads Desktop’, the source code is not
publicly available. Instead of providing the exact names of detected entities, the components
are described.

5.2.1 Data Class

Figure 5.2 shows the scan results for this Code Smell.

%,
%, 4%
4/%0 '1(%} 2 & o2 g
()
o S 4, Sy N S T, % 4 % %, 4
I‘Q A () 1 Lo /’6 (/& ) ° ) J‘& ) So
Data Class 4 ® o ® o 4 o % - @ o ® o
Anti-Pattern Scanner 187 155 83% 21 11% 9 5% 2 1% 0 0% 0 0%
Race Creation Tool 104 70  67% 4 4% 13 13% 16  15% 1 1% 0 0%
NewNomads Desktop 428 264 62% 38 9% 98  23% 15 4% 13 3% 0 0%
Apache Tomcat 2018 1118 55% 266 13% 396 20% 163 8% 58 3% 17 1%
JForum 1146 915 80% 151 13% 43 4% 12 1% 21 2% 4 0%
JUnit 291 248 85% 21 7% 19 7% 2 1% 1 0% 0 0%
JHotDraw 1558 1101 71% 246 16% 177 11% 26 2% 6 0% 2 0%

JMonkeyEngine 2252 1252  56% 338 15% 413 18% 201 9% 28 1% 20 1%

Figure 5.2: Scan results for the Data Class Code Smell.

Positive cases

Some of the detected cases:

The Anti-Pattern Scanner ScanSettings.

Race Creation Tool Login data container, all GUI listeners.

NewNomads Desktop Many concrete CRM entry classes, various framework configura-
tion containers.

Apache Tomcat Filelnfo.

JForum ForumsStats, Theme.

71



5. EMPIRICAL EVALUATION

JUnit InexactComparisonCriteria.
JHotDraw ODGStylesReader$Style, StdXMLReader$StackedReader.
JMonkeyEngine AnimationProperties, StateRecord.

Observations

The Data Class Code Smell is a smell that is present in many systems. This can be seen by
the number of ‘Strong’ and ‘Very Strong’ cases as shown in Figure 5.2. It is found in all of
the systems examined in this empirical evaluation and it will probably be present in many
others. Figure 5.3(a) shows what a Data Class might look like.

5% Qutline 52 =0

BR o
## org.apachetomecat,ni

4 (@ Filelnfo

o pool:long
o walid:int
o protection : int EE Outline 52 = H
o fil e:int

=P B R e W~
@ user:int RCTGUI
© group:int fb T . -
o inode:int + 1= import declarations

lnole ”.1 4B RCTGUL
@ EIE-VICE- int a F fCurrentRelease : String
@ nlink:int o ghpplet: RCTApplet
o size:long o gCore: RCTCore
o csize: long & gTimer: Timer
o atime:long o gProgress: int
o  mtime: long o glnitialized : boolean
o ctime |cn'|_ o gSplashScreenContainer: JPanel
_ o gProgressScreenContainer: JPanel
e fname: String
o a  gProgressBar: JProgressBar
@ ﬂame atring a  gRebuild5creenVisible : boolean
@ filehand: long o agRebuildScreenContainer : JPanel o
" T 3
(a) An extreme case of a Data (b) A small part of a large class.

Class.

Figure 5.3: An example Data Class and a Large Class.

The case from Figure 5.3(a) was found in Tomcat. It is a bad type of Data Class for the
following reasons: It has many attribute fields, in this case more than ten. It has no methods.
All of the attributes are public thus the class cannot bear any responsibility for their values.
Other cases that have been found are less severe. Many Data Class instances do have some
methods, often for setting and getting the attribute values.

In JHotDraw, Data Classes occur as inner classes of another class. This happens when a
class needs some custom data object for local use. For example, the ODGStylesReader$Style
class extends HashMap and has a few attributes added to the class. The Style class is an
answer for the need of a simple properties container.

72



Detected cases

False positives

The current implementation of this Code Smell suffers from some false positive indica-
tions. First of all, some methods are marked as ‘trivial’ when they should not even exist.
The methods <oinit> and <clinit> are internal constructors and helper methods that are
inserted by the compiler. They are never entirely empty although they are not implemented
by the application programmer. In some cases, they should be filtered. Filtering of these
methods is not implemented and most of the times the methods push the candidate class
towards a positive indication.

Interfaces are filtered because they are typically simple. They define no attributes and
their methods are empty, thus ‘trivial’. In the Tomcat project, some classes define native
methods that provide an interface to other programs. The problem is that such classes are
not actual interfaces, thus they are not filtered. They do have the properties of interfaces
since they define empty methods. These classes are rated as positive cases, which is not
correct.

Abstract classes can have all the properties of Data Classes. In some cases, abstract
classes are marked as positive cases. When another class extends the abstract class, it can
add responsibilities. That extending class is then not a Data Class. Because abstract classes
are explicitly meant to have logic added by extending classes, they might be seen as an
exception to the Data Class Code Smell. The current implementation treats concrete classes
and abstract classes the same way, meaning that it only looks at the given class and it ignores
any superclasses or subclasses.

Some classes have few attributes, such as one or two. For example, the ‘InexactCom-
parisonCriteria’ class listed above. This class triggers a positive indication because it does
not have any logic, meaning that it is a simple class. Although it only has one attribute, it
still matches the criteria for a Data Class. The solution would be to rate classes with few
attributes down to a more neutral indication.

In JForum, some classes are annotated with Hibernate? annotations, meaning that the
class is an interface to the database. In that case, the class does have some responsibilities
and deeper meaning in the program although the heuristic identifies this class as a Data
Class. It may be hard to identify classes that have such a hidden role in the system. The
current implementation does not recognize them.

5.2.2 Large Class

Figure 5.4 shows the scan results for this Code Smell.

Positive cases

Some of the detected cases:

Race Creation Tool The GUI.
NewNomads Desktop Various one-size-fits-all concrete CRM entries, such as a ‘Product’.
Apache Tomcat NioEndpoint, StandardContext.

Zhttp://www.hibernate.org/

73



5. EMPIRICAL EVALUATION

%,
% %
%, %, 4 " 2,
2, S 8 S K %Y N ‘bo 4, % % L
S Y Vo N, 0 Y, o Sy o Y, Jo 9 o
Large Class 4 ® o (J o 4 o % o @ o ® o
Anti-Pattern Scanner 187 110 59% 72 39% 5 3% 0 0% 0 0% 0 0%
Race Creation Tool 104 57  55% 37 36% 7 7% 2 2% 1 1% 0 0%
NewNomads Desktop 428 159 37% 176 41% 81 19% 9 2% 3 1% 0 0%
Apache Tomcat 2018 471 23% 1207 60% 268 13% 48 2% 21 1% 3 0%
JForum 1146 248 22% 841 73% 51 4% 4 0% 2 0% 0 0%
JUnit 291 100 34% 179 62% 12 4% 0 0% 0 0% 0 0%
JHotDraw 1558 501 32% 906 58% 137 9% 12 1% 2 0% 0 0%
JMonkeyEngine 2252 474 21% 1512 67% 221 10% 31 1% 12 1% 2 0%

Figure 5.4: Scan results for the Large Class Code Smell.

JForum ConfigKeys, User.
JHotDraw DefaultDrawingView, HandleAttributeKeys.
JMonkeyEngine ParticleSystem, WaterRenderPass.

Observations

Large classes occur in many systems, like the Data Class Code Smell. The class shown in
Figure 5.3(b) is a small part of the overview of the Graphical User Interface (GUI) compo-
nent from the RCT. With over 100 attributes, 40 methods and around 10 internal classes,
this class is definitely large. Poor GUI class design results in many attributes in one class
that are used to manage the many containers, screens and listeners. In this case, the class
is made even larger because it’s methods contain long scripts that create, check and fill the
GUI components. With all this control over those containers, the class certainly also possess
the God Class Code Smell and it is probably a Blob too.

Some classes have hundreds of attributes and few methods, some vice versa. In either
case, such classes are large. In all of the examined systems, large classes make up only a
small part of the system. Large classes often occur where multiple components are bundled
together. It appears that the classes often serve as an access point to many subsystems.

False positives

Some interfaces define many methods. Even though an interface never defines attributes, it
might still be marked as a Large Class if it has many methods. This occasionally occurs for
interfaces from the Tomcat project. The question is, are they actually large? It may depend
on personal taste. On the other hand, even if the interface would not be large, the class that
implements the interface typically is. For this reason, it might be useful to scan interfaces
too. Positive cases of large interfaces might indicate that other classes are forced to be large.
For this reason, large interfaces should not be false positive.

74



Detected cases

Similar to that, some classes define many attributes. For example, the ‘HandleAt-
tributeKeys’ class defines many attributes that are both static and final, meaning that they are
system-wide constants. Classes that are only used for constant definition could be ignored,
since they do not suffer the disadvantages of maintenance of large classes.

5.2.3 Database Class

Figure 5.5 shows the scan results for this Anti-Pattern.

J};o
%, %
4/%0 /1/%} 2 & o2 g
],
o G, N M g W % 4 %, L
I‘Q 2. (-] 1, Lo /’6 (/& ) ° ) J‘& ) So

Database Class 4 ® o ® o 4 o % - @ o ® <
Anti-Pattern Scanner 187 187 100% 0 0% 0 0% 0 0% 0 0% 0 0%
Race Creation Tool 104 70  67% 4 4% 13 13% 16  15% 1 1% 0 0%
NewNomads Desktop 428 371  87% 4 1% 41 10% 12 3% 0 0% 0 0%
Apache Tomcat 2018 2014 100% 0 0% 4 0% 0 0% 0 0% 0 0%
JForum 1146 1142 100% 1 0% 2 0% 1 0% 0 0% 0 0%
JUnit 291 291 100% 0 0% 0 0% 0 0% 0 0% 0 0%
JHotDraw 1558 1558 100% 0 0% 0 0% 0 0% 0 0% 0 0%
JMonkeyEngine 2252 2252 100% 0 0% 0 0% 0 0% 0 0% 0 0%

Figure 5.5: Scan results for the Database Class Anti-Pattern.

Positive cases
Some of the detected cases:

Race Creation Tool All classes that represent a database table manage their own queries.
That is exactly 50% of all classes.

NewNomads Desktop Due to many application module classes that manage their application-
specific database in their own way, nearly 40% of all of the classes interact with a
database.

JForum JDBCLoader.

Observations

The Database Class Anti-Pattern does not occur often. Figure 5.5 shows that there are few
positive cases. Projects that have 100% Strong Negative cases often do not use database
interaction at all.

The Database Class Anti-Pattern shown in Figure 5.6 was taken from the NewNomads
Desktop. The classes on the bottom of the image belong to the database connection pool
and offer generic query functions. A caching layer is added to the application to speed up
reading operations. The topmost classes contain some basic logic for checking input and

75



5. EMPIRICAL EVALUATION

output. They read and write to the database. Other components (not shown) can invoke the
topmost layers and set or read values, they can retrieve lists of strings containing information
from tables and they might need to handle SQLExceptions. The problem is, none of the
layers provide any abstraction. The application logic needs to initialize the connection, set
and read scalar values and handle exceptions. The topmost layer is not an abstraction layer,
it is just there to help manage the connection. This means that both the cache and the helper
classes are Database Classes. The classes on the bottom are the basic connection layer
which does not consist of Database Classes. This behavior also explains why around 40%
of the program uses classes from the java.sql package: most of the logic is also responsible
for the persistence of the data it uses.

' module]
' KeywordTa.|
getKe. cetNe. setKe. getSe. sietKe.

getCc. relea.

Figure 5.6: Part of a logic module in the NewNomads Desktop.

In the JForum project, all data is being managed by annotated ‘data classes’ that use the
Hibernate data persistence framework. This means that the data is properly abstracted. For
the test cases, a database dump is used to set up the test environment. The ‘JDBCLoader’
is a helper class for this setup. It has all the properties for a Database Class because it does
not use an abstraction to manage the database, instead it just receives input statements and
returns the result. While it is a real case of a Database Class Anti-Pattern, it is obviously
not malicious in this context.

5.2.4 Ravioli Code

Figure 5.7 shows the scan results for this Anti-Pattern.

76



Detected cases

%,
%, %
A % 2 " '}J‘

o o gy By M G M b, % %, &

T (& 1 () A Lo /’e $o o, () ?, So ) So
Ravioli Code v ® < < % - ©® o @® <
Anti-Pattern Scanner 187 0 0% 66 35% 121 65% 0 0% 0 0% 0 0%
Race Creation Tool 104 0 0% 42 40% 62  60% 0 0% 0 0% 0 0%
NewNomads Desktop 428 0 0% 173 40% 255 60% 0 0% 0 0% 0 0%
Apache Tomcat 2018 0 0% 726 36% 1214 60% 78 4% 0 0% 0 0%
JForum 1146 0 0% 604 53% 541 47% 1 0% 0 0% 0 0%
JUnit 291 0 0% 132 45% 159 55% 0 0% 0 0% 0 0%
JHotDraw 1558 0 0% 466 30% 1037 67% 54 3% 1 0% 0 0%
JMonkeyEngine 2252 0 0% 777 35% 1440 64% 34 2% 1 0% 0 0%

Figure 5.7: Scan results for the Ravioli Code Anti-Pattern.

Positive cases
Some of the detected cases:

Apache Tomcat AbstractReplicatedMap, ApplicationHttpRequest.
JHotDraw SelectionTool.
JMonkeyEngine BinaryClassLoader.

Observations

Figure 5.8 shows the detected Anti-Pattern instance from the JHotDraw project. Purple
nodes are interfaces, green nodes are concrete implementations or abstract classes. From
this figure it can be seen that the SelectionTool class has some concrete dependencies and
many abstract or interface dependencies. That class is somewhat large and it has a high
number of dependencies. Those dependencies themselves have mostly abstract or interface
dependencies. Not all dependencies are included in this figure.

As shown in Figure 5.7, few positive cases have been found. The cases of Ravioli
Code that have been found are most often weak indications. The SelectionTool is somewhat
stronger although there are no severe cases found in any system. In general, all of the
Ravioli Code instances are somewhat large classes with many dependencies. In all cases,
their neighbourhood appears to be a cluster of mostly abstract classes or interfaces. Those
clusters are much more abstract than other structures found throughout the projects.

5.2.5 The Blob

Figure 5.9 shows the scan results for this Anti-Pattern.

Positive cases

Some of the detected cases:

77



5. EMPIRICAL EVALUATION

= x|
WeakProp. 3 DOMStora, = don
[+ NS
N
\\ . ~
[ SelectArea. % = g
[y AbstractBe Drawing|
X T
\ / E¥ AttributeKe
B
ToolEvent ‘
EJ ToolAdapt. ~ /

N ¥ gt
e —

EXDefaultDra
[N handle
— 4 R -
[ Fanaiorrs PN S — [T

2 /N
EY DragTrack

R

Figure 5.8: The SelectionTool from the JHotDraw project.

J&o
% 4
%0 %d’ 1. S ,]’J\

o %, % e, e Yoy, %, 4, %, g %, b
The Blob Yy ® o ® < % & % ® T ®© =
Anti-Pattern Scanner 187 110 59% 68  36% 8 4% 1 1% 0 0% 0 0%
Race Creation Tool 104 57 55% 27 26% 14 13% 5 5% 1 1% 0 0%
NewNomads Desktop 428 159 37% 137 32% 121 28% 11 3% 0 0% 0 0%
Apache Tomcat 2018 477 24% 1201 60% 296 15% 43 2% 1 0% 0 0%
JForum 1146 270 24% 793 69% 69 6% 14 1% 0 0% 0 0%
JUnit 291 100 34% 173 59% 18 6% 0 0% 0 0% 0 0%
JHotDraw 1558 510 33% 896 58% 148 9% 4 0% 0 0% 0 0%
JMonkeyEngine 2252 477 21% 1285 57% 424 19% 64 3% 2 0% 0 0%

Figure 5.9: Scan results for The Blob Anti-Pattern.

Race Creation Tool A class with the appropriate name ‘GUI.
Apache Tomcat Pagelnfo.

JHotDraw DefaultDrawingView, PaletteToolbarUI (weak indications).
JMonkeyEngine ParticleSystem, WaterRenderPass.

78



Detected cases

Observations

The Blob often occurs in a lesser form. Figure 5.9 shows that weak cases have been found in
most projects. Of all Anti-Patterns that were scanned, The Blob is the most common. Figure
5.10 shows a birdeye view of a Blob. In this case, the JMonkeyEngine ‘WaterRenderPass’
has 35 different dependencies, some of them having proper responsibilities, others just being
simplistic. The WaterRenderPass class is where it all comes together, having many different
responsibilities and being large. Due to the reasonable balance in class responsibilities, it is
not a severe case of a Blob.

Figure 5.10: An illustrative example of a potential Blob.

In all cases, a Blob also has the God Class Code Smell as determined by the InCode
Eclipse Plugin. The classes are always somewhat large if not very large. In the particular
case of the RCT GUI, the Blob is the class that manages the entire GUI and it has control
over lots of simple ‘listener’ classes and ‘container’ classes that contain GUI elements. In
systems that are better designed, blobs still occur as classes that depend on many other
classes, typically to bundle or manage those classes.

Some of the weaker cases of The Blob are caused by large classes that have many
dependencies although the dependencies are not ‘simple’. A large cluster of ‘good’ classes
that are bundled by one fat class. Such cases do suffer from Single Responsibility violations
or the God Class Code Smell although the related classes are not being used as simple slave
classes.

5.2.6 Tower of Voodoo

Figure 5.11 shows the scan results for this Anti-Pattern.

Positive cases

Some of the detected cases:

Apache Tomcat JspMethodNotFoundException.

JUnit AllTests.

JHotDraw ActionsToolbar, DependencyFigure (weak indications).
JMonkeyEngine TestDnD$MyGameState, AbsoluteMouse.

79



5. EMPIRICAL EVALUATION

%,
% %
% % 5 %
‘on P 9y, S Y, Y T, % 4, % %, 4
S Yy Vo Y 2 %, v S T D, S G,
Tower of Voodoo 4 ® o 4 g % o @ o ® o
Anti-Pattern Scanner 187 8 4% 161 86% 18  10% 0 0% 0 0% 0 0%
Race Creation Tool 104 6 6% 97  93% 1 1% 0 0% 0 0% 0 0%
NewNomads Desktop 428 20 5% 382 89% 26 6% 0 0% 0 0% 0 0%
Apache Tomcat 2018 206 10% 1527 76% 257 13% 24 1% 4 0% 0 0%
JForum 1146 54 5% 575 50% 517  45% 0 0% 0 0% 0 0%
JUnit 291 17 6% 228 78% 44 15% 2 1% 0 0% 0 0%
JHotDraw 1558 110 7% 1032 66% 373 24% 43 3% 0 0% 0 0%
JMonkeyEngine 2252 99 4% 1798 80% 322 14% 32 1% 1 0% 0 0%

Figure 5.11: Scan results for the Tower of Voodoo Anti-Pattern.

Observations

The Tower of Voodoo Anti-Pattern is present in some of the projects. As shown in Figure
5.11, few Strong cases have been found. There are no Very Strong cases.

An example Tower of Voodoo is shown in Figure 5.12. The topmost structure has the
most significant levels and is the only structure that counts towards the final rating. This
example features a game that is built upon a debug engine, built upon a text based game,
based on a generic engine, built upon a state controller.

= TestDnd
) ) ) [ DebugGam. | [EY TestDnds.|
[+] [+] < <— <
<t
[FY JMEDeskto] [E TestDnds$.|
<

Figure 5.12: A Tower of Voodoo example from the JMonkeyEngine test games.

Some of the cases that were found seem to express some laziness. Empty comments
blocks, auto-generated comments, virtually empty methods have been found. Another ex-

80



Detected cases

ample is a ‘quick’ experimental or stub extension. One was found with the comment “Not
ready yet”. It was last maintained in JDK 1.4. Such cases could also be considered cases of
the Lava Flow Anti-Pattern [5].

The cases picked up by this heuristic are those where no explicit definitions are supplied
for the added levels. Manual examination also revealed cases that were longer than the
positive cases but that did have explicit information about their structure. Those cases had
interfaces implemented by their intermediate levels, meaning that the interface defines the
added value of such an intermediate level.

False positives

Exception inheritance structures are the most common cases of this Anti-Pattern. Long trees
of exception types that specify exceptions for more specific cases can be found in many
applications, including the Java language itself. These cases are often simple extensions
that add more meaning than functionality and they may not be malicious to the application.
Still, they are cases of the Tower of Voodoo and in some cases, rethinking their meaning
might make them obsolete. Those exception structures are easily picked up by this heuristic
and it might depend on personal taste to whether they are or are not real cases of this Anti-
Pattern.

5.2.7 Single Responsibility Principle

Figure 5.13 shows the scan results for this Design Principle.

%,

%, %

%é’ % 1. () 4, 4 Ny /}J‘
2 Sy, ) (S %,
Y s o, .. & 4, o, & o, &
SRP Y e B e e R 4 % T % % % &
Anti-Pattern Scanner 187 128  68% 45  24% 11 6% 2 1% 1 1% 0%
Race Creation Tool 104 79 76% 1 1% 5 5% 9 9% 10 10% 0%

NewNomads Desktop 428 168  39% 128  30% 91 21% 21 5% 20 5% 0%
Apache Tomcat 2018 942  47% 621  31% 236 12% 138 7% 73 4%
JForum 1146 726  63% 333 29% 44 4% 11 1% 30 3%

JUnit 291 160 55% 104  36% 25 9% 1 0% 1 0%

JHotDraw 1558 947  61% 329 21% 139 9% 82 5% 60 4%

0%
0%
0%

=, O N 0 O O O

0%
JMonkeyEngine 2252 1104 49% 611  27% 313 14% 134 6% 78 3% 12 1%

Figure 5.13: Scan results for the Single Responsibility Principle.

Positive cases
Some of the detected cases:

The Anti-Pattern Scanner ScanCache.

81



5. EMPIRICAL EVALUATION

Race Creation Tool Buildings, units, upgrades, ...

NewNomads Desktop Core framework management class, the cache of one of the appli-
cation modules, many of the concrete CRM entry classes.

Apache Tomcat AbstractReplicatedMap, Node, StandardWrapper.

JForum Topic, User.

JUnit ResultPrinter.

JHotDraw DefaultDrawingView.

JMonkeyEngine AbstractCamera, AudioTrack.

Observations

Violations to this principle are common. As shown in Figure 5.13, both Strong and Very
Strong cases occur frequently. Cases have been found in all systems and often in large
amounts. Figure 5.14 shows the SRP violations in the SearchParams class from the JForum
project. To begin with, some of the attributes of the class (round nodes) are independent
from one another. This causes them to be seen as multiple different related sets of attributes.
Furthermore, the methods are being invoked in different sets from different classes. For ex-
ample, the ‘getQuery’, ‘getUser’ and ‘setMaxResults’ methods are one set, the ‘getMaxRe-
sults’ and ‘getStart’ methods are in another set.

=] actions =] hibernate
B SearchActi. SearchActi. 3] SearchDAO) SearchPar.

- | 15

SearchPar.

cetMa.  setMe.  setSt.  getSt.  setQu.  getQu.  getUs.  setUs.  buid  getFo.  setFo.  setMa.  getMa.  getSo.  setSo.  cetSo.  setSc.
|

T B i s

Figure 5.14: A class that violates the SRP principle.

Classes can have control methods, used to manipulate the state or the data of the objects.
Some of these methods are exposed, some are not. Control methods often appear to be
reserved for specific clients or simply not properly protected. In general, all methods that
are not properly protected become exposed responsibilities. In many cases, control methods
are one set of responsibilities and the class offers additional methods for other purposes.

Classes that control a system state typically have methods that set their flags, switch
states on and off etc. They also have a set of methods that do the actual controlling such as
determining whether something is allowed, triggering or even executing logic based on the
state.

82



Detected cases

Manager-style classes typically have sets of getter and setter methods for core compo-
nents. They might also offer persistent storage entry points, application logic entry points,
user-interface hooks etc.

Objects that contain the logic sometimes also contain the data for executing the logic or
contain the result data. Both the input and output data can be different sets, sometimes there
are even multiple sets for either. The latter typically occurs when the data is modeled using
different primitives, each with their own methods for getting and setting. If data is modeled
using custom objects to contain the data, fewer methods and sets are used.

Helper methods and logic execution methods often reside in the same class. For exam-
ple, a parser that has control methods for the parse flow also can have utility methods for
String analysis.

Some classes offer overloaded versions of methods. Each version has nearly the same
functionality but using different parameters. These methods are often ‘dangling’ because
if one is used, the other is not needed. Also, some objects appear to be an envelope that is
used for passing messages. The envelope can be routed through a chain of classes and for
each class, it offers ‘dangling” methods that are used by the class to get routing information.

In many cases, SRP violations appear to have a strong overlap with the God Class Code
Smell. Classes that do or delegate a lot of work often have many methods. This often
translates to many responsibilities.

Classes might implement interfaces or extend abstract classes that cause them to have
multiple responsibilities. For example, the DefaultDrawingView class from the JHotDraw
project seems to be concerned with many aspects of drawing the canvas: size, visibility, set-
tings, drawing execution, caching, transformation and providing hooks for change listeners.
Most of these responsibilities seem to be forced upon this component because it extends an
abstract class and implements multiple interfaces.

False positives

Dynamic method invocation occurs. Methods are mapped dynamically and the usage of
the methods is not visible in the source. Manual inspection has revealed that this can cause
problems. Methods that are not invoked can become ‘dangling’ methods that can cause
a class to get a higher rating towards violation of this principle. Also, the scanner might
miss that two sets of methods actually belong to the same set because the invocation from a
bridging method is never seen.

Classes that are not used, used only once, or few times have a higher probability for
being rated positive. If there are more methods that invoke methods from a class, that class
will probably have fewer sets containing more methods. Some classes which are used only
few times have a positive indication. This indication is correct based on the information that
is available but the confidence in such a rating is lower.

Abstract classes and classes that extend abstract classes might suffer from false positive
indications. When some of the invocations occur on the methods of the parent class and
some on those of the child class, the invocations are not processed in the same scanner pass.
This might result in more sets of methods. The solution would be to see all instances of

83



5. EMPIRICAL EVALUATION

overridden and base methods as the same method, meaning that the actual usage is deter-
mined by an entire inheritance structure.

5.2.8 Interface Segregation Principle

Figure 5.15 shows the scan results for this Design Principle.

J};o
% b
%, %, v % 4 4 " %,
2 Sy, S, %9 ¢, . %,
Ox % (T %, & e 4, o, ¢ o &
ISP % b Vo Gy R %, e % % % % % %

Anti-Pattern Scanner 187 185 99% 1 1% 0% 0 0% 1 1% 0 0%
Race Creation Tool 104 104 100% 0 0% 0% 0 0% 0 0% 0 0%
NewNomads Desktop 428 424 99% 0 0% 0% 0% 2 0% 2 0%

Apache Tomcat 2018 1869 93% 51 3% 0% 13 1% 16 1% 69 3%

JForum 1146 1114 97% 15 1% 0% 1 0% 9 1% 7 1%

JUnit 291 279  96% 8 3% 0% 1 0% 3 1% 0 0%

JHotDraw 1558 1501  96% 15 1% 0% 1 0% 8 1% 33 2%
JMonkeyEngine 2252 2195 97% 36 2% 0% 2 0% 6 0% 13 1%

Figure 5.15: Scan results for the Interface Segregation Principle.

Positive cases

Some of the detected cases:

The Anti-Pattern Scanner NamedScannerInterface.

NewNomads Desktop Application module - CRM: The generic CRM entry interface.
Apache Tomcat CatalinaCluster, Context, HttpServletRequest.

JForum Most of the interfaces that extend Repository<T>.

JUnit JUnitSystem, Test.

JHotDraw Application, CompositeFigure.

JMonkeyEngine InputCapsule, Savable.

Observations

The percentage of positive indications for the Interface Segregation Principle among inter-
faces is often high, sometimes almost 50%. Figure 5.15 shows the amount of indications.
These are the indications for all classes. Classes that are not an interface are marked as
Strong Negative. For example, in the Tomcat project, of the 2018 classes examined, around
7% is an interface. Around 3% of all those classes is an interface that is also marked as Very
Strong.

Figure 5.16 shows an example of an ISP violation.

84



Detected cases

One of the classes only uses the ‘getName’ method, the other also uses ‘getExaplana-
tion’ method. Larger versions of this violation are often found. In many cases, the methods
have no usage overlap at all.

Interfaces that define a library access point
such as a List typically have methods like get(),
set(), getAll(), add() or remove(). Many of the
methods are situational. Most of the time only
two of the methods are used and the others do not
match the situation. This is even more true for
different types of methods, such as helper condi-
getNe. getEx. tion checking and control methods. For example,
the isEmpty() and add() methods are typically not
used in the same situation, or not by the same
client.

= resultinol
B3| ScanResult. E3 Resultinfo.

apscanner

NamedSca.

Figure 5.16: A small violation of the

ISP in the Anti-Pattern Scanner. Some interfaces are used to define a universal

data object or another universal component type.
Such interfaces might offer methods for lifecycle management, such as init(), setID() and
tearDown(). Interfaces might offer conversion methods such as write(), toXML(), toArray()
etc. All of these roles are often needed in combination. The good solution would be to define
an interface for every role or even part of a role. In practice however, the combinations of
roles are often defined in the interface itself, meaning that the interface also has multiple
responsibilities. Instead, the object that implements the interface should be able to pick
those role-defining interfaces in the combination that it needs.

An example of these roles is the Filter interface from Tomcat. This interface defines
methods for lifecycle support and it defines the actual ‘filter’ method. The lifecycle is then
used by one of the Tomcat components to manage the starting and stopping of the filters.
The actual filtering is invoked from a completely different component.

In general, interfaces that are small, such as three or two methods, rarely suffer from
ISP violations. They are usually compact and to-the-point, defining only one role.

An interface that extends an interface should only expand the role already defined by
the superinterface. This could keep the superinterface small and the extending interface
clear about what the extension adds. In practice however, some interfaces tend to add roles,
causing their ISP violation rating to increase. An example is the AvatarRepository from
the JForum project. The base Repository <Avatar> interface defines methods for adding
and removing entries. Interfaces that extend Repository<Avatar> typically add a getAll()
option. However, the AvatarRepository (extends Repository <Avatar>) also adds methods
for managing a gallery.

False positives

Rare cases of empty interfaces have been reported. Even if that interface extends another
interface, the indication is biased because it claims that ‘none of the methods are invoked’.
This causes a positive indication although the interface is not violating the principle.

85



5. EMPIRICAL EVALUATION

Deprecated interfaces or interfaces that have a few deprecated methods might yield a
biased indication. Such interfaces tell implementing classes that the methods should not
be used. The problem is that when these methods are indeed not used, the interface forces
unnecessary method implementation upon clients. In the context of keeping deprecated
methods, it is questionable whether this is good or bad practice.

In some framework projects, such as JHotDraw, interfaces are used to provide an API
that allows other applications to access the framework. Such interfaces are not yet used
when examining the framework itself, causing their rating to weakly increase. For this
reason, interfaces that are only meant for other programs could be ignored.

Interfaces that are seeing little use at all cannot provide proper indications. This problem
is similar to that of the SRP.

5.2.9 Dependency Inversion Principle

Figure 5.17 shows the scan results for this Design Principle.

J;)‘o
*y % “
r & . 2 % 4 4 % %
o(‘ Q’}l, J}l/o (’L %’o oc* Q(lo QQ @o ﬁol) So ﬁo@ L\“o
DIP vy % - % = ¥y T % - ® o
Anti-Pattern Scanner 187 176  94% 7 4% 0 0% 2 1% 2 1% 0 0%
Race Creation Tool 104 97  93% 7 7% 0 0% 0 0% 0 0% 0 0%
NewNomads Desktop 428 390 91% 21 5% 0 0% 10 2% 7 2% 0 0%
Apache Tomcat 2018 1741 86% 235 12% 0 0% 32 2% 9 0% 1 0%
JForum 1146 1081  94% 42 4% 0 0% 20 2% 3 0% 0 0%
JUnit 291 257 88% 24 8% 0 0% 8 3% 1 0% 1 0%
JHotDraw 1558 1403 90% 119 8% 0 0% 28 2% 8 1% 0 0%
JMonkeyEngine 2252 2054 91% 123 5% 0 0% 54 2% 15 1% 6 0%

Figure 5.17: Scan results for the Dependency Inversion Principle.

Positive cases

Some of the detected cases:

The Anti-Pattern Scanner AbstractComplexScanner, AbstractSimpleScanner.

NewNomads Desktop The abstract CRM entry, which depends on various concrete frame-
work classes.

Apache Tomcat RealmBase.

JForum ForumRepository, TagRepository.

JUnit ParentRunner, Request.

JHotDraw AbstractFigure, AbstractRotateHandle.

JMonkeyEngine BaseSimpleGame, ParticleSystem.

86



Detected cases

Observations

Violations of this principle have been found in many of the studied systems. Figure 5.18
shows a detected instance from the JUnit project. The Request class is an abstract class and
it has concrete dependencies inside the package. It also has concrete dependencies outside
of it’s package, such as FilterRequest and AllDefaultPossibilitiesBuilder.

= runner
Request
method class. getRu. class. error.
Il [
-]
Description JUnitCore| E3 ErrorRepor.
filte. &Class class.
J
= manipulatio. = builders
EJ Computer E3 AllDefaultP.
filte. sortW.

Figure 5.18: The Request class from the JUnit project.

Typical concrete dependencies for both interfaces and abstract classes are framework
API classes, utility classes such as logging, data structures and exception types. All kinds of
classes have been seen as concrete dependencies although utility classes and data structures
appear to be the most common. In many cases this could still be considered a violation
of this principle. Many utility classes and data structures do have interfaces that define
them. Components often can and should depend on those interfaces instead of the concrete
implementations.

In JForum, many of the data classes are mentioned in interfaces or abstract classes.
Those data classes are the data containers that also provide persistent storage for the data
types. In JMonkeyEngine, many of the abstract examples use concrete classes that provide
functionality.

Sometimes two different packages are tightly coupled. They do not always use abstrac-
tions for this. For example, the JMonkeyEngine particle system uses many different types
of particles (which are concrete). The particles and the engine API are not in the same
package thus this relation triggers a positive rating.

It appears to be more common for abstract classes to use concrete dependencies than
for interfaces. This is probably because abstract classes already provide some concrete
functionality and they might need concrete classes to do so. Interfaces on the other hand
need only to orchestrate definitions on a non-concrete level.

87



5. EMPIRICAL EVALUATION

When an abstract class extends another abstraction, and that superclass violates this
principle, then the extending class is likely to also violate this principle. For example, The
ParentRunner in the JUnit project extends Runner. The latter has one DIP violation. The
first one has that same DIP violation, as well as some other violations of this principle.

False positives

Final classes occasionally pop up as concrete dependencies for abstract classes and inter-
faces. Final classes could be considered less of a threat for this principle, even though they
are concrete. Because they are final, they can be expected to be more stable. Keeping in
mind that final classes are less severe than other concrete classes, some of the ratings could
be lowered slightly.

5.2.10 Acyclic Dependencies Principle

Figure 5.19 shows the scan results for this Design Principle.

J):‘o
% %

2 %e %e % v 4 % 7’\:;,
ADP % G Mo G ey By, % % % % % s
Anti-Pattern Scanner 15 0 0% 11 73% 0 0% 4 27% 0 0% 0 0%
Race Creation Tool 4 0 0% 0 0% 0 0% 0 0% 2 50% 2 50%
NewNomads Desktop 34 0 0% 13 38% 0 0% 4 12% 4 12% 13 38%
Apache Tomcat 99 0 0% 57  58% 0 0% 11 11% 4 4% 27 27%
JForum 35 0 0% 26 74% 0 0% 0 0% 1 3% 8 23%
JUnit 27 0 0% 9  33% 0 0% 2 7% 1 4% 15 56%
JHotDraw 64 0 0% 27 42% 0 0% 4 6% 6 9% 27 42%
JMonkeyEngine 156 0 0% 88  56% 0 0% 14 9% 1 1% 53 34%

Figure 5.19: Scan results for the Acyclic Dependencies Principle.

Positive cases
Some of the detected cases:

The Anti-Pattern Scanner Package ‘apscanner.rating’.
Race Creation Tool Core and GUL
NewNomads Desktop Many of the application modules have cyclic application dependen-
cies.
Apache Tomcat Packages ‘org.apache.catalina’, ‘org.apache.catalina.startup’, ‘org.apache.catalina.util’.
JForum Packages ‘net.jforum.core’, ‘net.jforum.util’.
JUnit Packages ‘org.junit’, ‘org.junit.runner’.
JHotDraw Packages ‘org.jhotdraw.app’, ‘org.jhotdraw.draw.action’.

88



Statistics

JMonkeyEngine Package ‘com.jme.util.export’.

Observations

Cyclic package dependencies occur in many systems and the cycles typically have lengths
from two packages to ten, occasionally even much longer. Figure 5.20 shows a small cycle.
The packages in this example are inside the ‘org.apache.jk’ package.

. . | :J common
B3 Jinputsie)

— T

Figure 5.20: An example cyclic relations between packages.

Package cycles often occur in utility packages. Such packages contain classes that pro-
vide some generic functionality that can be used by the application logic but that does not
seem to be categorized or placed in the package that uses it. The problem is that such utility
classes tend to query the framework or upper layers for data as well as invoking application
logic to process it. Utility classes might be invoked from all levels. Since the utility classes
are not properly categorized, they might serve multiple purposes and all be placed in the
same package. With outgoing and incoming dependencies from all levels, cycles are bound
to occur.

Another type of cycle that is seen in Tomcat is that the application runs a script at a high
level. This script starts up low level components, which in their turn depend on the high
level framework.

Cycles often occur within components (for example, package domains), they occur less
often across components. For example, in the Tomcat project, domainl.appl.*.* has cyclic
dependencies, domain2.app2.*.* has cyclic dependencies, but there are no cyclic dependen-
cies between those. Even though they do depend on each other.

5.3 Statistics

In addition to presenting an overview of positive cases for every pattern, the Anti-Pattern
Scanner writes a file containing more detailed statistics for every project. The statistics do
not contain reasoning information and they do not name the positive or negative candidates,
instead the file contains hard numbers about number of entities, number of scan results and
an soft indication of conditional probabilities of patterns relating to each other. An overview

&9



5. EMPIRICAL EVALUATION

of these statistics are shown in this section. For the full data set obtained from every project,
see Appendix B.

5.3.1 Accuracy

In general, the accuracy of the implemented heuristics is good. Positive indications always
have a reason for being positive, such as an exceeded metric threshold or the presence of
a specific structure. Most of the false positive cases can be backtracked to either of the
following two reasons. The first reason is that the reasoning is incorrect: The concept
behind the heuristic is incorrect for a specific case because according to personal opinion,
the specified case is not a design problem. For example, according to personal opinion,
an Exception inheritance structure can never be a Tower of Voodoo because it is a personal
preference to specify the exception type as detailed as possible. The second reason is that the
abstract model is unable to capture a property that would indicate an exception: Information
such as annotations, comments etcetera are not included in the model. For example, classes
can have Hibernate annotations. These annotations are not included in the model. The
annotations would be an indication that a class has a data persistence responsibility. Due to
the lack of this information, the class is marked as a Data Class.

For those projects where false positive cases have been found, typically one or two of
the examined cases were false positive. A subset of all cases has been examined and this
results in an estimation of accuracy. In general, the accuracy of all problem types is between
50% to 100%. The numbers vary per project because not every project uses features that
cannot be captured in the model.

5.3.2 Results by fragment scanner

Figure 5.21 shows the amount of indications for every scanner component for every indica-
tion strength category. This table contains the sum of the result data, divided by eight (the
number of projects) and rounded for convenience. It may be impossible to draw any solid
conclusions from this table because averaging the results of all tables may not be scientifi-
cally sound. Therefore, the table should only be used as an indication about the amounts of
work for all scanners. Top level pattern scanners have been printed in boldface.

5.3.3 Conditional probabilities

Conditional probabilities have been calculated for each of the projects. The conditional
probability p(Y|X) is the probability that an entity receives either a Strong or Very Strong
positive rating from scanner Y (vertical axis), given the fact that scanner X (horizontal axis)
has given it a Strong or Very Strong positive rating. In other words, when looking at the
columns of the table, every number in that column is the probability that when there is a
positive indication X (top name), there will also be a positive indication Y (left name).
Figure 5.22 shows the conditional probabilities for all top-level scanners for the JMon-
keyEngine project. The amount of positive cases of every scanner X is shown behind the
name of the scanner. The more indications, the more reliable this statistic is. From this table
it can be seen that for the 14 Large Class Code Smell instances that were found, 7 (50%)

90



Statistics

J}"o
%, 4
% % 4, S Q'J‘
2 . S, Son. ¥ %, 7 4 (2 % L.

A %, % S T A TSR S % S

verage of results 4 ® ° ® s L% ° % ° ® ° @ &
BlobRelations 998 25 1% 724 75% 210 21% 33 3% 7 0% 0 0%
DataClassFilter 998 640 70% 136 11% 146 13% 55 5% 16 1% 5 0%
DatabaseClass 998 988 97% 1 0% 6 1% 4 2% 0 0% 0 0%
DatabaseConnectorClass 998 0 0% 988 97% 0 0% 3 2% 3 1% 5 1%
DatabasePackage 54 0 0% 52 87% 0 0% 1 5% 0 1% 2 8%
LargeClass 998 265 35% 616 55% 98 9% 13 1% 5 1% 1 0%
LooselyCoupledRelations 998 0 0% 473 47% 490 51% 31 2% 4 0% 1 0%
NonDatabasePackagelnvocation 142 0 0% 98 37% 0 0% 6 2% 38 11% 1 0%
RavioliCode 998 0 0% 373 39% 604 60% 21 1% 0 0% 0 0%
SingleResponsibility 998 532 57% 272 25% 108 10% 50 4% 34 4% 3 0%
SimpleClass 680 38 5% 389 58% 146 21% 75 12% 28 4% 5 0%
TheBlob 998 270 36% 573 50% 137 13% 18 2% 1 0% 0 0%
TowerOfVoodoo 998 65 6% 725 77% 195 16% 13 1% 1 0% 0 0%
UniversalDatabaseMethod 168 0 0% 37 12% 87 26% 33 9% 10 3% 0 0%
ConcreteDependentAbstraction 998 900 91% 72 7% 0 0% 19 2% 6 1% 1 0%
CyclicPackageDependency 54 0 0% 29 47% 0 0% 5 9% 2 10% 18 34%
ElementalDatabaseClass 917 0 0% 916 100% 0 0% 0 0% 2 1% 0 0%
InterfaceSegregation 998 959 97% 16 1% 0 0% 2 0% 6 1% 16 1%
InheritanceTargetScanner 391 0 0% 0 0% 179 56% 212 44% 0 0% 0 0%
LooseCoupling 675 0 0% 556 86% 63 9% 48 5% 6 1% 1 0%
ManyAttributes 998 552 61% 423 36% 17 2% 4 1% 1 0% 1 %
ManyDistinctRelations 998 0 0% 800 84% 65 6% 52 4% 34 3% 48 3%
ManyMethods 998 265 35% 613 54% 83 8% 24 2% 9 1% 4 0%
MethodUsageSetScanner 466 0 0% 223 43% 0 0% 193 49% 42 7% 8 1%
PrimitiveAttributes 643 0 0% 148 22% 285 46% 98 15% 73 11% 39 6%
SimpleMethods 643 0 0% 559 87% 0 0% 49 8% 16 2% 19 3%
SomewhatAbstract 998 0 0% 0 0% 816 90% 128 8% 27 1% 27 1%
UniversalDataStructure 17 0 0% 14 39% 1 2% 2 7% 1 2% 0 0%
UnrelatedAttributes 466 179 39% 215 41% 32 9% 1 0% 39 11% 1 0%

Figure 5.21: Average scan results for the eight scanned projects.

also had a positive indication for Single Responsibility Principle violations. Some indica-
tions are interesting and will be evaluated in the next chapter. Other indications are trivial
and will be ignored. An example of a trivial indication is that instances of The Blob also
have the Large Class Code Smell. This is trivial because The Blob is based on the Large
Class Code Smell, meaning that a positive indication of the smell contributes to a positive
indication of The Blob Anti-Pattern.

Tables for all projects can be found in Appendix B, as well as conditional probability
tables for all individual fragment scanners.

5.3.4 Scanner benchmark

Runtime of the Anti-Pattern Scanner depends greatly on the amount of entities in the ab-
stract model. Runtime is not linear with project size. In all studied cases, runtime is deter-
mined by the amount of classes, packages and methods in the projects. To a lesser extend,
runtime is determined by cohesion strength of classes. Depending on the amounts of depen-
dencies between classes, some of the scanners need a non-linear amount of time compared
to just the overall amount of entities in a model. Cyclic relations can also cause a strongly
increased amount of runtime.

91



5. EMPIRICAL EVALUATION

LargeClass
DataClassFilter
SingleResponsibility

%,
% 0
%y, % %,
7
Q, 8, %,

%

SO ) (e}
AL

0.00 0.00 #00! 0.00

0.00 0.00 0.00 0.00

0.00 0.00 [2100! 0.00

CyclicPackageDependency 0.00 0.00 0.00 0.00
ConcreteDependentAbstraction 0.00 0.00 0.50 0.00
InterfaceSegregation 0.00 0.00 0.00 0.00
DatabaseClass{ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

RavioliCode| 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

TheBlob| 0.14 0.00 0.02 0.00 0.05 0.00 0.00 0.00

TowerOfVoodoo| 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Figure 5.22: Conditional probabilities of the JMonkeyEngine project.

Figure 5.23 shows how much time in milliseconds is needed to scan the JHotDraw
project. The computer on which the benchmark is performed is a computer with a Xeon 8-
core processor, running at 2.33 GHz. Memory requirements are around 1 gigabyte of RAM
with approximately 400 megabytes of memory being used by the fragment scanners, 500
megabytes being used by the Famix parser and around 100 megabytes by the Eclipse IDE.
The benchmark shown in Figure 5.23 is performed using only a single processing core.

Depending on package layout and the amount of cycles, the Acyclic Dependencies Prin-
ciple can have an exploding search space, causing the corresponding scanners to soak up
many more gigabytes of memory and much more processing time. To prevent the search
space from becoming larger than feasible, the search depth is capped. Limiting the search
space could result in missed cases. In practice however, this is no problem because most
cycles are found at lower search depths.

Using multiple processing cores can reduce the amount of time needed for scanning
significantly. Figure 5.24 shows how using eight cores reduces the time scanning to almost
one-third. Parse time is not included because this task cannot be parallelized.

92



Statistics

Tasks

M Parsing

B AcydicDependencyPrindiple

1 Database Class Anti-Pattem

B Data Cass Code Smell

B Dependency Inversion Principle

M Interface Segregation Principle

1 Large Class Code Smell

= RavioliCode Anti-Pattem
Single Responsibility Principle

1 The BlobAnti-Pattem

1 Tower Of Voodoo Anti-Pattem

516

Figure 5.23: Sample runtime requirements (milliseconds) for the JHotDraw project.

Parallel scan time

35000

30000

25000 -

20000 -

15000 -
10000
5000 -+ E
0 -
1 2 3 4 5 6 7 8

Processing cores

Milliseconds scanning

Figure 5.24: Average scan time for the JHotDraw project (parsing excluded).

93






Chapter 6

Discussion of results

Based on the results of the previous chapter, the questions presented in Chapter 1 are an-
swered in this chapter. General indications are evaluated as well as specific indications for
the various pattern types. Based on the results from the study, an indication of the severeness
of the problem types is given.

6.1 Evaluation of results

6.1.1 Evaluation of detected occurrences

The positive or negative match of a design problem is partially based on personal opinion.
The definitions of the design problems cannot strictly determine which occurrences are
positive or negative and conclusions drawn about whether an occurrence is malicious is
based on intuition. Inspection of a program’s source code and knowledge about the history
of a project does not yield hard facts about whether a detected problem is a problem. To
get hard facts about the effects of design problems, software bug databases or program
maintenance histories should also be inspected. Gathering such information might require
MSR. See Chapter 2 for related work where such strategies have been applied. MSR is
outside the scope of this study. For this reason, the results presented in this section are
based on personal experience and on what information is available in a program’s source.
These results are not hard facts and cannot be used as proof to claim that a specific design
problem is malicious.

Severeness of indications

In general, the Anti-Pattern Scanner can give a good indication of which entities do not
possess a given pattern. The negative indications are conservative, meaning that a negative
indication is only given to entities that do not possess any of the scanned properties or only a
minor portion of them. If there is any doubt about an entity possessing the scanned property,
the indication shifts more towards positive than negative. The neutral and weak positive
indications often occur when an entity possesses only slightly the sought properties. These
indications are numerically close to each other, with neutral leaning more towards negative

95



6. DISCUSSION OF RESULTS

and weak more towards positive. The neutral and weak positive indications should be seen
as a negative indication with the exception that something is not good about the entity.
The entity shows some hints of Anti-Patterns or principle violations thus it could be worth
investigating. In general, any indication of weak or lower does not signal any significant
problems and it will probably not be a reason to start refactoring.

The strong positive indication indicates that something more significant is wrong and
that it should be investigated. Those cases match the criteria for a pattern in most aspects of
that pattern. In practice however, many strong cases have a mix of very strong positive and
weaker indications, often even negative. When there is a mix of negative and very strong
properties, the numerical indication might yield a strong case but in reality, the examined
entity does not match a given pattern. For example, classes that have a very strong violation
of the Single Responsibility Principle and that do not have many relations might get a strong
indication for The Blob. Closer examination should reveal that the entity does indeed have
some strong violations but eventually should not be considered a ‘bad case’ of the detected
pattern. In general, strong cases are never problematic. They will have some flaws, possibly
a mix of flaws and good parts. Still, it might be rewarding to refactor those cases because
their flaws could become worse. In many cases, small changes could significantly lower the
rating towards negative as the flaws are either not widespread or not severe.

Very strong positive indications are almost always significant. They are usually a mix
of weak, strong and very strong indications, meaning that the scanned properties are clearly
seen in the scanned entity. Very strong positive indications are often the result of crossing
the thresholds by a significant amount as the thresholds for very strong positive are often
multitudes of what would be considered ‘reasonable’ for a software entity. Each of these
very strong positive indications should be investigated. Some of them might still be lesser
cases, such as cases where thresholds have been exceeded with a minimal amount. Others
are cases that cast all principles aside and become problematic instances beyond reason.
Some cases are just not problematic. Examining them more closely shows that the code
smells, the layout is difficult to comprehend yet the implementation will work properly.
Those cases benefit from refactoring since they do possess the sought problem. The more
structural problems might not be economic to refactor. Removing some theoretical prob-
lems from a perfectly working entity can be too expensive and even unnecessary. More
severe cases might also be found. When a very strong case is found, it should be refactored.

Severeness of positive cases

The strengths and severeness of detected occurrences varies between the patterns. In gen-
eral, the Code Smells are local problems inside entities. Positive cases are not a severe
threat and refactoring is probably easier than that of structural patterns. For Anti-Patterns, it
is more difficult to estimate whether they are malicious. Positive indications require manual
evaluation of the project source. Some of the projects examined in this study are familiar,
others are not. It is often easier to tell from familiar projects whether a design problem is
malicious. For unfamiliar projects, this is much harder to tell.

Anti-Patterns are rather ‘soft’ in how bad they are and whether a case is positive or neg-
ative. A programmer who has developed a program for a long time will have less difficulties

96



Evaluation of results

with an implementation than someone who is new to the program. When someone is used to
working with an Anti-Pattern, he or she will probably not see it as an Anti-Pattern because
that person knows how to work with it and how to avoid problems. Furthermore, the person
has seen it grow over time or even from the start. The design might have been good in the
first place but many changes have slowly caused Anti-Patterns to develop. This might yield
a perfectly good explanation for why things are the way they are, even if they have grown
to be Anti-Patterns.

The actual positive or negative occurrence of Anti-Patterns is also a matter of taste.
Judgement will vary from person to person. Code Smells and Design Principle violations
will probably be less dependent on taste because they are more crisp. Either a metric thresh-
old is exceeded or it is not. Either the implementation violates the rule of a Design Principle
or it adheres to it.

Unlike Code Smells, Design Principle violations are structural problems. Cyclic depen-
dencies, concrete relations, class responsibilities and most of the other principles tell how
the structure should be. Violating principles is probably as easy as implementing smelly
code and as difficult to refactor as an Anti-Pattern. The occurrence of a principle violation
can be indicated by crisp rules but the badness of a violations is -like an Anti-Pattern- very
much subject to personal taste.

In most cases, it is not possible to say whether a piece of code should be refactored
or not. It depends on how much maintenance it is going to receive, how much it is being
used and many more factors. Refactoring is expensive and in most cases, it should only
be done after evaluating the benefits. Similarly, MSR could be used to identify whether a
problem occurrence has already caused problems in the past. Without such means of gath-
ering information, there is no reliable information about whether the detected occurrences
are malicious.

Severety of detected cases

Detected cases have been examined to get an indication of whether they are malicious to a
project. The indication is an opinion and not based on facts such as maintenance history.

The Data Class Code Smell appears in most projects. The worst case of a Data Class is
a class that only has unprotected attributes and no methods. Such a class is probably a risk
because the responsibilities for data consistency is enforced upon all classes that depend on
the class. Data Class instances that do protect their data are usually less of a problem. Data
classes that are only used locally, such as inside the package where they are defined or as an
inner class only, are no big risk. The responsibilities for the data are also kept local. Data
Classes that are used by multiple packages may be a risk as they do not always enforce data
consistency and potential inconsistent data can travel across the application classes using the
Data Class as envelope. Such classes should be refactored to at least check the consistency
of the data inserted into the class and bear some responsibility for the values.

The Large Class Code Smell is found in most projects. A large class does not have to be
problematic. Some classes are responsible for managing one big part of the program logic
and need many methods or attributes to do so. Those classes should not be a big problem,
even though they are harder to maintain than smaller classes. When a class also has multiple

97



6. DISCUSSION OF RESULTS

responsibilities, it may be large for the wrong reason. It is doing too many different things
instead of being required to handle one big thing. The biggest problem is probably that the
class is having multiple responsibilities. The lesser problem is that the class is also large.
The latter will often be fixed if the multiple responsibilities are refactored.

The Database Class Anti-Pattern is specific to applications that manually facilitate per-
sistent storage by using a database explicitly. Applications that use a persistence framework
that enforces abstraction, such as the Hibernate! framework will probably never get this
Anti-Pattern. In practice, the increased amount of database and error handling caused by
this Anti-Pattern is indeed a problem. The absence of an abstraction and simplification of
error management will require much more coding in the long run than implementing an
abstraction layer in the first place. Not using an abstraction layer should be a careful con-
sideration. Even though an abstraction layer might require slightly more processing power
and initial design labor, it will probably pay off in the long run.

There is some uncertainty about whether the Ravioli Code Anti-Pattern is a real Anti-
Pattern. The concept of Ravioli Code is that classes are using many abstractions and delega-
tions. This is actually a good design principle. In the case of the Ravioli Code Anti-Pattern,
the abstractions are overdone. Whether and when an overdone-good principle becomes an
Anti-Pattern can be difficult to say. The detected cases have indeed a far stronger level of
abstraction and amount of abstract relations than average classes. They truly are outliers.
Very strong indications have not been found, meaning that only just strong indications can
be evaluated. From those cases, it can be seen that the code is indeed more complex and
requires more searching than average class relations do. After examining the structure, the
user finds himself swamped in the open source files and still has only a limited vision of
what the code should do. The cases are not bad, they are more difficult to comprehend. This
Anti-Pattern is probably only a risk when it is encountered in an even more excessive form.
Until then, it can be considered ‘mostly harmless’.

Lesser versions of The Blob have been detected in some projects. In general, these
lesser cases are not harmful although the candidate classes for The Blob are often large
with lots of dependencies and responsibilities. They are always much larger than what can
be considered appropriate for a class and in most cases it is rather easy to point out at
least two responsibilities that should have been in different classes. Refactoring is strongly
suggested because The Blob will probably only grow in size if it is being maintained as it
is.

The Tower of Voodoo can occasionally be found in projects, both in lesser and greater
form. Lesser versions of this Anti-Pattern are Exception-class inheritance trees or exten-
sions to data structures. The top levels of the tower are often nearly empty and poorly
documented. They are almost harmless due to their limited addition in functionality and
responsibilities. Such examples could be examined and redesigned. Proper design could
point out that such extensions are not needed. Greater versions of the Tower of Voodoo
are typically well-designed classes being extended by other classes using multiple levels of
extension and at each level, adding a significant amount of functionality. The problem is
that the extensions may lack explicit definition. Such cases may be harmful to development.

Uhttp://www.hibernate.org/

98



Evaluation of results

Changes to one level of the tower typically result in changes to other levels and for every
change, effects on the entire structure must be understood and accounted for. Should there
be a good reason to use many levels of inheritance in a structure, then it might be best to im-
plement interfaces on intermediate levels. The interfaces could be used to explicitly define
the added functionality for that level.

Violations of the Single Responsibility Principle are common in all projects. The
violations occur in the entire range from weak to very strong. In many cases, granting
multiple roles to one class is a matter of practicality. It is simply convenient to give one
class multiple roles because that makes the class ‘glue’ subcomponents together. Every role
can be seen as one direction or subcomponent. A class with multiple roles creates a relation
between those components. In most cases, connecting components to each other this way is
not a problem. This means that the weaker cases of SRP violations are in fact violations but
they do not cause problems. More severe cases of SRP violations are considered bad. When
a class has more than two roles, it may be doing too much. It may still be for convenience but
there is a risk that the class will grow and start doing too much. In general, the SRP should
not be a strict principle but it should be a guideline to keep the number of responsibilities to
a minimum.

The Interface Segregation Principle is often violated. Some interfaces appear to be
focused on one role but eventually only a subset of the methods are being used. Other inter-
faces appear to violate the Single Responsibility Principle, causing them to violate the ISP
as well. The latter case is probably a bad case that should be avoided by keeping the inter-
faces compact. The weaker cases may be unavoidable as interfaces need to define multiple
methods to create a complete service for one role. There will eventually be situations where
only a small portion of the role is being used. For such cases, violations of this principle are
probably harmless.

The Dependency Inversion Principle suffers from occasional violations in the various
projects. Most of the cases are rather innocent. Interfaces or abstract classes that depend on
a custom list, a final class or exception type are no severe cases. Interfaces that explicitly
depend on logic or main classes of a framework are more rare and they could be a problem.
However, there is no clear indication that they actually cause any problems.

The Acyclic Dependencies Principle is occasionally violated. Whenever it is, there are
automatically multiple entities that violate it. In general, any violation of this principle is
wrong. Violations are not necessarily malicious to a program but they do always pose a risk
that maintenance will be hindered due to a cyclic dependency. In many cases, cyclic depen-
dencies are caused by a ‘utility’ package that contains classes that cannot be associated with
one another package explicitly but that together do have relations in all directions. Classes
that use a utility class from such a package might find themselves entangled in cyclic de-
pendencies. In general, utility packages are a risk and should be avoided. Cycles also often
occur from framework dependencies to the application logic and vice versa. The relations of
framework classes should be designed properly because a framework should not depend on
application logic. Furthermore, once the boundaries between framework and detail levels
start to blur, cyclic dependencies will occur with every addition to the application logic.

99



6. DISCUSSION OF RESULTS

6.1.2 Possible relations between occurrences

The data sets in Appendix B show that there may be relations between the various prop-
erties of patterns. Some of the relations which are observed multiple times are explained
here. Observations are not only based on probability values from the tables, they are also
examined in the source code of projects.

Large classes suffer from Single Responsibility Principle violations. Although the re-
lation may be obvious, it is not trivial. Classes that are large have many methods and/or
attributes and it often happens that these are not used for the same task. In general, many
of the size metrics are related. If one type of size metric is inflated, the other is likely to
follow.

Having many methods in a class can result in unrelated attributes. When methods re-
quire some attributes to perform their tasks, they often do not share the attributes. This can
result in attributes that are used for a few methods, causing multiple sets of attributes to
appear in a class when it has many methods.

A good part of the abstract classes that depend on concrete classes also suffer from
Single Responsibility Principle violations and large class size. Some abstract classes serve
as a base class that provide multiple services and use concrete classes to do so. These base
services can be extended by concrete classes.

6.2 Answers and validity

6.2.1 Answers to the research questions

The research questions presented in Section 1.3 can be answered based on the results of the
empirical evaluation.

* Can heuristics be formulated that can be used to automatically detect Anti-Patterns
and Design Principle violations in software systems? Yes. The heuristics presented
in Chapter 4 are a selection of the Code Smells, Anti-Patterns and Design Principle
violations that can be automatically detected.

e Can a program be built that can use these heuristics to find the design problems
automatically and that can tell the reasons why it has found any problem? Yes. The
Anti-Pattern Scanner is the tool developed during this project and it is explained in
Chapter 3. This tool has proven itself during the evaluation.

* Do Anti-Patterns and Design Principle violations occur in software systems? Are they
common or rare? Yes. The Code Smells are more common than the Anti-Patterns.
Design Principle violations also occur frequently. Many of these design problems
occur multiple times in a software project. Full information of the detected cases can
be found in Section 5.2.

* Are they as severe and full-featured as described in literature? The Anti-Patterns
often occur in a lesser form, such as with only a few of their ‘bad’” aspects. They
rarely occur in their full form. Code Smells and Design Principle violations are more
likely to occur fully. The reason for this is that they have fewer aspects that need to be

100



Answers and validity

present before the sought design problem is detected. The occurrences are discussed
in Section 5.2.

» For those occurrences, can an indication be given whether they are malicious to a
project? It appears that only the most severe cases of a design problem are malicious.
This has been estimated by examining the source code and the history of these prob-
lems, where possible. This study cannot answer this question with hard facts. More
information is necessary to do so. The severeness of the design problems is discussed
in Section 6.1.

6.2.2 Threats to validity

The results acquired with this exploratory study yield some interesting facts regarding the
presence and properties of Anti-Patterns and Design Principles in software systems. These
discoveries should be interpreted with some regard to the limitations of this study. There
are various reasons for why the results may be inaccurate or possibly even incorrect.

The eight projects being examined in this study are a selection of the available software
systems for testing. At least two of these systems are no longer being developed and are
mainly used for testing and tuning the heuristics. The other projects are projects that are
receiving active development by a professional team, but even those projects have their
limitations. The chosen projects do only cover a small portion of the available themes
for which software can be used. With this limited selection of projects and corresponding
product categories, only a small part of the range of software products is being covered. The
results are only partially representative for software development in general. Furthermore,
all projects are Java projects. The results may be Java-specific although many of the results
are likely to be similar for other programming languages. Similarly, typical results of the
Anti-Pattern Scanner may differ per software development team. With the sample set of
software projects being rather small and the size of projects being small to medium size
projects, the results may not be the same for all kinds of software projects. Also for these
reasons, this study is meant to explore Anti-Patterns and thus does not provide an exhaustive
list of facts.

For some Anti-Patterns and Design Principles, no ‘very strong positive’ cases have been
found. Furthermore, a generally small number of positive cases may have been found,
meaning that it can be difficult to claim meaningful facts about the patterns. There are
many reasons for having small numbers of positive indications. The chosen projects could
be an ‘unlucky’ choice of projects, having none of those problems at all. In general, this
means that the sample set of examined projects is small. Furthermore, the heuristics may
be incorrect or provide a low rating in general. Without a good sample set of positive and
negative cases, it is difficult to adjust the heuristics to determine what the thresholds are.
Some of the Anti-Patterns are only theoretical patterns that are the result of brainstorming
sessions. They might not even be Anti-Patterns or the pattern can be so rare that it may
never be found. The solution to each of these problems is to examine more projects. Should
more cases be found then the heuristics can be adjusted. Should no cases every be found
then that could be seen as a positive result too. Not having an Anti-Pattern is also a research
result and even better: it is probably good news for the software projects.

101



6. DISCUSSION OF RESULTS

The Code Smells, Anti-Patterns and Design Principles have been interpreted and a de-
tection heuristic has been designed. The interpretation of these patterns taints the heuristics
in some ways. The interpretations are only a limited view of the patterns and will not fully
cover all possible cases of all patterns. This is specifically true for some of the heuristics
presented in Chapter 4 which are explained as being only a limited approach. However, it is
generally true for all heuristics as they are the interpretations of the design problems by the
author. The heuristics are open to discussion and interpretation. They probably always will
be. A brainstorming session with experts on this field of software engineering could yield
positive contributions to the heuristics.

The suggested heuristic for the Acyclic Dependencies Principles is flawed in the sense
that it’s search space is very large. Let the number of outgoing dependencies of a package
by D and the number of packages in a software system be P, then the search space could
theoretically be of size D”. Even though it is always much less in practice, it can still be
huge. Due to optimizations in the scanner for this principle, such as limiting the maximum
value of P in the search space, the results may not be entirely correct. This is especially
true for the JMonkeyEngine project where an excessive number of cycles require memory
optimizations for the program. Without the optimizations, the search space would require
over 30 gigabytes of computer memory per processing core. Limiting the search space
reduces the number of cycles detected and theoretically could cause the program to return a
negative indication, should all cycles have been missed. In practice however, the major part
of the cycles have been found at low search depths, meaning that the indications are correct.

Taking into consideration the small sample set of projects examined, it should be clear
that any statistics gathered in this study may not be statistically valid. In general, the statis-
tics and specifically the conditional probabilities discussed in Section 6.1.2 should be used
as indications for closer examination or further research. Actual statistical significance has
not been tested and proven and correlations have not been examined. Furthermore, it is
questionable whether the fuzzy results of the various negative and positive indications (e.g.,
‘very’, ‘strong’, ...) can translate to crisp statistical values and whether such values can be
used in probability formulae.

Last and probably least, the Anti-Pattern Scanner may not be free of bugs. While it is
shown that many results are significant and usable, software problems may always threaten
the validity of the program output. There is even a remote possibility that, should it ever be
proven that a specific pattern threatens all validity of a program and that the Anti-Pattern
Scanner possesses this pattern, then it’s results have never been valid in the first place.
Should such proof ever be constructed with the Anti-Pattern Scanner, then it can at least be
shown that it is not correct.

102



Chapter 7

Conclusion and future work

7.1 Conclusion

During this project, we have developed a design problem detection tool called the Anti-
Pattern Scanner. This tool has proven itself on eight software systems in total. The scanner
program can show which software entities have what potential problems and why. The
scanner program is still a prototype that is meant to be used for research, yet the initial
results are promising.

The tool currently detects two Code Smells, four Anti-Patterns and four Design Princi-
ple violations. The results of our empirical evaluation with the software projects show:

* Many of the design problems occur frequently in software systems. Design Principle
violations and Code Smells are common, Anti-Patterns are rare.

* QOur approach of using modules for scanning design problem aspects and combining
the results using fuzzy values is effective. This approach can give a good categoriza-
tion of problem strengths and it can tell the reasoning behind indications.

* The accuracy of the indications is good, typically 50% to 100% depending on prob-
lem type.

* For most of these problem types, indications can be given that they are malicious to
a software project. None of these problems have been shown to be problematically
harmful to any project.

The Code Smells and the Design Principles are interesting as they can often be found in
software systems, even those that have been carefully designed and that are receiving active
development by a dedicated team. The Anti-Patterns are more rare but do occasionally
appear in such software systems, often in a lesser form. Many Anti-Patterns seem to be
more theoretical than Design Principles. For some of these patterns, this is the first time
concrete cases have been found.

This project provides various hooks for further research. Anti-Patterns and Desing Prin-
ciple violations are shown to occur in software projects. This project delivers a working
program that can show the presence of these problems in any Java project. This project
also suggests many heuristics for implementations of more Design Principles. It also offers

103



7. CONCLUSION AND FUTURE WORK

directions and questions which could be the aim of further research. Due to all of these re-
sults, this scanner program is a successful proof of concept, the study is a broad exploration
and this research will hopefully be a basis for other research.

7.2 Future work

The results discussed in this chapter may be the tip of the iceberg of what can be found in
software systems. Only a few projects have been examined and only a few patterns have
been examined in these projects. Examining more software projects could yield more and
stronger positive cases of the various patterns. Expanding the exploratory study to more
projects would result in a larger sample set and would reduce some of the threats discussed
in the previous section.

More heuristics have been suggested in Chapter 4. Most of these heuristics can be im-
plemented in the Anti-Pattern Scanner as it is now. Any study with more Design Principles
would probably be more broader that this study and could yield many more interesting facts
about the presence and severity of those principles. There are many more Code Smells
and Anti-Patterns available both from literature and on the Internet. Adding more of such
patterns to the Anti-Pattern Scanner could yield either a broader or a more focused study,
depending on the choice of patterns. In general, continued development on the Anti-Pattern
Scanner could result in a larger library of Code Smells and Design Principles as well as
a selection of Anti-Patterns that consist partly of components from that library. Examina-
tion of those patterns might reveal more occurrences and relations between them, possibly
revealing categories of problems and correlations of problems.

In general, few relations have been observed. The lack of clear relations could be due to
the limited number and size of projects that have been examined. It may also be caused by
the diversity of chosen patterns for this empirical evaluation. The choice of patterns is meant
to create a wide view of which problem types can be found in projects and it was meant to
have as little overlap as possible. A study that would focus on multiple different but similar
problems might yield more interesting relations. Similarly, conditional probability could
be useful if properties like change-proneness or number of bugs are added to the tables.
The probabilities should also be tested for significance. Probabilities are influenced by the
general amount of positive indications that scanners give. When A is often positive and B
is not, then p(A|B) can be a high probability. This may be a relation, but it could also be
caused due to the general amount of positive results for A and B.

An interesting addition to the examined cases would be to see how those cases are
developed over time. To create a timeline of the development of any problem, MSR could
be used. Seeing how problems appear in the software, how they shrink, grow and when they
combine would be interesting. MSR could also be used to answer questions regarding the
appearance of the problem types. Such as, are the Anti-Patterns a symptom of underlying
problems or a cause? Can they be detected during early development or can they only be
found once they have fully appeared? Some of the heuristics suggest both an MSR approach
and a non-MSR approach. Both approaches could be compared against each other, allowing
one to validate the other.

104



Future work

Another direction for research would be to include dynamic analysis to the detection
possibilities. Using the current static analysis approach, it may be hard to detect behavioral
problems. Dynamic analysis would complement the current analysis approach and open up
the way for more heuristics.

Last but not least, the Anti-Pattern Scanner could be improved to be much more user-
friendly. The user interface could be improved to be much easier to use and the result output
could have a lot of explanation and helpfulness added to it. With more development to the
program itself and the addition of more problem heuristics, the program could be useful for
everyday programming. In many ways it could be similar to the code assistant programs
already available. Even with the current set of detected problems, it would complement ex-
isting programs. Alternatively, the heuristics presented in this project could be implemented
in some of the existing programs.

105






(1]

(2]

(3]

[4]

(5]

[6]

[7]

[8]

Bibliography

Lerina Aversano, Gerardo Canfora, Luigi Cerulo, Concettina Del Grosso, and Massi-
miliano Di Penta. An empirical study on the evolution of design patterns. In ESEC-
FSE ’07: Proceedings of the the 6th joint meeting of the European software engineer-
ing conference and the ACM SIGSOFT symposium on The foundations of software
engineering, pages 385-394, New York, NY, USA, 2007. ACM.

Victor R. Basili, Lionel C. Briand, and Walcélio L. Melo. A validation of object-
oriented design metrics as quality indicators. IEEE Trans. Softw. Eng., 22(10):751—
761, 1996.

Dirk Beyer and Claus Lewerentz. Crocopat: Efficient pattern analysis in object-
oriented programs. In IWPC ’03: Proceedings of the 11th IEEE International Work-
shop on Program Comprehension, page 294, Washington, DC, USA, 2003. IEEE
Computer Society.

James M. Bieman, Greg Straw, Huxia Wang, P. Willard Munger, and Roger T. Alexan-
der. Design patterns and change proneness: An examination of five evolving systems.
In METRICS "03: Proceedings of the 9th International Symposium on Software Met-
rics, page 40, Washington, DC, USA, 2003. IEEE Computer Society.

William J. Brown, Raphael C. Malveau, and Hays W. AntiPatterns: Refactoring
Software, Architectures, and Projects in Crisis. Wiley, 1998. (ISBN-13: 978-
0471197133).

S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented design. /EEE
Trans. Softw. Eng., 20(6):476—493, 1994.

Gennaro Costagliola, Andrea De Lucia, Vincenzo Deufemia, Carmine Gravino, and
Michele Risi. Design pattern recovery by visual language parsing. In CSMR °05:
Proceedings of the Ninth European Conference on Software Maintenance and Reengi-
neering, pages 102—-111, Washington, DC, USA, 2005. IEEE Computer Society.

Karim Dhambri, Houari Sahraoui, and Pierre Poulin. Visual detection of design
anomalies. In CSMR ’08: Proceedings of the 2008 12th European Conference on

107



BIBLIOGRAPHY

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

(20]

108

Software Maintenance and Reengineering, pages 279-283, Washington, DC, USA,
2008. IEEE Computer Society.

Jens Dietrich and Chris Elgar. Towards a web of patterns. Web Semant., 5(2):108-116,
2007.

Maged Elaasar, Lionel C. Bri, and Yvan Labiche. A metamodeling approach to pattern
specification and detection, 2006.

El Emam, Kalhed, Benlarbi, Saida, Nishith Goel, and Shesh N. Rai. The confounding
effect of class size on the validity of object-oriented metrics. /IEEE Trans. Softw. Eng.,
27(7):630-650, 2001.

Norman E. Fenton and Niclas Ohlsson. Quantitative analysis of faults and failures in
a complex software system. IEEE Trans. Softw. Eng., 26(8):797-814, 2000.

Beat Fluri and Harald C. Gall. Classifying change types for qualifying change cou-
plings. In ICPC ’06: Proceedings of the 14th IEEE International Conference on Pro-
gram Comprehension, pages 35-45, Washington, DC, USA, 2006. IEEE Computer
Society.

Martin Fowler. Refactoring. Improving the Design of Existing Code. Addison-Wesley
Professional; 1 edition, 1999. (ISBN 978-0201485677).

Harald Gall, Mehdi Jazayeri, and Jacek Krajewski. Cvs release history data for detect-
ing logical couplings. In IWPSE ’03: Proceedings of the 6th International Workshop
on Principles of Software Evolution, page 13, Washington, DC, USA, 2003. IEEE
Computer Society.

Harald C. Gall, Beat Fluri, and Martin Pinzger. Change analysis with evolizer and
changedistiller. IEEE Software, 26:26-33, 2009.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley Professional, 1994.
(ISBN-13: 978-0201633610).

Yann-Gaél Guéhéneuc and Giuliano Antoniol. Demima: A multilayered approach for
design pattern identification. /IEEE Trans. Softw. Eng., 34(5):667-684, 2008.

Tibor Gyimothy, Rudolf Ferenc, and Istvan Siket. Empirical validation of object-
oriented metrics on open source software for fault prediction. IEEE Trans. Softw.
Eng., 31(10):897-910, 2005.

Huzefa Kagdi, Michael L. Collard, and Jonathan I. Maletic. A survey and taxonomy
of approaches for mining software repositories in the context of software evolution. J.
Softw. Maint. Evol., 19(2):77-131, 2007.



[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

Foutse Khomh, Massimiliano Di Penta, and Yann-Gael Gueheneuc. An exploratory
study of the impact of code smells on software change-proneness. In WCRE "09:
Proceedings of the 2009 16th Working Conference on Reverse Engineering, pages 75—
84, Washington, DC, USA, 2009. IEEE Computer Society.

Foutse Khomh, Yann-Gaél Guéhéneuc, and Giuliano Antoniol. Playing roles in design
patterns: An empirical descriptive and analytic study. volume 0, pages 83-92, Los
Alamitos, CA, USA, 2009. IEEE Computer Society.

Michele Lanza and Radu Marinescu. Object-Oriented Metrics in Practice: Using Soft-
ware Metrics to Characterize, Evaluate, and Improve the Design of Object-Oriented

Systems. Springer, 2006. (ISBN-13: 978-3540244295).

Hakjin Lee, Hyunsang Youn, and Eunseok Lee. A design pattern detection technique
that aids reverse engineering, 2008.

Benjamin Livshits and Thomas Zimmermann. Dynamine: finding common error pat-
terns by mining software revision histories. SIGSOFT Softw. Eng. Notes, 30(5):296—
305, 2005.

Robert C. Martin. Agile Software Development, Principles, Patterns, and Practices.
Prentice Hall; 1st edition, 2002. (ISBN 978-0135974445).

Tim Menzies, Jeremy Greenwald, and Art Frank. Data mining static code attributes to
learn defect predictors. IEEE Trans. Softw. Eng., 33(1):2-13, 2007.

Matthias Meyer. Pattern-based reengineering of software systems. In WCRE ’06:
Proceedings of the 13th Working Conference on Reverse Engineering, pages 305-306,
Washington, DC, USA, 2006. IEEE Computer Society.

Petru Florin Mihancea and Radu Marinescu. Towards the optimization of automatic
detection of design flaws in object-oriented software systems. In CSMR ’05: Proceed-
ings of the Ninth European Conference on Software Maintenance and Reengineering,
pages 92—-101, Washington, DC, USA, 2005. IEEE Computer Society.

Audris Mockus and Lawrence G. Votta. Identifying reasons for software changes
using historic databases. In ICSM ’00: Proceedings of the International Conference
on Software Maintenance (ICSM’00), page 120, Washington, DC, USA, 2000. IEEE
Computer Society.

Naouel Moha, Yann-Ga&l Guéhéneuc, Laurence Duchien, and Anne-Francoise
Le Meur. Decor: A method for the specification and detection of code and design
smells. IEEE Trans. Softw. Eng., 36(1):20-36, 2010.

Matthew James Munro. Product metrics for automatic identification of “bad smell”
design problems in java source-code. In METRICS ’05: Proceedings of the 11th IEEE
International Software Metrics Symposium, page 15, Washington, DC, USA, 2005.
IEEE Computer Society.

109



BIBLIOGRAPHY

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

110

Jorg Niere, Wilhelm Schifer, Jorg P. Wadsack, Lothar Wendehals, and Jim Welsh.
Towards pattern-based design recovery. In ICSE ’02: Proceedings of the 24th Inter-

national Conference on Software Engineering, pages 338-348, New York, NY, USA,
2002. ACM.

Rocco Oliveto, Foutse Khomh, Giuliano Antoniol, and Yann-Gael Gueheneuc. Nu-
merical signatures of antipatterns: An approach based on b-splines. Software Mainte-
nance and Reengineering, European Conference on, 0:248-251, 2010.

Massimiliano Di Penta, Luigi Cerulo, Yann-Gaél Guéhéneuc, and Giuliano Antoniol.
An empirical study of the relationships between design pattern roles and class change
proneness, 2008.

Martin Pinzger, Katja Graefenhain, Patrick Knab, and Harald C. Gall. A tool for
visual understanding of source code dependencies. In Proceedings of the 2008 The
16th IEEE International Conference on Program Comprehension, ICPC ’08, pages
254-259, Washington, DC, USA, 2008. IEEE Computer Society.

Nija Shi and Ronald A. Olsson. Reverse engineering of design patterns from java
source code. In ASE '06: Proceedings of the 21st IEEE/ACM International Conference
on Automated Software Engineering, pages 123-134, Washington, DC, USA, 2006.
IEEE Computer Society.

Jason McC. Smith, Jason Mcc Smith, David Stotts, and David Stotts. Elemental de-
sign patterns - a link between architecture and object semantics. Technical report,
Proceedings of OOPSLA 2002, 2002.

Alecsandar Stoianov and loana Sora. Detecting patterns and antipatterns in soft-
ware using prolog rules. In Computational Cybernetics and Technical Informatics
(ICCC-CONTI), 2010 International Joint Conference on, pages 253-258, Department
of Computers, Politehnica University of Timisoara, Romania, 2010.

David Stotts, Jason McC. Smith, and Jason Mcc Smith. Spqr: Flexible automated
design pattern extraction from source code. In In 18th IEEE Intl Conf on Automated
Software Engineering, pages 215-224. IEEE Computer Society Press, 2003.

Guilherme Travassos, Forrest Shull, Michael Fredericks, and Victor R. Basili. Detect-
ing defects in object-oriented designs: using reading techniques to increase software
quality. In OOPSLA ’99: Proceedings of the 14th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applications, pages 47-56,
New York, NY, USA, 1999. ACM.

Nikolaos Tsantalis, Alexander Chatzigeorgiou, George Stephanides, and Spyros T.
Halkidis. Design pattern detection using similarity scoring. IEEE Trans. Softw. Eng.,
32(11):896-909, 2006.



[43] E. Van Emden and L. Moonen. Java quality assurance by detecting code smells. In
WCRE °02: Proceedings of the Ninth Working Conference on Reverse Engineering
(WCRE’02), page 97, Washington, DC, USA, 2002. IEEE Computer Society.

[44] H. Vliet. Software engineering: principles and practice. Safari Books Online. John
Wiley & Sons, 2008.

[45] Marek Vokac. Defect frequency and design patterns: An empirical study of industrial
code. IEEE Trans. Softw. Eng., 30(12):904-917, 2004.

111






Appendix A

Glossary

Commonly used terms and abbreviations.

Abstraction: A simplification or definition that is used to hide details from clients. In the
Java programming language, Abstract classes or Interfaces are used for this purpose.

Anti-Pattern Scanner: The program designed and build for this Thesis Project.

Anti-Pattern: Known ‘bad’ Design Pattern or a pattern that is applied in the wrong situa-
tion.

ASG: Abstract Syntax Graph. A graph representation of the abstract syntax of a program’s
code, e.g. leaving out many of the fine details specified in the source. Not to be
confused with Abstract Semantic Graph.

AST: Abstract Syntax Tree. A tree representation of the abstract syntax of a program’s
code.

Bad Smell: Poorly written section of code.

C++: A programming language.

Change-proneness: How often a software object (OO) or class changes or can be expected
to change.

Class Diagram: An UML diagram that shows the relations between classes.

Class: An uninstantiated object (OO). The template from which objects can be created
when a program is executed.

Code Smell: See Bad Smell.

Compiler: A program that translates another program written in a high-level language into
machine language so that it can be executed.

Concrete implementation: An implementation that contains details and that is not ab-
stract. See also Abstraction.

Coupling: A situation where two or more objects in OOP interact with each other in such a
way that changing one of the objects will usually require changes to the other object(s)
as well. This dependency can be problematic during maintenance.

CVS: Concurrent Versioning System. A Repository.

Design Pattern: Template that describes how objects should interact in an Object-Oriented
program. This template serves as a known solution for a problem in a specific context.

Design Principle: Guideline for software design. For more information, see [26].

113



A. GLOSSARY

Design Smell: See Anti-Pattern.

Eclipse: A programming environment, often used to produce code for Java or other lan-
guages, see “http://eclipse.org/”.

EDP: Elemental Design Pattern. A basic building block for OOP, such as ‘Inheritance’.

Error-proneness: How often a software object or class has produced an error or can be
expected to produce an error.

Gang-of-Four (GOF): The four authors of [17].

Heuristic: A rule or set of rules meant to increase the probability of solving a problem,
without the exhaustive application of an algorithm.

IDE: Integrated Development Environment. An environment for programming (such as
Eclipse).

Java: A programming language.

Meta-model: An abstract representation of a software system.

Metric: A measurement type of a software system, such as (number of) Lines of Code
(LOC) or Number of Comments (NOC).

MSR: Mining Software Repositories. A technique(s) for examining a software reposi-
tory(s).

Rating: In the context of Anti-Pattern Scanner, a rating is a value that indicates how
strongly an entity participates in a given Anti-Pattern or aspect of an Anti-Pattern.
A strong rating means that a given entity is a candidate, a negative rating means that
it is not. See Section 3.1.3 for more information.

Refactoring: Modifying a software system to repair or change it.

Repository: A storage for software code and artifacts. Usually some kind of automatic
versioning is used so changes can be backtracked.

Rulebase: A set(s) of rules that when combined with facts, can identify occurrences of
items specified by the rules.

Scanner: In the context of Anti-Pattern Scanner, a scanner is a module that rates (an aspect
of) an Anti-Pattern. See Section 3.1.4 for more information.

SQL: Simple Query Language. A language that can be used to query databases.

UML: Unified Modeling Language. A standardized, universal modeling language for soft-
ware engineering.

114



Appendix B

Data sets

This appendix contains all the data tables of all the projects. Every section begins with a
table with the amount of results for every scanner, for every indication strength. The sec-
ond table in every section contains the conditional probabilities for all top level scanners:
Large Class Code Smell (LargeClass), Data Class Code Smell (DataClassFilter), Single
Responsibility Principle (SingleResponsibility), Acyclic Dependencies Principle (Cyclic-
PackageDependency), Dependency Inversion Principle (ConcreteDependentAbstraction),
Interface Segregation Principle (InterfaceSegregation) and the four Anti-Patterns (Database-
Class, RavioliCode, TheBlob, TowerOfVoodoo). The last table contains the conditional
probabilities for all separate fragment scanners. The full description of every scanner can
be found in Section 4. For each of the conditional probability tables, only ‘Strong’ and
‘Very Strong’ positive indications count as positive. All other indications (‘Weak’ and
lower) count as negative. The conditional probabilities should be seen as indications for
closer examination. The probabilities indicate that there could be relations. Statistical sig-
nificance has not been tested and is threatened by the general number of positive indications
per scanner and the number of samples in general.

The scanner design supports all kinds of entities as input. In practice, the ‘Class’ entity,
‘Package’ entity or the ‘Method’ entity are most convenient as starting point for any scanner
implementation. The scanners are restricted to one type of entity at compile time, meaning
that some scanners cannot be compared to each other because they accept different types of
entities. This means that they have mostly empty rows in the conditional probability tables.
The following types are accepted as input types:

Package Scanners ‘DatabasePackage’, ‘CyclicPackageDependency’.

Method Scanners ‘UniversalDatabaseMethod’, ‘NonDatabasePackagelnvocation’.

Inheritance Scanner ‘InheritanceTarget’.

Class All other scanners (although some automatically return ‘Strong Negative’ for incom-
patible types such as (non-)abstract or (non-)interface).

Due to search tree pruning, some scanners were never activated and never got a chance
to register themselves with the framework. The result is that for some projects, the scan-
ners ‘NonDatabasePackagelnvocation’, ‘UniversalDatabaseMethod’ and ‘UniversalDataS-
tructure’ do not appear in the probability tables.

115



B. DATA SETS

A %,
% B
2 ® 0 2,
(2 C. 'b.g Oo
. o % % A
S %, 29 P W) 0, %
G % Q (°) 0> (7 <
9, 3 [o) % 0, )
K G %, % %, G, % %,
Amount of FAMIX entities (SN (=% % % % 7 4 ®
AbstractFamixEntityEMF 1,985 2,804 19,333 60,257 12,682 3,552 31,829 56,419
FamixPackageEMF 15 4 34 99 35 27 64 156
FamixClassEMF 187 104 428 2,018 1,146 291 1,558 2,252
FamixClassEMF Abstract 3 1 18 71 11 17 45 99
FamixClassEMF Interface 8 6 20 206 54 17 110 99
FamixEnumEMF 0 0 2 6 3 0 15 42
FamixMethodEMF 820 619 3,944 20,723 5,625 1,634 11,694 18,814
FamixInheritanceEMF 45 17 159 592 600 109 630 976
FamixInvocationEMF 1,636 7,862 26,341 61,276 19,133 2,213 36,785 74,547
FamixAccessEMF 1,038 5,349 13,559 50,041 8,749 748 25,508 69,853
AbstractFamixVariableEMF 963 2,077 14,927 37,417 5,876 1,600 18,513 35,197
FamixFormalParameterEMF 303 624 4,876 14,460 2,123 996 8,055 12,027
FamixLocalVariableEMF 435 1,001 7,613 15,484 2,176 394 7,432 14,342
FamixAttributeEMF 225 452 2,438 7,473 1,577 210 3,026 8,828
FamixInstanceOfEMF 23 14 76 1,030 24 25 362 359
FamixSubtypingEMF 16 31 33 687 125 45 485 531
FamixCastToEMF 49 640 582 3,728 181 42 2,324 2,702

Figure B.1: Amounts of FAMIX entities found in each project. (This figure is a copy of
figure 5.1.)

116



This page is intentionally left empty. The data sets start at the next page.

117



B. DATA SETS

B.1 The Anti-Pattern Scanner

%
» K, % 1 %, 1 4 % g
Scanner class OQ’/ %o J}l’% 62’9 %o% %/ o"% L7 2, o,@ L o?s"
BlobRelations| 187 0 0% 173 93% 14 7% 0 0% 0 0%
DataClassFilter| 187 155 83% 21 11% 9 5% 2 1% 0 0%
DatabaseClass| 187 187 100% 0 0% 0 0% 0 0% 0 0%
DatabaseConnectorClass| 187 0 0% 187 100% 0 0% 0 0% 0 0%
DatabasePackage 15 0 0% 15 100% 0 0% 0 0% 0 0%
LargeClass| 187 110 59% 72 39% 5 3% 0 0% 0 0%
LooselyCoupledRelations| 187 0 0% 67 36% 120 64% 0 0% 0 0%
NonDatabasePackagelnvocation 0 0 0% 0 0% 0 0% 0 0% 0 0%
RavioliCode| 187 0 0% 66 35% 121 65% 0 0% 0 0%
SingleResponsibility| 187 128 68% 45 24% 11 6% 2 1% 1 1%
SimpleClass 65 2 3% 50 77% 9 14% 4 6% 0 0%
TheBlob| 187 110 59% 68  36% 8 4% 1 1% 0 0%
TowerOfVoodoo| 187 8 4% 161 86% 18 10% 0o 0% 0 0%
UniversalDatabaseMethod 0 0 0% 0 0% 0 0% 0 0% 0 0%
ConcreteDependentAbstraction| 187 176  94% 7 4% 0 0% 2 1% 2 1%
CyclicPackageDependency 15 0 0% 11 73% 0 0% 4 27% 0 0%
ElementalDatabaseClass| 178 0 0% 178 100% 0 0% 0 0% 0 0%
InterfaceSegregation| 187 185 99% 1 1% 0 0% 0 0% 1 1%
InheritanceTargetScanner a5 0 0% 0 0% 27 60% 18 40% 0 0%
LooseCoupling 76 0 0% 68 89% 8 11% 0 0% 0 0%
ManyAttributes| 187 146 78% 41  22% 0 0% 0 0% 0 0%
ManyDistinctRelations| 187 0 0% 170 91% 15 8% 1 1% 1 1%
ManyMethods| 187 110 59% 72 39% 5 3% 0 0% 0 0%
MethodUsageSetScanner| 59 0 0% 31 53% 0 0% 27 46% 1 2%
PrimitiveAttributes| 63 0 0% 25 40% 31 49% 6 10% 1 2%
SimpleMethods 63 0 0% 56  89% 0 0% 5 8% 2 3%
SomewhatAbstract| 187 0 0% 0 0% 187 100% 0 0% 0 0%
UniversalDataStructure 0 0 0% 0 0% 0 0% 0 0% 0 0%
UnrelatedAttributes| 59 27 46% 29 49% 2 3% 0 0% 1 2%
Q;,,Q
Y, %,
J},‘) Q%GF %Q/) /01‘9
&, B, e, B o, %,
G P % % T Y s By %
B Ny 2o, S, By e Bl %k
. by R e Va0 & %6, %
% & % 0‘} % 9% %% % % %
I B B Y T R Y Ty Yy Yy Yy
LargeClass{ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DataClassFilter| 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SingleResponsibility| 0.00 0.00-0.00 0.00 0.00 0.00 0.00 0.00 0.00
CyclicPackageDependency| 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ConcreteDependentAbstraction| 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
InterfaceSegregation|{ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DatabaseClass| 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
RavioliCode| 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
TheBlob| 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
TowerOfVoodoo[ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

118

O O OO OO OO OO 0O OO0 O OO0 OO0 o000 OO0 o o0 0 O o O



The Anti-Pattern Scanner

Ioo.o 000 000 Ioo.o 00'0 000 00°'0 00°'0 00°'0 00'0 000 000 000 000 000 000 000 000 000 000 000 000 000 000 [SdINGUIVP3IEBIUN
00'0 000 00°'0 000 000 000 00°'0 000 000 000 000 000 000 000 000 OO0 000 000 000 OO0 000 000 000 000 000 00°0 (0OPOOA}OI23MOL

00'0 00°'0 00°'0 000 000 000 000 000 000 000 000 000 000 000 000 OO0 000 000 000 000 000 00°'0 000 000 000 000 (qolg2yL

00'0 000 00°'0 000 000 000 00°'0 000 000 000 000 000 000G 000 000 OO0 000 000 000 OO0 000 000 000 000 000 00°0 [WensqyieyMIWOS
Ioo.o 000 000 00'0 000 00'0 000 00°0 000 00'0 000 00'0 000 00'0 000 00'0 000 000 000 000 000 000 000 00°0 |AMjqisuodsayajSuis
00'0 00'0 000 000 000 00'0 000 00'0 000 00'0 000 00'0 000 00'0 000 00'0 000 00'0 000 00'0 000 00'0 000 00'0 000 [SPoyrRNB|dwIS

00'0 000 00'0 000 00'0 000 00°0 000 00'0 000 00'0 000 00'0 000 00'0 000 00'0 000 00'0 000 00'0 000 000 000 00'0 000 [sse|d3|dwis

00'0 00°'0 00°'0 000 000 000 000 000 000 000 000 OO0 000 000 000 OO0 000 000 000 OO0 000 00'0 000 000 00°0 000 [2poJjoiney

00'0 000 00°'0 000 000 000 00°0 000 00'0 00°'0 000 000 000 00°'0 000 000 000 000 000 000 000 00°0 000 000 00°0 SPINGUIYIAIWIG

00'0 000 00°'0 000 000 000 00°0 000 000 00'0 000 00'0 000 00'0 000 00'0 000 00'0 00'0 00'0 000 000 000 00°0 000 |/9UUEISISITESNPOYIBIA
00'0 00'0 00'0 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 00°0 00°0 00°0 00°0 00°0 00°0 000 [sPoyIdNAUBIA

00'0 00°'0 00°'0 000 000 000 000 000 000 00°0 000 Ioo.o 00'0 00°0 00'0 000 00'0 00'0 000 00'0 000 000 00°0 000 00°0 [suohejdyiounsighuen
00'0 00°0 00°0 000 00'0 000 00'0 000 00'0 000 00'0 00'0 00'0 00'0 000 00'0 000 00'0 000 00'0 000 00°0 000 00°0 00°0 00°0 [sdINqUNVAUBA

00'0 00°0 00'0 000 00'0 00'0 00'0 000 000 00'0 000 000 000 000 000 000 000 00'0 000 00'0 000 00'0 000 00'0 000 000 |suohe|aYpa|dno)A|as00T
00'0 000 00°0 000 00°0 000 00°0 000 000 000 000 000 000 000 000 00'0 000 00'0 000 00'0 000 00'0 000 00'0 000 00°0 |3uldnolasoo]

00'0 00°0 00°0 000 00'0 000 00'0 000 00'0 000 00'0 000 000 000 000 000 000 00'0 000 00'0 000 00'0 000 00'0 00°0 000 |ssejy2sieq

00'0 000 00°'0 000 000 000 00°0 000 000 000 000 000 000G 000 00°0 000 Ioo.o 00'0 000 00'0 000 00'0 000 000 00°0 [uonesaisasasepsazu|
00'0 00'0 00'0 000 000 000 000 000 000 000 000 000 00°0 000 00°0 000 000 000 000 00°0 000 000 00°0 00'0 00°0 000 |!duuessiasie|ddueluayul
00’0 00°'0 000 000 00°'0 000 000 000 000 000 OO0 000 000 000 OO0 000 000 000 000 000 000 000 000 000 000 000 |Sse|Daseqeieqjeiuswaly
00'0 00°0 00'0 000 00'0 000 00'0 000 00'0 00'0 00'0 00'0 000 000 000 000 000 000 000 00'0 000 00'0 000 00'0 00°0 00°0 |28exoedaseqeieq

00'0 000 00°'0 000 000 000 00°0 000 000 000 000 000 000 00O 000 OO0 000 000 000 OO0 000 000 000 000 000 00°0 [sse[240323uUuO)aseqeIeq
00'0 000 00°'0 000 000 000 000 000 000 000 000 000 000 000 000 OO0 000 000 000 OO0 000 000 000 000 000 000 [ssejyaseqereq

00'0 000 00°'0 000 000 000 000 000 000 000 000 OO0 000 000 000 OO0 000 000 000 OO0 000 000 000 000 00°0 000 [423dsse|yereq

00'0 00°0 00'0 000 00'0 000 00'0 000 00'0 000 000 000 000 000 000 000 000 00'0 000 00'0 000 00'0 000 00'0 00°0 00°0 |AduspuadagasdexdedaiPAd
00'0 00°0 00°'0 000 000 000 000 000 000 000 000 000 000 000 000 OO0 000 000 000 000 000 00°0 000 000 Ioo.o uoipesqyiuapuadagaladuo)
00'0 00°'0 00°'0 000 000 00°'0C 000 000 000 000 000 000 00O 00O 000 OO0 OO 000 000 000 000 000 000 OO0 000 000 [suoneEyqold

Yy, B, B, Y, B B Y, B, B Y G, Y, Y, B, B, o, Y, b %, B, XN
o, () o, ¥ o,
&o&«\ boo \.vev .\éwv \\\w\,vo o&z mvbe\ A0\\0 xomv\ %, muoavz .\owo ? E
%y %o, < b0, %o, avz\ %, % s, Y O
%S, ) w&» S, @, b & (N
Yo e S, %, % & %
i) < <, % ® \0 \V 0.
%, % % %, %
” RO 8, 7

119



B. DATA SETS

B.2 Race Creation Tool

J};
()
%,
%, % 2 4
%, 9 8, %9
o, %; (I (.
Scannerclass @ & 4’% W = B ¢

BlobRelations| 104 0 0% 77 74% 26 25%
DataClassFilter| 104 70 67% 4 4% 13 13%

DatabaseClass| 104 88 85% 0 0% 1
DatabaseConnectorClass| 104 0 0% 88 85% 0
DatabasePackage 4 0 0% 2 50% 0

LargeClass| 104 57 55% 37 36% 7

1%
0%
0%
7%

LooselyCoupledRelations| 104 0 0% 44 42% 60 58%

NonDatabasePackagelnvocation| 195 0 0% 74 38% 0

0%

RavioliCode| 104 0 0% 42 40% 62 60%

SingleResponsibility| 104 79 76% 1 1% 5

5%

SimpleClass 47 0 0% 17 36% 13 28%
TheBlob| 104 57 55% 27 26% 14 13%

TowerOfVoodoo| 104 6 6% 97 93% 1

1%

UniversalDatabaseMethod| 228 0 0% 2 1% 105  46%

1 1% 0 0%
16 15% 1 1%
15 14% 0 0%
15 14% 0 0%

1 25% 0 0%

2 2% 1 1%

0 0% 0 0%

26 13% 95  49%
0 0% 0 0%
9 9% 10 10%

16 34% 1 2%
5 5% 1 1%
0 0% 0 0%

87 38% 34 15%

ConcreteDependentAbstraction| 104 97 93% 77% 0 0% 0 0% 0 0%
CyclicPackageDependency 4 0o 0% 0 0% 0 0% 0 0% 2 50%
ElementalDatabaseClass 96 0 0% 93 97% 0 0% 0 0% 3 3%
InterfaceSegregation| 104 104 100% 0 0% 0 0% 0 0% 0 0%
InheritanceTargetScanner 17 0 0% 0 0% 15 88% 2 12% 0 0%
LooseCoupling 47 0 0% 45 96% 2 4% 0 0% 0 0%
ManyAttributes| 104 70 67% 29 28% 2 2% 2 2% 0 0%
ManyDistinctRelations| 104 0 0% 101 97% 1 1% 0 0% 1 1%
ManyMethods| 104 57 55% 37 36% 9 9% 1 1% 0 0%
MethodUsageSetScanner| 25 0o 0% 1 4% 0 0% 22 88% 2 8%
PrimitiveAttributes 47 0o 0% 5 11% 13 28% 10 21% 6 13%
SimpleMethods 47 0 0% 43 91% 0 0% 3 6% 0 0%
SomewhatAbstract| 104 0 0% 0 0% 104 100% 0 0% 0 0%
UniversalDataStructure 19 0 0% 16 84% 1 5% 2 11% 0 0%
UnrelatedAttributes 25 0 0% 6 24% 9 36% 0 0% 10 40%
Q,
e,
%, %
%,
S, %, o, %
%, K B, ©
) >, or A 2
O B B, & % o %,
%, N O %, e 9,
< e () % Y %, 2. <,
% % 9 Y, 4 LR o)
o Ry By & Ve S R o, 4
S %, Gy o Ve, S, So, %o e, &
% T % S T On G G S, 0,
. s, G %, D, Y, %, % B %
o, o, %o, Yt e o, o, o, o,
v v Y 9 9 9 9 Yy Y
0.00 0.00 0.00 0.00 0.00 iG] 0.00
0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SingleResponsibility 0.00 0.00
CyclicPackageDependency y 0.00
ConcreteDependentAbstraction 0.00
InterfaceSegregation 0.00 0.00 0.00 0.00
DatabaseClass 0.00 0.00 0.00 0.00

RavioliCode 0.00 0.00 0.00 0.00

TheBlob 0.00 0.10 0.00 0.00

TowerOfVoodoo| 0. 0.00 0.00 0.00 0.00

120

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00 0.00 [i166] 0.00

0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00

0.00 0.00 160 0.00

0.00 0.00 0.00 0.00

-
w

25%

0%
0%
0%
0%
0%
0%
0%
0%
0%
50%
0%
0%
0%
0%
1%
1%
0%
0%
28%
2%
0%
0%
0%



Race Creation Tool

000
000
000
000
0T'0 000
000 000
|66 oo0
0T'0 000
0T'0 000
000 000
0’0 000
000 |60
020 000
000 000
020 000
0T'0 000
000 000
000 000
0T'0 000
000 000
000 000
000 000
000 000
0’0 000
000 000
01’0 000
000 000
000 000
000 000
%, 1%

&,
(s <
\6 \b

000
000

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

%
Q\@

000 66 000 [GOTENGOTENGGT] 000
000
000
000
010
000

000 000 00°0
000 000 00°0
000 000 000
000 667 oo0
000 000 000
000 667 oo0
000 000 000
000 000 00°0
000 000 00°0
000 000 00'0
000 000 00'0
000 867 o0
000 000 00'0
000 000
000 000
000 000 000
000 000 000
000 687 oo0
000 000 00°0
000 000 00°0
000 000 000
000 000 00°0
000 000 00'0
000 000 00°0
000 000 00°0
000 000 000
000 000 000
000 000 000

Y, %, Y, %

000
000
000
000
000

000
000
000
000
000

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

0T'0
0T'0
000
ov'0
000
0C°0
000
0C°0
0T'0
000
000
0oT'0
000
000
000
000

000
000
000
000
000
000
000
000
000
000
000
000
000
000

000
000
000
000
000
000
000
000
000
000
000
000
000
000
0T'0 000 000 000
000 000 000 000
or°o [60FENGOT 000
000 000 000 000
000 000 000 000
000 000 000 000

g,

10
000
000
000
000
000
10
000
000
000

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
LY

Y
z\o

000 66 oo'o [6EFENGETE 000
9€'0 000 000 000 000 00'0
00'0 000 000 000 000 00'0
00'0 000 000 000 00'0 00'0
000 050 00'0 050 667 00'0
00'0 000 000 000 00'0 00'0
000 66 oo'o [6EFENGGE o0
000 00'0 000 000 000 00'0
000 00'0 000 000 000 00'0
000 000 000
000 000 00'0
000 00'0

000
000 000 000
000 667 o0
000 050 000
000 000 000
000 000 000
000 050 000
000 000 000
000 000 000
000 000 000
000 000 000
000 050 000
000 000 000
000 000 000
000 000 000
000 000 000
000 000 000
G B o

%, av\é Q\.woo

050
000 000
000 000
050 J66°%] oo0
000 000 00'0
000 000 00'0
000 000 00'0
000 000 00°0
050 000 000
000 000 00'0
000 000 000
000 000 00'0
000 000 00'0
000 000 000
©, %, ©
%, %

.Qm.
7

000 665 oo
000 000 00°0
000 000 00°0
000 000 000
000 607 o0
000 000 000
000 607 o0
000 000 000
000 000 000
000 000 00°0
000 000 00'0
000 000 00'0
000 665 o0
00'0 000 00°0
000 000
000 000
000 000 000
000 000 000
000 607 o0
000 000 000
000 000 00'0
000 000 00°0
000 000 00'0
000 000 00'0
000 000 00°0
000 000 00°0
000 000 000
000 000 000
000 000
%, %,

Av o
g%

9,

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

%,

e,
R,

9,

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

000
000
000
000

000 687 oo0
000
000
5

000 687 000 6% 000
000 000 000 000 00'0
000 000 000 00°0 00'0
000 000 000 000 000
000 000 000 000 000
000 000 000 000 000
000 667 oo0 000
000 000 000 000
000 000 00'0 000
000 000 00'0 000
000 000 00'0 000
000 000 00'0 000
000 667 o0 000
000 000 00'0 000
000 687 o0 000
000 000 000 000
000 000 000 000
000 000 000 000
000 000 000 000
000 000 000 000
000 000 000 000
000 000 00'0 000
000 000 sz
000 000
000 000
000 000
000
000
000

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

000
000
00'0 00°0

000

000
000
000

000 00°0
000 000

000
000

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

saINqLIIYPalR[RIUN
poyianaseqeleq|esianiun
24njonISeIRQ|eSIaAIUN
00POOAJOIIMOL

qo|gayL

10BJ1SqY1eYMIWOS
Ajqisuodsayajsuis
spoyian3|dwis

sse|pajdwis

apodijoiney

SaINQUNYEAII WL
uoled0Auja8exdedaseqelequoN
J3uuedsiasagesnpoyv N
spoyiaNAue
suoljejaylounsigiuey
saINquBIvAueN
suonejaypajdnodAjesoo
Buiidnojasoo

ssejyasieq
uonedaidagaoeau|
Jauuedsiasie] aduellsayu]
sse|Daseqeleq|eiuawa|l
a8eyoedaseqeleq
sse[DJ40303uu0)aseqeleq
sse|yaseqeieq

J3114sse|eieq
AduapuadagaseydedoipA)
uonaessqyuapuadagaiaiouo)

suone|ayqolg
(x|A)d

121



B. DATA SETS

B.3 NewNomads Desktop

Scanner class
BlobRelations
DataClassFilter
DatabaseClass
DatabaseConnectorClass
DatabasePackage
LargeClass
LooselyCoupledRelations
NonDatabasePackagelnvocation
RavioliCode
SingleResponsibility
SimpleClass

TheBlob

TowerOfVoodoo
UniversalDatabaseMethod
ConcreteDependentAbstraction
CyclicPackageDependency
ElementalDatabaseClass
InterfaceSegregation
InheritanceTargetScanner
LooseCoupling
ManyAttributes
ManyDistinctRelations
ManyMethods
MethodUsageSetScanner
PrimitiveAttributes
SimpleMethods
SomewhatAbstract
UniversalDataStructure
UnrelatedAttributes

LargeClass

DataClassFilter
SingleResponsibility
CyclicPackageDependency
ConcreteDependentAbstraction
InterfaceSegregation
DatabaseClass

RavioliCode

TheBlob

TowerOfVoodoo

122

264

© o o o o

102

57

0.67
0.00
0.00
0.00
0.00
0.00
0.00
0.00

249
38
4
371
21
176
229
503
173
128
83
137
382
224
21
13
379

213
195
291
176

80

41
182

61
130

Ry Ry,
0.10
0.05

0.00
0.00
0.00
0.00
0.00
0.00

58%
9%
1%

87%

62%

41%

54%

70%

40%

30%

37%

32%

89%

25%
5%

38%

99%
0%
0%

91%

46%

68%

41%

31%

19%

85%
0%

90%

50%

l#
0

0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00

-

o o o N & &N

ofe

0%
0%
0%
7%

32%

0%
0%
1%
0%
0%
0%
0%
0%
0%
0%

38%

0%
0%
0%
0%
0%
4%
0%
0%
2%
0%
0%
1%
0%



NewNomads Desktop

000 000 000 oo.oImH.o ST'0 00'0 €0'0 000 Z.ol«w.o 00'0 000 00°0 [£9°0 00°0 000 00°0 000 0CT'0 000 ST'0O 00°0 000 00°0 [SeINqLNVP3IERIUN

000 00'0 000 000 000 000 000 000 000 €20 000 000 000 000 000 00'0 OO0 000 00'0C OO0 000 000 00'0 000 000 00°0 000 |POYI2NBseqeIeg|esIBAIUN
00'0 000 00'0 000 000 000 000 000 000 000 OO0 000 000 000 000 000 000 OO0 000 00'0 SZ°0 000 00'0 000 000 000 00°0 000 |24nPniseIRg[ESISAIUN
00'0 000 000 000 000 000 000 000 000 000 000 OO0 000 000 000 OO0 OO0 000 000 000 000 000 000 000 000 000 000 00°0 00°0|00poOAJOI2MOL

00'0 000 000 000 000 000 000 000 000 000 000 OO0 OO0 000 OO0 OO0 OO0 000 000 000 000 000 000 000 000 000 000 00°0 000 |9olgayL

00’0 000 000 00°0 00°0 00'0 000 000 000 ¢0O'0 000 ¥0'0 000 ¢0'0 000 000 OO0 OO0 000 000 000 000 000 000 000 000 ¥I'0 00°0 [¥ehsqVieyMIWOS

Ioo.o 00'0 00°'0 00°0 000 800 000 ¢0'0 000 HN.OI@N.O 00'0 000 00°0 £9°0 00'0 000 00°0 00°0 0Z'0 000 80°0 00'0 000 00°0|AMjqisuodsayajsuis
0T'0 000 000 000 000 000 SO0 00'0 ST'0 000 ¥0'0 0S'0 ¢00 000 000 OO0 €E0 000 000 000 000 000 000 000 00°0 00°0 [sPoyraN3|dwIS
0T'0 000 000 000 000 000 SO0 000 ST'0 000 ¥0'0 0S'0 ¢00 000 000 OO0 €E0 000 000 000 000 000 000 000 00°0 00°0 [sse|d3|duwis

00'0 00°'0 000 00°0 000 000 000 000 000 000 000 000 OO0 000 00'0C OO0 000 00'0C 000 000 000 000 OO0 000 000 000 000 00°0 000 |2podijoiney

0T'0 000 000 00°0 000 0S0O SO0 690 690 000 LT'0 0S'0 OT'0 00°0 00'0 OO0 €€°0 000 000 000 000 TT'0O 000 690 000 6C°0 00°0 |SSINQLNYIAIIWLG
oo.oloo.o 00'0 000 00°0 000 000 000 000 000 000 00°0 00'0 00'0 00°0 000 000 000 00'0 00'0 00°0 000 000 000 00'0 000 |UOhEI0AUIBENIEJISEGRIEQUON
02°'0 000 000 00°0 000 0S'0O SC'0 800 80'0 000 LO'O 000 0S°0 #N.oloo.o 00°0 [£9°0 00'0 00'0 00°0 00°0 60°0 000 80°0 00'0 ¥T'0 000 [49uuedSI9SaTLSNPOYIBIA

0T'0 00'0 000 00°0 000 000 OT'0 80°0 800 000 ¢0'0 000 ¥0°0 200 000 000 000 £9°0 00°0 00°0 000 000 Z0'0 00'0 80°0 000 000 00°0 |SPoyrdNAueN

09°'0 00'0 000 000 000 0S'0 S9°0 80°0 800 000 800 000 0S0O 0S0 00'0 00°0 ' £9°0 00'0 000 000 00°0 O¥'0 00'0 80°0 00'0 000 00°0|suonejaydUnsIGAUBIA

00'0 000 000 00°0 000 000 000 000 000 000 000 000 ¥0°0 000 200 00'0 000 €€'0 00'0 00'0 000 00'0 200 000 000 00'0 000 00°0|sdINguuyAue

000 000 00°0 00'0 000 00°0 00°0 00'0 000 00°0 00'0 00'0 000 00°0 00'0 00'0 000 00°0 00'0 00'0 000 00°0 00'0 00'0 000 00'0 00'0 000 00°0|suone|aypa|dnodA|as00]

000 000 00°0 00°0 000 00°0 00'0 00'0 000 00°0 00'0 000 000 00°0 00'0 00'0 000 00°0 00'0 000 000 00'0 00'0 00'0 000 00'0 00'0 000 00°0 [3uldnojasoo]

0T'0 000 000 00°0 000 000 OT'0 80°0 800 000 ¢0'0 000 mo.olwo.oloo.o 000 000 000 00'0 00'0 ¥0'0 00°0 80°0 000 00°0 00°0 [sse|yas4eq

00'0 000 000 00°0 000 000 000 000 000 000 000 000 OO0 000 000 000 000 000 000 000 000 00°0 00'0 000 00'0 00°0 00°0 00°0 |uonesaidagasesaiu]

000 000 00'0 00'0 000 00°0 00'0 00'0 000 00°0 00'0 00'0 000 00'0 00'0 00'0 000 00'0 00'0 00'0 000 00'0 000 000 00°0 00'0 000 00'0 000 [42uuedsI98ie|adUEIIBYU|

00'0 00'0 0S'0 00°0 000 000 000 000 000 000 000 000 OO0 000 000 000 000 000 00'0 000 000 00'0 00°'0 00°0 00°0 [Sse|Daseqeleqjeiuswaly

00'0 000 000 00°0 000 000 000 000 000 000 000 000 000 000 00 00'0 000 000 00'0 000 000 000 62°0 00°0 00°0 |28e)0Edaseqeleq

SS'0 000 000 00°0 00°0 000 SS'O 000 000 000 OT'0 000 TZ'O 0SO vv.oloo.o 000 [£9°0 000 000 00'0 00'0 ¥T'0 00°0 |Sse|D4013uUU0)aseqRIE]

00'0 00°'0 000 00°0 000 000 000 000 000 000 000 00'0C OO0 000 00'C 000 000 000 00'0 000 000 sse|yaseqeleq

0T'0 000 000 000 00°0 000 mo‘oloo.o ST'0 000 ¥0'0 0S'0 0’0 00'0 000 000 €€'0 000 000 J9yissejdeleq

00'0 000 000 00°0 000 000 000 000 000 000 000 000 000 000 000 000 OO0 000 000 000 000 AsuspuadagasesdedaipAy
00'0 000 000 00°0 000 0SO 000 000 000 000 €0°0 000 ¥0°'0 000 000 000 000 000 000 000 000 uondelIsqyIUapUadagalalIuo)
00'0 000 000 00°0 000 000 000 000 000 000 000 000 OO0 000 000 000 OO0 000 000 000 000 suonejayqolg

b B B B B B B o, B B, 6. B & b, % & B 6 (x|A)d
%\ez @\b «v&o e\o& @oo\ w\,oo q@a ,v\& @\é e\eb ow,\ee &w\o %s, (ZNECN @&» u\oo %
Y s R Ton B, e U o % Y, % D e

% Nz\v \».0 O&\ @\ mvvuv &\9«\ Q\z rvz\Q .\\@\4 %, .\&0 Q&Q «v@.&o
w %, T, 0, e, o, U, %, o, D

N N O Yy % Yo L ¢ 5
ovm %, % o S, owv %, 2
) (3 R %
B O %, ¢ o Ay T
D Ty T %
%, ? %,
%, 7

123



B. DATA SETS

B.4 Tomcat

S
%
0,

Scanner class
BlobRelations
DataClassFilter
DatabaseClass
DatabaseConnectorClass
DatabasePackage
LargeClass
LooselyCoupledRelations
NonDatabasePackagelnvocation
RavioliCode
SingleResponsibility
SimpleClass

TheBlob

TowerOfVoodoo
UniversalDatabaseMethod
ConcreteDependentAbstraction
CyclicPackageDependency
ElementalDatabaseClass
InterfaceSegregation
InheritanceTargetScanner
LooseCoupling
ManyAttributes
ManyDistinctRelations
ManyMethods
MethodUsageSetScanner
PrimitiveAttributes
SimpleMethods
SomewhatAbstract
UniversalDataStructure
UnrelatedAttributes

1836
2018
592
1390
2018
2018
2018
1076
1294
1294
2018
12
1076

© o o o o

DataClassFilter
SingleResponsibility
CyclicPackageDependency
ConcreteDependentAbstraction
InterfaceSegregation
DatabaseClass

RavioliCode

TheBlob

TowerOfVoodoo

124

[ 2 16'}
% () Ry S
%% &%Lo %&% o%/ %0% O"-f ‘l/% k % pS &o%o
3% 1555 77% 340 17% 61 3% 6 0% 0
55% 266 13% 396 20% 163 8% 58 3% 17
100% 0 0% 4 0% 0 0% 0 0% 0
0% 2014 100% 0 0% 0 0% 0% 4
0% 9% 97% 0 0% 0 0% 0% 3
23% 1207 60% 268  13% 48 2% 21 1% 3
0% 857 42% 1029 51% 115 6% 15 1% 2
0% 119 92% 0 0% 0 0% 10 8% 0
0% 726 36% 1214 60% 78 4% 0 0% 0
47% 621 31% 236 12% 138 7% 73 4% 8
10% 589 41% 396 28% 202 14% 90 6% 17
24% 1201 60% 296 15% 43 2% 1 0% 0
10% 1527 76% 257 13% 24 1% 4 0% 0
0% 19 14% 108  78% 11 8% 0 0% 0
86% 235 12% 0 0% 32 2% 9 0% 1
0% 57 58% 0 0% 1 11% 4 4% 27
0% 1832 100% 0 0% 0 0% 4 0% 0
93% 51 3% 0 0% 13 1% 16 1% 69
0% 0 0% 303 51% 289  49% 0 0% 0
0% 1073 77% 168 12% 138 10% 9 1% 2
49% 958 47% 65 3% 10 0% 2 0% 4
0% 1712 85% 99 5% 79 4% 65 3% 63
23% 1194 59% 210 10% 91 5% 32 2% 20
0% 470 44% 0 0% 429 40% 155  14% 22
0% 294 23% 394 30% 260  20% 250 19% 96
0% 1036 80% 0 0% 146 11% 58 4% 54
0% 0 0% 1681 83% 242 12% a7 2% 48
0% 6 50% 1 8% 4 33% 1 8% 0
44% 458 43% 72 7% 1 0% 74 7% 2
'B%
0
R
%, %
9% o, o,
% %, 7
2 %
0.00 166 0.00
0.00 0.00 0.00
0.00 #88] 0.00
0.00 0.00 0.00
0.00 0.00 0.00
.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0%
1%
0%
0%
3%
0%
0%
0%
0%
0%
1%
0%
0%
0%
0%

27%

0%
3%
0%
0%
0%
3%
1%
2%
7%
4%
2%
0%
0%



Tomcat

Ioo.o 000 oo.olw.ﬁ.ol._”._”.o 0T'0 000 TT'0 000 €2°0 Ov'0 8T'0 €€0 000 000 8€0 00'0 000 000 00'0 ST'0 000 ST'O 00°0 OS'O LT°0|Seingunuvpaiepiun

|61 000 000 000

000 000 000 00°0 000 000 000 000 000 00°0 000 000 00°0 000 000 00'0 000 000 000 000 000 000 000 000 000 000 00°0 000 [POYIBNSEGRIR|ESIBAILN
000 000 000 00'0 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 00’0 00’0 [24NIPNASEIRG|ESIAAUN

000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 [00POOAJOIIMOL

000 TO'0 000 000 000 000 000 TO'0 ZO'0 000 000 000 000 ¥0'0 000 000 000 000 000 000 000 000 000 000 [dojgayL

£T0 €00 ZTO'0 000 900 000 820 OY'0 950 LT'0 000 LZO 9¥'0 200 000 000 000 000 000 €00 000 [0£0! 00°0 |1essqyIeYMIWOS

L0°0 000 TT'0 000 OE0 950 €20 0S'0 000 000 8S0 000 000 000 000 STO 000 ZT'0 000 0S0 000 |Aungisuodsayajsuls

000 000 000 000 €00 OT'0 000 ¥T'0 000 OT'0 80'0 000 €E0 900 LZ'O E€T'0 000 000 000 000 000 000 000 000 €EE'0 [sPoyrsNa|duis

000 000 000 000 200 TT'0 000 £T'0 000 OT'0 ZT'0 TO'0 000 90'0 8T'0 €T'0 000 000 000 000 000 000 000 0010 LT'0 [sse|ajduis

000 00'0 000 00°0 000 000 000 000 000 000 000 000 00°0 000 000 000 000 000 000 000 000 000 000 000 000 000 000 00'0 [3podijoINEY

000 000 000 0% 120 9¥'0 w0 ¥SO 000 000 00°0 80% 000 [ZZ0] 000 02’0 LT'0 [s3aNqUIYRAMIWILG

000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 |uUOHEIOAU[RSEYIRJASEGRIEQUON
000 000 000 €50 90 ST'0 9T0 000 000 00'0 [G0FH 00'0 €20 00'0 00T 00°0 |12uuedSIBSBTESNPOYIBIN

000 000 000 770 980 $0'0 900 000 000 000 000 000 £O'0 000 0S'0 000 |sPOYIRNAUBI

000 000 000 000 [9L10 LED 000 TO'0 000 000 000 000 000 TO'0 000 |0L0 00°0 |suoneyIOURSIGAUEIN

000 000 000 000 TO0 ¥0'0 200 000 000 000 000 000 000 000 000 000 LT'0|seINGuIVAUEN

000 000 000 000 000 000 T00 TO0 000 000 000 000 000 000 000 000 00°0 |suone|aypajdnodAlasooT

000 000 000 000 €00 000 €00 200 000 000 000 000 000 TO'0 000 000 000 [8uljdnojasoo]

000 000 000 G0 210 £T'0 €00 £00 000 000 00'0 000 000 ¥0'0 000 OT'0 LT'0 [sse|yasie

000 000 000 000 Z0'0 000 000 000 000 000 000 000 000 000 000 OT'0 00'0 |uoneSaiSagedepaiu]

000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 |48uuedsIaBie adueILAYY]

000 000 000 000 000 000 000 000 000 000 000 000 00°0 000 000 00°0 |sse|d3seqeleqieluswal3

000 000 000 000 000 000 000 000 000 000 000 000 000 OT'0 000 00'0 |38exoedaseqeled

000 000 000 000 000 T0'0 000 000 000 000 00'0 000 000 000 000 00°0 [sSe|dIo1BUU)BSEqRlE]

000 000 000 000 000 000 000 000 00'0 00'0 000 000 000 000 000 000 00’0 [ssefyaseqereq

000 000 00'0 000 Z0'0 TT'0 £SO OLO 000 000 000 000 000 000 000 LT'0 [4334sseioeieq

000 000 000 000 000 000 000 000 000 000 60T 000 000 000 00°0 | Aouspuadagasexydedolohd
000 000 000 000 £0'0 900 000 000 000 000 000 000 000 000 000 uonPensqyIuapuadagalaIu0)
000 000 000 000 000 000 200 TO0 000 000 000 000 000 TO'0 000 suonejayqolg

000
00°'0 000 00°0
00°'0 000 00°0
€C0

000

V7 17, G
@, s, %o, %5, %, %, %, 0,
Y, Gy R Ro. By &, Y TS, 7%
> % (o) %, s, 2, Ov
%, Yo, Ko, Uy X B K K
%y Ve, % O %o, oy,
2, () 3 S, £ 8
Y, %o U % Yy, %
e e % TS
S, Q. % %, %
(7 o,ns 2, %
4 S,
Y%, ?

125



B. DATA SETS

B.5 JForum

0
%, " %,
% ® %, % %
Scanner class )6'79/ %L@ %% 9%@ %é’% %:9/ %0% %"of LP% Ao?f' 2 ﬁo%'
BlobRelations| 1146 22 2% 904 79% 154 13% 65 6% 1 0% 0
DataClassFilter| 1146 915 80% 151 13% 43 4% 12 1% 21 2% 4
DatabaseClass| 1146 1142 100% 1 0% 2 0% 1 0% 0 0% 0
DatabaseConnectorClass| 1146 0 0% 1142 100% 0 0% 4 0% 0 0% 0
DatabasePackage 35 0 0% 31 89% 0 0% 4 11% 0 0% 0
LargeClass| 1146 248 22% 841 73% 51 4% 4 0% 2 0% 0
LooselyCoupledRelations| 1146 0 0% 676 59% 470 41% 0 0% 0 0% 0
NonDatabasePackagelnvocation 88 0 0% 85 97% 0 0% 2 2% 0 0% 1
RavioliCode| 1146 0 0% 604 53% 541 47% 1 0% 0 0% 0
SingleResponsibility[ 1146 726 63% 333 29% 44 4% 11 1% 30 3% 2
SimpleClass| 802 33 4% 662 8% 43 5% 18 2% 42 5% 4
TheBlob| 1146 270 24% 793 69% 69 6% 14 1% 0 0% 0
TowerOfVoodoo| 1146 54 5% 575 50% 517 45% 0 0% 0 0% 0
UniversalDatabaseMethod 97 0 0% 54 56% 34 35% 8 8% 1 1% 0
ConcreteDependentAbstraction| 1146 1081  94% 42 4% 0 0% 20 2% 3 0% 0
CyclicPackageDependency| 35 0 0% 26 74% 0 0% 0 0% 1 3% 8
ElementalDatabaseClass| 989 0 0% 988 100% 0 0% 0 0% 1 0% 0
InterfaceSegregation| 1146 1114 97% 15 1% 0 0% 1 0% 9 1% 7
InheritanceTargetScanner| 600 0 0% 0 0% 66 11% 534 89% 0 0% 0
LooseCoupling| 766 0 0% 639 8% 9 12% 37 5% 0 0% 0
ManyAttributes| 1146 825 72% 313 27% 6 1% 1 0% 0 0% 1
ManyDistinctRelations| 1146 0 0% 977 8% 78 7% 52 5% 19 2% 20
ManyMethods| 1146 248 22% 835 73% 50 4% 8 1% 4 0% 1
MethodUsageSetScanner| 420 0 0% 305 73% 0 0% 102 24% 1 3% 2
PrimitiveAttributes| 769 0 0% 167 22% 538 70% 35 5% 27 4% 2
SimpleMethods| 769 0 0% 690 90% 0 0% 32 4% 19 2% 28
SomewhatAbstract| 1146 0 0% 0 0% 1060 92% 84 7% 2 0% 0
UniversalDataStructure 34 0 0% 29 85% 1 3% 2 6% 2 6% 0
UnrelatedAttributes| 420 193 46% 181 43% 8 2% 3 1% 35 8% 0
‘6,,0
%, Y
g G o% %
%%, o, O, »
%, E & %o e 0 %,
% R, K G, J':"@ YR %
(9@ Qd:% o,{r/ ,o% 6‘,& »%0 6% %’6 2 O,z
O, U % S S0 Ry e, %
C? S (P %, £ % %, (2
s Ry oy Fr Py, %/ e, 6 PP
YY) Y R R Yy gy B
LargeClass 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DataClassFilter 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SingleResponsibility [ 0.50 0.00 0.00 0.00 0.00 0.00 0.00
CyclicPackageDependency| 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ConcreteDependentAbstraction| 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00
InterfaceSegregation| 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DatabaseClass| 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
RavioliCode|0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
TheBlob|0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
TowerOfVoodoo|0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

126




JForum

000
000
000
000
000

000
000
000
000

16801 000

€v°0
1340
000
6v°0

000
000
000
000

000

000
000
000
000
000
000
000
000

000 665 o0

€0
600
000
000
000
000
€00
000
000
000
000

000
000
000
000
000
000
000
000
000
000
000
000

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
\AVQ

o, D
. % »oo

O,
Y&,

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

2
\0

%
e

000
000
000
000
000
000
000
000
000
000
000
000
000
000

000 JZ60] zc0
000
000
000
000

000
000
000
000
000
000
000
000

000
000
000
000
000

70
70
000
LY'0
000
8¢°0
600

000 665 o0

000
000
000
000
000
000
000
000
000
000
000
000
000
000
%

\vo

%
%o, s

(2

000
000
000
000
000
000
000
000
000
000
000
000
000
000
\«v\

xoo

000
000
000
€00
000
000
000
000
000
000
o
000
000
000
<,

2

vv.vo

000
000
000
000
000
8C0

000
0€0
000
70
¥0°0
000
000
000
000
200
000
000
000
000
000
000
€S0
000
000
000
%~

%

%

<3
Zs,

€€°0
000
000
000
000
000

000
00
000
o
00
000
000
000
000
200
000
000
000
000
000
000
50
000
000
000
%,

6S'0 000 €90

000 665 o0

000
000
000
000
S0
8¥'0
8¥'0
000

000
000
000
000
000
000
000
000

000
000
000
000
69°0
8€°0
8€'0
000
8€°0

000
000
000
000
000
S0'0
000

000
000
000
000
000
000
000
000
000
000
000

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

000
000
000

000
000 000

000 607 000

000
000
000
000
000
000
000
000
000
000

000
000
000
000
000
000
000
000
000
000

000
000
000
000
000
000
000
000
000

0S°0
000
000
000
000
000
0S°0
0S°0
0S°0
000
0S°0
000
0S°0
0S°0
000
0S°0
000
000

000
000
000
000
000
000
000
000
000
000
000
000
900
000
000
000
000
000
000
000
000
000
000
000
000
0S°0
000
000
000
s,

000
000
000
000
000
000
000
900
000
©
Q«\

(QV

© ()
Ozoo %e

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000 000 000
000 000 000
000 66 ooo
000 000 000
000 000 000
000 000 00'0
000 000 000
000 000 000
000 000 000
000 000 000
2,

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

R

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
%

2.
S
S

090
000
000
000
000
000
S0

000
950
000
0C°0
800
000
000
000
000
¥0°0
000
000
000
000
000
000
000
000
000

/e
/MV\&
%,

000
000
00°0
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

000
000
%

(y
\\\

9
&

000
000
000
000
000
000
000
000
000
000
000
000
€€°0
000
000
000
000
000
000
€€°0
000
000
000
000
000
000

000

000
000
000
000

seINquNypale|a4un
poyianaseqeleq|esianiun
2JnjonJiseleqglesianiun
00pOOAJOIaMOL

000 |901g3YL

00°0 |PeAsqyIeYyMIWOS

000 |A: 1suodsaya|3uis

00°0 [spoyiana3|dwis

00°0 [sse|da(duwis

00°0 |3podijoiney

00°0 |S2INqLNYaAIWLG

00°0 | uoized0AUa8eNORJISRARIEQUON
00°0 |42uuedsiasasesnpoyian
00°0 [spoyranAuey

00°0 |suonejayiounsighuey
00°0 [saanqunvAuen

00°0 |[suonejaypajdnodAjasoo
00°0 |8uiidno)asooq

00°0 |ssejpa81eq

00°0 |uonesai8agadeiaiu|
00°0 |42uuedsiadie] asueliayu|
00°0 |sse|Daseqeleq|eiuawa|l
00°0 |28eyoedaseqeleq

00°0 |Sse|D40199uu0)aseqeleq
00°0 |sse|D@seqeieq

00°0 (43¥1dsse|deleq

00°0 |AduapuadagaseydedaipAy
uonoesysqyiuapuadsgalaiouo)
suonejsyqolg

127




B. DATA SETS

B.6 JUnit

)
% 4
% %96 S %°°e 2 %, % %, I}“&
Scanner class % ,'Lo T OL@ %o% % %% o 11/% o,%o N o”é’
BlobRelations| 291 0 0% 219 75% 61 21% 11 4% 0 0% 0
DataClassFilter| 291 248 85% 21 7% 19 7% 2 1% 1 0% 0
DatabaseClass| 291 291 100% 0 0% 0 0% 0 0% 0 0% 0
DatabaseConnectorClass| 291 0 0% 291 100% 0 0% 0 0% 0 0% 0
DatabasePackage 27 0 0% 27 100% 0 0% 0 0% 0 0% 0
LargeClass| 291 100 34% 179 62% 12 4% 0 0% 0 0% 0
LooselyCoupledRelations| 291 0 0% 145 50% 141 48% 5 2% 0 0% 0
NonDatabasePackagelnvocation 0 0 0% 0 0% 0 0% 0 0% 0 0% 0
RavioliCode| 291 0 0% 132 45% 159 55% 0 0% 0 0% 0
SingleResponsibility| 291 160 55% 104 36% 25 9% 1 0% 1 0% 0
SimpleClass| 177 11 6% 111 63% 19 11% 22 12% 14 8% 0
TheBlob| 291 100 34% 173 59% 18 6% 0 0% 0 0% 0
TowerOfVoodoo| 291 17 6% 228 78% 44 15% 2 1% 0 0% 0
UniversalDatabaseMethod 0 0 0% 0 0% 0 0% 0 0% 0o 0% 0
ConcreteDependentAbstraction| 291 257 8% 24 8% 0 0% 8 3% 1 0% 1
CyclicPackageDependency 27 0 0% 9 33% 0 0% 2 7% 1 4% 15
ElementalDatabaseClass| 276 0 0% 276 100% 0 0% 0 0% 0 0% 0
InterfaceSegregation| 291 279 96% 8 3% 0 0% 1 0% 3 1% 0
InheritanceTargetScanner| 109 0 0% 0 0% 65 60% 44 40% 0 0% 0
LooseCoupling| 182 0 0% 148 81% 22 12% 12 7% 0o 0% 0
ManyAttributes| 291 196 67% 95 33% 0 0% 0 0% 0 0% 0
ManyDistinctRelations| 291 0 0% 265 91% 14 5% 5 2% 6 2% 1
ManyMethods| 291 100 34% 176 60% 11 4% 3 1% 1 0% 0
MethodUsageSetScanner| 131 0 0% 61 47% 0 0% 66 50% 4 3% 0
PrimitiveAttributes| 166 0 0% 21 13% 123 74% 6 4% 14 8% 2
SimpleMethods| 166 0 0% 131 79% 0 0% 20 12% 2 1% 13
SomewhatAbstract| 291 0 0% 0 0% 278 96% 12 4% 1 0% 0
UniversalDataStructure 0 0 0% 0 0% 0 0% 0 0% 0o 0% 0
UnrelatedAttributes| 131 93 71% 36 27% 1 1% 0 0% 1 1% 0
o]
S, %
%, %
3 %o O% O
Sy %, 6, 7 %
o‘9 @,?@ @O @,)( O@ 06 o@
G Co, o %, Y g g By, %
o R By o G Moy % o, X ’76
@% JX}/( % @,’c <y &, % @% /Q) %, %o,
(y Q, (y 4 0, o, 8 (> ()
o, 0, 212, R o, e e, e, o, %
piYIX) @ Y N Y Y Y Y Y G
LargeClass| 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DataClassFilter| 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SingleResponsibility [ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CyclicPackageDependency| 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ConcreteDependentAbstraction| 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
InterfaceSegregation| 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DatabaseClass| 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
RavioliCode| 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
TheBlob[ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
TowerOfVoodoo| 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

128

0%

0%
0%
0%
0%
0%
0%
0%
0%
56%
0%
0%
0%
0%
0%
0%
0%
0%
1%
8%
0%
0%
0%



JUnit

[667] ooo
000 000
000 000
000 000
[667 000
000 000
000 000
000 000
|66 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000

000
000
000
000
000
000
000
000
000
000
000

000
00°0
000
000
000
000
000
000
000
000
000
000
000

000
000
000

000
000
000
000
000
000
000

000
000
000
000
000
000
000
000
000
000
000
000
000
000
2

2, %o %,

[G667 000 000
000 000 000
000 000 000
000 000

000 000 000
|66 000 00
000 00°0 000
000 000 000
000 l88% oo'0 000 000

00°0 00'0 000
000 000 000
000 000 000
00’0 000 000
000 000 000
000 000 000
00’0 000 000
000 00°'0 000
000 000 000
000 000 000
000 000 OO
000 000 000
00’0 000 000
000 000 000
B, Gy G

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

900
00°0
00°0
000
90°0
00°0
900
00°0

000
000
000
000
000
000
000
000

000
00°0
00°0
000
00°0
00°0
00°0
00°0

000
000
000
10
000
000
000
000

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

000
00°0
00°0
000
00°0
00°0
000
00°0
00°0
000
00°0
00°0
000
000
00°0
00°0

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

000 66 000

000
000
000
000
000
000
000
000
000

000
000
00°0
00°0
000
00°0
00°0
000
000

000
000
000
000
000
000

00°0
00°0
00°0
000
00°0
00°0
000
00°0
00°0
000
00°0
000
000
000
00°0
000
00°0
000
000
00°0
00°0
000
00°0
00°0
000
000
2

000
00°0
00°0
000
00°0
00°0
000
00°0
00°0
000
00°0
00°0
000
000
000
000
00°0
00°0
000
00°0
00°0
000
00°0
00°0
000
000

000
000
000
000
000
000

000
00°0
00°0
000
00°0
000

000
000
000
000
000
000

000 667 000
000 000 000

000 667 oo0

000
000
000
000
00°0
000
000
000
000
000
000
000
000
000
000
000

000
00°0
000
000
000
000
000
00°0
00°0
00°0
00°0
000
000

00°0
000
000

000
000
000
000
00°0
000
000
000
000
000
000
000
000
000

000
000

000
000
00°0
000
000
000
000
000
00°0
000
000
0S'0
000
000
000
000
00°0
00°0
000
00°0
000
00°0

000
%
24

2

.\pv

s9Inqlvpale|aIun
00POOAJOIIMOL
qo|gaylL
10EJ1SqYIBYMBWOS
AnjiqisuodsayajSuis
spoyaNa|dwis
sse|pa|dwis

apojijoiney
S9INQLAYIARIWLY
J2uuedS19Sa8esNPoYIBIA
spoyiaNAuen
suole[ayounsigAuey
saInquIvAuey
suolje|aypajdnodAjasoo
8uljdnonasoo

sse|pasie
uoneSaiSasaceiaiu|
Jauueds1asie] oueyliayul
sse|Jaseqeleq|eiusawsall
a8eyoedaseqeleq
sse|DJ0123uu0)aseqeleq
sse|yaseqeleq
J9yi4ssedeleq
AduapuadagaseydeddipAy
uonoensqyuspuadagalaiouo)
suone|ayqolg

(x|A)d

129



B. DATA SETS

B.7 JHotDraw

)
% 4
2 %fe,. $ %°°e. A %o %, ’;“;‘»
Scanner class o""’/ Y 4’% %@ 2 %/ % @Qf o,%o - o”é’
BlobRelations| 1558 62 4% 1382 89% 113 7% 1 0 0% 0
DataClassFilter| 1558 1101 71% 246 16% 177 11% 26 6 0% 2
DatabaseClass| 1558 1558 100% 0o 0% 0 0% 0 0 0% 0
DatabaseConnectorClass| 1558 0 0% 1558 100% 0 0% 0 0 0% 0
DatabasePackage 64 0 0% 64 100% 0 0% 0 0 0% 0
LargeClass| 1558 501 32% 906 58% 137 9% 12 2 0% 0
LooselyCoupledRelations| 1558 0 0% 565 36% 911 58% 66 1 1% 5
NonDatabasePackagelnvocation 0 0 0% 0 0% 0 0% 0 0 0% 0
RavioliCode| 1558 0 0% 466 30% 1037 67% 54 1 0% 0
SingleResponsibility| 1558 947 61% 329 21% 139 9% 82 60 4% 1
SimpleClass| 1012 57 6% 715 71% 177 17% 51 10 1% 2
TheBlob| 1558 510 33% 896 58% 148 9% 4 0 0% 0
TowerOfVoodoo| 1558 110 7% 1032 66% 373 24% 43 0 0% 0
UniversalDatabaseMethod 0 0 0% 0 0% 0 0% 0 0 0% 0
ConcreteDependentAbstraction| 1558 1403 90% 119 8% 0 0% 28 8 1% 0
CyclicPackageDependency 64 0 0% 27 4% 0 0% 4 6 9% 27
ElementalDatabaseClass| 1441 0 0% 1441 100% 0 0% 0 0 0% 0
InterfaceSegregation| 1558 1501 96% 15 1% 0 0% 1 8 1% 33
InheritanceTargetScanner| 630 0 0% 0 0% 189 30% 441 0 0% 0
LooseCoupling| 1003 0 0% 827 82% 81 8% 83 10 1% 2
ManyAttributes| 1558 1003 64% 546 35% 6 0% 2 0 0% 1
ManyDistinctRelations| 1558 0 0% 1303 84% 94 6% 71 50 3% 40
ManyMethods| 1558 501 32% 894 57% 124 8% 27 1 1% 1
MethodUsageSetScanner| 611 0 0% 242 40% 0 0% 295 65 11% 9
PrimitiveAttributes| 955 0 0% 257 27% 498 52% 123 56 6% 21
SimpleMethods| 955 0 0% 902 94% 0 0% 40 5 1% 8
SomewhatAbstract| 1558 0 0% 0 0% 1237 79% 261 48 3% 12
UniversalDataStructure 0 0 0% 0 0% 0 0% 0 0 0% 0
UnrelatedAttributes| 611 246 40% 237 39% 65 11% 1 61  10% 1
(60
(Ltz QQ(@
% ®, o% O
(74 Q‘o % e
o, A %o %/) %@\r
PR %o 676 %0, e’é}; 4:9 0,.0
Yo R Ay By W & B Y, % L
) “‘&,97 %, % ’éo(_ °°«9,/. %, s, o,
. o o o, %, 9 R o5 %,
S, . e, 1 /)/ e, S, 7, 6/ °,
piYIX) ¥ Y Y Y Y Y Y 9 2
LargeClass 0.02 0.00 0.00 0.00 0.00 0.00 0.00
DataClassFilter 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SingleResponsibility [ 0.50 0.13 0.00 0.00 0.00 0.00
CyclicPackageDependency| 0.00 0.00 0.00 0.00 0.00
ConcreteDependentAbstraction| 0.00 0.00 0.02 0.00 0.00 0.00 0.00
InterfaceSegregation| 0.00 0.00 0.00 0.00 0.00 0.00
DatabaseClass| 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
RavioliCode| 0.00 0.00 0.00 0.00 0.00 0.00 0.00- 0.00 0.00
TheBlob[ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
TowerOfVoodoo| 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

130




JHotDraw

131

I 00'0 000 €C0 I 00’0 000 000 90°0 €C¢°0 ¢¥0 8C'0 000 000 000 0S'0 000 000 000 000 OO0 000 000 000 00°0 00°0 [S°INGLUNVPIERIUN
00'0 000 000 000 00°'0 00'0 000 000 000 000 000 000 000 000 000 000 000 OO0 OO0 OO0 000 000 000 00'0 000 00°0|0OpPOOAJOIZMOL
00'0 00°0 000 00°'0 00°'0 00°0 000 000 000 000 000 000 000 00°'0 000 000 OO0 OO0 000 000 000 000 00°'0 00'0 000 00°0|9ol92YL
€C°0 000 000 000 00°0 I 80'0 0€0 S£0 ¢v'0 000 000 SC0O 0S0 SO0 000 000 000 000 000 OO0 000 0SO 000 |PEMIsqyIEYMIWOS
I 000 00°0 00'0 000 000 ¥0'0 OE€0 850 620 000 000 000 0S0 000 000 000 00'0 000 000 00'0 000 €T'0 00°0 |Aupqisuodsayajsuis
000 000 S0'0 000 00'0 00'0 000 00'0 00'0 000 00'0 00'0 000 00'0 00'0 00°0 |S£0 000 00°0 00°0 [SPoyIBNB|dwIS
000 000 80°'0 00°'0 00°'0 00°0 000 000 000 000 00C 000 000 000 00°0 000 I 00'0 000 00°0 [sse|pajdwis
000 000 00'0 TO'0 000 TO'0O 000 000 000 000 000 000 000 000 000 000 000 000 000 00°0 |[2pOJijoirney
80'0 000 0S'0 000 ¢0'0 00'0 90°0 000 000 000 000 000 000 00°0 000 |SL0 000 €T'0 00°0 |SeINqLNIYIARIWNLI
LT0 000 S0'0 00'0 ZT'0 0S0 ¢Z'0 00°0 000 00'0 000 00'0 000 000 8€0 000 [4PUUEISIISIFESNPOYIBN
80'0 000 00'0 000 TOO 00'0 800 0S'0 SO'0 000 000 00'0 000 000 000 000 ST'O 000 [SPOYIRNAUBIA
0r'0 000 000 I €00 TEO 00'0 000 0S'0 00'0 000 00'0 00'0 000 00'0 000 00°0 €9°0 00°0 [suonelyUNSIQAUBA
000 000 00°'0 00°'0 000 000 000 000 00'0 0S'0 000 00'0 000 00'0 00'0 000 00'0 000 00°0 00°0 |seanquIIVAUEA
000 000 00’0 00°'0 TO'0 000 00°0 000 000 700 000 00'0 000 00'0 00'0 000 00'0 000 000 [suonedypa|dnodA|as00T
00'0 000 00'0 00°'0 00°'0 €0°0 80°0 000 000 900 00'0 00°0 000 00'0 000 00°0 00'0 00°0 00°0 |3uljdnodasoo
¢0'0 000 00°'0 000 000 TOO 800 TOO I 000 00'0 00°0 000 00'0 000 00'0 00'0 000 00°0 [ssejJasie]
000 000 00'0 00°'0 000 ¢T'0 LT'0 000 000 900 00'0 00°0 000 00'0 000 00°0 00'0 000 00°0 |uonesaidagadepaiul
00'0 000 00'0 00°'0 00°'0 000 000 000 000 000 00'0 00°0 00°0 00°0 000 00'0 000 00°0 00°0 [/duuedsiadielddueltayul
000 000 00’0 00°'0 00°'0 00°0 000 000 000 000 00’0 000 000 00°'0 00°'0 00'0 000 000 000 |sse|yoseqeleg|eruswaly
000 000 000 000 000 000 00°'0 00°0 00°0 000 00'0 00°0 00°0 00'0 000 00°0 00'0 000 00°0 [38e3oedaseqeleq
00'0 000 00°'0 00°'0 00°'0 00°0 000 000 000 000 00’0 000 00°'0 00°'0 00°0 00°0 000 000 00°0 |sSse|p4013uUUO)ISEqRIE]
000 000 00'0 00°'0 00°'0 000 000 000 000 000 00’0 000 000 00°'0 00°'0 00'0 00°0 000 000 |ssejyaseqereq
000 000 £9°0 000 80°0 00°0 000 000 000 000 00'0 000 000 00°0 000 000 00°0 |4231dsse|yereq
000 000 00'0 00°'0 00°'0 000 000 000 000 000 00'0 000 00°0 00°0 000 000 |AduapuadagasexdeddiPAd
000 000 00'0 000 TO'0O ¥0'0 ZT'0 90°0 000 000 00’0 00°'0 00°0 00°0 000 00°0 |uondessqyiuapuadagaiasdouo)
000 000 00’0 00°'0 00°'0 00°0 000 000 000 000 00'0 000 000 00°'0 00°'0 00°0 000 000 00°0 |suone|2yqolg
Y \e\o o, (x]A)d
D, % o, X 2
%, Do e,
%, £ )
% .
%, %
S %
b
%,
%, %
% %, \@0



B. DATA SETS

B.8 JMonkeyEngine

‘%‘o
%, 4
2 %°°e Ky %"o 7 %o % %, 'l%
Scanner class o"‘;‘/ 6% 4’% 6’.’@ 6"9% %/ O('% o 11,% o,)e - o”é’
BlobRelations| 2252 56 2% 1235 55% 789 35% 125 6% 47 2% 0
DataClassFilter| 2252 1252 56% 338 15% 413 18% 201 9% 28 1% 20
DatabaseClass| 2252 2252 100% 0 0% 0 0% 0 0% 0 0% 0
DatabaseConnectorClass| 2252 0 0% 2252 100% 0 0% 0 0% 0 0% 0
DatabasePackage| 156 0 0% 156 100% 0 0% 0 0% 0 0% 0
LargeClass| 2252 474 21% 1512 67% 221 10% 31 1% 12 1% 2
LooselyCoupledRelations| 2252 0 0% 1197 53% 995 44% 56 2% 4 0% 0
NonDatabasePackagelnvocation 0 0 0% 0 0% 0 0% 0 0% 0 0% 0
RavioliCode| 2252 0 0% 777 35% 1440 64% 34 2% 1 0% 0
SingleResponsibility| 2252 1104 49% 611 27% 313 14% 134 6% 78 3% 12
SimpleClass| 1686 53 3% 881 52% 413 24% 264 16% 55 3% 20
TheBlob| 2252 477 21% 1285 57% 424 19% 64 3% 2 0% 0
TowerOfVoodoo| 2252 99 4% 1798 80% 322 14% 32 1% 1 0% 0
UniversalDatabaseMethod 0 0 0% 0 0% 0 0% 0 0% 0 0% 0
ConcreteDependentAbstraction| 2252 2054 91% 123 5% 0 0% 54 2% 15 1% 6
CyclicPackageDependency| 156 0 0% 8 56% 0 0% 14 9% 1 1% 53
ElementalDatabaseClass| 2137 0 0% 2137 100% 0 0% 0 0% 0 0% 0
InterfaceSegregation| 2252 2195 97% 36 2% 0 0% 2 0% 6 0% 13
InheritanceTargetScanner| 976 0 0% 0 0% 636 65% 340 35% 0 0% 0
LooseCoupling| 1699 0 0% 1436 85% 118 7% 113 7% 32 2% 0
ManyAttributes| 2252 995 44% 1203 53% 38 2% 12 1% 2 0%
ManyDistinctRelations| 2252 0 0% 1577 70% 173 8% 161 7% 99 4% 242
ManyMethods| 2252 474 21% 1519 67% 175 8% 48 2% 26 1% 10
MethodUsageSetScanner| 1148 0 0% 59 52% 0 0% 444 39% 7% 7% 32
PrimitiveAttributes| 1633 0 0% 371 23% 633 39% 279 17% 175 11% 175
SimpleMethods| 1633 0 0% 1428 87% 0 0% 126 8% 29 2% 50
SomewhatAbstract| 2252 0 0% 0 0% 1569 70% 409 18% 117 5% 157
UniversalDataStructure 0 0 0% 0 0% 0 0% 0 0% 0 0% 0
UnrelatedAttributes| 1148 301 26% 646 56% 87 8% 3 0% 109 9% 2
%
% %,
(“‘ﬁ °Q 491,‘ Q/I'O
EON %, % %
B % @, 8y %
%, % _ %, %
p(Y]X) 9 Y Y%
LargeClass 0.00 0.00 iG] 0.00
DataClassFilter 0.00 0.00 0.00 0.00
SingleResponsibility 0.00 0.00 iG] 0.00
CyclicPackageDependency 0.00 0.00 0.00 0.00
ConcreteDependentAbstraction 0.00 0.00 0.50 0.00
InterfaceSegregation 0.00 0.00 0.00 0.00
DatabaseClass{ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
RavioliCode| 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
TheBlob[ 0.14 0.00 0.02 0.00 0.05 0.00 0.00 0.00
TowerOfVoodoo| 0.00 0.00 0.00 0.00 0.00 0.00 0.00

132

0%
1%
0%
0%
0%
0%
0%
0%
0%
1%
1%
0%
0%
0%
0%
34%
0%
1%
0%
0%
0%
11%
0%
3%
11%
3%
7%
0%
0%



JMonkeyEngine

000
87'0 000
89°0 000
90'0 000
90'0 00°0 000
000 000 00°0
8C°0 000 0S0
62°0 000
TT°'0 000
SS'0 000
¢0'0 000
00°'0 000 000
00'0 00°0 000

¥1°0
000
000
000
o
70
900

100
000
000

soo ooo [607H zo0

000 000 000
00'0 00°0 000
00°'0 00°0 000
000 000 00°0
00°'0 00°0 000
000 000 00°0
90'0 00°0 000
000 000 00°0
60°'0 000 0S0
00'0 000 000

000
000
000
000
000
000
000
000
S0°0

000 000 000 00'0
000 000 000 000
000 000 000 00'0
000 000 000 00'0
000 000 000 000
000 000 000 00'0
000 000 000 00'0
000 000 000 000 000
S¥'0 000 000 000 000 00'0
€0°0 000 60°0 000 000 000 00'0
100 000 €0°0 000 000 000 000
o0 68 v10 LEO 000 000 000 000
000 000 000 €00 900 TO'0 000 000 000 00'0
100 66 To0 000 000 000 000 000 000 000
000 000 Z0'0 TO'0 000 000 000 000 000 000 000 00'0
000 000 TO'0 TT'0 €€0 ¢0'0 [BOIE] 000 000 000 000 00'0
000 000 000 200 900 000 000 000 000 000 000 000 000
000 000 000 000 000 000 000 000 000 000 000 000 00'0
000 000 000 000 000 000 00'0 000 000 000 00'0 000 000 000 00'0
000 000 000 000 000 000 000 000 000 000 000 000 000 000 000
000 000 000 000 000 000 000 000 000 000 00'0 000 000 000 00'0
000 000 000 000 000 000 000 000 000 000 00'0 000 000 000 00'0
790 000 0T'0 Z0'0 €00 000 000 STO 000 000 000 000 000 000
000 000 000 000 000 00'0 000 000 000 000 00'0 000 000 000
T00 000 TO'0 TT'0 T€0 ¥0'0 SZO 000 000 9E0 000 000 000 000
€20 000 SO0 000 000 000 000 000 000 000 000 000 000 000
%, b, %,
L S Ly
Dy & %
o P9, Mo
R R
O % )
Yo Yo &
S, &
Vo, ¥, Ve
e/
N %. %o, X,
OO g bov T, % Y Y.
% 4 23 %

ST0
00°0
00°0
00
ST0

00°0
TL0
00
00
00
000
00
000
00°0
000
00°0
000
00°0
00°0
00°0

000
000
000
000
000
000
000
000
000
000
000
000
000
00°0
000
000
000
000
000
000
000
000

817'0
000
S0°0
£9°0
290
S0°0
S00
000
61°0
LS0
S0
£9°0
S00
000
000
vTo
000
00°0
000
00°0
000
000

saInqlvpaleaIun
00POOAJOIIMOL
qo|gaylL
10€J1SqyIBYMBWOS
AupiqisuodsayajSuis
spoyizaNa|dwis
sse|pa|dwis

apodljoiney
S9INQUNYIAINWIL]
J2UuedS1aSaZesNPOYIBIN
spoyiaNAuey
suole|ayiounsigAueln
sainqunyAuen
suole|aypajdnodAjasoo
8uljdnonasoo
sse|pasie
uoneSaiSasaceiaiu]
Jauueds)1a8ie | aduelIayu|
sse|Jaseqeleq|eiusawsall
a8eydedaseqeleq
sse[DJ0303uu0)aseqeleq
sse|)aseqeleq
J9yidssepereq
AduapuadagasexdeddipAy

:O_auwham£<acwﬂ:wnwﬁ_wuw._ucou
suone[Ryqolg

133



