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Abstract
In this article, I focus on the role of computer simulations as exploratory strategies. 
I begin by establishing the non-theory-driven nature of simulations. This refers to 
their ability to characterize phenomena without relying on a predefined conceptual 
framework that is provided by an implemented mathematical model. Drawing on 
Steinle’s notion of exploratory experimentation and Gelfert’s work on exploratory 
models, I present three exploratory strategies for computer simulations: (1) start-
ing points and continuation of scientific inquiry, (2) varying the parameters, and (3) 
scientific prototyping.

Keywords  Computer simulations · Exploratory strategies · Scientific and 
engineering modeling · Mathematical models

1  Introduction

It is a recurring topic in philosophical studies on computer simulations to advance 
comparisons with mathematical models and laboratory experimentation.1 Fritz 
Rohrlich famously located computer simulations somewhere between traditional 
theoretical physical science and empirical methods of experimentation and obser-
vation, emphasizing that their primary feature is theoretical modeling (Rohrlich, 
1990, p. 514). Paul Humphreys presents a working definition where computer 
simulations implement and find solutions to mathematical models where analytic 
methods are unavailable, and provide numerical experiments in situations where 
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1  Throughout the article, I distinguish between mathematical models (e.g., models written in mathematical 
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natural experimentation is inappropriate or unattainable (Humphreys, 1990, pp. 
501–502). Eric Winsberg advances a hierarchy of models. At the top of the hier-
archy is a theory (general physical and modeling assumptions). After a series of 
specifications, alterations, and inferences at each level of modeling, it then termi-
nates with a model of the phenomena. This represents the outcome of the com-
putational model that is immediately prior in the hierarchy (Winsberg, 1999, p. 
280).

Recently, philosophers have weakened the relation between mathematics and 
simulations. Johannes Lenhard argues that computer simulations are a new type 
of mathematical modeling. Simulation models must be “counted into the estab-
lished classical and modern class of mathematical modeling” (Lenhard, 2019, p. 
7). However, one must also take stock on how they “contribute to a novel explora-
tive and iterative mode of modeling characterized by the ways in which simula-
tion models are constructed and fitted” (Lenhard, 2019, p. 7). Lenhard also states 
as follows:

[o]ne direction seems self-evident: the (further) development of computers 
is based primarily on mathematical models. However, the other direction 
is at least just as important: the computer as an instrument channels math-
ematical modeling (Lenhard, 2019, p. 8).

In previous work, I have put some distance from these viewpoints when reflecting 
on the plurality of mathematical models involved in the architecture of computer 
simulations. On my account, mathematical models are recast into a “super-class” 
of simulation models. This includes: (1) kernel simulations, understood as the 
implementation of each individual model in the formalism of a programming lan-
guage, and (2) integration modules”, which play two fundamental roles, namely, 
they integrate external databases, protocols, libraries and the like with [each ker-
nel simulation], and ensure the synchronization and compatibility among [the 
kernel simulations] (Durán, 2020, p. 307).

The common assumption here is that we take that computer simulations can-
not characterize phenomena without the background conceptual framework that 
mathematical models provide. This, I submit, configures a form of theory-driven 
computer simulations. But scientific practice using simulations sometimes tells 
a different story. Increasingly, simulationists use computer simulations to char-
acterize phenomena (and previously unknown regularities specific to those phe-
nomena) without implementing a clearly defined mathematical model. In such 
cases, one must ask after the scientific merits of running simulations without a 
conceptual framework driving the relevant inquiry. What sort of regularities can 
simulationists uncover? How do they justify the scientific value of these regulari-
ties? And, how should this kind of scientific practice be understood?

To answer these questions, I make explicit the uncharacterized exploratory 
strategies related to computer simulations (Sect.  3). To do this, I must, though, 
first address core issues in the debate around (1) exploratory strategies and (2) 
the conditions for theory-driven experimentation (Sect. 2). Based on the conclu-
sions I reach, I then present my first thesis: the non-theory-drivenness of (some) 
computer simulations. I also discuss some provisos related to the methodology 
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of computer simulations (I discuss the main example in Sect. 3.2). Once the non-
theory-drivenness of computer simulations is established, I discuss three explora-
tory strategies related to computer simulations.2 These exploratory strategies are 
designed for computer simulations. I use the work of Axel Gelfert (2016, 2018) 
on exploratory mathematical models as a contrastive baseline. I conclude by sug-
gesting further lines of inquiry for exploratory strategies related to computer sim-
ulations (Sect. 5).

2 � The Theory‑Exploration Divide

In this section, I brief reconstruction Friedrich Steinle’s work on exploratory experi-
mentation. He argues that standard views of theory-drivenness (e.g., (Hanson, 
1958)) fall short of capturing the complexity and diversity of scientific experiments 
(Steinle, 1997). Steinle maintains that the standard view of experimentation takes 
cases where theory underpins experiment to be the only genuine kind of experimen-
tation. Experimental activity is understood in terms of “a theory that led to expecting 
a certain effect; the expectation led to designing and conducting an experiment; and 
the success of the experiment counted as support for the theory” (Steinle, 2002, p. 
418). However, there are other types of experimentation in scientific research. One 
such type “typically takes place in those periods of scientific development in which 
– for whatever reasons – no well-formed theory or even no conceptual framework is 
available or regarded as reliable” (Steinle, 1997, p. S70). For Steinle, a more ade-
quate approach to scientific experimentation discriminates between two non-exclu-
sive types: (1) theory-driven experimentation and (2) exploratory experimentation.

Theory driven experiments are set up and carried out with “a well-formed the-
ory in mind, from the very-first idea, via the specific design and the execution, to 
the evaluation” (Steinle, 1997, p. 69). Thus, the theory anticipates the results of the 
experiment. In fact, Steinle states explicitly that “[t]heory-driven experiments are 
typically done with quite specific expectations of the various possible outcomes in 
mind” (Steinle, 1997, p. 70). In this respect, to say that an experiment is theory-
driven suggests, at least, three interpretations: 

1.	 The researcher’s expectations about the results of the experiment fall within the 
framework provided by the theory grounding the experiment,

2.	 The design and success of the experiment depends on a given theory, or
3.	 The instruments used for the experiment are theory-dependent.

Some combination of these interpretations is also possible. A canonical example of 
a theory driven experiment that combines at least the first two interpretations is the 
crucial experiment of parity non-conservation of weak interactions (see (Franklin & 
Smokler, 1981; Wu & Ambler, 1957)).

2  The approach I advance here contrasts with views like those found in Viola Schiaffonati (2016). Schi-
affonati puts forward a broader interpretation of experimental methods in computing. She think of them 
as socio-technical experiments testing new technologies in their socio-technical contexts.



	 J. M. Durán 

1 3

By contrast, exploratory experimentation is characterized by Steinle as generat-
ing findings about phenomena that do not appeal to (1) the framework provided by 
the theory, (2) the theory used to design the experiment, or (3) the theory used to 
build the relevant instruments. In other words, the experiment and its results render 
information about phenomena independently, on their own account.3

Exploratory experimentation is, by definition, not theory-driven. Nonetheless, 
it should not be understood as the counterpart of theory-driven experimentation 
(Steinle, 1997, p. 71). As Steinle puts it, “exploratory experimentation is not one 
specific and well-defined procedure, but includes a whole bundle of different experi-
mental strategies” (Steinle, 1997, p. 73). A shortlist of such procedures can be found 
in (Steinle, 1997, p. 70).

With these ideas in mind, I characterize exploratory experimentation in terms of 
the following: (1) its relative independence from strong theoretical restrictions, and 
(2) its capacity to generate significant findings that cannot be framed (or cannot be 
easily framed) within current theoretical frameworks.

A paradigmatic example is the experiments on static electricity performed by 
Charles Dufay, André-Marie Ampère, and Michael Faraday. As Koray Karaca points 
out, these experiments were carried out in a new research field. At the time, this 
research field did not have a well-defined or well-established theoretical framework 
(Karaca, 2013, p. 97). The results that Dufay, Ampère, and Faraday recorded have 
helped to advance the study of electromagnetism into the discipline we know today.

Thus understood, exploratory experimentation is meant to fulfill very specific 
epistemic functions. It is particularly important in cases where a scientific field is 
open to revision (perhaps, due to its empirical inadequacy). In such cases, explora-
tory experimentation plays a fundamental role in the fortune of the relevant theories. 
This is because the experimental findings are not framed within the theory at hand. 
Exploratory experimentation is also important when it provides useful information 
about the world that is not implied by the theory itself. More generally, the findings 
obtained by exploratory experimentation are significant with respect to a variety of 
goals. These range from practical matters (e.g., learning how to manipulate phe-
nomena) to theoretical goals (e.g., developing alternative conceptual frameworks) 
(Waters, 2007). Steinle also suggests that findings from exploratory experimenta-
tion might have significant implications for our understanding of existing theoreti-
cal concepts. This is a primary epistemic function of exploratory experimentation. 
An example is when researchers attempt to formulate empirical regularities found in 
exploratory experiments. Researchers are required to (1) revisit existing theoretical 
concepts and categories or (2) formulate new theoretical concepts and categories 
to ensure a stable and general formulation of experimental results (Steinle, 2002, 
p. 419). On the face of it, exploratory experimentation looms large in scientific 

3  At least two other characterizations are available in the literature on exploratory experiments. Karaca 
takes “the general aim of experimental inquiry; the experimental methods or strategies used; and the 
involvement of theoretical considerations in experimentation” to be characteristic of exploratory experi-
mentation (Karaca, 2013, p. 126) Elliott suggest that exploratory experimentation should be character-
ized along three dimensions: (1) the positive aim of the experimental activity, (2) the methods or strate-
gies used for varying parameters, and (3) the role that theory plays in experimental activity (Elliott, 2007, 
p. 323).
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research. It has a complicated coexistence with theory. Among other factors, this 
coexistence is based on degrees of independence, capacity to produce findings, and 
robustness of results.

On the above interpretation, exploratory strategies will have the general charac-
ter of research activities. These research activities have the goal of generating sig-
nificant findings about phenomena without fully appealing to, nor entirely relying 
on a theory of such phenomena. There are two things to note at this point. Firstly, 
a key issue here is the degree of dependence of experiment on theory. It is rather 
straightforward that an experiment is theory-driven if results can be anticipated. As 
we will see in the next section, this issue is pervasive in discussions about computer 
simulations. Secondly, we must pay attention to the epistemic functions that explor-
atory experimentation fulfills. Such functions can involve bringing about observable 
changes in the world illuminated by the experiments. They can, though, also involve 
more subtle modifications by serving as testing grounds for novel and yet to be sta-
bilized concepts in a new theory.

I now draw on recent discussions of exploratory models (Gelfert, 2016, 2018; 
Shech & Gelfert, 2019) to address the above-discussed issues in the context of com-
puter simulations.

3 � The Exploratory Character of Computer Simulations

A primary concern related to computer simulations as exploratory strategies is that 
we need an answer to the question of whether computer simulations are theory-
driven. To authors like those mentioned in the introduction, the goal of computer 
simulations is to find a set of solutions to mathematical models. A computer simula-
tion is, then, dependent on theory or (sets of) mathematical models exogenous to the 
simulation. If one understands things this way, then one is naturally inclined to agree 
that simulations are theory-driven. This because either (1) the modeler’s expecta-
tions regarding simulation outputs fall within the framework provided by the theory 
or mathematical model forming the basis of the simulation, or (2) the design of the 
simulation and its outputs depend on a given theory (I elaborate on this claim later 
in this section).

In what follows, I argue that there many simulations are not theory-driven in 
Steinle’s sense. This is especially the case for simulations involving complex target 
systems. Many simulations proceed without a fully developed theory or mathemati-
cal model. Moreover, exploratory research employing such simulations is neither 
driven by pre-existing theoretical concerns nor specifically aimed at testing theoreti-
cal constructs. I illustrate these findings with a case of simulating airborne anthrax 
infection outbreaks in Sect. 3.2. Another issue of interest is that the core epistemic 
functions of computer simulations can be illuminated in light of exploratory strate-
gies. This is particularly the case for simulations that do not fulfill theory-driven 
criteria. I discuss three such strategies in Sect. 4.

Drawing from Steinle, theory-driven computer simulations suggest, at least, three 
different interpretations: 
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1.	 Simulationists’ expectations regarding a simulation output fall within the frame-
work provided by the theory or mathematical model that is implemented by the 
simulation,

2.	 The design and success of the simulation depends on a given theory, or
3.	 The instrument used for the simulation (the physical computer) is theory-depend-

ent

In the context of theory-driven computer simulations, I submit that interpretation 
1 and 2 are equivalent. Specifically, the simulation (and therefore its design) is, by 
definition, an implemented mathematical model. Thus, the success of the simulation 
depends on how successfully that mathematical model is computed. It follows that 
any expectation about simulation outputs can be ascribed to the implemented math-
ematical model. If so, then 1 and 2 are equivalent.

Later in this section, I argue for the non-theory-drivenness of computer simula-
tions. For this, I return to interpretations 1 and 2. However, this time around I will 
not discuss interpretation 2. This is because rejecting 1 is sufficient for entrench-
ing the non-theory-drivenness of computer simulations. Indeed, if it can be shown 
that simulationist expectations regarding the outputs of their simulations do not fall 
within an implemented and exogenous mathematical model, then it does not really 
matter whether those simulations depend on a given theory. Even if they did, the 
opacity of simulations (epistemic, methodological, procedural, etc.) would hamper 
any attempt to show that a simulation depends on any given theory (Durán & For-
manek, 2018; Beisbart, 2021; Humphreys, xxxx)).

Admittedly, the validity of my claim depends on how we interpret the ‘depend-
ence’ relation in 2. Unfortunately, Steinle says very little about this. Nonetheless, 
we can gain some insight if we consider exploratory experiments that are “driven by 
the elementary desire to obtain empirical regularities and to find out proper concepts 
and classifications by means of which those regularities can be formulated” (Steinle, 
1997, p. 70). In this respect, experiments are dependent on theory when the empiri-
cal regularities uncovered can be formulated in terms of previous theoretical con-
cepts and classifications. Similarly, simulations are dependent on theory when their 
outputs can be formulated in terms of previous and exogenous mathematical models. 
However, as before, opacity prevents any researchers from doing so.

Regarding interpretation 3, it seems obvious that simulation outputs depend on 
a computer. A computer, in turn, depends on transistors, silicon-based chips, and 
other physical components. These, naturally, depend on theory in some or other way. 
Thus, simulations are theory-driven in, at least, one trivial sense. This interpretation 
is, though, largely irrelevant. Unless the simulation is of the physical workings of 
the computer, the output will never be related to theories about the computer itself.4

4  Some philosophers have argued for a meaningful morphism between physical computer processes and 
the target system (e.g., Parker (2009); Boge (2019)). However, the multiple-realizability of physical pro-
cesses makes this analogy thin and contrived ((Durán, 2013; Beisbart, 2014))
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3.1 � The Strong and Weak Sense of Expecting

Interpretations 1 and 2 appear conceptually equivalent, while interpretation 3 does 
not seem to apply to computer simulations at all. Interpretation 1 suggests that com-
puter simulations are theory-driven when their outputs can be expected from imple-
mented mathematical models. This is a strong condition that Steinle imposes. Yet, it 
works as a preliminary benchmark for distinguishing simulations that are “designed 
for the one well-informed theoretical question - and only for that” from other kinds 
of simulations (potentially designed for exploratory purposes) (Steinle, 1997, p. 70).

Upon closer inspection, it is possible to identify, at least, two different senses of 
expectation. A strong sense, where simulationists can anticipate (i.e., know a priori 
or predict) simulation outputs before running a simulation; and a weak sense, where 
simulationists can trace back simulation outputs to implemented mathematical mod-
els (e.g., by explaining the simulation outputs with the mathematical model).

The strong sense takes inspiration from laboratory experiments where experi-
menters anticipate that an effect or phenomenon will occur, and they then set up 
their experiment to that end. For example, theory indicates that a stone thrown at 45◦ 
will travel the longest possible distance compared to those thrown at other angles. 
Experimenters corroborate this by designing experiments under varying conditions.

For computer simulations, anticipation in the strong sense is more difficult to 
obtain. It is only possible if simulationists analytically calculate the mathematical 
model. As it turns out, not every model can be analytically solved (Humphreys, 
1990). And, not every simulationist can predict the outputs of their simulations. As 
mentioned, different forms of opacity prevent simulationists from knowing a priori 
and predicting simulation outputs. I take it, then, that we need not discuss the strong 
sense any further.5

We are left out with the weak sense (which seems to influence most of the lit-
erature on computer simulations). At its heart, is the intuition that a conceptual link 
can be established between simulation outputs and the implemented mathemati-
cal model.6 Mary Morgan suggested that simulation outputs can be traced back to 
the implemented mathematical models by explaining the former using the latter.7 
Because of this possibility of tracing back outputs, simulations have the capac-
ity to surprise simulationists, but not confound them ((Morgan, 2003, p. 219) 
and (Morgan, 2005, p. 321)). Surprise involves simulation outputs ‘shaking’ the 

5  There are, of course, extremely simple simulations where simulationists can anticipate the simulation 
output. A computer variation of Leslie J. Comrie’s (1932) simulation of the summation of harmonic 
terms for predicting the Moon’s orbit is an example. However, these simulations are mostly uninteresting 
for modern scientific inquiry.
6  This way of phrasing the weak sense might bring interpretation 2 back into the discussion. If so, then 
my arguments here also apply.
7  Ulrich Krohs (2008) and Paul Weirich (2011) defended the idea that simulation outputs can be 
explained by an exogenous theory or model. Krohs states: “in the triangle of real-world process, theo-
retical model, and simulation, explanation of the real-world process by simulation involves a detour via 
the theoretical model” (Krohs, 2008, p. 284) (where a ‘theoretical model’ is what I am calling a math-
ematical model). Weirich demonstrates how “a computer simulation of an economic market explains the 
emergence of an efficient allocation of goods if the model it follows does” (Weirich, 2011, p. 156). For 
objections on these accounts, see (Durán, 2017).
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simulationists’ conceptual framework by revealing unforeseen new patterns (mostly, 
for the reasons given against the strong sense). However, simulation outputs do not 
confound simulationists. This is because simulationists“[know] the resources that 
went into the model [...] so that however unexpected the model outcomes, they 
can be traced back to, and re-explained in terms of, the model” (Morgan, 2005, pp. 
324–325),8 Contrast this thought with the idea that only laboratory experiments can 
confound. Laboratory experiments discover new entities in the world, they offers 
unprecedented observations and measurements, and they can be use to confirm 
or refute hypotheses. The critical difference lies in the fact that experiments track 
causal relations in the world while simulations only represent them (Morgan, 2005, 
p. 324).

I take it to be uncontroversial that simulation outputs can sometimes be traced 
back to an exogenous mathematical model. Measurements with simulations can be 
informed by mathematical models (Morrison, 2009; Tal, 2011). For example, com-
puter simulations are employed to correct for the effects of interfering factors when 
measuring temperature. Outputs can be traced back to “the earlier temperature [...], 
thermodynamic theory, and our knowledge of the initial temperature of the ther-
mometer” (Parker, 2017, p. 285). Similarly, in climate modeling, simulations are 
thought of as being “path dependent” in the sense that the choices that modelers 
make about how to solve problems at a certain time will affect which options are 
available for solving problems at a later time (Lenhard & Winsberg, 2010, p. 257).

That said, tracing back simulation outputs is increasingly becoming either impos-
sible or undesirable. In (2017), I argue that simulations carry artefacts coded in 
their algorithm. These artefacts cannot be explained by an exogenous mathematical 
model (or, if they can, the mathematical models will misrepresent the target phe-
nomenon). The example is an orbiting satellite under tidal stress. Upon computation, 
the output shows an orbital eccentricity trending steadily downwards. As I state, “[i]
f the entire set of results is taken to represent real-world phenomena, [as an advocate 
of explaining with an exogenous mathematical model would], then we are wrongly 
ascribing a trend towards a circular orbit to the behaviour of the real-world satellite, 
when in fact it is an artefact in the computation of the simulation model” (Durán, 
2017, p. 32).

Another example is simulations that upscale or downscale time, space, and other 
units of representation. An interesting case is the simulation of an imaginary piston 
to accelerate reactions in molecular dynamics. The piston is a computational trick to 
periodically force molecules into high-density configurations, thereby increasing the 
number of collisions and kinetic barrier crossings. This triggers specific chemical 
reactions, which can be mapped out and analyzed using high-level quantum calcula-
tions to determine the minimum energy pathways of specific reactions. The simula-
tion assists in identifying new materials and reactive conditions worth investigating 
(Goldman, 2014). Simulationists can only trace back simulation outputs to a math-
ematical model using very laborious techniques (if it can be done at all). Neither 
empirical measurements nor observations of the piston are available. Derivations 

8  Throughout her work on surprise and confoundment, Morgan’s claims about mathematical models 
apply to simulation models. See the tables in (?, 29), (Morgan, 2003, p. 224) and (Morgan, 2005, p. 321).
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from theory are a non-starter. And, full explanations are only possible under specific 
conditions related to the model, the explanatory relation, and the level of descrip-
tion. Yet, these simulations are very valuable for science and engineering.

It is important to note the widely accepted practice of omitting any formal rep-
resentation of a target system in favor of a ready-made algorithmic structure. This 
means that simulationists increasingly opt to code their simulation directly rather 
than write equations and then combine them into a mathematical model that is later 
implemented in the computer. Writers like Steven Peck (2012), & Donald et  al., 
2014 have shown how agent-based simulations might be nothing more than an algo-
rithm framing agents’ behavior. In this sense, the model’s representation takes place 
at the level of algorithmic structures without mediating a mathematical model. The 
representation is built up from suspected relational structures, structures that are 
abstracted from the target system and directly coded into the simulation model. This 
happens because it is a faster way to code simulations. However, as I will argue in 
the next section, it is also because programming languages are designed to represent 
the dynamics of target systems in ways that mathematical formalisms struggle to 
handle.9 In such cases, simulations do not conform to any sense of theory-driven-
ness. However, they can uncover regularities about real-world phenomena and the 
simulationists’ hypothesis.10

3.2 � Simulating Airborne Anthrax Infection Outbreaks

To illustrate the non-conformity of simulations to theory-driven claims, consider 
simulating the dynamics of airborne anthrax infections in mid-dense populations. 
Such a simulation has two primary components: (1) a Bayesian network containing 
millions of nodes. The network is represented using pure mathematical formalism; 
and (2) a large partition of different types of nodes representing individual persons 
strategically distributed within the network. At the highest level, the network con-
sists of a set of global nodes, G, a set of interface nodes, I, and a set of person sub-
networks P = {P1,P2,… ,Pn} (Cooper et al.., 2004, p. 95).

A fair simplification of the workings of the simulation takes the following form. 
It first computes the actual probability of a person being exposed to anthrax. This 
is done by inferring the posterior probabilities of outbreak diseases in the Bayesian 
network. Next, it computes the spatial distribution of a person exposed to anthrax. 
This is determined by the person node, which contains a network of interconnected 
sub-nodes (e.g., age decile, gender, and anthrax infection) (see Figure 3, (Cooper 
et al.., 2004, p. 98)); and the anthrax infection node, which takes up to four different 

9  To be clear, my claim is not that mathematical formalism cannot, in principle, represent the dynamics 
of target systems. Rather, my claim is that programming languages are more suitable for such endeavors 
because they are specifically designed to represent target systems more accurately and realistically with 
less conceptual efforts.
10  Recall that exploratory experiments are not the counterpart of theory-driven experiments simply 
because they are not theory-driven (Steinle, 1997, p. 71) Theory enters at various levels and to different 
degrees in exploratory experiments. As Gelfert points out, significant background knowledge (including 
background theory) is required to devise experiments, interpret data, and compare experimental designs 
(Gelfert, 2018, p. 13). A similar set of considerations apply to computer simulations.



	 J. M. Durán 

1 3

states: no infection, 24 h infection, 48 h infection, and 72 h infection (for details, 
see (Cooper et al.., 2004, pp. 98–99)). For timely detection, inferences must be per-
formed in real time as data comes in. Once the probability of an outbreak exceeds a 
particular threshold, the system generates an alert.

To illustrate how computer simulations represent the dynamics of anthrax infec-
tion in ways that exceed mathematical representation, consider the case of nested 
conditionals (see pseudo-algorithm 1).11 Nested conditionals are suitable for repre-
senting different paths in the proliferation and spread of the infection, and possible 
states representing how the infection is transmitted across different networks. How-
ever, simulationists do not write down nested conditionals in mathematical formal-
ism. Instead, they are directly coded into the simulation.

case a1 do
case a1 do

. . .

case an do

case b1 do
case b1 do. . .

case bm do
case c1 do

case c1 do . . .

case ap do
case ap do

end

Algorithm 1: Nested conditionals

Moreover, mathematical formalism does not account for the selection of nodes, 
their spatial distribution, or the fact that a given node can take up to four differ-
ent states. The reason seems to be that aggregating these details in a mathematical 
syntax would unnecessarily complicate the development of the simulation, with no 
obvious added value to the simulationists’s overall understanding of the simulation. 
Programming languages can effortlessly and adequately aggregate these details. In 
the process, they foster epistemic virtues like simplicity, conceptual clarity, preci-
sion, and scope of application.

Finally, consider what would happen if some branches in the conditionals were 
removed or connected in a different ways. In the former case, the simulation would 
simply be a handful of Bayesian networks disconnected at the high-level (i.e., at the 
level of relations between G, I, and the person nodes Pi ). If a connection breaks dur-
ing execution, the simulation will not provide any reliable information. In the latter 
case, different probabilities of contagion will be measured, and a different dynam-
ics of the outbreak represented. But, none of this can be captured by mathematical 

11  For more on this example, see (Durán, 2022).
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formalism (despite mathematical syntax being key to representing the dynamics of 
anthrax infections). Again, the probabilities are mathematical, and they can there-
fore be formulated. But, the overall structure and behavior of the simulation are not.

4 � Functions and Uses of Exploratory Simulations

If the above considerations are correct, then simulations generate significant find-
ings about phenomena. And, they do so without having to appeal to or rely on exog-
enous mathematical models of those phenomena.

In what follows, I cash out these results by discussing three exploratory functions 
for computer simulations. While these are designed for computer simulations, it will 
be informative to compare them to Gelfert’s exploratory functions of mathematical 
models. This allows us to understand how simulations depart from models when it 
comes to exploratory functions and uses.

4.1 � Exploratory Simulations as Starting Points and Continuation of Scientific 
Inquiry

Gelfert’s first use of exploratory modeling finds inspiration in William C. Wimsatt’s 
work on false models as a means to truer theories (Wimsatt, 2007, p. 94). Wim-
satt’s core idea is that models are epistemically biased in one way or another. Ide-
alizations, abstractions, and approximations are proof of this. Given that models are 
presumably false, Wimsatt wants to know how they ever contribute to truth (or at 
the best approximation to truth). This is, in a nutshell, Wimsatt’s project of coun-
terbalancing anti-realistic claims on idealizations and abstractions in modeling in 
favor of local realism. In any event, the truth or falsity of models is not Gelfert’s 
primary concern. To his mind, “in the early stages of inquiry, [it] may be impossible 
to judge, given the lack of a good theoretical measure” (Gelfert, 2016, p. 84). Gelfert 
does, however, recognize that the issue invokes a legitimate concern. Models are 
highly idealized and abstract units of analysis. Oftentimes, very little epistemic input 
can be ‘squeezed’ out of them. Gelfert’s response is that models have great potential 
as future avenues of research. This is where their exploratory character ultimately 
resides (Gelfert, 2016, p. 84). It is in this general sense that Gelfert presents explora-
tory models as starting points for future inquiry.

Computer simulations, I submit, are excellent as starting points for future inquiry. 
They can increase the level of realism in representing the target system to impressive 
levels. Simulations can also be highly predicatively accurate, making them a crucial 
tool for opening new lines of scientific research. Consider two side-by-side simula-
tions used to investigate the conditions of an epidemic in a population-dense country 
like Italy (Ajelli & Gonçalves, 2010).

The first simulation is a stochastic agent-based simulation that represents indi-
viduals through highly detailed data on (1) the relevant socio-demographic struc-
ture, (2) the probability of commuting from municipality to municipality, and (3) 
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the integration of susceptible, latent, asymptotic, and symptomatic forms of infec-
tion. Marco Ajelli and colleagues define this agent-based model as “a stochastic, 
spatially-explicit, discrete-time, simulation model where the agents represent human 
individuals [...] One of the key features of the model is the characterization of the 
network of contacts among individuals based on a realistic model of the socio-
demographic structure of the Italian population” (Ajelli & Gonçalves, 2010, p. 4)

The second simulation is a multiscale mobility network known as GLobal Epi-
demic and Mobility (GLEaM). It is based on high-resolution population data, where 
the resolution is given by cells with 15 × 15 min of arc. A typical GLEaM consists 
of three data layers. A first layer where population size and mobility allows one to 
partition the world into geographical regions. This partition defines a second layer, 
the sub-population network where the inter-connections among nodes stand for the 
fluxes of individuals via general mobility patterns and transportation infrastructures 
(train stations, taxi pick up spots, residential parking, etc.). Finally, and superim-
posed onto the second layer, is the epidemic layer. It defines the disease dynamic 
inside each sub-population group (Balcan & Colizza, 2009). In Ajelli et al.’s study, 
the GLEaM also represents a grid-like partition where each cell represents the clos-
est airport. The sub-population network uses geographic census data. The mobil-
ity layers obtain data from different databases. These include the International Air 
Transport Association database, which consists of a list of the world’s airports con-
nected by direct flights.

Both simulations are dissimilar in what they represent. GLEaM considers spa-
tial structure and age structure, while the agent-based model is highly structured 
and considers households, schools, etc. The two simulations are expected to present 
different attack rates at different times. However, the difference in peak amplitudes 
decreases for increasing values of the reproductive number R0 . Ajelli et al. explain 
this as follows “[a]t the end of the epidemic outbreak, the average size predicted by 
GLEaM ranges from 36% for R0 = 1.5 to 56% for R0 = 2.3,as compared to the one 
observed in the agent-based model which ranges from 26% for R0 = 1.5 to 49% for 
R0 = 2.3 , with an absolute difference of about 10% for R0 = 1.5 and 7% for R0 = 2.3 
(Ajelli & Gonçalves, 2010, p. 8).

The good match between the two simulations’ ability to predict the geotemporal 
spreading pattern of an epidemic supports obvious lines of inquiry that pertain to 
both the target system and the simulation. A short list would include, among others, 
an identification of the most vulnerable nodes in the network, the best way to cali-
brate initial conditions, and mechanisms to assess medical reporting and notification 
systems’ reliability.

Computer simulations do not only serve as starting points for future inquiry. They 
also enable continued exploration by other means, and they can pave the way for 
new kinds of research (vis-à-vis what, where, and how to explore). This is because 
they accompany the entire process of research. Thus understood, simulations offer 
exploratory strategies for the continuation of scientific inquiry on two accounts.

Firstly, adding new modules to the simulation facilitates the inclusion of new tar-
get phenomena. This allows the simulation to represent more phenomena (quanti-
tatively and qualitatively), add numerical and visual realism to the target system, 
and enjoy higher levels of predictive accuracy. An example is a simulation that 
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quantifies the economic and demographic impact of transportation infrastructure 
investments (Diaz & Behr, 2016). Initially, the research depends on a simple simula-
tion. But, over time and with module accumulation, the research finds new avenues 
of inquiry.12

The most recent version of this simulation employs a dynamic model, one that 
mimics the behavior of complex and cyclical transportation relations over time. 
These include transportation infrastructure, levels of productivity, congestion, net 
migration patterns, and travel behavior and demand. These relations do not come 
from a single model, nor do they come from one set of model-building practices. 
Rather, they come from an accumulative process. This process is triggered by 
adding new simulation modules to the initial simulation, modules that potentially 
expand the line of research. As such, the simulation provides insight into the dura-
tion of critical cyclical patterns given prospective infrastructure investments. It also 
“seeks to be utilized as guidance to support decision-making processes that lead to 
the execution of more exhaustive transportation studies that organize the execution 
of such investments” (Diaz & Behr, 2016, Abstract). As the authors indicate, build-
ing simulations with multiple simulation modules representing the transportation 
infrastructure enables more exhaustive studies on transportation.

Secondly, simulations offer exploratory strategies for the continuation of sci-
entific inquiry. They do so by advancing new research in neighboring disciplines. 
Take, for instance, simulating the resistance of human bones, which is necessary for 
understanding their internal structure. In real material experiments, force is mechan-
ically exerted, it is measured, and data is collected. Unfortunately, a material experi-
ment does not allow experimentalists to distinguish the strength of the material 
from the strength of its structure. The mechanical process involved also destroys the 
bone. This makes it difficult to observe and analyze how the detailed internal struc-
ture responds to increasing force. Running a computer simulation is the best way to 
obtain reliable information about the resistance of human bones. Two types of simu-
lations were utilized at the Orthopaedic Biomechanics Laboratory at the University 
of California, Berkeley (Keaveny & Wachtel, 1994; Niebur & Feldstein, 2000).

Type 1 involved converting a real cow hipbone into a computerized image. The 
team cut very thin slices of the bone sample. They then prepared them in a way that 
allowed the complicated bone structure to stand apart from spaces where there was 
no bone. Each slice, afterwards, was turned into a digital image (Beck & Canfield, 
1997). These digitalized images were later reassembled in a computer, creating a 
high-quality 3-D image of the real cow hipbone. The benefit of this simulation is 
that it retains a high degree of verisimilitude in structure and appearance for each 
bone sample. Little is added, removed, filtered, or replaced in the process of prepar-
ing the bone and in the process of turning it into a computer model.

Type 2 involved computerizing a stylized bone as a 3-D grid image. Each individ-
ual square within the grid was given assorted widths. These were based on average 
measurements of internal strut widths from real cow bones and angled in relation to 
each other by a random assignment process (see (Morgan, 2003)). The advantage 

12  Over time, accumulating models might lead to different forms of conflict (e.g., numerical conver-
gence, module incompatibilities).
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of the stylized bone comes from familiarity with the process of modeling. Simula-
tionists begin by hypothesizing a simple grid structure. They then add details and 
features as needed. In this way, an idealized and simplified abstract structure of the 
bone is created from the beginning.

Both type 1 and type 2 simulations are theory-driven in design and aim. They 
investigate how the bone structure behaves under conditions of stress and pressure. 
Both simulations also allow researchers to learn how bone architecture responds in 
real accidents and how bones are best repaired. However, the simulations’ explora-
tory character stems from generating significant findings about phenomena in neigh-
boring disciplines without fully appealing to the implemented mathematical model. 
For instance, these simulations advance medical inquiry into musculoskeletal forces 
in the body, the dynamic behavior of collagen in tissue, and the effect of ageing and 
drug treatment (Christen & Webster, 2010, p. 2660). They also enable the devel-
opment of mathematical formulae related to micro-finite element analyses (Chris-
ten & Webster, 2010, p. 2657) and the physical basis of energy absorption prior to 
bone fractures (Christen & Webster, 2010, p. 2661). None of these advancements 
and findings fully depend on an exogenous mathematical model, even for cases of 
theory-driven simulations.

4.2 � Exploratory Simulations as Varying Parameters

In his treatment of exploratory experimentation, Steinle argues that a key explora-
tory property is the possibility of instantiating different experimental parameters. 
This has the purpose of allowing experimenters to learn which conditions are indis-
pensable for phenomena of interest (Steinle, 1997, p. S69). Gelfert is less enthusias-
tic about varying parameters. He thinks that they “may come too cheaply” (Gelfert, 
2016, p. 79). Varying parameters are, at best, a generic kind of exploratory strategy. 
It is not the most favorable way of “generating understanding or granting more solid 
epistemic access to a target phenomenon” (Gelfert, 2016, p. 79). Gelfert’s caution 
stems from his view that experimentation and modeling afford different accesses to 
a target system. Experimenters causally intervene in nature to explore its dynamics, 
while modelers vary parameters for curve-fitting purposes (Gelfert, 2016, p. 79). I 
contend that computer simulations tell a different story.

Scanning the space of model parameters in computer simulations does, indeed, 
come ‘cheaply.’ This is for good reason. Simulationists can considerably increase 
the number of parameters under study (degree of freedom, number of independ-
ent and dependent variables, etc.). Simulationists can also manipulate the range of 
values that each parameter can take—amounting to a wider rage interval than than 
experimentalists and modelers can deal with. Yet, this is surely not a reason to con-
sider simulations as the least favorable way to generate understanding of a target 
phenomenon. Recall the simulation of human bone resistance. Simulationists can 
test a larger number of parameters. Simulationists can also test these parameters 
within the total physical range (from no pressure to the point of breakage) (Keaveny 
& Wachtel, 1994, p. 1313).
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But, there is more to it. Varying parameters in computer simulations assists mul-
tiple scientific goals. These include bringing about outputs that might or might not 
represent real-world phenomena, laying out the conditions for generating knowledge 
and understanding of these outputs, enabling the exploration of factual and counter-
factual scenarios, and offering ways to manipulate time, space, and other scales to 
permit the collection of data-based evidence for settling scientific disputes.

Consider the problem of the resistance of materials to heat and pressure. Simu-
lationists use computer simulations to explore an array of materials’ atomic proper-
ties. They also explore structures and their reactions to a given range of heat and 
pressure. Without the simulationists’ intervention, the simulation can form combi-
nations for the required materials by selecting from known atom types and proper-
ties. Nir Goldman (2014) demonstrates how one can effortlessly achieve this with 
computer simulations. Experimentalists can later test the newly found structures 
under the required conditions of heat and pressure. By scanning the space of param-
eters, simulations work as exploratory experiments. And thus they are recognized: 
“[t]hese types of results [i.e., the simulation outputs] can make experiments more 
tractable by aiding in their interpretation, and helping to narrow the number of dif-
ferent materials and reactive conditions to investigate” (Goldman, 2014, p. 1033). 
This specific simulation is also able to freely predict structures and reactions based 
on quantum interactions and classical equations of motion in the simulation model 
(along with databases, data structures, design decisions, etc.). The simulation model 
that initially lacked predefined parameters can now ‘find’ those parameters by 
computing it. Goldman does not think that this is a disadvantage (we cannot even 
begin to understand what an experiment or a model would be without predefined 
parameters). Instead, he believes that it is of crucial scientific value for the simula-
tion. He writes: “[t]his lack of predefined parameters or elementary steps makes the 
technique an appealing tool to help determine the seemingly innumerable synthesis 
mechanisms that sometimes occur in a mixture of reactive compounds” (Goldman, 
2014, p. 1034).

Varying the number of parameters also assists in theoretical inquiries (e.g., find-
ing optimal solutions to multidimensional problems). Consider simulated annealing 
as an optimization technique that aims to find the best solution to a multidimen-
sional problem. Multidimensionality here means that the simulation must deal with 
several variables involved in the solution to the problem. This makes it impossible 
to simply “draw a plot in two or three dimensions and to inspect it visually” (Bailer-
Jones, 2009, p. 63). The optimization technique of simulated annealing enables the 
exploration of the domain of optimal solutions. These solutions can later assist in 
the physical process of annealing when a material is heated to a very high tempera-
ture and then slowly cooled.

The same applies to computer simulations that provide theoretical feedback and 
predictions of values for parameters by systematically exploring their range of pos-
sible values. For instance, LOTUSES is a computer simulation used for predicting 
the theoretical performance of parameters in explosive decomposition products after 
explosion as well as their power index (e.g., TNT, PETN, RDX, and HMX). These 
parameters include performance parameters (density, detonation factor, velocity of 
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detonation, etc.) and thermodynamic properties (heat of detonation and explosion, 
volume of explosion gaseous products, etc.) (Muthurajana & Sivabalanb, 2004).

I submit that simulationists can grant genuine epistemic access to target phenom-
ena by varying the parameters of computer simulations. This constitutes a legitimate 
exploratory strategy.

4.3 � Exploratory Simulations as Scientific Prototyping

A final exploratory strategy associated with computer simulations is prototyping. 
Prototyping is the capacity to produce preliminary versions of phenomena from 
unrealistic scenarios. A case in point is the anthrax infection outbreak discussed ear-
lier. Copper and colleagues used the simulation as an ‘experiment’. They mapped 
simulated cases of patients with anthrax (generated from a separate model) onto 
background data of real patients who visited emergency departments during a period 
when no known outbreaks were occurring (Cooper et al., 2004, p. 95). In this case, 
the patients with anthrax were not real, nor were the simulated periods actual out-
break periods. Nonetheless, the simulated experiment allowed simulationists to 
measure some important variables. These included the predictive accuracy of the 
simulation (key for judging its reliability in real cases), the reaction time of the sim-
ulation in detecting outbreaks (key for knowing the minimum time required by first 
responders), and the breadth of applicability of the simulation (key for calibrating to 
realistic scenarios).

What separates prototyping from previous exploratory strategies is that the tar-
get phenomena are highly speculative, contingently non-existent, necessarily 
impossible, or counterfactual. Thus understood, prototyping is a genuine form of 
exploratory strategy, one that simulationists use to manufacture multiple kinds of 
unrealistic scenarios. This, on two accounts. Prototyping is possible under condi-
tions of non-theory-driven simulations (as the anthrax example demonstrates). But, 
it is also possible under conditions of well-known mathematical models. Consider 
simulating a satellite orbiting around a planet whose gravitational constant is set to 
G = 2.0 × 10−11m3kg−1s−2 (Woolfson & Pert, 1999). Here, G patently violates the 
gravitational constant. As such, any simulation output will be physically impossible 
(to the known physical world). Yet, it would not be too difficult to trace back and 
explain why a satellite spires away from a planet by using the equations of clas-
sic mechanics. Prototyping can, then, be considered a genuine form of exploratory 
strategy, one that does not depend on whether the simulation is theory-driven or not. 
Like other forms of exploration, prototyping aims at furthering scientific research. 
This research ultimately aggregates knowledge to diverse scientific and engineering 
disciplines.
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5 � Final Remarks

Exploratory experiments and explorative models do not exhaust the domain of 
exploratory strategies in scientific research. Computer simulations can contribute 
in meaningful ways. In this article, I have attempted to build and expand on these 
issues. In doing so, I hope to have contributed to advancing the literature on explora-
tory strategies.

I have discussed three forms of exploratory simulations: computer simulations 
as starting points and the continuation of scientific inquiry, as varying parameters, 
and as scientific prototyping. Computer simulations are increasingly employed 
across scientific disciplines. Advances in computer languages, data sources, and pro-
gramming practices mean that we can anticipate a rise in novel and unprecedented 
exploratory strategies. As such, the exploratory functions and uses I have presented 
here are unlikely to be exhaustive. This underscores why the ongoing debate around 
this important subject should continue.

I wish to mention two reasons as to why philosophers should pay more atten-
tion to computer simulations as exploratory strategies. Firstly, computer simulations 
often encompass exploratory functions even when they are driven by specific theo-
ries. This is demonstrated by examples like simulating human bone breakage and a 
satellite orbiting a planet. This suggests that the realm of exploratory strategies for 
computer simulations extends beyond the non-theory-driven requirement.

Secondly, computer simulations can incorporate multiple exploratory strategies 
without one strategy dominating another. To illustrate, we can compare a stochas-
tic agent-based model and a structured meta-population stochastic model (GLEaM) 
used to study the dynamics of an epidemic outbreak. The agent-based model repre-
sents the population with detailed socio-demographic data. In contrast, the GLEaM 
simulation focuses on population data that represents individual flows through trans-
portation infrastructure and general mobility patterns. I previously discussed these 
simulations as a starting point and continuation of scientific inquiry. But a similar 
argument can be made for using them in prototyping. The simulations depict how an 
epidemic outbreak might unfold in a country like Italy (considering its population 
and transportation characteristics). However, they lack the empirical data required to 
validate the simulation. The simulations rely heavily on speculative assumptions and 
counterfactual representations.13

Acknowledgements  I would like to extend my sincere appreciation to the two anonymous referees for 
their diligent review and invaluable feedback on this article. Their thorough read and spot-on comments 
have played a crucial role in enhancing the overall quality and clarity of the manuscript.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 

13  I am ignoring the extent to which these simulations were useful for representing the COVID-19 out-
break. I am also ignoring whether the data collected during and after the pandemic were used for valida-
tion purposes.



	 J. M. Durán 

1 3

not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

References

Ajelli, M., Gonçalves, B., et al. (2010). Comparing large-scale computational approaches to epidemic mod-
eling: Agent-based versus structured metapopulation models. BMC Infectious Diseases, 10(190), 1–13.

Bailer-Jones, D. M. (2009). Scientific models in philosophy of science. University of Pittsburgh Press.
Balcan, D., Colizza, V., et al. (2009). Multiscale mobility networks and the spatial spreading of infectious 

diseases. Proceedings of the National Academy of Sciences of the United States of America, 106(51), 
21484–21489.

Beck, J., Canfield, B., et  al. (1997). Three-dimensional imaging of trabecular bone using the computer 
numerically controlled milling technique. Bone, 21(3), 281–287.

Beisbart, C. (2014). Are We Sims? How computer simulations represent and what this means for the simula-
tion argument. The Monist, 97(3), 399–417.

Beisbart, C. (2021). Opacity thought through: On the intransparency of computer simulations. Synthese, 199, 
11643–11666.

Boge, F. J. (2019). Why computer simulations are not inferences, and in what sense they are experiments. 
European Journal for Philosophy of Science. https://​doi.​org/​10.​1007/​s13194-​018-​0239-z

Christen, D., Webster, D. J., et al. (2010). Multiscale modelling and nonlinear finite element analysis as clini-
cal tools for the assessment of fracture risk. Philosophical Transactions of the Royal Society A: Math-
ematical, Physical and Engineering Sciences, 368(1920), 2653–2668.

Colburn, T., & Shute, G. (2011). Decoupling as a fundamental value of computer science. Minds and 
Machines, 21, 241–259.

Comrie, L. J. (1932). The application of the Hollerith tabulating machine to Brown’s tables of the moon. 
Monthly Notices of the Royal Astronomical Society, 92(7), 694–707.

Cooper, G.  F., Dash, D.  H. et  al. (2004). Bayesian Biosurveillance of Disease Outbreaks. In C.  Meek, 
M. Chickering and J. Halpern (eds.), Proceedings of the 20th Conference on Uncertainty in Artificial 
Intelligence, UAI (Vol. 04, pp. 94–103). AUAI Press.

DeAngelis, D. L., & Grimm, V. (2014). Individual-based models in ecology after four decades. F1000Prime 
Reports, 6(39), 1–6.

Diaz, R., Behr, J. G., et  al. (2016). Quantifying the economic and demographic impact of transportation 
infrastructure investments: A simulation study. Simulation, 92(4), 377–393.

Durán, J. M. (2013). The use of the ‘materiality argument’ in the literature on computer simulations. In J. M. 
Durán & E. Arnold (Eds.), Computer simulations and the changing face of scientific experimentation 
(pp. 76–98). Cambridge Scholars Publishing.

Durán, J. M. (2017). Varying the explanatory span: Scientific explanation for computer simulations. Interna-
tional Studies in the Philosophy of Science, 31(1), 27–45.

Durán, J. M. (2020). What is a simulation model? Minds and Machines, 30, 301–323.
Durán, J. M. (2022). Models, explanation, representation, and the philosophy of computer simulations. In 

Björn. Lundgren & Nancy Abigail Nuñez (Eds.), Philosophy of computing. Springer.
Durán, J. M., & Formanek, N. (2018). Grounds for trust: Essential epistemic opacity and computational Reli-

abilism. Minds and Machines, 28(4), 645–666.
Eden, A. H., & Turner, R. (2007). Problems in the ontology of computer programs. Applied Ontology, 2(1), 

13–36.
Elliott, K. C. (2007). Varieties of exploratory experimentation in nanotoxicology. History and philosophy of 

the life sciences, 29(3), 313–336.
Franklin, A., & Smokler, H. (1981). Justification of a “crucial” experiment: Parity nonconservation. Ameri-

can Journal of Physics, 49(2), 109–112.
Gelfert, A. (2016). How to do science with models. Springer Briefs in Philosophy.
Gelfert, A. (2018). Models in search of targets: Exploratory modelling and the case of Turing patterns. In A. 

Christian, D. Hommen, N. Retzlaff, & G. Schurz (Eds.), Philosophy of science. Between the natural sci-
ences, the social sciences, and the humanities. Springer.

Goldman, N. (2014). A virtual squeeze on chemistry. Nature Chemistry, 6, 1033–1034.
Hanson, N. R. (1958). Patterns of Discovery: An Inquiry Into the Conceptual Foundations of Science. Cam-

bridge University Press.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s13194-018-0239-z


1 3

The Non‑theory‑driven Character of Computer Simulations…

Humphreys, P. (unpublished). Epistemic Opacity and Epistemic Inaccessibility. https://​wordp​ress.​its.​virgi​nia.​
edu/​Paul_​Humph​reys_​Home_​Page/​files/​2016/​02/​epist​emic-​opaci​ty-​and-​epist​emic-​inacc​essib​ility.​pdf. 
Accessed 15 May 2023.

Humphreys, P. W. (1990). Computer Simulations., 2, 497–506.
Karaca, K. (2013). The strong and weak senses of theory-ladenness of experimentation: Theory-driven ver-

sus exploratory experiments in the history of high-energy particle physics. Science in Context, 26(1), 
93–136. https://​doi.​org/​10.​1017/​S0269​88971​20003​00

Keaveny, T. M., Wachtel, E. F., et al. (1994). Mechanical behavior of damaged trabecular bone. Journal of 
Biomechanics, 27(11), 1309–1318.

Krohs, U. (2008). How digital computer simulations explain real-world processes. International Studies in 
the Philosophy of Science, 22(3), 277–292.

Lenhard, J. (2019). Calculated surprises. Oxford University Press.
Lenhard, J., & Winsberg, E. (2010). Holism, entrenchment, and the future of climate model pluralism. Stud-

ies in the History and Philosophy of Modern Physics, 41, 252–262.
Morgan, M. S. (2003). The philosophy of scientific experimentation, chap. Experiments without material 

intervention: model experiments, virtual experiments and virtually experiments (pp. 216–235). Univer-
sity of Pittsburgh Press.

Morgan, M. S. (2005). Experiments versus models: New phenomena, inference and surprise. Journal of Eco-
nomic Methodology, 12(2), 317–329.

Morrison, M. (2009). Models, measurement and computer simulation: The changing face of experimenta-
tion. Philosophical Studies, 143(1), 33–57.

Muthurajana, H., Sivabalanb, R., et al. (2004). Computer simulation for prediction of performance and ther-
modynamic parameters of high energy materials. Journal of Hazardous Materials, 112(1–2), 17–33.

Niebur, G. L., Feldstein, M. J., et al. (2000). High-resolution finite element models with tissue strength asym-
metry accurately predict failure of trabecular bone. Journal of biomechanics, 33(12), 1575–1583.

Parker, W. S. (2009). Does matter really matters? Computer Simulations, Experiments, and Materiality., 
169(3), 483–496.

Parker, W. S. (2017). Computer simulation, measurement, and data assimilation. The British Journal for the 
Philosophy of Science, 68(1), 273–304. https://​doi.​org/​10.​1093/​bjps/​axv037

Peck, S. L. (2012). Agent-based models as fictive instantiations of ecological processes. Philosophy and The-
ory in Biology, 4(20170609), 1–12.

Rohrlich, F. (1990). Computer Simulation in the Physical Sciences, 2, 507–518.
Schiaffonati, V. (2016). Stretching the traditional notion of experiment in computing: Explorative experi-

ments. Science and Engineering Ethics, 22(3), 647–665. https://​doi.​org/​10.​1007/​s11948-​015-​9655-z
Shech, E., & Gelfert, A. (2019). The exploratory role of idealizations and limiting cases in models. Studia 

Metodologiczne, 39, 195–232.
Steinle, F. (1997). Entering new fields: Exploratory uses of experimentation. Philosophy of Science, 64, 

65–74.
Steinle, F. (2002). Experiments in history and philosophy of science. Perspectives on Science, 10(4), 408–

432. https://​doi.​org/​10.​1162/​10636​14023​22288​048
Tal, E. (2011). From data to phenomena and back again: Computer-simulated signatures. Synthese, 182(1), 

117–129.
Turner, R. (2014). Programming languages as technical artifacts. Philosophy and Technology, 27, 377–397.
Waters, C. K. (2007). The nature and context of exploratory experimentation: An introduction to three case 

studies of exploratory research. History and Philosophy of the Life Sciences, 29(3), 275–284.
Weirich, P. (2011). The explanatory power of models and simulations: A philosophical exploration. Simula-

tion & Gaming, 42(2), 155–176.
Wimsatt, W. C. (2007). Re-engineering philosophy for limited beings. Piecewise approximations to reality. 

Harvard University Press.
Winsberg, E. (1999). Sanctioning models: The epistemology of simulation. Science in Context, 12, 275–292.
Woolfson, M. M., & Pert, G. J. (1999). An introduction to computer simulations. Oxford University Press.
Wu, C. S., Ambler, E., et al. (1957). Experimental test of parity conservation in beta decay. Physical Review, 

105(4), 1413–1415.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://wordpress.its.virginia.edu/Paul_Humphreys_Home_Page/files/2016/02/epistemic-opacity-and-epistemic-inaccessibility.pdf
https://wordpress.its.virginia.edu/Paul_Humphreys_Home_Page/files/2016/02/epistemic-opacity-and-epistemic-inaccessibility.pdf
https://doi.org/10.1017/S0269889712000300
https://doi.org/10.1093/bjps/axv037
https://doi.org/10.1007/s11948-015-9655-z
https://doi.org/10.1162/106361402322288048

	The Non-theory-driven Character of Computer Simulations and Their Role as Exploratory Strategies
	Abstract
	1 Introduction
	2 The Theory-Exploration Divide
	3 The Exploratory Character of Computer Simulations
	3.1 The Strong and Weak Sense of Expecting
	3.2 Simulating Airborne Anthrax Infection Outbreaks

	4 Functions and Uses of Exploratory Simulations
	4.1 Exploratory Simulations as Starting Points and Continuation of Scientific Inquiry
	4.2 Exploratory Simulations as Varying Parameters
	4.3 Exploratory Simulations as Scientific Prototyping

	5 Final Remarks
	Acknowledgements 
	References


