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thesis we investigate the feasibility of an analytical solution when
some of the dissimilarity measurements are missing. We propose a
least squares method to obtain unknown node positions by projecting
the squared distance matrix onto the noise subspace of the weight
matrix. We evaluate the proposed method for fully connected, and
partially connected networks. We show that the proposed method
determines the absolute node locations for a fully connected sensor
network. For partially connected networks, though it is infeasible to
obtain the global node locations using our method, yet we present
scenarios where realative node locations can be obtained.





A noise subspace approach for localization in wireless
sensor networks

Thesis

submitted in partial fulfillment of the
requirements for the degree of

Master of Science

in

Computer Engineering

by

Sajid Aqeel
born in Tamman, Pakistan

This work was performed in:

Circuits and Systems Group
Department of Microelectronics & Computer Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology



Delft University of Technology

Copyright c© 2009 Circuits and Systems Group
All rights reserved.



Delft University of Technology
Department of

Microelectronics & Computer Engineering

The undersigned hereby certify that they have read and recommend to the Faculty
of Electrical Engineering, Mathematics and Computer Science for acceptance a thesis
entitled “A noise subspace approach for localization in wireless sensor net-
works” by Sajid Aqeel in partial fulfillment of the requirements for the degree of
Master of Science.

Dated: August 27, 2009

Chairman:
Prof.Dr.ir. Alle-Jan Van der Veen, Technische Universiteit Delft

Advisor:
Dr.ir. Geert Leus, Technische Universiteit Delft

Committee Members:
Dr. Stefan Dulman Committee-Member



iv



Abstract

Wireless sensor networks are becoming increasingly popular due to their low cost
and wide applicability to support a large number of diverse application areas.
Localization of sensor nodes is a fundamental requirement that makes the sensor

data meaningful. Energy and cost constraints only allow to equip a few nodes with
a GPS device and to localize the remaining nodes with the help of these known loca-
tions and a pair-wise range measurements. Multidimensional scaling is an attractive
localization technique due to a closed-form solution. It however requires pairwise mea-
surements between all nodes to obtain the unknown node coordinates. In this thesis
we investigate the feasibility of an analytical solution when some of the dissimilarity
measurements are missing. We propose a least squares method to obtain unknown
node positions by projecting the squared distance matrix onto the noise subspace of
the weight matrix. We evaluate the proposed method for fully connected, and par-
tially connected networks. We show that the proposed method determines the absolute
node locations for a fully connected sensor network. For partially connected networks,
though it is infeasible to obtain the global node locations using our method, yet we
present scenarios where realative node locations can be obtained.
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Introduction 1
In this thesis we consider the localization problem for wireless sensor networks and

present a new approach based on the noise subspace projection of the weight matrix.
The purpose of this chapter is to define the problem, motivate the need for a new

algorithm and to describe our main contributions.

1.1 Motivation: Importance of Localization

The recent advancement in micro-electronic-mechanical systems (MEMS) and wireless
communications have made it feasible to design cost effective wireless sensor networks.
A typical sensor network is composed of hundreds of tiny, inexpensive, and low-powered
sensor nodes, where each node possess limited capabilities which mainly include data
collection and communication with neighboring nodes. The cost effectiveness of such
networks make them feasible to support a large number of diverse applications like
battelfield surveillance, home automation, machine diagnosis and habitat monitoring
to name a few [1]

Sensor nodes are deployed in a certain region where some activity needs to be mon-
itored. The nodes group themselves in the form of an irregular ad-hoc network. The
role of each node is to monitor its surrounding environment and transmit the captured
data to the control center for further processing. For example a sensor network can be
deployed in a large forest to warn about smoke indicating the possibility of fire. If there
is any such activity, the nearby sensor is supposed to report this event to the control
center. Upon receiving such a message the natural question is Where ?. Where the
abnormality occurred? At which point the response team should immediately proceed?
To answer these questions, one must know the precise location of the reporting sensor
node (and thereby each node). The data itself is often meaningless unless coupled with
the precise location information. Location information not only makes the data mean-
ingful, but also helps in designing efficient routing and distributed signal processing
algorithms which in turn help in energy conservation.

To support a large number of low cost applications, the cost of an individual sensor
node must be at the lower end. Remote deployment of the sensor nodes require mini-
mum energy consumption, which in turn requires that the sensor nodes should be able
to operate for months and years without battery replacement. These two requirements
pose a harsh constraint to the hardware with which a sensor node can be equipped.
Thus energy and cost constraints do not allow to equip each node with a GPS devise.
Moreover GPS can only be used in outdoor environments and is prone to jamming
[2]. Manual configuration in which an administrator configures the coordinates during
deployment, is also not feasible for large scale networks or in the situations where nodes
are not stationary.
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The approach normally followed to address the localization problem assumes that
a set of nodes called anchor nodes, know their position a priori either through GPS or
manual configuration, and the remaining nodes get their position estimates using the
known anchor location information and pairwise distance information between a set of
nodes.

1.2 Localization Challenges

The limited resources of the sensor nodes on one hand and the harsh field conditions
on the other make localization quite a challenging task. Each node has a low-power
processor, a modest amount of memory and a transceiver. They are battery operated
and are expected to work for months and years without battery replacement which
poses severe restrictions on their communication and computation capabilities. Nodes
are randomly deployed (often dropped from an aeroplane) and organize themselves into
a non uniform ad-hoc fashion. The cost and energy constraints do not allow to equip
each node with a power amplifier, otherwise they would easily make measurements
with a set of reference nodes (with known locations) and localize themselves using
triangulation.

As each sensor node is able to transmit and receive, it can obtain some informa-
tion about the locations of other nodes. The strength of a received signal provides
some information regarding the distance of transmitting node. A node receives strong
signals from nearby nodes and weaker signals from distant nodes. These pairwise mea-
surements can be used to get a relative estimate of node positions. The accuracy
of localization is directly related to the accuracy of distance estimates obtained from
these measurements. However the hostile environment in which the sensor nodes are
deployed, makes it very hard to obtain error free measurements. The wireless channel is
subject to multipath effects and shadowing, hence no matter which ranging technique
is used the distance estimates will always be noisy and the accuracy of localization will
deteriorate.

Now we formally define the problem and give an overview of the techniques used
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for localization.

1.3 Problem Statement

Suppose we have M = k + m sensor nodes

Φ = [φ1,φ2, · · · · · ·φk, φk+1, · · · · · ·φM ] (1.1)

Where φi = [xi yi]
T is the location of i− th node.

Let the first k nodes are the beacon nodes with known coordinates

Φa = [φ1, φ2, · · ·φk] (1.2)

The localization task is then to estimate the coordinates of remaining m sensor
nodes, given the coordinates of beacons and a number of pairwise dissimilarity mea-
surements between a set of nodes. i.e

Estimate

Φu = [φk+1, φk+2, · · · · · ·φM ] (1.3)

given

Φa = [φ1, φ2, · · · · · ·φk] (1.4)

and δij, where δij is the dissimilarity measurement between nodes i and j.

1.4 Localization Algorithms

Localization algorithms for wireless sensor networks fall into two main categories. range
based and range free. In range based algorithms each node measures its distance to/from
either its neighbors or a set of reference nodes using some ranging technology like (RSS,
TDoA, AoA). While in range free algorithms only the connectivity information is used
to measure the inter node distances. Range free techniques are much simpler but less
accurate than range based techniques. Range based algorithms can further be differen-
tiated from each other by the type of processing (centralized Vs distributed), ranging
technology employed (RSS, TDoA, AoA), and the methodology used for localization
(Collaborative Vs non collaborative) . Each of these aspects have their own advan-
tages and disadvantages and can outperform the other in terms of accuracy, cost and
complexity under different scenarios. Ideally a localization algorithm should find the
position of each unknown node with high accuracy and low complexity. The perfor-
mance of an algorithm depends upon range errors, connectivity (average number of
neighbors per node), and total number of anchor nodes (Mostly for non collaborative
type) [3].
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1.4.1 Centralized Vs Distributed Algorithms

In centralized approaches the ranging data is communicated to a powerful central sta-
tion which is responsible for computing the coordinates for all the nodes and to send
the result back to the respective nodes. The central station responsible for extensive
computations is often equipped with many resources. The sensor nodes measure the
ranging data and send it to the base station, which computes the coordinates of each
node and transmits the result back. For larger networks this two way communication
requires efficient routing strategies, otherwise the energy of nodes lying closer to the
base station which are responsible for transmitting this information back and forth will
quickly be drained out. Hence centralized approach becomes impractical when the size
of network exceeds beyond a few dozen nodes. Two famous centralized algorithms are
MDS-MAP [4] (based on classical MDS) and convex position estimation[5] (based on
SDP).

In distributed algorithms each node is responsible to localizes itself with the help of
ranging data. Upon receiving the distance estimates form a set of nodes (at least three),
each node finds its position using triangulation. Distributed algorithms are suitable
even for the larger networks as they only require local broadcast for communication
with their neighbors [3].

1.4.2 Ranging Methodology

Localization algorithms require a fraction of nodes with known coordinates and a set
of pairwise measurements to determine the unknown node positions. A node measures
the signal transmitted from another node which provides an indication of inter node
distance. The commonly used ranging techniques include Received Signal Strength
(RSS), Time Difference of Arrival (TDoA), and Angle of Arrival (AoA). The signal
strength decays proportional to d−2,(in free space), where d is the distance between
transmitter and receiver. RSS uses the signal strength to measure the distance between
a transmitting and a receiving node. The technique works with the basic functionality
already present on each node and does not require any specialized hardware which
makes it the most appropriate choice for low cost applications, however it contains noise
on the orders of several meters [6]. The main sources of noise in RSS measurements are
multipath effects and shadowing [7]. The noise in RSS measurements are multiplicative
which make the technique applicable over short distances only [2].

The Time Difference of Arrival (TDoA) is comparatively more accurate than RSS,
in which each node is equipped with some additional hardware (a speaker and a mi-
crophone) to estimate the inter-node distance. The sources of noise are multipath
effects and shadowing just like RSS, however the noise is additive [8] which makes the
technique feasible to be used over large distances. However the requirement of extra
hardware makes it inappropriate for low cost applications.

A third ranging methodology is Angle of Arrival (AoA) where the direction rather
than the distance of a transmitting node is estimated using a sensor array at each
node. Difference in arrival times of a transmitted signal at each of the array elements,
provides an estimate of AoA. It is the best ranging methodology, however the require-
ment of much more hardware on each node makes it feasible only for some specialized
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Figure 1.1: Collaborative Vs non collaborative localization

applications.

1.4.3 Collaborative Vs Non Collaborative techniques

There are two different approaches used for localization. In non collaborative local-
ization [9], each node determines distance to the anchor nodes only, whereas in col-
laborative localization distance is measured between all possible pair of nodes. In non
collaborative techniques a node can only be localized when it gets distance estimates
from three anchor nodes, however in collaborative type a node can be localized when it
is connected to any three nodes (anchors or ordinary nodes). Collaborative localization
is a better choice as the addition of a single node reduces the CRB [2].

In this thesis we will assume RSS as the ranging technology due to its simplicity and
wide applicability for a large number of low cost applications. We will also consider
collaborative technique where each sensor node is able to make pairwise measurements
with all possible neighbors (with whom it has a radio connectivity).

1.5 Outline and Contributions

Multidimensional scaling is a popular localization technique that provides a closed-form
solution when noise free distance estimates are available between all node pairs. It is
highly unlikely to obtain all pair distance measurements due to energy and bandwidth
constraints in larger networks. Moreover the distance estimates are corrupted by noise
due to multiplath and shadowing effects. Hence the performance of MDS degrades
considerably. Many variants of MDS have been proposed in literature to address this
drawback. Most of these algorithms iteratively minimize a local cost function and do not
offer an analytical solution. There is no such algorithm (to the best of our knowledge)
that provides a closed-form solution when some dissimilarity measurements are missing.
A contribution of this thesis is to look for the scenarios and determine the conditions
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under which the localization problem has a closed-form solution, even in the absence of
(some of the) dissimilarity information. We shall also provide a least squares algorithm
to determine the unknown node locations.

Ch-2 Multidimensional Scaling
In this chapter we will provide an overview of the MDS and we will discuss some of

its variants. We end the chapter with some of the limitations of these techniques thus
motivating the need for our algorithm.

Ch-3 A noise subspace approach for Localization
This chapter provides the first contribution of our thesis. We define a weighting

matrix W with wij = 1, if node i and j make a measurement and 0 otherwise. We will
then project the Hadamard product of squared distance matrix R and weight matrix
W on to the noise subspace of W. We show that the unknown node locations can
be determined by multiplying the above projection with a known matrix. Simulation
results indicate that the proposed method successfully determines the absolute node
positions for a fully connected network, however it fails to localize a partially connected
network.

Ch-4 Shortcomings of the proposed method
This chapter provides an explanation for the inability of the proposed method for

partially connected networks. We provide the necessary and sufficient conditions for the
applicability of the proposed method. We also provide some transformation techniques
to reduce the rank of weighting matrix W.

Ch-5 The proposed algorithm and rank reduction techniques
We provide a graphical explanation for the non existence of the proposed method

for partially connected networks in this chapter. We also evaluate the performance
of the proposed method with the rank reduction techniques. We further show that a
certain weight matrix can indeed produce relative locations, though it is infeasible to
obtain absolute positions.

Ch-6 Conclusions and Future work
In this chapter we conclude our thesis and provide some possible extensions of our

work.
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Multidimensional Scaling 2
The heart of any localization system is the pair-wise range measurements in which

one sensor node measures the signal transmitted from another sensor. These
measurements are made using acoustic or RF signals and commonly used ranging

techniques are angle of arrival(AoA), time difference of arrival (TDoA), and received
signal strength indication (RSSI). An error in the pairwise measurements(range error)
greatly degrades the performance of localization algorithms. Range measurements are
corrupted by two types of errors, i.e. noise due to multipath and the objects presence
in the sensor field (trees,buildings etc) [2]. Received Signal Strength Indication (RSSI),
is widely preferred for low cost applications as it works with the basic functionality
present on a sensor node (transmit and receive). RSSI is also attractive from energy
conservation point of view as the strength of signal can be measured during the normal
data transmission. Although Time Difference of Arrival (TDoA), and Angle of Arrival
(AoA) are relatively more accurate than RSSI, the extra hardware requirement makes
them infeasible for a large number of low cost applications.

2.1 Received Signal Strength RSS

In free space the signal strength decays proportional to d−2, where d is the distance
between transmitter and receiver. In a real world, obstructed channel the strength
decays proportional to d−α, where α is the path loss exponent. A receiving node
measures the strength of signal at its received signal strength indicator circuit which
provides an estimate to its distance from the transmitting node. Let Pij is the measured
RSS from node i to node j, then using path loss model [10]

Pij = P0 − 10αlog10
dij

40

(2.1)

For 16 i,j 6 N, and i 6= j. Here P0 is the measured RSS at a reference distance 40 ,
di,j is the distance between nodes i and j and α is pathloss exponent which depends
upon the environment in which sensor nodes are deployed and is known a priori. The
RSS measurements suffer from multipath and shadowing effects [7]. Multipath effects
give rise to frequency selective fading whose effects can be mitigated by averaging out
the received power over a wide range of frequencies [2]. Shadowing arises due to the
presence of physical objects in the environment in which the sensor nodes are deployed.
From the received RSS measurement Pij between nodes i and j, the MLE of distance
between nodes i and j is [2]

δij = 4010(P0−Pij)/10α (2.2)
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δij is then used to estimate the unknown location of nodes. Received signal strength
is an attractive technique due to its simplicity but the range errors encountered in
RSS are multiplicative. The performance of a particular localization algorithm largely
depends upon the selection of appropriate weights to combat the effects of range errors.

2.2 Multidimensional Scaling

Multidimensional scaling is a popular method that maps a set of measured dissimilar-
ities to coordinates such that the distance between the node positions fits as much as
possible to the measured dissimilarities. The method has been widely used in various
fields like economy, behavioral sciences, psychology and political science. The most
attractive feature of the MDS is a closed-form solution which makes it superior to its
counterparts.

Suppose M sensor nodes are distributed in a certain field. The node coordinate
matrix is given by

Φ = [φ1,φ2, · · · · · · ,φM ] (2.3)

Let the position of the i − th sensor node is φi = [xi, yi]
T . The noise free distance

between the i− th and the j − th sensor node is given as

dij = ‖ φi − φj ‖=
√

(φi − φj)
T (φi − φj) (2.4)

d2
ij = (φi − φj)

T (φi − φj)

d2
ij = φT

i φi − 2φiφj + φT
j φj

Then the squared distance matrix R is given as

R =




0 d2
1,2 d2

1,3 · · · d2
1,M

d2
2,1 0 d2

2,3 · · · d2
2,M

d2
3,1 d2

3,2 0 · · · d2
3,M

...
...

...
. . .

...
d2

M,1 d2
M,2 d2

M,3 · · · 0




The squared distance matrix R satisfies the conditions of self-similarity (i.e. δii = 0)
and symmetry (i.e. δij = δji). If every node successfully makes a distance estimate
with every other node, than the squared distance matrix will be fully known. The
MDS multiplies the fully known squared distance matrix R by a centering matrix J on
both sides to obtain an inner product matrix K (also called Gram matrix) as

K = −0.5JRJ = JΦTΦJ (2.5)

Where J is defined as

8



J = IM − 1

M
1M1T

M

where IM is an M ×M identity matrix and 1M is an M × 1 vector of all ones.
Classical Multidimensional Scaling (CMDS) then performs the eigendecomposition

of the inner product matrix K to extract the eigenvalues and eigenvectors

K = UΛUT (2.6)

Let Λ2 =diag(λ1, λ2) be the matrix of two largest eigenvalues values and U2 = (u1,u2)
is the matrix of corresponding eigenvectors then the coordinate matrix Φ upto a trans-
lation, rotation and reflection is given as

Φ = U2Λ
1
2
2

Assuming that a complete set of dissimilarity information is available, the Gram
matrix K will be a rank 2 matrix, whose eigendecomposition will determine the relative
node locations. The relative node locations can than be converted to absolute positions
with the help of anchor nodes. It is an attractive technique due to an analytical solution,
however it has a number of shortcomings

1. It requires pairwise distances between all M sensor nodes.

2. It is computationally very expensive as the eigendecomposition of Gram matrix
K of size M requires O(M3) time.

3. MDS requires true distance estimates. However in real scenarios the distance
measurements are corrupted by noise and the method performs poorly.

Due to energy and bandwith constraints, it is often not practical to obatin all pair-
wise distances. Moreover for larger networks it is quite infeasible to communicate the
distance information to a central station. When distance estimates are corrupted by
noise, the algorithm minimizes the squared error between actual distances and dissim-
ilarities [11], which further deteriorates the performance.

MDS-MAP[4] is a direct application of the classical metric MDS. The method uses
Dijkstra’s algorithm to compute the shortest path distance between all nodes to popu-
late the squared distance matrix R. It then applies the MDS algorithm to generate the
relative map, which is then transformed to a global map using a few known locations.
MDS-MAP is inherently centralized in nature and computationally very expensive. It
can only be used for small scale networks. Its performance also deteriorates for irregular
shaped networks, where the shortest path distance differs from the Euclidean distance
between nodes.

A number of different techniques have been proposed to reduce the computational
complexity of CMDS [12],[13], [14]. Fastmap [12] selects two farthest objects as pivot
objects and projects all the remaining objects on the line joining pivot objects thereby
finding the first coordinate of each node. The 2 − nd coordinate is then obtained by
projecting them on to a hyper-plane orthogonal to the line. The performance of the
algorithm is largely dependent upon the careful selection of pivot objects, which must

9



be the two farthest objects (from each other), otherwise the algorithm may not be able
to localize some nodes.

Another famous technique that addresses the complexity of MDS is Landmark MDS
(LMDS) [14]. Unlike Fastmap that finds a one dimensional embedding at a time, LMDS
finds a k-dimensional embedding of data points at once. The algorithm consists of
following three steps

1. Designate a set of m Landmarks

2. Find a k-dimensional embedding of Landmark points using classical MDS

3. Embed the remaining points in Rk

LMDS finds a k-dimensional embedding both for the landmark points and remaining
points. A slightly different approach Metricmap[13] selects 2−k objects and maps them
into a k-dimensional space by retaining the k-largest eigenvalues. The remaining objects
are then also mapped to the k-dimensional space.

Platt[15] has shown that LMDS, Fastmap and Metricmap are based on Nystrom
approximation. Nystrom approximation permits to compute the eigenvalues and eigen-
vectors of a low-rank matrix for a subset of data. Classical MDS converts the distance
matrix R to a kernel matrix(matrix of dot products) K through double centering. To
explain the application of the Nystrom method, let m items are selected in distance
and kernel matrices randomly, and assume that the m items constitute the first rows
and columns of K and R, i.e.

K =

[
A B
C D

]

R =

[
E F
G H

]

Where A and E have dimensions m×m , B and F have dimension m×(N−m) and
C and G have dimensions (N −m) × (N −m). By Nystrom method the coordinates
can be found by only utilizing the information in A and B only.

As K is positive semi-definite so it can be expressed as

K =

[
XTX XTY
YTX YTY

]

Thus

A = XTX (2.7)

and

B = XTY (2.8)

X can be obtained by the eigendecomposition of A

X = Γ
1
2
k Uk

10



Then from eq (2.8)

Y = X−TB = Γ
−1/2
k UkB

LMDS selects m points and embeds them into a k-dimensional subspace using the
Nystrom method. Fastmap chooses two points and finds one dimensional embedding.
The Metricmap chooses different dimensions of A (2k × 2k) and B (k × k). All these
methods first solve the problem for a small number of points and than map the remain-
ing points onto the subspace spanned by these points. The computational complexity
associated with the MDS is thereby reduced as these methods eigendecompose a small
matrix (k×k) instead of the original (M×M) matrix. Though these techniques address
the computational complexity of MDS, yet they do not address the scalability issue.

2.2.1 Distributed MDS

The communication of all pairwise distances to a central station for further process-
ing puts a lot of overhead from the energy dissipation point of view. For large scale
networks consisting of hundreds of nodes it becomes a bottleneck to communicate this
information to/from the central station. A number of variants of classical MDS have
been proposed to address this problem.

In a distributed version of the MDS-MAP algorithm [16] each node applies MDS-
MAP to nearby nodes only to get a local map . Only 2-hop neighbors are considered
and the shortest path distance between them is computed to obtain local distance
matrix R. The local maps are generated by applying the MDS technique to all local
distance matrices. The local maps thus formed are eventually combined together using
a linear transformation to get a global map.

A sampling based FastMDS has been proposed in [17]. Since the submatrix along the
diagonal of a dissimilarity matrix R is itself a dissimilarity matrix, the MDS algorithm
is run on each submatrix instead of the original dissimilarity matrix. After finding a
local solution a few points are selected from each submatrix and are put in an alignment
matrix Malign. The MDS algorithm is then run on Malign to get a global solution. The
local and global solutions are than mapped through an affine mapping to find a common
coordinate solution.

AidMDSi = mMDSi

Once Ai is obtained, it is applied to non sampling points of each submatrix to get a
solution in the global space.

2.2.2 Weighted MDS

The major drawbacks of the MDS are computational complexity (eigendecomposition
of a dense (M × M) matrix) , communication overhead, the requirement of distance
measurements between all nodes and unreliable performance under noisy conditions.
Nystrom approximation provides a solution of complexity issue, while communication
overhead can be reduced using a distributed approach. However none of the algorithms
described so for address the third drawback of MDS.
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Weighted MDS on the other hand, relaxes the requirement of pairwise distance
measurement between all nodes. It can also mitigate the effects of noisy distance
estimates by selecting suitable weights.

The objective of the MDS is to find the coordinates of the points such that the
interpoint distance should match as closely as possible to the measured dissimilarities.
The objective can be formulated in a least square sense as

S(X) =
N−1∑
i=1

N∑
j=i+1

wij(dij − δij)
2 (2.9)

Where dij is the actual Euclidean distance between nodes i and j and δij is the dissim-
ilarity measure between them.

The above stress function can be minimized by selecting appropriate weights. The
weight selection should be done in such a way so that the contribution of the less accu-
rate measurements is minimized. The nodes from which there is no distance estimate
available, can be excluded by selecting their respective weights as zero.

In [18] the selection of weights is done based on the dissimilarity measure between
two nodes. If the distance between two nodes is small a larger weight is chosen and
if it is large, a smaller weight is chosen. Their method outperforms CMDS, however
intuitively the algorithm must have an unnecessary pull for a node which is surrounded
by a large number of neighbors in one particular direction.

Costa et al. [11] uses the following stress function

S= 2
∑

1≤i≤n

∑
i≤j≤n+m

∑
1≤t≤K

w
(t)
ij (δt

ij − dij(Φ))2 +
∑

1≤i≤n

ri‖φi − φ−(i)‖2

Costa algorithm assumes that each node is able to obtain K dissimilarity measures
from its neighbors. The K-neighbors are any set of nodes from which an estimate is
available. The last term in the stress function takes care of some prior knowledge about
the node positions (if any). The weights are chosen as

wij =

{
exp(−δ2

ij/h
2
ij) if δij is measured

0 otherwise

Where hij = max( max xkδik, maxxkδkj). Neighbor selection is the most critical
phase as because of the noisy distances, incorrect neighbors may be selected. To miti-
gate the noise effects a two step procedure is adopted. In the first step it sets wij = 0
if δij > dR. A rough estimate of the coordinates is obtained after convergence so in the
second step it refines the neighbor selection by setting wij = 0 if ‖xi − xj‖ > dR.

A similar approach has been used in [19], which minimizes the distributed cost
function with an additional term that corresponds to some prior knowledge about the
network deployment.

S= 2
∑

1≤i≤n

∑
i≤j≤n+m

wij(δij − dij(Φ))2 +
∑

1≤i≤n

f(φi)
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The penalty function f(xi) is given as

f(xi) =





∑
j∈Ni

(min(dij(Φ), dmin)− dmin)2 dij(Φ) ≤ dmin

∑
j∈Ni

(max(dij(Φ), dmax)− dmax)
2 dij(Φ) ≥ dmax

0 j /∈ Ni

Where Ni is the set of 2-hop neighbors while dmin and dmax are a priori minimum and
maximum spacing between 2-hop nodes. The nodes violating the spacing constraints,
and not having distance estimates are penalized by the penalty term.

All of the methods described above tend to minimize the cost function in a dis-
tributed manner to reduce the cost associated with centralized processing. The meth-
ods are applicable with a partial set of dissimilarity information which makes them
a suitable candidate for real scenarios. However the major drawback of the weighted
techniques is their possible convergence to a local optimum. Their convergence speed
is also dependent upon perfect initialization.

2.3 Conclusion

Localization in the wireless sensor networks have got a lot of attention in the last
few years. Many collaborative and non collaborative techniques have been proposed
to address the issue. In the domain of collaborative localization, MDS is the most
popular method due to an analytical solution. However its drawbacks often make it
impractical to be utilized in noisy environments and in the situations where all pairwise
measurements are not available between nodes. Weighted MDS aims to get a faithful
embedding by only utilizing a few distance estimates. However the techniques do not
have a closed-form solution and are subject to local minima. The neighborhood biasing
also deteriorates the performance of these techniques

There is a need to determine the conditions under which the localization problem
is solvable with missing dissimilarity information. It would be quite nice to have an
analytical solution in the presence of missing dissimilarity information. In the next
chapter we will introduce an algorithm for solving the problem with missing distances.
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A noise subspace approach for
localization 3
We discussed the multidimensional scaling and its limitations in the previous chap-

ter. A significant limitation of MDS is that it requires dissimilarity information
between all pair of nodes. In reality the power and bandwidth constraints make

it impractical to get dissimilarity information between all nodes. When the dissimilar-
ity information is missing between a set of nodes, MDS performs poorly. A number
of algorithms have been proposed [11], [19] to address this drawback of MDS. These
methods optimize a weighted cost function to find the node positions in presence of
missing dissimilarity information. Only those nodes which make a dissimilarity mea-
sure, contribute in the optimization of the cost function. However unlike MDS, these
techniques do not have a closed-form solution. Here we shall describe a method based
on the noise subspace projection of the weight matrix and we will determine the condi-
tions under which the localization problem with missing dissimilarity information can
have a closed-form solution.

3.1 A noise subspace approach

Assume that M sensor nodes Φ = [φ1, φ2, ........., φM ] are randomly placed in a certain
field. Let the position of the i− th sensor node be φi = [xi, yi]

T . We also assume that
the first k nodes know their position a priori through GPS or manual configuration.
We wish to determine the coordinates of the remaining M − k nodes with the help of
k anchor nodes and a partial set of dissimilarity information.

The coordinate matrix Φ can be decomposed into an anchor node matrix and an
unknown node matrix as

Φ = [Φa , Φu]

where Φa is the matrix related to the k anchor nodes, and Φu is the matrix related to
the M − k unknown node positions to be determined.

We assume that the M sensor nodes measure the dissimilarity information between
themselves, using any ranging technology (RSS, TOA or AoA). We further assume (for
the time being) that the measured dissimilarity information is free of range errors. The
distance between the i− th and j − th sensor node is given by

dij =
√

(φi − φj)
T (φi − φj) (3.1)
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The squared distance matrix R is given as

R =




0 d2
1,2 d2

1,3 · · · d2
1,M

d2
2,1 0 d2

2,3 · · · d2
2,M

d2
3,1 d2

3,2 0 · · · d2
3,M

...
...

...
. . .

...
d2

M,1 d2
M,2 d2

M,3 · · · 0




(3.2)

Let a is an M × 1 column vector defined as

a =




φT
1 φ1

φT
2 φ2
...

φT
MφM


 (3.3)

and 1 is an M × 1 column vector of all ones then

a1T =




φT
1 φ1

φT
2 φ2

φT
3 φ3
...

φT
MφM




[
1 1 1 · · · 1

]

=




φT
1 φ1 φT

1 φ1 φT
1 φ1 · · · φT

1 φ1

φT
2 φ2 φT

2 φ2 φT
2 φ2 · · · φT

2 φ2

φT
3 φ3 φT

3 φ3 φT
3 φ3 · · · φT

3 φ3
...

...
...

. . .
...

φT
MφM φT

MφM φT
MφM · · · φT

MφM




(3.4)

and

1aT =




1
1
1
...
1




[
φT

1 φ1 φT
2 φ2 φT

3 φ3 · · ·φT
MφM

]

=




φT
1 φ1 φT

2 φ2 φT
3 φ3 · · · φT

MφM

φT
1 φ1 φT

2 φ2 φT
3 φ3 · · · φT

MφM

φT
1 φ1 φT

2 φ2 φT
3 φ3 · · · φT

MφM
...

...
...

. . .
...

φT
1 φ1 φT

2 φ2 φT
3 φ3 · · · φT

MφM




(3.5)

and finally ΦTΦ
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ΦTΦ =




φT
1

φT
2

φT
3
...

φT
M




[
φ1 φ2 φ3 · · ·φM

]

=




φT
1 φ1 φT

1 φ2 φT
1 φ3 · · · φT

1 φM

φT
2 φ1 φT

2 φ2 φT
2 φ3 · · · φT

2 φM

φT
3 φ1 φT

3 φ2 φT
3 φ3 · · · φT

3 φM
...

...
...

. . .
...

φT
Mφ1 φT

Mφ2 φT
Mφ3 · · · φT

MφM




(3.6)

Combining (3.4), (3.5) and (3.6), we obtain

a1T +1aT−2ΦTΦ =




φT
1 φ1 φT

1 φ1 φT
1 φ1 · · · φT

1 φ1

φT
2 φ2 φT

2 φ2 φT
2 φ2 · · · φT

2 φ2

φT
3 φ3 φT

3 φ3 φT
3 φ3 · · · φT

3 φ3
...

...
...

. . .
...

φT
MφM φT

MφM φT
MφM · · · φT

MφM




+




φT
1 φ1 φT

2 φ2 φT
3 φ3 · · · φT

MφM

φT
1 φ1 φT

2 φ2 φT
3 φ3 · · · φT

MφM

φT
1 φ1 φT

2 φ2 φT
3 φ3 · · · φT

MφM
...

...
...

. . .
...

φT
1 φ1 φT

2 φ2 φT
3 φ3 · · · φT

MφM




−2




φT
1 φ1 φT

1 φ2 φT
1 φ3 · · · φT

1 φM

φT
2 φ1 φT

2 φ2 φT
2 φ3 · · · φT

2 φM

φT
3 φ1 φT

3 φ2 φT
3 φ3 · · · φT

3 φM
...

...
...

. . .
...

φT
Mφ1 φT

Mφ2 φT
Mφ3 · · · φT

MφM




a1T +1aT−2ΦT Φ =




φT
1 φ1 + φT

1 φ1 − 2φT
1 φ1 φT

1 φ1 + φT
2 φ2 − 2φT

1 φ2 · · · φT
1 φ1 + φT

MφM − 2φT
1 φM

φT
2 φ2 + φT

1 φ1 − 2φT
2 φ1 φT

2 φ2 + φT
2 φ2 − 2φT

2 φ2 · · · φT
2 φ2 + φT

MφM − 2φT
2 φM

...
...

. . .
...

φT
MφM + φT

1 φ1 − 2φT
MφM φT

MφM + φT
2 φ2 − 2φT

Mφ2 · · · φT
MφM + φT

MφM − 2φT
MφM




(3.7)
Comparing (3.2) and (3.7), we get

R = a1T + 1aT − 2ΦTΦ (3.8)

If every node makes a dissimilarity measurement with every other node in the net-
work, then R will be non zero everywhere except at the diagonal and the network will
be fully connected. The classical MDS multiplies the fully connected squared distance
matrix R with a centering matrix on both sides to obtain an inner product matrix
whose eigendecomposition then provides the required coordinates. MDS guarantees
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a global minimum of the cost function for a fully connected network. However with
missing dissimilarity information, the method cease to work.

We define an M × M weighting matrix W whose (i, j)th entry will be one if a
dissimilarity measurement between nodes i and j is made and zero otherwise :

wij =

{
1 if δij is measured
0 otherwise

Now we take the Hadamard product between the squared distance matrix R and the
weighting matrix W. We will then perform an eigendecomposition of the weight matrix
and we will project R ¯ W onto the noise subspace of W. We will show that the
unknown node positions can be determined from this product.

The Hadamard product between R and W can be written as

R¯W=diag(a) W + W diag(aT) -2 (ΦTΦ)¯W

Performing an SVD of W, we get

W = UsΣsU
T
s (3.9)

where Us = [u1,u2, · · ·ur] is an M × r matrix containing the left/right singular vectors
and Σs is an r × r diagonal matrix containing the singular values. Since W is a
symmetric matrix of rank r, it follows

UnU
T
n = IM −UsU

T
s (3.10)

where Un = [ur+1,ur+2, .........uM ] denotes the noise subspace and IM is the M ×M
identity matrix.

Multiplying R¯W with noise subspace matrix Un and its transpose on right and
left respectively, we get

UT
n (R¯W)Un = UT

n [(diag(a)W + Wdiag(aT )− 2(ΦTΦ)¯W)]Un

= UT
ndiag(a)WUn + UT

nWdiag(aT )Un − 2UT
n [(ΦTΦ)¯W)]Un

(3.11)

But since

UT
nW = 0

and

WUn = 0

we obtain

UT
ndiag(a)WUn = 0 (3.12)
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and

UT
nWdiag(aT)Un = 0 (3.13)

which allows us to rewrite (3.11) as

UT
n (R¯W)Un = −2UT

n (ΦTΦ¯W)Un (3.14)

We can determine the node positions from the above equation as the left hand side
consists of all known quantities. To determine the node positions we rewrite ΦTΦ¯W
as

ΦTΦ¯W =
r∑

i=1

[diag(ui)Φ
TΦdiag(ui)]λi (3.15)

The proof of (3.15) is given next
By definition, every element of the Hadamard product between ΦTΦ and the weight

matrix W is given by

[ΦTΦ¯W]jk = [ΦTΦ]jk[W]jk (3.16)

Since the rank of W is r. we can write

W =
r∑

i=1

λiuiu
T
i

where the u′is are the left/right singular vectors and λ′is are the singular values. Thus
we can rewrite (3.16) as

[ΦTΦ¯W]jk = [ΦTΦ]jk[
r∑

i=1

λiuiu
T
i ]jk

Since we can express

r∑
i=1

λiuiu
T
i =

r∑
i=1

λi




u1iu1i u1iu2i · · · u1iuMi

u2iu1i u2iu2i · · · u2iuMi
...

...
. . .

...
uMiu1i uMiu2i · · · uMiuMi




the Hadamard product between ΦTΦ and the weight matrix W can be written as

ΦTΦ¯W =
r∑

i=1

λi




φT
1 φ1 φT

1 φ2 · · · φT
1 φM

φT
2 φ1 φT

2 φ2 · · · φT
2 φM

...
...

. . .
...

φT
Mφ1 φT

Mφ2 · · · φT
MφM


¯




u1iu1i u1iu2i · · · u1iuMi

u2iu1i u2iu2i · · · u2iuMi
...

...
. . .

...
uMiu1i uMiu2i · · · uMiuMi




(3.17)
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=
r∑

i=1

λi




u1iφ
T
1 φ1u1i u1iφ

T
1 φ2u2i · · · u1iφ

T
1 φMuMi

u2iφ
T
2 φ1u1i u2iφ

T
2 φ2u2i · · · u2iφ

T
2 φMuMi

...
...

. . .
...

uMiφ
T
Mφ1u1i uMiφ

T
Mφ2u2i · · · uMiφ

T
MφMuMi


 (3.18)

Observing

diag(ui)Φ
T =




u1iφ
T
1

u2iφ
T
2

...
uMiφ

T
M




and

Φdiag(ui) =
[
φ1u1i φ2u2i · · · φMuMi

]

we also have

diag(ui)Φ
TΦdiag(ui) =




u1iφ
T
1 φ1u1i u1iφ

T
1 φ2u2i · · · u1iφ

T
1 φMuMi

u2iφ
T
2 φ1u1i u2iφ

T
2 φ2u2i · · · u2iφ

T
2 φMuMi

...
...

. . .
...

uMiφ
T
Mφ1u1i uMiφ

T
Mφ2u2i · · · uMiφ

T
MφMuMi


 (3.19)

Using (3.19) in (3.18), we obtain the result of (3.15)
Let us now define

Ni = Φdiag(ui) (3.20)

where Ni ∈ <2×M . Vertically concatenating r such matrices, we obtain the 2r × M
matrix N as

N =




N1

N2
...

Nr


 (3.21)

Then (3.15) can be written as

ΦTΦ¯W = NTLN (3.22)

where L is given by

L = diag(λ1, λ1, λ2, λ2, · · ·λr, λr)
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Comparing (3.14) and (3.22), we observe

UT
n (R¯W)Un = −2UT

nNTLNUn (3.23)

The left hand side of the above equation consists of all known quantities. In the
following section we will show that the unknown node positions can be determined by
multiplying the left hand side of (3.23) by a known matrix.

To obtain the unknown node positions we can partition N into an anchor node
matrix Na and an unknown node matrix Nu as

N = [Na , Nu] (3.24)

where Na ∈ <2r×k and Nu ∈ <2r×(M−k).
Since the anchor node positions are known a priori, Na is a known matrix. We wish
to determine the unknown node matrix Nu and thereby Φu.
To determine Nu, the noise matrix Un can be partitioned into two submatrices Una ∈
<k×(M−r) and Unb ∈ <(M−k)×(M−r) as

Un =

(
Una

Unb

)
(3.25)

Then we can write

NUn = NaUna + NuUnb (3.26)

Let us now define

N̂u = [I2r , Nu] (3.27)

where I2r is the 2r × 2r identity matrix, and.

N̂a =

(
NaUna

Unb

)
(3.28)

Then

N̂uN̂a =
[
I2r , Nu

] [
NaUna

Unb

]

= NaUna + NuUnb (3.29)

Comparing the right hand side of (3.26) with (3.29), we get
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NUn = N̂uN̂a (3.30)

The dimensions of N̂u and N̂a are 2r × (M − k + 2r) and (M − k + 2r) × (M − r)
respectively.
From (3.30), we get

N̂u = NUnN̂
†
a (3.31)

where

N̂†
a = N̂T

a (N̂aN̂
T
a )−1 (3.32)

If N̂a has less rows than columns then there will be more constraining equations than
free variables and a solution is generally not possible. Hence we need

M − r ≥ 2r + (M − k)

or

k ≥ 3r (3.33)

The above equation provides us a condition for the minimum number of anchor
nodes required to make N̂a a wide matrix. The minimum number of anchor nodes
required must be greater than or equal to three times the rank of the weight matrix
W. If node i and j are unable to make a distance measurement, the corresponding
entries wij and wji in the weight matrix will be zero. Hence for each missing link we
have two zeros in the weight matrix, and the rank increases rapidly requiring more and
more anchor nodes.

The N̂u given in (3.31) can not be used to compute Nu (and hence Φu) as it
depends upon N which contains the unknown positions. To determine Nu we define
Ńu ∈ <(2r+M−k)×(M−k) as

Ńu =

[
Nu

−IM−k

]

Then

N̂uŃu =
[
I2r Nu

] [
Nu

−IM−k

]

= 02r×(M−k) (3.34)

Substituting N̂u from (3.31), we obtain

NUnN̂
†
aŃu = 02r×(M−k) (3.35)

But from (3.22), we have
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UT
n (R¯W)Un = −2UT

nNTLNUn

Post multiplying the above equation with N̂a

†
Ńu, we get

UT
n (R¯W)UnN̂

†
aŃu = −2UT

nNTLNUnN̂
†
aŃu (3.36)

But from (3.35)

NUnN̂
†
aŃu = 0

and thus

UT
n (R¯W)UnN̂

†
aŃu = 0(M−r)×(M−k) (3.37)

From the above equation we obtain Ńu which has 2r + (M − k) rows and M − k
columns. The first 2r rows define the matrix Nu.

Let us define

E =

[
I2r

0M−k×2r

]
(3.38)

Then

Nu = ET Ńu (3.39)

We can obtain the unknown node positions by taking the first two rows from Nu

and by multiplying them with the inverse of diag(u1u).

Φu = Nudiag(u1u)
−1 (3.40)

where u1u is an (M − k) × 1 vector obtained by selecting the last (M − k) elements
from u1

Assuming that noise free range measurements are available between all pairs of
nodes, eq (3.37) can be written as

UT
nRUnN̂

†
aŃu = 0(M−r)×(M−k) (3.41)

thus the unknown node positions can be determined with the help of squared distance
matrix R and a few known locations. The true and estimated node locations for a fully
connected network of 100 nodes (using three of them as beacons) are shown in Figure
(3.1)

However when some of the distance estimates are missing, i.e. the network is par-
tially connected, the proposed method fails to find the unknown locations due to rank
deficiency of N̂a.

3.2 Conclusion

We proposed a least squares method based on the noise subspace projection of the
weight matrix to find the unknown node locations for a wireless sensor network. The
proposed method is able to determine the unknown node locations for a fully connected
network, however for partially connected networks it fails due to rank deficiency of N̂a.
In the next chapter we shall describe the reasons for its failure for partial networks.
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Figure 3.1: Actual and estimated node locations for a fully connected network
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Shortcomings of the proposed
method 4
The energy and bandwidth constraints pose a severe restriction on the computa-

tional and communication capabilities of a sensor node. The unfriendly environ-
ment in which sensor nodes are deployed also limits their communication range.

Unless the network consists of a small number of nodes and the field conditions are
perfect, it is highly unlikely for a node to get a noise free distance measurement from
every other node. Multidimensional scaling requires a complete set of dissimilarity
information for a closed-form solution. When the complete set of dissimilarity informa-
tion is not available, the variants of MDS seek the required coordinates in an iterative
manner [11], [19]. However these techniques are iterative in nature and may not be
able to find a global optimum. We proposed a method to find a closed-form analytical
solution to determine the node coordinates. In this chapter, we will determine the nec-
essary and sufficient condition for the proposed method to have a solution with missing
dissimilarity information.

4.1 Conditions for the existence of solution

In the previous chapter, we derived a least squares method to find the unknown node
positions assuming that the noise free range measurements are available between some
pairs of nodes. By projecting R ¯W on to the noise subspace of the weight matrix
and then multiplying with the pseudo inverse of a known matrix (N̂a), we obtain the
unknown node positions as given in (3.37)

UT
n (R¯W)UnN̂

†
aŃu = 0(M−r)X(M−k)

where N̂a is defined as in (3.28)

N̂a =

(
NaUna

Unb

)

N̂a must be a wide and full row rank matrix, as we need to compute its pseudo inverse
which is then multiplied with UT

n (R ¯W)Un to obtain the unknown node positions.

To make N̂a a wide matrix, we already determined that the number of anchor nodes
must be greater than or equal to three times the rank of the weight matrix W. Now
we determine the conditions for N̂a to be a full row rank matrix.

A necessary condition for N̂a to have full row rank is that the matrix Na (2r × k)
should have 2r independent rows (it must be full row rank). The matrix Na is obtained
by selecting the first k columns of N which in turn implies that N must have full row
rank (i.e. 2r ).

The matrix N is defined as
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N =




Φdiag(u1)
Φdiag(u2)

...
Φdiag(ur)




N =




φ1u11 φ2u12 · · · φMu1M

φ1u21 φ2u22 · · · φMu2M
...

...
. . .

...
φ1ur1 φ2ur2 · · · φMurM




where uij is the j−th component of the i−th eigenvector, for 1 ≤ i ≤ r and 1 ≤ j ≤ M .
Since φi = [xi, yi]

T , N can also be written as

N =




x1u11 x2u12 · · · xMu1M

y1u11 y2u12 · · · yMu1M

x1u21 x2u22 · · · xMu2M

y1u21 y2u22 · · · yMu2M
...

...
. . .

...
x1ur1 x2ur2 · · · xMurM

y1ur1 y2ur2 · · · yMurM




Let A be a 2r ×M matrix obtained by stacking the r eigenvectors of W, i.e. ,

A =




uT
1

uT
1

uT
2

uT
2
...

uT
r

uT
r




(4.1)

=




u11 u12 · · · u1M

u11 u12 · · · u1M

u21 u22 · · · u2M

u21 u22 · · · u2M
...

...
. . .

...
ur1 ur2 · · · urM

ur1 ur2 · · · urM



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The rank of A will be r. Simulation results indicate that for a weighting matrix W
corresponding to a partially connected network, many columns of A are equal. The
question whether N is full row rank or not depends upon the distribution of these equal
columns i.e. whether the equal columns of A fall in one set or are distributed over a
number of sets.

Let M be a 2r × s matrix obtained by selecting s equal columns of A, where s is
the largest set consisting of equal columns of A, i.e. ,

M =




u11 u12 · · · u1s

u11 u12 · · · u1s

u21 u22 · · · u2s

u21 u22 · · · u2s
...

...
. . .

...
ur1 ur2 · · · urs

ur1 ur2 · · · urs




(4.2)

As the columns of M are equal, i.e. ,

u11 = u12 · · · = u1s

u21 = u22 · · · = u2s

ur1 = ur2 · · · = urs

M can be written as

M =




u11 u11 · · · u11

u11 u11 · · · u11

u21 u21 · · · u21

u21 u21 · · · u21
...

...
. . .

...
ur1 ur1 · · · ur1

ur1 ur1 · · · ur1




which will be of rank 1 since all its columns are equal.
Now we determine the rank of S which is a submatrix of N obtained by taking an

elementwise product between M and the corresponding node positions φi = [xi, yi]
T ,

i.e. ,

S =




x1 x2 · · · xs

y1 y2 · · · ys

x1 x2 · · · xs

y1 y2 · · · ys
...

...
. . .

...
x1 x2 · · · xs

y1 y2 · · · ys




¯




u11 u11 · · · u11

u11 u11 · · · u11

u21 u21 · · · u21

u21 u21 · · · u21
...

...
. . .

...
ur1 ur1 · · · ur1

ur1 ur1 · · · ur1




=




x1u11 x2u11 · · · xsu11

y1u11 y2u11 · · · ysu11

x1u21 x2u21 · · · xsu21

y1u21 y2u21 · · · ysu21
...

...
. . .

...
x1ur1 x2ur1 · · · xsur1

y1ur1 y2ur1 · · · ysur1




(4.3)

Multiplying rows 1 and 2 by (u21

u11
) and subtracting them from row 3 and 4 respec-

tively, we get
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S =




x1u11 x2u11 · · · xsu11

y1u11 y2u11 · · · ysu11

0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
x1ur1 x2ur1 · · · xsur1

y1ur1 y2ur1 · · · ysur1




Similar row operations can be performed to other rows of S, and finally we get

S =




x1u11 x2u11 · · · xsu11

y1u11 y2u11 · · · ysu11

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0




Multiplying row 1 by 1
x1u11

and row 2 by 1
y1u11

, we obtain

S =




1 x2

x1
· · · xs

x1

1 y2

y1
· · · ys

y1

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0




Subtracting row 2 from row 1, we get

S =




1 x2

x1
· · · xs

x1

0 y2x1−x2y1

y1x1
· · · ysx1−xsy1

x1y1

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0




Finally, multiplying row 2 by
y1x1

y2x1 − x2y1

, we get S in reduced echelon form

S =




1 x2

x1
· · · xs

x1

0 1 · · · (ysx1−xsy1)y1x1

x1y1(y2x1−x2y1)

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0




Here the rank of S will be two as there are only two nonzero rows in its reduced
echelon form. We selected S as a submatrix of N corresponding to s equal columns of
A. We also assumed that s is the largest set of equal columns present in A. In the
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worst case, all the equal columns present in A will fall in one set. As the rank of A
is r, it implies that r − 1 columns of A will be independent to this set. Hence in the
worst case the rank of N will be

rank(N) = rank(S) + r − 1 (4.4)

rank(N) = r + 1

N can never be a full rank matrix in the worst case as r + 1 can not be equal to 2r for
any value of r (except possibly for r = 1 ).

To illustrate the worst case scenario let us assume a network of five sensor nodes
with only one missing link between nodes 1 and 3 as shown in (4.1).

1

2

3

4

5

Figure 4.1: Partially connected network

The node coordinate matrix is given as

Φ =

[
x1 x2 x3 x4 x5

y1 y2 y3 y4 y5

]

The rank 3 weight matrix W and the three signal eigenvectors are given by

W =




1 1 0 1 1
1 1 1 1 1
0 1 1 1 1
1 1 1 1 1
1 1 1 1 1




u1 =




−0.3943
−0.4792
−0.3943
−0.4792
−0.4792



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u2 =




0.7071
0

−0.7071
0
0




u3 =




0.5869
−0.3230
0.5869
−0.3230
−0.3230




The 2r ×M matrix N define in (3.21) is given by

N =



Φdiag(u1)
Φdiag(u2)
Φdiag(u3)


 =




−0.3943x1 −0.4752x2 −0.3943x3 −0.4792x4 −0.4792x5

−0.3943y1 −0.4752y2 −0.3943y3 −0.4792y4 −0.4792y5

0.7071x1 0 −0.7071x3 0 0
0.7071y1 0 −0.7071y3 0 0
−0.5869x1 0.3230x2 −0.5869x3 0.3230x4 0.3230x5

−0.5869y1 0.3230y2 −0.5869y3 0.3230y4 0.3230y5




The matrices A, M, and S defined in (4.1), (4.2), and (4.3) are thus given as

A =




−0.3943 −0.4792 −0.3943 −0.4792 −0.4792
−0.3943 −0.4792 −0.3943 −0.4792 −0.4792
0.7071 0 −0.7071 0 0
0.7071 0 −0.7071 0 0
−0.5869 0.3230 −0.5869 0.3230 0.3230
0.5869 0.3230 −0.5869 0.3230 0.3230




M =




−0.4792 −0.4792 −0.4792
−0.4792 −0.4792 −0.4792

0 0 0
0 0 0

0.3220 0.3220 0.3220
0.3220 0.3220 0.3220




S =




−0.4792x2 −0.4792x4 −0.4792x5

−0.4792y2 −0.4792y4 −0.4792y5

0 0 0
0 0 0

0.3220x2 0.3220x4 0.3220x5

0.3220y2 0.3220y4 0.3220y5



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As we have already shown the rank of S will be two. The addition of a linearly
independent column to S will increase its rank by 1. Since column 1 and 3 of N are
linearly independent to the columns of S, hence the rank of N will be

rank(N) = rank(S) + 2 = 4

The above example depicts the worst case scenario in which all the equal columns
of A fall in one set.

Now we assume that node 1 also misses a distance estimate from node 5. Then the
weight matrix W and the corresponding signal eigenvectors are given as

W =




1 1 0 1 0
1 1 1 1 1
0 1 1 1 1
1 1 1 1 1
0 1 1 1 1




u1 =




−0.3069
−0.5100
−0.4390
−0.5100
−0.4390




u2 =




0.7702
0.1378
−0.4294
0.1378
−0.4294




u3 =




−0.5590
0.4700
−0.3505
0.4700
−0.3505




The matrix A will now be given as

A =




−0.3069 −0.5100 −0.4390 −0.5100 −0.4390
−0.3069 −0.5100 −0.4390 −0.5100 −0.4390
0.7702 0.1378 −0.4294 0.1378 −0.4294
0.7702 0.1378 −0.4294 0.1378 −0.4294
−0.5590 0.4700 −0.3505 0.4700 −0.3505
−0.5590 0.4700 −0.3505 0.4700 −0.3505



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A now contains two set of equal columns, i.e. columns 2 and 4, and columns 3 and 5.
Each set of equal columns when multiplied with the corresponding node positions will
produce a rank 2 matrix. The column 1 of A is linearly independent to both of these
sets. Hence the rank of N will now be

rank(N) = rank(S1) + rank(S2) + 1 = 5

Generally for N to have full rank (i.e. 2r), we require that M − r equal columns of
A (and hence W) are distributed over r submatrices. Then each submatrix containing
two or more equal columns of A will be a rank two matrix (as shown above), and only
then the rank of N can be 2r.

The beacon node matrix Na consists of the first k columns of N. Thus for Na to
have full row rank, we require that the first k columns must constitute r submatrices
in which the equal columns of W are distributed.

The full rank condition of Na is only a necessary condition for N̂a to have full rank.
However it is not sufficient and N̂a can still be rank deficient.

We now determine the sufficient condition for N̂a to be a full rank matrix. N̂a is
defined in (3.28) as

N̂a =

[
NaUna

Unb

]

where NaUna is given as

NaUna =




x1u11 x2u12 · · · xku1k

y1u11 y2u12 · · · yku1k

x1u21 x2u22 · · · xku2k

y1u21 y2u22 · · · yku2k
...

...
. . .

...
x1ur1 x2ur2 · · · xkurk

y1ur1 y2ur2 · · · ykurk







u1,r+1 u1,r+2 · · · u1,M

u2,r+1 u2,r+2 · · · u2,M

u3,r+1 u3,r+2 · · · u3,M

u4,r+1 u4,r+2 · · · u4,M
...

...
. . .

...
uk−1,r+1 uk−1,r+2 · · · uk−1,M

uk,r+1 uk,r+2 · · · uk,M




Un is an M × (M − r) noise matrix with full column rank (i.e. M − r). The matrix
Una is obtained by selecting the first k rows of Un whereas Unb consists of the last
M − k rows of Un. NaUna will be full row rank only when Una has k independent
rows. Simulation results indicate that when the weight matrix is partially connected,
the noise subspace matrix Un contains a number of zero columns for leading rows. As
Una is obtained by selecting the first k rows, it will contain a number of zero columns,
which make NaUna rank deficient even if Na is of full row rank.

Power constraints and physical obstacles make it infeasible for each sensor node
to get an estimate from every other node. Thus we often end up with a partially
connected network in which a sensor node is able to make an estimate only with its
nearby nodes. The proposed method however, fails for partially connected networks
due to rank deficiency of N̂a.

Now we investigate the effects of some elementary operations on the weight matrix
in the hope to get rid of this rank deficiency problem.
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4.2 Operations to reduce the rank of weight matrix

For a fully connected network, every node makes a distance estimate with every other
node in the network and the weight matrix W will be a rank 1 matrix. However when
two nodes are unable to make an estimate between them, we need to place two zeros in
the weight matrix for each missing link. Thus the rank of the weight matrix increases
rapidly. The increase in rank of W is highly undesirable as it increases the number of
anchor nodes.

Let us start with a simple example. Assume that there are 9 sensor nodes deployed
randomly in a certain field. We further assume that nodes 1 and 6 are unable to make
an estimate. Thus the weight matrix W will look like

W =




1 1 1 1 1 0 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1




(4.5)

In this case the rank of W will be 3 and we require that the rank of N must be 6.
However, the eigenvectors of W corresponding to nonzero eigenvalues are such that all
the equal columns of W fall in one set. Hence in this case the rank of N will be

rank(N) = r + 1 = 4

Although we just miss one distance estimate, and there still is a lot of redundancy,
the proposed method will not be able to find the unknown node positions as N is rank
deficient in this case.

The squared distance matrix R between the nodes is given as

R =




0 d2
1,2 d2

1,3 · · · d2
1,9

d2
2,1 0 d2

2,3 · · · d2
2,9

d2
3,1 d2

3,2 0 · · · d2
3,9

...
...

...
. . .

...
d2

9,1 d2
9,2 d2

9,3 · · · 0




Since the diagonal entries of R are zero, and we take an elementwise product between R
and W, the diagonal entries of W can be modified without any effect on the resultant
product. The modification in the diagonal entries is aimed at reducing the rank of W.

Now let us change the above W as
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W =




2 1 1 1 1 0 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
0 1 1 1 1 2 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1




The first column (c1) of W can now be written as a linear combination of the second
and sixth columns as

c1 = 2c2 − c6

Thus the rank of the weight matrix W has been reduced to two. Now if some other
nodes do not make distance estimates, we can perform similar operations to W i.e. we
add a 1 to the diagonal entry of each row having a zero. For example if nodes (2,3)
and (7,9) do not make a measurement between them, performing similar operations on
W yields

W =




2 1 1 1 1 0 1 1 1
1 2 0 1 1 1 1 1 1
1 0 2 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
0 1 1 1 1 2 1 1 1
1 1 1 1 1 1 2 1 0
1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 1 1 2




Another possible operation to reduce the rank of W is to decrement the diagonal
entry of each row having a missing link. For instance for a missing link between nodes
1 and 6, the weight matrix W defined in (4.5) can be changed to

W =




0 1 1 1 1 0 1 1 1
1 1 1 1 1 1 1 1 1
1 1 0 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 0 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1



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To summarize, for each missing link in any row we increment (or decrement) the
diagonal entry in that row by 1. By doing so the rank of W is increased by at most
one while earlier it was being increased by at most 2 for each missing link. By such
techniques we can reduce the rank of W, thereby requiring fewer anchor nodes.

4.3 Conclusion

In this chapter we described the reasons for failure of the proposed method in case of
partially connected networks. The rank deficiency of the anchor node matrix Na and
the sparsity of the noise subspace matrices make the method inapplicable for partial
networks. We have also introduced two rank reduction techniques to minimize the
requirement of anchor nodes and to alleviate the rank deficiency of N̂a. We shall
show in the next chapter that the two rank reduction techniques though look similar,
produce different node projections. We shall also determine whether the rank reduction
techniques indeed solve the rank deficiency of N̂a.
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The proposed algorithm with
rank reduction techniques 5
For a fully connected sensor network, classical MDS provides a closed-form solution

to determine the unknown node positions. We wish to find a similar solution for a
partially connected network by projecting the Hadamard product of the squared

distance matrix R and weight matrix W, onto the noise subspace of W. In the previous
chapter we described the inability of the proposed method for partially connected net-
works due to rank deficiency of N̂a. We have also introduced two techniques to reduce
the rank of weight matrix W. When the rank of weight matrix is reduced, intuitively
we expect to solve the rank deficiency of N̂a (rank of N̂a must be 2r + M − k)). The
important questions which we will consider in this chapter are: Whether the localiza-
tion problem with missing dissimilarity information is solvable? and if yes whether
the proposed method is able to determine the global node positions? To answer the
first question, we will take the node projections on to the noise subspace of different
weight matrices and we will determine the conditions for a possible solution. To an-
swer the secound question we will take some examples to demonstrate whether the rank
reduction techniques indeed assist us to find a possible solution.

Let us assume that M = 5 sensor nodes are randomly placed in a certain field and
every sensor node gets a distance estimate from every other node as shown below. Let
the position of the i− th node be φi = [xi, yi]

T . Thus the coordinate matrix Φ is given

1

5

4

3

2

Figure 5.1: Fully connected network of five nodes
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as

Φ =

[
x1 x2 x3 x4 x5

y1 y2 y3 y4 y5

]

Since the network is fully connected, the weight matrix W is given as

W =




1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1




The single signal eigenvector of W will be

u1 =




1√
M
1√
M
1√
M
1√
M
1√
M




and as a result

u1u
T
1 =




1

M

1

M

1

M

1

M

1

M
1

M

1

M

1

M

1

M

1

M
1

M

1

M

1

M

1

M

1

M
1

M

1

M

1

M

1

M

1

M
1

M

1

M

1

M

1

M

1

M




Then the projection matrix P is given by

P = I− u1u
T
1
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P =




1− 1

M
− 1

M
− 1

M
− 1

M
− 1

M

− 1

M
1− 1

M
− 1

M
− 1

M
− 1

M

− 1

M
− 1

M
1− 1

M
− 1

M
− 1

M

− 1

M
− 1

M
− 1

M
1− 1

M
− 1

M

− 1

M
− 1

M
− 1

M
− 1

M
1− 1

M




(5.1)

Taking a left projection between the node coordinate matrix ΦT and the projection
matrix P, we obtain

PΦT =




1− 1

M
− 1

M
− 1

M
− 1

M
− 1

M

− 1

M
1− 1

M
− 1

M
− 1

M
− 1

M

− 1

M
− 1

M
1− 1

M
− 1

M
− 1

M

− 1

M
− 1

M
− 1

M
1− 1

M
− 1

M

− 1

M
− 1

M
− 1

M
− 1

M
1− 1

M







x1 y1

x2 y2

x3 y3

x4 y4

x5 y5




=




(1− 1

M
)x1 − 1

M
(x2 + x3 + x4 + x5) (1− 1

M
)y1 − 1

M
(y2 + y3 + y4 + y5)

(1− 1

M
)x2 − 1

M
(x1 + x3 + x4 + x5) (1− 1

M
)y2 − 1

M
(y1 + y3 + y4 + y5)

(1− 1

M
)x3 − 1

M
(x2 + x1 + x4 + x5) (1− 1

M
)y3 − 1

M
(y2 + y1 + y4 + y5)

(1− 1

M
)x4 − 1

M
(x2 + x3 + x1 + x5) (1− 1

M
)y4 − 1

M
(y2 + y3 + y1 + y5)

(1− 1

M
)x5 − 1

M
(x2 + x3 + x4 + x1) (1− 1

M
)y5 − 1

M
(y2 + y3 + y4 + y1)




Thus by taking a projection between the node coordinate matrix ΦT and P, the node
positions can be determined with a possible translation as shown in (5.2). To determine
the unknown node positions with the help of square distance matrix R and a few known
locations, we define N for the above case as

N = Φdiag(u1)
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Figure 5.2: Original and projected node positions for a fully connected network

N =

[
x1 x2 x3 x4 x5

y1 y2 y3 y4 y5

]




−1√
M

0 0 · · · 0

0
−1√
M

0 · · · 0

0 0
−1√
M

· · · 0

...
...

...
. . .

...

0 0 0 · · · −1√
M




N =



−1√
M

x1
−1√
M

x2
−1√
M

x3 · · · −1√
M

x5

−1√
M

y1
−1√
M

y2
−1√
M

y3 · · · −1√
M

y5



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The proposed method requires that the number of beacon nodes k must be at least
three times the rank of the weight matrix W. Since the rank of W is one, we assume
that the first three sensor nodes are acting as beacons. Hence the beacon node matrix
Na is given by

Na =



−1√
M

x1
−1√
M

x2
−1√
M

x3

−1√
M

y1
−1√
M

y2
−1√
M

y3




The beacon node matrix Na will be full rank as the nodes are deployed randomly. To
determine the unknown node positions with the help of distance information between
node pairs and the beacon nodes, we define a matrix N̂a as

N̂a =

(
NaUna

Unb

)
(5.2)

The node positions are then determined by multiplying the pseudo inverse of N̂a with
UT

n (R ¯W)Un. Thus we require that N̂a must have full rank. For a fully connected
network the condition is generally satisfied and hence the unknown node positions can
be determined by the proposed method.

For a fully connected network of five sensor nodes where three of them are acting as
beacons, the unknown node positions determined by the proposed method are shown
in Figure(5.3)

It is quite appealing to compare our algorithm with the classical MDS solution at
this point. The MDS multiplies the squared distance matrix R with a centering matrix
J on both sides to obtain an inner product matrix B, i.e.

B = −0.5JRJ = JΦTΦJ (5.3)

where J is given by

J = IM − 1

M
1M1T

M

It then performs an eigendecomposition of the inner product matrix B to obtain rela-
tive node positions. The relative node positions are subject to a possible translation,
rotation, and reflection and are mapped to absolute positions using a few anchor nodes
by a procedure called Procrestus analysis [18]. Procrestus analysis translates, rotates
and reflects a given configuration of points to match as closely as possible, to the other.

For a fully connected network of M sensor nodes, the projection matrix P defined
in (5.1) is same as the centering matrix J used by the MDS. Our method however, is
able to find the absolute node positions in a single step as shown in Figure (5.3) and
unlike MDS no final alignment step is required.
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Figure 5.3: Actual and estimated locations

5.1 Performance of the algorithm with the first rank reduction
technique

Now we assume that node 3 does not get an estimate from node 5. Then the weight
matrix W will be

W =




1 1 1 1 1
1 1 1 1 1
1 1 2 1 0
1 1 1 1 1
1 1 0 1 2




The signal subspace matrix Us will now be equal to
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Us =




1√
M

0

1√
M

0

1√
M

1√
2

1√
M

0

1√
M

− 1√
2




and we obtain

UsU
T
s =




1√
M

0

1√
M

0

1√
M

1√
2

1√
M

0

1√
M

− 1√
2







1√
M

1√
M

1√
M

1√
M

1√
M

0 0
1√
2

0 − 1√
2




=




1

M

1

M

1

M

1

M

1

M
1

M

1

M

1

M

1

M

1

M
1

M

1

M

1

M
+

1

2

1

M

1

M
− 1

2
1

M

1

M

1

M

1

M

1

M
1

M

1

M

1

M
− 1

2

1

M

1

M
+

1

2




Thus, the projection matrix P will now be

P =




1− 1

M
− 1

M
− 1

M
− 1

M
− 1

M

− 1

M
1− 1

M
− 1

M
− 1

M
− 1

M

− 1

M
− 1

M

1

2
− 1

M
− 1

M

1

2
− 1

M

− 1

M
− 1

M
− 1

M
1− 1

M
− 1

M

− 1

M
− 1

M

1

2
− 1

M
− 1

M

1

2
− 1

M



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and

PΦT =




1− 1

M
− 1

M
− 1

M
− 1

M
− 1

M

− 1

M
1− 1

M
− 1

M
− 1

M
− 1

M

− 1

M
− 1

M

1

2
− 1

M
− 1

M

1

2
− 1

M

− 1

M
− 1

M
− 1

M
1− 1

M
− 1

M

− 1

M
− 1

M

1

2
− 1

M
− 1

M

1

2
− 1

M







x1 y1

x2 y2

x3 y3

x4 y4

x5 y5




=




(1− 1

M
)x1 − 1

M
(x2 + x3 + x4 + x5) (1− 1

M
)y1 − 1

M
(y2 + y3 + y4 + y5)

(1− 1

M
)x2 − 1

M
(x1 + x3 + x4 + x5) (1− 1

M
)y2 − 1

M
(y1 + y3 + y4 + y5)

(
1

2
− 1

M
)(x3 + x5)− 1

M
(x2 + x1 + x4) (

1

2
− 1

M
)(y3 + y5)− 1

M
(y2 + y1 + y4)

(1− 1

M
)x4 − 1

M
(x2 + x3 + x1 + x5) (1− 1

M
)y4 − 1

M
(y2 + y3 + y1 + y5)

(
1

2
− 1

M
)(x3 + x5)− 1

M
(x2 + x4 + x1) (

1

2
− 1

M
)(y3 + y5)− 1

M
(y2 + y4 + y1)




The original and projected node positions are shown in Figure (5.4). The fully
connected nodes (i.e. nodes 1, 2, and 4) are mapped to a point centered at origin while
keeping the inter node distances intact, while the nodes with a missing link (nodes
3 and 5) are mapped to a point which is sum of their original positions besides a
translation. It is impossible to determine the exact positions of node 3 and node 5
using this projection.

To investigate whether the proposed method will be able to determine the unknown
node positions for a partially connected network, we now assume that 9 nodes are
deployed in a certain region. We further assume that all of them are able to make an
estimate, except nodes 1 and 7.

The weight matrix W is now given as

W =




1 1 1 1 1 1 0 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1




With a missing link between nodes 1 and 7, two elements in the weight matrix are zero
and its rank is 3. We can reduce the rank of W by adding 1 to the diagonal entries of
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Figure 5.4: Original and projected node locations when the link between node 3 and node 5
is missing

the rows having a zero as

W =




2 1 1 1 1 1 0 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 2 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1




With this transformation the rank of W is reduced to two and the eigenvectors u1 and
u2 corresponding to two nonzero singular values are given as
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u1 =




−1√
M−1√
M
...
−1√
M




u2 =




1√
2

0
0
0
0
0
−1√

2
0
0




N will now be given as

N =

(
Φdiag(u1)
Φdiag(u2)

)

N =




−1√
M

x1
−1√
M

x2
−1√
M

x3
−1√
M

x4
−1√
M

x5
−1√
M

x6
−1√
M

x7
−1√
M

x8
−1√
M

x9

−1√
M

y1
−1√
M

y2
−1√
M

y3
−1√
M

y4
−1√
M

y5
−1√
M

y6
−1√
M

y7
−1√
M

y8
−1√
M

y9

1√
2
x1 0 0 0 0 0

−1√
2
x7 0 0

1√
2
y1 0 0 0 0 0

−1√
2
y7 0 0




The beacon node matrix Na will consist of the first six columns of N (As the rank of
W is 2).

Na =




−1√
M

x1
−1√
M

x2
−1√
M

x3
−1√
M

x4
−1√
M

x5
−1√
M

x6

−1√
M

y1
−1√
M

y2
−1√
M

y3
−1√
M

y4
−1√
M

y5
−1√
M

y6

1√
2
x1 0 0 0 0 0

1√
2
y1 0 0 0 0 0



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In the previous chapter we derived the conditions under which N(or Na) will have
full rank. We define a matrix A consisting of signal eigenvectors of W. As there are
only two eigenvectors corresponding to nonzero eigenvalues for the above example, A
will be

A =




uT
1

uT
1

uT
2

uT
2




A =




−1√
M

−1√
M

−1√
M

−1√
M

−1√
M

−1√
M

−1√
M

−1√
M

−1√
M−1√

M

−1√
M

−1√
M

−1√
M

−1√
M

−1√
M

−1√
M

−1√
M

−1√
M

1√
2

0 0 0 0 0
−1√

2
0 0

1√
2

0 0 0 0 0
−1√

2
0 0




Then M and S defined in (4.2) and (4.3) are given as

M =




−1√
M

−1√
M

−1√
M

−1√
M

−1√
M

−1√
M

−1√
M−1√

M

−1√
M

−1√
M

−1√
M

−1√
M

−1√
M

−1√
M

0 0 0 0 0 0 0
0 0 0 0 0 0 0




S =




−1√
M

x2
−1√
M

x3
−1√
M

x4
−1√
M

x5
−1√
M

x6
−1√
M

x8
−1√
M

x9

−1√
M

y2
−1√
M

y3
−1√
M

y4
−1√
M

y5
−1√
M

y6
−1√
M

y8
−1√
M

y9

0 0 0 0 0 0 0
0 0 0 0 0 0 0




We have shown in the previous chapter that the rank of S will be two. If we add a
linearly independent column to S, its rank will be increased by one. Thus the rank of
N will be

N = rank(S) + 2 = 4

as column 1 and column 7 of N are independent to S.
The rank of the beacon node matrix will be
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Na = rank(S) + 1 = 3

as the beacon node matrix Na does not include column 7.
The beacon node matrix will only be full rank when a beacon node misses a distance

estimate from another beacon node. However if an ordinary node does not obtain a
distance estimate either from a beacon node or from another ordinary node, Na will
be rank deficient.

Even if the beacon node matrix Na is full rank, we further require that the noise
subspace matrices Una and Unb must also be full rank. Simulation results indicate that
this condition is not true even in the case of just one missing link. Thus the proposed
method is unable to find node locations for partially connected networks.

5.2 Performance of the proposed method with secound rank
reduction technique

Another possible transformation to reduce the rank of W is to subtract 1 from the
diagonal entry of a row containing a zero as described in the previous chapter. For a
network of five sensor nodes with a missing link between nodes 3 and 5, the weight
matrix W with this transformation is given by

W =




1 1 1 1 1
1 1 1 1 1
1 1 0 1 0
1 1 1 1 1
1 1 0 1 0




The projection matrix P will now be given as

P = I−UsU
T
s =




2

3
−1

3
0 −1

3
0

−1

3

2

3
0 −1

3
0

0 0
1

2
0 −1

2

−1

3
−1

3
0

2

3
0

0 0 −1

2
0

1

2




and

PΦT =




2

3
−1

3
0 −1

3
0

−1

3

2

3
0 −1

3
0

0 0
1

2
0 −1

2

−1

3
−1

3
0

2

3
0

0 0 −1

2
0

1

2






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Figure 5.5: Original and projected node locations
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The original and projected nodes with this transformation technique are shown in
Figure (5.5). This transformation technique maps the fully connected cluster (nodes
1, 2, and 4) centered at origin, while ignoring the connections with nodes 1 and 3. It
also maps the nodes having a missing link to a location which is the difference of their
original positions multiplied with a scaling factor. Now if we assume that one of them
(say node 3) is a beacon node, the the position of the other node can be determined.

The necessary condition for N̂a to be a full rank matrix is that the beacon node
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matrix Na must be full rank. We have shown that the full rank condition for beacon
node matrix Na is only satisfied when a beacon node misses a distance estimate from
another beacon node. Thus to satisfy the full rank condition for Na, we require that
both node 3 and node 5 must have known locations. However even with that assump-
tion, the sufficient condition is not satisfied. Simulation results indicate that even with
this transformation on W and with the assumption that missing link is between beacon
nodes, the sparsity of noise subspace matrix Una disallows the computation of node
positions with the proposed method.

5.3 Conclusion

We provided a graphical interpretation by projecting the node locations onto the noise
subspace of the weight matrix. We have shown that for a fully connected network,
our method is able to find the global node positions in a single step. We have also
demonstrated that the different weight transformations produce different node projec-
tions. One such transformation can produce relative node locations. However it is still
infeasible to find global positions, even with the help of rank reduction techniques.
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Conclusions and Future Work 6
We briefly conclude our work and provide possible options for future research in this
chapter.

6.1 Conclusions

In this thesis, we have introduced a noise subspace approach for the localization in
wireless sensor networks. We have shown that the proposed method determines the
absolute node coordinates as opposed to MDS which finds local positions, for a fully
connected network. When certain dissimilarity measurements are missing, the proposed
method however fails to localize the network due to rank deficiency of N̂a. We have also
introduced some rank reduction techniques to overcome the rank deficiency problem of
N̂a. Though one such technique is able to estimate the relative positions, yet they fail
to alleviate the rank deficiency associated with N̂a. Hence the global node coordinates
can not be determined for partially connected networks by the proposed method.

In chapter 3, we derived the least squares method by introducing a weight matrix
whose elements depict the presence or absence of the corresponding dissimilarity mea-
sure. We take the Hadamard product between the squared distance matrix and the
weight matrix and project this product on the noise subspace of the weight matrix W.
We have shown that the unknown node positions can be determined by multiplying this
projection with a known matrix. We have provided the simulation results to indicate
that the proposed method is able to find absolute node positions for a fully connected
network.

In chapter 4, we provided a detailed analysis for the failure of the proposed method
when certain dissimilarity measurements are missing. We derived the necessary and
sufficient full row rank conditions of N̂a. Unfortunately the conditions are not satisfied
even with one missing link. Some transformations to reduce the rank of the weight
matrix have also been introduced in the hope to solve the rank deficiency problem.

Chapter 5 provides a graphical explanation, where we have depicted the node pro-
jections onto the noise subspace of different weighting matrices. The full row rank
condition for the anchor node matrix is only satisfied when the missing link exists be-
tween the anchor nodes. Even if that condition is satisfied, yet the method is unable
to determine absolute node coordinates due to sparsity of noise subspace matrices.

6.2 Suggestions for Future Work

Localization in wireless sensor networks is an active research area and a number of dif-
ferent algorithms proposed recently address the computational complexity, communica-

51



tion overhead and the performance under noisy, incomplete dissimilarity measurements.
Below we present some of the possible directions for further research.

• We have shown that a particular transformation on the weight matrix can possibly
generate the relative node locations for partially connected networks. It would be
appealing to formulate it further and to look for the possibility of finding global
locations similar to MDS. An interesting aspect will be the fraction of anchor
nodes required for such a solution.

• A number of distance matrix completion algorithms have been proposed recently
[20] [21]. The application of these techniques in the domain of wireless sensor
networks is yet to be investigated. As a pre phase the incomplete distance matrix
can first be completed before the application of our proposed method. It would
be quite interesting to compare the complexity and feasibility of distance matrix
completion coupled with our algorithm with the weighted MDS techniques [11],
[19].
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