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Phase Transition in a Two-Dimensional Heisenberg Model
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We investigate the two-dimensional classical Heisenberg model with a nonlinear nearest-neighbor in-
teraction V��s, �s0� � 2K��1 1 �s ? �s0��2�p . The analogous nonlinear interaction for the XY model was
introduced by Domany, Schick, and Swendsen, who find that for large p the Kosterlitz-Thouless transition
is preempted by a first-order transition. Here we show that, whereas the standard �p � 1� Heisenberg
model has no phase transition, for large enough p a first-order transition appears. Both phases have only
short-range order, but with a correlation length that jumps at the transition.
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The two-dimensional Heisenberg and XY models are
such close relatives that it has taken a long history of efforts
before their properties could be told apart. Both are special
cases, for n � 3 and 2, respectively, of the O�n� symmetric
Hamiltonian

H � 2K
X
�i,j�

�si ? �sj . (1)

Here �si is an n-component spin of unit length at lattice
site i, the sum is on all pairs of nearest-neighbor sites of a
two-dimensional lattice, and K � J�kBT . For all n . 1
the system (1) has d � 2 as its lower critical dimension.

Bloch’s 1930 spin wave argument [1], put on a firm
mathematical basis only much later by Mermin and Wag-
ner [2,3], implies that neither the XY nor the Heisenberg
model can have a spontaneously magnetized low-T phase.
The early investigations dealt exclusively with the Heisen-
berg model. In 1958 Rushbrooke and Wood, after study-
ing high-T series [4], first remarked that in spite of Bloch’s
argument the possibility of a phase transition in the Heisen-
berg model should be taken seriously. This was reempha-
sized in 1966 by Stanley and Kaplan [5], who envisage,
for the Heisenberg model, a low-T phase with an infinite
susceptibility.

In the late 1960s the high-T series of the Heisenberg and
the XY models were compared [6,7]. Qualitative similar-
ity was found, but no general agreement was ever reached
about the significance of certain quantitative differences.
A phase transition in either model continued to be consid-
ered by many as only a remote possibility, until Kosterlitz
and Thouless (KT) [8] demonstrated that there is a phase
transition in the XY model and clarified its topological
character.

Since the KT arguments were specific for n � 2, the
two-dimensional Heisenberg model [and, indeed, the Ham-
iltonian (1) for all n . 2] has from then on been believed
to be without a transition. Further support for this view
came from the analytical low-T renormalization group ap-
proach developed by Polyakov [9], Brézin and Zinn-Justin
0031-9007�02�88(4)�047203(4)$20.00
[10], and Nelson and Pelcovitz [11], and from Monte Carlo
renormalization due to Shenker and Tobochnik [12]. The
absence of a rigorous proof has, however, left room for ar-
guments ([13] and references therein) that the Heisenberg
model [Eq. (1) with n � 3] may after all have a phase
transition; this is not, however, our point of view.

Here we consider the O�3� symmetric Hamiltonian

H � 2
X
�i,j�

V ��si ? �sj� , (2)

where V is an arbitrary nonlinear function. For reasonable
choices of V (in a sense not a priori clear) one expects that
(2) is in the same universality class as the standard “linear”
O�n� model (1). Expression (2) is interesting for at least
two reasons.

First, the freedom to choose V is a key ingredient in
theoretical analyses by Villain [14] of the O(2) model and
by Domany et al. [15] and Nienhuis [16] of the O�n� loop
model. For n . 2 the latter model does undergo a phase
transition [17] which corresponds to a hard-hexagon-like
ordering of the loops. But in spin language the transition
appears to occur in an unphysical parameter region with
negative Boltzmann weights. It does not provide evidence
for a phase transition in O�n� spin models with n . 2.

The second reason of interest in (2) comes from the rele-
vance of the KT theory for the melting of thin adsorbed
layers. The difficulty encountered in observing the pre-
dicted [18] hexatic phase, whether experimentally or in
simulations, was suspected by some to be due to the KT
transition being preempted by a first-order transition as a
consequence of various nonlinearities not incorporated in
the theory. Domany-Schick-Swendsen (DSS) [19] there-
fore investigated an O(2) symmetric XY model with a spe-
cific nonlinearity controlled by a parameter p, viz.

V ��si ? �sj� � 2K��1 1 �si ? �sj��2�p (3)

(our p is their p2). Indeed, DSS found by Monte Carlo
simulations that for strong enough nonlinearity �p � 50�
© 2002 The American Physical Society 047203-1
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FIG. 1. Energy per spin versus coupling for a periodic system
of size L � 48 and p � 20. The energy discontinuity and the
hysteresis indicate a first-order phase transition. Each data point
results from 106 Monte Carlo steps per site. The statistical errors
are smaller than the symbol size. Jumps in the energy (see
arrows) occurred while taking the data points on the vertical
lines.

the KT transition is replaced with a first-order one from
the massless low-T phase to a high-T phase with expo-
nentially decaying correlations. While this suggests that
melting via a hexatic phase may similarly be preempted by
a first-order transition, the DSS result has been subject to
controversy [20].

Here we confront again the XY and Heisenberg
model. We have Monte Carlo simulated the latter with
the nonlinear interaction (3) on square L 3 L periodic
lattices. Randomly chosen orientations are accepted with
Metropolis-type probabilities. Slow relaxation at low T
limits the largest system size to about L � 200.

No signs of a phase transition were seen for p 	 1,
but for p � 20 there is a clear jump in the energy as a
function of K. Figure 1 shows the resulting hysteresis for
a system of size L � 48. For the XY model a similar
narrow hysteresis loop was observed by DSS, but today’s
computers yield a clearer picture in the Heisenberg case.

Similar Monte Carlo runs for p , 20 show a weaker
first-order character, but do not clearly show where the
first-order line ends. In order to answer this question,
we have determined the specific heat for a grid of points
in the K-p plane. We thus found the specific-heat max-
ima as a function of K. Figure 2 displays these maxima
Cmax�p, L� versus L. In the absence of a phase transition
Cmax�p, L� 
 cst when L increases; this behavior is seen
for small p. In its presence we expect, at large L,

Cmax�p, L� 
 c0L2y22 (4)

with y � 2 � y , 2� in the case of a first-order (continu-
ous) transition. The data for p � 20 in Fig. 2 are consis-
tent with y � 2. The finite-size divergence weakens for
p , 20, and the p � 16 data indicate a continuous tran-
sition with y � 1.84 6 0.05. The downward trend at even
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FIG. 2. Specific-heat maxima Cmax versus system size L on
logarithmic scales. The curves serve only to guide the eye. The
data points apply to p � 6 �1�, p � 7 �3�, p � 8 ���, p � 10
���, p � 12 ���, p � 14 �±�, p � 16 �≤�, p � 18 ���, and
p � 20 ���. These data suggest that the critical point at the
end of the first-order line lies near p � 16. Each data point was
determined from several Monte Carlo runs which, because of
slow relaxation, had to be long (up to about 108 updates per site
each). This is where the bulk of the computational effort went.
The errors do not exceed the symbol size.

smaller p is consistent with Cmax�p, L� 
 cst at large L.
This suggests that the first-order line in the p-K diagram
ends in a critical point near p � 16.

Simulations for p . 20 show an enhanced first-order
character. Transition points were found by several runs,
starting with half the system fully aligned, and the other
half chosen randomly. The results, which hardly depend
on L for L . 32, are shown in Fig. 3 versus p.

The transition points can also be estimated from the
high- and low-T expansions of the free energy. Neglect-
ing loop diagrams in the high-T expansion the lattice ef-
fectively reduces to the Bethe lattice (BL). Its partition
function “per bond” is
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FIG. 3. Phase diagram of the present O�3� model in the p vs
K plane. The full curve is obtained by equating the high-T
and the low-T expansions of the free energy. The data points
represent our numerical results.
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Z
d �s exp2K��1 1 �s ? �t��2�p � 4p

X̀
k�0

�2K�k

�1 1 pk�k!
,

(5)

where the prefactor accounts for the phase space volume
of a spin and the sum for the spin-spin interaction. For N
spins and zN�2 bonds we thus have

ZBL � �4p�N

√X̀
k�0

�2K�k

�1 1 pk�k!

!zN�2

, (6)

which yields the high-T approximation FHT of the free
energy of a square lattice �z � 4� of N � L2 sites as

FHT

NkBT
� 2 log�4p� 2 2 log

√X̀
k�0

�2K�k

�1 1 pk�k!

!
. (7)

At low T , the spin-wave approximation (SWA) of H is

HSWA���si�� � 24NK 1 HG��sx
i �� 1 HG��sy

i �� , (8)

where HG is the Gaussian Hamiltonian

HG��si�� �
1
2

pK
X
�ij�

�si 2 sj�2. (9)

By standard methods one obtains from it the low-T ap-
proximation FLT to the free energy,

FLT

NkBT

 24K 2 log�4p� 1 log�8pK�

1
1
N

L21X
m,n�0

0 log

∑µ
sin

pm
L

∂2

1

µ
sin

pn
L

∂2∏
,

(10)

where the prime indicates that �m, n� � �0, 0� is excluded
from the sum. For large N � L2 the sum on m and n tends
towards 22 log2 1 4G�p � 20.220 050 7 . . . where G is
Catalan’s constant.

The intersection of the two free-energy branches was
found numerically for several p. The resulting approxi-
mation of the first-order line, shown in Fig. 3, is in a good
qualitative agreement with the Monte Carlo results.

Next, we check the consistency of our magnetization
data for the low-T phase with the Mermin-Wagner theo-
rem [2,3]. Figure 4 shows that the mean square magneti-
zation m2 
 L24

P
i

P
j��si ? �sj� decays slowly with L. In

contrast, the energy rapidly tends to a constant with in-
creasing L.

In order to compare this magnetization behavior to the-
ory, we recall that in the standard �p � 1� Heisenberg
model the correlation length j is well fitted [12] at low
T by j�K� 	 C exp�2pK���1 1 2pK� with C 	 0.01.
For 1 ø r & j one expects the SWA result g�r� 
 ��si ?
�si1r� � r2h to hold, where h � 1�pK. Consequently,
m2 � L22

RL
0 dr rg�r� � L2h for 1 ø L & j. For j &

L the integral on r converges at the upper limit and one
has m2 � L22.

Now take p ¿ 1 in the model under study. Then
the angle u between two neighboring spins is in a nar-
row two-dimensional harmonic potential well as long as
047203-3
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FIG. 4. Magnetization squared �1� and energy �3� per spin
versus system size L in the low-T phase at K � 1.4, p � 20.

u ø pp21�2. For pp21�2 & u the Boltzmann weight
is decreased by a factor exp�22K� and almost indepen-
dent of u. When K ¿ 1, most angles are small, and g�r�
will behave according to the SWA, but with an exponent
h � 1�ppK. The correlation length j�pK� estimated as
above will exceed any system size L attainable in simula-
tions (disregarding a renormalization effect of j due to the
nonlinearity of V ).

Next let K � 1 while still pK ¿ 1. Then the fraction
of nearest-neighbor spins with large relative angles will
no longer be exponentially small in K. This will cause a
downward renormalization of the effective coupling of the
SWA, if this concept remains at all applicable, and of j,
but it is not a priori clear if j will still exceed the sys-
tem size. To answer this question we consider Fig. 4. For
p � 20 and K � 1.4 the unrenormalized SWA gives h �
1�ppK � 0.012. Figure 4 confirms the power law decay
of m2, but yields a renormalized exponent heff 	 0.030,
estimated from the range 32 # L # 192. This corre-
sponds to an effective SWA coupling Keff 	 10.6. We
note that j�Keff� is still very much larger than our L val-
ues, which indicates the self-consistency of the renormal-
ized SWA. Hence we conclude that the low-T phase has
a correlation length j much larger than the system sizes
L considered here, and has a pair correlation that, at these
distances, decays as a power law.

Our finite sizes L restrict the spin waves to small devia-
tions, so that m2 is considerable. One may ask how stable
the first-order transition is under large deviations occurring
in large systems. We have imposed large-amplitude waves
using antiperiodic boundaries in both directions. This re-
duces m2 considerably in finite systems at low-T , and ren-
ders the low-T phase less stable. Monte Carlo data at
p � 20, L � 48 show that the energy jump and hystere-
sis are strongly suppressed. The deformation energy per
bond is ~L22. Figure 5 shows that for L � 192 indeed
the first-order character is partly restored to the situation
of Fig. 1. This indicates that the first-order transition per-
sists even when spin waves suppress the magnetization at
large L.
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FIG. 5. Energy per spin versus coupling for a system of size
L � 192 and p � 20 with antiperiodic boundary conditions.
The first-order character is still apparent under these conditions.
Each data point represents a simulation of 2 3 105 Monte Carlo
steps per site. The statistical errors are comparable to the symbol
size.

It is not clear how to define an order parameter reflecting
a symmetry of the model. The phases separated by the
first-order line have different degrees of short-range order,
as is the case in a gas-liquid system. Thus we expect
the first-order line to end in an Ising-like critical point.
Indeed, our result y � 1.84 6 0.05 agrees well with the
Ising magnetic exponent yh � 15�8. We note that the
energy fluctuations of this model correspond with the Ising
magnetic scaling field, because it is the energy that has a
discontinuity at the first-order line.

In conclusion, we have investigated a Heisenberg model
with interactions that depend nonlinearly on the spin prod-
ucts. For strong enough nonlinearity there appears a phase
transition. This transition is unrelated to earlier claims
[13], which applied to the linear case. But it does seem
related to the DSS transition in the XY model in the fol-
lowing way. Adding a term g

P
k�sz

k�2 in Eq. (2) leads to
crossover to the O(2) model as g varies from 0 to `. In the
gp plane we expect a line p � pc�g� [with pc�0� 	 16]
above which the transition is first order and below which
it is of the KT type when g . 0.
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