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The coronavirus disease 2019 pandemic has posed severe threats to humans and the geoenvironment. The findings
of severe acute respiratory syndrome coronavirus 2 (Sars-CoV-2) traces in waste water and the practice of
disinfecting outdoor spaces in several cities in the world, which can result into the entry of disinfectants and their
by-products into storm drainage systems and their subsequent discharge into rivers and coastal waters, raise the
issue of environmental, ecological and public health effects. The aims of the current paper are to investigate the
potential of water and waste water to operate as transmission routes for Sars-CoV-2 and the risks of this to public
health and the geoenvironment. Additionally, several developing countries are characterised by low water-related
disaster resilience and low household water security, with measures for protection of water resources and
technologies for clean water and sanitation being substandard or not in place. To mitigate the impact of the
pandemic in such cases, practical recommendations are provided herein. The paper calls for the enhancement of
research into the migration mechanisms of viruses in various media, as well as in the formation of trihalomethanes
and other disinfectant by-products in the geoenvironment, in order to develop robust solutions to combat the
effects of the current and future pandemics.
Introduction
Humanity is facing the most demanding challenge of the twenty-
first century to date, a global pandemic caused by a new kind of
coronavirus, severe acute respiratory syndrome coronavirus 2 (Sars-
CoV-2). Historically, humankind has faced several infectious
diseases, which, in almost all cases, had a zoonotic origin – that is,
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the infectious agent was transmitted from an animal to a human.
This zoonotic origin is just the initial transmission step, the spread
of a pandemic requires the confluence of several factors, such as
international travel and trade, globalisation of food supplies, changes
in food processing, use of antibiotics, environmental changes and
adaptation of microorganisms (Manivannan, 2008; Morens and
Fauci, 2007; Taubenberg et al., 2007; Yang et al., 2007).

Transmission routes of infectious diseases are varied and include
direct contact with respiratory droplets from infected persons,
mosquito bites and consumption or contact with polluted water or
food. Water is a major vehicle of transmission of pathogenic
germs, such as bacteria, protozoa and helminths (Mosteo et al.,
2013). Most of these microorganisms inhabit the gastrointestinal
tract of humans and animals and are discharged through faeces to
the geoenvironment, from where they may pollute surface water
and/or groundwater (Mosteo et al., 2013). For example, Corsi
et al. (2014) reported that human and bovine viruses were present
in 63 and 46%, respectively, of run-off samples in the Milwaukee
River in Wisconsin, USA.

The main pathway of pathogens to a person is through direct
intake of contaminated water or consumption of a raw vegetable
or fruit that has come into contact with such water (Marín-Galvín,
2003). Additional routes can be inhalation of polluted water
droplets (this is the case of Legionella spp. and the
meningoencephalitis caused by amoeba Naegleria fowleri) or
dermal contact with polluted water (such as with Pseudomonas
aeruginosa, Klebsiella and Aeromonas).

The presence of Sars-CoV-2 has been detected in untreated waste
water in the Netherlands (Lodder and de Roda Husman, 2020;
Medema et al., 2020), Australia (Ahmed et al., 2020), Greece
(N. Papaioannou, personal communication, 4 April 2020) and the
USA (Wu et al., 2020). Sars-CoV-2 macromolecules were found
in the saliva, blood and anal swabs of patients (Guo et al., 2020;
Xiao et al., 2020; Zhang et al., 2020), raising the question of viral
gastrointestinal infection and of oral and faecal transmission
routes for the virus.

Gundy et al. (2008) conducted a study on the survival of
coronaviruses and polioviruses in tap water and waste water. They
observed that coronaviruses survived for up to 100 days in tap
water at 4°C, whereas they were inactivated within 10 days in
room-temperature water. Temperature appeared to be the main
factor for survival of these viruses, which also persisted in
unfiltered water, a fact that was attributed to the presence of
suspended solids. Based on these results, the survival of Sars-
CoV-2 may be favoured by unfiltered tap water and waste water
with high levels of suspended solids. Casanova et al. (2009)
showed that coronaviruses can be infectious for long periods of
time while in water and waste water (17–22 days at room
temperature and more than 4 weeks at 4°C). Casanova and
Weaver (2015) suggested that enveloped viruses could survive in
sewage for 6–7 days, while van Doremalen et al. (2020) reported
194
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that Sars-CoV-2 may live from 4 to 72 h on environmental
surfaces, depending on the nature of the surface material. A recent
report from the US Centers for Disease Control and Prevention
(CDC) suggested that the virus can survive for up to 17 days in
the environment (Moriarty, 2020). Slater et al. (2011) had found
that the use of antivirals and antibiotics during the 2009–2010
influenza affected the bacterial communities of waste-water-
treatment plants (WWTPs), raising the question of WWTP
performance during a pandemic.

In order to minimise disease transmission from hospital waste
waters that may have a high load of pathogens during a pandemic,
Sozzi et al. (2015) suggested that these be first treated in situ,
before being discharged into the municipal sewerage network. Two
protocols were tested, combining coagulation with disinfection at
various pH levels, and both proved to be successful in disinfecting
hospital waste waters and sludge. Bibby et al. (2015) investigated
the survival of the Ebola virus in waste water and suggested
containing virus-contaminated waste water for at least 1 week
before allowing it to enter the sewerage system, as well as applying
higher-level protective measures for WWTP staff. Benschop et al.
(2017) detected polioviruses, enteroviruses and the measles virus in
sewage samples from refugee centres in the Netherlands. Ivanova
et al. (2019) summarised the sampling campaigns at four WWTPs
in Moscow, Russia, from 2004 to 2017 and found that 20% from a
total of 5450 samples tested positive for various viruses. Wigginton
et al. (2015) reviewed the effects on drinking water and waste
water of enveloped viruses, particularly of coronaviruses, which
had caused the severe acute respiratory syndrome (Sars) in 2003
and the Middle East respiratory syndrome (Mers) in 2012. The
current virus, Sars-CoV-2, is also an enveloped virus – that is, it is
surrounded by an outer lipid membrane. These authors mentioned
that ‘survivability studies show that many enveloped viruses are
capable of retaining infectivity for days to months in aqueous
environments’ (Wigginton et al., 2015). Recently, Nghiem et al.
(2020) referred to a potential Sars-CoV-2 viral transmission from
aerosols from waste water systems.

Because of the risk of transmission by way of water, disinfection
of drinking water is vital in order to prevent waterborne diseases.
Disinfection is the destruction of viable, potentially infectious
pathogens by different treatment methods, the most common
being by chlorine, chlorine dioxide, ozone and ultraviolet (UV)
radiation (Gerardi and Zimmerman, 2005; López et al., 2019).
More recent developments include the application of advanced
oxidation processes (AOPs) that combine high-oxidation chemical
compounds with elements capable of activating them for the
generation of highly reactive radicals (Guerra-Rodríguez et al.,
2018; Rodriguez-Chueca et al., 2015). All these treatments
present a series of advantages and disadvantages, but chlorination
stands out as the most widely used method all over the world.

Although all disinfection techniques can inactivate pathogenic
microorganisms, not all of them have the same efficacy in the
elimination of viruses, with the efficacy decreasing, in general, in
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the following order: ozone > chlorine dioxide > chlorine (USEPA,
1999a; Watts et al., 1995), but also depending on species and
water characteristics. Chlorine dioxide is equivalent to chlorine as
bactericidal and superior to it as virucidal in a wider range of pH
values and does not form halogenated by-products. However,
Wang et al. (2005a), in a study of the inactivation of Sars-CoV
in waste water, found that free chlorine required a lower
concentration than chlorine dioxide to inactivate this virus.

During the coronavirus disease 2019 (Covid-19) pandemic, the
World Health Organization (WHO) has advised handwashing with
sanitiser/soap for mitigating the transmission of Sars-CoV-2.
However, more than 3 billion people worldwide lack sanitisers/
soap and water to maintain proper hygiene. In addition, in rural
areas, particularly in developing countries, people use untreated
water from rivers, ponds, springs and wells, which are sometimes
located at considerable distances from their residences and of
which the quality of water may be questionable. Hence,
transmission of Sars-CoV-2 in these areas is possible with the
congregation of people at water sources and their exposure to
infected persons. In addition, the existence of Sars-CoV-2 traces
in the waste water stream of several cities raises concerns about
the rudimentary and scantly controlled sanitary systems of several
developing countries.

Given that in large parts of the world, measures for the protection
of water resources, controls on the treatment and supply of
drinking water and the treatment and discharge of waste water
may be substandard by the guidelines by the WHO (2017) or not
in place, the current paper has the following three major aims:
firstly, to investigate the potential of water and waste water to
operate as transmission routes for the Sars-CoV-2; secondly, to
assess the risks and threats to both public health and the
geoenvironment posed by a potential entry of the virus in water
and waste-water-treatment systems; and thirdly, to raise the issue
of disinfectant application on outdoor public spaces in many cities
in the world, which on entering storm drainage systems find their
way to surface and coastal waters.

Geoenvironmental engineering’s role in
pandemics and public health issues
Pandemics such as Covid-19 and their health, financial and social
implications are not new. The plague of ancient Athens in 430 BC
is perhaps the first famous case of an epidemic, recorded in the
History of the Peloponnesian War by Thucydides (2020), with the
agent being the salmonella or typhoid bacteria or even the Ebola
virus (Papagrikorakis et al., 2008; Smith, 1996). The Plague of
Justinian (AD 541–542, but with recurrences until AD 750) was
the first known major pandemic, and it was caused by the Gram-
negative bacterium Yersinia pestis. It was the first time, perhaps,
that the practice of massively disposing bodies into burial pits
(reportedly holding up to 70 000 corpses) was recorded.

The Black Death (1347–1352) was a bubonic plague pandemic in
Europe whose agent was the same bacterium responsible for
 [] on [21/01/22]. Copyright © ICE Publishing, all rights reserved.
Justinian’s Plague. Estimates of its deaths are in several tens of
millions, and its aftermath was rebellions and the complete
transformation of the European medieval society (Cartwright,
2020). This was the first time that official patient isolation was
enforced in Venice, with returning sailors put under a 40-day
‘quarantino’.

In North and South America, some of the worst epidemics were
caused by smallpox, which in the fifteenth century killed 90–95%
of the indigenous people in Mexico (Roos, 2020) and in the
1600s about 70% of the native American population in the north-
east of the USA (Robinson and Battenfield, 2020).

The association between water resource contamination and public
health became obvious during the cholera (a bacterial infection)
outbreaks of the nineteenth century. For example, in imperial
Paris in the mid-nineteenth century, there were no public water
supply or sewerage systems. ‘The citizens of Paris took their
water supplies … from the River Seine … [which] … was both
the source and the sink for the Parisian water system’ (Freeze,
1994: p. 29). As a result, Paris developed a citywide drinking
water and sewerage system by the mid-1860s. Henry Darcy, who
was the chief engineer of the Côte-d’Or (one of the 83
administrative departments in France), conducted his famous
experiments during construction of the water distribution system
at Dijon, France, which he concluded 25 years earlier than
Paris did.

The city of London faced four major cholera outbreaks, in 1831,
in 1848–1849, in 1853–1854 and again in 1866. The tracing of
the 1854 cholera deaths to a popular drinking water well
established the connection between the disease and water (Ball,
2009; Smith, 1999). This public health crisis was resolved by
Joseph Bazalgette, chief engineer of London’s Metropolitan Board
of Works, who supervised the creation of a series of sewers
(finalised in 1875), moving the waste water away from the River
Thames (Mohamed and Paleologos, 2017).

The water supply system of the city of New York City (NYC) had
relied on wells until the mid-nineteenth century. Following several
cholera outbreaks, fresh water was brought to the city in 1842 by
way of reservoirs and aqueducts were constructed under Chief
Engineer John B. Jervis (Pierce, 2018). NYC started constructing
its sewerage system in 1849, connecting almost all of the city by
1902 and finalising it in the 1930s in order to address the
pollution problems from raw sewage entering the NYC harbour.
These major public infrastructure projects in three of the most
famous cities of the world and the names of the prominent
engineers associated with them constitute proof of the
indispensable role that geoenvironmental engineering plays in
safeguarding public health. It is fair therefore to state that although
the analysis and understanding of disease vectors belong to the
health disciplines, the solution to several of the major epidemics
and pandemics was ultimately given by civil, environmental and
sanitary engineers (Wigginton and Boehm, 2020).
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In recognition of the threat to public water supplies, chlorination
has been commonly performed since the mid-twentieth century in
most developed countries, both for the treatment of drinking water
and for the sanitisation of waste water prior to its discharge from
WWTPs. These measures have largely eliminated disease
outbreaks arising from drinking water (USEPA, 2000). Maximum
levels of pathogens and of other contents in drinking water have
been established by WHO (2018), the EU (EC, 1998) and
national governments (e.g. Health Canada, 2019). Water bodies
have to be monitored regularly to ensure that their water meets
quality regulatory requirements with remedial actions to be taken
in the opposite case (e.g. EC, 2000; Papapetridis and Paleologos,
2011, 2012). Despite these improvements, WHO reported that
more than 3.4 million people die each year from waterborne
diseases, making it the leading cause of illness and death in the
world (Berman, 2009).

In addition to the high mortality rate and the toll on the
population’s general physical and mental well-being, other serious
aspects to ponder from epidemics/pandemics are the huge financial
instability that they create, followed by an equally troubling decline
in the social order and the morality and ethics of the societies
afflicted. The lessons from past cases are relevant for the present
times because successful reaction from, among others, the civil,
environmental, geotechnical and municipal engineering
communities depends strongly on both the maintenance of social
consensus regarding public health measures and safeguarding an
economic order. Together these would allow critical public health-
related civil and geoenvironmental infrastructure upgrades, as those
proposed in the following sections of the current paper and in the
companion paper by Tang et al. (2020).
Challenges and risks of Sars-CoV-2 in waters

Pathways of the virus to enter water bodies
Sars-CoV-2 can enter the soil and water by a range of pathways
originating from solid and liquid waste by infected people (Xu
et al., 2020b). Leaking water and sewerage networks, as a result
of prolonged underinvestment in maintenance, upgrade and
modernisation. can lead to cross-contamination of soil and water,
endangering the geoenvironment and public health. Thus, the fate,
transport and interaction of pathogens, such as of Sars-CoV-2,
with surface water and groundwater and the soil must be assessed.

In some parts of the world, faeces constitute an important organic
fertiliser that is poured onto farmland to promote crop growth. In
rainy days, virus-contaminated run-off may enter surface waters
or the groundwater by infiltration, causing their contamination.
The appearance of Sars-CoV-2 in wells, streams, rivers and lakes
will likely be more prevalent in developing countries and poor
rural areas of Asia, Africa and South America where sewerage
systems are either rudimentary, ageing or non-existent (WHO and
Unicef, 2019). In 2013 the Asian Water Development Outlook
(AWDO) (ADB, 2013: Table 7) reported that about 45% of the
rivers in Asia were polluted and classified them under a bad or
196
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poor river health index. The situation slightly worsened in 2016
(ADB, 2016) as a result of intensified agricultural and other
economic activities.

Various guidelines for the disposal of pathogen-contaminated
substances have been developed internationally (e.g. CDPH,
2020; WHO, 2005). For instance, if leakage of pathogen-laden
waste water occurs, contaminated groundwater should be
remediated. This emphasises the need for research into the fate
and transport of Sars-CoV-2 and other pathogens in soil and
surface water/groundwater (Bender et al., 2017). This is critical
for rural areas where groundwater is used for agriculture and as a
source of drinking water and where there may exist less uniform
controls on water treatment or quality. This can be achieved by a
systematic disposal approach for contaminated substances that is
aimed at isolating them from the hydrologic cycle, such as
disposing downstream of water resources, locating appropriate
geologic formations for disposal and minimising leakage of
infected leachate.

Sars-CoV-2 in fresh and bathing waters
There have not been any studies, to date, that reported infection
from the Sars-CoV-2 arising from water bodies. The US CDC
(2020) has stated that standard disinfection methods used in
municipal water-treatment plants (WTPs) should be sufficient to
inactivate the virus. The CDC (2020) has also mentioned that
recreational waters in swimming pools, hot tubs and spas should
pose no risk to public health if proper operation and maintenance
are maintained. International standards for water chlorination
recommend both a specific concentration and a contact time (Ct),
the time needed for chlorine to act so that pathogens are killed
SDWF (2017). For drinking water, this is at least 15 mg min/l (i.e.
exposure of 1 litre of water to 1 mg of free chlorine for at least
15 min). For swimming pools, ‘current recommendations/best
practice’ stipulates a free chlorine residual of at least 1.0 mg/l
(depending on the pool type and disinfectant used) (HPSC, 2020).
Higher doses are mandated in the UK for spa pools with free
chlorine at 5 mg/l before emptying them and 50 mg/l for at least
1 h on refilling them (PWTAG, 2016, 2020).

International bodies have relied on experience dealing with other
viruses, such as Sars and Mers, which belong to the same
coronavirus family as Sars-CoV-2, in order to analyse the risks
posed by the new virus (HPSC, 2020; PWTAG, 2020; WEF,
2020; WHO and Unicef, 2020). Coxsackie virus, poliovirus and
rotavirus, which all plot within the bottom left box of Figure 1,
are all examples of non-enveloped viruses, for which the 15 mg
min/l chlorination dose works. Sars-CoV-2 is an enveloped virus
and according to the Health Protection Surveillance Centre of
Ireland (HPSC, 2020: p. 2) it ‘will be inactivated at lower Ct

values’.

However, it should be noted that the Ct of water subvolumes that
pass through a disinfection contact tank may not be the same for
all, as some ‘water may short-circuit the tank and thus have a
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residence time [that is] less than t’, where t is the average global
residence time of water based on plug flow (Irish EPA, 2011:
p. 45). In order to account for non-ideal flow conditions, a time tx
is considered for disinfection, defined as the time needed for the
fastest flowing x% of water to exit from the outlet of the tank
(based on tracer tests). The guidelines by the US Environmental
Protection Agency (USEPA, 1999b, 2003a) for disinfection are
based on a corrected residence time t10 (of the fastest 10% of the
tracer passing through the outlet after a ‘spike’ test), and they
provide recommended correction residence times t of disinfection
for different baffling arrangements. For the poor flow conditions
 [] on [21/01/22]. Copyright © ICE Publishing, all rights reserved.
shown in Figure 2, residence times of more than 300% of the t10
may be required. It is clear from the above that although the
probability may be exceedingly small, there does exist a risk, at
least for some pockets of the drinking water body, not to be
disinfected fully and hence potentially to pose a drinking health
risk in terms of Sars-CoV-2.

Despite reassurances about the effect of disinfection in swimming
pools, the need for social distancing and the seriousness of the
risk have led many countries to issue orders for the closure
of swimming pools and other recreational water bodies
Plan view Section view

Figure 2. Poor baffling conditions in a disinfection tank (USEPA, 2003a)
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(PWTAG, 2020). In the USA, the CDC (2020) has delegated the
decision on the operation of recreational water venues to local and
state authorities.

Potential contamination of surface and coastal waters
and groundwater by disinfectants and disinfection by-
products
The Covid-19 pandemic has changed drastically the extent of
disinfectant use. This has expanded beyond medical settings with
much higher hygienic standards currently required in everyday
activities. Some countries, such as Italy, South Korea, the UAE
and China, have imposed night curfews in order to clean the
streets in major cities with a weak disinfectant solution. The
USEPA (2020a) has listed 392 disinfectant products (List N) that
are effective against Sars-CoV-2. These disinfectants can be
broadly divided into alcohol, bleach, hydrogen peroxide and
quaternary ammonium compounds. For residential use, the list of
active ingredients together with the contact time needed to
inactivate coronaviruses is given in Table 1.

Most of the disinfectants used in medical centres are sodium
hypochlorite-based (ESR, 2015; Fukuzaki, 2006; Rutala and
Weber, 1997). During the Covid-19 pandemic, heavy usage of
these disinfectant products was also done in households. Thus, the
percentage of waste that would contain traces of sodium
hypochlorite is expected to increase during the pandemic, resulting
in this chemical becoming part of the landfill leachate. In addition,
the practice to spray outdoor public spaces, including roads,
schools and buildings that had hosted infected persons, has directly
inserted disinfectants into the storm drainage systems of many
cities, thus discharging them into rivers, streams and coastal waters.

Rook (1974) found that hypochlorous acid is formed when sodium
hypochlorite is added to water, and in the presence of bromine,
hypobromous acid is formed. These two acids react with natural
organic matter to produce many water disinfection by-products,
including the four primary trihalomethanes (THMs), which are
chloroform, bromodichloromethane, dibromochloromethane and
bromoform, referred to as total THMs (TTHMs). Medeiros et al.
(2019) reviewed the toxicological aspects of THMs and concluded
that they pose potential genotoxic and carcinogenic health risks,
particularly for the liver and kidney.
198
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TTHMs are limited to 80 parts per billion, or 0.080 mg/l, in
treated drinking water in the USA (USEPA, 2010). The Australian
Drinking Water Guidelines (ADWG, 2004) recommends that
THM levels in drinking water not exceed 0.25 mg/l. The
guidelines for drinking water by WHO (2017), shown in Table 2,
specify the upper limits of THM concentrations in drinking water.

Landfill leachate is a complex liquid the chemical composition of
which is controlled by waste type and nature, among other factors
(Iskander et al., 2018; Renou et al., 2008). During the pandemic,
the impact of excess sodium hypochlorite on leachate chemistry
should be monitored. Although the composition of leachate is
site-specific, the organic content of leachate is generally a few
tens to thousands times higher than that of sewage (Li and Deng,
2012). The presence of organic matter and hypochlorite in landfill
leachate could trigger the formation of THM. This could be
troubling, particularly for landfills that have not been designed
with leachate collection systems (Li and Deng, 2012), such as
several smaller regional landfills in Australia (Australian National
Waste Report, 2016). Stuart et al. (2001) investigated the potential
for THM formation in aquifers contaminated by leaking landfills
in Mexico, Jordan and Thailand and detected THM concentrations
up to 4.551 mg/l at several monitoring wells of the study sites.

There is a need to conduct more studies to assess the potential for
THM formation in landfill leachate, as well as the retention and
diffusion properties of THM through landfill clay liners. Finally,
given the injection of disinfectants into the storm drainage
systems of cities practicing public space disinfection, the effect on
the ecosystems of rivers, streams and coastal waters where these
systems are discharging must be urgently studied.

Threats and risks to rural areas and developing countries
The Covid-19 pandemic presents an acute threat for developing
countries, in particular those that are densely populated and
struggling with the impact of other health and social problems.
For Sars-CoV-2, which is easily transmitted, mass congregation in
places that also have poor infrastructure can favour disease
transmission. Management of the pandemic in such areas can be
accomplished with safe and readily available drinking water,
sanitation and hygiene (Wash) (Unicef, 2020). Figure 3, which
shows for Asia and the Pacific the relation between per capita
gross domestic product (GDP) and household water security
(HWS), indicates that countries with low GDP have low HWS,
thus raising the issue of the effect of the pandemic on low-GDP
and low-HWS countries (ADB, 2016).
Table 1. Active ingredients and their working concentrations
effective against coronaviruses (NEA, 2020)
Active ingredient
 Contact time: min
Accelerated hydrogen peroxide (0.5%)
 1

Benzalkonium chloride (0.05%)
 10

Chloroxylenol (0.12%)
 10

Ethyl alcohol (70%)
 10

Iodine in iodophor (50 ppm)
 10

Isopropanol (50%)
 10

Povidone-iodine (1% iodine)
 1

Sodium hypochlorite (0.05–0.50%)
 5

Sodium chlorite (0.23%)
 10
Table 2. Guideline values for THMs in drinking water (WHO,
2017)
THM
 Guideline value: mg/l
Chloroform
 0.30

Bromoform
 0.10

Dibromochloromethane
 0.10

Bromodichloromethane
 0.06
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Concerns are growing regarding the potential impact of a
Covid-19 outbreak in overcrowded settlements (including refugee
camps) with little or no public services and where dwellings may
be packed close together and often housing several family
members in one room. Such settings can become the nexus for
water and sanitation-related infectious disease transmission,
leaving little opportunity to follow social distancing guidelines
and self-isolation when required. In such cases, sanitation
measures may include provision of handwashing stations and
distributing soap, detergent and hygiene kits. For example, in
2017, only 60% of the global population had a basic handwashing
facility with soap and water available at home (Concern
Worldwide, 2020). Where water is not readily available, people
may decide that handwashing is not a priority, thereby adding to
the likelihood of Covid-19 and other disease infections.

A major issue in rural areas is the lack of adequate public water
supply systems. Hence, a large portion of the rural population in
several countries find it difficult to access properly disinfected
water (Gall et al., 2015; Unicef, 2020). According to the 2016
AWDO (ADB, 2016), Asia accounts for half of the world’s
poorest people, where irrigation and agricultural practices
consume 80% of the limited water resources of the region.
Figure 4 shows the disparity in the percentage of piped water
supply systems serving the general population (household) against
those living in towns and cities (urban) in Asia and the Pacific.
This figure is based on data provided in appendices 2 and 4 of
AWDO (ADB, 2016) and shows that for several countries, such
as Afghanistan, Bangladesh, Cambodia, India, Indonesia, Laos,
 [] on [21/01/22]. Copyright © ICE Publishing, all rights reserved.
Nepal and Vietnam, less than 30% of the population, in 2016,
received piped water.

Currently, about 1.7 billion people in Asia lack access to basic
sanitation. Figure 5, based on data in appendix 4 of AWDO
(ADB, 2016), shows the ten countries in Asia and the Pacific
where less than 50% of their urban population have access to a
sewerage collection network (Figure 5(a)) and the top ten
countries in the same region where more than 70% of the urban
population have access to a central sewerage system (Figure 5(b)).

The urgency to address health-related infrastructure issues
between water and sanitation, and public health and
environmental pollution, calls for research in some of the
following areas:

■ application of cost-effective methods for detection of
infectious viruses in water and waste water systems (Gall
et al., 2015; Pejcic et al., 2006; Wigginton et al., 2015) and
the use of novel remediation technologies (e.g. Koshy and
Singh, 2016) in the case of contamination (Mohamed et al.,
2020; Paleologos et al., 2014)

■ evaluation of the survival rate of infectious viruses in water
bodies and waste water systems under different conditions of
temperature, humidity, pH and so on (Wigginton et al., 2015;
Ye et al., 2016)

■ development of techniques for inactivation of infectious
viruses within water and waste water bodies and prevention of
cross-contamination in distribution networks (Ye et al., 2016)
GDP: US$ per capita
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■ risk assessment of the threat on the quality of surface water,
groundwater and coastal water that may have received waste
waters containing high loads of viruses, disinfectants and
disinfectant by-products and pharmaceuticals during the
pandemic (Li and Mitch, 2018; Wen et al., 2017).

Simultaneously, humanitarian response infrastructure, such as
building/improving water services and providing additional water
supply points, must be quickly upscaled during the Covid-19
pandemic. In the least developed countries, for example, 22% of
healthcare facilities have no water service, 21% have no sanitation
service and 22% have no waste-management service (WHO, 2019).

There exists the possibility that a potential spread of the
Sars-CoV-2 virus through waste water may not be as significant in
rural areas in Asia compared with urban centres, due to their lack
of centralised waste water systems. To treat the smaller volumes
of waste water that are generated in remote areas, constructed
wetlands may be considered (Wu et al., 2011), taking precautions
that no secondary contamination of local soil and groundwater
sources takes place. To avoid the latter, geosynthetic liners (Patil
et al., 2017), pure zeolites (natural and synthetic types) and fly
ash zeolites (processed from class F fly ash) may be used (Jha and
Singh, 2011, 2016; Koshy and Singh, 2016).

Reuse of waste water, to recover water, nutrients and/or energy, is
becoming an important strategy, particularly in water-stressed
areas. Biosolids, treated by-products of the waste-water-treatment
process, contain high levels of nutrients and are used as organic
fertilisers in agriculture and forestry, although co-disposal in
sanitary landfills remains a common practice in various parts of
the world (O’Kelly, 2005; O’Kelly et al., 2020). The presence of
200
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the Sars-CoV-2 and other pathogens in these residue streams
requires careful consideration. Similar concerns exist for the
residue materials from the various processes at WTPs, which
include temporary storage/stockpiling and stabilisation, and
the properties/behaviour of these materials during in situ
biodegradation (Babatunde and Zhao, 2007; Fei et al., 2017;
O’Kelly, 2008).
Challenges and risks of Sars-CoV-2 in waste
water systems

The presence of coronaviruses in human excrement and
environmental media
Sars-CoV-2 has been found to be followed by diarrhoea in 2–50%
of cases (D’Amico et al., 2020), viral ribonucleic acid to have
remained detectable in children’s stools for longer than 4 weeks
(Xing et al., 2020) and children to test positive on rectal swabs
after they had tested negative for Covid-19 in nasopharyngeal
testing (Xu et al., 2020a), all of which led Zhang et al. (2020) to
warn that Sars-CoV-2 may be shed through multiple routes.
Similarly, both Sars-CoV-1 (the coronavirus that caused Sars in
2003) and Mers-CoV (the coronavirus that caused Mers in 2012)
were found in blood, urine and faeces (Corman et al., 2016;
Wang et al., 2005b, 2005c).

van Doremalen et al. (2020) compared the viability of Sars-CoV-2
and Sars-CoV-1 in aerosols and on plastic, stainless steel, copper
and cardboard. They found that the stability of the two viruses was
similar in the examined media and concluded that the transmission
of Sars-CoV-2 is ‘plausible’ by way of aerosols and fomites ‘since
the virus can remain viable and infectious in aerosols for hours and
on surfaces up to days’. Wang et al. (2005a: p. 171) found that ‘…
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in vitro experiments demonstrated that the … [Sars-CoV] … virus
could only persist for 2 days in hospital wastewater, domestic
sewage and dechlorinated tap water … at 20 degrees C. However,
at 4 degrees C, the SARS-CoV could persist for 14 days in
wastewater …’. In accordance with Liu (2003) that Sars-CoV
‘could be inactivated within a few minutes by 500–1000mg/L of
chlorine’ or ‘be killed with ultraviolet radiation or heating for
30 min’, Wang et al. (2005a: p. 176), based also on past studies
(Cyranoski and Abbott, 2003), concluded that ‘SARS-CoV … is
highly sensitive to conventional disinfectant,’ and hence ‘there is
little possibility for another outbreak caused by SARS-CoV from
environmental sources’. In terms of Sars-CoV-2, its presence has
been documented in hospital sewage lines (Wang et al., 2020) and
community waste water collection sites, setting the stage for the
virus to enter community waterways (Lodder and de Roda Husman
2020; Núñez-Delgado, 2020).

Water droplet transmission from faulty plumbing was implicated
in an outbreak of Sars-CoV-1 in an apartment building in
Hong Kong (McKinney et al., 2006; WHO, 2003). The cause was
identified as defects in the sewage system, which facilitated the
 [] on [21/01/22]. Copyright © ICE Publishing, all rights reserved.
transport of ‘virus-laden droplets’ through empty U-bends in
bathrooms, from where their ventilation system drew them into
other rooms (Gormley et al., 2020). The last authors asserted that
‘the potential for a substantial viral load within the wastewater
plumbing system (and therefore the main sewer system), in
combination with the potential for airborne transmission due to
aerosolisation of the virus, calls for wastewater plumbing systems
to be considered as a potential transmission pathway for COVID-
19. The interconnectedness of the wastewater plumbing network
can facilitate exposure to SARS-CoV-2 within, or even between,
buildings’ (Gormley et al., 2020: p. 1). Such aerosolisation and
droplets produced during toilette flushing has been seen as a
mechanism for the spreading of several types of enteric viruses
(Naddeo and Liu, 2020; Verani et al., 2014).

Investigations of related animal coronaviruses indicated that these
can persist in lake water and pasteurised sewage water, remaining
infectious for a period of days to weeks (Casanova et al., 2009).
Taken together, the available evidence suggests that the Sars-CoV-
2 virus may also appear in environmental water systems, which
may serve as reservoirs for human diseases.
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The USEPA (2020b) has stated that standard treatment and
disinfection processes at WWTPs are expected to be effective in
eliminating the virus from waste water. Utilities in several Europe
countries, such as the Czech Republic or Poland (IGWP, 2020),
have issued similar communiqués. In contrast, China has asked
WWTPs to increase the use of chlorine for disinfection in order to
ensure that Sars-CoV-2 will not be spread by way of waste water
(Taleb et al., 2020; Zambrano-Monserrate et al., 2020).

The 23 April 2020 interim guidance by WHO and the UN
Children’s Fund (WHO and Unicef, 2020: p. 2) on water and
waste water has reassured that ‘significant (99.9% removal) of
coronaviruses was observed in 2 days in primary sewage effluent
at 23°C, 2 weeks in pasteurised settled sewage at 25°C and 4
weeks in reagent grade water at 25°C. High temperature, high or
low pH, and sunlight all facilitate virus reduction’. The same
communiqué has opined that in ‘well-designed and well-managed
centralised wastewater treatment works, each stage of treatment
(as well as retention time and dilution) results in a further
reduction of the potential risk’ from the virus (WHO and Unicef,
2020: p. 2). WWTPs that are not optimised to remove viruses are
recommended to include a final disinfection.

The biosolid by-products of WWTP processes contain various
pathogenic microorganisms, bacteriophages and human viruses
(Pepper et al., 2006; Sharma et al., 2016). Some typical pathogens
that have been seen to transfer from biosolids to the geoenvironment
are bacteria, enteric viruses and helminths. Biosolids have been
classified into class A and class B depending on the desired type of
application and the corresponding level of treatment, with the
content of pathogens varying in these two classes (USEPA, 2003b).

The transfer of pathogens from biosolids into soil and water
systems has been a cause of concern. It is estimated that the
amount of pathogens in the biosolids from anaerobic digestion is
generally on the order of 103–104 plaque-forming units/g (Bitton
et al., 1984; Wong et al., 2010). The survival of these pathogens
in the environment depends on the physiological state of cells
(Pepper et al., 2006) and geoenvironmental factors, such as clay
and organic matter content, soil mineralogy, nature of pore fluid,
degree of saturation and temperature (Xagoraraki et al., 2014).
Adsorption of viruses onto soils depends on the pH of the
geoenvironment. Viruses in biosolids have been found to leach
significantly even after sequential extraction under laboratory
conditions, indicating their slow desorption from soil surfaces.
However, once leached into the geoenvironment, they tend to
migrate with minimal retention into the porous matrix, particularly
in the case of coarse-grained soils (Chetochine et al., 2006). The
relatively low degree of adsorption of viruses onto sands results in
their transport in the subsurface environment through groundwater
flow. Not only can this contaminate groundwater resources but it
also has the potential to pollute surface water bodies that are in
hydraulic communication with affected aquifers. Land application
of biosolids is also a potential aerosol-generating operation
(Brooks et al., 2005) that may favour the propensity of viruses to
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transmit through aerosols (Wigginton et al., 2015). Given the
nature of transmission of Sars-CoV-2 through droplets and its
stability in aerosols (van Doremalen et al., 2020), it is necessary
to re-examine the use of biosolids for land applications under the
current conditions.

Containment of the migration of Sars-CoV-2 from septic tanks,
waste water effluent disposal sites and landfills to the
geoenvironment is critical (Qin et al., 2020; Seetha et al., 2015). It
should be noted that the mobility of viruses varies under saturated
or unsaturated subsurface conditions and that their survival
depends on temperature, moisture content, viral adsorption onto
soils, the presence of antagonistic microorganisms, organic matter
content and so on (Gundy et al., 2008; Hurst et al., 1980; Qin
et al., 2020; Seetha et al., 2015). In this regard, the influences on
the migration of Sars-CoV-2 in soils and water should be studied
more extensively.

The xenobiotic paradigm in waste waters and the
environment
An analogy could be drawn between the spread of xenobiotics in
the geoenvironment and that of the Sars-CoV-2. Xenobiotics,
substances foreign to biotic systems, such as pharmaceuticals,
food additives, hydrocarbons and other man-made products, are
seen to be present in waste water effluents in ever-increasing
quantities. Current waste water discharge practices appear to have
contributed to the spread of these pollutants, and treatment
options are being developed to address them. With respect to the
likelihood of Sars-CoV-2 entering aquatic and geologic
environments, it would be helpful to review briefly the xenobiotic
history of how these contaminants, which remained undetected for
some time, were able to spread in the geoenvironment.

Municipal waste water contains a complex mixture of xenobiotic
organic compounds that are discharged into waste water from
households, hospitals, industries and so on (Lindblom et al., 2009).
Such emerging environmental pollutants include pharmaceutical
compounds (PhCs), which are extensively and increasingly being
used in human and veterinary medicine (Fent et al., 2006). Around
80–100 pharmaceuticals and their metabolites have been measured
in both effluent and surface waters in numerous countries (Fent
et al., 2006; Kot-Wasik et al., 2007). Pharmaceuticals have similar
physiochemical characteristics as harmful xenobiotics – for
example, they can pass through membranes, are relatively persistent
and may also be mobile in the environment (Kot-Wasik et al.,
2007; Quinn et al., 2008). When released in the environment, they
may impose toxicity on all levels of the biological hierarchy – that
is, cells, organs, organisms, population, ecosystems or the
ecosphere. In addition to toxic effects, certain classes of PhCs, such
as antibiotics, may cause long-term and irreversible changes to
microorganism genomes, even at low concentrations, making them
resistant to antibiotic treatment (Klavarioti et al., 2009).

Most municipal WWTPs include preliminary, primary and
secondary treatment processes with the final effluent being
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discharged into surface water bodies and often indirectly reused
for irrigation (Michael et al., 2013). Verlicchi et al. (2012)
showed that many PhCs are present in raw sewage influents at
concentrations between 10−3 and 102 mg/l and that common
WWTPs are not able to remove them efficiently. The effect of
biological treatments, membrane filtration, activated carbon
adsorption, AOPs and disinfection on different classes of
antibiotics has been investigated over recent years (e.g. Michael
et al., 2013).

In retrospect, it has been realised that the spread of PhCs has been
aided by the release of treated waste water in the aquatic
environment and by the use of ‘grey water’ for irrigation. In
addition, the land applications of sludge that is produced by
WWTPs have also contaminated soils with PhCs. When
considering the present pandemic situation, careful thought must
be given to the vectors by which the Sars-CoV-2 could spread
through liquid and solid waste disposal practices, and scientists
and engineers should re-examine the relevant civil infrastructure
in light of the ‘new normal’ posed by the Covid-19 pandemic. As
final thoughts, sewage surveillance pilot programmes could be
implemented to monitor Sars-CoV-2 circulation at different
treatment stages in WWTPs with changing levels of organic
matter and suspended solids (at ambient temperatures), along with
sampling of the treated waste water that is released into water
bodies in order to quantify the potential presence of the virus.

Conclusions and future research directions
The present paper highlights a multidisciplinary perspective on the
potential of water and waste water to operate as transmission
routes for the Sars-CoV-2 virus, which may further become the
origin of geoenvironmental degradation. Migration of viruses,
pathogens and contaminants in water, waste water and soil under
various environmental conditions (viz. temperature, humidity and
pH) is crucial to understand their fate and threat posed to surface
and coastal waters and groundwater, as well as the geoenvironment
in totality. Other realities of the Covid-19 pandemic are increased
demand on water supply and waste-water-management systems
across the world owing to more frequent personal hygiene
measures. In this context, the following research directions should
be explored in order to enhance the management of water and
waste water systems under conditions of public health crises.

■ Development of low-cost virus detection systems is essential,
along with urgently needed water- and waste-water-based
epidemiology systems for controlling the spread of
waterborne pandemics.

■ Studies are needed on the influence of pollutant load and
viruses on the self-cleaning mechanisms and eutrophication of
surface water bodies.

■ Environmental scientists/engineers should work together with
scientists in other disciplines to understand the spread of
infectious viruses and pharmaceuticals through biosolids (in
many occasions used as soil fertilisers) and by the use of grey
water and untreated water for irrigation.
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■ The effectiveness of willow evapotranspiration and
constructed wetland methods for in situ treatment of domestic
waste water contaminated with disinfectants and pathogens
should be studied for their feasibility in rural localities.

■ Utilisation of fly-ash-based zeolites in the treatment of water
and waste water for removal of contaminants (viz. heavy
metals, pharmaceuticals and pathogens) should be explored.

■ The fate and spread of xenobiotic substances present in waste-
water-treatment systems should be modelled to estimate their
toxicity to the organisms, cells and plants species present in
waste-water-treatment systems.

■ The migration and leachability of pathogens and viruses into
the geoenvironment from biosolids stored at temporary
storage facilities require special attention.

■ Metagenomic sequencing operations should be considered for
water and waste water transmission and treatment systems in
order to avoid degradation of the geoenvironment.

■ Studies are needed to assess the potential for THM formation
in landfill leachate and the retention and diffusion properties
of THMs through landfill clay liners.

■ Finally, given the injection of disinfectants into the storm
drainage systems of cities practicing public space disinfection
during the Covid-19 pandemic, the effect on the ecosystems
of rivers, streams and coastal waters where these systems
discharge must be studied.

In conclusion, the time has come, after 150 years of successful
measures for the treatment of water and waste water, which have
vastly improved the health of the population, to re-evaluate the
operation of the WTP and WWTP systems in view of the recent
pandemic. Research efforts on the aforementioned areas can
potentially help in augmenting the role of WTPs and WWTPs
during the Covid-19 pandemic and to address future health and
environmental challenges.
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