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Abstract. In this paper, we explore how to effectively suppress the dif-
fusion of (mis)information via blocking/removing the temporal contacts
between selected node pairs. Information diffusion can be modelled as,
e.g., an SI (Susceptible-Infected) spreading process, on a temporal social
network: an infected (information possessing) node spreads the informa-
tion to a susceptible node whenever a contact happens between the two
nodes. Specifically, the link (node pair) blocking intervention is intro-
duced for a given period and for a given number of links, limited by the
intervention cost. We address the question: which links should be blocked
in order to minimize the average prevalence over time? We propose a class
of link properties (centrality metrics) based on the information diffusion
backbone [19], which characterizes the contacts that actually appear in
diffusion trajectories. Centrality metrics of the integrated static network
have also been considered. For each centrality metric, links with the
highest values are blocked for the given period. Empirical results on
eight temporal network datasets show that the diffusion backbone based
centrality methods outperform the other metrics whereas the between-
ness of the static network, performs reasonably well especially when the
prevalence grows slowly over time.

Keywords: Link blocking - Link centrality * Information diffusion
backbone + Temporal network + SI spreading

1 Introduction

The development of sensor technology and electronic communication service
provide us access to rich human interaction data, including proximity data
like human face-to-face contacting, electronic communication data like email
exchange, message exchange, phone calls [6,14,18]. The recorded human inter-
actions can be represented as temporal networks, in which each interaction is
represented as a contact at a given time step between two nodes. The avail-
ability of such social temporal networks inspires us to explore further how to
suppress the diffusion of (mis)information that unfolds on them? One possible
intervention is to block the links (i.e., remove contacts between node pairs), but
© Springer Nature Switzerland AG 2020
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only for a given period and given node pairs limited by intervention cost. In this
work, we address the question: which links should we block for a given period
in order to minimize the prevalence averaged over time, i.e., to prevent or delay
the diffusion on temporal networks?

Progress has been made recently in understanding, e.g., nodes with what
temporal topological properties (temporal centrality metrics) should be selected
as the seed node that starts the information diffusion in order to maximize the
final prevalence [3,5,8,13,15,16], links with what temporal topological proper-
ties appear more frequently in a diffusion trajectory [19]. These works explored
in general the relation between node’s or link’s topological properties and its role
in a dynamic process on a temporal network. Our question which links should be
blocked to suppress information diffusion will actually reveal the role of a link
within a given period in a diffusion process in relation to the link’s temporal
topological properties.

As a starting point, we consider the Susceptible-Infected (SI) model as the
information diffusion process. A seed node possesses the information (is infected)
at time ¢ = 0 whereas all the other nodes are susceptible. An infected node
spreads the information to a susceptible node whenever a contact happens
between the two nodes. Given a temporal network within the observation time
window [0, 7], we would like to choose a given number of links within a period
[ts,te] to block in order to suppress the diffusion. We propose a comprehensive
set of link centrality metrics that characterize diverse temporal topological prop-
erties. Each centrality metric is used to rank the links and we remove the links
with the highest centrality values for the period [ts,t.]. One group of centrality
metrics is based on the information diffusion backbone [19], which character-
izes how the contacts appear in a diffusion trajectory thus contribute to the
diffusion process. Centrality metrics of the integrated static network, where two
nodes are connected if they have at least one contact, are also considered. We
propose as well the temporal link gravity, generalized from the static node grav-
ity model [9]. We conduct the SI spreading on the original temporal network as
well as the temporal network after link blocking. Their difference in prevalence
accumulated over time is used to evaluate the performance of the link block-
ing strategies/metrics. Our experiments on eight real-world temporal networks
show that the diffusion backbone based metrics and the betweenness of the static
integrated networks evidently outperform the rest. The backbone based metrics
(betweenness of static network) perform(s) better when the prevalence increases
fast (slowly) over time. This observation remains universal for diverse choices of
the blocking period [ts, t.] and number of links to block. Our finding points out
that both temporal and static centrality metrics, with different computational
complexities, are crucial in identifying links’ role in a dynamic process.

The rest of the paper is organized as follows. We propose the methodology
in Sect.2. In Sect. 2.1, the representation of a temporal network is introduced.
In Sect. 2.2, the construction of diffusion backbone is illustrated. Afterwards,
we propose the link centrality metrics in Sect. 2.3. In Sect. 2.4, the link blocking
procedure and the performance evaluation method are given. We further describe
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temporal empirical networks that will be used in Sect. 3. The results of the link
blocking strategies on the temporal empirical networks are analyzed in Sect. 4.
We conclude our paper in Sect. 5.

2 Methods

2.1 Representation of Temporal Networks

A temporal network within a given time window [0, 7] is represented as G =
(N, L), where N denotes the node set and the number of nodes is N = |N].
The contact set £ = {I(j,k,t),t € [0,T],7,k € N} contains the element (3, k, t)
representing that a contact between node j and k occurs at time step t. The
integrated weighted network of G is denoted by Gy = (N, Lw). The weight w;y,
of link {(j, k) counts the number of contacts between node j and node k.

2.2 Information Diffusion Backbone

The information diffusion backbone was proposed to characterize how node pairs
appear in a diffusion trajectory thus contribute to the actual diffusion process
[19]. To illustrate our method, we construct the backbone for the ST model with
infection probability 8 = 1, which means that an infected node infects a suscep-
tible node with probability § = 1 whenever the two nodes have a contact. The
backbone can be also constructed for the SI model with any infection probability
B8 €[0,1].

We first record the spreading tree 7; of each node i by setting i as the seed of
the SI spreading process starting at ¢t = 0. The spreading tree 7; is the union of

the contacts through which the information propagates. The diffusion backbone
N
G p is defined as the union of all the spreading trees, i.e., Gg = (N, L) = U 7.

=1
We use NV, Lp to represent the node set and the link set respectively. Eaclh link
1(4,k) in Lp is associated with a weight ijk, counting the number of contacts
between j and k, that appear in diffusion trees/trajectories initiated from every
node. An example of how we construct the diffusion backbone Gp is given in
Fig. 1(a—c).

2.3 Link Centrality Metrics

We first propose three backbone based link centrality metrics:

e Backbone Weight. The backbone weight wﬁc of a link (4, k) counts how many
times the link or its contacts appear in spreading trees (trajectories) initialized
from every node.

o Time-confined Backbone Weight [ts,t.]. Furthermore, we define the time-
confined information diffusion backbone G+, which generalizes our previous
backbone definition. The backbone G+ confined within a time window [ts, t.]
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Fig.1. (a) A temporal network G with N = 5 nodes and T' = 8 time steps. (b)
Spreading trees rooted at every seed node. The time step on each link denotes the time
of the contact through which information diffuses. (c) The diffusion backbone Gz. (d)
Diffusion backbone Gp= confined within t; = 2,t. = 5. When we consider the links
that only appear in a time window [ts, te] = [2, 5], the value on the link shows the link
weight in Gpg=.

is the union of all the spreading trees but only of the contacts that occur
within [ts,t.]. Hence, two nodes in G~ are connected if at least one contact
between them within [¢,.] appears in a diffusion tree rooted at any node.
The weight ij,: of link I(j,k) in Gp~ equals to the number of times that
contact(s) between j and k within [ts,t.] that appear in the spreading trees
rooted at every node. The link weight in G g« characterizes the frequency that
a link, within [ts, t.], contributes to the information diffusion. An example of
the time-confined backbone construction is given in Fig.1(d), where t5; =
2,te = 5. Take link [(2,4) as an example. It appears in the spreading trees
twice, both at time step ¢;, which is beyond range [ts = 2, ¢, = 5]. Therefore,
wH = 0. Link 1(2,3) appears at time step tg, t3,t3, 3,3 in all the spreading
trees, only the time step tg is out of range [2, 5]. Hence, wd} = 4.

e Backbone Betweenness. The backbone betweenness is defined to measure the
link influence in disseminating global information. Given a spreading tree 7,
the number of descendant nodes of link (34, k) is denoted as B;k. We define
the backbone betweenness By, of link [(4, k) as the average number of descen-
dant nodes over all the spreading trees, i.e., Bjr = % > ;cn Bl
We consider as well the following centrality metrics derived from the inte-
grated weighted network. Only the links in the integrated network deserves
blocking. All the following metrics are zero for a node pair that they are not
connected in the integrated network.

e Degree Product of a link I(j,k) is the product of the degrees of its two end
nodes in G, i.e., d; - dj.
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e Strength Product. The node strength of a node j in Gy is defined as s; =
ZkeFj wjk, where I'; is the neighbor set of node j. Hence, the strength of
a node equals to the total weight of all the links incident to this node. We
define strength product of a link I(j, k) as s; - sg.

e Static Betweenness. The static betweenness centrality for a link is the number
of shortest paths between all node pairs that pass through the link. To com-
pute the shortest path, we define the distance of each link in the integrated
network Gyy inversely proportional to its link weight in Gyy. This choice
follows the assumption that links with a higher weight in Gy can spread
information faster [12].

o Link Weight. The link weight wj;, of a link I(j, k) in Gy tells the total number
of contacts between node j and k in the temporal network G within the
observation window [0, T1.

o Time-confined Link Weight [ts, t.] refers to the number of contacts between
two ending nodes that occur in [tg, t.].

e Temporal Link Gravity. The link gravity between node j and k has been
defined by regarding the node degree as the mass, the distance H;; of the
shortest path on static network Gy between j and k as the distance. The
static gravity of node j can be further defined as ), oy %. The static node
gravity has been used to select the seed node of an in%ormation diffusion
process in order to maximize the prevalence [9], motivated by the fact that
it contains both the neighborhood and the path information of a node. We
generalize the gravity definition to temporal networks. The temporal link
gravity of I(j,k) is defined as %(ng: + QJg’“), where Qj is the number of
links of the shortest path from j to]k: in all Jthe directed spreading trees (see
Fig. 1(b)). Specifically, the shortest directed path from j to k is computed in
each spreading tree rooted at one seed node. We consider the shortest among
these N shortest directed paths and its length (number of links) is Q.

2.4 Link Blocking and Evaluation

We illustrate the link blocking procedure and the evaluation method to measure
the effectiveness of link blocking strategies. Given a temporal network, we specify
the time window to block links as [ts, t.]. For each time window [ts, t.], we count
the number of node pairs |Ljy, (ts,te)| that have at least one contact within
[ts,te] and block 5%,10%,20%,40%, 60%, 80% and 100% of |Liy (ts,te)| links
respectively using each centrality metric. The number of links to be blocked
is further expressed as the fraction f of the number of links in the integrated
network. For each centrality metric, we block the given fraction f of links that
have the highest values for the given period [ts, te], i.e., remove all the contacts
within [ts, t.] associated with the selected links.

We perform the SI spreading model by setting each node as the seed node
on the original temporal network as well as the temporal network after the link
blocking. The average prevalence is the average over each possible seed node. The
average prevalence of the SI diffusion at any time ¢ when the selected fraction
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f of links are blocked within [t,,¢.] and when no links are blocked is denoted
as ps(t) and po(t) respectively, where t € [0, 1,...,T]. The effectiveness of each
centrality metric is evaluated by

_ S (po(t) = ps (1))
ZtT:1 po(t)

which corresponds to the area below the original prevalence p,(t) and above the
prevalence curve p(t) with link blocking normalized by the area under p,(t)
(shown in Fig. 2(b)). A larger pp(f) implies a more effective link block strategy
in suppressing the SI spreading.

pp(f)

(1)

3 Data Description

In this paper, we use eight temporal network datasets to investigate the link
blocking problem in temporal networks. The dataset can be classified into two
categories according to the contact type, i.e., proximity (Haggle [1], HighSchool
2012(HS2012) [4], HighSchool2013(HS2013) [10], Reality Mining (RM) [2],
Hypertext 2009 (HT2009) [7], Primary School (PS) [17] and Infectious [7]) and
electronic communication (Manufacturing Email (M E) [11]). The detailed topo-
logical features of these datasets are shown in Table 1, including the number of
nodes, time steps, contacts, the number of links, link density, average degree and
average link weight in Gy .

On each temporal network, we perform the SI spreading process starting at
every node as the seed. The average prevalence p over time for each dataset is
shown in Fig.2(a), where the time step is normalized by the time span T of
the observation time window. The spreading speed, i.e., how fast the prevalence
grows over time, is quite different across networks. Two networks (Haggle and
infectious) show slow and relative linear increase in prevalence over times, due
to the low link density in these two networks (Table 1). However, the prevalence
in the other networks, increases dramatically at the early stage of the spreading
process and converges to about 100%.

4 Empirical Results

In this section, we evaluate the effectiveness of using aforementioned centrality
metrics to select the links to be blocked within [¢s,t.]. We consider diverse time
windows [ts,t.] as listed in Table 2. Intervention is possibly introduced at dif-
ferent diffusion phases. Hence, ts € {Tigor, To0%15 T30%1, Ta0%1> I50%1 }» Where
Tio%7 is the time when the average prevalence without blocking reaches p = 10%
(see Fig.2(a)). The duration of each time window is set as the duration for the
average prevalence to increase 10% just before t,. If t5 = Togg 7, the duration of
the time window is t. — ts = Thoor — Thowr- If ts = Thoyr, the duration of the
time window is t. — ts = Ti9o1 — Tos = T1o%r- The number of links to block
has also been chosen systematically. We take [ts = Tigur, te = 2T10%1] as an
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Table 1. Basic properties of the empirical networks. The number of nodes (N), the
original length of the observation time window (7 in number of steps), the total number
of contacts (|£|) and the number of links (|£w|), link density, average node degree ({d))
and average link weight (w) in Gw are shown.

Network |N |T |£] |Cw| | Link density | (d) | (w)

Haggle | 274 15,662 28,244 | 2,124 | 0.0568 15.50 | 13.30
HS2012 180 | 11,273 45,047 | 2,220/ 0.1378 24.67| 20.29
HS2013 |327| 7,375 188,508 | 5,818 | 0.1092 35.58 | 32.40
HT2009 |113| 5,246 20,818 |2,196 | 0.3470 38.87| 9.48
Infectious | 410 | 1,392 17,298 |2,765 | 0.0330 1349 6.26
ME 167 | 57,791 82,876 | 3,250 | 0.2345 38.92 | 25.50
PS 242 3,100 125,773 | 8,317 | 0.2852 68.74| 15.12
RM 96 | 33,452 | 1,086,404 |2,539  0.5568 52.90 | 427.89

= 06 ' ' ' ' ' ' =

(b)

Josft .

/ 04t 1

03f ]

e Haggle -
—HS2012
HS2013 02
e HT2009 |
infectious
ME 0.1
P
c—RM b
1 1 1 1 1 1 OO C 1

L L L L L L
0.0 0.2 04 0.6 0.8 1.0 0 200 400 600 800 1000 1200 1400
1) t

Fig. 2. (a) Evolution of the average prevalence p of the SI model (8 = 1) for the
eight empirical datasets. (b) An example of the area difference between the original
spreading curve (p,) and the curve (py) after blocking f fraction of links.

example to illustrate our findings. Figure 3 shows the effectiveness of each cen-
trality metric as a function of f, which is the number of links blocked normalized
by the number of links in the integrated network. The random selection of links
from those that have at least one contact within [ts, t.] is used as a baseline, in
which each point is the averaged over 100 realizations.

We find that four link centrality metrics always outperform the random selec-
tion: static betweenness, backbone weight, time-confined backbone weight [¢s, t.]
and backbone betweenness. In Haggle and infectious, the best performance comes
from static betweenness, whereas the time-confined backbone weight [t,¢.]
outperforms the other metrics in the other six networks. Figure2 shows that
the prevalence grows slowly over time in Haggle and infectious. Hence, the static
betweenness seems a suitable link blocking strategy for networks with a slow
spreading speed. However, for networks where information propagates fast, the
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Table 2. The time window [ts,te] we choose for link blocking based on the average
prevalence p when 8 = 1. For instance, T}gy%; represents the time when the prevalence
reaches p = 0.1.

Network | [Tio%r1,2T10%1] [T20%15 2T20%1 — Ti0%1] | [T30%15 2T30%1 — T20%1]
Haggle [3293, 6586] [8416, 13539] [9523, 10630]
HS2012 [403, 806] [675, 947] [925, 1175]
HS2013 [50, 100] [113, 176] [195, 277]
HT2009 [332, 664] [377, 422] [439, 501]
Infectious | [410, 820] [553, 696] [751, 949]
ME [168, 336] [285, 402] [461, 637]
PS [136, 272] [276, 416] [2 298]
RM [5, 10] [34, 63] 11 88|
Network | [Taonr, 2Ta0%r — Ta0%1) | [T50%1, 2T50%1 — Tao%1)
Haggle [12440, 15357] [12668, 12896]
HS2012 [1043, 1161] [1109, 1175]
HS2013 [236, 277] [369, 502]
HT2009 [568, 697] [790, 1012]
Infectious | [955, 1159] [1062, 1169]
ME [731, 1001] [1387, 2043]
PS [323, 359] [347, 371]
RM [133, 155] [257, 381]
—#— Random —@— Degree Product Strength Product —— Static Betweenness
Link Weight —<— Link Weight [t, t ] —»— Backbone Weight
—@— Backbone Weight [t,, t ] —#—Backbone Betweenness —@— Temporal Link Gravity
0.15
0.020 0.05
010 0.015 0.04
' 0.003
0.03
0.010
0.002
0.05 0.02
0.005 0.001 0.01
o 000 (@)1 0.000 0.000 (© 0.00}
\-Q/ 0.0 0.2 0.4 0.00 0.03 0.06 0.09 0.00 0.01 0.02 0.03 0.04 0.00 005 0710 0.15
Q
06 0.0009 oo
: 0.006
0.5
0.010
0.4 0.0006 0.004
0.3
0.2 0.0003 0.00 0.002
0.1
0.0 0.0000 0.000 (9)] 0.000 (h)
0.0 0.1 02 03 04 05 0.00 0.01 0.02 0.03 0.04 000 005 010 015  0.000 0.005 0.010 0.015

f

Fig. 3. The effectiveness pp(f) of each centrality metric in selecting the links to block
within time window [T19%,2T10%:]- Each point on the curve corresponds to block
5%, 10%, 20%, 40%, 60%, 80% and 100% of | Ly (ts = Ti0%r, 2T10%r )| links, respectively.
The x-axis f is obtained by the number of links blocked normalized by the number of

links in the int

egrated network.
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Fig. 4. Average link blocking performance for each centrality metric over different
number of blocked links, within different time windows and in different networks. The
x axis shows the time windows. We only show the starting time ¢, of each time window
for simplicity and the ending time of each window can be found in Table 2.

time-confined backbone weight [ts,t.] is a good indicator to select the links to
block. Furthermore, we find that time-confined link weight [ts,t.] outperforms
link weight and time-confined backbone weight [ts,t.] outperforms the back-
bone weight. This implies that considering the link temporal topological features
within the blocking time window is crucial for the link selection.

For a given time window [tg, t.], we define the average performance of a cen-
trality metric as the area under pp(f) over the whole range f. The average per-
formance is further normalized by the maximal average performance among all
the centrality metrics for the given [ts, t.]. This average performance over diverse
numbers of links to be blocked allows us to evaluate whether the performance of
these centrality metrics is stable when the time window varies. Figure 4 verifies
that our findings within [t; = Tio%1, te = 2T10%] from Fig. 3 can be generalized
to the other time windows.
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5 Conclusion

In this paper, we investigate how different link blocking strategies could suppress
the information diffusion process on temporal networks. The spreading process
is modeled by the SI model with infection probability G = 1. We propose diverse
classes of link centrality metrics to capture different link temporal topological
properties, including the information diffusion backbone based metrics and the
static link centrality metrics. According to each metric, we select a given number
of links that have the highest centrality value and block them for the given period
[ts,te]. The corresponding effect of such link blocking is evaluated via the extent
that the prevalence is suppressed over time.

The empirical results from eight temporal network datasets show that four
metrics outperform the random link selection, that is, backbone weight, back-
bone weight [ts, t.], backbone betweenness and static betweenness. An interest-
ing finding is that the backbone based metrics, especially time-confined back-
bone weight [ts, t.], perform well in networks where information gets prevalent
fast. However, the static betweenness outperforms in networks where information
propagates slowly. These observations hold for different choices of time window
and the number of links to be blocked. Our findings point out the importance
of both temporal and static centrality metrics in determining links’ role in a dif-
fusion process. Moreover, the time-confined metrics that explicitly explore the
property /role of the contacts that occur within the time window in the global
diffusion process seems promising in identifying the links to block.

In this work, we select links based on the centrality metrics that are derived
from the temporal network information over the whole observation window [0, T].
Our study unravels actually the relation between links’ or contacts’ temporal
topological properties and their role in a diffusion process. A more challenging
question is how to identify the links to block based on the temporal network
information observed so far within [0, ¢].

Acknowledgements. This work has been partially supported by the China Scholar-
ship Council (CSC).
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