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Abstract

ĉe particle ėlter is a Bayesian estimation technique based on Monte
Carlo simulations. ĉe non-parametric nature of particle ėlters makes
them ideal for non-linear non-Gaussian systems. ĉis greater ėltering
accuracy, however, comes at the price of increased computational com-
plexity which limits their practical use for real-time applications.

ĉis thesis presents an aĨempt to enable real-timeparticle ėltering for
complex estimation problems using modern GPU hardware. We pro-
pose aGPU-based generic particle ėltering framework which can be ap-
plied to various estimation problems. We implement a real-time esti-
mation application using this particle ėltering framework and measure
the estimation error with different ėlter parameters. Furthermore, we
present an in-depth performance analysis of our GPU implementation
followed by a number of optimisations in order to increase implemen-
tation efficiency.
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Introduction 1
Many dynamical systems operate under various degrees of uncertainty. ĉis uncertainty could stem from an
imperfect understandingof theunderlyingdynamics, noisy observations and/or actuationornumerousother
factors. Bayesian estimation, a probabilistic approach, captures this uncertainty in the form of a probability
distribution function for the state of the dynamical system.

Tractable closed-form solutions for the Bayes ėlter exist only for linear Gaussian systems in the form of the
Kalman ėlter. Non-linear Gaussian systems can still use variants of this ėlter (e.g. extended Kalman ėlter, un-
scented Kalman ėlter) depending on the amount of non-linearity. ĉe particle ėlter, based on Monte Carlo
simulations, is a non-parametric ėlter which can be used for state estimation in non-linear non-Gaussian sys-
tems. Although much more powerful than extended/unscented Kalman ėlters, particle ėlters need many
particles, and thus computational resources, in order to produce an accurate result for complex estimation
problems. ĉese high computational demands limit their practical use for real-time applications.

In recent years, Graphics Processing Units (GPUs) have turned into massive parallel processors with high
computational capacity. With the introduction of programmable shaders in the beginning of the last decade,
followed by the move towards a uniėed shading architecture and the arrival of general purpose programming
languages targetingGPUs in the laĨer half of the decade, GPUs have been increasingly used inmany different
ėelds beyond computer graphics.

In contrast to many other multi-core platforms, GPUs are speciėcally designed for certain workloads typ-
ically encountered in computer graphics rendering. ĉese workloads are highly parallel, with the overall
throughput being favoured over the latency of individual tasks. Memory access latencies are hidden through
massive threading and rapid context switching. ĉerefore, the use of GPUs for a particular application de-
pends on the presence of a signiėcant amount of (ėne grained) parallelism which might require algorithm
changes or even a complete redesign.

ĉis thesis presents a comprehensive study on the issues regarding the design and implementation of par-
ticle ėlters for modern GPUs, the required algorithmic changes and its implications for the ėlter accuracy. A
GPU-based generic particle ėltering framework is proposedwhich can be applied to various estimation prob-
lems. We will use two real-life applications in order to examine both the generic as well as the model-speciėc
parts of the implementation. Furthermore, we determine the effects of the various ėlter parameters on the
estimation quality and analyse the performance of implementation on two GPU platforms.

ǉ.ǉ Objectives

ĉe central research questions addressed in this thesis can be formulated as:

Canparticle ėlters be efficiently implementedonmodernGPUs for complex real-time estimation
problems? What, if any, modiėcations are needed to the particle ėlter algorithm for parallel
execution? How do these modiėcations inĚuence the ėlter behaviour?

ǉ



In this context, efficiency refers to the utilisation of the available hardware resources (e.g.memory through-
put). In order to answer these questions, we (i) study the particle ėlter algorithm to identify parallelism
opportunities and limitations, (ii) explore the modern GPU architecture and its programming model, and
(iii) use a real-life estimation problem to measure the ėlter accuracy and implementation efficiency.

ǉ.Ǌ Contributions

We identify the following major contributions for the work presented in this thesis:

• Basedon[SimoneĨo and Keviczky, 2009SimoneĨo and Keviczky, 2009],wepresent a fully distributedparticle ėltering scheme. With-
out making any particular assumptions on the underlying hardware architecture, this scheme divides
the “classical” particle ėlter into a network of smaller particle ėlters running concurrently. ĉese par-
ticle ėlters exchange only a few representative particles from their respective particle population.

• Following this distributed scheme, we introduce a GPU-based generic particle ėltering framework
which can be used to implement particle ėlters given arbitrary, user-speciėed models.

• We conduct a performance analysis of our particle ėlter implementation on two GPU platforms.

– In order to beĨer understand and model certain GPU performance characteristics, we extend
an existing microbenchmark suite. ĉis allows us to reason beĨer about the performance of our
implementation.

– Wecalculate the effective utilisation of the hardware resources in terms of instruction throughput
as well as memory bandwidth.

– We identify the performance boĨlenecks of the various steps of the algorithm.

– We analyse the scalability of the presented implementation in two directions: (i) increasing ėlter
size, and (ii) increasing state dimension.

• With a particle ėlter implementation for a real-life estimation problem, we present an in-depth analysis
of the ėlter estimation quality under varying ėlter parameters.

ǉ.ǋ Outline

ĉe remainder of this thesis is organised as follows. We begin in Chapter ǊChapter Ǌ with an introduction of the
Bayesian estimation framework, with an emphasis on particle ėlters. Chapter ǋChapter ǋ presents our approach to
distributing the particle ėlter over many computation units based on an earlier work. In Chapter ǌChapter ǌ, we take
a look at the modern GPU architecture and review its programming model. We discuss two real-life esti-
mation problems in Chapter ǍChapter Ǎ which can beneėt from the accuracy of particle ėlters. ĉe actual GPU im-
plementation of the generic particle ėltering framework as well as the model-speciėc code are discussed in
Chapter ǎChapter ǎ. Chapter ǏChapter Ǐ presents an in-depth performance analysis of the ėlter implementation on two GPU
platforms followed by a number of optimisation steps. We evaluate the ėlter accuracy under varying parame-
ters in Chapter ǐChapter ǐ using one of the applications discussed earlier. Finally, Chapter ǑChapter Ǒ concludes this thesis with
a summary of the presented work and a look into possible future research directions.

Ǌ ȕ.ȗ Outline
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Background





Recursive Bayesian Estimation 2
ĉeproblemof estimating the state of a dynamical system throughnoisymeasurements hasmany applications
in science. Many of the quantities which constitute the state of a system cannot be observed directly, but need
to be inferred from noisy sensor data. Bayesian estimation is based on the assumption that this uncertainty
should be represented by probabilities [West and Harrison, 1997West and Harrison, 1997]. A probabilistic state estimation computes
a Probability Density Function (PDF) for the state over the range of possible values.

First, in Section Ǌ.ǉSection Ǌ.ǉ, we will describe the generic Bayesian ėltering framework. Next we will discuss the
Kalman ėlter in Section Ǌ.ǊSection Ǌ.Ǌ, and the Particle ėlter in Section Ǌ.ǋSection Ǌ.ǋ. ĉe material for this chapter is based on
[ĉrun et al., 2005ĉrun et al., 2005] and [Arulampalam et al., 2002Arulampalam et al., 2002].

Ǌ.ǉ Bayesian Filtering

Suppose 𝑥 is a quantity which we wish to infer from the measurement 𝑧. ĉe probability distribution 𝑝(𝑥)
represents all the knowledge we have regarding this quantity prior to the actual measurement. ĉis distri-
bution is therefore called the prior probability distribution. ĉe conditional probability 𝑝(𝑥 | 𝑧), called the
posterior probability distribution, represents our knowledge of 𝑥 having incorporated the measurement data.
ĉis distribution, however, is usually unknown in advance as a result of the complex dynamics involved in
most systems. Bayes rule allows us to calculate a conditional probability based on its inverse:

𝑝(𝑎 | 𝑏) = 𝑝(𝑏 | 𝑎) 𝑝(𝑎)
𝑝(𝑏)

ĉe inverse probability 𝑝(𝑧 | 𝑥) directly relates to the measurement characteristics.
In order to discuss how the Bayes ėlter calculates the state estimate, we ėrst need to model the dynamics

of the system. Let 𝑥𝑡 denote the state at time 𝑡, and 𝑧𝑡 denote the set of all measurements acquired at time 𝑡.
ĉe evolution of the state is governed by the following conditional probabilistic distribution:

𝑝(𝑥𝑡 | 𝑥𝑡−1, … , 𝑥0, 𝑧𝑡−1, … , 𝑧1)

Assuming the systemexhibitsMarkovproperties , the state𝑥𝑡 dependsonlyon theprevious state𝑥𝑡−1. ĉere-
fore, we can rewrite the above distribution simply as:

𝑝(𝑥𝑡 | 𝑥𝑡−1)

ĉeaboveprobability is also referred to as the state transition probability. ĉemeasurements of the state follow
the probability distribution 𝑝(𝑧𝑡 | 𝑥𝑡) which is called themeasurement probability.

ĉe Bayes ėlter calculates the estimate of the state recursively in two steps:

We maintain this assumption throughout this chapter.

Ǎ



Predict In this step, the state estimate from the previous step is used to predict the current state. ĉis esti-
mate is known as the a priori estimate, as it does not incorporate any measurements from the current
timestep.

𝑝(𝑥𝑡) = ൒ 𝑝(𝑥𝑡 | 𝑥𝑡−1) 𝑝(𝑥𝑡−1 | 𝑧𝑡−1) 𝑑𝑥𝑡−1

Update ĉe state estimate from the previous step is updated according to the actual measurements done on
the system. ĉerefore, this estimate is referred to as the a posteriori estimate.

𝑝(𝑥𝑡 | 𝑧𝑡) = 𝜂 𝑝(𝑧𝑡 | 𝑥𝑡) 𝑝(𝑥𝑡)

In order to implement this ėlter, three probability distributions need to be known in advance:

i. Initial state 𝑝(𝑥0),

ii. Measurement probability 𝑝(𝑧𝑡 | 𝑥𝑡),

iii. State transition probability 𝑝(𝑥𝑡 | 𝑥𝑡−1).

ĉeBayes ėlter, in its basic form, is inapplicable for complex estimation problems. ĉemain problem is that
the prediction step requires us to be able to integrate over the state transition probability distribution in closed
form which is only possible in a restricted number of problems. In the following sections, we will examine
two derived ėlters which are more powerful and can be applied to a wider range of estimation problems.

Ǌ.Ǌ Kalman Filter

ĉe Kalman ėlter is a popular Bayesian ėltering technique, ėrst presented in the late ’50s and early ’60s, in-
dependently, by Swerling [Swerling, 1958Swerling, 1958] and Kalman [Kalman, 1960Kalman, 1960]. ĉis ėlter assumes the following
properties hold for the system:

- ĉe state variable 𝑥𝑡 takes values in a continuous space;

- ĉe state transition probability, denoted by 𝑝(𝑥𝑡 | 𝑥𝑡−1), as well as the measurement probability, de-
noted by 𝑝(𝑧𝑡 | 𝑥𝑡), are linear functions withGaussian noise;

- ĉe initial state is normally distributed.

ĉe aforementioned properties ensure that the posterior probability remains a Gaussian. From the above we
can write the state transition as:

𝑥𝑡 = 𝐴𝑡𝑥𝑡−1 + 𝜀𝑡

where 𝐴𝑡 is a squarematrix of the same dimension as the state vector 𝑥𝑡 and 𝜀𝑡 denotes aGaussian vector with
mean 0 and variance 𝑅𝑡 representing the uncertainty in the state transition. ĉe state transition probability
can be wriĨen as:

𝑝(𝑥𝑡|𝑥𝑡−1) = 𝑑𝑒𝑡(2𝜋𝑅𝑡)−1/2𝑒−1/2(𝑥𝑡−𝐴𝑡𝑥𝑡)𝑇 𝑅−1
𝑡 (𝑥𝑡−𝐴𝑡𝑥𝑡)

ĉe measurement probability can also be wriĨen as:

𝑧𝑡 = 𝐵𝑡𝑥𝑡 + 𝛿𝑡

ǎ Ȗ.Ȗ Kalman Filter



where 𝐵𝑡 is a square matrix of the same dimension as the measurement vector 𝑧𝑡 and 𝛿𝑡 denotes a Gaussian
vector with mean 0 and variance 𝑄𝑡 representing the uncertainty in the measurements. ĉe measurement
probability can, therefore, be wriĨen as:

𝑝(𝑧𝑡 | 𝑥𝑡) = 𝑑𝑒𝑡(2𝜋𝑄𝑡)−1/2𝑒−1/2(𝑧𝑡−𝐵𝑡𝑥𝑡)𝑇 𝑄−1
𝑡 (𝑧𝑡−𝐵𝑡𝑥𝑡)

Finally, the initial state with mean 𝜇0 and variance Σ0 can be wriĨen as:

𝑝(𝑥0) = 𝑑𝑒𝑡(2𝜋Σ0)−1/2𝑒−1/2(𝑥0−𝜇0)𝑇 Σ−1
0 (𝑥0−𝜇0)

One of the main reasons the Kalman ėlter has gained much popularity lies in its computational efficiency.
Each iteration of the Kalman ėlter is lower bound by 𝑂(𝑘2.4 + 𝑛2), where 𝑘 is the dimension of the mea-
surement vector 𝑧𝑡 and 𝑛 is the dimension of the state space. ĉis computational efficiency results from the
assumption that the state andmeasurement functions are linear and operate onGaussian variables which can
be computed in closed form.

Ǌ.Ǌ.ǉ Extended andUnscented Kalman Filters

As discussed in the previous section, the Kalman ėlter imposes two main restrictions on the underlying sys-
tem: linear state transition and measurement functions and a Gaussian posterior probability distribution.
ĉis limits the applicability of the Kalman ėlter, as most state transition andmeasurement functions are non-
linear. If we relax the ėrst restriction, the state transition and measurement functions become:

𝑥𝑡 = 𝑔(𝑥𝑡−1) + 𝜀𝑡

𝑧𝑡 = ℎ(𝑥𝑡) + 𝛿𝑡

Assuming non-linear functions 𝑔 and ℎ, the above ėlter does not have a closed-form solution. One solution
is to approximate these functions through linearisation.

ĉe extended Kalman ėlter (EKF) uses Taylor expansions to linearise the non-linear state transition and
measurement functions. ĉe approximation is a linear function tangent to the target function at the mean of
the Gaussian. ĉe accuracy of this estimation depends on the degree of non-linearity.

For highly non-linear systems, the extended Kalman ėlter does not produce an accurate estimation as it
does not preserve themean and covariance of theGaussian distribution. ĉe unscentedKalman ėlter (UKF)
uses a deterministic set of sampling points which are propagated through the non-linear functions in order to
capture the true mean and covariance of the Gaussian distribution.

Each update step, for both EKF and UKF, requires 𝑂(𝑘2.4 + 𝑛2) time.

Ǌ.ǋ Particle Filter

Particle ėltering [Gordon et al., 1993Gordon et al., 1993] is a recursive Bayesian ėltering technique using Monte Carlo simula-
tions. Particle ėlters represent the posterior by a ėnite set of random samples drawn from the posterior with
associated weights. Because of their non-parametric nature, particle ėlters are not bound to a particular dis-
tribution form (e.g. Gaussian) and are compatible with arbitrary (i.e. non-linear) state transition functions.

As mentioned above, particle ėlters represent the posterior by a set of particles. Each particle 𝑥[𝑚]
𝑡 can be

considered as an instantiation of the state at time 𝑡. In the prediction step of the particle ėlter, each particle
𝑥[𝑚]

𝑡 is generated from the previous state 𝑥[𝑚]
𝑡−1 by sampling from the state transition probability 𝑝(𝑥𝑡 | 𝑥𝑡−1).

In the update step, when measurement 𝑧𝑡 is available, each particle is assigned a weight 𝑤[𝑚]
𝑡 according to:

𝑤[𝑚]
𝑡 = 𝑝(𝑧𝑡 | 𝑥[𝑚]

𝑡 )
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1: 𝑋𝑡 ← ∅
2: for 𝑖 in 1 ∶ 𝑀 do
3: sample 𝑥[𝑖]

𝑡 ∼ 𝑝(𝑥𝑡 | 𝑥[𝑖]
𝑡−1)

4: 𝑤[𝑖]
𝑡 ← 𝑝(𝑧𝑡 | 𝑥[𝑖]

𝑡 ) 𝑤[𝑖]
𝑡−1

5: 𝑋𝑡 ← 𝑋𝑡 + {𝑥[𝑖]
𝑡 , 𝑤[𝑖]

𝑡 }
6: end for

Algorithm ǉ: Basic Particle Filter (Sequential Importance Sampling, SIS)

A high level description of the basic particle ėlter algorithm is given by Algorithm ǉAlgorithm ǉ.
Given a large enough particle population, the weighted set of particles {𝑥[𝑖]

𝑡 , 𝑤[𝑖]
𝑡 , 𝑖 = 0, … , 𝑁} becomes

a discrete weighted approximation of the true posterior 𝑝(𝑥𝑡 | 𝑧𝑡).

Ǌ.ǋ.ǉ ĉeDegeneracy Problem and Resampling

A common problem with the basic particle ėlter algorithm mentioned in the previous section is the de-
generacy problem. It has been proven that the that the variance of the weights can only increase over time
[Doucet et al., 2000Doucet et al., 2000]. ĉis results in a situation where only a single particle holds the majority of the weight
with the rest having negligible weight. ĉis results in wasted computational effort on particles which eventu-
ally contribute very liĨle to the ėlter estimation.
Resampling is a statistical technique which can be used to combat the degeneracy problem. Resampling

involves eliminating particles with small weights in favour of those with larger weights. ĉis is achieved by
creating a new set of particles by sampling, with replacement, from the original particle set according to par-
ticle weights. Particles with a higher weight will, therefore, have a higher chance of surviving the selection
process. One of the implications of the resampling step is the loss of diversity amongst particles as the new
particle set most likely contains many duplicates.

Ǌ.ǋ.Ǌ AlgorithmOverview

Algorithm ǊAlgorithm Ǌ gives an overview of the particle ėlter algorithm with resampling. ĉe ėrst for loop (lines 2
through 6) generates, for each particle 𝑖, state 𝑥𝑖

𝑡 based on 𝑥𝑖
𝑡−1 (line 3) and assigns a weight according to the

measurement 𝑧𝑡 (line 4). ĉe second for loop (lines 8 through 16) transforms the particle set 𝑋ດ
𝑡 into a new

set 𝑋𝑡 by resampling according to the weights. On line 9, a uniformly distributed random number 𝑟 is drawn
from the interval [0, ∑ 𝑤𝑡]. By calculating the preėx sum of the weights in the inner while-loop (lines 11
through 14), the randomly drawnweight is mapped to an actual particle, which is, subsequently, added to the
new set. ĉis ensures that the likelihood of the selection of each particle, in each round, is proportional to its
weight.

Note that in contrast to the previous version, presented in Algorithm ǉAlgorithm ǉ, no history is maintained for the
particle weights as the resampling step resets the weights for the whole particle population.
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1: 𝑋ດ
𝑡 ← ∅

2: for 𝑖 in 1 ∶ 𝑀 do
3: sample 𝑥[𝑖]

𝑡 ∼ 𝑝(𝑥𝑡 | 𝑥[𝑖]
𝑡−1)

4: 𝑤[𝑖]
𝑡 ← 𝑝(𝑧𝑡 | 𝑥[𝑖]

𝑡 )
5: 𝑋ດ

𝑡 ← 𝑋ດ
𝑡 + 𝑥[𝑖]

𝑡
6: end for
7: 𝑋𝑡 ← ∅
8: for 𝑖 in 1 ∶ 𝑀 do
9: draw 𝑟 ∼ 𝑈[0 ∶ ∑ 𝑤𝑡]

10: 𝑗, 𝑠 ← 0
11: while s < r do
12: 𝑠 ← 𝑠 + 𝑤[𝑗]

𝑡
13: 𝑗 ← 𝑗 + 1
14: end while
15: 𝑋𝑡 ← 𝑋𝑡 + 𝑥[𝑗]

𝑡
16: end for

Algorithm Ǌ: Particle Filter with Resampling (Sequential Importance Resampling, SIR)
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Distributed Particle Filtering 3
We examined a number of Bayesian ėltering techniques in Chapter ǊChapter Ǌ including particle ėlters. Because of
their non-parametric form, particle ėlters can be applied to non-linear and non-Gaussian systems where (ex-
tended/unscented) Kalman ėlters fall short. However, the required computational effort, especially when a
large number of particles is needed for an accurate estimation, limits their practical use in time-constrained
applications.

A natural approach would be to distribute the particle ėlter calculations amongst multiple computation
units. ĉiswould allow the use of particle ėlters for complex estimation problems in time critical applications.
In this chapter we will discuss the issues regarding the implementation of a distributed particle ėlter.

We will start with a classiėcation of distributed particle ėltering schemes in Section ǋ.ǉSection ǋ.ǉ. In Section ǋ.ǊSection ǋ.Ǌ,
we will explore the related work, while a discussion on the design of a distributed particle ėlter follows in
Section ǋ.ǋSection ǋ.ǋ. Next, we will review the parameters which affect the ėlter behaviour in Section ǋ.ǌSection ǋ.ǌ and, ėnally,
we conclude this chapter in Section ǋ.ǍSection ǋ.Ǎ.

ǋ.ǉ Classiėcation

ĉere are different approaches for implementing distributedparticle ėlters. Wewill use the classiėcation from
[SimoneĨo and Keviczky, 2009SimoneĨo and Keviczky, 2009] in order to categorise these approaches:

Distributed Sensing Particle Filters ĉis class of particle ėlters assumes that there aremultiple sensors per-
forming measurements. Each sensor has a particle ėlter operating only on local measurements. ĉese
particle ėlters exchange limited information in order to achieve a global estimate.

Distributed Computation Particle Filters In contrast to the previous class, the assumption here is that all
measurement data is available to all particle ėlters. Each particle ėlter is assigned a subset of the total
particle population.

We will only focus on the second class of distributed particle ėlters in this thesis.

ǋ.Ǌ RelatedWork

Becauseof thenumerous advantages of particle ėlteringover its parametric counterparts,much research effort
has been dedicated to designing a distributed particle ėlter in order to overcome its inherent computational
complexity. In this section we will examine a number of related studies and discuss their main contributions.

ĉeėrst workwe consider is from [Brun et al., 2002Brun et al., 2002]where a data parallel approach is proposed. ĉeparti-
cle population is partitioned into several subsets. Each subset is assigned to a single processor. ĉe sampling
as well the weight calculations are performed independently for each subset. In order to calculate a global
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estimate, local estimates are calculated for each subset. ĉese estimates are subsequently aggregated into a
global estimate. ĉe authors claim that performing local resampling on each subset does not compromise on
the ėlter accuracy.

In [Bashi et al., 2003Bashi et al., 2003], the authors propose three methods for implementing distributed particle ėlters:
(i) Global Distributed Particle Filter (GDPF), (ii) Local Distributed Particle Filter (LDPF) and (iii) Com-
pressed Distributed Particle Filter (CDPF). With GDPF, only the sampling and weight calculation steps
are parallelised while resampling is performed centrally. LPDF is comparable to the proposed solution of
[Brun et al., 2002Brun et al., 2002] in which resampling is performed locally without any communication. CDPF, similar to
GDFP, has a centralised resampling implementation. However, only a small representative set of particles is
used for global resampling. ĉe results are sent back to each individual node. ĉey conclude from a number
of simulations that LDFP provides a beĨer estimation while being faster.

Two distributed resampling algorithms are proposed in [Bolić et al., 2005Bolić et al., 2005]: (i) Resampling with Propor-
tional Allocation (RPA) and (ii) Resampling withNon-proportional Allocation (RNA). RPA involves a two-
stage resampling step (global and local) while RNA involves local resampling followed by a particle exchange
step. ĉese algorithms still involve a certain degree of centralised planning and information exchange. RPA
provides a beĨer estimation while RNA has a simpler design. In a later work [Bolić et al., 2010Bolić et al., 2010], they com-
pare anFPGA implementationof a standardparticle ėlterwith that of aGaussian particle ėlter ĉepresented
results indicate that the Gaussian particle ėlter, while being faster than a standard particle ėlter, is equally ac-
curate for (near-)Gaussian problems.

A number of the previously mentioned algorithms (GDPF, RNA, RPA, Gaussian particle ėlter) are com-
pared in [Rosén et al., 2010Rosén et al., 2010] using a parallel implementation on amulti-coreCPU.ĉe comparison goes only
as far as experiments with 10000 particles. Nevertheless, the Gaussian particle ėlter outperforms all other al-
gorithms inGaussian estimation problems. RNA can achieve near-linear speedupwith respect to the number
of cores, which is much beĨer than the other non-Gaussian ėlters.

A particle ėlter implementation on a GPU is presented in [Hendeby et al., 2010Hendeby et al., 2010]. For the resampling step,
the particles are divided into multiple subsets. Each subset is resampled independently and the results are
redistributed into different sets (similar to the RNA algorithm). Pseudo-random numbers are generated on
the host CPU and transferred to the GPU. ĉis severely impacts the performance of the ėlter as about 85%
of the total runtime is spent on generating pseudo-random numbers and transferring them to the GPU. ĉe
GPU implementation is not suitable for real-time estimation for complex problems and is only marginally
faster than a CPU implementation.

None of the studies we reviewed in this section have been able to demonstrate a working particle ėlter
implementation for complex real-time estimation problems. ĉe literature we examined (with the exception
of [Hendeby et al., 2010Hendeby et al., 2010]) mention experiments with particle ėlters running up to 10000 particles. ĉis is
insufficient formost complex problems. Some of the presented algorithms divide the particle population into
smaller subsets without any form of communication or information exchange except for calculating global
estimates. ĉe only reference to a large scale particle ėlter implementation was by [Hendeby et al., 2010Hendeby et al., 2010]
which mentions experiments with up to a million particles. ĉere is, however, no mention of any real-time
application for the proposed particle ėlter implementation.

ǋ.ǋ Filter Design

ĉe particle ėlter algorithm, as described in Algorithm ǊAlgorithm Ǌ, consists of three main stages:

i. Sampling (prediction),

Gaussianparticle ėlters [Kotecha and Djuric, ǊǈǈǋKotecha and Djuric, Ǌǈǈǋ] are a special kindof particle ėlterwhich, similar to the extendedandunscented
Kalman ėlters, approximate the posterior with a normal distribution. ĉey do not require a resampling step.
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ii. Importance weight calculation (update),

iii. Resampling

ĉe ėrst two steps can be considered trivially parallel, as they involve operations on a single particle and do
not require any global knowledge of the whole particle population. A data parallel approach would be appli-
cable in this case. ĉe resampling step, however, does require information from the entire particle population
which cannot be trivially executed in parallel.

ǋ.ǋ.ǉ Particle Filter Network

For a truly distributeddesignwewill use the particle ėlter scheme from[SimoneĨo and Keviczky, 2009SimoneĨo and Keviczky, 2009]. ĉe
main idea behind this approach is to construct a network of smaller particle ėlters. Instead of communicating
estimates or other aggregate data, these particle ėlters exchange only a few representative particles in each
round. Such an approach is inherently scalable, as instead of increasing the size of individual particle ėlters,
more particle ėlters can be added to the network. Each particle ėlter runs the algorithm as described in
Algorithm ǋAlgorithm ǋ.

With this distributed scheme, each particle ėlter can be executed on a different computation unit. Depend-
ing on the underlying hardware memory model and architecture, a suitable network scheme can be chosen
for efficient (particle) data transfer amongst the computation units. Figure ǋ.ǉFigure ǋ.ǉ depicts a number of possible
conėgurations.

Suppose we have a network of 𝑁 particle ėlters, each maintaining 𝑚 particles. In every iteration of the es-
timation procedure, each particle ėlter sends its 𝑡 likeliest particles to its direct neighbours. Furthermore, the
received particles replace the local particles with the smallest weights. ĉe number of neighbouring ėlters de-
pends on the network topology. From the conėgurations presented in Figure ǋ.ǉFigure ǋ.ǉ the star network is a special
case. It can be considered a semi-distributed or hybrid approach. In this network, each particle ėlter writes
its 𝑡 likeliest particles to a global data structure (black circle in the diagram). ĉese particles are subsequently
sorted to ėnd the 𝑡 particles with the highest weight. All the particle ėlters add these 𝑡 particles to their local
particle set.

We know from [SimoneĨo and Keviczky, 2009SimoneĨo and Keviczky, 2009] that the accuracy of such a distributed particle ėlter net-
work approaches that of a centralised particle ėlter with 𝑚𝑁 nodes , even when 𝑡 is much smaller than the
number of particles in each node 𝑚.

ǋ.ǋ.Ǌ Resampling

ĉe usual problems with parallel resampling are avoided with this approach. Each particle ėlter performs
local resampling on its own particles. One of the main concerns with resampling is that it can lead to a sig-
niėcant loss of variation amongst the particle population. ĉerefore, much aĨention is needed in order to
avoid resampling too oěen. We propose a simple probabilistic resampling scheme with parameter 𝑟 ∈ [0, 1]
indicating the probability of performing the resampling step at each round. Each particle ėlter draws inde-
pendently 𝑢 ∼ 𝑈(0, 1) and only performs the resampling step if 𝑢 < 𝑟.

ǋ.ǋ.ǋ Global Estimate

One of the main challenges in the design of a network of particle ėlters is the calculation of a global estimate.
Whether such a global estimate can be efficiently calculated highly depends on the underlying hardware ar-
chitecture and speciėcally, the cost of communication amongst the computation units running the particle
ėlters. We know from the simulation results presented in [SimoneĨo and Keviczky, 2009SimoneĨo and Keviczky, 2009] that theworst local
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Figure ǋ.ǉ: Possible conėgurations for a particle ėlter network
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1: 𝑋ດ
𝑡 ← ∅

2: for 𝑖 in 1 ∶ 𝑀 do
3: sample 𝑥[𝑖]

𝑡 ∼ 𝑝(𝑥𝑡 | 𝑥[𝑖]
𝑡−1)

4: 𝑤[𝑖]
𝑡 ← 𝑝(𝑧𝑡 | 𝑥[𝑖]

𝑡 )
5: 𝑋ດ

𝑡 ← 𝑋ດ
𝑡 + 𝑥[𝑖]

𝑡
6: end for
7: sort 𝑋ດ

𝑡 according to weight
8: send < 𝑥[1]

𝑡 , 𝑤[1]
𝑡 > ⋯ < 𝑥[𝑛]

𝑡 , 𝑤[𝑛]
𝑡 > to neighbours

9: receive < 𝑥[𝑀−𝑛]
𝑡 , 𝑤[𝑀−𝑛]

𝑡 > ⋯ < 𝑥[𝑀]
𝑡 , 𝑤[𝑀]

𝑡 > from neighbours
10: 𝑋𝑡 ← ∅
11: for 𝑖 in 1 ∶ 𝑀 do
12: draw 𝑟 ∼ 𝑈[0 ∶ ∑ 𝑤𝑡]
13: 𝑗, 𝑠 ← 0
14: while s < r do
15: 𝑠 ← 𝑠 + 𝑤[𝑗]

𝑡
16: 𝑗 ← 𝑗 + 1
17: end while
18: 𝑋𝑡 ← 𝑋𝑡 + 𝑥[𝑗]

𝑡
19: end for

Algorithm ǋ: Distributed Particle Filter

estimate in such a network is still close to the best local estimate. ĉe trade-off between the extra communi-
cation cost and the potential estimation improvement is highly dependant on the application as well as the
hardware.

ǋ.ǌ Filter Parameters

While traditional centralised particle ėlters are characterised only by the total number of particles, our dis-
tributed particle ėlter has a number of parameters which inĚuence its behaviour. In this section we will sum-
marise these parameters, which where discussed throughout this chapter.

Number of particles ĉe total number of particles for each particle ėlter.

Number of particle ėlters ĉe number of particle ėlters in the network.

Particle ėlter network topology Deėnes how the particle ėlters are connected, and how information prop-
agates through the network.

Number of exchanged particles How many particles are exchanged between neighbouring particle ėlters.

Resampling frequency How oěen resampling is performed.

ǋ.Ǎ Discussion

In this chapter, we reviewed existing literature on the subject of distributed particle ėltering. None of these
aĨempts have been able to demonstrate a large scale (millions of particles) particle ėlter implementation for
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real-time estimation problems. We presented a fully distributed particle ėlter algorithm based on the work of
[SimoneĨo and Keviczky, 2009SimoneĨo and Keviczky, 2009] which can be implemented on different hardware architectures.

ĉe general idea behind this design is to construct a large particle ėlter by forming a network of smaller
particle ėlters. ĉe smaller particle ėlters operate independently with only a limited communication amongst
neighbouring nodes. Finally, we discussed a number of parameters which inĚuence the behaviour of the
particle ėlter.
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General-Purpose Computation onGPUs 4
In recent years, Graphics Processing Units (GPUs) have evolved into highly parallel processors with massive
computational capacity. Modern GPUs offer a peak performance of over a thousand GFLOPS; an order of
magnitude higher than that of conventional multi-core CPUs. ĉe reason for this massive performance gap
lies in the special workloads theGPU is designed to handle. ĉis substantial computational capacity, together
with high availability, has led to the wide adaptation of GPUs beyond their original purpose of graphics ren-
dering.

We will start with an overview of the GPU architecture in Section ǌ.ǉSection ǌ.ǉ. In Section ǌ.ǊSection ǌ.Ǌ, we will discuss the
programming model for general purpose computation on GPUs. Finally, in Section ǌ.ǋSection ǌ.ǋ we will take a closer
look at a number of GPUs which we will use for the experiments described in Chapter ǏChapter Ǐ and Chapter ǐChapter ǐ.

ǌ.ǉ GPUArchitecture

In order to beĨer understand the GPU architecture, we brieĚy examine the computer graphics processing
pipeline which has been dictating the design of GPUs. Furthermore, we discuss the main characteristics of
throughput-oriented architectures, of which GPUs are a prime example.

ǌ.ǉ.ǉ Graphics Processing Pipeline

Real-time computer graphics has been the primary target for the development of the GPU architecture. ĉe
graphics processing pipeline consists of a number of stages which can be classiėed as either ėxed-function or
programmable [Fatahalian and Houston, 2008Fatahalian and Houston, 2008]. ĉis pipeline converts a set of primitives (e.g. lines, poly-
gons) to actual pixel values. ĉe programmable stages of the pipeline are deėned by shader functions, which
are usually expressed in a high-level language. ĉe shader code is subsequently compiled into a binary which
can run on the GPU. ĉe shader functions are applied to hundreds or thousands of graphical entities (e.g.
pixels, vertices) which offers great opportunity for data parallelism.

ĉe ėxed function stages are, however, difficult to parallelise as they involve interaction between multiple
entities. ĉerefore, these stages are separated from the programmable parts and are (usually) implemented
in hardware. ĉese ėxed function stages include texture ėltering and rasterisation .

ǌ.ǉ.Ǌ ĉroughput-Oriented Architectures

ĉe GPU architecture has been classiėed as a throughput-oriented architecture [Garland and Kirk, 2010Garland and Kirk, 2010]. In
contrast to traditional (multi-core) CPUs, throughput-oriented processors sacriėce the latency of individual

Texture ėltering determines the texture value given a speciėc coordinate for texture mapped pixels.
Rasterisation involves transforming primitives into pixel values.
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tasks in order tomaximise total throughput. ĉemain assumption for this class of processors is that they will
be presented with highly parallel workloads.

With the ever increasing gap between processor speeds and memory access latencies, oěen referred to as
theMemory Wall [Wulf and McKee, 1995Wulf and McKee, 1995], throughput oriented architectures employ a different strategy to
overcome this problem. While traditional CPUs use extensive caching, sophisticated branch prediction and
out-of-order execution tohidememory access latencies, throughput orientedprocessors rely on the execution
of a vast number of threads which can resumework while data is being fetched from themuch slower off-chip
memory. ĉis results in a much simpler processing core design which allows for more chip resources to be
dedicated to processing elements.

ĉree main characteristics have been identiėed for throughput-oriented processors: Focusing on many
simple processing cores, hardware multithreading and SIMD execution [Garland and Kirk, 2010Garland and Kirk, 2010]. We al-
ready discussed the concept of having many simple processing cores when dealing with memory access la-
tency. Hardware multithreading refers to a special case of multithreading in which the execution context of
the threads aremaintained on-chip. ĉis allows switching context at no cost which allows for greater exploita-
tion of instruction- and thread-level parallelism. Single Instruction, Multiple Data (SIMD) [Flynn, 1966Flynn, 1966],
refers to a class of computer architectures in which a single instruction stream operates on multiple data
streams. ĉe SIMD architecture allows for a single control unit to work withmultiple arithmetic units, which
results in effectively dedicating more chip resources (e.g. transistors) to arithmetic units.

ǌ.ǉ.ǋ NVIDIAGPUArchitecture

We will now examine the CUDA architecture [NVIDIA, 2010aNVIDIA, 2010a], introduced by NVIDIA in 2006. ĉe G80
microprocessorwas the ėrstNVIDIAGPU tomove from the traditional pipeline executionmodel to a uniėed
shader model [NVIDIA, 2006NVIDIA, 2006]. ĉe uniėed shader architecture allows different shaders (e.g. pixel shaders,
vertex shaders) to run on the same computation units, marking the end of the traditional pipeline architec-
tures.

CUDA-based GPUs are based on a scalable array of processors, called Streaming Multiprocessors (SM)
[Lindholm et al., 2008Lindholm et al., 2008]. A streaming multiprocessor is a collection of simple processing cores with integer
and Ěoating point units, combined with on-chip memory. Each multiprocessor can maintain hundreds or
even a thousand resident threads, depending on the hardware generation. ĉe SM contains thousands of reg-
isters divided amongst all resident threads and few tens of kilobytes of fast shared sharedmemory. Figure ǌ.ǉFigure ǌ.ǉ
gives a high level overview of the SM design for two NVIDIA architectures.

SIMT ExecutionModel

In order to efficiently run thousands of concurrent threads, CUDA employs what is called a Single-Instruction,
Multiple-ĉread or SIMT architecture. In this architecture, threads are organised into warps, which are basi-
cally a group of 32 threads. Each warp is executed independently, with the warp scheduler choosing a warp
with active threads which is ready for execution.

Although similar to the SIMD architecture described in the previous section, SIMT has two main dif-
ferences: programming model and independent branching. With classic SIMD vector machines, the pro-
grammer explicitly uses vector operations on (ėxed width) vectors, whereas SIMT enables the programmer
to specify the behaviour of an individual thread. ĉreads in SIMT can branch independently, but within a
warp, this leads to the serialisation of the different execution paths.
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Figure ǌ.ǉ: NVIDIA Streaming Multiprocessor (SM), source: NVIDIA

ǌ.Ǌ ProgrammingModel

With the introduction of programmable shaders for GPUs, numerous (high level) programming languages
have been developed in order to ease the task of programming these shaders. All these shading languages are
designed according to the needs of modern graphics pipelines. ĉe increased popularity of the GPU outside
the graphics domain has led to the introduction of general purpose languages speciėcally designed for this
purpose. In this section we will examine the programming model of CUDA, introduced by NVIDIA in 2006
for its lineofGPUs. Acompeting standard fromtheKhronosGroup, calledOpenCL[Khronos Group, 2010Khronos Group, 2010],
was released in 2008. OpenCL, an open and royalty-free standard, is a programming framework for hetero-
geneous platforms including multi-core CPUs as well as GPUs. ĉe programming and memory model is,
however, comparable to that of CUDA.

ACUDAprogram is divided into a host and a devicepart. ĉehost program runs on theCPUand the device
program which runs on the GPU consists of one or more kernels [NVIDIA, 2010aNVIDIA, 2010a]. Each kernel typically
consists of numerous threads grouped into blocks. Blocks of threads are, furthermore, grouped into a grid.
Blocks of threads can be executed concurrently on different multiprocessors.

ĉreads within each block are organised in a one-, two- or three-dimensional fashion. Each thread has a
unique ID within a block which can be accessed in the kernel code by the built-in variable threadIdx.
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Similarly, blocks are grouped into one- or two-dimensional grids, with a unique ID accessible through the
variable blockIdx. ĉreads from the same block can synchronise their execution by deėning synchroni-
sation points with __syncthreads().

ǌ.Ǌ.ǉ MemoryModel

Memory ismanaged in a hierarchical way, with each thread having access to private localmemory. All threads
within a blocks have access to the same shared memory, which as with thread-local memory has only the
lifetime of a single kernel execution. Global memory is accessible to all threads from all blocks and persists
through kernel calls. Figure ǌ.ǊFigure ǌ.Ǌ gives an illustration of the CUDA memory hierarchy.

Global memory is stored off-chip, and is the slowest available memory on the GPU. It is accessed through
32-, 64- or 128 byte memory transactions. Whenever one or more threads within a warp access global mem-
ory, a number of memory transactions are issued. If thememory accesses within a warpmeet certain require-
ments the requests are coalesced into a single memory transaction. ĉis is the most efficient way to access
global memory. ĉe requirements for memory coalescing are different between devices of different genera-
tions, but in general aligned and especially contiguous (unit stride) loads/stores are the most efficient.

Sharedmemory is a fast on-chipmemory available to all threadswithin a thread-block. It ismuch faster than
theoff-chip globalmemory, but is generallymuch smaller (8-, 16- or 32KBperSMdependingon thehardware
generation) and does not persist through kernel calls. ĉe manner in which shared memory is accessed can
have a huge impact on the performance. Shared memory consists of a number of (16 or 32) banks. A read
or write request to shared memory can only reach the optimum performance if all the requested locations
from a single warp fall into distinct banks. If 𝑘 addresses from a request fall in a single bank, we have a 𝑘-way
bank conĚict. It is, therefore, important to consider the bank sizes and access strides in order to prevent bank
conĚicts.

ǌ.ǋ HardwareOverview

In this section we will examine twoNVIDIAGPUs which we use for the experiments described in Chapter ǏChapter Ǐ
and Chapter ǐChapter ǐ. ĉe ėrst GPU is the GTX280, introduced in 2008, which is based on the GT200 microar-
chitecture. It contains 240 CUDA cores divided amongst 30 SMs clocked at 1296 MHz. As depicted in
Figure ǌ.ǉaFigure ǌ.ǉa Each SM consists of 8 processing cores (SPs) and 2 Special Function Units (SFUs). ĉe SPs
can execute one single-precision Ěoating-point operation per clock cycle or two multiply-add (MAD) in-
structions. ĉe SFUs handle transcendental math and interpolation but can also compute four Ěoating-point
operations per cycle. ĉis leads to a theoretical maximum throughput of:

1.296 GHz × 30 × (8 × 2 FLOP + 2 × 4 FLOP) = 933.12 GFLOP/s

ĉis assumes that instructions are executed on both SPs and SFUs (dual-issuing). However, if there are no
instructions issued to the SFUs, this ėgure drops to 622.08 GFLOP/s. Similarly, if no MAD instructions are
issued, it further drops to 311.04 GFLOP/s. ĉe GTX280 has 1GB of main memory with a throughput of
141.7 GB/s. Each SM has 16KB of shared memory together with 16K 32-bit wide registers.

ĉe second NVIDIA GPU we use for the experiments is the GTX480, based on the GF100/Fermi archi-
tecture introduced in 2010. It has 480CUDA cores clocked at 1401MHz, partitioned into 15 SMs. Each SM
has 32 cores and 4 SFUs as shown in Figure ǌ.ǉbFigure ǌ.ǉb. ĉe GTX480 delivers a single-precision peak performance
of:

1.401 GHz × 15 × (32 × 2 FLOP) = 1344.96 GFLOP/s
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Processor count SM count DĆM Memory bandwidth Single-precision FLOPS
GTX280 240 30 1024 MB 141.7 GB/s 933.12 GFLOPS
GTX480 480 15 1536 MB 177.4 GB/s 1344.96 GFLOPS

Table ǌ.ǉ: NVIDIA GPU Overview

Aswith theGTX280, this depends on the presence ofMAD instructions. ĉemaximum throughput drops
to 672.48 GFLOP/s without MAD instructions. ĉe GTX480 has 1536MB of memory with a maximum
throughput of 177.4 GB/s. Each SM in theGTX480 has 32K 32-bit wide registers and 48KB of sharedmem-
ory, which can be dynamically reconėgured as an L1 cache.

Table ǌ.ǉTable ǌ.ǉ gives an overview of the two NVIDIA cards described above.
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Implementation and Experiments





TwoApplications: Robot Localisation and
Robotic Arm 5
In order to test, verify and benchmark ourGPU-based distributed particle ėlter implementation, based on the
ideas presented in Chapter ǋChapter ǋ, we use the following two estimation problems: (i) Unicycle robot localisation,
and (ii) Robotic arm.

ĉe unicycle localisation problem, discussed in Section Ǎ.ǉSection Ǎ.ǉ, is a relatively small estimation problem which
does not allow us to test the performance and the accuracy of the ėlter under different conditions. We use this
application in order to illustrate the model-speciėc aspects of the particle ėlter implementation in Chapter ǎChapter ǎ.
Section Ǎ.ǊSection Ǎ.Ǌ presents the robotic arm estimation problem. We use this estimation problem in order tomeasure
the performance of the ėlter in Chapter ǏChapter Ǐ and the accuracy in Chapter ǐChapter ǐ.

Ǎ.ǉ Unicycle Robot Localisation

In this estimation problem we use noisy range measurements from ėxed sensors to localise a mobile robot
whichmoves freely on a 2Dplane. ĉe state consists of the tuple (𝑥, 𝑦, 𝜃)where (𝑥, 𝑦) denote the coordinates
of the robot, and 𝜃 refers to its orientation. ĉe dynamical state equation is as follows:

𝑥(𝑡) = 𝑥(𝑡 − 1) + ̂𝑣
̂𝑟 sin(𝜃(𝑡 − 1) + ̂𝑟Δ𝑡) − sin(𝜃(𝑡 − 1))

𝑦(𝑡) = 𝑦(𝑡 − 1) − ̂𝑣
̂𝑟 cos(𝜃(𝑡 − 1) + ̂𝑟Δ𝑡) − cos(𝜃(𝑡 − 1))

𝜃(𝑡) = 𝜃(𝑡 − 1) + ̂𝑟Δ𝑡 + 𝛾Δ𝑡

Note that ̂𝑣 and ̂𝑟 represent (noisy) control inputs and 𝛾 is a noise term. ĉe weights can be calculated
according to a Gaussian probability distribution function. ĉe sensor data consists of the set of measured
distances to the ėxed sensors.

Ǎ.Ǌ Robotic Arm

ĉe robotic arm, in this experiment, has a number of joints which can be controlled independently. It has
one degree of freedom per joint. Each joint has a sensor to measure the angle. ĉere is a camera mounted at
the end of the arm. ĉis camera is used for tracking an object which is moving on a ėxed 2D plane. Figure Ǎ.ǉFigure Ǎ.ǉ
gives an illustration of this robotic arm.

ĉe state equations for both the robotic arm joint movements as well as the moving object are as follows:

𝜃𝑖(𝑡) = 𝜃𝑖(𝑡 − 1) + Δ𝑡𝑢𝑖 + 𝜔𝜃 ∀𝑖 ∈ {0, … , 𝑁}

ǊǍ
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𝑥(𝑡) = 𝑥(𝑡 − 1) + 𝑣𝑥(𝑡 − 1)Δ𝑡 + 𝜔𝑥

𝑦(𝑡) = 𝑦(𝑡 − 1) + 𝑣𝑦(𝑡 − 1)Δ𝑡 + 𝜔𝑦

𝑣𝑥(𝑡) = 𝑣𝑥(𝑡 − 1) + 𝜔𝑣𝑋

𝑣𝑦(𝑡) = 𝑣𝑦(𝑡 − 1) + 𝜔𝑣𝑌

Here 𝜃𝑖 represents the angle of joint 𝑖 and 𝑢𝑖 represents the control signal for the actuator of joint 𝑖. (𝑥, 𝑦)
and (𝑣𝑥, 𝑣𝑦) are the position and velocity vectors of the moving object. 𝜔 is the noise term.

ĉe camera detects the object in its own frame of reference. ĉerefore, in order to translate between the
global coordinates and the camera reference frame, we need to apply, for each joint, the rotation and shiě
matrices according to the joint angle and link length:
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𝜃𝑖 refers to the angle of joint 𝑖, 𝐿𝑖 refers to the length of link 𝑖 and𝜔 is the noise term. ĉe anglemeasurements
for the individual joints are according to the following equation:
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ĉe noise term is depicted by 𝜔. For the sake of simplicity, all noise terms are assumed to be Gaussian,
although particle ėlters do not impose such a restriction.

ĉe main advantage of this robotic arm model is its parametric form which by adjusting the number of
joints, allows for increasing and/or decreasing the state dimensions.
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Particle Filtering on theGPU 6
In order to have an efficient particle ėlter implementation on the GPU, we need to modify the standard par-
ticle ėlter algorithm. We presented a distributed particle ėltering scheme in Chapter ǋChapter ǋ which serves as basis
for our GPU implementation. We use the unicycle robot localisation application, presented in Chapter ǍChapter Ǎ, to
illustrate the model-speciėc aspects of the ėlter implementation. ĉe code for the unicycle implementation
is listed in Appendix AAppendix A.

In this chapter we will discuss how this distributed ėlter design translates to a concrete implementation on
theGPU. Section ǎ.ǉSection ǎ.ǉ discusses the general aspects of ourGPU implementation, while Section ǎ.ǊSection ǎ.Ǌ speciėcally
discusses the memory organisation. Section ǎ.ǋSection ǎ.ǋ discusses the implementation of each kernel.

ǎ.ǉ Filter Design

ĉedistributed particle ėltering scheme, discussed inChapter ǋChapter ǋ, forms the basis of ourGPU implementation.
ĉe basic idea of this approach is to build a network of small particle ėlters instead of a single large particle
ėlter. ĉis network of particle ėlters has three main characteristics:

1. Individual particle ėlters remain small, which allows for efficient resampling.

2. Excluding the particle exchange step, the remainder of the ėlter algorithm can be executed indepen-
dently for each particle ėlter.

3. Scaling is achieved by adding more particle ėlters, instead of increasing the size of individual particle
ėlters.

Recall, from Chapter ǌChapter ǌ, that with the CUDA programming model kernels run on the GPU as blocks of
threads. ĉeseblocks are executed concurrently ondifferent StreamingMultiprocessors (SM).ĉreadswithin
a block can communicate using fast on-chip memory and synchronise their execution using barrier instruc-
tions. However, there are a number of limits which we need to consider. We discussed in Chapter ǌChapter ǌ that the
total number of threads within each block is limited to 512 for 1.x devices, and 1024 for 2.x devices. Further-
more, there is also a limit on the available shared memory (16KB for 1.x devices, and 48KB for 2.x devices).

Based on this, we choose the following mapping:

1. Each particle is represented by a single CUDA thread;

2. Each particle ėlter is represented by a single CUDA thread block.

ĉis particular mapping has a number of advantages. ĉe sorting and resampling steps, which require a lot
of communication are limited to a single thread block. ĉerefore, we can utilise the fast shared memory, as
well as the synchronisation mechanisms for an efficient implementation of these steps.

ǊǑ



Parameter Symbol
Number of Particles 𝑚
Number of Particle Filters 𝑁
Particle Filter Network Topology Star/Ring/2D Mesh/2D Torus/3D Mesh
Number of Exchanged Particles 𝑡
Resampling Frequency 𝑟

Table ǎ.ǉ: Particle Filter Parameters

ĉere are, however, a number of disadvantages to this approach. ĉe amount of available shared memory
as well as the limit on the number of threads within a thread block restrict the size of an individual particle
ėlter. Nevertheless, this is in line with our design strategy, in which scalability is achieved by increasing the
total number of particle ėlters, instead of the size of individual particle ėlters.

Based on the details of Algorithm ǋAlgorithm ǋ we identify the following steps for our particle ėlter implementation.

1. Pseudo-Random Number Generation

2. Sampling

3. Importance weights

4. Local Sorting

5. Global Estimate

6. Particle Exchange

7. Resampling

ĉe generation of pseudo-random numbers is listed here as a separate step. Pseudo-random numbers are
used both for the sampling as well as the resampling step. We have chosen to generate these numbers sepa-
rately at the start of each iteration. Table ǎ.ǉTable ǎ.ǉ lists the available parameters affecting the behaviour of the ėlter.
We will explain these parameters further when we discuss the corresponding kernel.

ǎ.Ǌ Data Layout

ĉere are three main data types for holding the data needed by the particle ėlter. ĉe state structure is the
main data structure containing the data of a single particle. ĉese are stored in an array to the length of the
whole particle population . ĉese structures are initialised on the GPU at the start of the execution. ĉere
are also the control and measurement structures, holding respectively, the control (actuation) values
and the (noisy) measurements. ĉe particle weights are stored separately in a single-precision Ěoating point
array.

Listing ǎ.ǉListing ǎ.ǉ shows these three data structures for the unicycle model discussed in Chapter ǍChapter Ǎ.

ǎ.ǋ Individual Kernels

In this section we will discuss, in detail, the implementation of each step of the particle ėlter algorithm.

We actually allocate twice the required memory for the particle data. ĉis is explained in the discussions for the sorting kernel
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Listing ǎ.ǉ: Particle Filter Data
typedef struct _state
{

float x;
float y;
float theta;

} state;
typedef struct _control
{

float velocity;
float angular_velocity;

} control;
typedef struct _measurement
{

float sensor_data[NUM_SENSORS];
} measurement;

struct state* particle_data;
float* particle_weights;

ǎ.ǋ.ǉ Pseudo-RandomNumber Generation

As with any Monte Carlo simulation technique, particle ėlters rely heavily on random numbers. Pseudo-
random number generators (PRNGs) are, therefore, an essential part of any Monte Carlo simulation. Not all
PRNGs are suitable for parallel execution on GPUs. We will now examine two PRNGs which we use for our
experiments. For a detailed overview of GPU implementations of various PRNGs, see [Demchik, 2011Demchik, 2011].

Mersenne Twister

Mersenne Twister [Matsumoto and Nishimura, 1998bMatsumoto and Nishimura, 1998b] is a highly popular pseudo-random number genera-
tor, characterised by its large period. Although not directly suitable for cryptographic purposes, Mersenne
Twister is used in a wide range of applications, including Monte Carlo simulations. A distributed scheme is
proposed in [Matsumoto and Nishimura, 1998aMatsumoto and Nishimura, 1998a], which dynamically creates Mersenne Twister parameters
based on process IDs. ĉis enables concurrent Mersenne Twister PRNGs to produce uncorrelated number
sequences. ĉe NVIDIA CUDA SDK provides a CUDA implementation [Podlozhnyuk, 2007Podlozhnyuk, 2007] based on
this scheme with a period of 2607 − 1. We will, however, use an optimised CUDA implementation from
[Saito, 2010Saito, 2010] which is claimed to be 1.5 times faster and has a period of 211213-1.

ĉis CUDA implementation produces uniform Ěoating point numbers in the range of [1,2). We use the
Box-Muller transformation [Box and Muller, 1958Box and Muller, 1958] to transform these uniformly distributed numbers to a
normal distribution.

Xorshiě

Xorshiě [Marsaglia, 2003Marsaglia, 2003] is a family of PRNGs which are based on the repeated use of a simple construct,
namely the exclusive-or (xor) of a number with a shiěed version of itself. Compared to Mersenne Twister,
these PRNGs are much simpler and faster. Xorshiě PRNGs, however, have generally much smaller periods
(e.g. 264, 2128, 2192).

ĉe NVIDIA CUDA Toolkit provides the CUĆND library [NVIDIA, 2010bNVIDIA, 2010b]. CUĆND is a CUDA
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Listing ǎ.Ǌ: Sampling/Importance Weights Kernel
__global__ void sampling_importance_weights

(state* const d_particle_data,
float* const d_particle_weights,
const control control_data,
const measurement measurement_data
const float* const d_random,
const float dt);

implementation of xorwow, which is a member of the xorshiě PRNG family. It is claimed to have period
greater than2190, which shouldbe enough for our experiments. CUĆNDcanproduceuniformlydistributed
numbers in the range of (0,1] and normally distributed numbers with a given mean and standard deviation.

ǎ.ǋ.Ǌ Sampling/ImportanceWeights

ĉe sampling step, as described in Section Ǌ.ǋSection Ǌ.ǋ, involves generating new particles 𝑥[𝑚]
𝑡 from the previous parti-

cles 𝑥[𝑚]
𝑡−1. ĉis is achieved by sampling from the state transition distribution, taking into account any possible

control values. ĉe pseudo-random numbers generated in the previous step are used here for generating
samples from the state transition distribution.

ĉe importance weights calculation, which uses measurement data to assign weights to the particles, is
combined with sampling into a single CUDA kernel.

ĉemeasurement and control structures are directly passed to this kernel as parameters. ĉe CUDA com-
piler places these structures in constant memory, which is cached on each SM. In the applications we have
encountered so far, the measurement and control structures have easily ėt the constant memory (64KB). If
for a particular application, these data structures exceed the constant memory size, they need to be placed
either in texture memory or global memory.

As mentioned in the previous section, the pseudo-random numbers are generated prior to the execution
of this kernel. A pointer to the data structure holding these numbers is passed along to the kernel as well.

ǎ.ǋ.ǋ Local Sorting

Each particle ėlter needs to internally sort its particles according to their weights. ĉis serves two purposes:
First of all, for the particle exchange step, each particle ėlter needs to send its 𝑡 particles with the highest
weight, and for each neighbour, replace 𝑡 particles with the lowest weight with the particles received. Sec-
ondly, in order to determine the global estimate, the local winner from each block needs to be calculated.

Listing ǎ.ǋ: Particle Sort Kernel
__global__ void block_sort(

state* const d_particle_data_sorted,
float* const d_particle_weights,
const state* const d_particle_data_unsorted,
const int num_particles);

Weuse a bitonic sort [Batcher, 1968Batcher, 1968] implementation from theNVIDIACUDASDK,whichhas a complex-
ity of𝑂(𝑛 𝑙𝑜𝑔2(𝑛)). Bitonic sort is an example of a sorting network, whichuses a ėxed sequenceof comparisons
in order to sort the input. ĉis makes them aĨractive for parallel sorting.
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ĉe particles are generally too large to entirely ėt in shared memory. ĉerefore, we only store the weights
in shared memory and sort them separately. We keep track of the sorted indices with an index array (also
stored in shared memory). Once the weights are sorted, each thread reads from global memory from the
position stored in the indices array, and writes back to its own location. Recall from Chapter ǌChapter ǌ that in order
to achieve high memory throughput, all accesses need to be contiguous. ĉis is only the case for the writes.
Nevertheless, this allows us to apply our ėlter implementation to much larger problems.

As a result of not using sharedmemory for the actual particle data, we cannot sort the particle data in-place
in global memory. We need to allocate two arrays: one for holding the unsorted particles and another one for
the sorted particles. ĉis prevents any conĚict between reads and writes from different threads within each
block.

ǎ.ǋ.ǌ Global Estimate

For this step we need to implement a reduction operation in order to calculate an estimate given a probability
density function. Whether to use a weighted average of all the particle values or to choose the single most
representative particle as the estimate depends on the particular application. We consider the single particle
with the highest weight to be global estimate of the particle ėlter. In order to calculate this, we need to ėnd
the particle with the highest weight amongst the local winners from each particle ėlter.

To this end we use an external library called ĉrust . ĉrust is an STL-like library providing a high-level
interface for CUDA implementations ofmany useful algorithms. We use thrust::max_element() to
ėnd the particle with the highest weight amongst the local winners from each block.

ǎ.ǋ.Ǎ Exchange

Listing ǎ.ǌ: Particle Exchange Kernel
__global__ void exchange_ring(

const state_data d_particle_data,
float* const d_particle_weights,
const int num_particles,
const int num_blocks);

__global__ void exchange_2dtorus(
const state_data d_particle_data,
float* const d_particle_weights,
const int num_particles,
const int num_blocks);

ĉere are two parameters inĚuencing the behaviour of this kernel. ĉe particle ėlter network topology
determines which blocks exchange particles. We have implementations for the following networks: (i) Star,
(ii) Ring and (iii) 2D Torus. With the star topology, all blocks write their local winners to a global data
structure. ĉese particles are subsequently sorted, which determines the global estimate. Furthermore, all
blocks read the same particles back. Other topologies, such as the ring network, are more distributed in that
exchanged particles are unique to direct neighbouring blocks.

ĉere is also the parameter 𝑡, the number of exchanged particles, which determines howmany particles are
transferred in a single exchange step.

http://code.google.com/p/thrust/http://code.google.com/p/thrust/
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ǎ.ǋ.ǎ Resampling

Listing ǎ.Ǎ: Particle Resampling Kernel
__global__ void resampling(

const state_data d_particle_data,
const state_data d_particle_data_tmp,
const float* const d_particle_weights,
const float* const d_random,
const int num_particles,
const float resampling_freq);

ĉeresampling step generates a newparticle set by drawing randomly (with replacement) from the original
set according to the particle weights. In order to implement this, we ėrst need to calculate the cumulative
sum of all the weights within each thread block. Our implementation is based on the parallel preėx sum from
[Harris et al., 2007Harris et al., 2007] which consists of two steps: the up-sweep phase and the down-sweep phase. In the up-
sweep phase, the elements of the array are traversed “upwards” in a binary tree fashion in order to calculate
the partial sums. In the down-sweep phase, the tree is traversed back down to calculate the sums in place.
Both phases are logarithmic in time.

With the cumulative sum calculated, each threads picks a uniformly distributed number in the range of
[0, 1) (generated separately) and multiplies that with the total sum of the weights. With a custom binary
search implementation (also logarithmic), weėnd thehighest indexwith aweight non-larger than the random
selection. ĉis index points to the chosen particle.

Similar to the reasoning used in Section ǎ.ǋ.ǋSection ǎ.ǋ.ǋ for the sorting kernel, the actual particle data is not stored in
shared memory as it is not guaranteed to ėt. ĉerefore, the reads will be irregular and non-contiguous while
the writes remain contiguous and aligned.

ǎ.ǌ Generic Particle Filtering

Listing ǎ.ǎ: Model Speciėc Code
__device__ void sampling(

state* const particle_data,
const control control_data,
const float* const d_random,
const float dt);

__device__ float importance_weight(
const state* const particle_data,
const measurement measurement_data);

In this chapterwehave reviewedour implementationof thedistributedparticle ėlter algorithmon theGPU.
In order to be able to reuse this ėlter implementation for different applications we have tried to separate the
model-speciėc parts from generic ėlter code.

ĉe data structures needed to store the particle data as well as other model-speciėc elements (i.e. measure-
ment, control) are depicted in Listing ǎ.ǉListing ǎ.ǉ. From the kernels discussed in this chapter, the onlymodel-speciėc
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kernel is sampling_importance(). For convenience, this kernel calls two device functions which are
responsible for the actual calculations of the particle state (sampling) and the importanceweights. Listing ǎ.ǎListing ǎ.ǎ
shows the signature of these two device functions. ĉe complete implementation of the unicycle model for
our particle ėltering framework is presented in Appendix AAppendix A.

ĉere are a number of consideration for the implementation of custom applications with this framework:

• ĉere should be enough globalmemory available for allocating data structures for holding the pseudo-
random numbers, the weights and twice the particle data.

• ĉe measurement and control structures should together ėt into the constant memory.

• ĉe particle with the highest weight is considered to be the global estimate. Some additional steps are
needed if a particular applications needs to extractmore information from the particle population (e.g.
weighted average).
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Performance Analysis andOptimisations 7
ĉe GPU implementation of the generic particle ėltering framework is discussed in Chapter ǎChapter ǎ. In this chap-
ter, we evaluate the performance of the theGPU implementation using the robotic arm application, discussed
in Chapter ǍChapter Ǎ, on two CUDA enabled NVIDIA GPUs. Based on the results, we perform a number of optimi-
sations in order to improve the implementation efficiency.

First, in Section Ǐ.ǉSection Ǐ.ǉ, we discuss a performance model we use throughout this chapter for visualising the
performance of the different kernels. Next, in Section Ǐ.ǊSection Ǐ.Ǌ, we examine the performance of the basic imple-
mentation fromChapter ǎChapter ǎ and identify the boĨlenecks. In Section Ǐ.ǋSection Ǐ.ǋ, weperformanumber of optimisations
in order to improve the efficiency of the implementation. We examine the scalability of the ėlter implemen-
tation in a number of directions in Section Ǐ.ǌSection Ǐ.ǌ, and ėnally, in Section Ǐ.ǍSection Ǐ.Ǎ we will conclude this chapter.

Ǐ.ǉ PerformanceModel

In order to visualise the performance of our implementation, we use the rooĚinemodel [Williams et al., 2009Williams et al., 2009].
Focusing on Ěoating-point performance, the rooĚine model sets an upper bound on the performance given a
certain operational intensity. In contrast to arithmetic intensity, operational intensity refers to the number of
operations per byte of DĆM traffic, ignoring any traffic between the processor and the caches.

ĉe rooĚine is calculated according to:

AĨainable GFLOPs/sec = 𝑚𝑖𝑛(Peak Floating-Point Performance,
Peak Memory Bandwidth × Operational Intensity)

ĉe rooĚine is presented on a two-dimensional plot with the operational intensity on the x-axis and the
aĨainable GFLOPs on the y-axis. ĉe intersection point of the diagonal line (memory bound) and the hori-
zontal line (computation bound) represents the point of peak computation performance and memory band-
width. In order to ėnd theupper boundof the Ěoating-point performance for a given kernel, wedrawa vertical
line from its operational intensity. ĉe intersection point with the rooĚine represents the upper bound. If
this intersection point lies on the diagonal line, the kernel is memory bound on this platform, otherwise it is
computation bound.

Ǐ.ǉ.ǉ Platform Bounds

In order to draw an accurate rooĚine model for the GPU cards used in our experiments, we need to calculate
realistic upper bounds. We use a speciėc benchmark kernel in order tomeasure the aĨainable memory band-
width. ĉis kernel only issues aligned and contiguous memory accesses. ĉe achieved results relative to the
speciėcations of the hardware are presented in Table Ǐ.ǉTable Ǐ.ǉ.
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Figure Ǐ.ǉ: RooĚine Model

GPU AĨained Bandwidth Speciėed Bandwidth Ratio
GTX480 158.72 GB/s 177.4 GB/s 89.5%
GTX280 125.9 GB/s 141.7 GB/s 88.8%

Table Ǐ.ǉ: AĨained vs Speciėed Memory Bandwidth

In Chapter ǌChapter ǌ, we calculated different values for the overall instruction throughput for both the GTX480
and the GTX280 depending on whetherMAD instructions are executed (or dual-issuing on the SFUs for the
GTX280). Figure Ǐ.ǉFigure Ǐ.ǉ depicts the rooĚine model for the GTX480 and the GTX280. For both cards we have
drawn separate computation bounds depending on whether MAD instructions are being issued. We ignore
the GTX280 dual-issuing on the SFUs as it can only happen in limited circumstances which do not apply to
our implementation.

In the following section, we will identify the kernels contributing most to the total runtime and use the
rooĚine model to beĨer understand their behaviour.

Ǐ.Ǌ Baseline Performance

In this section we measure the runtime of the different parts of the particle ėlter algorithm using the robotic
arm application, as described in Chapter ǍChapter Ǎ. ĉeGPU implementation details are examined in Chapter ǎChapter ǎ. For
this experiment we use the ėlter and model parameters listed in Table Ǐ.ǊTable Ǐ.Ǌ.

ǋǐ ț.Ȗ Baseline Performance



Number of particles 512
Number of blocks 2048
Particle network conėguration Ring
Number of exchanged particles 1
Resampling frequency 1.0
Number of joints 5
State dimension (#joints + 4) 9

Table Ǐ.Ǌ: Parameters for performance measurements

ĉe timing measurements are done using a host CPU timer (based on gettimeofday()). ĉe results
were veriėed against the GPU execution times reported by the NVIDIA CUDA proėler. Table Ǐ.ǋTable Ǐ.ǋ presents
these results for both theGTX480 as well as the GTX280. From these results we can conclude that the global
reduction step (thrust::max_element) in order to determine the actual estimate as well as the particle ex-
change kernel do not signiėcantly contribute to the total runtime of the ėlter. Although we used a ring net-
work topology for this particular experiment, other network topologies (e.g. star, 2D torus) perform similarly.
While individual particle ėlter blocks only exchange a single particle in this experiment, other experiments
have shown that increasing the number of exchanged particles does not signiėcantly increase the runtime of
the particular kernel. ĉerefore, for the remainder of this chapter we will focus only on the PRNGs as well as
the following three kernels: sampling_importance(), block_sort() and resampling().

Kernel Runtime (μs) Contrib.
curand (xorwow) 819 5.70%
sampling_importance 5889 41.30%
block_sort 4984 35.00%
thrust::max_element 181 1.30%
exchange 45 0.30%
resampling 2329 16.30%
total 14247

(a)GTX480

Kernel Runtime (μs) Contrib.
curand (xorwow) 1310 4.90%
sampling_importance 9659 36.10%
block_sort 8185 30.60%
thrust::max_element 242 0.90%
exchange 151 0.60%
resampling 7238 27.00%
total 26785

(b)GTX280

Table Ǐ.ǋ: Breakdown

In the following sections we will further examine each of these steps in order to beĨer understand these
performance ėgures.
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Ǐ.Ǌ.ǉ Pseudo-RandomNumber Generators
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Figure Ǐ.Ǌ: Performance comparison of two PRNG implementations

One of the most crucial steps in the particle ėlter algorithm is the generation of pseudo-random numbers.
We discussed two PRNGs inChapter ǎChapter ǎ: (i)MTGP, an optimisedMersenneTwister CUDA implementation,
and (ii) xorwow, a Xorshiě-based PRNG from NVIDIA.In this experiment, we use both PRNGs to produce
a batch of standard normally distributed random numbers. As mentioned before, MTGP only produces uni-
formly distributed numbers. ĉerefore, we use a custom Box-Muller transformation in order to transform
these number into a normal distribution.

We have noticed that the batch size has a great inĚuence on the performance of both PRNGs. Figure Ǐ.ǊFigure Ǐ.Ǌ
presents the results of this experiment with different batch sizes. We expect xorwow to outperform MTGP
as it is a much simpler algorithm. ĉe experiment results conėrm this to be the case only for large batch
sizes. MTGP outperforms xorwow in all the test cases with smaller batch sizes. Since NVIDIA released their
xorwow implementation with the 3.2 release of CUDA in late 2010, future releasesmight be beĨer optimised
for smaller batch sizes.
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Ǐ.Ǌ.Ǌ Individual Kernel Analysis

Now that we have identiėed the main kernels which contribute to the overall runtime, we will examine each
kernel in detail. To this purpose we will calculate, for each kernel, the total number of bytes transferred from
and to global memory as well as the instruction count. ĉis allows us to calculate the utilisation of the GPU
resources, and to identify performance boĨlenecks.

In contrast to global memory traffic, it is muchmore difficult to come up with a deėnitive ėgure for the in-
struction count as a lot of the architectural features of modern GPUs are relatively unknown. Some features
of the GT200 (e.g. GTX280) have been uncovered through microbenchmarks [Wong et al., 2010Wong et al., 2010]. In par-
ticular, they have calculated the latencies and throughput of various Ěoating-point and integer instructions.
ĉe results of these benchmarks are limited to the GTX280. However, as the code for the microbenchmarks
is made available online , we have been able to run the benchmark code on the GTX480 with minor modiė-
cations.

ĉe results of our experiments with themicrobenchmark code formeasuring the throughput of the various
instructions are presented in Table Ǐ.ǌTable Ǐ.ǌ. ĉe measured throughput on the GTX280 is identical to those pre-
sented in [Wong et al., 2010Wong et al., 2010]. We have also extended the benchmark to additionally measure the throughput
of integer and Ěoating-point (Boolean) comparison operations.

throughput (ops/clock) throughput (ops/clock)
Instruction type GTX280 GTX480
fadd 7.9 28.1
fmul 11.2 28.1
iadd 7.9 16.0
imul 1.7 16.0
ixor 7.9 28.1
iand 7.9 28.1
__sinf() 2.0 4.0
__cosf() 2.0 4.0
__expf() 2.0 4.0
icmp 4.0 15.7
fcmp 2.7 15.7

Table Ǐ.ǌ: Instruction throughput microbenchmark results for GTX280 and GTX480

In order to calculate the total FLOP count when we are dealing with mixed integer and Ěoating-point op-
eration types, we use the measured throughput ėgures. ĉe Ěoating-point addition instruction is considered
a single FLOP while that of other instructions is scaled according to the relative difference in throughput.
Since we observe a different behaviour on the GTX480 for certain instruction types, we calculate separate
FLOP counts for each platform.

sampling_importance()

ĉe sampling_importance() kernel, as discussed in Chapter ǎChapter ǎ, calls twomodel-speciėc device func-
tions for updating the particles and calculating the weights. However, in order to negate any possible effects
of caching as both functions need to load certain particle variables, we have combined these two device func-
tions into one.

http://www.stuffedcow.net/research/cudabmkhttp://www.stuffedcow.net/research/cudabmk
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Figure Ǐ.ǋ: RooĚine Model and Baseline Results - GTX480

Each thread reads one instance of the state_data structure, and writes back an updated version. With
the chosen experiment parameters, this structure contains 9 single-precision Ěoating-point variables (36B).
For each state variable, we have a normally distributed random number (4B). Each thread also writes the
weight of the particle to global memory, which is again a single-precision Ěoating-point number (4B). ĉis
leads to a total of 36B + 36B = 72B of data read per thread and 36B + 4B = 40B of data wriĨen. ĉerefore,
we have, in total, 112B of read/writes per thread.

FLOP count FLOP count
Instruction type count (parametric) count GTX280 GTX480
fadd 12 + 6 × #joints 42 42 42
fmul 10 + 8 × #joints 50 ∼36 50
__sinf() #joints 5 ∼20 ∼36
__cosf() #joints 5 ∼20 ∼36
__expf() 1 1 ∼4 ∼8

total 122 172

Table Ǐ.Ǎ: Instruction count for the sampling_importance() kernel

ĉe instructions for the sampling_importance() kernel is listed in Table Ǐ.ǍTable Ǐ.Ǎ. ĉis operational
intensity is, according to these ėgures, 122

112 = 1.09 FLOPs/byte on the GTX280 and 172
112 = 1.54 FLOPs/byte

ǌǊ ț.Ȗ Baseline Performance
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Figure Ǐ.ǌ: RooĚine Model and Baseline Results - GTX280

on the GTX480. Both these ėgures are well below the point where the memory access latencies are hidden
by computation. ĉis kernel will ultimately be bound by the available memory throughput.

In order to ėgure our which rooĚine applies to this kernel, we examined the compiled binary using the
NVIDIA provided disassembler. We noticed a great number of MAD instructions (FMA instructions on
the GTX480) which can, in theory, run at twice the rate of other Ěoating-point instructions. Nevertheless,
because this kernel is ultimately memory bound, it does not change the predicted outcome.

ĉe results of our measurements are presented in Table Ǐ.ǐTable Ǐ.ǐ and Table Ǐ.ǑTable Ǐ.Ǒ and on the rooĚine model in
Figure Ǐ.ǋFigure Ǐ.ǋ and Figure Ǐ.ǌFigure Ǐ.ǌ. ĉe measured memory throughput on both cards is far lower than what we expect
to achieve. ĉe reason for this is that none of thememory accesses are coalesced. ĉerefore, all the read from
within a (half-)warp are serialised. In Section Ǐ.ǋ.ǉSection Ǐ.ǋ.ǉ, we will discuss our modiėcations in order to achieve
beĨer memory throughput.

Ǐ.Ǌ.ǋ Local sort kernel: block_sort()

block_sort() uses a bitonic sorting network in order to sort the particles within each block according to
their weight. Because thestate_data structure is not guaranteed to ėt the sharedmemory, we have opted
to store only theweights aswell as an index in sharedmemory. Once theweights are sorted, we apply the index
to the actual particle data. In our bitonic sorting network, each thread handles two particles. ĉerefore, each
threads needs to read 2× the state_data structure as well 2× the weight (float) and eventually write
them back to global memory. ĉis leads to a total of 160B read/writes per thread.

Table Ǐ.ǎTable Ǐ.ǎ presents the number of FLOPs per thread for this kernel. From this we can calculate the oper-
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FLOP count FLOP count
Instruction type count GTX280 GTX480
imul 53 ∼247 ∼94
iadd 90 90 ∼158
ixor 8 8 8
iand 53 53 53
icmp 53 ∼105 ∼95
fcmp 45 ∼132 ∼81

total 635 489

Table Ǐ.ǎ: Instruction count for the block_sort() kernel

ational intensity: 635
160 = 3.97 FLOPs/byte for the GTX280 and 489

160 = 3.06 FLOPs/byte for the GTX480.
In order to determine the computational bound for this kernel we examine whether MAD instructions are
issued. Unlike the sampling_importance() kernel, we encountered no MAD instructions when we
examined the CUDA binary with a disassembler. ĉerefore, we consider the lower rooĚine to be a realistic
upper bound for the performance of this kernel.

Although these ėgures suggest that this kernel is compute bound on the GTX280 and memory bound on
the GTX480, the irregular read access paĨerns prevent us from fully utilising the available memory band-
width.

ĉe experiment results are listed in Table Ǐ.ǐTable Ǐ.ǐ andTable Ǐ.ǑTable Ǐ.Ǒ. ĉese results are also visualised on the rooĚine
model in Figure Ǐ.ǋFigure Ǐ.ǋ and Figure Ǐ.ǌFigure Ǐ.ǌ. ĉese results indicate a very low memory bandwidth utilisation. As
mentioned above, irregular memory access paĨern prevents us from fully utilising the available bandwidth.
In Section Ǐ.ǋ.ǊSection Ǐ.ǋ.Ǌ, we will discuss the options for reducing the uncoalesced memory transaction overhead.

Ǐ.Ǌ.ǌ Resampling kernel: resampling()

Each thread in the resampling() kernel reads 3× float and 1 state_data structure and writes 1
state_data structure to global memory. ĉerefore, we have to total of 84B read/writes per thread.

FLOP count FLOP count
Instruction type count GTX280 GTX480
imul 108 ∼502 ∼190
iadd 108 108 ∼190
icmp 27 ∼54 ∼97
fmul 1 ∼1 1
fadd 18 18 18
fcmp 10 ∼30 ∼18

total 713 514

Table Ǐ.Ǐ: Instruction count for the resampling() kernel

ĉe number of instructions for this kernel is presented in Table Ǐ.ǏTable Ǐ.Ǐ. From this we can calculate the opera-
tional intensity for the GTX280 as 713

84 = 8.49 FLOPs/byte and for the GTX480 as 514
84 = 6.12 FLOPs/byte.

Similar to the block_sort() kernel, no MAD instructions are used, which results in this kernel being
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compute bound on both the GTX480 and GTX280. However, the memory accesses are highly irregular
and thus prevent from fully utilising the available bandwidth. ĉe experiment results listed in Table Ǐ.ǐTable Ǐ.ǐ and
Table Ǐ.ǑTable Ǐ.Ǒ as well as the rooĚinemodel in Figure Ǐ.ǋFigure Ǐ.ǋ and Figure Ǐ.ǌFigure Ǐ.ǌ conėrm this to be the case. Wewill discuss
optimising uncoalesced memory transactions in Section Ǐ.ǋ.ǊSection Ǐ.ǋ.Ǌ.

Kernel Runtime Mem throughput Mem Util Instr ĉroughput Instr Util
sampling_importance 5889 μs 18.57 GB/s 11.5% 28.52 GFLOP/s 2.1%
block_sort 4984 μs 15.68 GB/s 9.7% 47.91 GFLOP/s 7.1%
resampling 2329 μs 35.22 GB/s 21.8% 215.52 GFLOP/s 32.0%

Table Ǐ.ǐ: Memory and instruction throughput and utilisation - GTX480

Kernel Runtime Mem throughput Mem Util Instr ĉroughput Instr Util
sampling_importance 9659 μs 11.32 GB/s 9.0% 12.33 GFLOP/s 1.3%
block_sort 8185 μs 9.54 GB/s 7.6% 37.88 GFLOP/s 12.2%
resampling 7238 μs 11.33 GB/s 9.0% 96.20 GFLOP/s 30.9%

Table Ǐ.Ǒ: Memory and instruction throughput and utilisation - GTX280

Ǐ.ǋ Optimisations

ĉe analysis in the previous section indicates that even for compute bound kernels, irregular memory trans-
actions resulted in suboptimal performance. In this section we focus our aĨention speciėcally to memory
optimisations.

Ǐ.ǋ.ǉ EnablingMemory Coalescing

Recall from Chapter ǌChapter ǌ, where we discussed the technical details of the GPU architecture, that the optimum
memorybandwidth canonly be achieved ifmemory accesses followcertainpaĨernswhich allow for coalesced
memory loads. In this section, we will aĨempt to modify the memory layout of the data-structures to allow
for beĨer coalescing.

Depending on the particular GPU architecture, different requirements have to be met in order for global
memory accesseswithing a (half-)warp tobe coalesced. Fordeviceswith compute capability 1.3 (e.g.GTX280)
the word size needs to be either 1, 2, 4, 8 or 16 bytes and all the accessed elements within a half-warp need to
lie in a single segment (segment size is 32-128 bytes depending on the word size).

Coalescing in 2.x devices is quite different because of the L1 and L2 caches. Global memory requests are
broken down into 128-byte L1 cache requests. ĉere are no alignment requirements.

ĉe state_data structure which holds the particle data, even with a single joint, is larger than the
maximum word size for coalescing on 1.x devices. ĉerefore, we need to modify the way we store this data.
A common technique is to store the data in a Structure of Arrays (SoA) instead of the more obvious Array of
Structures (AoS). In this scheme, each member of the original structure is stored in a separate array. All the
variables in our model are of the type float (4B) which is guaranteed to be aligned, and therefore suitable
for coalesced reads and writes.
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Listing Ǐ.ǉ: Particle data stored in a SoA fashion
typedef struct _state
{

float* angles;
float* x;
float* y;
float* vX;
float* vY;

} state;

One particular thing we need to consider is that since the angles array is actually two-dimensional, we
need to store the angle values according to particle order and not angle order. ĉe reason for this is that
when all the threads from a single (half-)warp access a certain angle value, these reads must be contiguous
for coalescing. ĉe same reasoning holds for the array holding the generated random values.

Having discussed the SoA structure, we need to remember that from the three kernels discussed so far,
only the sampling_importance() kernel lends itself particularly well to coalescing. In this step, each
threads reads its own particle data and eventually writes it back without any communication with other
threads. ĉe other two kernels (block_sort(), and resampling()), however, have scaĨered read
paĨerns which are not suited for coalescing.

ĉe results of the experiments with the particle data stored in a SoA fashion are presented in Table Ǐ.ǉǈTable Ǐ.ǉǈ for
the GTX480 and in Table Ǐ.ǉǉTable Ǐ.ǉǉ for the GTX280.

Orig Opt1 Mem Mem Instr Instr
Kernel Runtime Runtime Speedup ĉroughput Util ĉroughput Util
sampl_imp 5889 μs 809 μs 7.28× 135.20 GB/s 83.7% 207.63 GFLOP/s 15.4%
block_srt 4984 μs 1928 μs 2.59× 40.52 GB/s 25.1% 123.84 GFLOP/s 18.4%
resampling 2329 μs 1463 μs 1.59× 56.07 GB/s 34.7% 343.10 GFLOP/s 51.0%
total 14247 μs 5296 μs 2.69×

Table Ǐ.ǉǈ: Memory optimisations: Speedup, throughput and utilisation - GTX480

Orig Opt1 Mem Mem Instr Instr
Kernel Runtime Runtime Speedup ĉroughput Util ĉroughput Util
sampl_imp 9659 μs 1038 μs 9.31× 105.37 GB/s 81.9% 114.78 GFLOP/s 18.5%
block_srt 8185 μs 6323 μs 1.29× 12.36 GB/s 9.8% 49.04 GFLOP/s 15.8%
resampling 7238 μs 5941 μs 1.22× 13.81 GB/s 11.0% 117.20 GFLOP/s 37.7%
total 26785 μs 14946 μs 1.79×

Table Ǐ.ǉǉ: Memory optimisations: Speedup, throughput and utilisation - GTX280

As expected, the sampling_importance() kernel beneėts the most from this particular optimisa-
tion. ĉe results show that, in this kernel, we are now utilising most of the available memory bandwidth. In
the following section, we will examine the ways we can optimise the other two kernels.
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Listing Ǐ.Ǌ: Particle data packed in float4s
typedef struct _state
{

float4* angles1;
float* angles2;
float4* pos;

} state;

Ǐ.ǋ.Ǌ Improving UncoalescedMemory Accesses

ĉe SoA structure discussed in the previous section had only a limited impact on the overall performance of
the implementation as two important kernels have scaĨered read access paĨerns.

Recall fromearlier discussion that globalmemory transactions have aminimumsize of 32 bytes. Whenever
we are reading scaĨeredfloats, we are effectively only using 1

4 of the available bandwidth. Oneway to reduce
this overhead is to store the data in 16 byte chunks. ĉis will reduce the overhead to 1

2 of the bandwidth. To
this purpose we will use the built-in CUDA vector type float4 vector types, although the same could also
be achieved with a custom structure and explicit alignment speciėers.

Wemodify thestate_data structure tousefloat4 for storing the aĨributes. Asmentioned inTable Ǐ.ǊTable Ǐ.Ǌ,
All the experiments in this chapter have been run with 5 joints for the robotic arm. ĉerefore we still end up
with a single float variable.

Opt1 Opt2 Mem Mem Instr Instr
Kernel Runtime Runtime Speedup ĉroughput Util ĉroughput Util
sampl_imp 809 μs 799 μs 1.01× 136.89 GB/s 84.7% 210.22 GFLOP/s 15.6%
block_srt 1928 μs 1924 μs 1.00× 40.61 GB/s 25.1% 124.10 GFLOP/s 18.5%
resampling 1463 μs 1536 μs 0.95× 53.41 GB/s 33.1% 326.79 GFLOP/s 48.6%
total 5296 μs 5312 μs 1.00×

Table Ǐ.ǉǊ: Uncoalesced memory optimisations: Speedup, throughput and utilisation - GTX480

Opt1 Opt2 Mem Mem Instr Instr
Kernel Runtime Runtime Speedup ĉroughput Util ĉroughput Util
sampl_imp 1038 μs 1466 μs 0.71× 74.61 GB/s 59.4% 81.27 GFLOP/s 13.1%
block_srt 6323 μs 4172 μs 1.52× 18.73 GB/s 14.9% 74.32 GFLOP/s 23.9%
resampling 5941 μs 2927 μs 2.03× 28.03 GB/s 22.3% 237.88 GFLOP/s 76.5%
total 14946 μs 10161 μs 1.47×

Table Ǐ.ǉǋ: Uncoalesced memory optimisations: Speedup, throughput and utilisation - GTX280

ĉe results of these modiėcations are presented in Table Ǐ.ǉǊTable Ǐ.ǉǊ and Table Ǐ.ǉǋTable Ǐ.ǉǋ. ĉese results, together with
the earlier discussed optimisations, are also visualised on the rooĚine model in Figure Ǐ.ǍFigure Ǐ.Ǎ and Figure Ǐ.ǎFigure Ǐ.ǎ.
With thesemodiėcations, we do not see any improvement on theGTX480, but as expected, on theGTX280,
the block_sort() and resampling() kernels beneėt the most from this memory layout. However,
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Figure Ǐ.Ǎ: RooĚine Model for Each Kernel - GTX480

on theGTX280, we observe a drop in performance in thesampling()where all memory accesses are coa-
lesced. Wewere able to reproduce this drop in performance on theGTX280with a simplefloat4_copy()
kernel which only copies float4 values from one array to another. We could only achieve 76% of the band-
width of a similar kernel which copied 4× floats. ĉis is consistent with the measured bandwidth for the
sampling() kernel. ĉis, however, does not occur with the float2 data type, nor on the GTX480.

In order to conėrmwhether irregular memory access paĨerns are actually causing any performance degra-
dation for block_sort() and resampling(), we modify both kernels to remove all irregular access
paĨerns. We are careful that none of the computations for sorting in the block_sort() kernel, and the
cumulative sum and binary search for the resampling() kernel are optimised away by the compiler. On
the GTX480 this reduces the runtime of block_sort() to 1427 μs and for the GTX280 to 3440 μs. ĉe
runtime of resampling() is reduced to 1051 μs on the GTX480 and to 1634 μs on the GTX280.

ĉese results, ėrst of all, indicate that the performance hit of irregular global memory reads is far greater
on the GTX280 than on the GTX480. ĉe sophisticated two-layer global memory caching on the Fermi
architecture clearly reduces the impact of scaĨered reads. More importantly, we can conclude from these
results that there are other factors contributing to the gap between the theoreticalmaximumand the achieved
throughput for these two kernels. Considering both these kernels extensively use the shared memory for
sorting as well as parallel scan implementations, it is the most likely place to ėnd potential inefficiencies.

In Chapter ǌChapter ǌ, we discussed that one ofmain issues regarding the use of sharedmemories are bank conĚicts.
If threads within a warp access memory locations on the same physical bank, a bank conĚict occurs and these
request are serialised. ĉeCUDAproėler fromNVIDIA canmeasure the number of occurred bank conĚicts.
Running the application through this proėler conėrms a large number of shared memory bank conĚicts for
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Figure Ǐ.ǎ: RooĚine Model for Each Kernel - GTX280

both the block_sort() and resampling() kernels. Solving this issue is much easier for the parallel
scan part where the access strides are much more regular. We do not, however, investigate this any further.

Ǐ.ǌ Scalability

In the previous sections, we have analysed the performance of the various parts of the particle ėlter algo-
rithm with a ėxed particle ėlter conėguration. We now explore the performance of our implementation un-
der varying conditions. We consider scaling in the following three directions: (i) number of particles per
ėlter, (ii) number of particle ėlter blocks, and (iii) state dimensions. ĉe results presented in this section are
obtained on the GTX480, although the same scaling trends can be observed on the GTX280 as well.

Ǐ.ǌ.ǉ Scaling the Number of Particles per Filter

ĉenumber of particles in a particle ėlter plays a crucial role in its estimation quality. In our distributed parti-
cle ėlter design, discussed in Chapter ǋChapter ǋ, we have introduced a two-level hierarchy for the particle population:
(i) groups of particles forming a particle ėlter block, and (ii) a network of smaller particle ėlters. ĉis design
was introduced in order to overcome the inherent limitation of scaling individual particle ėlter.

ĉe limited amount of sharedmemory and registers available to SMs, aswell as the limitationof the number
of threads within each thread-block are architectural constraints restricting the number of threads for each
particle ėlter block. Nevertheless, we examine the performance of our ėlter implementationwith the number
of particles ranging from 4 to 512. ĉe number of blocks is 2048.
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Figure Ǐ.Ǐ: Filter performance with varying number of particles per block

ĉe results presented in Figure Ǐ.ǏFigure Ǐ.Ǐ indicate that the compute-heavy sorting and resampling stages clearly
dominate the runtime when the number of particles increases. ĉe particle exchange as well as the global
search stages are, as expected, unaffected by the number of particles.

Ǐ.ǌ.Ǌ Scaling the Number of Particle Filter Blocks

In contrast to the number of particles per block, scaling the number of blocks is not bound by the same
limitations. ĉe usual boundary in this case is the amount of particle datawe can store on globalmemory. For
this experiment, we range the number of blocks from 4 to 2048. ĉe number of particles per thread remains
512 for the whole experiment. ĉe total number of particles, therefore, ranges from 2048 to 1048576.
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Figure Ǐ.ǐ: Filter performance with varying number of particle ėlter blocks
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Figure Ǐ.ǐFigure Ǐ.ǐ depicts the results of this experiment. As with the previous section, the compute-heavy sorting
and resampling stages dominate the runtime. ĉe results conėrm the runtime to scale linearly with respect
to the number of particle ėlter blocks.

Ǐ.ǌ.ǋ Scaling the State Dimensions

ĉe scaling directions discussed in the previous two section involved ėlter parameters. ĉere is, however,
another important aspect which is the model-speciėc part of the ėlter (the sampling_importance()
kernel). How efficiently this can be implemented on the GPU architecture depends on the model itself. ĉe
robotic arm application, used throughout this chapter, is particularlywell suited for this purpose. By adjusting
the number of joints of the robotic arm, we can simulate a smaller and/or larger problem. In this experiment,
the state dimension ranges from 8 (4 joints) to 48 (44 joints).
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Figure Ǐ.Ǒ: Filter performance with varying state dimensions

From the experiment results, presented in Figure Ǐ.ǑFigure Ǐ.Ǒ, we can conclude that with an increasing state dimen-
sion the efficient sampling_importance() becomes the dominant factor in the overall performance.
As the problem becomes more complex, the “ėltering” aspect becomes less relevant and the efficiency of the
model implementation determines the overall runtime.

Ǐ.Ǎ Discussion

In this chapter we examined the performance of our particle ėlter implementation on two GPU platforms.
Using the rooĚine model, we determined performance upper bounds for each kernel. ĉis enabled us to
identify major performance boĨlenecks.

Furthermore, we applied two memory optimisations in order to increase the implementation efficiency.
ĉe result of these two optimisations is a speedup of 2.69× for the GTX480 and 2.63× for the GTX280.

We analysed the scaling behaviour in three directions: (i) increasing the size of individual ėlters in the net-
work, (ii) increasing the number of ėlters in the network and (iii) increasing problem size (state dimensions).
ĉe size of each particle ėlter can only increase up to a certain point as a result of platform limitations. ĉe
number of particle ėlters, however, does not suffer from the same limitations. ĉe amount of global memory
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is the ėrst platform limit we encounter when scaling up the number of particle ėlters. ĉe runtime scales
linearly with respect to the number of particle ėlters. With an increasing problem size, the model-speciėc
sampling and weight calculations become the dominant factor in the total runtime. From this we can con-
clude that as the problem becomes more complex, the efficiency of the model implementation determines
the overall runtime.
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Filter Accuracy 8
In this chapterwe use the robotic arm application described inChapter ǍChapter Ǎ in order to examine the behaviour of
our particle ėlter implementation under different scenarios. We are mainly interested in the ėlter estimation
quality, and the effect of various model and ėlter parameters.

First, in Section ǐ.ǉSection ǐ.ǉ, we will discuss the overall experiment setup used throughout this chapter. Section ǐ.ǊSection ǐ.Ǌ
presents the experiment results for a standard centralised particle ėlter implementation as a baseline for the
other results, while Section ǐ.ǋSection ǐ.ǋ discusses that of our distributed particle ėlter implementation on the GPU.
We conclude this chapter in Section ǐ.ǌSection ǐ.ǌ with an analysis of the results presented in this chapter. Appendix BAppendix B
presents a detailed overview of the results of the experiments of this chapter.

ǐ.ǉ Filtering Scenario

We use the robotic arm application, described in Chapter ǍChapter Ǎ, for the experiments throughout this chapter in
order to examine the ėlter behaviour under different conditions. ĉe chosen parameters for this model are
listed in Table ǐ.ǉTable ǐ.ǉ.

Number of joints 5
State dimension (#joints + 4) 9
Arm length 0.5m

Table ǐ.ǉ: Robotic Arm Parameters

ĉe simulated noise parameters are listed in Table ǐ.ǊTable ǐ.Ǌ. All noise terms are chosen to be Gaussian. ĉis,
however, is not a restriction imposed by the particle ėlter.

𝜔𝜃 ຨ(0, 0.1) rad/s
𝜔𝑘 ຨ(0, 0.1) rad
𝜔𝑢𝑋 , 𝜔𝑢𝑌 , 𝜔𝑥, 𝜔𝑦 ຨ(0, 0.1) m
𝜔𝑣𝑋 , 𝜔𝑣𝑌 ຨ(0, 0.1) m/s

Table ǐ.Ǌ: Simulation Noise Parameters

ĉe object tracked by the camera follows a lemniscate path. ĉe ėlter is run at 25 Hz. In order to compare
different ėlter results, we calculate the estimation error 𝑒 according to:

𝑒 = (𝑥 − 𝜇)𝑇 𝐶−1(𝑥 − 𝜇)

Ǎǋ
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Figure ǐ.ǉ: Estimation Error for a Centralised Particle Filter

where 𝑥 is the state estimation vector, 𝜇 the actual state vector and 𝐶 is a diagonal matrix with the expected
standard deviations of the measurement errors. We consider 𝑒 < 1.0 to be an acceptable estimation error for
this experiment.

ǐ.Ǌ Centralised Particle Filter Results

In order to have a reference for the ėlter performance, we start with a standard Sequential Importance Re-
sampling particle ėlter implementation as depicted in Algorithm ǊAlgorithm Ǌ. We run this experiment with the number
of particle varying between 2 and 16384.

Figure ǐ.ǉFigure ǐ.ǉ presents the mean estimation error ± the standard deviation of 100 runs for each particle ėlter
conėguration. From these results it is clear that we need at least 4096 particles for an acceptable estimation.
Although this sequential particle ėlter implementation is not optimised, with even 8192 particles, it is, on a
modern desktop processor, a factor of 100 slower than what is needed for real-time estimation.

ǐ.ǋ Distributed Particle Filter Results

In this section wewill focus on theGPUparticle ėlter implementation discussed in Chapter ǎChapter ǎ andChapter ǏChapter Ǐ.
ĉe following ėlter parameters, explained in Section ǋ.ǌSection ǋ.ǌ, each inĚuence the ėlter estimation results in differ-
ent ways:

• Filter network topology

• Filter network dimension

• Number of exchanged particles

Ǎǌ Ȝ.ȗ Distributed Particle Filter Results
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Figure ǐ.Ǌ: Filtering scenario with a low number of particles

• Resampling frequency

With the exception of the ėrst two parameters, we consider each parameter in isolation in order to gain a
beĨer understanding of its implications for the ėltering process.

ǐ.ǋ.ǉ Filter Convergence

In this sectionwe discuss an experiment in order to examine the ėlter convergence. As discussed in the exper-
iment setup, the tracking object follows a lemniscate path. We initialise the ėlter to an incorrect state (one of
the foci of the lemniscate). ĉis experiment testswhether the ėlter converges to the actual path and can follow
the object through the curves. ĉe simulated noise terms are as described in Table ǐ.ǊTable ǐ.Ǌ. ĉe ėlter parameters
are listed in Table ǐ.ǋTable ǐ.ǋ.

Figure ǐ.ǊFigure ǐ.Ǌ depicts the results of this experiment in a low particle count seĨing (16 ėlters each running 16
particles), while Figure ǐ.ǋFigure ǐ.ǋ depicts those for a high particle count (256 ėlters each running 256 particles).
ĉese ėgures include a visual illustration of the actual and estimated object trajectory as well as the total
estimation error (including joint angle measurements). ĉis conėrms our earlier results that this particular

Ȝ Filter Accuracy ǍǍ
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Figure ǐ.ǋ: Filtering scenario with a high number of particles

problem requires a large number of particles for an accurate estimation, and furthermore, validates the ėlter
correctness.

ǐ.ǋ.Ǌ Filtering Frequency

One of our original goals was to enable real-time particle ėltering for complex estimation problems. ĉe
runtime performance of the particle ėlter depends not only on the application-speciėc model update and
importanceweight calculations, but also on the ėlter conėguration (e.g. number of concurrent ėlters, network
topology). Chapter ǏChapter Ǐ contains a detailed analysis on the performance of the various parts of the algorithm.

ĉe ėlter parameters are listed in Table ǐ.ǋTable ǐ.ǋ. ĉe number of particles for each particle ėlter is ėxed at 512,
while the number of ėlters ranges from 4 to 4096.

Figure ǐ.ǌFigure ǐ.ǌ presents the results in the form of maximum achievable frequency for two GPU platforms. ĉe
achievable frequency is well beyond the requirements for this experiment. We can reach 1KHz frequencies
with around 100000 particles in total.
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Filter network topology Ring
Number of exchanged particles 1
Resampling frequency 1.0

Table ǐ.ǋ: Particle Filter Parameters
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Figure ǐ.ǌ: Maximum achievable particle ėlter frequency

ǐ.ǋ.ǋ Filter Network Size and Topology

With centralised particle ėlters, the total number of particles is themost deėning parameter for the estimation
quality. ĉis is equally true for distributed particle ėlters. Complex estimation problems with a large dimen-
sional state vector require a huge number of particles in order for the random sampling process to produce
particles near the correct state. In this section we perform a number of experiments in order to determine the
behaviour of our distributed ėlter implementation with various ėlter dimensions.

Recall fromChapter ǋChapter ǋwherewe proposed a number of possible conėgurations for particle exchangewithin
the particle ėlter network. We have observed that the way particles are exchanged highly effects the ėlter
scaling behaviour. ĉerefore, we will study the effects of these two parameters together. We have chosen for
the following network topologies:

1. Star

2. Ring

Ȝ Filter Accuracy ǍǏ
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(b)Ring Network
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Figure ǐ.Ǎ: Estimation error with varying particle ėlter network size and topology
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3. 2D Torus

ĉe experiment setup is discussed in Section ǐ.ǉSection ǐ.ǉ. ĉe remaining ėlter parameters are chosen as follows:
number of exchanged particles 𝑡 = 1 and the resampling frequency 𝑟 = 1.0.

ĉe results of this experiment are presented in Figure ǐ.ǍFigure ǐ.Ǎ. ĉe presented estimation error is the average
error of 100 runs for each conėguration from the same simulation trace. From this we can clearly conclude
that the star network topology performs theworst. ĉe star network conėguration results in a loss of diversity
amongst the whole particle population as the same particles are fed into all ėlters. ĉis loss of diversity results
in a decreased ėlter performance.

ĉemost interesting observation fromboth the ring and 2D torus network is that in all cases, a low number
of particles can be compensated by adding more ėlters. ĉis validates our strategy of dividing larger particle
ėlters into a network of smaller ėlters. We also observe that with a low number of ėlters, the ring network
outperform the 2D torus, while, a large number of ėlters favours the 2D torus network. ĉe extra connections
present in the 2D torus network allow a faster propagation of more likely particles in larger networks, while
resulting in duplicate particles (and the loss of diversity) in smaller networks.

ǐ.ǋ.ǌ Particle Exchange

In this section we will examine the effects of the number of particles exchanged in each round 𝑡 on the ėlter
behaviour. To this end, we use the same robotic arm experiment with a ring network. ĉe estimation error
is calculated in the same fashion. We run this experiment for a number of different values for 𝑡, the number
of exchanged particles for each ėlter with its neighbours. In a ring network, each ėlter receives 2𝑡 particles
and sends back 𝑡 particles. In order to prevent neighbouring ėlters from overriding each others particles, the
number of particles for each ėlter, 𝑚, should be greater than the total number of particles sent and received:
𝑚 > 3𝑡. ĉerefore, certain parameter conėgurations are invalid.

Figure ǐ.ǎFigure ǐ.ǎ illustrates the results of this experiment. ĉe beneėts of particle exchange is evident when we
compare the results of the case where no particles are exchanged with the other results. Exchanging many
particles does offer some minor improvements, but exchanging a single particle is generally sufficient for the
likely particles to spread across the ėlter network.

ǐ.ǋ.Ǎ Resampling Frequency

We discussed resampling in Section Ǌ.ǋ.ǉSection Ǌ.ǋ.ǉ, where we mentioned the loss of diversity amongst the particle
population as one of its major implications. In order to determine the effects of sampling too oěen or too
liĨle, we run the same experiment from the two previous sections with different resampling frequencies 𝑟.
We run this experiment for a number of different values for 𝑟, ranging from 𝑟 = 0 (no resampling) to 𝑟 = 1
(always resampling). As with the previous two experiments, we calculate the average estimation error for 100
runs from the same trace for each conėguration.

ĉe results of this experiment are presented in Figure ǐ.ǏFigure ǐ.Ǐ. It is quite evident from these results that re-
sampling is an essential step to the whole particle ėltering process. When no resampling takes place, adding
more particles or ėlters does not improve the estimation signiėcantly. Even infrequent resampling greatly im-
proves the ėlter performance. ĉe optimum resampling frequency, however, depends on the ėlter network
size. Lower resampling frequencies favour low particle and low ėlter count seĨings (top leě corner in the
plots), while other combinations favour frequent resampling.
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(b)𝑡=1
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Figure ǐ.ǎ: Estimation error with varying number of exchanged particles
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Figure ǐ.Ǐ: Estimation error with varying resampling frequency
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ǐ.ǌ Discussion

In this chapter we examined various aspects of our particle ėlter implementation using the robotic arms ap-
plication discussed in Chapter ǍChapter Ǎ. Although unusable for any real-time purposes, the centralised particle ėlter
implementation serves as a baseline for the distributed particle ėlter results.

ĉe presented results conėrm our GPU implementation to be suitable for real-time estimation for even
larger problem sizes. Perhaps the most important results of this chapter is that, given a proper ėlter network
topology, a network of particle ėlters can match (or even outperform) a single large centralised particle ėlter.
Evenminimal communication amongst the individual ėlters is sufficient to spread likely particles throughout
the network.

ĉere is, however, not a clear optimal conėguration. Nevertheless, the general trend we have observed is
that in low particle seĨings infrequent resampling, limited communication and a low connectivity network
(e.g. ring) gives the best results. High particle seĨings tend to perform beĨer with amore connected network
(e.g. 2D torus), frequent resampling and increased communication.

ǎǊ Ȝ.Ș Discussion



Conclusions and FutureWork 9
Real-time particle ėltering, evenwith estimation problemswhich requiremillions of particles is possible with
current generation consumer-grade GPUs. ĉe results presented in this thesis aĨest to this. ĉe suitability
of the GPU for particular estimation problems also depends on problem-speciėc characteristics which are
orthogonal to the choice of ėlter type.

In this thesis we have analysed the particle ėlter, a powerful Monte Carlo based Bayesian estimation tech-
nique, in order to ėnd the right amount of parallelism for an efficient implementation on modern GPUs.
Based on an earlier work of [SimoneĨo and Keviczky, 2009SimoneĨo and Keviczky, 2009], we introduced algorithmic changes to the “clas-
sical” particle ėlter which allows for distributing the computation on separate execution units. Our modi-
ėcations are not speciėc to GPUs, and thus can be used for efficient implementations on other multi-core
platforms or even clusters.

With our changes to the particle ėlter algorithm, we introduced a number of parameters which affect the
behaviour of the ėlter. With a number of experiments, we have been able to quantify the effects of these
parameters, both on the estimation quality as well as the runtime.

We have analysed the performance of our GPU implementation, both analytically and empirically. Our
analytical models are based on calculating performance upper bounds according to the operational inten-
sity of the different kernels in our application. Empirically, we measured the effective utilisation of the GPU
resources (i.e. memory bandwidth and instruction throughput) on two GPUs from different hardware gen-
erations. Using these results as a guideline for optimisation targets, we managed to increase the efficiency of
our implementation using memory optimisations.

We believe this work can be extended in three directions. ĉe ėrst direction relates to the realisation of
our particle ėlter design on other hardware platforms. ĉese platform could range from conventional multi-
core processors to embedded platforms to grids. Each platform will present new challenges with regards to
performance portability.

Another direction for future work is case studies with different types of estimation problems. We expect to
gain a beĨer understanding of the particle ėlter design with data available from more experiments.

Yet another direction for further research is focusing on the implementation efficiency, as there are still a
number of kernels underutilising the available resources. ĉis requires a beĨer understanding of the GPU
hardware.

ǎǋ
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Unicycle Robot Localisation
Implementation A
ĉe unicycle robot localisation problem has been introduced in Chapter ǍChapter Ǎ. ĉe complete implementation of
this model for our CUDA-based particle ėltering framework is presented.

Listing A.ǉ: Unicycle Localisation Application

const int NUM_SENSORS = 16;

const float NOISE_VELOCITY = 0.2;
const float NOISE_ANGULAR_VELOCITY = 0.1;
const float NOISE_GAMMA = 0.01;

typedef struct _state
{

float x;
float y;
float theta;

}
state;

typedef struct _control
{

float velocity;
float angular_velocity;

}
control;

typedef struct _measurement
{

float distance[NUM_SENSORS];
}
measurement;

__device__ void sampling(
state* const particle_data,
const control control_data,
const float* const d_random,
const float dt)

{

ǎǑ



const float x = particle_data->x;
const float y = particle_data->y;
const float theta = particle_data->theta;

const float velocity = control_data.velocity +
NOISE_VELOCITY * d_random[0];

const float angular_velocity =
control_data.angular_velocity +
NOISE_ANGULAR_VELOCITY * d_random[1];

const float gamma = NOISE_GAMMA * d_random[2];

particle_data->x = x +
velocity / angular_velocity *
(sinf(theta+angular_velocity*dt) - sinf(theta));

particle_data->y = y -
velocity / angular_velocity *
(cosf(theta+angular_velocity*dt) - cosf(theta));

particle_data->theta = theta + angular_velocity*dt + gamma*dt;
}

__device__ float importance_weight(
const state* const particle_data,
const measurement measurement_data)

{
const float x = particle_data->x;
const float y = particle_data->y;

const float norm_factor =
1.0f / powf(2.0f*((float)M_PI), NUM_SENSORS/2);

float value=0;

for (int i=0; i<NUM_SENSORS; ++i)
{

const float d1=x-d_sensor_position_x[i];
const float d2=y-d_sensor_position_y[i];
const float d3= d_sensor_position_z[i];

const float vect=sqrtf(d1*d1+d2*d2+d3*d3) -
measurement_data.distance[i];

value += vect*vect;
}

return norm_factor*expf(-value);
}

Ǐǈ



Robotic Arm Filtering Results B
ĉe results presented here are obtained with the robotic arm application discussed in Chapter ǍChapter Ǎ. ĉe experi-
ment setup and parameters are presented in Chapter ǐChapter ǐ.

B.ǉ Centralised Particle Filter
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