trtAna

An 1mage triangulation
visualization and analysis tool

Final report
version 1.1

A bachelor project in cooperation with
University of Chile
Delft University of Technology

by
Thomas Schaap (#1150561)
Bruno Scheele (#1150588)

Supervisors

prof. dr. N. Hitschfeld Kahler (University of Chile)

drs. P.R. van Nieuwenhuizen (Delft University of Technology)
ir. M. Sepers (Delft University of Technology)

1

Preface

At the Delft University of Technology, students finish their bachelor studies of Computer Science
after completing their bachelor project, where they are able to demonstrate all the skills learned in
the previous three years of study.

For our bachelor project, the University of Chile has graciously accepted us to perform an
internship for prof. dr. N. Hitschfeld Kahler. Currently, she is researching a way to speed up image
analysis, by employing pre-generated triangulations in conjunction with the appropriate image,
instead of merely performing pixel calculations.

We spent a total of 10 weeks in the care of the University of Chile and prof. dr. N. Hitschfeld
Kahler, creating a plugin-based visualization and analysis program. This program will enable her to
reimplement her triangulation algorithm and create analyses of images more smoothly and with
direct, visual result.

We would like to thank both universities and prof. dr. N. Hitschfeld for the opportunity to study
abroad, improve our skills as computer science technicians and for their time in assisting us to
realise this project. We've learned a lot from this internship, both culturally and academically.
We'd also like to thank drs. P.R. van Nieuwenhuizen for his time and guidance during our project.

Delft, September 2007

Thomas Schaap
Bruno Scheele

Table of Contents

PLETACE. ...ttt b et h ettt ettt e e ebeeen 2
SUIMIMIATY ...ttt et e ettt e et e e ettt e et ee e st eeesaeeensaeeensaeeansaeeassaeanssaeansseeenssaeennsaeennseennnn 4
INEEOAUCTION. ...ttt sttt et b et sttt eb e e bt e s it e e e bt e e nateeeabeeeas 5
o 0 a (S (<] 010) AU USRS 6
ALY SIS ..ottt ettt ettt e bt e te et e e e ab e e bt e ehb e et e e eateenbeeehbeentee et e e e entbeeeennbeeas 8
USET QNALYSIS. ...eeeiiieeiiieeiieeeie e e eiee et e et e et e et e e et e e ssteeessaaeesaseeessseeeanseeasseeensseeensseesnseeeeanssssseeeens 8
FUNCHIONALIIEY ...ttt ettt b ettt e e e 9
D1 ¥ 1 SRR 11
(€ 15311 1 I (13 13 FO OO RURPRRRI 11
Desi@n OF the APL.....c..eiiee ettt s e e et e e e e e nanaaeae s 12
USET INTETTACE AESIZN. . .veviitiiiieiiiieete ettt sttt sttt et e e e e 14
FrameWOTK.....cc.ooiii ettt st 16
IMPIEMENTALION. ..c...etiiiiiiiiiiiete ettt ettt ettt e e sttt st sae e e 17
WOrKing @NVITONIMENL.cc.eieiiiriiieiierieeteeste et estteeteesteeesreeseessseesseessseeseessseesseessseenseesssseesensseens 17
PIOGIESS. ...t et s 17
FINAL TESULES. ...ttt ettt ettt ettt et e e et e e enteeeaneesnbeeenneeennne 19
REQUITEIMENLS. ...ttt ettt sttt ettt st be et e bt e e st eebne e e 19
OTIZINAL PIAN......eiiiiiiiiiciiee et ettt e b e e st e e b e e taeesbeesseeesseessseessseeeensseaeensseeas 19
EXtra fUnCIONAIILYccouiiiiiiiie et ettt ettt et e et e e as 20
DOCUIMENEALION. ...ttt ettt ettt et e bt e et e bt e sab e e bt e sateenaeeeabeeeas 20
EVATUALION. ...ttt e h e ettt e et e et e et e e bt e s abe et e e et e e snteeabeeeennees 22
WOTKING PrOCEAULIE.eeeiiiiieeiiieiieeiie ettt ettt ettt e et et e et e etaeesbeessaessbeesseessseensseeesnsaeaeensseeas 22
REQUITEIMENIES.iiieiiie ettt ettt e et e e et e e st e e e abeeesabeeessseeesbeeesseesnsssaeeeeeasnssaeeaens 22
PIANNING.eeiiieiiece ettt et ettt et e et e etteesbeesbaeesbeenbeeesbeenseeesbeensbeeeensaeeeennreeas 22
D Ty 4 s OO SP TSR 22
IMPIEMENEALION.eeuviieiiieiieeit ettt ettt et ettt et e et e e taeeebeesaeeesseensaessbeenseeesseeansseaeensseeas 23
Documentation and tESTINE.eeuieiiieiieiie ettt ettt ettt eb et e bt esbee e s b e e et e e e eaneeeas 23
WOTKING tOZETNET. ... eiiiiiiiiiiie ettt ettt e e e et e et e eseeenseeensaeeeensneeas 24
WOTKING @NVITONIMENL.cciiuiiiiiiieiiieeeiieeeiee et e esiteeeteeeetaeeebaeesbeeessseeessseeesseesnsseessseesesssssseeeens 24
COMCTIUSION. 1.ttt ettt et h et et a et e et eh e et e eateeb e et e e st e e bt enbeseeesbe et e eaeenseenneennnean 25
Recommendations t0 the UNIVEISILIES.ceuiiruiiiiieiieiiie ettt e e e e 25
GLOSSATY ...ttt ettt ettt et e ettt e et e et e e et e e bt e e sbeeaseeeaseenseeesbeeasaeeaseenbeeesbeenseeesbeenbeeenbeensaeeenraeens 26
Appendix A: USer's ManUal...........cccueiiiiiiiiiieeiiecciieeeiie ettt st s e e saee e e e snnnaeeaeeeennnnees 27
Appendix B: Developer's Manual............coociiiiiiiiiiiiiiieie ettt e 28
Appendix C: Examples' dOCUMENTAtION.cccuiiiiiiiieriiieciee ettt steeesaee e e e eeeeeeeennes 29
Appendix D: The UML-mMOdel Of trIANA.........ccceiiiiieiiiiiieie ettt e e 30
Appendix E: XML format for SAVE fIleS......ccuiiiiiiiiiiieciiicciie ettt 31

Summary

In this section, we'll give a summary of the report, reporting shortly what will be discussed in each
section in more detail.

First we give an introduction of our project, triAna. After that we give a progress report, detailing
our progress over the timeline and giving reasons for certain delays or changes in our planning.

The Analysis section shows the results of our user analysis. Four types of users have been found
that will use triAna, namely researchers, programmers, teachers and students. To accommodate the
needs of these user groups, we set up our functional requirements in which the main points are
opening and showing images, their triangulations and performing analysis on those triangulations
with visual feedback. triAna also has to be easily extensible and should be written properly
according to good programming practices.

While designing triAna, we primarily tackled the extensibility and designed the plugin structure.
For this structure, we had to decide what which amount of coupling we wanted for triAna. Because
triAna had to be easily extensible, this gave some problems considering what type of user interface
we should provide, but in the end we chose to let extensions provide their own parts forthe user
interface and to let the backend provide as much information as possible to extensions.

We designed the API with the above in mind. The handling of plugins, images and triangulations
would all be done with singleton classes which managed them. Furthermore we decided to define
the geometry in triAna and to not make this generic,meaning it can't be changed dynamically, since
that wouldn't be useful for the user and create unnecessary complexity.

The user interface was designed in such a way that the user would be able to decide how the
interface would look. All windows can be rearranged as the user himself desires.

The implementation of triAna was only done for Linux, as support for Windows was too difficult.
The programming was done using Qt 4 libraries, which supported plugins, events and a simple way
to implement powerful user interfaces. We did a fair amount of unit testing during the
implementation, which helped significantly in finding and fixing bugs before they proved to be a
big problem.

We've tried to resolve an issue with the slow rendering of large triangulations by adding a feature
that lets the user himself decide when to update the view. This did not fix the issue, but it was a
good workaround.

After this, we optimized certain algorithms to speed up the analysis and we've improved existing
user interfaces and other features.

At the end of the project, we've completed all the requirements prof. dr. N. Hitschfeld Kahler had
set for triAna. Although we couldn't implement some of the features we initially planned for triAna,
we did implement several extra features, which improved the functionality significantly.

We've written documentation for the code, manuals for both the users and developers and written
examples that the developers can use to implement new plugins for triAna.

In hindsight we have seen that several things have gone slightly awry: the planning of the testing
phase was wrong, some design details should have been resolved much earlier and it took us quite
some time until we'd figured out how to exactly make sure we were both thinking along the same
lines. In the end these issues have not withheld us from reaching our goal and we consider the
project to be a succes. We've delivered a well working version of triAna which will enable prof. N.
Hitschfeld Kahler to improve her research significantly.

Introduction

At the University of Chile, prof. dr. N. Hitschfeld Kahler is conducting research on the automatic
generation of meshes in both 2D- and 3D-environments based on images or 3D-models.

At the moment she is researching the analysis of images of tree stems by generating 2D meshes of
triangles (triangulations) over the image and retrieving data based on these triangulations and the
image, for example the amount of tree rings and specific data about the climate in the region from
where the tree originated. The analyses performed using this method could be faster than
performing them using traditional pixel calculations.

However, the current tools that are available for research are inadequate in three aspects. First of all,
they're simplistic, non-intuitive tools that aren't designed for useful interaction but only create a
single, simple output. They lack any kind of advanced functionality that could help speed up the
research. Secondly, the program has little extendability and reusability, meaning it's difficult to
improve the functionality and to modify it for different research within the same domain. And
lastly, the triangulation algorithm and tools were produced as research for the Integrated Systems
Laboratory (IIS), ETH Ziirich, who retain ownership of them. This means that prof. N. Hitschfeld
Kahler currently doesn't have the required permissions to continue her research with the current
tools.

Our job was to create a visual tool which solved the previously mentioned weaknesses and which
would enable an easy way to integrate a new triangulation algorithm and implement new tools to
analyse the triangulations in conjunction with the images. We've named the program 'triAna’, short
for 'triangulation analysis'.

This report will discuss the process and results of our project. First we'll give a progress report of
the entire project. The analysis of the requirements and the design of triAna will be discussed in the
consequent chapters. The implementation and its problems and solutions will be discussed
thereafter.

Finally we'll discuss the results of the project and do an evaluation. Afterwards, we'll offer some
closing remarks and a few recommendations to the universities.

Progress report

This bachelor project has been done at the University of Chile. At this university prof. dr. N.
Hitschfeld Kahler researches the uses of triangulations of images. She did not have a good way to
analyse them and during our first contact it became evident we could help her out by creating such a
way.

The first week at the University of Chile has mostly been used to get a clear view of the
requirements for a program that would enable such analysis. During this week we have not only
talked to prof. dr. N. Hitschfeld Kahler to get a good idea of what she wanted, but we've also been
brainstorming how to complement her requests to a complete set of requirements.

With the requirements complete, we've spent a couple of weeks designing what was to become
triAna. Many choices needed to be taken and quite some questions still required answers. This has
been the case until near the end of the project. Especially the way of representing complex
selections turned out to be very challenging up to the very last minute.

One of the first challenges in the design was found when thinking about the connection between the
user interface and the backend. Several options were available, allowing more and less flexibility
and, conversely, usability. A choice was made to allow plugins to dictate a small part of the user
interface, but to have the interface mostly dictate its own presentation.

A lot of time went into designing the backend of triAna. It is really the core of the complete
program, in terms of actual functionality, and is used as a library. Hence good consideration was
needed in its design. No big hurdles have been found here, although the final API has not been
made stable until a few weeks before the end of the project.

Another part of the design was the visual design: how will the user interface look like? As stated
before, this turned out to be a real challenge. A lot of things were rather straightforward and,
researching a little for best practices and some usability studies, several were resolved in a very
useful way. A few questions, however, have remained for a long time.

With the initial design laid out, the implementation was started. Several components of the system
had to be made. The backend was done very quickly in a first version, but has been developed
further throughout the project. During the development of the backend, testing was immediately
done to ensure the quality of the backend. The user interface slowly marched on, requiring more
and more complex parts. Two new Qt-widgets have been created for use with the interface, one of
which had to be thrown away when the idea it was based on was thrown away as well.

Plugin-development has been started nearly at the same moment the backend supported them. A lot
of plugins have been added in a late stage, since other parts had priority before that time and the
API for the plugins was not completely stable yet. And still, even when all plugins had been made,
changes were once again needed.

During the development several design issues and some requirement issues came up again. The
plugin structure turned out to require too much hassle and several times the API, as it was designed,
turned out not to be sufficient. Especially the changes to the actual API have changed the final
design a lot, although all principal choices concerning the backend have been retained. The
requirements have caused friction with the implementation at a few occasions, but none have not
been implemented because of this.

Towards the end more and more testing and refining of code was done, alongside the further
development of the code. Small details, such as installation instructions and licenses, have been
added during the last few weeks, creating a complete product that is ready for use by other people.

It turned out to be impossible for prof. dr. N. Hitschfeld Kahler to use the product before the end of
our stay in Chile, so no direct feedback was incorporated into the program. Many tests have been
done to ensure good functioning of the code and while testing systematically many bugs have been
found and removed.

We have always tried to adhere to the original planning of the project but due to mixing of some
stages, such as early testing, this planning has not been kept entirely. A few things that were
supposed to be done at the end turned out to be too much. The most important of these is the
concurrent visualization of multiple selections. One of the causes of a lack of time for these is the
time-intensive creation of a Qt-widget that was thrown away. Another cause is the long doubt over
representing and using complex selections. Had this been resolved earlier a lot of unnecessary work
and thinking could have been avoided and some extra work might have been possible.

Analysis

This section describes the analysis done to gain all the information needed for the design of triAna.
It will start with a user analysis, analyzing the different types of groups that will make use of the
program and a short description of the main goals that had to be met. Afterwards we will describe
the necessary functionality and show the initial list of requirements we made.

User analysis

After our first meeting with prof. dr. N. Hitschfeld Kahler, we established the following four user
groups that will make use of triAna. First we'll give a short description of the user groups.

Researchers
Main user group, use triAna to conduct their research on analysing generated meshes.
Programmers
Add functionality after release of triAna.
Teachers
Use triAna to educate students in the creation of proper programs.
Students
Will use triAna for their education. Will overlap with Teachers group and may overlap
with Programmers group.

Each of the user groups will have specific needs that have to be met by triAna, as listed below.

Researchers will use triAna as a generating and analysis tool. Therefore they need to:
« be able to import graphics
- generate meshes based on the imported graphics and (user-inputted) parameters
- analyse meshes by using provided functions
- generate output based on their analysis

Programmers will want to add functionality to triAna, preferably without changing (a lot) of the
source code. Therefore triAna should be written with the following goals in mind:
- all functions should be as extensible as possible
- the extra functions should be dynamically loadable, so the main source code doesn't have to
be changed
+ the code should adhere to proper programming practices (neat code, useful comments,
including proper documentation)

Teachers try to educate students, unwilling as they may be. Because triAna will function within
university context, it can also be used to show students a practical example of a completed program.
Therefore the following should apply to triAna:
- it has to be coded using proper programming practices (neat code, useful comments,
including proper documentation)
- the user interface should be easy to understand and to use

Students study computer science or something relevant and therefore will encounter triAna as a
practical example of a completed program, usually because the teacher shows it to them. Because
the students will have to study the code and practice writing computer programs using triAna as an
example, the same goals should be met as in the programmers and the teachers group.

Functionality

Taking into account the previous analysis, we had do make sure that triAna provided the
functionality described below.

The main function of triAna is the analysis of an image and triangulation pair. TriAna should accept
two files as input: an image and a grid-file containing the triangulation. Both file-formats had
already been provided. The user had to be able to open the files, view them and make selections of
triangles based on certain criteria. Viewing the files would result in an overlayed view in which
both the triangulation and image are visible. The selections will be used to analyse the
triangulations. An example of this is drawing all triangles with a very small area in purple. The
criteria to select the triangles will be chosen by the user.

It would also be possible to open only an image and run the triangulation algorithm, provided by
prof. dr. N. Hitschfeld Kahler, to generate an appropriate triangulation. The algorithm would
operate automatically on the image and only output the resulting triangulation to triAna.

Afterwards the user would be able to analyse the triangulation and create specific forms of output
based on the analysis.

Examples of user input for the analysis are selecting all triangles that have an area bigger than 4.8
pixels, selecting all triangles that have an edge with length bigger than 4.8, coloring all triangles
according to the average color value of the pixels in a triangle, etc. Examples for the analysis based
outputs are creating polylines around the selected triangles or drawing the selected triangles in

purple.

triAna also had to be easily extensible, preferably without changing much of the source code. The
program should ideally be extensible with plugins which require no changing of the source code at
all. This required the program to be written dynamically and with proper documentation to facilitate
these extensions.

Examples of extensions that were planned were support for more image formats in addition to the
one currently employed by prof. dr. N. Hitschfeld Kahler. There was also a need for more advanced
analysis and output extensions.

The goals that have to be met by the Teachers and Students groups are easily achieved. They
require that triAna is coded properly and understandable.

Below is the point-wise list of all the functionality we initially had set as required for triAna:
+ Loading and viewing of files
m Loading and viewing images
Searching automatically for currently supported image formats
Support for Portable Graymap (.pgm) format
m Loading any triangulation grid file and viewing it as an overlay over the current image
Searching automatically for currently supported triangulation formats
Support for .tri format
+ Generating triangulations
m Generate a triangulation based on a loaded image with prof. dr. N. Hitschfeld Kahler's
algorithm using default settings
+ Creating selections of triangles
m Select triangles based on area
m Select triangles based on edge length
m Select triangles based on both area and edge length
m Being able to save and load selections

+ Outputting results
m Visual representation of the selections.

Loaded image is background

Triangulation is overlayed upon image

Selections are overlayed upon both image and triangulation
Visualizing multiple selections at once

m Saving and loading outputs
+ Extensibility

m [t will be possible to add extensions to triAna without changing the source code:

For loading more image formats

For loading more triangulation formats

For making selections based on different user-criteria
For outputting the images, triangulations and selections
e To other types of files

e In other ways to the viewer in triAna

10

Design

This section will describe the design of triAna. The design decisions have been based upon the
requirement analysis, further conversations with prof. dr. N. Hitschfeld Kahler and brainstorming
sessions. This section documents all such decisions and their alternatives as well as the rationale for
the chosen alternative.

General design

The first step in the design was looking at the program from a bird's view. How would the program
be structured? How modular or monolithic would it be? Where did other parties have to be able to
hook in? There weren't many questions to be answered, since the requirements told us a lot already.
Nonetheless some doubts remained.

First of all the points where other parties would be able to hook into the program. The requirements
already told us a plugin structure was required for image- and triangulation formats, selection-
criteria and output based on those selections. So the end-user had to be able to tweak quite a
substantial part of the program.

During one of our conversations, prof. dr. N. Hitschfeld Kahler gave the example of eventually
providing functionality to automatically recognise specific features, like tree rings from photos of
trees, to companies in order for them to work with the data. So apparently some form of automation
(batch processing) could be needed later in the lifecycle of triAna. This left us with the question
whether this should be taken into account and how we would take it into account. The general
alternatives concerning automation are:
1. Don't take automation into account;
2. Take automation into account by allowing it to take over the user interface;
3. Take automation into account by allowing it to give parameters the user interface can
automatically use to do the task;
4. Take automation into account by allowing it to give it's own interface or let it remove
interfaces completely.
Looking at these alternatives questions about how the user interface interacts with the actual
functionality of the program already came to mind. Since these questions were also important, and
more pressing at that time, we took a look at those first.

The interaction between user interface and actual functionality has historically been done in a
couple of different ways:
1. The user interface holds all functionality;
2. The user interface knows about all functionality, but the functionality itself is encapsulated
in different classes;
3. The user interface knows about functionality and the encapsulation of functionality and can
query the encapsulating classes for more information about available functionality;
4. The user interface is dictated by the functionality itself.
The most important issue that played here is coupling. The alternatives are actually ordered by their
amount of coupling: alternative 1 has a very high coupling, while making it very easy to adapt user
interface and functionality to each other, and alternative 4 has very low coupling, while making it
very hard for a user interface to control the way the user works, since it's being dictated by the
functionality (i.e. the functionality provides most parts of the interface).

High extensibility was one of the major requirements for triAna. This meant that it wasn't possible

11

to determine beforehand how the user interface would look and what kind of components would be
needed at a time for a particular user. This became most clear when thinking about visualisations
and criteria: criteria will need parameters to be set and will thus want to interact with the user and
visualisations might want to show many useful statistics to the user, such as diagrams showing
color-distribution within a selection or statistical analysis of a selection. Such extensions that wish
to interact closely with the user can be very useful, but also require the interface to either know
about them beforehand or allow them to change the user interface. Since we did not know what
extensions would be available by the end of the project and beyond that, we couldn't incorporate
them directly into the user interface. We needed some way to allow extensions to influence the user
interface. Alternatives 1 and 2 thus became impossible: developers don't know about all
functionality, let alone the interface they'll develop.

Another requirement that has been mentioned during the requirement analysis was usability.
Usability means building a good user interface that's understandable and intuitive for the user. The
most perfect situation for this to be possible is when all functionality is known to the developer of
the user interface: he can then make the best choices for the interface. This collides head on with the
need to have an extensible interface, though.

Since both requirements, being extensible and being usable, are definitely there a path in between
had to be found. The best way seemed to be to let the user interface know as much about the
structure of the functionality as possible and allow the extensions to tell the interface how to display
specific parts.

Having decided on this decoupling of interface and functionality, we could rethink our question
about automation. Since the interface and functionality would be set apart, automation shouldn't
have to be too difficult: we could simply replace the interactive user interface with an automated
interface and do whatever is necessary to do; the functionality won't really know the difference
unless it's truly dependent on the interaction with the user.

Allowing the user interface to be replaced by an arbitrary other interface (be it interactive or
automated) also meant the program could be used by many different types of users by simply
building a different interface for them. This means that triAna won't need to remain a tool purely for
science, but can also be used by others to actually do some work.

An added advantage to this approach would be an inherent increase in quality of the functionality:
since extensions are now forced to interact in an interface-independent manner (of course excluding
such visualisations as diagrams, who really need an interface) they have to be well thought out and
will hence behave and function better, adding to the usefulness of triAna.

Allowing automation by allowing the interface to be replaced seemed like the best idea. It did call
for a way to let the interface and actual functionality communicate. This could be made possible by
allowing the interface to talk to the different components of the functionality, effectively creating an
API for the interface to use.

Design of the API

The API of triAna holds the core functionality. It is the point of entry for external parties to add
their own parts to triAna. This put some heavy requirements on the API's shoulders. Most
importantly the API needed to keep track of everything that's connected to it in order to use it. It
would also provide the functionality of all internal and extensible functions in a uniform way to
those who need it.

At its core, the API would need to be able to handle all extensions to triAna. This concerned all
extensions to image formats, triangulation formats, selection-criteria and outputs. There wasn't
much doubt over how to do this: plugins traditionally provide an excellent extension scheme for
applications. Considering memory-management and administration, managing the plugins is a task

12

that should be done centrally. Hence it was only logical to make the manager a singleton.

Searching for the available image and triangulation formats was another task for the API, closely
related to plugin management. Two singleton classes would handle these tasks. They would be
different classes, since their functions are distinct enough from managing plugins and distinct
enough from each other not to put them into the same class. They should be singletons since
searching for an available plugin is a task that only uses the manager of plugins and the plugins
themselves. It makes absolutely no sense to have more than one of these around, even when having
more than one instance of triAna opened: the added functionality when one user loads a plugin is
only a free bonus to the other user.

The functionality of triAna is all about triangulations. Hence it's rather useful to have a way to
describe the geometry of such a triangulation. It was only logical to have the API take care of this.
A consideration we made is the mutability of such a geometry. It would have been nice for some
extensions to be able to change the geometry. Then again, that would add a lot of complexity to the
geometry and could potentially confuse future extensions, up to the dangerous level, even, where
one changes the geometry because another changed it, who will change it because the other changed
it, etcetera in a vicious cycle. Taking into consideration that analysing the geometry usually only is
useful on the initially generated geometry, we couldn't think of any use-cases where changing the
geometry is necessary. Therefore we decided to create the geometry in a immutable way and to
disallow any changes to take place once the geometry has been created.

The interface-independence of the API meant the geometry can't hold any data concerning its
representation (presentation of vertices, the thickness of edges, the color of triangles, etc.) This
actually held a challenge, since that would mean that only the interface knows about representation,
which in turn meant that extensions wishing to change the representation would need to know about
the interface, which is impossible due to the interfaces interchangeable nature. This challenge could
have been solved in different ways:

1. Dropping the decoupling of interface and API;

2. Dictating the number of ways an extension can influence appearance of geometry;

3. Disallowing extensions to influence appearance of geometry.
It's rather apparent from this list which approach we chose for our design. Alternative 1 goes
straight against the previous decision to actually decouple interface and API. Alternative 3 makes
one of the requirements (letting extenstions alter the visual output of triangulations) impossible to
fulfill. Alternative 2 seems very restrictive, but isn't so that much. Adding many ways of
influencing appearance is useless, since the user wouldn't be able to distinguish between the
different appearances if there is too much detail. Also, there are only a limited number of ways in
which a single part of a triangle can be displayed with any significanct difference.
An important addition to dictating the ways in which geometry appearance can be influenced was
dictating that interfaces are free to choose whether to actually use the representation. This allows,
for example, automated interfaces to ignore such effects and interfaces for color-blind to use a
different means of visualising color.
The logical location for this type of data to be placed is in the geometry itself. One might argue that
combining data and its representation is a bad thing, but not only are these representation properties
abstracted, a separation of the data and representation will result in the representation being held in
almost the same way as the data: divided in points, edges and triangles. Hence separation would
give a lot of overhead, while the usual benefits of separation, ease of change, is absent. This lead us
to believe it's best to hold the abstracted representation properties in the geometry itself.

At the core of the work of a user of triAna is the analysis of a triangulation. Analysing a

13

triangulation will mean combining selection-criteria and generating some output based on them. To
enable this in the API we built a combination class, which allows the interface to easily combine
selection criteria and output and to operate on them. Such an object would make building an
interface much easier, which would translate in decreased complexity and code duplication in the
interfaces.

Earlier it was decided to decouple the interface and API, but to allow extensions to influence the
interface to interact with the user. The way this would be done is by allowing extensions to provide
the interface with a widget that can be displayed to the user. In order to allow automated and other
different interfaces to function, the restriction has been made that every option and output should be
made available in a programmatic way as well, so the user interface can query and change said
options without the need for a visual interface or user interference.

We've created a UML-model of the classes in the backend on which we based our initial
implementation. During implementation, we came across several design issues, which required the
programming of additional classes or methods. We've kept the model updated during these changes.
The model in appendix D is designed to be read with the documentation, detailing only the classes,
their relations and their public methods. The exception to the latter are the protected methods of the
plugin interfaces, which are also listed.

User interface design

Despite allowing different interfaces to be used with triAna, we were to build an interface ourselves
which would allow for interactive use of the application to actively do research on triangulations.

While we wanted users that are unfamiliar with triAna to be able to work with it, we did expect all
different user groups expected to work with triAna (previously mentioned in the analysis section) to
have basic knowledge about the research and its terminology and to have a basic knowledge about
computer programs as well. It wouldn't be beneficial for the research to base the user interface on
the assumption that a user who is only vaguely familiar with the research and has little to no
experience with computers to have to be able to work with triAna.

Experience also points out that users have a lot of different ideas about the proper layout of a
program. This makes it difficult to effectively design a layout that is consistent with the needs of
most individual users. Users want to be able to customize their program to their own needs.

Under these assumptions, we defined the goals for triAna's user interface to be as follows:

* The user interface has to be relatively easy to understand and use for users familiair with the
triangulation research;

* The user interface has to be customizable to adapt to the needs of different users.

To reach these goals, we decided to model the user interface with a desk metaphor (as shown in

illustration 1). This means that the user will work on a desk, with the main worksheet of his focus

(the picture to be triangulated) in the center of his workspace and all his tools (the extensions that

do the analysis) layed out around the worksheet in a way that the user prefers.

14

Figure 1: Desk Metaphor

Thus, we designed triAna around a main worksheet (illustration 2)
that will contain the image to be analysed. All the needed
extensions would have their own toolbox which contains all their
functionality. These toolboxes (illustrations 3a and 3b) could be
moved around the screen independently and positioned any way
the user wants.

It had to be possible to add and remove loaded toolboxes as
needed and to add new toolboxes, should the need arise.

Any user configuration could be saved and loaded, to prevent the
user from having to setup the application every time when he
restarts it.

@ Area between

Min: mg

{1 Areaequal ko mg

Edage lenagth

Tree Colar

Figure 3a: An example of an

Figure 3b: An example of an

extension in a toolbox

extension in a toolbox

Aside from user configurations of the layout being saved, it also had to be possible to save sessions.
Sessions are defined as the current state of the program, meaning a user can save and load all

progress made during one session.

15

Framework

In the design several issues have not been thought out. One example of this is the use of plugins.
Plugins can be rather hard to implement, especially if they're to be loaded dynamically. Another

thing that has not been mentioned, but has been showed, is the widget framework used for triAna.

We decided to use Qt 4 shortly after the first conversations with prof. dr. N. Hitchfeld Kahler.
Thomas already had experience with the framework and prof. dr. N. Hitschfeld Kahler was also
familiar with it. It has a lot of functionality incorporated that we needed, such as plugin
management, widgets and events. It also provides complete platform-independence.

Figure 4: Example of a saved layout

16

Implementation

During the implementation phase the code was written that constitutes triAna. During this phase
several steps were taken ahead, such as testing and documentation, especially since the code was
almost directly used again in other parts of the system. Hence the need for tested code and
documentation became evident rather early.

Not all of the design turned out to be completely correct, which became a hurdle at times. The most
sensible solution at these times was to simply change the design. Therefore the original design is no
longer the actual design that has been implemented. The general structure has remained the same,
though.

Working environment

We used our own laptops for development of the code. We were offered computers from the
university, but using our own systems seemed the better idea, since we could easily build a
development environment on it and test as much as we wanted to. At first we used a dual
environment, partly Microsoft Windows and partly Linux, but since support for Microsoft Windows
turned out to cost a lot of time and was not required, we switched to Linux only after a few weeks
of development.

To keep work ordered and make working together more easy, we've used subversion for the source-
code, keeping revisions and merging changes when changing the same file. The last function was
especially useful for the large files of the user interface.

Progress

The first that had to be done was creating a working backend. The backend is the part of triAna that
does the actual calculations on triangulations. These calculations were to be placed in plugins,
which would be loaded and used by the backend. After setting up the build environment, consisting
of CMake with gcc and the Qt 4 libraries, the backend was implemented in its first version within a
week. Some tests had already emerged by that time, especially testing generic plugin functionality
and the geometry classes.

With the first version of the backend in place, development of the plugins, and especially the input
plugins, was started while work also began on creating an interface. A widget was developed to
contain the plugins in a useable way. This widget turned out to be both a failure and not a useable
way at all. This is due to the questions about using and showing complex selections, which were
still not resolved by this time. Alas it had also cost a lot of time, mostly because it was derived from
another Qt widget, which is declared privately for more than 50 percent, making it impossible to
simply extend it. Integration of such highly customized widgets into the user interface builder and
compiler of Qt turned out to be very difficult as well.

With the backend slowly improving over time some problems were encountered in the first version
and partly also in the design. Especially the structure of the plugins has had a few revamps: missing
functionality, misplaced responsibilities and incorrect object-management were the most common
errors.

Nearly three weeks into development the created widget was added to the user interface. Initially

this seemed to be a success and at least development could go on. In the meantime plugins kept
emerging and improving. Also, since it was being used more and more, the backend received more

17

and more bugfixes in the complex classes, which had not have been fully tested before.

By the time displaying images and triangulations was working well a new widget was added to try
and solve the problems with rendering: this was way too slow. Using the Qt classes for this was
definitely the nicest way to do it, but the Qt visualization class (QGraphicsView) could not handle
the tens of thousands of small visible objects very well. It became very slow, using more than ten
seconds to draw its contents when stressed well enough. Luckily high speed was not a requirement
and preference could be given to nice coding. But some way to improve the speed was still
required: resizing or dragging windows had become impossible once a big triangulation was loaded.
The new widget fixes the issue by only redrawing when ordered to.

After integrating the new widget many time has been spent on optimising the plugins, creating new
plugins, support for saving an analysis, which required some small changes, and optimizing the user
interface. The latter was difficult at times, since strange things came into existence because of the
failing way of representing the selections. The greatest abomination was probably being the creation
of empty widgets just to be able to show the plugin in the user interface. Such oddities triggered the
rethinking of the interface. By then so much time had been spent on the concept that the final way
of representing the selections was thought of and could be put into place.

The last weeks have been spent on improving the interface, plugins and documenting everything to

meet the high standard we required. During this time support has also been built for groups and
subgroups of selections to allow arbitrary complex calculations.

18

Final results

After the implementation phase the project has been rounded up and, with the final details of
licensing and installation instructions, made a first final version. Nearly all requirements have been
implemented in this version and extra functionality has been added as well.

Requirements

Most requirements from the first analysis have been implemented in the current version of triAna.
The requirements that have not been met are discussed below.

Generating triangulations

Originally it was planned to have triAna generate a triangulation of a loaded image using prof. dr.
N. Hitschfeld Kahler's tools. This has not been fully implemented, since the tool used to generate
the triangulations is propriatry and could not be used in conjunction with triAna. This was no
problem, though, and support has been implemented for plugins to provide similar functionality. An
example of this is added to the source: the TriangulationGenerator plugin from the examples takes
all steps up to the point where the actual calls to an external utility would be needed. Lacking such
tools the example asks the user nicely to create the triangulation by hand.

Visualizing multiple selections at once

This turned out to be a difficult thing to implement in the user interface. The backend does support
this, but the interface can't show it, currently. The main problem here is that to maintain the
usability, we want the main screen as free as possible from clutter and an abundance of controls. It
was already difficult to design a workable user interface for a single selection. Visualising multiple
selections, though possible, would increase the clutter, making triAna less useable. Given more time
this might be doable, but serious user interface design is needed to create a useful way for doing
this.

Saving and loading outputs

Although saving and loading has been implemented, saving and loading outputs is not implemented
as intended when first thought of. The idea back then was to take the output of a selection,
combined with its triangulation and image, and save that. However, loading this had not been
thought about well. When we did so, we reached the conclusion that loading only the results is a
rather useless feature. This requirement has then been changed to saving and loading the analysis as
it is being conducted, effectively saving what plugins have been used with which settings, in what
order and how they were grouped. This implements the requirement as far as saving and loading in
triAna is concerned. A specific XML format has been devised for this, which is included in
appendix E. Saving to another format has not been implemented directly, but is certainly supported.
A direct example of this has not been provided, but it can easily be implemented by a plugin. It has
been documented in the developer documentation in the chapter 'Plugins with actions'.

Original plan

The original plan did not only include creating a tool to analyse triangulations, but also to analyse
the treering examples provided by prof. dr. N. Hitschfeld Kahler. This has not been done
completely, since we did not have the time to do so. One or two extra plugins will do the job,
though, and the example analysis in the user manual actually is the analysis of the treerings
example, creating a rather good selection of the treerings. One way to create a file with polylines
from these might be to implement a plugin to deselect parts from the selection that are clearly not

19

part of a (broken) circle in that selection, implement a plugin to create complete polylines of what
look like circles and a plugin to output those lines to a file.

Extra functionality

Along the way several extra functionalities have been added to triAna. These will be discussed
below.

Analytical and statistical information from plugins

The first of those functionalities was the ability to have information from plugins displayed. Plugins
can provide information, such as the area of the smallest and biggest triangles in the selection,
which can be displayed by a frontend, such as the standard user interface. The main intended use for
this is analysis and statistics, but other information may be showed as well.

Viewing modes
A small cosmetic point that turned out to be useful, nonetheless, is the ability to choose the mode of
viewing: only the image, only the triangulation and selection, or both layered together.

Plugins

In the final stage's analysis and design more plugins have been identified than anticipated at the
beginning of the project or required by prof. dr. Hitschfeld Kahler. The reason for these extra
plugins is the vision of complex analyses that can be built up using the set functions.

Set functions

Primarily selections were thought of as a simple row of plugins, each creating a subselection of the
previous's subselection. This way of thinking about selections is both complicated and very
limiting. Therefore set functions were introduced, along with grouping of plugins. This allows for
flexible creation of complicated calculations. An example of this can be found in the User's Manual
in Appendix

Quick preview

Another cosmetic, but highly useful, function is the quick preview of the output of a single plugin
somewhere in the middle of the calculation. Using this function the visualization does not show the
output of the complete selection, but the direct output of the selected plugin.This function is not
supported by the backend, but is an added feature in the frontend, which partly duplicates some
code from the backend to do this.

Documentation

The requirements of triAna also stated that it had to be user-friendly and easy to learn and also that
developers should be able to easily write plugins for triAna to extend the functionality. Therefore it
was paramount to document triAna properly in two ways.

We wrote a user's manual (included in appendix A), which details all the functionality in triAna
that's currently available to the user and explains how it's used. Because the user is not the same as
the developer we chose not to write about currently supported features that are not available through
the user interface and features that are not in use.

For example, plugins may currently have actions and rightclicking on the appropriate plugin in the
selection or output list brings up a context menu listing these actions. However, this wasn't part of
the initial requirements and we implemented these to facilitate the developers. There are no actions
in plugins yet and thus the feature is not detailed in the user's manual.

20

For the developers we wrote a developer's manual, which details the use of all parts of the backend's
API and explains how to extend triAna using plugins or a new frontend. We've included the
developer's manual in appendix B and because it refers often to our examples, we've included their
source codes in appendix C. All implemented features are explained, including currently unused
features (such as actions for plugins).

Furthermore, the developer's manual also gives examples for implementing plugins of all types and
one small example for writing a new frontend. These examples show the major steps required to
write a plugin, to ensure that the developers have a clear example to expound upon.

21

Evaluation

Looking back at the project we can say more about how everything went. In general we have a good
feeling about it: the project was ended with a good result that was received very well and along the
road there have not been any major problems. A good look at different aspects will be a good lesson
for the future. Below these evaluations can be found.

Working procedure

To complete this project, we started out with the usual phases of analysis, design and
implementation of triAna. During implementation, we constantly checked if our current design was
up to sufficient to satisfy all our requirement. If we found that we needed to rethink an aspect of our
design, we went back to the analysis phase focused on the design aspect. There we decided what the
best change would be and how it would affect the rest of the program. Given that we were a team of
only two, this approach has worked well and allowed us to progress fast and remain flexible about
the design.

Requirements

The requirements analysis consisted mainly of a few conversations with prof. dr. Hitschfeld Kahler
and some brainstormsessions by ourselves to complement her requirements.

The requirements we got from prof. dr. N. Hitschfeld Kahler described a system with the basic
functionality as found in triAna, with a useable interface. Although her requirements gave us a line
to follow, they did not describe a complete system. Even though we would have liked her to give a
clearer view of what she wanted, this was to be expected and made the requirements analysis a nice
challenge.

Complementing the requirements consisted mainly of more extensibility, dynamic extensibility (as
opposed to recompiling the source code), the selection of plugins and the final user interface.

Planning

The initial planning of the project turned out to be quite correct. Some time was lost along the way
with uncertainties and unnecessary work, but overall the planning was fine.

One thing that should have been different was the initially planned last phase: the documentation
and testing can't be done at the end, especially not when it concerns the backend that will be used
by other parts of the system throughout the rest of the project. In hindsight we could have foreseen
this: how can one build a system, use it extensively, and finally write some documentation about
how to use that system? This became evident pretty soon, when tests and documentation were
needed in the first week of implementing the backend.

Design

By and large, the design of triAna went well. We faced several choices during the design, which we
thought about and where trade-offs were considered. The choices have been documented for future
reference, which turned out to be useful later on.

Designing the backend was, as expected, a challenge and not completely correct in its first revision.

Several changes have been made throughout the development process. The real difficulty here is
that, until development using the backend starts, one can't have a completely good view of what

22

will be requested from the backend. Likewise, some properties and events seem to be useful at first,
but turn out to be totally useless and simply overhead whereever they pop up.

The interface design of triAna posed one of the greatest challenges, both the evolving technical
design and the usability design. The first visual version of the interface design was highly generic
and had not worked out very well how plugins would fit in, would be used and how selections
would exactly be created. Thinking more about this might have prevented many difficulties during
the implementation.

Implementation

The implementation went relatively smooth, taking the earlier mistakes into account. Some
problems were encountered with the actual environment and at times some more documentation
reading might have prevented some wasted time, but this won't be much.

Taking the earlier mistakes into account, most time wasted here was on inexperience with the
environments and the language. As said, this could have been prevented by reading more
documentation, writing better and more extensive documentation ourselves and more experience
with C++ and Qt. Lack of experience, however, was already known and some trouble with this was
expected.

A real problem that temporarily rose was support for Microsoft Windows: this broke when we
started using the backend as a library. Luckily we could drop this support, since it might have been
a lot of work, and possibly frustration, to have that fixed.

Documentation and testing

Documentation and testing were at first planned as a different phase. This was definitely wrong, as
stated before. Writing the documentation was not much of a nuisance, as is often a reason for bad
documentation, especially since we knew why we wrote it: we needed it ourselves, which gives one
a good appreciation for good documentation. Writing good documentation, however, is not as easy
as it seems, and often we have had discussions about how things were supposed to work, since one
had written the documentation and the other had interpreted, and used, it differently.

Testing systematically turned out to be a great asset to our productivity. We were amazed to find
ourselves writing small tests and finding many bugs with it within virtually no time. Testing
everything directly, as far as possible, has most likely prevented many hours of searching for bugs.

Testing was done with the testing framework of Qt, which easily allowed us to perform unit tests on
each of the classes directly after these were completed. The unit tests consisted of creating a hand
coded, exhaustive test for all the class' methods and checking to see if their outcomes corresponded
with the desired outcome. The main benefit of this kind of testing is that small errors, mainly those
that exist when applying boundary conditions, are revealed instantly after you finish a class and can
be fixed before they become a problem later on, where it could be difficult to track them down.
Another advantage was the possibility to easily test for regression: unit-tests are fully automated
and running them after every build has prevented some errors that would have been introduced by
changes in seemingly irrelevant classes.

While unit tests perform admirably for classes, sometimes faults occur that were not found on the
unit tests. These kinds of faults mainly introduced themselves by crashing the program. These were
sought out by running the relevant build of triAna through the debugger utility of KDE.

23

Working together

When working closely together for 10 weeks, some things are bound to come up. First and
foremost, though, we can state it has been nice and productive to work together. One of the
problems that was bound to come up is the difference in viewpoint. Bruno being a student in Media
and Knowledge Engineering (MKE) and Thomas being a student Software Technology (ST), a
difference of view was to be expected. In the beginning this has given some difficulties, especially
when trying to work out issues with the user interface or with the API of the backend. During the
project, though, we realized these differences existed and held us back. Thorough conversations
have worked quite well to solve such differences, or at least to understand the other's point of view.
It was in one of these conversations that the representation and use of complex selections was
discussed and finally solved.

Another difference that was bound to come up was the difference in programming skills. Bruno had
less experience in programming and using complex and abstract APIs. This has led to much of the
technical details being done by Thomas. Luckily this was also anticipated and Bruno has done a lot
in the interface design and improvements, considering Thomas has a lot less experience in those
matters.

Working environment

Since we could work on our own laptops we were able to prevent a lot of problems that are
concerned with system administrators. We had a few issues with access to the network, but the
administrators of the University of Chile were very helpful in such cases.

At first the dual environment, Microsoft Windows on one laptop, Linux on the other, worked fine
and did not give a lot of issues. The differences between the two became very apparent when in
Linux a file was created, called README, and committed to the svn. A lot of work was needed to
find out it needed to be renamed to readme, since the case-insensitive Windows-system didn't like
the name README. Not many other issues arrived with this, though, until compilation started
breaking and support for Microsoft Windows was finally dropped. Switching to Linux took some
time, but once settled it was not a real problem and no more issues were found.

24

Conclusion

We consider this bachelor project a success. We set out to Chile to help prof. dr. Hitschfeld Kahler
with her research and when we had reached a first final version she was most happy with the result.
The tool we created will help her both in her research, where she will be able to actively analyse
triangulations in a useable and flexible program, and in her educational role as a professor, where
she will be able to show the program to her students as an example of well written code and use of
design patterns.

Not only will our bachelor project be a real asset to prof. dr. N. Hitschfeld Kahler and the
University of Chile, we ourselves have greatly benefited from the experience as well. Being able to
do a part of ones study abroad in a very different country with a very different culture, is already a
great experience from which one can gain a lot of personal growth and pleasure. And beside that
our knowledge and experience in our area of expertise has improved as well.

Recommendations to the universities

Our experience in Chile had been a great one and it is our opinion that we need not be the only ones
to have this experience. The cooperation with the University of Chile was a very good one and
Chile is a nice country to visit. Therefore we would recommend both unversities to exchange
students on a more structural level. Here one can think about bachelor projects, as we have done,
but also about following a part of the courses at the other university. We have met several people in
Chile who did the latter and they had very good experiences with the education at the Chilean
universities, although none of them studied computer science. We did take a look at the studying
programs of both universities, though, and they seem to be virtually the same. We think exchanging
students would be a great addition to both universities' international contacts.

25

Glossary

analysis
backend
coupling

frontend
image

output

plugin

Qt

selection
tool

triAna

triangulation

The current image and/or triangulation with all the tools currently in use.
Also refers to a single complete workstate.

The core functionality of triAna able to function even without a user
interface.

The dependency between different parts of computer programs, in this case
between the backend of triAna and its supported plugins.

A user interface or automation designed for use with triAna.
An image that can be loaded into triAna if it's of the supported file types.

Any form of output of the current selection, be it visually, textual,
numerical or all of the above.

An extension of triAna that can be loaded dynamically to increase the
functionality concerning the loading of images or triangulations, selection
criteria and forms of output.

Platform-independent development framework which provides, among
other things, support for plugins, widgets and events. Used to program
triAna.

A selection of triangles, edges and vertices in a triangulation
A triAna extension, creating a selection or output based on a selection.

An image triangulation and visualization tool, the main program and result
of this bachelor project.

A 2d-mesh of connected, non-overlapping triangles, based on a reference
image.

26

Appendix A: User's Manual

27

trtAna

An 1mage triangulation
visualization and analysis tool

User's Manual
version 1.0

A bachelor project in cooperation with
University of Chile
Delft University of Technology

by
Thomas Schaap (#1150561)
Bruno Scheele (#1150588)

Supervisors

prof. dr. N. Hitschfeld Kahler (University of Chili)

drs. P.R. van Nieuwenhuizen (Delft University of Technology)
ir. M. Sepers (Delft University of Technology)

Table of Contents

OVIVICW. ...ttt ettt ettt ettt ettt e h ettt e h et ea e e bt et e eateeb e en bt em e e e bt e bt eateeb e enbeeateebeentesete bt ensesneenseenee 3
L€ o1 1T v T« PO RSP SRPR 3
IMII SCT@EIN. c...uteeneeiteeteet ettt ettt sttt eateeh et et s et et e et e e bt e bt ea s e se e e st embeebe e bt eabesae e beenteeneenbeenteeneenee 4

1\, 1<) 4 1 USSR 5
VIBW SCICOIL.....ceutiiiitiente ettt ettt ettt ettt ettt e bt et et e st e e bt es e e bt entesat e bt en b e e st e bt entesaee bt ensenseenneas 6

N T] (o110) FO PSSP 6

L@ 0150 1 | OO TSP PTRPPR 7
INTOTINATION. ...ttt ettt et e bt e et e s bt e st e e s bt e eabeeeabeenbeesaneenne 7
TOO0LS. ettt ettt b et h et h e bt b e ea e bt et ea b e e bt et entenhe e bt eneeene et 8
N T] (o1 10) FO RS TSTS 8
Triangle SEleCtOr DY Ar€a........ccuiiiuiiiiiiiiieiii ettt ettt e e e siaesbeesaaaens 8
Triangle selector by edge 1ength...........cooooiiieiiiieie e s 8
Triangle selector by average pixel ValUC.........ccoooviviiiiiiiiiiieceee e 8

Edge selector by difference in area.............oocuveeeciieeiiie et 9

Edge selector by difference in average pixel value...........cccoooveeiiiiiiiniiiiniiieiieieeceeeeeeeen 9
Vertex selector by triangle amoUnt.............cccuviiiiieiiiiece e e 9
TTIANEGIE TEIMOVET.....cuviiiiieiieeiie ettt ettt ettt et e et e esaeeeabeesseeenbeenseesnbeenseessseenseennns 9

EdZE TEIMOVET....ccuiiiiiiiiee ettt e e e et e e e taeesssaeessbeeessseeensseeesseens 10
VEITEX TEIMOVET ...c..eeiiiieiieeiieeite ettt ettt ettt sttt e sttt e s at e et e ebt e st e e bt e et e sbe e st e enbeeeseeenees 10
Edges from triangle boUNdary...........cccoooiiieiiiiiiiccc et 10
Internal vertices from triangles...........ooiiriieiiiiiieiii e 10

L0 111510 1 APPSR PPRRRRRSPPPR 10
Color by average pixel VAIUC.........cceiiiiiiiiiiiieiec et 10
SEIECTION COLOTIZET.ueiiiieiii ittt ettt st e b e sttt sabe e saee e 10
Histogram of triangles DY Qrea...........c.cooviiiiiiiiiiiieiieeieeeee ettt 11
Histogram-based triangle colorizer by area...........cccvveeviieiiieeiiiecieecie e 11
Histogram of triangles by average pixel value..........cccoocieiiiiiiiiiiiiniieee e 11
Histogram-based triangle colorizer by average pixel value..........c.cccoeeeieeniiiiiieeiiieeeie e 11
EXAMIPIC.....eoeeiee ettt et ettt ettt e b e e bt e s nteenteeeneeenbeenes 12

Overview

triAna is a program designed to help the researcher in analyzing triangulations based on images.
The ability to perform calculations on the triangulation and image pairs and visualize those,
simplifies discovering new data for the researcher. The calculations can be performed on the
triangles and the edges and vertices they consist of. Likewise a single selection can contain all these
elements for use in further calculations.
triAna has the following features:
+ Loading a variety of image types.
+ Loading triangulations from TRI-files.
+ Perform calculations on the triangulations and the triangulation-image pairs.
o Perform multiple calculations in a user-specified order.
o Create and combining sets of calculations using set operations.
+ Visualize calculations
o By coloring the triangulation.
o Through histograms.
+ Load additional plugins to extend functionality.

Getting started

Getting started with triAna is easy. Merely copy the installation to your desired location and run
triAna from the 'bin'-directory. Afterwards, the main window will open (illustration 1). triAna
consists of the main screen with menu bar and the selection, output and information windows. The
windows are currently docked to the sides of the main screen, to ensure that triAna runs in a
singular window.

The position of each window can be changed by dragging it to another side of the main screen and
under other windows. It's even possible to create tab windows, by dragging windows onto each
other or to detach them completely from the screen, by dragging them to an empty spot in the
screen.

This way it's possible to adjust triAna to your wishes. The windows will remember the position they
were on closing, so starting triAna again will result in the window positioning itself where you last
left it.

tridna Tools View

Analysis - selection &)%)
Analysis - output &>
- Pl % Li Update
! | ’ ‘ l’ o [%| Live updates pdate
Information
Name Value l Description |

Hllustration 1: triAna after starting

Main screen

The main screen (illustration 2) is where all the calculations performed become visible in the view
screen. It also holds the menu bar, where you can load an image or triangulation, save and load a
\ workstate, use the tools available in triAna and remove frem-or restore windows on the screen.

Menu

triAna Tools View

; .:‘ i Update |
! ! ‘ ‘ ’ X/ Live updates | :

Hlustration 2: Main screen

The menu (illustration 3) consists of the following items and their options:

triAna Tools View

Hlustration 3: The menu bar

e triAna

(@]

Load image

Loads images of the following types: BMP, GIF, JPG, JPEG, PNG, PBM, PGM, PPM,
XBM, XPM

o Load triangulation
Loads triangulations of the TRI-format.
o Load workstate
Loads a previous triAna workstate, enabling you to continue your work where you last
saved it.
o Save worstate
Saves a triAna workstate, so it can be continued at a later time.
e Tools
o Load plugin
Loads a plugin for triAna, adding functionality.
o Selections
Opens a side-menu from which you can select a tool to use for making a selection.
o Qutput

Opens a side-menu from which you can select a tool to visualize the current selection.

e View

o

Information
Switches the information window on and off.

o

Analysis selection
Switches the selection window on and off.

O

Analysis output
Switches the output window on and off.

View screen

After loading an image and a triangulation, the screen has the following options, displayed as
buttons:

° View only the image.

i

° View only the triangulation and the output of the current selection.

° ! View the image and triangulation together.

Because a typical triangulation can consist of a very large amount of triangles, refreshing the view
constantly to show any changes can be very slow. That's why triAna gives you the option
(illustration 4) of choosing whether you want the view to refresh automatically or refresh it
manually.

[¥| Live updates
Illustration 4: Refresh 0ption§

e Live update
When checked, the view refreshes automatically on any change.

e Update
When 'Live update' is unchecked, triAna creates a bitmap of the current output and displays
that instead of a live rendering. This ensures that changing settings and resizing the view
screen go smoothly, when handling large triangulations. Afterwards, you can choose to
update this bitmap manually by pressing this button.

Selection

All the selection tools that you select from the Tools-menu
Analysis - selection &%] (illustration 5) appear here for further management. A tool
| ‘ always operates on either triangles, edges or vertices and
leaves the rest of the parts in a selection alone. Thus, if you
o Triangle selector by... start With a complete selection (with all the Vgﬂic?s, edges
o o — and triangles) apd use a topl that selects.certaln triangles,
o Tiangle selector by... you'll end up with a selection that contains a subset of
triangles and the complete set of edges and vertices.
Each tool is disabled by default, which means that it will not
be included in making the current selection. You can enable (
@) and disable (O) the tool by clicking the check box next

- =f Edge remover 1
Triangle selector by...

&

Hlustration 5: Selection menu

to it.

triAna processes all tools from above to below. It takes the selection, performs the calculation
specified by the tool and returns the result for the next tool. To change the order in which tools are
processed, you can drag tools around the menu and drop them in the desired location.

Set groups
triAna has the capability to create groups of tools, which enable triAna to perform a set operation on
the results. When the triAna process reaches this group, it takes the input of that group (the current
selection) and uses that to process all the tools in the group, according to the function selected.
o i Linear
Takes the input and processes it linearly with all the tools in the group. This is the default
option.
o U Union
Takes the input and processes it with all the tools in the group separately. After that, it
returns the union of all the results.
o (1 Intersection
Takes the input and processes it with all the tools in the group separately. After that, it
returns the intersection of all the results.
o 2 Complement
Takes the input and processes it with all the tools in the group separately. After that, it
subtracts the results from the original input and returns that.
e = Subtraction
Takes the input and processes it with the first tool it encounters. Afterwards, like
complement, it processes that result with the remaining tools, subtracting all those results
from the first result and returns that.
To create a group, just right-click on the selection menu. Then select 'Insert group' from the
resulting context menu. It will then create a group that's set to the default set function. If you select
the group and then select a tool from the "Tools'-menu, then that tool will be added to the group. You
can also drag already enabled tools to a set. Changing the function of the group merely requires you
to select a function from the context-menu after right-clicking it.

Displaying a single result

When you have a lot of results, it is useful at times to see what the result is of a single tool, without
going through the trouble of disabling each and every tool below. That's why right-clicking on a
tool also brings up 'Show result'. Checking this, replaces the current output in the main screen with
the output that the selected tool would have. You can disable this by selecting 'Show result' from the
context menu again or by clicking on the eye-icon @ which replaced the check box.

Output

An output tool colors the selection created by all the selection tools in the main view. Some output
tools don't adjust the main view, but give a graphical representation in their own window (for
example, creating an histogram).

The output window largely functions like the selection menu, though there is no possibility to create
groups or to show the result of a single output tool. This means that the tools all adjust the main
view consecutively and the final result is shown.

Information

Some tools contain additional information that may be useful to you. This information is shown in
the information window. Each entry has its own name, value and description.

Tools

Here follows an explanation about all the tools currently available in triAna. As we mentioned
before, you can add a new tool to your selection through the menu bar. It'll appear in the tool list
and you can then enable the tool by clicking the checkbox.

Selection

Triangle selector by area

Selects all the triangles from the input that have an area smaller or greater than a value or an area
that falls between two values. (illustration 6)

Triangle selector by edge length

Selects all the triangles from the input that have one or more edges with lengths smaller or greater
than a value or lengths that fall between two values. (illustration 7)

Triangle selector by average pixel value

Selects triangles based on the average pixel value of all the pixels in the image that are represented
by a triangle. This can then be compared to see if it's smaller or greater than a value or between two
values. This tool only works when both a triangulation and an image are loaded. (illustration 8)

Triangle selector by edge length 1 &) X]
Select all triangles with a
1 Minimum amount of edges 3
Triangle selector by area 3 (&)X @,
| I
Select all triangles with area: whose lengths are:
() Smaller than Ta) () Smaller than . —
123131 |7 49.50 3]
@ Greater than * ' @ Greater than :
|_:l 3 q -}
() Between [] Invert? () Between [] Invert?
Min; [538.69 }:\ Ma:[2462.6 '—:} 2] Min: 27.70 [2{Max: |99.00 |5
. : {J . ! {J
Hllustration 6. Triangle selector by lllustration 7: Triangle selector by edge
area length

Select all triangles where
the underlying pixels have
an average value that is:

) Smaller than

Triangle selec... pixel value 2 (X

S

139.00
@ Greater than
|—(|
() Between [] Invert?
Min: [139.72F5]Max: [255.00]

3

()

{)

Hllustration 8. Triangle selector

by average pixel value

Edge selector...ixel value 1 [&)X]

Select all edges seperating
triangles where the average
of the pixels they represent is:

() Smaller than

14,00
® Greater than
=}

S

() Between | Invert?

['4 8.00

Min: ‘_ 00

V.

: { Max:

Hllustration 10: Edge selector by
difference in average pixel
value

Edge selector by difference in area

Enables you to select edges, based on the difference in area of the two triangles it separates. The

Edge select...e in area 1 (&)X

Select all edges that
seperate triangles whose
difference in area is:

) Smaller than

() Greater than
{}

| Invert?

(@ Between
Min: [1.00}%|Max: [638.00/%]
g, - O

Hllustration 9: Edge selector
by difference in area

Vertex selector by triangle amount 1 [&)X]

Select all vertices that are part of a
number of triangles that is:

® Equal to or Smaller than

() Greater than |-4 :{
()

() Between [Invert?

Min: [ug Max: 9 4]

Hllustration 11: Vertex selector by triangle
amount

difference can, again, be smaller or greater than a value or fall between two other values.

(illustration 9)

Edge selector by difference in average pixel value

Performs the same as 'Edge selector by difference in area', only here it functions by determining the

difference in average pixel value. (illustration 10)

Vertex selector by triangle amount

Selects all vertices that are part of an amount of triangles smaller than and equal to a value or

greater than that value or if that amount falls between two values. (illustration 11)

Triangle remover

Removes all triangles from the selection that contain a specified amount of vertices or edges within

the current selection. (illustration 12)

Edge remover

Performs the same as the 'Triangle remover', but on edges. (illustration 13)

Vertex remover

Performs the same as the "Triangle remover', but on vertices. (illustration 14)

Triangle remover 1 (&)X

Remove all triangles with
@ At least |]“ O Vertices
0 v
() At most * '@ Edges

in the selection,

Hllustration 12: Triangle remover

Edge remover 2

&)X

Remove all edges with
@ At least

0

() At most

= @ Vertices

(O Triangles

in the selection.

Hllustration 13: Edge remover

Vertex remover 1 (&) X]

Remove all vertices with
@ At least ra)@ Edges
0 5

() At most) Triangles

in the selection.

IHlustration 14: Vertex remover

Edges from triangle boundary

Selects all the edges that separate a triangle in the current selection and a triangle not in the current
selection, creating a boundary made out of edges of the current selection. This tool is automatic and
therefore has no configurable settings.

Internal vertices from triangles

Selects all the vertices that are only part of triangles that are in the selection. This tool is automatic
and therefore has no configurable settings.

Output

Color by average pixel value

Colors all the triangles in the current selection according to the average value of all the pixels that
are represented by the triangle. This tool is automatic and therefore has no configurable settings.

Selection colorizer

Colors the vertices, edges and triangles in the selection according to the settings. For each, you can
choose a color (by clicking the colored button) and opacity (by sliding the ruler). For edges, you can
also choose how thick they are displayed and you can choose one of six styles in which to display
the vertices. (illustration 15)

10

Histogram of triangles by area

Creates a histogram of all the triangles, sorted by their area. Either the amount of bins or the size of
the bins can be specified. (illustration 16)

Histogram-based triangle colorizer by area

Functions like 'Histogram of triangles by area', only has the added function of coloring all the
triangles belonging to a bin in the histogram. Just click on the bin to select a new color to draw all
the triangles with. (illustration 17)

Histogram of triangles by average pixel value

Functions like 'Histogram of triangles by area', only for the average pixel value of the pixels
represented by a triangle. This tool only works when both a triangulation and an image have been
loaded into triAna. (illustration 18)

Histogram-based triangle colorizer by average pixel value

Functions like 'Histogram-based triangle colorizer by area', only for the average pixel value of the
pixels represented by a triangle. This tool only works when both a triangulation and an image have
been loaded into triAna. (illustration 19)

Histogram of triangles by area 1 &[]

Create a histogram of the triangles
based on their area

Selection colorizer 1 (&)X
Select the color for the selection.

| Vertices | Edges | Triangles |

Color . Style | v| ;191: # of bins {10]%_{Size e
F

e 0 O Binsize [10.00 5 10
lllustration 16: Histogram of triangles by
Hllustration 15: Selection colorizer area
Histogram-based tri...colorizer by area 1 [&|(X] Histogram of triangl...verage pixel value 1 [&[X]
Create a histogram of triangles based on Create a histogram of the triangles based on
their area and color them with the bins. the average value of the pixels they represent
@ # of bins {10]%{Size of bins @ # of bins |10 %Size of bins
O Binsize |1.00 }%{ 0 C)Binsize [10.00 =l 10
Hllustration 17: Histogram-based triangle lllustration 18: Histogram of triangles by
colorizer by area average pixel value

11

&)
Create a histogram of the triangles based on

the average value of the pixels they represent
and color them with the bins

Histogram-based tri...verage pixel value 1

® # of bins |10 2 !size of bins

= 0

hd J

() Bin size 1.00

Hllustration 19: Histogram-based triangle
colorizer by average pixel value

Example

As an example of how triAna works, we'll try to select the triangles that represent the tree rings of
an image of a tree stump. The rings are usually represented by the smaller triangles, so we'll work
under that assumption.

Step 1

First we start triAna and load the image and the triangulation file. Note the very detailed
triangulation. Calculations on triangulations of this magnitude take a long time. To speed up the
analysis, we'll disable 'Live updates' for now and press 'Update' after each step.

Step 2

Since we want to check our progress at times, lets select the 'Selection colorizer' and enable it with
extra setting for the edges and vertices (illustration 20). We have color! (Lots of it, since the initial
selection is the entire triangulation.)

Selection colorizer 2 (&)X

Select the color for the selection.

Selection colorizer 2 (&)X]

Select the color for the selection.

Vertices | Edges | Triangles [

Selection colorizer 2 (&)X]

Select the color for the selection.

|' Vertices ‘ Edges | Triangles l

|' Vertices | Edges ‘ Triangles ‘

cor (st (21| | coor [i 12| [| coor D
Opacity - 9 Opacity : 0 Opacity - U
Hllustration 20: Color settings
Step 3

Because we know very little about the current triangulation, let's select 'Histogram of triangles by
area' and enable it (illustration 21). Since most of the triangles are contained in the first bin our next
step will be to select all the triangles that are contained in that bin.

12

Histogram of triangles by area 1 =[S

Create a histogram of the triangles
based on their area

® # of bins {10]%]Size of bins
O Binsize [10.00 }%‘ 92.149

Hllustration 21: An histogram of the current
settings

Step 4

After selecting 'Triangles by area' from the "Tools'-menu and enabling it, we change the settings to
'Smaller than 93' (the min and max of the first bin) and check the histogram. Still, most of the

triangles are contained in the first couple of bins, so we'll change our selection to all triangles
'Smaller than 24' (illustration 22).

Histogram of triangles by area 1 =4

Create a histogram of the triangles
based on their area

@ # of bins {10]%]Size of bins
O Binsize [10.00 2l 217699

Hllustration 22: Updated histogram
Step 5

Setting the opacity of the vertices and edges to 0 (they're cluttering up the image) we see that this is
still too much. We set our filter size to 'Smaller than 12' and see that this improves the situation a lot
(illustration 23).

13

tridna Tools View tridna Tools View

[_] Live updates ‘ﬂﬂaﬂi_

2 A E e vpaces [vpite | |

lllustration 23: From triangles with area smaller than 24 to smaller than 12

Step 6

Though the selection has improved, it still doesn't adequately select the tree rings. There's a lot of
bark selected and quite a lot of triangles that have nothing to do with the rings whatsoever. We
know that the ring and the bark are darker than the rest of the tree and the bark is even a bit darker
than the rings. We'll take advantage of that fact. Let's insert an 'Intersection' group after our
"Triangles by area' selection. We put the 'Triangles by average pixel value'-tool in this group
(illustration 24).

Analysis - selection [F)[X]

=5 |Triangle 5
= 9
& Triangle s

£l arer

Hlustration 24: The
Intersection group with the
tool

Step 7

After some experimentation, we set the settings of 'Triangles by average pixel value' to 'Between
144.00 and 188.00' (illustration 25). After enabling the group and the tool, this leaves us with a
much better result (illustration 26).

14

tridna Tools WView

Triangle selec... pixel value 1 [F[X]

Select all triangles where
the underlying pixels have
an average value that is:

) Smaller than

BTN
() Greater than
'S
h¥d
@ Between [Invert?)
Min: Max: 188.00 L!j z%a [] Live updates f Update |
\/ \/

Hllustration 26: A much better selection of |

Hllustration 25: Settings of tree rings

"Triangles by average pixel value'
Step 8

As the final step, we add the automatic tools 'Edge boundary of triangles' and 'Internal vertices of
triangles' to our selection and enable these (illustration 27). After setting the opacity of both vertices
and edges to maximum again, we get our end result: a rather adequate selection of the tree rings,
with their borders and internal points (illustration 28).

Analysis - selection &)X

o Triangle selector by area 1
= U
.4 Triangle selector by average pixel value 1
= Edges from triangle boundary 1
Internal vertices of triangles 2

Hllustration 27: The sequence of all the tools in this
example

15

Hllustration 28: The final result

16

Appendix B: Developer's Manual

28

triAna - Developer Documentation file:///home/thomas/src/svn/triAna/doc/developer/index.html

triAna

An image triangulation

visualization and analysis tool

version 1.0

Developer's Manual

A bachelor project in cooperation with
University of Chile
Delft University of Technology

by
Thomas Schaap (#1150561)
Bruno Scheele (#1150588)

Supervisors

N. Hitschfeld Kahler (University of Chile)

P.R. van Nieuwenhuizen (Delft University of Technology)
M. Sepers (Delft University of Technology)

Table of Contents

Table of Contents
Overview

Plugins
TriAnaPlugin

o Example

°© Compiling a plugin

© Steps in creating a plugin
¢ ImagelnputPlugin

o Example

© Purpose

© const QStringList mimetypes() const

° bool canl.oad(QIODevice &device)

° QImage loadImage(QIODevice &device)
°© QString mimetype() const

¢ TrianqulationlnputPlugin

¢ AnalysisPlugin
o Example

Properties
const OStringList informationEntries() const and friends

void setlnterface(TriAnaView* interface, QWidget* parent)

void setAnalysis(Analysis* analysis)

AnalysisPluginSetProperty setlnteractiveProperty(const QString& name,
QVariant value)

signal void informationChanged()

signal void propertyChanged()

o void removeWidget()

O O O O O

@)

o

1 van 14 18-10-07 23:05

triAna - Developer Documentation file:///home/thomas/src/svn/triAna/doc/developer/index.html

o TriAnaView* m_interface

© Analysis* m_analysis

°© QMutex m_mutex
CriteriaPlugin

o Example
o QList< TrianqulationPart* > createSelection(QList< TrianqulationPart* >

selection)
o SelectionGroup* parentGroup() const
OutputPlugin
o Example
o yvoid setSelection(QList< TrianqulationPart* >& selection)
o void createOutput()
o void clearSelection()
o QList< TriangqulationPart* >& m_selection
Plugins with actions
o Example
o Using actions
¢ Pluqgins with widgets
o Example
o Using widgets
© Caveats
Frontends
o Batch processing: the savefile runner
o The basics: the example in detail
o Bevyond the basics: complex interfaces

Overview

triAna is a powerful program for researchers to work with. It would not be nearly as
powerful, however, if it wasn't as extensible as it is. All of triAna is set up to allow
additions using external parts, which creates a flexible program that can analyze the
way you want, visualize the way you want and even look the way you want.

Extending triAna is not a very hard thing to do. Many things have been already been
done and care is taken to keep the plugin framework easy to understand and use. All
information needed to do so can be found in the API documentation and using this
manual learning that API should not prove difficult.

Creating a frontend for triAna might pose a little challenge, depending on what the
frontend should be able to do. A simple frontend that opens a savefile and uses it to
process a triangulation/image pair won't be very difficult, but a full-fledged analysis
tool as the standard frontend provides will cost quite some time. Using this manual
should speed up learning the backend, in order to minimize the time needed to build
such a frontend.

In order to read this documentation, it is recommended to first run doxygen in both
the root of the triAna source directory and the directory of this file. These will
generate the documentation of the backend, ui, plugins and widgets and the
documentation of the examples.

Plugins

The plugins that are used in triAna are all created as Qt plugins, implementing a
couple of interfaces. To make the API consistent, triAna uses two interfaces that
provide common functionality: TriAnaPlugin for all plugins and AnalysisPlugin for all
plugins that perform selections or output. The four plugin types that derive from
these parent interfaces are ImagelnputPlugin, for loading images,
TriangulationInputPlugin, for loading triangulations, CriteriaPlugin, for creating

2 van 14 18-10-07 23:05

triAna - Developer Documentation file:///home/thomas/src/svn/triAna/doc/developer/index.html

selections, and OutputPlugin, for generating output.
TriAnaPlugin

Example

All plugins need to implement TriAnaPlugin. It's a simple interface giving a consistent
way of looking at plugins that work with TriAna. Most likely learning to use
TriAnaPlugin is most easy by example, so let's build one of the plugins that's delivered
with triAna: the QImageReaderInput, which will allow us to open image types that are
supported by Qt.

e MyUselessImageReaderInput.h
* MyUselessImageReaderInput.cpp

These two files will already give you a correct plugin, thou?h it won't do much yet.
Yﬁ)u cafnl, however, compile and load it. In a moment we will discuss the details of
these files.

Compiling a plugin

A CMakelLists.txt is built to search for Qt and search for triAna, setting all variables
needed to create the plugin. For more information on CMake files, refer to CMake's
documentation. It can be found in the examples directory.

Compiling the above will result in a library holding the plugin. This plugin, though it
does nothing, will already load when pointed to in triAna.

Steps in creating a plugin

The steps needed to create the plugin are rather easy and follow the standard Qt
Plugin system. To make things easy, here's a checklist:

Include the header of the interface you wish to inherit;

Publicly inherit the interface;

Put Q OBJECT in your class;

Put Q INTERFACES in your class, with the interface you inherit and its
superinterfaces;

* Declare your plugin using Q EXPORT PLUGINZ2.

That's about all there is to it. Be sure to have a moc-file generated and included in the
source and all should go well.

As far as implementing the interface is concerned, there's only a few things to be said.
First of all, read the documentation of the different functions that need to be inherited
well. They contain examples of correct and incorrect return values. Most important
here is to keep in mind that the plugin should be usable by end-users in a real world
setting. It's useful to know that the name of most plugins is actually shown to the user
to select them from the menu 'Tools' in the standard UI. Also, the description is used
there to show users what the plugin really does: it's the tooltip of every menu-item
where it says so.

ImagelnputPlugin

Example

3 van 14 18-10-07 23:05

triAna - Developer Documentation file:///home/thomas/src/svn/triAna/doc/developer/index.html

Now that there's a working TriAnaPlugin, it would be nice to have it actually do
something. For this purpose the MylmageReaderInput will inherit ImagelnputPlugin
to become a plugin that can read images. First of all the new files.

e MyImageReaderInput.h
* MyImageReaderInput.cpp

There haven't been many changes to the header-file. Note the new superclass of
MylmageReaderInput and the extra interface in Q INTERFACES. Apart from that the
methods of ImagelnputPlugin have been added to the class, along with the private
variable m mimetype.

When this plugin is compiled, a useful and working plugin is the result. It has actually
already proven to be very useful: it's similar to the plugin that triAna uses by default
to open images.

Purpose

The purpose of an ImagelnputPlugin is to provide triAna with the possibility to open
image files of the formats it supports. When loaded, it will be queried automatically to
open an image when needed.

const QStringList mimetypes() const

The mimetypes method returns the mimetypes an ImagelnputPlugin believes it will be
abled to open. It's not necessary to provide this, but it can speed up the loading of
images.

bool canlLoad(QIODevice &device)

This function is always called before calling loadimage(). The ImageInputPlugin can
read ahead in the device to see if it can actually read it. Be careful about what is
returned here: false means that the device can't be read by the ImageInputPlugin and
loadImage() won't be called. True means that the ImageInputPlugin can load the
image in the device and loadIlmage() will be called subsequently. Make sure that
loadImage() returns the loaded image or you might end up with erronous behaviour.

QImage loadImage(QIODevice &device)

The loadIlmage method is the heart of every ImagelnputPlugin. When the call to

canLoad() returns true, this function will be called to do the actual loading of the

iénage. It's the ImagelnputPlugin's task to read the image and to return it as a
Image.

QString mimetype() const

Since it might be useful for users and frontends to know what type of image was
opened, the ImageInputPlugin might be queried for that information after reading an
image. This function should return the mimetype of the last succesfully loaded image.

TriangulationInputPlugin

TriangulationIlnputPlugin and ImageInputPlugin are very similar. Learning to use
ImagelnputPlugin is definitely enough to learn TriangulationInputPlugin. There is
only one real difference: TriangulationInputPlugin's loadTriangulation returns a
pointer to a Triangulation and will return 0 when loading failed, where

4 van 14 18-10-07 23:05

triAna - Developer Documentation file:///home/thomas/src/svn/triAna/doc/developer/index.html

ImagelnputPlugin returns QImage() when loading fails, since it returns a QImage
object. Apart from this little difference, implementing a TriangulationInputPlugin is
exactly the same as implementing an ImagelnputPlugin.

One detail about TriangulationInputPlugin's does require mentioning: responsibility
for consistency. When constructing a Triangulation from lists with Vertex, Edge and
Triangle objects, the Triangulation will not check if they are consistent. Yet they
really need to be. It's up to the TriangulationInputPlugin to see to this. See also
Triangulation's documentation for more information.

AnalysisPlugin

AnalysisPlugin is the superinterface for CriteriaPlugin and OutputPlugin. It defines
the interface for all plugins that need to interact with the user, the frontend and the
complete Analysis.

Example

Using AnalysisPlugin directly is technically possible, but definitely not useful. Also,
frontends could get confused with an advanced plugin that really does nothing.
Therefore no direct example will be given. Instead AnalysisPlugin's methods are well
visible in the examples for CriteriaPlugin and OutputPlugin.

Properties

Implementors of AnalysisPlugin have to declare all their settings as properties to Qt
as types that can be converted to a string or a stringlist. In doing so, an
AnalysisPlugin creates immediate support for persistance and for having changes to
properties that can be undone.

const QStringList informationEntries() const and friends

Many plugins might have some things to tell the user. How many triangles they have
selected, how small the smallest edge is or the statistical spread of all triangles
divided by their own edges. Whatever it is they want to provide the user with, as long
as it's data that can be put in a single string, information entries are most likely the
way to go.

Information entries are calculated values that give some useful information to the
user. They are provided by the plugin by means of informationEntries() and friends.
informationEntries() will return a list will the names of all information entries that the
plugin provides. Note that these names will most likely be shown to the user, so
cryptic names are not useful. There are no restrictions to the name, either, just that
long names are more likely not to integrate in some frontends well.

informationEntryDescription() is the function that provides a description about the
information entries. This description is solely for the end user, who can read it in
order to better understand the information entries contents.

The value of an information entry is provided by informationEntryValue(). This
function returns the value of the information entry as a string. Nothing will be done

with the string other than showing it to the user, so any formatting can be done
without regard for converting back.

void setInterface(TriAnaView* interface, QWidget* parent)

5 van 14 18-10-07 23:05

triAna - Developer Documentation file:///home/thomas/src/svn/triAna/doc/developer/index.html

setlnterface() is the function where an AnalysisPlugin is made aware of the frontend.
For simple plugins a standard implementation is given that will simply remember the
interface and to do some administration to ensure proper termination. More advanced
plugins will want to override this function to tell the interface about widgets or
actions it wants to show the user. Such plugins are advised, though, first to call their
superclass's implementation of this function. This will take some work from their
hands and make things generally easier.

After calling the superclass's implementation of this function, an AnalysisPlugin can
provide the interface with widgets or actions as it sees fit. Be sure, though, to check if
an interface was really provided: this might be 0. For all possibilities, see the
documentation of TriAnaView's functions.

Whenever this function is called, plugins should assume earlier calls to have become
invalid. In other words: if an AnalysisPlugin learns about frontend X via this functions
and later on learns about frontend Y via another call to this function, it must assume X
to have been destroyed, along with everything it gave to X.

The function interface() queries the plugin for the last interface that was set. If a
plugin calls its superclasses's setInterface(), this function has been taken care of.

Note that when this function is called, the interface must already have loaded any
image and triangulation data it wants the plugin to work with, in the case the plugin
is being loaded from a savestate. In other words: you don't need to worry about using
the triangulation and image provided by the interface when you expect values from
the savestate to be given to you: the image and triangulation that need to be loaded
from that savestate should be loaded and ready before this function is called.

void setAnalysis(Analysis* analysis)

Anticipating highly advanced plugins, an AnalysisPlugin is also told about the Analysis
object it is part of. Currently, this is only used as a shortcut for quickly retrieving the
Analysis an AnalysisPlugin is part of via the function analysis(), since no such highly
advanced plugins have been thought of. Unless you're absolutely sure that you need
this, you can easily rely on the standard implementation of this function.

AnalysisPluginSetProperty setInteractiveProperty(const QString&
name, QVariant value)

setInteractiveProperty() is a very useful and important function. For others, mostly.
This function uses the properties that have been declared to Qt to change settings of
the plugin in a way that implements the Command pattern. The second argument to
this function is optional, to allow code that calls this function to first create the
AnalysisPluginSetProperty for changing the value, only to provide it with a value later
on.

When all settings of the plugin have been declared as Qt properties, like they should,
the standard implementation takes care of everything.

signal void informationChanged()

An AnalysisPlugin that has information entries should keep the ones looking at those
entries informed about changes. This is done via the signal/slot mechanism of Qt.
Simply emitting this signal will tell all who wish to know that information entries have
changed. This should be done whenever one of those values changes.

signal void propertyChanged()

6 van 14 18-10-07 23:05

triAna - Developer Documentation file:///home/thomas/src/svn/triAna/doc/developer/index.html

An AnalysisPlugin will most likely have several Qt properties declared with its
properties. Whenever one of these changes, this signal should be emitted. This will
signal all those who want to know that settings of the plugin have changed. Emit this
signal whenever the value of one the properties changes. Aggregate calls, for example
one call at the end of a function that changes twenty properties, are OK.

void removeWidget()

This function is used for cleaning up whenever the plugin is destroyed or the interface
it is registered with is destroyed. If the plugin first calls its superclass's setInterface()
from its own setInterface() or doesn't have one of its own, this function is called when
the interface is destroyed. Plugins who have widgets are not only encouraged to
implement this function, but also to call it from their constructors.

Implementing this function is only useful for those plugins that have widgets they
provide to an interface. In this function those widgets should be recalled.
Multithreading is an issue here, which leads to the advice to use m _mutex to
synchronize.

Boilerplate code, as used by the widgets triAna gives by default, is this:

if(m mutex.tryLock() & m interface && m widget) {
m_interface->removeWidget(m widget);
m widget->deletelLater();
m widget = 0;
m mutex.unlock();

}

The plugins using this boilerplate code have exactly one widget, stored in m widget.
The rest of the variables used here are provided by AnalysisPlugin.

Using removeWidget() is also usefull when you provide the interface with actions. A
single call to remove those widgets, safequarded like the calls in the boilerplate, will

ensure that no acture are left behind when the plugin is destroyed or the interface is
destroyed.

TriAnaView* m_interface

After calling the superclass's setInterface(), plugins can find the current interface in
this variable. Be sure to check if it's 0.

Analysis* m_analysis

In the rare case it might be needed, this variable holds the Analysis object the plugin
belongs to after the standard implementation of setAnalysis() has been called. No
guarantee is given as to when that is, though. Be sure to check if it's 0.

QMutex m_mutex

In order to synchronize access to the above variables, plugins can use this recursive
mutex. Although it would be safest to surround all calls to these variables with calls to
the mutex, it is most important in the destructor and the function removeWidget(),
since race-conditions are guaranteed to exist there.

CriteriaPlugin

7 van 14 18-10-07 23:05

triAna - Developer Documentation file:///home/thomas/src/svn/triAna/doc/developer/index.html

A CriteriaPlugin is a plugin that wishes to influence the selection made in an Analysis.
In an Analysis, first a selection is created by creating a set of all parts of the
triangulations (triangles, edges and vertices) and then CriteriaPlugins are allowed to
create subsets of that subset.

Creating a CriteriaPlugin consists of nothing more than creating an AnalysisPlugin
with one extra function.

Example

Let's start out with an example a(jJain. It's a CriteriaPlugin that wishes to select only
the biggest triangle and leaves all edges and vertices in, as is recommended.

¢ BigTriangleSelector.h
e BigTriangleSelector.cpp

When looking through the source, you'll notice the absolute absence of any reference
to AnalysisPlugin. This is because AnalysisPlugin has default implementations for all

its functions, to ease the stress on developers of simple plugins like this one. Indeed,

this plugin has only one more method than a bare TriAnaPlugin.

QList< TriangulationPart* > createSelection(QList<
TriangulationPart* > selection)

This function is the core of a CriteriaPlugin: a selection goes in, a subselection goes
out. Plugins creating selections must be consistent in how they do so. In other words,
they must take care to produce the same result when presented with the same
selection and under the same circumstances (loaded image, settings, and others like
that). It is therefore absolutely forbidden to create a CriteriaPlugin that decides if a
part of the selection is accepted by testing (someRandomGenerator() == 42).
Although the effects might be funny in an interactive interface, it's not very useful.

A part that will be needed rather often is the image behind a part of the triangulation.
To get to that, look at the interface in m interface, especially methods
TriAnaView::image() and TriAnaView::pixels() are often useful.

Note that a plugin is obliged to create a subselection of the provided selection.
Although this requirement is not technically necessary, it is there nonetheless to
ensure that thinking about selection plugins remains easy. Besides that, there are
other ways available for growing the selection, such as using a union.

SelectionGroup* parentGroup() const

CriteriaPlugins can be grouped together using a SelectionGroup. The hierarchy is
maintained by Analysis and the SelectionGroup makes sure the set-operations are
applied, but the CriteriaPlugin should know, and provide, in which group it belongs.
The parentGroup() function returns this group, or 0 is there is no such group. The
group is set using setParentGroup().

No reasons are known for plugins to need to override this function. The standard
implementation simply records the parent in the variable m parent.

OutputPlugin

An OutputPlugin is a plugin that wishes to create output, a visualization, or otherwise
do something dependent on the final selection created in an Analysis. About the only
thing an OutputPlugin may not do is change that selection.

8 van 14 18-10-07 23:05

triAna - Developer Documentation file:///home/thomas/src/svn/triAna/doc/developer/index.html

Example

The simple example of an OutputPlugin gives a visualization of the selected triangles
by making them all red.

e RedTriangles.h
e RedTriangles.cpp

This example is very simple. It's once again visible that AnalysisPlugin takes care of
everything for us, leaving us to just concentrate on the important part: creating red
triangles.

void setSelection(QList< TriangulationPart* >& selection)

This function is called when the CriteriaPlugins have done creating the selection. The
only thing that happens here is setting the selection. No output may be generated in
this function. It is guaranteed this function will be called at least once before
createOutput() is called.

The standard implementation of this function places the selection in m selection. This
will most likely be enough for most plugins.

void createOutput()

The function createOutput() defines the core of most OutputPlugins. It is here that
the OutputPlugin creates its output, such as changing properties of the geometry,
calculating and showing statistics or anything else that can be repeated lots of times,
based on the selection that was set during the last call to setSelection(). Using this
selection will be a matter of using the variable m selection for most OutputPlugins.

This function is the only place where an OutputPlugin is allowed to change the
properties of the geometry objects, i.e. all vertices, edges and triangles in the
triangulation.

void clearSelection()

This function is used as an easy way to clear the set selection, for example when the
triangulation it is based on is destroyed. Subclasses need normally not bother with
this function, but when they wish to react to this event, implementing this function is
a good way of achieving that.

When, for some reason, an OutputPlugin might need to clear the selection of its own,
calling this function is the best way to do so.

QList< TriangulationPart* >& m_selection

The selection as last set by the function setSelection(). This variable is always valid in
the function createOutput().

Plugins with actions

Plugins might want to do things that can't be done many times in a row. Such actions
include printing to a physical printer, writing a file and doing extremely expensive
calculations. Basically anything one would normally only want to do once or maybe
twice counts as such an action.

9 van 14 18-10-07 23:05

triAna - Developer Documentation file:///home/thomas/src/svn/triAna/doc/developer/index.html

The most usual plugin having this kind of requirement is an OutputPlugin. However,
using the standard function createOutput() is not really the best place for actions
such as these. It may be called many times. The standard UI for triAna, for example,
normally calls it for every update that has been made in the Analysis object, including
all its plugins. Although some may think having a hardcopy printed of every step
along the way in their research, most will think it's a bad idea. Therefore,
AnalysisPlugins have the ability to provide QAction objects to the interface.

Example

A real-world example usage of this is the creation of a triangulation based on a loaded
image using an external tool. We don't want to do this with every update, so we
supply the interface with an action called 'Generate triangulation' that we will listen
to. The user can then choose when to generate the triangulation.

¢ TrianqulationGenerator.h
¢ TrianqulationGenerator.cpp

When compiling and loading this plugin, you can add it to an Analysis and, when
you've loaded an image, you can use the action it provided to generate a triangulation
from that image. In the standard UI this is done by clicking right on the plugin and
choosing "Generate triangulation" from the menu.

Since no actual program is easily available to do such triangulations, the plugin will
not perform the triangulation itself, but apologize to the user and ask the user to do
the triangulation using the generated image file.

Using actions

Using actions is very easy. Just create QActions as you would normally do and give
them to the interface in the function setlnterface(). Be sure to remove them when
you're being destroyed or when the interface is destroyed. To this end you can use the
function removeWidget().

Plugins with widgets

Many plugins will want to provide some Ul to the user, for example to show graphs or
to allow the user to conveniently configure the plugin. This is enabled by allowing
AnalysisPlugin subclasses to provide the interface with TriAnaWidgets. A
TriAnaWidget is a normal QWidget that has an AnalysisPlugin as owner.

Providing widgets is a common and powerful way of interacting with the end-user
directly. Do be careful, however, to avoid the caveats these widgets bring with them.

Example

We extended the earlier RedTriangles to color all triangles in a configurable color.
The configuration can be done via the TriAnaWidget it provides.

ColoredTriangles.h
ColoredTriangles.cpp
ColoredTrianglesWidget.h
ColoredTrianglesWidget.cpp

These are the source files for both the plugin and the widget the plugin uses. The
layout of the widget itself, although it's very simple, was built using Qt Designer and
is saved in file called widget.ui. The CMake file is slightly extended to compile the

10 van 14 18-10-07 23:05

triAna - Developer Documentation file:///home/thomas/src/svn/triAna/doc/developer/index.html

widget and include the widget class. Both files can be found in the directory of the
example.

When you compile and load this plugin in triAna, you can use it as an output for your
analysis. When you click on the output, you will see the widget pop up in a
dockwidget.

Using widgets

Using widgets is really simple: just build the widget and tell your plugin to create an
instance of it when the function setInterface() is called. Then provide that instance to
the interface and, if the interface can handle it, it will be used. Also make sure to
remove the widget when needed. Put a call to removeWidget() in you destructor and
implement that function accordingly to take care of this.

There are no real rules about how to write your widget, only that they should be abled
to return their owner. This helps an interface to identify which plugin provided a
widget. Also, very large widgets might pose a problem to some users.

Please note that quickly adding and removing widgets is not a good idea: add your
widgets once during the call to setinterface(), that's by far the most secure. If there's
a need to add at different moments, though, be sure to make it thread-safe using the
mutex provided by AnalysisPlugin and don't expect your widget to pop up directly. In
the standard UI a provided widget won't be shown until the user clicks on the plugin
in the Analysis.

Caveats

A couple of caveats exist when using widgets. To prevent implementors to easily fall
into them, here's a list of them with descriptions.

* Default values; Don't set default values on your widget. Although in many cases
your widget will be instantiated together with a new instance of your plugin, it
can as well be instantiated while loading a save file. In the latter case the values
in your plugin will be set before the widget is instantiated and the defaults in
your widget will give a wrong view.

¢ Listen to the plugin; Don't assume the plugin will be configured using only the
widget. It can very well be configured using other methods, such as
setInteractiveProperty(). Have the widget listen to the signals of the plugins to
update your widget when the plugin changes.

* Test sizing policies well; There are several ways to have Qt calculate the size of
something and not all are the best way. Experiment with policies to see which
fits your widget best. The size policy that's used for the standard triAna plugin
widgets is both horizontally and vertically fixed.

* Looping signals; Watch out for signals being caught to emit other signals that
emit the previous signal again. Several ways exist to create this nasty kind of
loop. A surefire way is having your widget listen to the propertyChanged() signal
of your plugin and having it set a value in your plugin whenever one of it's
controls is used. If no checking is done if the value is the same as had already
been set earlier, you'll find the widget updating the plugin, which updates the
widget, which updates the plugin, etc.

* Signals from updates have side-effects; It might be very useful to use, for
example, both a slider and spinbox for the same value, to allow your users to
quickly navigate big values, but also to allow accurate changes or direct entering
of exact values. The same loop that is described above will still lead to trouble
here, even when checking for the same values.

Consider the slider and the spinbox. The slider contains integer values and the
spinbox floating point values. The actual value that's used is the floating point

11 van 14 18-10-07 23:05

triAna - Developer Documentation file:///home/thomas/src/svn/triAna/doc/developer/index.html

value. Now when changing the spinbox from 0.3 to 5.5, you suddenly see the
value become 5.0.

What happened? The moment you changed the spinbox it changed the value in
the plugin, which emitted the propertyChanged() signal. This signal was
connected to a slot that sets the new values of both the spinbox and the slider.
The spinbox is no problem, but the moment the slider was set, the value was first
rounded down to 5, since it needs to be integer. With the slider having its value
changed to 5 it emitted a signal which was picked up as if it was changed by a
user and which was processed accordingly: the new value of the slider was set in
the plugin. Normally this would cause nothing if the plugin checks if the value is
the same as that which was already set, but now it first saw 5.5 and later on 5,
which is different, so it changed once again.

There's many such side-effects you all need to take into account. The solutions
are usually rather easy, but trying to figure out what happens can be difficult.
Some known solutions are using Qt's disconnect() and connect() to temporarily
stop listen to changes in the slider to fix the case above and using the
editingFinished() signal instead of the valueChanged() signal of the spinboxes to
allow them to autorepeat.

Frontends

The functional part of triAna, the backend, is set up in a way to allow many different
ways of interacting with users. There are many uses of the backend. It's set up to be
quite fast, so batch processing is possible. Also, the full-fledged functionality of the
standard Ul might not always be needed and a simple viewer might speed things up a
lot. Even a full text-mode Ul for analysing triangulations is imaginable, although most
likely very difficult to write.

Writing a frontend can range from a breeze to a lot of work. We'll show an example to
get you started. Not all aspects of writing a frontend will be discussed here, since
many of them do not concern the triAna API, but rather the Qt libraries. Also, not
every class in the triAna backend will be discussed in all aspects, though with a
complex frontend you will touch most of them.

Batch processing: the savefile runner

Most likely the most easy to build frontend is one that simply opens a savefile and
writes the output of it all to some file. This is exactly what the savefile runner does.

¢ SavefileRunner.h
¢ SavefileRunner.cpp

The output of this little utility is slightly naive: it builds an XML file with an element
for every triangle, which has and element for every edge, which has an element for
every vertex. The output is thus not really useful. More useful output, however, costs
a lot of extra code and is not within the scope of the example.

The example is more or less the absolute minimum to load a savefile and use it. Many

aspects, such as widgets, displaying and actions, are simply ignored by the example
and any interaction with the user is absent.

The basics: the example in detail

When we take a look at the header-file, there's a couple of things that need to be done
for every frontend.

1. The main class that inherits TriAnaView, also inherits QObject, directly or

12 van 14 18-10-07 23:05

triAna - Developer Documentation file:///home/thomas/src/svn/triAna/doc/developer/index.html

indirectly.

2. 6 public and 4 protected methods must be implemented. These define the public
and internal API of every TriAnaView.

3. Some boilerplate code with some signals, slots and methods is needed let
TriAnaView function as it should. The reason for this boilerplate code is that
TriAnaView is no QODbject of its own, since it's desirable to have subclasses of
TriAnaView inherit other QObjects as well, such as a QMainWindow. TriAnaView
still nbeleds to function as a QObject, though, and the boilerplate makes this
possible.

The boilerplate code in the headerfile is this:

signals:

void triangulationChanged();

void imageChanged();

void closing();
protected slots:

blyirtual void cleanupCache() { TriAnaView::cleanupCache(); }

public:

Q0bject* asQObject() { return this; }

Apart from these items and the boilerplate code, the header file contains what any
QODbject header file would have: it's own methods, a Q OBJECT declaration, its
variables and whatever else you see fit.

The source-code of the example offers some more insight in how to use the backend.
We'll highlight the important points again.

1. A main method with a QApplication. Even in non-gui versions, QApplication must
be used to allow plugins to build their widgets.

2. In the constructor setup should be done as usual. An added point to think about
is preloading the plugins in the standard plugin directory. PluginLoader gives all
the necessary functions to do so (loadablePlugins() and loadPlugin()). For most
applications this is a good idea.

3. The destructor that emits closing. Any plugin may provide widgets to the
interface, but these need to be removed as well, when the time comes. Due to
internal matters plugins can't reliably do so without ruining either themselves or
the interface. This signal fixes that problem. Simply emit it from your destructor
and all should be well.

4. The call to loadAnalyses() in runSavefile(). This call shows how easy loading and
saving savefiles is. Simply call loadAnalyses() and much will be done without the
need to write code.

5. The calls to the Analysis objects in runSavefile(). These calls show how Analysis
encapsulates the use of plugins. Once set up, all one needs to do is call the slots
run() and doOutput() to have the selection created and output done.

6. The functions triangulation() and image(). These functions return the current
triangulation and image. These functions are meant for the backend to access
the triangulation and image easily.

7. The functions addWidget() and removeWidget(), which are not implemented
here, provide the interface with widgets from plugins. Plugins call these
functions to provide and remove widgets. Be sure to keep track of them, if you
accept them.

8. The functions addAction() and removeActions(), which are not implemented here,
provide the interface with actions from plugins. Plugins call these functions to
provide and remove actions. Be sure to keep track of them, if you accept them.

9. The functions loadlmage() and loadTriangulation() are called by the backend
during loading to tell the interface an image or triangulation should be loaded.
The interface can decide for itself if and how to load the image or triangulation.
When implementing more complex frontends, you'll want to load the image or
triangulation and keep track of it, until finalizeLoadAnalyses() is called before

13 van 14 18-10-07 23:05

triAna - Developer Documentation file:///home/thomas/src/svn/triAna/doc/developer/index.html

actually using it anywhere.

10. The function addAnalysis(). This function may be called many times or not at all,
all depending on the savefile that is being loaded. Here, also, the frontend may
decide what to do with the provided Analyses. When implementing more comlex
frontends, you'll want to keep track of them, until finalizeLoadAnalyses() is called
before actually using them anywhere.

11. The function finalizeLoadAnalyses(). This function is called after any needed calls
to addAnalysis(), loadImage() and loadTriangulation() and only if the loading was
succesfull. In complex frontends, this is the place to start using the Analyses,
image and triangulation that were provided through those 3 methods.

Beyond the basics: complex interfaces

There are many things to take into consideration when writing a frontend. Lots of
them have been mentioned above and the rest can be found in the documentation of
the backend. A list of questions will help building complex frontends. These questions
won't be discussed here, since the answer to them is very application-specific and all
tﬁatbnetf{ds 50 be done for a particular answer can be found in the documentation of
the backend.

1. Can the user interact with an Analysis?
And if so:
1. Which functions can the user use?
2. Will the user be allowed to use more than one Analysis at the same time?
3. Will the user be abled to use groups in the selection using SelectionGroup?
How wi?11 the user interact with plugins? Will you use the provided widgets and/or
actions®
What output will you create?
When will you run an analysis and when will you generate output?
Can the user influence which image and/or triangulation is being used?
What plugins are available and can the user influence this?

QUL N

When creating a frontend, especially a complex one, it's important to keep in mind
that you don't control the order of events. They might be different another time. This
means you can't really depend on the order in which things happen, apart from when
documented. A good example of this is when a plugin is added and when it provides
you Wil:ih its widgets: the order of these two actions depends on why the plugin was
created.

14 van 14 18-10-07 23:05

Appendix C: Examples' documentation

Contains the following source codes:

*

*

*

BigTriangleSelector.h
BigTriangleSelector.cpp
ColoredTriangles.h
ColoredTriangles.cpp
ColoredTrianglesWidget.h
ColoredTrianglesWidget.cpp
MylmageReaderInput.h
MylmageReaderInput.cpp
MylmageReaderInput.h
MylmageReaderInput.cpp
MyUselessImageReaderInput.h
MyUselessImageReaderInput.cpp
RedTriangles.h
RedTriangles.cpp
SavefileRunner.h
SavefileRunner.cpp
TriangulationGenerator.h

TriangulationGenerator.cpp

29

2007-10-19 BigTriangleSelector.h

#ifndef BIGTRIANGLESELECTOR H
#define BIGTRIANGLESELECTOR_H

#include <QtPlugin>
#include <CriteriaPlugin.h>
#include <QList>

class TriangulationPart;

class BigTriangleSelector : public CriteriaPlugin {
Q_OBJECT
Q_INTERFACES(TriAnaPlugin AnalysisPlugin CriteriaPlugin)
public:
QList< TriangulationPart* > createSelection(QList< TriangulationPart* > selection);

const QString name() const;

const QString description() const;

const QString id() const;

TriAnaPlugin* newInstance(QObject* parent = 0);

};

#endif

file:///home/thomas/src/svn/triAna/examples/BigTriangleSelector/BigTriangleSelector.h

2007-10-19 BigTriangleSelector.cpp 1

#include "BigTriangleSelector.h"

#include <TriangulationPart.h>
#include <Triangle.h>

QList< TriangulationPart* > BigTriangleSelector::createSelection(QList< TriangulationPart* >
selection) {
QList< TriangulationPart* > res;
// Go over all parts
double maxArea = 0;
Triangle* maxTriangle = 0;
for(QList< TriangulationPart* >::Iterator it = selection.begin(); it != selection.end();
it++) {
// If this is a triangle, we'll need to compare it to the biggest we've seen so far
Triangle* t = qobject_cast< Triangle* >(*it);
if(t) |
if(t->area() > maxArea) {
maxArea = t->area();
maxTriangle = t;

}
}
// If it's not a triangle, we won't touch it
else {
res.append(*it);
}

}
// Let's see if we found a triangle at all. If we did, the biggest is in maxTriangle and we
should add that.
if(maxTriangle)
res.append(maxTriangle);
// Done! Let's return the result.
return res;

}

const QString BigTriangleSelector::name() const {
return "Big Triangle Selector";

}

const QString BigTriangleSelector::description() const {
return "Selects the biggest triangles out of all selected triangles.";

}

const QString BigTriangleSelector::id() const {
return "org.bar.foo.BigTriangleSelector";

}

TriAnaPlugin* BigTriangleSelector::newInstance(QObject* parent) {
BigTriangleSelector* instance = new BigTriangleSelector();
if(parent)
instance->setParent(parent);
return instance;

}
Q EXPORT PLUGIN2(bigtriangleselection, BigTriangleSelector)

#include "BigTriangleSelector.moc"

file:///home/thomas/src/svn/triAna/examples/BigTriangleSelector/BigTriangleSelector.cpp

2007-10-19 ColoredTriangles.h 1

#ifndef COLOREDTRIANGLES H
#define COLOREDTRIANGLES_H

#include <QtPlugin>
#include <OutputPlugin.h>
#include <QColor>

class TriAnaView;
class ColoredTrianglesWidget;

class ColoredTriangles : public OutputPlugin {
Q_OBJECT
Q_INTERFACES(TriAnaPlugin AnalysisPlugin OutputPlugin)
Q_PROPERTY(QColor color READ color WRITE setColor)
public:
ColoredTriangles();
~ColoredTriangles();

void createOutput();

void setInterface(TriAnaView* interface, QWidget* ui_parent);
const QString name() const;

const QString description() const;

const QString id() const;

TriAnaPlugin* newInstance(QObject* parent = 0);

QColor color() const;
void setColor(QColor color);

protected:
void removeWidget();

private:
ColoredTrianglesWidget* m widget;
QColor m color;

b

#endif

file:///home/thomas/src/svn/triAna/examples/ColoredTriangles/ColoredTriangles.h

2007-10-19 ColoredTriangles.cpp 1

#include "ColoredTriangles.h"
#include <TriangulationPart.h>
#include <Triangle.h>

#include <QList>

#include "ColoredTrianglesWidget.h"
#include <TriAnaView.h>

ColoredTriangles::ColoredTriangles() : m widget(O), m color(QColor(O, 0, 255)) {
}

ColoredTriangles::~ColoredTriangles() {
removeWidget();

}

void ColoredTriangles::setInterface(TriAnaView* interface, QWidget* ui parent) {
OutputPlugin::setInterface(interface, ui parent);
if(m_interface) {
m_widget = new ColoredTrianglesWidget(this, ui_parent);
m interface->addWidget(m widget);

}

void ColoredTriangles::removeWidget() {
if(m mutex.tryLock() && m _interface & & m widget) {
m_interface->removeWidget(m_widget);
m_widget->deletelLater();
m widget = 0;
m mutex.unlock();

}

QColor ColoredTriangles::color() const {
return m_color;

}
void ColoredTriangles::setColor(QColor color) {
if(color == m_color)
return;

m color = color;
// A property of ours has changed: tell the world!
// Note that we don't specifically mention the widget here, even though it should be updated.
// We rely on the widget, instead, to listen to propertyChanged().
emit propertyChanged();
}

void ColoredTriangles::createQutput() {
// Go over all parts of the selection
for(QList< TriangulationPart* >::Iterator it = m_selection.begin(); it != m_selection.end(
)y it++) {
// If this is a Triangle, we should really fill it with our color
Triangle* t = qobject_cast< Triangle* >(*it);
if(t) {
t->setColor(m_color);
t->setFilled(true);

}

const QString ColoredTriangles::name() const {
return "Colored Triangles";

}

const QString ColoredTriangles::description() const {
return "Colors all triangles in a configurable color";

}

const QString ColoredTriangles::id() const {
return "org.bar.foo.ColoredTriangles";

}

TriAnaPlugin* ColoredTriangles::newInstance(QObject* parent) {

file:///home/thomas/src/svn/triAna/examples/ColoredTriangles/ColoredTriangles.cpp

2007-10-19 ColoredTriangles.cpp 2
ColoredTriangles* instance = new ColoredTriangles();
if(parent)
instance->setParent(instance);
return instance;

}
Q EXPORT PLUGIN2(coloredtriangles, ColoredTriangles)

#include "ColoredTriangles.moc"

file:///home/thomas/src/svn/triAna/examples/ColoredTriangles/ColoredTriangles.cpp

2007-10-19 ColoredTrianglesWidget.h 1

#ifndef COLOREDTRIANGLESWIDGET H
#define COLOREDTRIANGLESWIDGET_H

// This file will be generated by Qt's uic, called via CMake:
#include "ui widget.h"

#include "ColoredTriangles.h"
#include <TriAnaWidget.h>
#include <QColor>

class AnalysisPlugin;

class ColoredTrianglesWidget : public TriAnaWidget, public Ui widget {
Q_OBJECT

public:
ColoredTrianglesWidget(ColoredTriangles* parent, QWidget* ui parent = 0);
AnalysisPlugin* owner();

private slots:
void buttonColorClicked();
void refreshInterface();

private:
ColoredTriangles* m_parent;

}

#endif

file:///home/thomas/src/svn/triAna/examples/ColoredTriangles/ColoredTriangles Widget.h

2007-10-19 ColoredTrianglesWidget.cpp 1

#include "ColoredTrianglesWidget.h"
#include <AnalysisPlugin.h>
#include <QPalette>

#include <QColorDialog>

ColoredTrianglesWidget::ColoredTrianglesWidget(ColoredTriangles* parent, QWidget* ui parent)
TriAnaWidget(ui parent), m parent(parent) {

setupUi(this);

refreshInterface();

// Connect the button and listen to when the properties, i.e. color, of our parent has changed
connect(buttonColor, SIGNAL(clicked()), this, SLOT(buttonColorClicked()));
connect(m_parent, SIGNAL(propertyChanged()), this, SLOT(refreshInterface()));

}

AnalysisPlugin* ColoredTrianglesWidget::owner() {
return m_parent;

}

void ColoredTrianglesWidget::buttonColorClicked() {

// Get ourselves a new color

QColor newColor = QColorDialog::getColor(m_parent->color(), this);

if(!newColor.isValid())

return;

newColor = QColor(newColor.red(), newColor.green(), newColor.blue());

// Tell our parent about the new color

m parent->setColor(newColor);

// Note the absence of any changes to ourselves: we'll do that in refreshInterface,

// which will be run as a result of setting the color of our parent (which emit
propertyChanged())
}

void ColoredTrianglesWidget::refreshInterface() {
// Color the button the same as the color set in out parent
QPalette p = buttonColor->palette();
p.setColor(QPalette::Button, m parent->color());
buttonColor->setPalette(p);

}

#include "ColoredTrianglesWidget.moc"

file:///home/thomas/src/svn/triAna/examples/ColoredTriangles/ColoredTriangles Widget.cpp

2007-10-19 MylmageReaderlnput.h 1

#ifndef MYIMAGEREADERINPUT H
#define MYIMAGEREADERINPUT_H

#include <QtPlugin>
#include <ImageInputPlugin.h>

class QIODevice;
class QImage;

class MyImageReaderInput : public ImageInputPlugin {

Q_OBJECT

Q_INTERFACES(TriAnaPlugin ImageInputPlugin)
public:

QImage loadImage(QIODevice& device);

const QStringlList extensions() const;

const QStringlList mimetypes() const;

bool canLoad(QIODevice& device);

QString mimetype() const;

const QString name() const;

const QString description() const;

const QString id() const;

TriAnaPlugin* newInstance(QObject* parent = 0);

private:
QString m_mimetype;

};

#endif

file:///home/thomas/src/svn/triAna/examples/MylmageReaderinput/MylmageReaderinput.h

2007-10-19 MylmageReaderlnput.cpp 1

#include "MyImageReaderInput.h"

#include <QImage>
#include <QImageReader>

QImage MyImageReaderInput::loadImage(QIODevice& device) {
// Put the image ready to be read
QImageReader img(&device);

// Remember what format it was
QString format = QString(img.format()).toLower();

if(format == "png") {
m_mimetype = "image/png";

}

else if(format == "jpg" || format == "jpeg") {
m mimetype = "image/jpeg";

}

else if(format == "gif") {
m mimetype = "image/gif";

}

else {

m_mimetype = QString();
}

// Read the image
QImage image = img.read();

// Only remember the mimetype if loading was succesful
if(image.isNull())
m_mimetype = QString();

// Return the loaded image
return image;

}

bool MyImageReaderInput::canLoad(QIODevice& device) {
QImageReader img(&device);
return img.canRead();

}

const QStringlList MyImageReaderInput::mimetypes() const {
// Qt is not so nice as to give us the mimetypes themselves, so we'll have to translate them
QList< QByteArray > list = QImageReader::supportedImageFormats();
QStringList res;
QList< QByteArray >::iterator it;
QString ext;

for(it = list.begin(); it != list.end(); it++) {
ext = QString(*it).toUpper();
if(ext == "GIF") {
res.append("image/gif");
}
else if(ext == "JPG") {
if(!res.contains("image/jpeg"))
res.append("image/jpeg");
}
else if(ext == "JPEG") {
if(!'res.contains("image/jpeg"))
res.append("image/jpeg");
}
else if(ext == "PNG") {
res.append("image/png");
}

}
// Return the mimetypes we should be able to read
return res;

}

const QStringList MyImageReaderInput::extensions() const {
QList< QByteArray > list = QImageReader::supportedImageFormats();
QStringlList res;
QList< QByteArray >::iterator it;

file:///home/thomas/src/svn/triAna/examples/MylmageReaderinput/MylmageReaderinput.cpp

2007-10-19 MylmageReaderlnput.cpp 2

for(it = list.begin(); it != list.end(); it++) {
res.append(QString(*it));

}

return res;

}

QString MyImageReaderInput::mimetype() const {
// Return the mimetype of the last succesfully loaded image
return m mimetype;

}

const QString MyImageReaderInput::name() const {
return "Qt ImageReader";
}

const QString MyImageReaderInput::description() const {
return "Reads images supported by Qt.";
}

const QString MyImageReaderInput::id() const {
return "org.bar.foo.MyImageReaderInput";

}

TriAnaPlugin* MyImageReaderInput::newInstance(QObject* parent) {
MyImageReaderInput* instance = new MyImageReaderInput();
if(parent)
instance->setParent(parent);
return instance;

}
Q EXPORT _PLUGIN2(myimagereaderinput, MyImageReaderInput)

#include "MyImageReaderInput.moc"

file:///home/thomas/src/svn/triAna/examples/MylmageReaderinput/MylmageReaderinput.cpp

2007-10-19 MyUselessimageReaderinput.h

#ifndef MYUSELESSIMAGEREADERINPUT H
#define MYUSELESSIMAGEREADERINPUT_H

#include <QtPlugin>
#include <TriAnaPlugin.h>

class MyUselessImageReaderInput : public TriAnaPlugin {
Q_OBJECT
Q_INTERFACES(TriAnaPlugin)
public:
const QString name() const;
const QString description() const;
const QString id() const;
TriAnaPlugin* newInstance(QObject* parent = 0);
1

#endif

file:///home/thomas/src/svn/triAna/examples/MyUs elessiImageReaderinput/MyUs elessimageReaderinput.h

2007-10-19 MyUselessimageReaderlnput.cpp 1

#include "MyUselessImageReaderInput.h"

const QString MyUselessImageReaderInput::name() const {
return "Qt ImageReader";

}

const QString MyUselessImageReaderInput::description() const {
return "Reads images supported by Qt.";

1

const QString MyUselessImageReaderInput::id() const {
return "org.bar.foo.MyUselessImageReaderInput"”;

}

TriAnaPlugin* MyUselessImageReaderInput::newInstance(QObject* parent) {
MyUselessImageReaderInput* instance = new MyUselessImageReaderInput();
if(parent)

instance->setParent(parent);
return instance;

}
Q_EXPORT_PLUGIN2(myuselessimagereaderinput, MyUselessImageReaderInput)

#include "MyUselessImageReaderInput.moc"

file:///home/thomas/src/svn/triAna/examples/MyUselessImageReaderinput/MyUselessimageReaderinput.cpp

2007-10-19 RedTriangles.h 1

#ifndef REDTRIANGLES_H
#define REDTRIANGLES_H

#include <QtPlugin>
#include <OutputPlugin.h>

class RedTriangles : public OutputPlugin {

Q_OBJECT

Q_INTERFACES(TriAnaPlugin AnalysisPlugin OutputPlugin)
public:

void createOutput();

const QString name() const;

const QString description() const;

const QString id() const;

TriAnaPlugin* newInstance(QObject* parent = 0);
};

#endif

file:///home/thomas/src/svn/triAna/examples/RedTriangles/RedTriangles.h

2007-10-19 RedTriangles.cpp 1

#include "RedTriangles.h"
#include <TriangulationPart.h>
#include <Triangle.h>

#include <QList>

void RedTriangles::createOutput() {
// Go over all parts of the selection
for(QList< TriangulationPart* >::Iterator it = m selection.begin(); it != m selection.end(
); it++) {
// If this is a Triangle, we should really fill it with red
Triangle* t = qobject_cast< Triangle* >(*it);
if(t) |
t->setColor(QColor(255, 0, 0));
t->setFilled(true);

}

const QString RedTriangles::name() const {
return "Red Triangles";

}

const QString RedTriangles::description() const {
return "Colors all triangles red";

}

const QString RedTriangles::id() const {
return "org.bar.foo.RedTriangles"”;

}

TriAnaPlugin* RedTriangles::newInstance(QObject* parent) {
RedTriangles* instance = new RedTriangles();
if(parent)
instance->setParent(instance);
return instance;

}
Q EXPORT PLUGIN2(redtriangles, RedTriangles)

#include "RedTriangles.moc"

file:///home/thomas/src/svn/triAna/examples/RedTriangles/RedTriangles.cpp

2007-10-19 SavefileRunner.h 1

#ifndef SAVEFILERUNNER_H
#define SAVEFILERUNNER_H

#include <QObject>
#include <QList>
#include <QImage>

#include <TriAnaView.h>
#include <Analysis.h>
#include <Triangulation.h>

class Triangulation;
class QImage;
class TriAnaWidget;

class SavefileRunner : public QObject, public TriAnaView {
Q_OBJECT
public:
SavefileRunner();
~SavefileRunner();
/**

* Stores the file data needed to do the loading, running and saving in runSavefile().

* This function creates a timer with a timeout of @ to call runSaveFile().
*

* @arg filename The file to load.

* @arg output The file to write the result to.

*/

void setFileData(const QString& filename, const QString& output);
private slots:
/**
* lLoads the savefile, runs the Analyses it found on the image and triangulation it found and
writes the result to the outputfile.
*/
void runSavefile();

// Here follow the methods every TriAnaView must implement
public:

Triangulation* triangulation();

QImage& image();

bool addWidget(TriAnaWidget* widget);

bool removeWidget(TriAnaWidget* widget);

void addAction(QAction* action, AnalysisPlugin* owner);

void removeActions(AnalysisPlugin* owner);
protected:

bool addAnalysis(Analysis* analysis);

bool loadImage(QIODevice& image, const QString& mimetype, const QString& filename, bool
embedded);

bool loadTriangulation(QIODevice& trianglation, const QString& mimetype, const QString&
filename, bool embedded);

void finalizelLoadAnalyses();

// Here follow some private variables so we can remember all we're loading
private:

Triangulation* m triangulation;

QImage m_image;

QList< Analysis* > m_analyses;

QString m_filename;

QString m output;

// Here follows some biolerplate code for each TriAnaView
// This code is necessary to make sure TriAnaView can operate as a QObject, while it technically
can't inherit from QObject
signals:
void triangulationChanged();
void imageChanged();
void closing();
protected slots:
virtual void cleanupCache() { TriAnaView::cleanupCache(); }
public:
QObject* asQObject() { return this; }
1

file:///home/thomas/src/svn/triAna/examples/SavefileRunner/SavefileRunner.h

#endif

2007-10-19 SavefileRunner.cpp 1

#include "SavefileRunner.h"

#include <QFileInfo>
#include <QTextStream>
#include <QTimer>
#include <QImage>
#include <QDomDocument>
#include <QDomElement>
#include <QListIterator>
#include <QApplication>

#include <Triangulation.h>
#include <Triangle.h>

#include <Edge.h>

#include <Vertex.h>

#include <PluginLoader.h>
#include <ImagelLoader.h>
#include <TriangulationLoader.h>

// A simple main method to start a QApplication and load our class
//
// We expect the last two arguments to be the savefile to load and the output-file to write,
respectively.
int main(int argc, char** argv) {

// Although we won't provide a GUI ourselves, we still need to load a QApplication: the
plugins require the GUI part to be functional

QApplication app(argc, argv);

SavefileRunner runner;

// Read the arguments and check if those are files.

QString filename;

QString output;

bool bad = false;

if(QCoreApplication::arguments().size() < 3) {

bad = true;
}
else {
filename = QCoreApplication::arguments().at(QCoreApplication::arguments().size() - 2);
output = QCoreApplication::arguments().last();
QFileInfo fil(filename);
if(' (fil.exists() && fil.isFile())) {
bad = true;
}
}
if(bad) {
// Tell the user how to use this program
QTextStream err(stderr);
err << "SavefileRunner example" << endl
<< "Usage: savefilerunner savefile outputfile" << endl;
return -1;
}

// Tell the savefile runner about these files and get busy
runner.setFileData(filename, output);
return app.exec();

}

SavefileRunner::SavefileRunner() : m_triangulation(0) {
// Let's load the plugins that were installed to the standard plugin directory
QStringlList plugins = PluginLoader::instance()->loadablePlugins();
for(QStringList::Iterator it = plugins.begin(); it != plugins.end(); it++) {
if(PluginLoader::instance()->loadPlugin(*it).isEmpty()) {
QTextStream err(stderr);
err << "Warning: loading plugin " << *it << " failed:" << endl
<< PluginLoader::instance()->errorString() << endl;

}

SavefileRunner: :~SavefileRunner() {
emit closing();

}

file:///home/thomas/src/svn/triAna/examples/SavefileRunner/SavefileRunner.cpp

2007-10-19 SavefileRunner.cpp 2

void SavefileRunner::setFileData(const QString& filename, const QString& output) {
m_filename = filename;
m output = output;
// Make sure my own slot is called as soon as the event-loop starts running
QTimer::singleShot(0, this, SLOT(runSavefile()));

}

void SavefileRunner::runSavefile() {
QTextStream err(stderr);
// Sanity check
if(m filename.isEmpty() || m output.isEmpty()) {
// Since this is an internal error, just fail silently
QCoreApplication::exit(-1);
return;

}

// Load the file
if(!loadAnalyses(m_filename)) {
err << "Could not load savefile " << m filename <<
<< errorString() << endl;
QCoreApplication::exit(-1);
return;

<< endl

}

// Check if we have a triangulation

if(!'m_triangulation) {
// Although really too bad, this is really a normal case, so return 0
err << "No triangulation found in savefile " << m_filename << endl;
QCoreApplication::exit(0);
return;

}

// Run all analyses

for(QList< Analysis* >::Iterator it = m_analyses.begin(); it != m analyses.end(); it++) {
(*it)->run();
(*it)->doOutput();

}

// Save the resulting triangulation to XML
QFile output(m output);
if(!output.open(QIODevice::WriteOnly)) {
err << "Could not write to output file " << m output << ":" << endl
<< output.errorString() << endl;
QCoreApplication::exit(-1);
return;

}

QDomDocument document;
QDomElement root = document.createElement("triangulation");
QListIterator< Triangle* > triangles = m triangulation->triangles();
while(triangles.hasNext()) {
Triangle* triangle = triangles.next();
QDomElement triangleElement = document.createElement("triangle");
triangleElement.setAttribute("color", triangle->color().name());
triangleElement.setAttribute("filled", triangle->isFilled());
for(int edgeNumber = 0; edgeNumber < 3; edgeNumber++) {
Edge* edge = (*triangle)[edgeNumber];
QDomElement edgeElement = document.createElement("edge");
edgeElement.setAttribute("color", edge->color().name());
edgeElement.setAttribute("visible", edge->isVisible());
edgeElement.setAttribute("thickness", edge->thickness());
for(int vertexNumber = 0; vertexNumber < 2; vertexNumber++) {
Vertex* vertex = (*edge)[vertexNumber];
QDomElement vertexElement = document.createElement("vertex");
vertexElement.setAttribute("color", vertex->color().name());
vertexElement.setAttribute("visible", vertex->isVisible());
vertexElement.setAttribute("displaystyle", (int)vertex->displayStyle());
vertexElement.setAttribute("x", vertex->x());
vertexElement.setAttribute("y", vertex->y());
edgeElement.appendChild(vertexElement);

file:///home/thomas/src/svn/triAna/examples/SavefileRunner/SavefileRunner.cpp

2007-10-19 SavefileRunner.cpp 3

triangleElement.appendChild(edgeElement);
}
root.appendChild(triangleElement);

}
document.appendChild(root);

if(output.write(document.toByteArray()) == -1) {
err << "Could not write to output file " << m output <<
<< output.errorString() << endl;
QCoreApplication::exit(-1);
return;

<< endl

}
output.close();

// We're done
QCoreApplication::exit(0);
}

Triangulation* SavefileRunner::triangulation() {
return m_triangulation;

}

QImage& SavefileRunner::image() {
return m_image;

}

bool SavefileRunner::addWidget(TriAnaWidget* /*widget*/) {
// We ignore widgets
return false;

}

bool SavefileRunner::removeWidget(TriAnaWidget* /*widget*/) {
// We've already ignored widgets
return false;

}

void SavefileRunner::addAction(QAction* /*action*/, AnalysisPlugin* /*owner*/) {
// We are encouraged to give the user the opportunity to use an action
// However, we're here for batch-work, without use intervention
// So we choose to ignore actions

}

void SavefileRunner::removeActions(AnalysisPlugin* /*owner*/) {

}

bool SavefileRunner::addAnalysis(Analysis* analysis) {
m_analyses.append(analysis);
return true;

}

bool SavefileRunner::loadImage(QIODevice& image, const QString& mimetype, const QString&
filename, bool embedded) {

QString extension;

if(filename.indexOf('.') I= -1) {

extension = filename.mid(filename.lastIndexOf('.') + 1);

}

m image = Imageloader::instance()->loadImage(image, mimetype, extension);

return true;

}

bool SavefileRunner::loadTriangulation(QIODevice& triangulation, const QString& mimetype, const
QString& filename, bool embedded) {

QString extension;

if(filename.indexOf('.') I= -1) {

extension = filename.mid(filename.lastIndexOf('.') + 1);

}

m_triangulation = TriangulationLoader::instance()->loadTriangulation(triangulation,
mimetype, extension);

return true;

}

file:///home/thomas/src/svn/triAna/examples/SavefileRunner/SavefileRunner.cpp

2007-10-19 SavefileRunner.cpp

void SavefileRunner::finalizelLoadAnalyses() {

// Since we don't have any data to replace, we did follow the advice not to change anything
until this function is called

// So it can be left empty
}

#include "SavefileRunner.moc"

file:///home/thomas/src/svn/triAna/examples/SavefileRunner/SavefileRunner.cpp

2007-10-19 TriangulationGenerator.h

#ifndef TRIANGULATIONGENERATOR H
#define TRIANGULATIONGENERATOR_H

#include <QtPlugin>
#include <OutputPlugin.h>

class TriAnaView;

class TriangulationGenerator : public OutputPlugin {
Q_OBJECT

Q_INTERFACES(TriAnaPlugin AnalysisPlugin OutputPlugin)
public:
~TriangulationGenerator();

void createQutput();

void setInterface(TriAnaView* interface, QWidget* ui parent = 0);
const QString name() const;

const QString description() const;

const QString id() const;

TriAnaPlugin* newInstance(QObject* parent = 0);

protected:
void removeWidget();

private slots:
void generateTriangulation();
};

#endif

file:///home/thomas/src/svn/triAna/examples/TriangulationGenerator/TriangulationGenerator.h

2007-10-19 TriangulationGenerator.cpp 1

#include "TriangulationGenerator.h"
#include <TriAnaView.h>

#include <QImage>

#include <QDir>

#include <QTemporaryFile>

#include <QImageWriter>

#include <QFileDialog>

#include <QMessageBox>

#include <QAction>

TriangulationGenerator::~TriangulationGenerator() {
// The right code is already in removeWidget, let's let that function to the job
removeWidget();

}

void TriangulationGenerator::createOutput() {
// We don't do anything here, but we need to implement this function nonetheless
}

void TriangulationGenerator::setInterface(TriAnaView* interface, QWidget* ui parent) {
OutputPlugin::setInterface(interface, ui_parent);
// We wish to supply the interface with an action
if(m_interface) {
QAction* action = new QAction("Generate triangulation", this);
connect(action, SIGNAL(triggered()), this, SLOT(generateTriangulation()));
m_interface->addAction(action, this);

}

void TriangulationGenerator::removeWidget() {
// Protect this function using the mutex m mutex to prevent us from using a dangling pointer
if(m mutex.tryLock() && m_interface) {
m_interface->removeActions(this);
}
}

void TriangulationGenerator::generateTriangulation() {
// If we don't have an interface to ask the image from, don't bother
if(!m_interface)
return;

// Get the image we need to use
QImage image = m _interface->image();
// Without an image, no triangulation
if(image.isNull()) {

QMessageBox::information(@, "No image", "No triangulation was generated, since no image
was loaded. Please load an image and try again.");
return;

}

// The external tool needs this as a file, save it first to a temporary file

QTemporaryFile tempFile(QDir::temp().filePath("triangulationGeneratorImageFileXXXXXX.png")
)i

if(!tempFile.open()) {

QMessageBox: :warning(0, "Could not open tempfile", QString("No triangulation was
generated, since the temporary file to save the image to could not be opened: %1").arg(
tempFile.errorString()));

return;

}

QImageWriter writer(&tempFile, "PNG");
if(!writer.write(image)) {

QMessageBox::warning(0, "COuld not write tempfile", QString("No triangulation was
generated, since the image could not be written to the temporary file: %1").arg(
writer.errorString()));

return;

}

// Call the external program to generate the triangulation
QString filename = QFileDialog::getSaveFileName(0, "Generate triangulation", ".");
if(filename.isEmpty()) {

file:///home/thomas/src/svn/triAna/examples/TriangulationGenerator/TriangulationGenerator.cpp

2007-10-19 TriangulationGenerator.cpp 2

// The user pressed cancel
return;

}

// We don't have a program that actually does generate triangulations, so let's ask the user
to do so

QMessageBox::information(0, "Generate triangulation", QString("A program-call should be
inserted here to generate the triangulation. Alas, no such program-call is currently available and
all I can do is ask you to open image that is saved temporarily in %1 and to generate the
triangulation yourself, saving it in %2, before pressing the 'OK'-button below.").arg(
tempFile.fileName()).arg(filename));

}

const QString TriangulationGenerator::name() const {
return "Triangulation generator";

}

const QString TriangulationGenerator::description() const {
return "Uses an external tool to generate a triangulation from the currently loaded image.";

}

const QString TriangulationGenerator::id() const {
return "org.bar.foo.TriangulationGenerator";

}

TriAnaPlugin* TriangulationGenerator::newInstance(QObject* parent) {
TriangulationGenerator* instance = new TriangulationGenerator();
if(parent)

instance->setParent(parent);
return instance;

}
Q_EXPORT_PLUGIN2(triangulationgenerator, TriangulationGenerator)

#include "TriangulationGenerator.moc"

file:///home/thomas/src/svn/triAna/examples/TriangulationGenerator/TriangulationGenerator.cpp

Appendix D: The UML-model of triAna

In the UML model several methods are marked as abstract. Several of these abstract methods do
have default implementations. This difference in interpretation is due to the limitation in UML to
differentiate between what are in C++ called virtual and pure virtual functions. The abstract

functions in the UML model are the ones that can be easily overridden in subclasses (virtual
methods).

30

1 euibed weibe|pusssep| ;weibeg

(Jojesado::dnospuonda)as : uopesadojuoesadoias +

100q : (ajBuelL : 1ayjo)==103esada +
1007 : (Xe3aA : J84a0)==103esado + 96p3 © (U1 : [lio3esado + 5P o :wauﬂcmmﬂu H TpECTSreTI (jdnuesp +
< 9bp3 >JojeJ21SITD : ()ssbpe + . I L i B 1
P (abp3 : amuwvmmw.mu“m + < xS vumwmno:OMm.mAw_M““ H BuiasY : ()buIsIold + buasd : ()buasIoND +
Q:xauen ¢ @es + (100 . et Bunsd : (JadAsww + Burasd : (edhiswiw +
AR R | (R A D & (=) 8 GRS uopeinbuelL : (0BULISO = BuLSD : UoisusIX® ‘06UASD = BulISD : adAIeWIW '921A9QOID : 93ep)uope(nBueliLpea) + | | 3BEWID : (0BUIASD = Bunsd : uosusixe ‘0BuASD = BusD : JW ‘831820010 ¢) peo| +
B e H uopejnBuepy : (uisd : ajy)uopenbuel)peo) + 9bewd : (6ul3sO : 3|y)ebewipeo +
1004 : ()3(qISIAS] + 96p3 : (Jpuodas + 4@peociuoy m iepeciebew)
a1qnop : 04 + 96pa : (s
3|qnop : ()x + (26p3 : 2 '26pa : q '26pa : E)3jbuRLL + \
(219nop : A ‘3|qNop : X)xB1J3A + OsibuelL +
()xa34ap + DL \
XousA : \ dnuesp +
\r
(1deduopenbuey) : Jed)pabueydiied +
100q : (uopENBUBLY : JOYI0)==J0eJado + 0y Quy I
()s1epdnpus + 41 ¢ (Buasy : prjasenuess
Jooq : (abp3 : Jeyio)==1ojesado + ()s3epdniters + @dA1uibn|d::sepeoiuibnid : (6uj1S0 : p)adALuibnid +
sjbuey : (¥ [JHoesado + |00q : ONINNS| + 6unso : (Bunsp : pawena)duibnid +
1qnop : Oyibus) + U] : ()se|BueILIUNOD + - Bulsy : (Buiiasyd : pHuondussaquibnid +
< 3|BuelL >J03eI3IASID ¢ ()53IBuELY + Ju1 : ()sebpunos + buiiso : (jedMpwiw + 6ulsO : (Burnsd : phawenulbnid +
(a1bueyL : 3)3|BueliLppe + Ju1 ¢ ()SIRIBAIUNOD + 100q : (331730010 : 821A3p)pEOTUED + 3s116unSD : (3dALuIBN|d: :1apeoUIBNId : 3dAl)suibnidalqelene +
(100q ; 3|q1SIA)3|qISINIBS + < \ a1qnap : (nublaY + 1s116uL4S0 : ()sedABwiw + 1516ulISD : ()suibnidajqenene +
1000 : ()3IGISINSI + (uoy 1L ¢ uopenBuet)uopeinbueliies + I 1 R & 15116uiSO : (suojsuaIXe + BupISD ¢ ()BuLISI0LE +
QU ¢ SSEWPIY)SSANIYLIBS + aew%ﬂn:u%wu & QN E RS 6 (e Teyn & abewyd : (231030010 : 82jrap)abewipeo) + mc_:mom (BuSD : umz_m;_%mo_ +
Jup : ()sseauwyayl + b (401030 : 40 M:Wa nthm — < 8bp3 >Jo3es8IASM0 ¢ ()sabpa + 161 3s116ulISO : (Jsuibnida|qepeo] +
X31I3A i (JpU02DS + (&) .BLuo . ,a_wu_ou H < X3UBA >J01eIRIASIT0 : ()SPORJIAA + |eubys : (buisd : ppapeoiubnid +
XIUIA : (IS4l + . (< ®/bueny >35110 : sa|bueny ‘< abp3 >1sM0 : sebpa ‘< xa1JaA >1sI1D : seaen)uopenbuely + aepeoquibnid
(xa148A ¢ q 'x3343A : €)36p3 + Heduonenbueyy (Juonenbueuy +
()96p3 + N / |eubys : (1eduopenbueyy : ed)psbueyd +
abp3 uopenbueuy

(< 3u) “dnoiBuopasies >dewDd | 3unonusIpyIdnoib “siskleuy © sisAjeue ‘< [ooq ‘uiBnidsisAleuy >dewd : seRINERE ‘< uBnds|sAleuy >3SO : 35

(au; : uopysod ‘dno.

|00q : (JplleAs! +
(dnouguopd9|as : Juased)dnoinjualediss +

(100q : 9AR2E)AIIVIDS +

(3u] : uopysod)uop|sodias +

(aBueyds|shleuy : e)abueydsishleuy +

“uin|ds|sAjeuy : ujbnid ‘adA sbueyn:ebueynsiskjeuy : adA)abueydsishieuy +

JojesadQ::dnoasguond9es : (Juonessdo + ~
[(0 = 123/qOD : jua.ed)dnoiguondL|S + /// buiasg : PadApwiw + | -
/ 100q : (821280010 : 83 Jues + uibnideuyrl : (0 = 128/q00 : Jusied)adueisumau +
dnoipuopde)es ~_ 15176Ul3S0 ()sedApwiw + 6uLnsSo : (Juondidsap +
- N 35176UIASO : (JsuoisuaIX® + 6unso : Opr +
// // uoneynbueyiy : (821280010 : 831r8p)uogenbuer1peol + buinso : ()aweu +
16 ¥) uybnjgeu
(Juondejasieap # __tibmideuyyi
(dnoipuopaaas : jusied)dnoiniuaiedias + (3ndinoazeass +
dnospuopasies : (Jdnoipussed + (<3 L 141 >3S[10 : uo} ! +
! 141 >3S110 ¢ (< 3 L /1 >3510 : oL ! 2+ <3 I 11 >1S[1Q : uoF "W #
Quibnjdelaud + uibnjdindino
dnoiguopRda|as : Juased W # uibnidsisAjeuy : ()1aumo +
ujbnjdeaud (0 = 323(q00 : Jua.ediabpmeuvidl +
@6pimeuvrL qb6yD : ()40j00 +
0h +
Jussed u# Ox
\ (q6y0 : 40j03 ‘Juy : A “up : X)jxid +
\ 1sxid
\ M
Bbulsd : ()bunsiolle + —)
|00q : (JuawajgwoQD : SPOU)OIBAES + (19bpimanowsa. # |
100Q | (JUBWSFWOQD : IPOU)WOIIPeO| + (Juibn|dsisAjeuy # < |9xid >15170 : (Meduonejnbuels] : jied)sjaxid +
@abuey)s|sAjeuy : (jooq : aAlde ‘ulbn|dsisAjeuy : ulbnjd)aARdvIes + AuadoidiasuibnidsisAjeuy : ((JJuBlIBAQD = JuelieAD : anjeA ‘b6ulnsQ : dweu)Aj adoidoaAldeisiunas + (uibnidsisAjeuy : 19umo ‘UoAdYQD : UCHIB)UORIYPPE +
100q : (uibnidsisAjeuy : uibn|d)sadys! + sisAjeuy : ()sisAjeue + 1ooq : . 1L) . / +
U : ()sIndinguaquinu + (sisAjeuy : sisAjeue)sisAleuyas + 100q : (186pimeuyyiL : 186pim)1abpimppe +
< uiBndInding >3s/1d : ()sindino + m3IpRUYIY : ()928)I33U) + abew|Q : ()abew; +
U (JepeDIBqWNY + (0 = 196PIMO : JUBJEd ‘MBINRUYILL : 9BJIBIU)IBIISIURDS + eyl W uogejnbuel] : (Juoyenbuels +
< ulbnjdepayid >1sM10 : (0 = dnospuopoa|ss : jusled)epaytd + | SisAjeue Ws buigso : (bulsO : sweu)anjeAARUIUCRRWION] + (dmsas +
abueydssAjeuy : (dNoJoUORIa|aS : JuaJed uj : uopisod ‘ujBn|ds|sAeuy : ulBn|d)uiBnjdanow + buinsO : (BULISO : BWEU)UONALIISBAARUIUORRWION] + | & 23/q00 : (198/q00se +
abueyDsisAeuy : (ubn|dsisAjeuy : uibnid)uibnidenowas + | 15116ULISO : ()SBIIUIFUCHEWIOMUI + 1eubys : ()bujsopd +
abuey)sisAjeuy : (asje} = 100q : 3apde ‘0 = dNOJDUORDSIS : JuaJed ‘T- = 3u; : uolsod ‘ubndsisAieuy : ubnid)uiBnidppe + jeubys : (JpabueydAuadosd + Jeubjs : ()pabueydabew; +
()s1sAjeuy~ + 1eUBS : ()PaBUBYIUORBWIOJUY + 1eubys : (Jpabueyouogenbuels +
(M8|ABUY|.L : MBIA)sisAleuy + XENWD ¢ XN W 7 MOINFUVHL
|eubys : (jooq : @aapoe ‘uibn|dsisAjeuy : uibnid)paieapoyuibnid + sisAjeuy : s|sAjeue”w #
|eubis : Gu) : uopisod ‘dno. 1 ™ “dno. it @ MBIABUYIIL | 9IeMTIU| W #
: (uBnjd sisAjeuy : ujBnjd)psnowsyuiBnid + Bnjas)
. . - q R uib X X 6nid = —
JeuBys : (j00q : 9A;39€ uj : uopisod ‘dNoIDUONIBIBS | Jusied ‘Ul 1 up ?:_: H 7 — riast e GriasioA BT AT &
(Indinoop + () 8 QR <2
(3UBlIBAD : @NnjeA)SN|BAISS +
sjshAjeuy ()A1edoidiasuibnidsishieuy +

(AaadoudiesuibnidsisAeuy : e)A1iadoldiasuibnidsisAjeuy +

(BuinsD : aweu ‘uibnids|sAjeuy : uibnid sisAjeue)kiadolg 6 A

+

Auadoidiasuibnidsishleuy

\

(opun +
()andexs +

(13900 : 3ua. Dsisheuy +

|eubys : (jooq : aARoe ‘uibn|dsisAjeuy : uibnid)pajeapovulbnid +
‘dnoJ9uoId9|3 S : JUSJedp|0 ‘UIbn|ds|sAleuy nid)panowuibnid +
|eubys : (wbndsisAeuy : uibnid)panowayuibnid +
D918 : 3uased ‘ulb A 8 d +

S :juated qu)

Jeubys : (joog : snpde 3 sod “dnoigu

Puewwo)

Appendix E: XML format for save files

31

triAna
Save files — format description

Version 1.0
Last changed 05-07-07

1. Introduction and terminology

In order to have a consistent and clean way of saving any work done in triAna, this description has
been written as a reference to the organisation of savefiles for triAna. This document can be used to
both read and write those documents, as long as one understands how XML works.

This document references several other documents, using them as a basis for describing the savefiles
of triAna. All of them are referenced inline as well as in the index at the end of this document.

Whereever the words 'must’, 'must not', 'required’, 'shall’, 'shall not', 'should', 'should not',
‘recommended’, 'may' and 'optional' occur, these are to be interpreted as described in RFC 2119,
found at http://www.rfc-editor.org/rfc/rfc2119.txt.

2. Main document
This section described how a triAna savefile looks like without going into its content. Properties
such as media, standards andthe base are covered.

2.1 Physical desciption

triAna savefiles must be bytestreams saved in files or other media. These bytestreams should be
encoded in UTF8, described in RFC 3629 located at http://tools.ietf.org/html/rfc3629, but any
encoding will do as long as it can contain the necessary data and is completely freely available to
anyone who wishes to use it.

When saved in files, the extension for triAna savefiles should be '.trs'. This extension is an
abbreviation of triAna savefile and has been chosen over the more logical alternative ".tri' to avoid

conflicts with triangulation files, which happen to have the logical extension ".tri1'.

2.2 General format

The general format of a triAna savefile is an XML-document. The XML-standard is available on
http://www.w3.org/TR/xml/ and 1s required for correct interpretation of information in this
document.

2.2.1 Namespace

To avoid conflicts with other XML documents, a separate namespace has been declared for use with
triAna. This namespace is called 'triAna'. Namespaces for XML are described at
http://www.w3.org/TR/REC-xml-names/ and are recommended for correct interpretation of triAna
savefiles.

The namespace URI of triAna is 'http://triAna.dcc.uchile.cl/'.

When a triAna document is saved, prefixing the element-names with the namespace is
recommended, whether the namespace is actually processed or not.

When a triAna document is loaded, it is recommended not to rely on the namespace prefix actually
being there. Implementations are recommended to disregard any part up to and including the first
colon in the name of an element if such a colon appears in the name and namespaces are not
processed.

All elements and attributes in this specification fall within the triAna namespace and must therefore
be prefixed with 'triAna:' whenever used in a savefile. For clarity in this specification, this prefix is
not mentioned elsewhere.

2.2.2 Root element

The name of the root element of a triAna savefile is 'savefile'. Such an element may also be used as
a child of another element, to embed the triAna savefile within a document. It is recommended for
implementations to also provide a way to load and save from such an embedded source, but this is

not required and still the interpretation of the rest of the source is completely up to the
implementation.

3. savefile element
This section describes the contents of a savefile element. The savefile element is the root element of
a triAna savefile and hence contains all needed information.

A savefile element should contain no information other than the children that are described here. If
other information is included, this information must be ignored by implementations.

Allowed children are:
e last-image-source;
e last-triangulation-source;
e analysis.

All analysis-elements together will be referred to as the analysis-set. The analysis element is
described in chapter 4.

A savefile element has exactly one attribute, named version. If any other attributes occur,
implementations must ignore these.

3.1 last-image-source

This element describes the source of the image that has been used with the analysis-set.
Implementations may use this information to provide a quick way for users to continue working on
the same image with this analysis-set. The last-image-source element is not required and must not
occur more than once in a savefile element.

The last-image-source element comes in two forms. Implementations are recommended to
implement both, but only the referring form is required. When the embedded form is not
implemented, it must still be detected and disregarded when found while loading a savefile.

If a last-image-source is found, but cannot be loaded due to restrictions such as access, availability,
recognition or any other reason, the last-image-source element must be ignored.

3.1.1 referring last-image-source

This form provides a reference to a source where the image is located. It has one required attribute
named 'url' and one optional attribute named 'mimetype’. It must not have any content or any
attributes. If any other attributes or content do occur, implementations must ignore this. Specifically,
the attribute named 'embedded' must not occur having any value other than an empty value, since
this would make it an embedded last-image-source.

3.1.1.1 uri
This element holds the URI to the last opened image to use with this analysis-set. URIs are
described in RFC 3986, located at http://tools.ietf.org/html/rfc3986.

3.1.1.2 mimetype

This element holds the mimetype of the source referred to in the url attribute. Mimetypes are
described in RFC 2046, located at http://tools.ietf.org/html/rfc2046.

3.1.2 embedded last-image-source
This form does not provide a reference to a source where an image is located. Instead, it simply
provides an image.

An embedded last-image-source must have the attribute 'embedded'. Any value may be given to this
attribute, but this value must be ignored by implementations.

Embedded last-image-source elements must also provide the attribute 'mimetype' holding the
mimetype of their embedded data.

Any other attributes than embedded and mimetype must not occur in an embedded last-image-
source. If they do occur, implementations must ignore them.

Finally, the content of an embedded last-image-source is the image-data itself, saved according to
the specification for its mimetype and encoded into Base64. Base64 is described in RFC 3548,
located at http://www.faqgs.org/rfcs/rfc3548.html.

3.1.2.1 embedded attribute
This attribute signals that a last-image-source element is embedded. It's value is of no concern as
long as it's not empty. The value itself must be ignored by implementations.

3.1.2.2 mimetype attribute
This element holds the mimetype of the embedded source. Mimetypes are described in RFC 2046,
located at http://tools.ietf.org/html/rfc2046.

To maintain compatibility among implementations, the only mimetype that is currently supported is
image/png. The PNG standard is described at http://www.w3.org/TR/PNG/. This means the content
of the last-image-source element must be data for a PNG-image, encoded in Base64.

3.2 last-triangulation-source

This element describes the source of the last triangulation used with the analysis-set. This
information may be used by implementations to provide a quick way for users to continue working
with the same triangulation with this analysis-set. The last-triangulation-source element is not
required and must not occur more than once in a savefile element.

The last-triangulation-source comes in two forms. Implementations are recommended to implement
both forms, but only the referring form is required. If the embedded form is not implemented, it

must still be detected and disregarded when found while loading a savefile.

If a last-triangulation-source is found, but cannot be loaded due to restrictions such as access,

availability, recognition or any other reason, the last-triangulation element must be ignored.

3.2.1 referring last-triangulation-source

This form provides a reference to a source where the triangulation is located. It has one required
attribute named 'url' and one optional attribute named 'mimetype'. It must not have any content or
any attributes. If any other attributes or content do occur, implementations must ignore this.
Specifically, the attribute named 'embedded' must not occur having any value other than an empty
value, since this would make it an embedded last-triangulation-source.

3.2.1.1 uri
This element holds the URI to the last opened image to use with this analysis-set. URIs are
described in RFC 3986, located at http://tools.ietf.org/html/rfc3986.

3.2.1.2 mimetype

This element holds the mimetype of the source referred to in the url attribute. Mimetypes are
described in RFC 2046, located at http://tools.ietf.org/html/rfc2046.

3.2.2 embedded last-triangulation-source
This form does not provide a reference to a source where a triangulation is located. Instead, it
simply provides a triangulation.

An embedded last-triangulation-source must have the attribute 'embedded'. Any value may be given
to this attribute, but this value must be ignored by implementations.

Embedded last-triangulation-source elements must also provide the attribute 'mimetype' holding the
mimetype of their embedded data.

Any other attributes than embedded and mimetype must not occur in an embedded last-
triangulation-source. If they do occur, implementations must ignore them.

Finally, the content of an embedded last-triangulation-source is the triangulation-data itself, saved
according to the specification for its mimetype and encoded into Base64. Base64 is described in
RFC 3548, located at http://www.fags.org/rfcs/rfc3548.html.

3.2.2.1 embedded attribute
This attribute signals that a last-image-source element is embedded. It's value is of no concern as
long as it's not empty. The value itself must be ignored by implementations.

3.2.2.2 mimetype attribute

This element holds the mimetype of the embedded source. Mimetypes are described in RFC 2046,
located at http://tools.ietf.org/html/rfc2046. Currently, no registered mimetypes are supported. The
unregistered mimetype text/x-triangulation is supported and refers to the triangulation format as
described in appendix A.

3.3 version attribute

The version attribute of a savefile element describes the version of this specification that has been
used to generate the information within that file. The value of this attribute must currently be '1.0'". If
a higher versionnumber is encountered, but only the minor version number, i.e. the digit after the
dot, has changed, implementations should try and read the savefile. Optionally they may warn the
user and refuse. They must not silently fail. When the major version, i.e. the digit before the dot, has
changed, implementations may silently fail to read the savefile.

Future versions of this specification will remain backwards compatible with all versions of this
specification with the same major version number but a lower minor version number. They will also
make a best effort to make sure older versions with the same major version number will remain
forwards compatible, but no guarantees can be given due to possibly changing behaviour of plugins.

4. Analysis element

This element describes an analysis as used in triAna. An analysis is a combination of plugins that
modify the selection of geometry parts of a triangulation and plugins that provide output based on
that selection, be it a visualisation of some sorts or other forms of output, such as printing, saving,
special calculations or otherwise.

An analysis element is an element that only holds some children. These are plugin elements. No
other content and no attributes must appear within an analysis element. If any do occur, these must
be ignored by implementations.

4.1 plugin element

The plugin element describes a plugin that was used in the analysis. This can be either a criteria
plugin or an output plugin. It's up to the implementation to figure out what type it is. Because
plugins are identified by an identifier and are rather generally set up, not much information is
needed to save and load an analysis.

A plugin element must have exactly one attribute: an id attribute. No other attributes may occur in a
plugin element. If other attributes do occur, implementations must ignore them.

The contents of a plugin element consist of zero or more setting elements. No other content may
appear in a plugin element. If other content does appear in a plugin element, implementations must
ignore this.

If one plugin element is incorrect, implementations must ignore that single element and may either
continue loading the analysis without that single plugin, or may fail to load the complete analysis.
The same holds when a plugin, for whatever reason, cannot be loaded or instantiated.

4.1.1id

The id attribute holds the id of a plugin, as reported by that plugin. A plugin's id is not allowed to
have any other characters than US-ASCII characters. Also, any form of quotes are prohibited. Hence
the id will always be fit for inclusion in an attribute.

4.1.2 setting element

The setting element holds a single name/value pair associated with the plugin. The names of
settings are derived from the property names of plugins.

A setting element must not have any attributes. If any attributes occur, these must be ignored.

The content of a setting element consists of exact two elements: one name element and one value
element. No other content must be within a setting element. If any other content is within a setting

element, implementations must ignore this.

4.1.2.1 name element

The name element holds the name of a property of the plugin. It must not have any attributes and its
contents must be exactly the name of the property, without any extra whitespace around it. If any
attributes do occur in the element, implementations must ignore them.

4.1.2.2 value element

The value element holds the value of a property of the plugin. The value element may have one
attribute called 'encoding'. No other attributes must occur. If any other attribute do occur,
implementations must ignore them. The content of the value element is the exact value of the
property without any extra whitespace around it.

4.1.2.2.1 encoding

To ensure all types of values can be saved in the savefile, an encoding may be used for the value. If
an encoding is used, this must be reported using this element. Only one such encoding may be used
for the same value. Currently only Base64 is supported. Base64 is described in RFC 3548, located
at http://www.fags.org/rfcs/rfc3548.html.

Appendix A. Triangulation format

The triangulation format developed by N. Hitschfeld is a simple, text-based format. The extension of
files with contents as described in this appendix should have the extension ".tri'. Any streams with
this contents as described in this appendix should be marked with mimetype 'text/x-triangulation'.
See RFC 2046, located at http://tools.ietf.org/html/rfc2046, for more information about mimetypes.

Physical form
Files or streams with triangulation data must be encoded in US-ASCII.

Compatibility issues

Whitespace is important is this format. Specifically, newlines are important. Since newlines tend to
give compatibility problems when looking at different operating systems, for the remainder of this
appendix a newline character is understood to be a US-ASCII character with ordinal decimal value
10 or 13.

Comments

Anywhere within a triangulation, a comment may appear, started by the single character '#',
preceded by at least one whitespace character or at the beginning of the stream. Everything from
this character up to next newline character, or the end of the stream if no such character exists, must
be ignored.

Whitespace
Whitespace is of great importance in this format, since it separates entities. Whitespace is

understood in this appendix as being US-ASCII characters with ordinal decimal values 9, 10, 13 or
20.

Any whitespace that was not required or expected must be ignored by implementations.

Tokens

To simplify the description all characters in the stream will be separated into tokens. A token is
understood to be the longest consecutive array of non-whitespace characters starting at a character
preceded by a whitespace character or at the beginning of the file. Comments must not be tokenized,
but simply skipped when building tokens.

Numberical values

Most information in the triangulation format is expressed in numerical values. Numerical values are
tokens consisting of the characters '0', '1', '2', '3",'4",'5", '6', 7', '8' and '9". Such a token must be
interpreted as a decimal integer value. Optionally, a numerical value can start with a '-' character,
making the value negative.

Floating point values are also possible. These values may include the character .' one time. Such a
token is to be interpreted as a decimal real value.

Vertices

The first four tokens of the stream must be respectively “Numer”, “of”, “Vertices” and “=". The
fifth token of the stream is an integer numerical value, which is the number of vertices that will
follow. For each vertex the stream must then have two tokens, each floating point numerical values,
representing respectively x and y coordinates of the vertex. Vertices are indexed by their occurence:
the first vertex is numbered 0, the second vertex is numbered 1, etc.

Triangles

After the vertices the first four tokens in the stream must be “Number”, “of”, “Triangles” and “=".
The next token of the stream must be an integer numerical value, which is the number of triangles
that will follow. For each triangle the stream must then have three tokens, each integer numerical

values, representing the indexes of the three vertices that make up the triangle.

Any tokens appearing after the triangles in the stream must be ignored by implementations.

Appendix B. References

Key words for use in RFCs to Indicate Requirement Levels, S. Bradner, ed. IETF (Internet
Engineering Task Force), March 1997. Available at http://www.rfc-editor.org/rfc/rfc2119.txt

UTF-8, a transformation format of 1SO 10646, F. Yergeau, ed. IETF (Internet Engineering Task
Force), November 2003. Available at http://tools.ietf.org/html/rfc3629

Extensible Markup Language (XML) 1.0 (Fourth Edition), T. Bray, J. Paoli, C. M. Sperberg-
McQueen, E. Maler, and F. Yergeau eds. W3C (World Wide Web Consortium), 16 August 2006.
Available at http://www.w3.0rg/TR/2006/REC-xml-20060816/

Namespaces in XML, Tim Bray, Dave Hollander, and Andrew Layman, eds. W3C (World Wide Web
Consortium), 1999. Available at http://www.w3.org/TR/REC-xml-names/

Uniform Resource ldentifier (URI): Generic Syntax, T. Berners-Lee, R. Fielding, L. Masinter, eds.
IETF (Internet Engineering Task Force), January 2005. Available at
http://tools.ietf.org/html/rfc3986

Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types, N. Freed, N. Borenstein,
eds. IETF (Internet Engineering Task Force), November 1996. Available at
http://tools.ietf.org/html/rfc2046

The Basel6, Base32, and Base64 Data Encodings, S. Josefsson, ed. IETF (Internet Engineering
Task Force), July 2003. Available at http://www.fags.org/rfcs/rfc3548.html

Portable Network Graphics (PNG) Specification, T. Boutell, G. Randers-Pehrson, T. Lane, A. M.
Costello, eds. W3C (World Wide Web Consortium), May 2004. Available at
http://www.w3.org/TR/PNG/

