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Abstract

The purpose of this study has been to develop an aerodynamic load model for leading edge inflat-
able (LEI) kites by means of multivariate polynomial regression analysis. The load model expresses
the aerodynamic coefficients 𝐶𝑙, 𝐶𝑑 and 𝐶𝑚 as polynomial functions of the angle-of-attack 𝛼 and 2D
non-dimensional (relative to the chord length) shape parameters. The numerical data used for the
regression analysis has been acquired from computational fluid dynamics (CFD) simulations of 2D
parameterised LEI wing profiles.

The parameterisation and subsequent geometric construction of LEI wing profiles has been a key as-
pect of this study. The cross section of a LEI wing comprises the circular profile of the leading-edge
(LE) tube, to which is attached the profile of the thin membrane canopy on the upper side near the
leading edge. The thin 2D membrane canopy is equivalent to the camber line of the complete profile,
implying that the highest vertical point of the membrane canopy is the maximum camber magnitude.
Based on these observations, the defining non-dimensional shape parameters (relative to the chord
length) are the maximum camber magnitude 𝜅, the airfoil thickness (i.e. non-dimensional tube diame-
ter) 𝑡 and the chordwise position of maximum camber 𝜂. Parameterised profiles suitable for meshing
and subsequent CFD simulation have been constructed using a smooth interpolating spline system
that functions with minimal spline intersection points.

Data acquisition by means of CFD was deemed necessary since LEI kite airfoils are subject to flow sep-
aration even at relatively low angles-of-attack. Therefore, flow fields have been simulated by means
of the Reynolds-averaged Navier-Stokes (RANS) equations, closed by the 𝑘 − 𝜔 shear stress trans-
port (SST) turbulence model, using the open-source CFD software OpenFOAM. Transition modelling
has been omitted due to the assumption of near instant laminar-to-turbulent transition upon the flow
encountering the surface of the wing due to protruding stitched seams near the leading edge. RANS
simulations grant a favourable trade-off between computational cost and simulation accuracy for the
purposes of this work. In this manner, viscous flow effects are captured and replicated by the revised
aerodynamic load model.

In order to construct the revised aerodynamic load model, a wide range of airfoil configurations have
been examined. A total of 64 unique parameterised LEI wing profiles have each been simulated at
𝛼 = [0∘, 5∘, 10∘, 15∘] given a constant Reynolds number of 5 × 106, leading to a total of 256 data points
for the regression analysis. The parameterised profiles were generated using all possible combinations
of 𝜂 = [0.22, 0.24, 0.26, 0.28], 𝜅 = [0.14, 0.16, 0.18, 0.20] and 𝑡 = [0.06, 0.08, 0.12, 0.14]. Whilst the fitted
equations for 𝐶𝑑 and 𝐶𝑚 are statistically satisfactory, the fitted polynomial describing 𝐶𝑙 is dubious due
to distinct signs of over-fitting (i.e. random error is also modelled). All measurements of 𝐶𝑚 have been
taken about the quarter-chord point.

Simulation results show that the maximum camber magnitude 𝜅 and its chordwise position 𝜂 generally
have a more prominent effect on the flow over the suction side of a LEI wing profile, whilst the influences
of the non-dimensional tube diameter 𝑡 are predominantly relegated to the pressure side. In the event
of the flow separating from the suction side, the chordwise position of the separation point along the
surface moves further downstream for larger values of 𝜂. As such, 𝜂 has a distinct impact on 𝐶𝑙 and
𝐶𝑑 given reversed flow over the suction side. Results also show that 𝜅 affects the flow stability at high
angles-of-attack since the simulations of flow fields around profiles with 𝜅 = 0.30 given 𝛼 = 15∘ did
not converge, thus insinuating the exacerbation of transient flow phenomena. All simulations that met
the condition 𝑡/2 ≤ 𝜅 ≤ 0.2 given 𝛼 = 15∘ did converge. Nevertheless, the critical angle-of-attack
decreases with increasing 𝜅 within the aforementioned range of values.
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Nomenclature

Acronyms

2D Two-dimensional

3D Three-dimensional

AoA Angle-of-Attack

AWE Airborne Wind Energy

AWES Airborne Wind Energy System

BST Baseline Stress Transport

CAD Computer-Aided Design

CFD Computational Fluid Dynamics

DNS Direct Numerical Simulation

FDM Finite Difference Method

FEM Finite Element Method

FSI Fluid-Structure Interaction

FVM Finite Volume Method

GAMG Geometric agglomerated Algebraic Multi-Grid

HAWT Horizontal-Axis Wind Turbine

KCU Kite Control Unit

LE Leading Edge

LEI Leading Edge Inflatable

LES Large-Eddy Simulation

NACA National Advisory Committee for Aeronautics

RANS Reynolds-Averaged Navier-Stokes

SIMPLE Semi-Implicit Method for Pressure Linked Equations

SIMPLEC Semi-Implicit Method for Pressure Linked Equations Consistent

SST Shear Stress Transport

TE Trailing Edge

TKE Turbulent Kinetic Energy

Latin Symbols

𝑐 Chord length m

x



Nomenclature xi

𝐶𝑑 2D drag coefficient [ − ]

𝑐𝑓 Local skin friction coefficient [ − ]

𝑐𝑓,𝑥 Streamwise component of local skin friction coefficient [ − ]

𝐶𝑙 2D lift coefficient [ − ]

𝐶𝑚 2D moment coefficient [ − ]

𝐶𝑝 Pressure coefficient [ − ]

𝐷 Aerodynamic drag kg m s−2

𝐼 Turbulence intensity [ − ]

𝑘 Turbulent kinetic energy m2 s−2

𝐿 Aerodynamic lift kg m s−2

𝑀 Aerodynamic moment kg m2 s−2

𝑝 Pressure kg m−1 s−2

Re Reynolds number [ − ]

R̃e𝜃𝑡 Transition onset momentum thickness Reynolds number [ − ]

𝑆𝑟 Reference area (for 2D cases 𝑆𝑟 = 𝑐 ⋅ 1) m2

𝑡 Non-dimensional tube diameter (relative to 𝑐) [ − ]

𝑡𝑐𝑎𝑛𝑜𝑝𝑦 Non-dimensional membrane canopy thickness (relative to 𝑐) [ − ]

𝑈∞ Free-stream velocity magnitude m s−1

𝑢𝜏 Friction velocity m s−1

𝑣𝑎 Apparent wind speed m s−1

𝑣𝑘 Velocity of the kite m s−1

𝑣𝑤 Wind speed m s−1

𝑦∗ Non-dimensional wall distance, turbulent kinetic energy based [ − ]

𝑦+ Non-dimensional wall distance, wall shear stress based [ − ]

Greek Symbols

𝛼 Angle-of-attack °

𝛾 Intermittency parameter [ − ]

𝛿𝑖𝑗 Kronecker delta [ − ]

𝜖 Turbulent dissipation rate m2 s−3

𝜂 Max. camber chordwise position (relative to 𝑐) [ − ]

𝜃𝑒𝑑𝑔𝑒 Angular position of edge-tube intersection point (relative to LE tube centre) °

𝜃𝑠𝑢𝑐𝑡𝑖𝑜𝑛 Angular position of tube-canopy intersection point (relative to LE tube centre) °

𝜅 Max. camber magnitude (relative to 𝑐) [ − ]

𝜇 Dynamic viscosity kg m−1 s−1
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𝜈 Kinematic viscosity m2 s−1

𝜈𝑡 Eddy viscosity m2 s−1

𝜌 Density kg m−3

𝜏𝑤 Wall shear stress kg m−1 s−2

𝜏𝑤,𝑥 Streamwise component of wall shear stress kg m−1 s−2

𝜔 Specific turbulent dissipation rate s−1



1
Introduction

With the rapid onset of climate change and the increasing scarcity of natural resources, there is a
greater urgency for modern industrialised societies to transition from a predominantly fossil-fuel based
energy infrastructure to a fully renewable one. Among the most prominent sources of renewable en-
ergy is wind energy, which is conventionally harnessed with both on- and off-shore horizontal-axis
wind turbines (HAWTs) that form part of the contemporary (partially renewable) energy infrastructure.
However, material and structural constraints impose height restrictions on conventional wind turbines,
preventing them from harvesting energy from stronger high-altitude winds [3, 43]. In order to take ad-
vantage of the larger energy potential further up in the Earth’s atmosphere, one can resort to airborne
wind energy (AWE) systems. A novel form of wind energy conversion, it is increasingly becoming a
viable alternative to conventional wind turbines.

There is a diverse range of AWE systems currently in development. For example, there are concepts
that incorporate lighter-than-air aircraft, vertical take-off and landing drones, or wings that fly in a cross-
wind manoeuvre, just to name a few [1, 38]. This thesis concerns the last mentioned AWE concept,
where the wing in question is attached to a tether that drives a generator on the ground. More specifi-
cally, there will be a focus on soft membrane wings more commonly associated with recreational sports
such as paragliding or kite-surfing [1, 38]. The scope of this project is further narrowed down to inves-
tigating leading edge inflatable (LEI) kites, where the membrane canopy is rigidised by (as the name
suggests) an inflatable tube at the leading edge of the wing, along with inflatable chordwise struts
stationed at intervals along the span [29]. Sharing similar structural characteristics and application
methods, ram-air kites are also categorised as “flexible” or “soft” membrane wings. In this case, the
wing is made up of membrane cells with openings at the leading edge, whereby the incoming flow
pressurises the wing [22].

A common characteristic of lightweight membranewings is that they are flexible structures, implying that
aerodynamic loads lead to large structural deformations (compared to wings with more rigid structures).
Therefore, LEI and ram-air kites pose a strongly coupled fluid-structure interaction (FSI) problem [21,
22, 43]. A pure aerodynamic analysis, in which the membrane wing is assumed to be a rigid body, does
provide insight into the flow field around the kite (as shown by Viré et al. [43] and Folkersma et al. [21] for
LEI kites). But the omission of structural deformations is an approximation that neglects the substantial
aeroelastic effects observed in flight. A more accurate representation of the flow field would account for
load and design shape changes due to fluid-structure interactions, as considered by Folkersma et al.
[22] for ram-air kites and by Bosch et al. [5] for LEI wings. Both FSI studies applied a partitioned two-
way coupling scheme in which the aeroelastic simulation framework comprises individual aerodynamic
and structural solvers. The work of Bosch et al. [5] made use of the two-dimensional LEI wing load
model developed by Breukels [7] as the aerodynamic solver component.
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The aerodynamic load model developed by Breukels [7] estimates the surface loading of a LEI kite.
Results from two-dimensional computational fluid dynamics (CFD) simulations served as the basis
of this polynomial regression model describing the aerodynamic lift, drag and moment coefficients as
functions of the angle-of-attack and non-dimensional shape parameters. A versatile tool for preliminary
calculations, its limitations nonetheless necessitate a thorough revision. As argued by van Kappel [42]
andCayon [10], including the chordwise position of maximum camber as an input parameter is expected
to produce an improved two-dimensional load model that more accurately captures the surface loading
of a LEI kite. As such, the main goal of this project is to revise the aerodynamic load model developed
by Breukels [7] for LEI wings.

Therefore, the research objective of this thesis is:

“To develop a CFD based polynomial regression model that accurately describes the aero-
dynamic wing loading of a leading edge inflatable kite used in airborne wind energy opera-
tions”

The above stated research objective has served as a guide for the literature review, the findings of
which can be found in Chapter 2. Stemming from the literature study is the research plan of this
thesis given in Chapter 3. In Chapter 4, the underlying theory of CFD has been described as it is the
means by which flow fields have been simulated in this study. Afterwards is an explanation of how
the parameterised LEI wing profiles have been constructed in Chapter 5, followed by descriptions of
the method of mesh generation and the simulation set-up in Chapter 6. The numerical data acquired
from the CFD simulations has been visualised, plotted and scrutinised in Chapter 7, then utilised for
the development of the aerodynamic load model in Chapter 8. Finally, the conclusions of this study
and recommendations for further research are to be found in Chapter 9.



2
Literature Study

The following chapter presents the findings of the literature study, starting with a summary and scrutiny
of the reference aerodynamic loadmodel devised by Breukels [7] in Section 2.1. This chapter concludes
with an examination of the leading CFD simulation methods in Section 2.2, also comprising a discussion
of the results attained from studies of 2D and 3D LEI wing aerodynamics.

2.1. Reference Aerodynamic Load Model

The following section describes and examines the aerodynamic load model developed by Breukels [7]
since the research objective of this thesis is to revise it. The derivations of the equations used in the
model have been reproduced. This section concludes with a discussion of the limitations that arise
from the applied approximations.

2.1.1. Description

The steady-state aerodynamic load model developed by Breukels [7] is a polynomial regression model
that expresses the local aerodynamic coefficients of a LEI wing as functions of non-dimensional airfoil
shape parameters and local inflow conditions. More specifically, the independent variables are the
airfoil thickness 𝑡, camber 𝜅 and angle-of-attack 𝛼:

𝐶𝑙 = 𝑓 (𝛼, 𝜅, 𝑡)

𝐶𝑑 = 𝑔 (𝛼, 𝜅, 𝑡)
𝐶𝑚 = ℎ (𝛼, 𝜅, 𝑡)

Assuming a circular profile, the diameter of the leading edge tube is controlled via the shape parameter
𝑡. The profile of the membrane canopy is assumed to have the shape of a concave downward curve
that is equivalent to the mean camber line. The vertical position of the maximum camber point defines
the shape of the canopy (i.e. the mean camber line), which is controlled via the shape parameter 𝜅.
It should be noted that the horizontal position of the maximum camber point is invariable. Both shape
parameters are non-dimensional.

As described by de Groot et al. [14], the load model solely relies on static input parameters (i.e. time
invariant), implying that the outputs are instantaneous values. The inclusion of time derivatives would
account for the effects of continuous structural deformations due to aerodynamic loads. However,

3
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changes in canopy shape as a result of structural deformations are not known a priori, thus necessitating
the omission of time-dependent variables.

A two-dimensional LEI wing undergoes flow separation even at relatively low angles-of-attack [5].
Therefore, in order to incorporate viscous effects into the aerodynamic load model, Breukels [7] con-
ducted two-dimensional steady-state CFD simulations of a wide combination of airfoil shapes and inflow
conditions. The numerical measurements acquired from the simulations were subsequently used as
the basis of the polynomial regression analysis, leading to the approximating equations described in
Section 2.1.2.

2.1.2. Derivations

The derivations presented by Breukels [7] give insight into the assumptions and approximations used to
develop the load model. The modelling of the aerodynamic coefficients has been summarised, followed
by a description of the lift distribution and calculation of the airfoil moment.

Aerodynamic Coefficients

The derivation of the empirical model starts with a polynomial regression analysis, which is a statistical
process in which the relationship between a dependent variable and a set of independent variables is
approximated as a polynomial. The relationship between the values of the independent variables and
the corresponding conditional mean of the dependent variable is modelled as non-linear.

Where simple linear regression may fail to produce a suitable model, polynomial regression analysis
can serve as an alternative solution. Such is the case when modelling the lift coefficient in terms of the
angle-of-attack, which is represented by a third order polynomial within the range −20∘ ≤ 𝛼 ≤ 20∘ [7]:

𝐶𝑙 = 𝜆1𝛼3 + 𝜆2𝛼2 + 𝜆3𝛼 + 𝜆4, −20∘ ≤ 𝛼 ≤ 20∘ (2.1)

Breukels [7] continued the derivation by expressing the coefficients 𝜆𝑛 in terms of the camber magnitude
𝜅 as first order polynomials:

𝜆1 = 𝑆1𝜅 + 𝑆2 (2.2a)
𝜆2 = 𝑆3𝜅 + 𝑆4 (2.2b)
𝜆3 = 𝑆5𝜅 + 𝑆6 (2.2c)
𝜆4 = 𝑆7𝜅 + 𝑆8 (2.2d)

Second order polynomials represent the coefficients 𝑆𝑛 in terms of the airfoil thickness 𝑡:

𝑆1 = 𝐶1𝑡2 + 𝐶2𝑡 + 𝐶3 (2.3a)
𝑆2 = 𝐶4𝑡2 + 𝐶5𝑡 + 𝐶6 (2.3b)
𝑆3 = 𝐶7𝑡2 + 𝐶8𝑡 + 𝐶9 (2.3c)
𝑆4 = 𝐶10𝑡2 + 𝐶11𝑡 + 𝐶12 (2.3d)
𝑆5 = 𝐶13𝑡2 + 𝐶14𝑡 + 𝐶15 (2.3e)
𝑆6 = 𝐶16𝑡2 + 𝐶17𝑡 + 𝐶18 (2.3f)
𝑆7 = 𝐶19𝑡2 + 𝐶20𝑡 + 𝐶21 (2.3g)
𝑆8 = 𝐶22𝑡2 + 𝐶23𝑡 + 𝐶24 (2.3h)

The final stage of the derivation gives the lift coefficient as a function of the camber magnitude 𝜅, airfoil
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thickness 𝑡 and angle-of-attack 𝛼:
𝐶𝑙 = [(𝐶1𝑡2 + 𝐶2𝑡 + 𝐶3) 𝜅 + (𝐶4𝑡2 + 𝐶5𝑡 + 𝐶6)] 𝛼3

+ [(𝐶7𝑡2 + 𝐶8𝑡 + 𝐶9) 𝜅 + (𝐶10𝑡2 + 𝐶11𝑡 + 𝐶12)] 𝛼2

+ [(𝐶13𝑡2 + 𝐶14𝑡 + 𝐶15) 𝜅 + (𝐶16𝑡2 + 𝐶17𝑡 + 𝐶18)] 𝛼
+ [(𝐶19𝑡2 + 𝐶20𝑡 + 𝐶21) 𝜅 + (𝐶22𝑡2 + 𝐶23𝑡 + 𝐶24)] , −20∘ ≤ 𝛼 ≤ 20∘

(2.4)

Data fitting using the method of least squares resulted in the following values of the coefficients 𝐶𝑛:

Table 2.1: Numerical values of coefficients governing Equation (2.4). [8]

Cn Value Cn Value
𝐶1 −0.008 011 𝐶13 0
𝐶2 −0.000 336 𝐶14 0
𝐶3 0.000 992 𝐶15 0
𝐶4 0.013 936 𝐶16 −3.371 000
𝐶5 −0.003 838 𝐶17 0.858 039
𝐶6 −0.000 161 𝐶18 0.141 600
𝐶7 0.001 243 𝐶19 7.201 140
𝐶8 −0.009 288 𝐶20 −0.676 007
𝐶9 −0.002 124 𝐶21 0.806 629
𝐶10 0.012 267 𝐶22 0.170 454
𝐶11 −0.002 398 𝐶23 −0.390 563
𝐶12 −0.000 274 𝐶24 0.101 966

The fidelity of the empirical model was subsequently scrutinised by calculating the statistical error intro-
duced by the regression analysis. The type of error under consideration, which regards discrepancies
between the CFD data and the empirical model, is defined as follows:

𝜀 =
√

𝑛
∑
𝑖=1
(𝐶𝑙,𝑓𝑖𝑡 − 𝐶𝑙,𝐶𝐹𝐷)

2

√
𝑛
∑
𝑖=1
(𝐶𝑙,𝐶𝐹𝐷)

2
(2.5)

Based on Equation (2.5), the data fitting error calculated by Breukels [7] amounts to approximately
5.5%.

Similar steps were taken with regard to modelling the drag and moment coefficients (Breukels [7] has
omitted the derivation of Equation (2.6) and Equation (2.7)). The drag coefficient as a function of camber
magnitude 𝜅, airfoil thickness 𝑡 and angle-of-attack 𝛼 is:

𝐶𝑑 = [(𝐶25𝑡 + 𝐶26) 𝜅2 + (𝐶27𝑡 + 𝐶28) 𝜅 + (𝐶29𝑡 + 𝐶30)] 𝛼2

+ [(𝐶31𝑡 + 𝐶32) 𝜅 + (𝐶33𝑡2 + 𝐶34𝑡 + 𝐶35)] , −20∘ ≤ 𝛼 ≤ 20∘
(2.6)

Table 2.2: Numerical values of coefficients governing Equation (2.6). [8]

Cn Value Cn Value
𝐶25 0.546 094 𝐶31 0.123 685
𝐶26 0.022 247 𝐶32 0.143 755
𝐶27 −0.071 462 𝐶33 0.495 159
𝐶28 −0.006 527 𝐶34 −0.105 362
𝐶29 0.002 733 𝐶35 0.033 468
𝐶30 0.000 686
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The moment coefficient in terms of the same independent variables is:

𝐶𝑚 = [(𝐶36𝑡 + 𝐶37) 𝜅 + (𝐶38𝑡 + 𝐶39)] 𝛼2
+ [(𝐶40𝑡 + 𝐶41) 𝜅 + (𝐶42𝑡 + 𝐶43)] , −20∘ ≤ 𝛼 ≤ 20∘ (2.7)

Table 2.3: Numerical values of coefficients governing Equation (2.7). [8]

Cn Value Cn Value
𝐶36 −0.284 793 𝐶41 −1.787 703
𝐶37 −0.026 199 𝐶42 0.352 443
𝐶39 −0.024 060 𝐶43 −0.839 323
𝐶40 0.000 559 𝐶44 0.137 932

This concludes the modelling of the aerodynamic coefficients within the range −20∘ ≤ 𝛼 ≤ 20∘. Be-
yond the bounds of this range, the steady-state assumption is no longer valid due to unsteady flow.
Accurately capturing transient flow phenomena observed beyond the given range would necessitate
the acquisition of data via a computationally expensive transient solver.

Based on the work of Spierenburg [40], Breukels [7] assumes similar aerodynamic characteristics to
the flow over a flat plate for −180∘ ≤ 𝛼 ≤ −20∘ and 20∘ ≤ 𝛼 ≤ 180∘, leading to the following equations:

𝐶𝑙 = 2 cos (𝛼) sin2 (𝛼) (2.8)

𝐶𝑑 = 2 sin3 (𝛼) (2.9)

Equation (2.8) and Equation (2.9) are empirical relations that express respectively the lift coefficient and
drag coefficient of a flat plate solely as functions of the angle-of-attack. With the intent of developing
continuously differentiable functions, a step function permits switching between the equations applica-
ble to the operational range (−20∘ ≤ 𝛼 ≤ 20∘) and the non-operational range (−180∘ ≤ 𝛼 ≤ −20∘ or
20∘ ≤ 𝛼 ≤ 180∘).

Airfoil Moment

Along with the aerodynamic coefficients, Breukels [7] also modelled the chordwise distribution of lift
and the subsequent aerodynamic moment acting on the airfoil. A schematic representation of the lift
distribution is displayed in Figure 2.1 which depicts a discrete model comprised of five nodes acting as
load points. The total lift acting on the airfoil is the sum of the lift forces acting on the nodes:

𝐿 = 𝐿1 + 𝐿2 + 𝐿3 + 𝐿4 + 𝐿5
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Figure 2.1: Depiction of airfoil model where 𝑐𝑖 denotes the horizontal distance of a node from the leading edge and 𝐿𝑖 denotes
the lift force acting on a node [7].

Pressure data from CFD simulations was used to develop the airfoil model depicted in Figure 2.1 since
the pressure distribution across the surface of an airfoil dictates the chordwise load distribution. The
drag forces acting on the nodes are assumed to have a negligible effect on the aerodynamic moment
due to smaller magnitudes and moment arms relative to the nodal lift forces.

An aerodynamic moment acts on an airfoil if the resultant aerodynamic force is not applied at the
centre of pressure. Such is the case for the airfoil model displayed in Figure 2.1, where the resultant
aerodynamic force is assumed to act at the quarter chord point 𝑐/4. Knowing this, the aerodynamic
moment expressed as a function of the nodal lift forces is:

𝑀 = 𝐿1 (
1
4𝑐 − 𝑐1) + 𝐿2 (

1
4𝑐 − 𝑐2) + 𝐿3 (

1
4𝑐 − 𝑐3) + 𝐿4 (

1
4𝑐 − 𝑐4) + 𝐿5 (

1
4𝑐 − 𝑐5) (2.10)

The aerodynamic forces acting on the nodes are dependent on the inflow conditions and the geometry
of the airfoil. The distribution of lift was discretised using weight factors 𝑤𝑖 that account for varying
inflow conditions. Introducing these weight factors along with terms that govern their rate of variation
(denoted by 𝑢𝑖) into the model leads to the following:

𝐿 = 𝐿 (𝑤1 + 𝑢1𝑎) + 𝐿 (𝑤2 + 𝑢2𝑎) + 𝐿 (𝑤3 + 𝑢3𝑎) + 𝐿 (𝑤4 + 𝑢4𝑎) + 𝐿 (𝑤5 + 𝑢5𝑎) (2.11a)

𝑤1 +𝑤2 +𝑤3 +𝑤4 +𝑤5 = 1 (2.11b)

𝑢1 + 𝑢2 + 𝑢3 + 𝑢4 + 𝑢5 = 0 (2.11c)

The 𝑤𝑖 and 𝑢𝑖 terms act as constant coefficients, implying that the variable 𝑎 controls the lift distribution
and aerodynamic moment at a constant total lift 𝐿. Given Equation (2.11) and Equation (2.10), one can
solve for the arbitrary increment of change variable 𝑎:

𝑎 =
1
4𝑐 − (𝑤1𝑐1 +𝑤2𝑐2 +𝑤3𝑐3 +𝑤4𝑐4 +𝑤5𝑐5) −

𝑀
𝐿

𝑢1𝑐1 + 𝑢2𝑐2 + 𝑢3𝑐3 + 𝑢4𝑐4 + 𝑢5𝑐5
(2.12)

According to this model, the correct aerodynamic moment is acquired by varying the lift force.
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2.1.3. Airfoil Geometry & Parameterisation

When simulating the flow field around a LEI wing cross-section, one must come to terms with the fact
that there are no standard and widely accepted equations defining the shape of such a profile. In
order to construct a LEI wing profile suitable for meshing and subsequent aerodynamic simulations,
Folkersma et al. [21] relied on spline interpolations using spatial coordinate files likely acquired from the
kite design software tool SurfPlan™. The same method has been applied in the work of Deaves [15]
and Sachdeva [37]. However, the availability of such spatial coordinate files is limited and the range
of profile shapes arising from the spline interpolations is not extensive enough for the purposes of this
study. The method of Breukels [7] overcomes this limitation by resorting to airfoil parameterisation,
similarly observed in conventional airfoils such as the NACA series. This method permits a wider
range of airfoil configurations necessary for a polynomial regression analysis. However, the method
used to generate the profile geometry with the assigned airfoil shape parameters has not been explicitly
described, nor is it clear how the shape parameters are defined.

Given the unconventional design shape of a LEI wing profile, further elaboration of how the shape
parameters are defined and control the airfoil geometry should be a prerequisite in order to impart a
correct interpretation of the load model. The airfoil shape parameters in question are referred to as the
“thickness” 𝑡 and “camber” 𝜅 in the work of Breukels [7]. The former shape parameter is said to affect
the radius of the leading-edge tube, which has a distinct circular profile evident in Figure 2.2. What is
not apparent though is how the thin membrane canopy is generated and at which points the suction
and pressure sides merge with the leading-edge tube. Nor is the position of the trailing edge relative
to the leading-edge tube clear.

Figure 2.2: 2D hybrid grid of a LEI wing profile with a chord length of 1m [7].

The ambiguity of the primary source necessitates a deeper scrutiny of studies that have attempted
to interpret and subsequently utilise the original aerodynamic load model. The studies of van Kappel
[42] and Berens [4] have applied the interpretation visualised in Figure 2.3 and define the airfoil shape
parameters 𝑡 and 𝜅 as non-dimensional relative to the chord length 𝑐.

Figure 2.3: Discrete model of LEI wing airfoil at angle-of-attack 𝛼 with apparent wind velocity 𝑉𝑎 given tube diameter 𝑑 and
maximum canopy height 𝑏 [42].
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Using the same notation as in Figure 2.3, van Kappel [42], Berens [4] and Bosch [6] all apply the same
definitions of the non-dimensional airfoil parameters (similarly employed by the kite design software
tool SurfPlan™, but with different terminologies):

• The airfoil thickness 𝑡 is the tube diameter 𝑑 relative to the chord length 𝑐 (also referred to as the
“non-dimensional tube diameter”): 𝑡 = 𝑑

𝑐

• The airfoil camber 𝜅 is the maximum canopy height 𝑏 relative to the chord length 𝑐 (also referred
to as the “maximum camber magnitude”): 𝜅 = 𝑏

𝑐

The above definitions give rise to an inconsistency with the source material since Breukels [7] claims
to have conducted simulations with zero-cambered airfoils (𝜅 = 0). Judging from Figure 2.2 and Fig-
ure 2.3, such a configuration is intuitively improbable with the given definition of camber since it would
lead to an impractical shape without the characteristic concave downward curvature of the membrane
canopy. Another observation from both Figure 2.2 and Figure 2.3 is the fact that the tube radius 𝑑/2
cannot exceed the maximum canopy height 𝑏 since a violation of this condition would similarly lead to
an impractical shape of the membrane canopy and eliminate the concave downward curvature. From
this, another inconsistency with the source material arises since Breukels [7] claims the profile dis-
played in Figure 2.2 has a “thickness” of 20% and a “camber” of 4%. If applying the same definitions
and assuming the percentages are relative to the chord length, then the shape of the membrane canopy
of the profile displayed in Figure 2.2 is incompatible with the alleged non-dimensional shape parame-
ters. As such, Breukels [7] has either provided erroneous values or applied different definitions of the
non-dimensional parameters.

Upon closer examination, it seems to be the case that the definition of camber as the maximum canopy
height 𝑏 relative to the chord length 𝑐 is a misinterpretation. It would appear that the actual definitions
of the non-dimensional shape parameters applied by Breukels [7] are based on the method of sail-
wing airfoil parameterisation utilised by den Boer [17], which has been visualised in Figure 2.4. The
reason behind this assumption is the fact that Breukels [7] makes comparisons with the wind-tunnel
measurements of den Boer [17], specifically scrutinising differences in airfoil shape given the same
flow conditions. According to den Boer [17], “camber” is defined as the orthogonal distance, relative to
the chord length, between the straight line connecting the canopy-tube intersection point to the trailing
edge and the parallel line tangent to the vertex (i.e. turning point) of the curved canopy. Therefore,
according to this definition, the sail-wing profile displayed in Figure 2.4 has a camber of 10%. This inter-
pretation of camber is consistent with the profile displayed in Figure 2.2 and allows for a zero cambered
airfoil configuration in which the membrane canopy shape has no curvature and is thus represented
by the straight line from the canopy-tube intersection point to the trailing edge. The interpretation of
airfoil “thickness” as the diameter of the leading-edge tube 𝑑 relative to the chord length 𝑐 appears to
be correct since the same manner of non-dimensionalisation has been applied to the circular profile
displayed in Figure 2.4 (but has not been referred to as “thickness” in the work of den Boer [17]). On
these grounds, the airfoil displayed in Figure 2.4 has a thickness of 6.70%.

Figure 2.4: Parameterised sail-wing airfoil model [17].



2.1. Reference Aerodynamic Load Model 10

Nevertheless, the definitions of the non-dimensional airfoil parameters based on Figure 2.3 have been
used as the basis of the revised aerodynamic load model in order to promote compatibility with Surf-
Plan™. The assumption of a vertical alignment between the trailing edge and the centre of the circular
leading-edge tube profile evident in Figure 2.3 has also been adopted in this work since this also fea-
tures in LEI profiles created with SurfPlan™.

2.1.4. Limitations

The aerodynamic load model of Breukels [7] has seen extensive use as an aerodynamic solver in
aeroelastic studies of LEI kites. As such, the limitations of the polynomial regression model are evident
and well documented.

In the studies of van Kappel [42] and Cayon [10], the accuracy of the moment coefficient 𝐶𝑚 estimator
has been called into question due to poor predictions, especially with regard to high angle-of-attack
flows that fall within the −20∘ ≤ 𝛼 ≤ 20∘ range of applicability. Figure 2.5 shows that the magnitude of
the moment coefficient estimated by the model of Breukels [7] can reach higher than |𝐶𝑚| = 1 within
the given angle-of-attack range of applicability. But the CFD results used to conduct the regression
analysis show that the magnitude of the moment coefficient does not exceed |𝐶𝑚| = 0.3 given the
same camber and within the same range of angle-of-attack [7]. Such a large discrepancy warrants a
revision and redevelopment of the aerodynamic load model.

Figure 2.5: Moment coefficient 𝐶𝑚 versus angle-of-attack 𝛼 as estimated by the aerodynamic load model of Breukels [7] for LEI
wing profiles with different values of camber [10].

Another point of contention regarding the work of Breukels [7] is the omission of a mesh convergence
study, a crucial aspect of the mesh generation process in order to select a grid resolution that facilitates
a suitable balance between simulation accuracy and computational cost. Furthermore, the Reynolds
number used to simulate the flow fields has not been specified. This complicates the process of com-
paring the numerical data attained for the purposes of this work with the results of Breukels [7] since a
defining characteristic of the simulated flow fields is unknown.



2.2. Computational Fluid Dynamics (CFD) Simulation Methods 11

2.2. Computational Fluid Dynamics (CFD) Simulation Methods

The present section describes the available CFD simulation methods that are suitable for modelling
incompressible flow fields. The results from past studies provide valuable insight on the flow charac-
teristics since a high level of detail can be achieved using these methods. As such, the CFD methods
described here are the most suitable aerodynamic modelling approaches if the goal is to accurately
simulate the flow physics of an airfoil.

2.2.1. Direct Numerical Simulation (DNS)

On a conceptual level, a direct numerical simulation is the most straightforward approach with regards
to the simulation of turbulence. The full range of spatial and temporal scales of turbulent motion are
resolved, thus eliminating the need for a turbulence model. The fact that the Navier-Stokes equations
are solved for all scales of motion implies that DNS is the most accurate approach for simulating turbu-
lence. However, the high level of accuracy comes at a significant computational cost that scales with
𝑅𝑒𝐿3. As such, DNS is limited to low Reynolds number flows and is typically reserved for fundamental
research rather than practical engineering applications. [19, 36]

Nevertheless, DNS studies of the flow over a three-dimensional rigid model of a LEI kite have been
carried out, such as the analysis conducted by Coudou [13] for unsteady flow at Re = 1000 and
Re = 5000. Judging from Figure 2.6, the flow recirculates behind the leading edge at both Reynolds
numbers, but appears to be much less turbulent at Re = 1000 than at Re = 5000. At Re = 5000, one
can also distinguish a faint recirculating bubble at the trailing edge on the suction side of the canopy
in Figure 2.6b. The strong interaction between the canopy and the vortices shed by the leading edge
at Re = 5000 is also expected to occur at higher Reynolds number flows. Simulating the flow around
the LEI wing at moderate-to-high Reynolds numbers will require the application of a turbulence model
in order to avoid the excessively high computational costs encountered with DNS.

(a) DNS at Re = 1000.

(b) DNS at Re = 5000.

Figure 2.6: 2D normalised velocity field contours of the flow around a 3D LEI kite at zero angle of attack [13].
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Gouttière [24] has drawn similar conclusions as Coudou [13] by means of a DNS analysis of the same
rigid model at Re = 5000 and a zero degree angle of attack. The suction side of the rigid LEI wing
is subject to similar flow phenomena as experienced by a conventional airfoil, whilst the pressure side
sees the formation of a recirculation zone behind the leading edge tube. At low Reynolds numbers, the
mean velocities are highest on the pressure side of the kite, resulting in a negative mean lift coefficient
due to the lower pressure below the membrane. This is explained by the fact that flow separation from
the laminar boundary layer occurs earlier at lower Reynolds numbers. The separation point moves
further downstream for larger Reynolds numbers, which subsequently leads to an upward lift induced
by the lower pressure above the membrane.

To summarise, DNS is not a viable option for moderate-to-high Reynolds number flows. For this reason,
only the results of simulations have been discussed since DNS studies provide insight into the details
of turbulent flow structures. The software implementation and meshing strategies have been omitted
and the reader is referred to Coudou [13] and Gouttière [24] for further information.

2.2.2. Large-Eddy Simulation (LES)

Large-scale turbulent structures are inherently more energetic than smaller scaled counterparts. As
such, a more efficient transportation of conserved quantities is observed with large-scale turbulent
motions. Based on this phenomenon, the LES method resorts to resolving only large-scale turbulent
structures and modelling less energetic small-scale turbulent motions. This overcomes a prominent
limitation encountered with DNS, which is that the majority of computational resources are directed
towards resolving small-scale turbulent structures. Therefore, with regard to both computational cost
and flow simulation accuracy, the LES method lies between DNS and the RANS simulation approach
given the same flow conditions. [19, 36]

Nevertheless, LES remains a computationally demanding solution for complex geometries immersed
in high Reynolds number flows. Therefore, LES is not deemed to be a suitable option given the scope
and purposes of this work. At the time of writing, no LES studies of LEI wings could be found.

2.2.3. Reynolds-Averaged Navier-Stokes (RANS) Simulation

The RANS approach is more suitable for simulating higher Reynolds number flows since all turbulent
scales are modelled, thus significantly scaling down the computational cost. As neither large nor small
scale turbulent structures are resolved, RANS simulations are less accurate than LES or DNS for the
same flow conditions. Nevertheless, RANS is the most widely used CFD method for practical flow
simulations due to its high computational efficiency.

The main principle of Reynolds averaging is to examine the time-averaged flow rather than the instan-
taneous time-dependent flow. Variables are decomposed into a mean value and an instantaneous
fluctuation (known as Reynolds decomposition), then substituted into the Navier-Stokes equations and
time-averaged. The end result of this process leads to the so-called RANS equations. However, there
are more unknown variables than equations, implying that the RANS equations are not closed. There-
fore, empirical approximations known as turbulence models are required to close the set of equations.
[45]

Turbulence Modelling

There are a wide range of available turbulence models that close the RANS equations, but none of
them are universally applicable. The suitability of a certain turbulence model strongly depends on the
type of flow that is to be simulated. The two most widely used turbulence models are the 𝑘 − 𝜖 and
𝑘 − 𝜔 models, which belong to the two-equation class of turbulence models. As the name suggests,
a total of two transport equations are solved, given that an individual transport equation is solved for
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each independent turbulence quantity. In the case of the 𝑘 − 𝜖 turbulence model, the two turbulence
quantities are the turbulent kinetic energy 𝑘 and the turbulent dissipation 𝜖. The 𝑘 − 𝜔 model utilises
the specific turbulent dissipation 𝜔 instead. The two turbulence quantities are then used to derive a
length scale, a time scale and the eddy viscosity 𝜈𝑡. The turbulence models within this class, known
as eddy-viscosity models, describe the eddy viscosity without having to explicitly prescribe the length
scale. [19, 36]

Alternatively, the 𝑘 − 𝜔 shear-stress transport (SST) model developed by Menter [31] combines the
standard 𝑘 − 𝜖 model with the original 𝑘 − 𝜔 model into a single two-equation eddy-viscosity model.
The 𝑘 − 𝜔 SST model activates either of the two underlying turbulence models based on the distance
from the surface immersed in the flow field. It operates such that the 𝑘 − 𝜔 model is activated for
distances within the boundary layer, whereas the 𝑘 − 𝜖 model comes into effect for distances outside
of the boundary layer. In the case of modelling the flow over a flexible single-surface membrane airfoil,
Smith and Shyy [39] came to the conclusion that the 𝑘 − 𝜔 SST model is more suitable than the
standard 𝑘 − 𝜖 model. The study conducted by Collie et al. [12] presents similar findings with regard
to the turbulent flow across an upwind yacht sail. It is apparent that the aerodynamic force coefficients
predicted for separated flows at high angles-of-attack by the 𝑘 − 𝜖 model do not stand up to scrutiny.
As such, Collie et al. [12] also recommend the 𝑘−𝜔 SST turbulence model as a suitable alternative for
modelling separated flows. The studies conducted by Breukels [7], Folkersma et al. [21], Folkersma
et al. [22], Demkowicz [16] and Lebesque [29] all made use of the 𝑘 − 𝜔 SST turbulence model to
describe the motion of turbulent flow over soft membrane wings used in AWE applications.

Transition Modelling

An important assumption of the most commonly used turbulence models is that the boundary layer is
continuously turbulent, which is the case for the approaches to turbulence modelling previously de-
scribed. As such, a transition model may be required to accurately predict the transition from laminar
to turbulent flow, which strongly depends on the Reynolds number and surface roughness. For certain
high Reynolds number flows, a transition model can be omitted since transition occurs almost instantly
upon the flow coming into contact with the surface. But when the Reynolds number is not particularly
high, transition may occur later over a smooth surface, implying that a portion of the boundary layer is
laminar. For such a case, a transition model would be needed to accurately simulate the flow. [21, 43]

The simulations carried out by Demkowicz [16] and Lebesque [29] relied upon the 𝑘−𝜔 SST turbulence
model and the 𝛾− R̃e𝜃𝑡 transition model (developed by Langtry and Menter [27]) to accurately simulate
the steady-state flow over a smooth surfaced 3D LEI wing for a large range of Reynolds numbers. The
𝛾− R̃e𝜃𝑡 transition model does not reproduce the actual real-world flow physics that characterises flow
transition. Instead, use is made of an experimental database comprised of an array of flow conditions
and physical geometries in order to form empirical transition correlations. The transition model encom-
passes individual transport equations for both the intermittency parameter 𝛾 and the transition onset
momentum thickness Reynolds number R̃e𝜃𝑡. The intermittency parameter 𝛾 represents the probability
that a specific point in the flow field is contained within a region undergoing turbulence. As such, the
local flow field quantities and the wall distance define its transport equation.

Assuming a perfectly smooth surface, Demkowicz [16] came to the conclusion that Re = 3 × 106
is the threshold below which the transition model would need to be implemented, as is evident from
Figure 2.7. The lift and drag polars show how stall prediction suffers a drop in accuracy if the transition
model is omitted for Re = 5 × 105 and Re = 3 × 106. But for Re = 10 × 106, the transition model
has a negligible effect on the stall prediction. Another observation from Figure 2.7 is that the effect of
the transition model appears to be minimal for angles of attack below stall, regardless of the Reynolds
number.
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Figure 2.7: LEI wing lift (left plot) and drag (right plot) polars given for different 𝑅𝑒 numbers. Solid lines are with 𝛾 − R̃e𝜃𝑡
transition model, whereas dashed lines are without [16].

Folkersma et al. [21] conducted a steady-state two-dimensional analysis of the flow across a smooth
surfaced LEI airfoil with the 𝑘 − 𝜔 SST turbulence model and the 𝛾 − R̃e𝜃𝑡 transition model. Similar to
what was concluded by Demkowicz [16], it is apparent that the inclusion of a transition model for low
Reynolds number flows (for this case in the range of Re < 2×107) leads to more accurate results that
are closer to the relevant experimental data. Demkowicz [16] confirmed that the three-dimensional
polars demonstrate similar trends to the two-dimensional polars acquired by Folkersma et al. [21].
However, the three-dimensional analysis of the LEI wing immersed in a flow field did reveal the presence
of a strong spanwise cross-flow effect that is inherently absent within the context of a two-dimensional
examination.

The inclusion of a transition model for low Reynolds number simulations of a LEI wing allows for the
acquisition of numerical data suitable for comparisons with wind tunnel data acquired from a scaled
polished metal wing model [44]. However, considering that an actual LEI kite is comprised of textile
material and stitched seams as shown in Figure 2.8, prominent surface roughness and protruding
features are expected to perturb the flow and cause an early onset of boundary layer transition [20].
Therefore, transition modelling can be omitted if the stitched seams near the leading edge are assumed
to trigger laminar-to-turbulent transition almost instantly upon the flow encountering the leading edge
of the wing.

Figure 2.8: Protruding stitched seams near the leading edge of a LEI kite.
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2.3. In-Flight Measurements

Assessing in-flight measurements attained from LEI kites operating in an AWE context gives insight
into the range of Reynolds numbers observed during flight. The Reynolds number estimations have
been based on the apparent wind velocity 𝑣𝑎, which is the vector difference between the wind speed
𝑣𝑤 and the velocity of the kite 𝑣𝑘: 𝑣𝑎 = 𝑣𝑤 − 𝑣𝑘

Given the free-stream air density 𝜌∞, free-stream dynamic viscosity 𝜇∞ and the chord length 𝑐 as the
characteristic length scale, the Reynolds numbers observed during flight tests have been estimated
using the following expression:

Re = 𝜌∞𝑣𝑎𝑐
𝜇∞

(2.13)

In the work of Oehler and Schmehl [33], measurements of the apparent wind velocity 𝑣𝑎 have been
attained from a representative traction phase of a test flight of the V3 LEI kite model, which has a maxi-
mum chord length of 𝑐 = 2.7m. Themeasurements displayed in Figure 2.9 show that the apparent wind
velocity roughly fluctuates between 14m s−1 and 24m s−1 over the time range of the representative
traction phase.

Figure 2.9: In-flight measurements of the apparent wind velocity 𝑣𝑎 and inflow angles 𝛼𝑚 and 𝛽𝑠 over the time range of a
representative traction phase of the V3 LEI kite model flying in AWE operations [33].

Assuming standard sea-level conditions (i.e. 𝜌∞ = 1.225kg m−3 and 𝜇∞ = 1.789 × 10−5 kg m−1 s−1
[2]) and using the maximum chord length 𝑐 = 2.7m as the characteristic length scale, the range of
observed Reynolds numbers is approximately within the limits of 2.6 × 106 ≤ Re ≤ 4.4 × 106.

A larger range of traction phase Reynolds numbers have been estimated based on the in-flight mea-
surements presented in Figure 2.10, which have been gathered from a flight test of the V2 LEI kite
model in Valkenburg around June 2012 [37]. The results presented in Figure 2.10 are over the entire
temporal range of the flight test, thus capturing several pumping cycles. During the traction phases
(indicated by increasing height over time), the apparent wind velocity approximately varies between
between 20m s−1 and 40m s−1.
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Figure 2.10: In-flight measurements of the apparent wind velocity and height above the ground over the full operation time of
the V2 LEI kite model flying AWE manoeuvres [15]. Note that the legend is incorrect: The blue curve displays altitude

measurements, whereas apparent wind velocity measurements are given by the red curve.

The V2 LEI kite model has a mid-span chord length of 𝑐 = 2.72m, which is inherently the largest chord
length along the span of the wing. Using 𝑐 = 2.72m as the characteristic length scale and assuming
standard sea-level conditions, given the relatively low altitudes at which the kite is flying, the Reynolds
number range representative of the flow field around the kite during the traction phase is roughly within
the limits of 3.7 × 106 ≤ Re ≤ 7.5 × 106.

It is evident that the traction phase of a LEI kite operating in an AWE context is subjected to a limited
range of Reynolds numbers. As such, in the interest of substantially reducing the number of simulations
required to develop the revised aerodynamic load model, the Reynolds number can be omitted as an
input variable. The implication of this approach is that all numerical simulations conducted for the
purpose of building the revised model should be prescribed the same Reynolds number.
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2.4. Research Questions

Based on the reviewed literature, a revision of the aerodynamic load model for LEI kites devised by
Breukels [7] is warranted. The ambiguity surrounding the airfoil parameterisation and geometric con-
struction in the primary source has led to contradicting interpretations of the model in succeeding stud-
ies. Furthermore, inconsistencies abound in the primary source, further sowing doubt in the efficacy of
the load model. As such, it is the goal of this study to rectify the problems and limitations described in
Section 2.1.3.

Another limitation of the work of Breukels [7] is the omission of the chordwise position of maximum
camber as an input variable of the aerodynamic load model. This entails the assumption that a de-
forming canopy only moves vertically when subjected to an aerodynamic load, when in reality there is
also horizontal movement [17, 42]. Therefore, the incorporation of the chordwise position of maximum
camber as an additional input variable is expected to produce a more representative aerodynamic load
model.

Based on these findings, the research questions of this thesis are:

1. What is the minimum set of two-dimensional shape parameters required to describe the flow
around a leading edge inflatable kite airfoil?

(a) What is the effect of adding the chordwise position of maximum camber as an input param-
eter (along with the maximum camber magnitude, tube diameter and angle-of-attack)?

(b) To what extent is the revised polynomial regression model an improvement over the original
version developed by Breukels [7]?

Another goal of this literature review has been to research suitable CFD methods that would lead to an
acceptable balance between solution fidelity and simulation run-time. Based on the reviewed literature
and the current state-of-the-art, the RANS simulation approach appears to offer a suitable cost-versus-
accuracy trade-off for the purposes of this work. The CFD software package OpenFOAM is deemed
to be a versatile tool for numerical data acquisition.



3
Research Method

Following the literature study presented in Chapter 2, a research plan for this thesis has been devised.
This chapter delves into the holistic approach towards answering the research questions established
in Section 2.4. The flowchart displayed in Figure 3.1 presents a visualisation of the research workflow.

Starting with the method of flow field simulation, a thorough understanding of the underlying theory is
warranted in order to justify the utilisation of the applied method and to ensure it is applied accordingly.
As such, Chapter 4 presents a description of the underlying theory of CFD and the reasons behind the
choices of simulation method and turbulence model.

Prior to simulating the flow field around a lifting body is the establishment of the shape of the lifting
body itself. As there is no standardised means of generating a parameterised LEI wing profile suitable
for meshing, the parameterisation and geometric construction of LEI wing profiles simulated for the
purposes of this work have been explained in Chapter 5.

Having devised a method of parameterisation and geometric construction of LEI wing profiles, one
can proceed with generating suitable numerical grids. The approach to mesh generation has been
rationalised in Chapter 6.

Following the data acquisition is the visualisation and interpretation of the results in Chapter 7. This
serves as a means to gauge the efficacy of the numerical data used to develop the aerodynamic load
model presented in Chapter 8. The conclusions of this work and recommendations for further research
described in Chapter 9 stem from the findings of the results.

18
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Figure 3.1: Flowchart describing the workflow of this study.



4
Computational Fluid Dynamics

A crucial demand of this study is the acquisition of numerical data by means of CFD, thus calling for an
elucidation of the underlying theory. This chapter starts with the derivation of the RANS equations in
Section 4.1, followed by an in-depth description of the applied turbulence model in Section 4.2. Next
is a concise explanation of the method used to discretise the equations in Section 4.3. Concluding this
chapter are descriptions of the CFD solver and the applied solution algorithm in Section 4.4.

4.1. Reynolds-Averaged Navier-Stokes (RANS) Equations

Judging from the CFD simulationmethods reviewed in Section 2.2, the RANS equations grant a suitable
balance between simulation accuracy and computational cost given the scope of this work. Based on
the work of Folkersma et al. [21], the flow is assumed to be steady-state and incompressible. The latter
assumption is justified by the relatively low speeds (and subsequent low Mach numbers) at which a LEI
kite operates in an AWE context. The assumption of incompressible flow implies a constant air density
𝜌. Further assuming a constant dynamic viscosity 𝜇 leads to a constant kinematic viscosity 𝜈 (≡ 𝜇/𝜌).

Regarding steady-state incompressible turbulent flow without body forces, the instantaneous Navier-
Stokes equations expressed in Cartesian coordinates and tensor notation are the following:

𝜕𝑢𝑖
𝜕𝑥𝑖

= 0 (4.1a)

𝑢𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

= −1𝜌
𝜕𝑝
𝜕𝑥𝑖

+ 𝜈𝜕
2𝑢𝑖
𝜕𝑥𝑗2

(4.1b)

The velocity vector 𝑢𝑖 = (𝑢1, 𝑢2, 𝑢3) = (𝑢, 𝑣, 𝑤) adopts a coordinate system in which 𝑢 is the velocity
component parallel to the free-stream, 𝑣 is the velocity component normal to the wall and 𝑤 is the
velocity component lateral to the free-stream. Note that the presence of repeated indices in a single
term implies summation: 𝜕𝑢𝑖𝜕𝑥𝑖

= 𝜕𝑢
𝜕𝑥 +

𝜕𝑣
𝜕𝑦 +

𝜕𝑤
𝜕𝑧

The instantaneous velocity vector 𝑢𝑖 and instantaneous pressure field 𝑝 are subsequently subjected to
Reynolds decomposition:

𝑢𝑖 (𝑥𝑖 , 𝑡) = 𝑢𝑖 (𝑥𝑖) + 𝑢′𝑖 (𝑥𝑖 , 𝑡) (4.2a)
𝑝 (𝑥𝑖 , 𝑡) = 𝑝 (𝑥𝑖) + 𝑝′ (𝑥𝑖 , 𝑡) (4.2b)

20
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The mean velocity vector and mean pressure are denoted by 𝑢𝑖 and 𝑝 respectively, whereas 𝑢′𝑖 de-
notes the velocity fluctuation vector and 𝑝′ denotes the pressure fluctuation. A property of Reynolds
decomposition is that the time average of a fluctuation is equal to zero: 𝑢′𝑖 = 0, 𝑝′ = 0

Substituting the Reynolds decomposed expressions into the instantaneous Navier-Stokes equations
and subsequently taking the time averages leads to the RANS equations:

𝜕𝑢𝑖
𝜕𝑥𝑖

= 0 (4.3a)

𝑢𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

= −1𝜌
𝜕𝑝
𝜕𝑥𝑖

+ 𝜈𝜕
2𝑢𝑖
𝜕𝑥𝑗2

−
𝜕𝑢′𝑖𝑢′𝑗
𝜕𝑥𝑗

(4.3b)

The final step introduces the velocity covariances 𝑢′𝑖𝑢′𝑗 representing the fluctuating velocity field effects.
Even though the Reynolds stress tensor is by definition −𝜌𝑢′𝑖𝑢′𝑗 (given the dimension of stress), it is
common practice to refer to 𝑢′𝑖𝑢′𝑗 as such [36].

The presence of the Reynolds stresses in Equation (4.3b) shows that there are more unknown variables
than equations, proving that the RANS equations are not closed. Deriving an equation for the Reynolds
stress tensor will simply introduce more unknown variables that need to be modelled. Therefore, the
𝑘 − 𝜔 SST turbulence model is introduced in order to close the set of equations.

4.2. Turbulence Modelling

Among the empirical approximations reviewed in Section 2.2.3, the 𝑘 − 𝜔 SST turbulence model
emerges as the most fitting solution by which the RANS equations can be closed. Eddy-viscosity
models such as the 𝑘 −𝜔 SST turbulence model adhere to the assumption that Reynolds stresses are
related to the mean velocity gradients via the eddy viscosity 𝜈𝑡 (also referred to as turbulent viscosity),
a hypothesis devised by J. Boussinesq in the year 1877 [36, 45]:

𝑢′𝑖𝑢′𝑗 = −𝜈𝑡 (
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

) + 23𝛿𝑖𝑗𝑘 (4.4)

Note that Equation (4.4) is a simplified expression based on the assumption of incompressible flow.
The 𝛿𝑖𝑗 term denotes the Kronecker delta, whereas 𝑘 is the turbulent kinetic energy:

𝛿𝑖𝑗 = {
1, if 𝑖 = 𝑗
0, if 𝑖 ≠ 𝑗 (4.5)

𝑘 = 1
2𝑢

′
𝑖𝑢′𝑖 =

1
2 (𝑢

′𝑢′ + 𝑣′𝑣′ +𝑤′𝑤′) (4.6)

This approach to turbulence modelling is mathematically analogous to the relation between stress and
rate-of-strain for Newtonian fluids since the eddy viscosity 𝜈𝑡 is a scalar quantity with the same dimen-
sion as the kinematic viscosity 𝜈. However, a key distinction is the fact that the eddy viscosity 𝜈𝑡 is not
a fluid property like the kinematic viscosity 𝜈 but a field quantity. Substituting Equation (4.4) into the
Navier-Stokes equations reduces the number of unknown variables to a single scalar field, namely the
eddy viscosity 𝜈𝑡. What follows is the modelling of this scalar field by means of dimensional analysis. In
the case of two-equation models, the eddy viscosity is defined in terms of two independent turbulence
quantities for which individual transport equations are solved. [19, 36, 45]
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The transport equations of the 𝑘 − 𝜔 SST turbulence model are:

𝑢𝑗
𝜕𝑘
𝜕𝑥𝑗

= 𝑃𝑘 − 𝛽∗𝑘𝜔 +
𝜕
𝜕𝑥𝑗

[(𝜈 + 𝜎𝑘𝜈𝑡)
𝜕𝑘
𝜕𝑥𝑗

] (4.7a)

𝑢𝑗
𝜕𝜔
𝜕𝑥𝑗

= 𝛾
𝜈𝑡
𝑃𝑘 − 𝛽𝜔2 +

𝜕
𝜕𝑥𝑗

[(𝜈 + 𝜎𝜔𝜈𝑡)
𝜕𝜔
𝜕𝑥𝑗

] + 2 (1 − 𝐹1) 𝜎𝜔2
1
𝜔
𝜕𝑘
𝜕𝑥𝑗

𝜕𝜔
𝜕𝑥𝑗

(4.7b)

Defined as a blending function, the 𝐹1 term in Equation (4.7b) permits smooth transitioning between
the standard 𝑘 − 𝜖 and original 𝑘 − 𝜔 models based on the distance from the closest wall 𝑦:

𝐹1 = tanh [[min [max( √𝑘
𝛽∗𝜔𝑦 ,

500𝜈
𝑦2𝜔 ) ,

4𝜎𝜔2𝑘
𝐶𝐷𝑘𝜔𝑦2

]]
4

] (4.8)

The 𝐶𝐷𝑘𝜔 term in Equation (4.8) denotes the positive cross diffusion in Equation (4.7b) and is calculated
as follows:

𝐶𝐷𝑘𝜔 =max(2𝜎𝜔2
1
𝜔
𝜕𝑘
𝜕𝑥𝑗

𝜕𝜔
𝜕𝑥𝑗

, 10−10) (4.9)

A smooth blend of the two underlying turbulence models is made possible by the fact that 𝐹1 can take
any value between zero and one (0 ≤ 𝐹1 ≤ 1). The blending function takes a value of 𝐹1 = 0 for
distances far away from the closest wall, thus activating the standard 𝑘 − 𝜖 model. Close to the wall,
the original 𝑘 − 𝜔 model is enabled by setting 𝐹1 = 1.

Another blending function 𝐹2, also dependent on the distance from the closest wall 𝑦, is introduced for
the purpose of calculating the eddy viscosity 𝜈𝑡:

𝜈𝑡 =
𝑎1𝑘

max (𝑎1𝜔, |𝑆| 𝐹2)
(4.10)

𝐹2 = tanh [[max( 2√𝑘𝛽∗𝜔𝑦 ,
500𝜈
𝑦2𝜔 )]

2

] (4.11)

The application of an eddy viscosity limiter, as defined by Equation (4.10), is what sets the 𝑘 − 𝜔 SST
model apart from the 𝑘 − 𝜔 BST (Baseline Stress Transport) model [31]. The latter solution is defined
by the same transport equations, but with different empirical constants and the standard form of the
eddy viscosity 𝜈𝑡 =

𝑘
𝜔 . The purpose of the eddy viscosity limiter in the 𝑘 − 𝜔 SST model is to prevent

over-prediction of the wall shear stress, thus leading to more accurate numerical representations of
mildly separated flows.

The final term in the transport equations requiring further elaboration is the limited production term 𝑃𝑘:

𝑃𝑘 =min(𝑃𝑘 , 10𝛽∗𝑘𝜔) (4.12)

𝑃𝑘 = 𝜈𝑡
𝜕𝑢𝑖
𝜕𝑥𝑗

(𝜕𝑢𝑖𝜕𝑥𝑗
+
𝜕𝑢𝑗
𝜕𝑥𝑖

) (4.13)

The purpose of the production limiter is to regulate turbulence production and prevent amplification in
stagnation regions.

The reader should be aware of the fact that the equations reproduced thus far are of the revised 𝑘 −𝜔
SST model of Menter et al. [32] (NB the 𝜔 transport equation written in the aforementioned paper
contains a typographical error that gives an incorrect production term, refer to Equation (4.7b) instead).
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The magnitude of the strain rate tensor 𝑆 replaces the absolute value of the vorticity from the initial
formulation of the eddy viscosity limiter proposed by Menter [31]. The second term in Equation (4.9) is
10−20 instead of 10−10 in the original version of Menter [31]. The production limiter proposed by Menter
[30] has been further utilised by Menter [31], whereby the second term in Equation (4.12) is multiplied
by a factor of 20 instead of 10.

The choice between different versions of the 𝑘 − 𝜔 SST model also affects the empirical constants,
where blending between the underlying turbulence models is governed by a linear interpolation using
the blending function 𝐹1:

𝜙 = 𝐹1𝜙1 + (1 − 𝐹1) 𝜙2 (4.14)

Equation (4.14) defines an arbitrary empirical constant 𝜙 in terms of 𝜙1 and 𝜙2, which are the corre-
sponding model constants of the original 𝑘 − 𝜔 and standard 𝑘 − 𝜖 models respectively.

The empirical constants established by Menter et al. [32] are the following:

Table 4.1: Empirical constants of 𝑘 − 𝜔 SST model [32]

Set 1: 𝜙1 Set 2: 𝜙2
𝛽1 𝛾1 𝜎𝑘1 𝜎𝜔1 𝛽2 𝛾2 𝜎𝑘2 𝜎𝜔2 𝛽∗ 𝑎1
3/40 5/9 0.85 0.5 0.0828 0.44 1 0.856 0.09 0.31

This concludes the breakdown of the 𝑘 −𝜔 SST turbulence model. The reader should be aware of the
assumption of a continuously turbulent boundary layer. Regarding flow cases in which delayed laminar-
to-turbulent transition is expected, transition modelling overcomes the inherent assumption of constant
turbulent flow. However, in the case of a LEI wing operating in an AWE context, transition to turbulent
flow is expected to occur almost instantly due to surface roughness and protruding features near the
leading edge. As such, transition modelling has been omitted from this study since the assumption of
continuously turbulent flow is not expected to impede the solution accuracy.

This approach strays from the methods of Folkersma et al. [21], Demkowicz [16] and Lebesque [29],
each having utilised the 𝛾 − 𝑅𝑒𝜃𝑡 transition model together with the 𝑘 −𝜔 SST turbulence model. This
additional modelling step permits the acquisition of numerical data suitable for comparisons with wind
tunnel measurements obtained from a smooth polished metal wing model. The smooth surface of the
model causes a delay in laminar-to-turbulent transition, thus spawning a prominent laminar portion of
the boundary layer. Such an outcome is not expected for an actual LEI kite flying in AWE operations.

4.3. Discretisation

Applying the Navier-Stokes equations in a CFD context requires a reformulation of the continuous
equations by means of an established discretisation method. This entails the approximation of partial
differential equations as a system of algebraic equations. The finite volume method (FVM) has been
used for this purpose.

The finite volume method applies the conservation equations, in integral form, to a finite set of con-
tiguous control volumes that form the discretised solution domain. The values of the flow variables are
calculated at a computational node stored at the centroid of each control volume. This is followed by an
interpolation of the flow variables, based on the computed centroid values, towards the control volume
surfaces. Quadrature formulae approximate the surface and volume integrals. As such, each control
volume is defined by an algebraic equation expressed in terms of the flow variable values computed at
the neighbouring nodes. [19]

The finite volume method is suitable for discretising the flow field around complex geometries due to
its applicability to any type of grid. A grid is generated such that the computational nodes are assigned
to the control volume centres. Control volume boundaries are defined by the grid such that it does not
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have to be related to a coordinate system. Control volumes with a shared boundary have the same
surface integrals, implying that the finite volume method is inherently conservative. This means that
the flux entering a control volume is equal to the flux exiting the neighbouring one. [19]

4.4. CFD Solver

The CFD solver used in this study, namely OpenFOAM, is concisely summarised in Section 4.4.1. A
description of the employed discrete solution algorithm is subsequently provided in Section 4.4.2.

4.4.1. OpenFOAM

The aerodynamic simulation of the various airfoil configurations has been realised with OpenFOAM
v2006, a free and open source C++ based CFD toolbox that allows for the development of custom nu-
merical solvers [11]. The turbulent motion of fluids can be simulated using standard libraries and solvers
that incorporate the turbulence and transition models described in Section 2.2.3. The discretisation of
the Navier-Stokes equations is based on the finite volume method explained in Section 4.3. Although
OpenFOAM allows for the simulation of compressibility effects, the low free-streamMach number of the
flow over a LEI wing permits the assumption of incompressibility, thus simplifying the RANS equations
(see Equation (4.3)). Assuming steady-state flow, the simpleFOAM solver can be used to simulate the
incompressible flow over a flexible membrane wing, as demonstrated by Folkersma et al. [22] and Folk-
ersma et al. [21]. The latter study also notes that OpenFOAM only functions on a three-dimensional
domain, which is accounted for in two-dimensional flow simulations by extruding the domain by one cell
length in the out-of-plane spanwise direction. The simpleFoam solver utilises the Semi-Implicit Method
for Pressure-Linked Equations (SIMPLE) algorithm to solve the Navier-Stokes equations.

4.4.2. SIMPLE Algorithm

A pressure-velocity coupling algorithm first developed by Patankar and Spalding [35], the SIMPLE al-
gorithm derives an equation for the kinematic pressure 𝑃 = 𝑝/𝜌 based on the continuity and momentum
equations (Equation (4.1a) and Equation (4.1b) respectively).

The algorithm starts by expressing the discrete algebraic momentum equations in matrix form:

ℳ�⃗� = −∇𝑃 (4.15)

Matrixℳ comprises the coefficients that arise from the finite volume discretisation of the terms in the
momentum equations.

To further elaborate, thematrix form of the algebraic momentum equation in the 𝑥-direction (with velocity
component 𝑢) is given:

⎡
⎢
⎢
⎢
⎣

𝑀1,1 𝑀1,2 𝑀1,3 … 𝑀1,𝑚
𝑀2,1 𝑀2,2 𝑀2,3 … 𝑀2,𝑚
𝑀3,1 𝑀3,2 𝑀3,3 … 𝑀3,𝑚
⋮ ⋮ ⋮ ⋱ ⋮

𝑀𝑚,1 𝑀𝑚,2 𝑀𝑚,3 … 𝑀𝑚,𝑚

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

𝑢1
𝑢2
𝑢3
⋮
𝑢𝑚

⎤
⎥
⎥
⎥
⎦

= −
⎡
⎢
⎢
⎢
⎣

(𝜕𝑃/𝜕𝑥)1
(𝜕𝑃/𝜕𝑥)2
(𝜕𝑃/𝜕𝑥)3

⋮
(𝜕𝑃/𝜕𝑥)𝑚

⎤
⎥
⎥
⎥
⎦

The above matrix expression presents an equation for the centroid of each control volume in the dis-
cretised domain. As such, the matrix size 𝑚 is equivalent to the number of cells in the mesh domain.

A decomposition of the coefficient matrix ℳ is subsequently executed such that diagonal and off-
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diagonal components are separated into matrix 𝒜 and matrixℋ = ℋ (�⃗�) respectively:

ℳ�⃗� = 𝒜�⃗� −ℋ (4.16)

Then the algebraic momentum equations are expressed in decomposed form:

𝒜�⃗� −ℋ = −∇𝑃 (4.17)

An expression for �⃗� can be derived by rearranging Equation (4.17):

�⃗� = 𝒜−1ℋ −𝒜−1∇𝑃 (4.18)

Equation (4.18), referred to as the velocity correction equation, is then substituted into the continuity
equation:

∇ ⋅ [𝒜−1ℋ −𝒜−1∇𝑃] = 0 (4.19)

Rearranging Equation (4.19) leads to an equation for the kinematic pressure:

∇ ⋅ 𝒜−1∇𝑃 = ∇ ⋅ 𝒜−1ℋ (4.20)

The above equations are employed by the SIMPLE algorithm in the following process:

1. Progress to time step 𝑡𝑛+1. Either use the boundary conditions or the converged solutions from
the preceding time step 𝑡𝑛 to initialise �⃗�𝑛+1 and 𝑃𝑛+1.

2. Update �⃗�𝑛+1 and 𝑃𝑛+1 with the latest predictions of �⃗� and 𝑃 respectively.

3. Assemble the algebraic momentum equations in matrix form:

ℳ�⃗� = −∇𝑃

Apply implicit under-relaxation and then solve the momentum equations, thus acquiring a new
prediction for �⃗�𝑛+1.

4. Assemble the algebraic equation for the pressure:

∇ ⋅ 𝒜−1∇𝑃 = ∇ ⋅ 𝒜−1ℋ

Solve the pressure equation, thus acquiring a new prediction for 𝑃𝑛+1.

5. Apply the flux correction equation to 𝜙𝑛+1:

𝜙 = �⃗�𝑓 ⋅ 𝑆𝑓 = [𝒜−1ℋ −𝒜−1∇𝑃]𝑓 ⋅ 𝑆𝑓

The cell face velocity vector �⃗�𝑓 is acquired by interpolating Equation (4.18) towards the control
volume edges. The outward pointing vector 𝑆𝑓 comprises the cell face areas.

6. Apply explicit under-relaxation to 𝑃𝑛+1.

7. Apply the velocity correction equation to �⃗�𝑛+1:

�⃗� = 𝒜−1ℋ −𝒜−1∇𝑃

8. Return to step 2 if the solutions are not yet converged. What constitutes solution convergence is
when both the momentum and continuity equations are satisfied by the velocity field. If this is the
case, advance to the next time step.
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As documented by Patankar [34], the SIMPLE algorithm has been subject to adaptations over time.
One such adaptation is theSemi-Implicit Method for Pressure-Linked Equations-Consistent (SIMPLEC)
algorithm developed by van Doormaal and Raithby [41], which has been used to simulate steady-state
flow fields throughout this study.

The SIMPLEC algorithm omits the under-relaxation of the pressure field since the computational cost
is approximately equivalent to using the optimal pressure under-relaxation factor in the SIMPLE algo-
rithm. Using the SIMPLEC algorithm eliminates the need to optimise the under-relaxation factor for the
pressure field, which is case dependent and not known a priori.

For further elaboration of the SIMPLEC algorithm, the reader is referred to van Doormaal and Raithby
[41].



5
Airfoil Geometry

The parameterisation and subsequent geometric construction of a LEI wing profile is a key aspect of this
study, thus necessitating an individual chapter demonstrating the applied methodology. The geometric
components and constraints used to construct a complete LEI wing profile suitable for meshing have
been described in Section 5.1. This is followed by a summary of the spline interpolation system used
to generate the relevant geometric components in Section 5.2.

5.1. Geometric Components, Constraints & Parameters

A prominent approximation of the aerodynamic load model developed by Breukels [7] is the assumption
that the deforming canopy of a LEI wing is not subjected to variations in chordwise position of maximum
camber and only experiences changes in camber magnitude [8]. However, a deforming canopy is ex-
pected to undergo changes in both magnitude and chordwise position of camber [42]. The experimental
study of a sailwing airfoil conducted by den Boer [17] concludes that with increasing angle-of-attack, the
maximum camber of a deforming flexible membrane airfoil shifts towards the leading edge. As such,
both van Kappel [42] and Cayon [10] have proposed incorporating the chordwise position of maxi-
mum camber as an additional airfoil shape parameter in the polynomial regression model of Breukels
[7]. This entails the development of a revised aerodynamic load model that permits user control over
the chordwise position of maximum camber along with the original airfoil shape parameters defined in
Section 2.1.3.

Therefore, the defining non-dimensional parameters are the maximum camber 𝜅, the relative thickness
𝑡 and the chordwise position of maximum camber 𝜂. As displayed in Figure 5.1, the fundamental
geometrical constraints comprise of a point constraint at the trailing edge (𝑥/𝑐, 𝑦/𝑐) = (1, 0), a zero-
gradient constraint at the point of maximum camber (𝑥/𝑐, 𝑦/𝑐) = (𝜂, 𝜅), a tangent continuity constraint
at the point of intersection between the canopy and tube profiles and finally a point constraint for the
centre of the circular tube profile at (𝑥/𝑐, 𝑦/𝑐) = (𝑡/2, 0). The leading-edge tube profile is represented
by a circle of non-dimensional radius 𝑡/2 with its centre located at (𝑥/𝑐, 𝑦/𝑐) = (𝑡/2, 0) such that the
point furthest to the left (the leading edge) is positioned at about (𝑥/𝑐, 𝑦/𝑐) = (0, 0). The membrane
canopy profile has been split into forward and rearward components, both represented by cubic Bézier
curves. This approach allows full control over both the magnitude of the maximum camber 𝜅 and its
chordwise location 𝜂, as opposed to a single curve representing the entire canopy profile that would
only allow control over one of these parameters. Tangential continuity at the point of maximum camber
is inherent.

27
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Figure 5.1: Geometric components and constraints of a LEI kite airfoil (𝑡 = 0.1, 𝜅 = 0.1, 𝜂 = 0.2).

The profile displayed in Figure 5.1 only serves as a visualisation of the geometric components and
constraints used to construct a LEI wing airfoil. But it is not suitable for mesh generation based on the
guidelines summarised in Section 6.1.1. Mesh quality rapidly deteriorates towards sharp corners and
edges such as the area near the point of intersection between the tube and canopy profiles. Therefore,
a similar smoothing feature as demonstrated in Figure 6.1 has been implemented in order to alleviate
the subsequent decline in mesh quality, thus leading to the profile displayed in Figure 5.2. The applied
geometric smoothing component is referred to as an ‘edge fillet’, defined by a cubic Bézier curve with
its ends tangent to the pressure side of the canopy and the LE tube at the points of intersection. This
smoothing component is implemented purely for the purpose of mitigating the limitations of contem-
porary meshing practices. This leads to a trade-off between accurate representation of geometry and
mitigation of meshing constraints. A more sunken edge fillet leads to a more representative airfoil but
a less smooth mesh, whereas a more prominent edge fillet allows for better mesh quality but strays
further away from reality.

An outcome of the edge fillet approximation is the introduction of a non-dimensional finite canopy thick-
ness 𝑡𝑐𝑎𝑛𝑜𝑝𝑦 relative to the chord length 𝑐. Despite the fact that the membrane canopy has a negligible
thickness, contemporary meshing practices necessitate an amplified effective canopy thickness, lead-
ing to a similar trade-off as observed with the edge fillet approximation. A larger value of 𝑡𝑐𝑎𝑛𝑜𝑝𝑦 is
less representative of the actual membrane canopy thickness but grants better mesh quality, whereas
a smaller value is more accurate but leads to a deterioration in mesh quality. The value of 𝑡𝑐𝑎𝑛𝑜𝑝𝑦 used
to generate the airfoil displayed in Figure 5.2 is an exaggerated quantity in order to emphasise the
semi-circular profile of the trailing edge (with diameter 𝑡𝑐𝑎𝑛𝑜𝑝𝑦). The rearward canopy section on the
pressure side is characterised by a cubic Bézier curve based on the suction side equivalent such that
the ends of the semi-circular trailing-edge profile are tangentially continuous at the points of intersection
with the rearward canopy curves. Similar to the suction side of the canopy, a zero-gradient constraint
is imposed at the point of intersection between the rearward and forward components of the pressure
side (𝑥/𝑐, 𝑦/𝑐) = (𝜂, 𝜅 − 𝑡𝑐𝑎𝑛𝑜𝑝𝑦), which also implies tangential continuity.
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Figure 5.2: Geometric components of a LEI kite airfoil suitable for meshing (𝑡 = 0.1, 𝜅 = 0.1, 𝜂 = 0.2, 𝑡𝑐𝑎𝑛𝑜𝑝𝑦 = 0.02).

In order to enforce tangential continuity at the tube-canopy and edge-tube intersections, the gradients
at these points are established by first constructing the circular profile of the LE tube. The locations
of the intersection points are governed by the angles displayed in Figure 5.3, where 𝜃𝑠𝑢𝑐𝑡𝑖𝑜𝑛 controls
the tube-canopy intersection point and 𝜃𝑒𝑑𝑔𝑒 provides the edge-tube intersection point. The former
angle affects how much of the circular tube profile is present on the suction side near the leading edge,
whereas the latter angle dictates the prominence of the edge fillet. Note that the value of 𝜃𝑒𝑑𝑔𝑒 used
to construct the profile displayed in Figure 5.2 was purposely chosen to emphasise the edge fillet.

Figure 5.3: Angles 𝜃𝑠𝑢𝑐𝑡𝑖𝑜𝑛 (= 20∘) and 𝜃𝑒𝑑𝑔𝑒 (= 40∘) control the ends of the circular LE tube profile (close-up of Figure 5.2).

The methods used to construct each geometric component displayed in Figure 5.2 foster a holistic tan-
gential continuity of the complete LEI wing profile, the benefits of which are observed when generating
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the mesh. The outcome is an inherently smoother numerical grid due to the absence of sharp corners
and sudden discontinuities in the geometry. Also worth mentioning is the fact that the point furthest
to the right is not precisely located at (𝑥/𝑐, 𝑦/𝑐) = (1, 0). However, this is considered to be a minute
discrepancy expected to have negligible effects on the aerodynamic simulations, especially for lower
values of 𝑡𝑐𝑎𝑛𝑜𝑝𝑦.

The values of 𝑡𝑐𝑎𝑛𝑜𝑝𝑦 and 𝜃𝑒𝑑𝑔𝑒 used to construct the parameterised profile displayed in Figure 5.2 are
different from the values used to construct profiles that have been meshed and subsequently simulated
for the purposes of this study. The reader should be conscious of the fact that Figure 5.2 serves as a
visual guide and is not fully representative of the profiles that have actually beenmeshed and simulated.
The values of the geometric parameters 𝑡𝑐𝑎𝑛𝑜𝑝𝑦, 𝜃𝑠𝑢𝑐𝑡𝑖𝑜𝑛 and 𝜃𝑒𝑑𝑔𝑒 presented in Table 5.1 have been
kept constant for every simulated profile.

Table 5.1: Values of fixed geometric parameters used to construct LEI wing profiles for meshing and simulation.

Parameter Value
𝑡𝑐𝑎𝑛𝑜𝑝𝑦 0.001
𝜃𝑠𝑢𝑐𝑡𝑖𝑜𝑛 20∘
𝜃𝑒𝑑𝑔𝑒 60∘

Aside from the leading-edge tube and trailing edge profiles, each curve has been generated by means
of a cubic Bézier interpolation scheme further elaborated in the following section.

5.2. Spline Interpolation

As described in Section 2.1.3, there is no standard method for constructing the shape of a LEI wing
profile. The means by which Breukels [7] assembled parameterised LEI wing profiles suitable for mesh-
ing are unknown, thus necessitating the development of a method that is independent of the primary
source. In this study, parameterised LEI wing profiles have been constructed using the spline interpo-
lation system devised by Hobby [25] since it is capable of producing smooth and aesthetically pleasing
curves with minimal spline intersection points. It is also possible to impose a gradient at any spline
intersection point by assigning a unit vector, which is a necessary feature in order to enforce the geo-
metric constraints described in the preceding section. It should be noted that, in general terms, such an
interpolating spline comprises multiple polynomial curves. In the case of open curve problems, where
the spline end-points are not connected by a curve, the interpolation system of Hobby [25] generates
interpolating splines comprised of 𝑛 − 1 cubic Bézier curves given 𝑛 spline intersection points. Each
cubic Bézier curve comprises 100 discrete points.

Furthermore, a defining geometric characteristic of a LEI wing airfoil that has been replicated using
the employed spline interpolation system is the concavity of the membrane canopy profile. This de-
mands an interpolating spline representing the suction side of the canopy that is as close as possible
to a concave-downward curve between both ends. The application of so-called “tension” parameters
to the relevant spline intersection point(s) permits such a geometric characteristic for cases with min-
imal spline points. These scalar quantities control the curvature of the spline as it approaches the
point(s) of application. An ”exit” and ”entry” tension parameter can be individually assigned to any
spline intersection point, both having a default value of one. The ”exit” tension parameter controls the
outgoing curve towards the succeeding spline point, whereas the ”entry” tension parameter controls
the incoming curve from the preceding spline point. As a tension parameter approaches infinity, the
part of the curve nearest to the point of application tends to the straight line segment between the two
spline points. This is a desired effect towards the trailing edge as there is no explicit gradient constraint
at (𝑥/𝑐, 𝑦/𝑐) = (1, 0). Therefore, the exit tension of the spline point at (𝑥/𝑐, 𝑦/𝑐) = (1, 0) has been pre-
scribed an arbitrarily large value of 1000. Geometric differences between the default and prescribed
values are evident in Figure 5.4, where Figure 5.4a shows a discernible point of inflection towards the
trailing edge. Increasing the value of the exit tension beyond 1000 has little added effect on the shape
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of the spline.

(a) Default tension parameters at (𝑥/𝑐, 𝑦/𝑐) = (1, 0). (b) Prescribed exit tension value of 1000 at (𝑥/𝑐, 𝑦/𝑐) = (1, 0).

Figure 5.4: Comparison of LEI wing profiles with different tension parameters at spline point (𝑥/𝑐, 𝑦/𝑐) = (1, 0) given 𝑡 = 0.1,
𝜅 = 0.1, 𝜂 = 0.2, 𝜃𝑠𝑢𝑐𝑡𝑖𝑜𝑛 = 20∘, 𝜃𝑒𝑑𝑔𝑒 = 40∘ and 𝑡𝑐𝑎𝑛𝑜𝑝𝑦 = 0.02.

The spline representing the pressure side of the membrane canopy is merely a copy of the suction side
such that the aforementioned geometric characteristics are emulated. The discrete points of the pres-
sure side spline are each separated by an orthogonal distance equal to 𝑡𝑐𝑎𝑛𝑜𝑝𝑦 below the equivalent
discrete point of the suction side spline. This ensures the membrane canopy has a constant ampli-
fied thickness 𝑡𝑐𝑎𝑛𝑜𝑝𝑦 from the right end-point of the pressure side spline until the point of intersection
between the edge fillet and the pressure side spline. This point of intersection is the discrete point of
the pressure side spline closest to horizontal alignment (i.e. equal values of 𝑥/𝑐) with the lower end
of the edge fillet. The remainder of the pressure side spline to the left of this point of intersection is
subsequently removed since it occupies the area enclosed by the edge fillet and the leading-edge tube.

The reader is referred to Hobby [25] for detailed insight into the applied spline interpolation system.



6
Mesh Generation & Simulation Set-Up

The process of generating good quality numerical grids is an important consideration for any CFD
analysis, as well as the set-up of the analysis itself. Therefore, a description of the mesh generation
methodology applied in this study has been presented in Section 6.1, which is followed by an explana-
tion of the employed CFD simulation set-up in Section 6.2.

6.1. Mesh Generation

The generation of a high-quality mesh suitable for CFD simulations is a laborious undertaking that
demands thorough attention to detail, a process which is further complicated by the unconventional
shape of a LEI wing profile. As such, the following section describes the mesh generation process.
The commercial software Pointwise has been used for this purpose, controlled by means of a set of
MATLAB functions developed by Buendía [9] (which have been adapted for the demands of this work).

6.1.1. Geometric Approximations

Within the scope of contemporary mesh generation practices, the non-conventional design shape of a
LEI wing complicates the process of volume mesh generation if the goal is to develop a high-quality
mesh. The combination of the anhedral shape, the thin membrane canopy and the circular profile of
the leading edge tube calls for a non-trivial approach when it comes to generating the volume mesh of
a three-dimensional wing [43]. Constructing the two-dimensional mesh of a wing profile also requires
careful consideration as the merging of the thin membrane canopy and circular profile of the leading
edge tube still presents a unique set of challenges.

The first point of contention is the sharp angle between the leading edge tube and themembrane canopy
at the intersection of the two respective components. Mesh quality deteriorates rapidly towards sharp
corners, hence why it is common practice with regard to both two-dimensional and three-dimensional
meshing to smooth the area behind the leading edge tube as depicted in Figure 6.1. Although a smooth
filling between the canopy and the leading edge tube does not feature in the actual design shape of the
kite, this approximation can be justified due to its negligible effect on the simulated flow field [15, 43].

32
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Figure 6.1: LEI wing profile at the mid-section (left image) and 3D CAD model (right image) with smoothed features. The
dashed line indicates the original design profile, whereas the solid line indicates the approximated filled profile [43].

The filling behind the leading edge tube introduces a new surface on the pressure side of the airfoil,
leading to a membrane canopy with a finite thickness as displayed on the left image of Figure 6.1.
Merging the suction side and pressure side surfaces such that the membrane canopy becomes an
infinitely thin surface (as the design shape indicates) complicates volume mesh generation due to the
implicit blending of two wall boundaries. As such, it is common practice to amplify the thickness of
the membrane canopy for the sake of alleviating the need to merge boundaries. Also worth noting is
the semi-circular trailing edge of the filled profile displayed in the left image of Figure 6.1. This feature
prevents the formation of sharp edges, which have a detrimental effect on mesh quality.

Every geometric approximation described thus far has been applied to each profile simulated for the
purposes of this work (see Figure 6.2c and Figure 6.2d).

6.1.2. Mesh Characteristics & Parameters

One can proceed with constructing suitable numerical grids knowing the general shape of a LEI wing
profile and having established the required geometric approximations.

Mesh Type & Topology

Numerical grids applied in a CFD context are typically distinguished as structured, unstructured or
hybrid, the last form being a combination of the two preceding grid types. Structured grids are char-
acterised by a relatively low cell count (compared to unstructured or hybrid equivalents), thus leading
to faster computations. However, more user input is required to generate a high quality mesh, whilst
unstructured and hybrid grids benefit from a high degree of automation. Hybrid grids are typically con-
structed such that the near-wall region is contained within a cluster of structured cells in order to more
accurately simulate the high velocity gradients within the boundary layer. A cluster of unstructured cells
forms further away from the wall. [20]

Given the large range of airfoil geometries under scrutiny, low computational cost and a highly auto-
mated mesh generation procedure are both highly sought after qualities. In order to strike a delicate
balance, careful consideration has been given to selecting an appropriate mesh type. A structured
O-grid topology, as used in the work of Folkersma et al. [21] and Deaves [15], was deemed to be the
most suitable option. The commercial software Pointwise permits the formation of grids with an O-grid
topology by means of a hyperbolic extrusion algorithm in the wall normal direction. Given enough mesh
layers, the far-field boundary forms into a circular shape as displayed in Figure 6.2b. The extrusion
algorithm removes the need to pre-define the boundary of the mesh domain as this is formed automat-
ically in the mesh generation process. As displayed in Figure 6.2, grids generated by means of the
hyperbolic extrusion algorithm in the wall normal direction are fully structured, thus benefiting from a
relatively low cell count.
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(a) Near-wall mesh region.

(b) Full mesh domain. (c) Circular LE tube and smooth edge. (d) Semi-circular TE.

Figure 6.2: Regions of structured mesh with O-grid topology of a LEI wing profile with shape parameters 𝑡 = 0.05, 𝜅 = 0.1 and
𝜂 = 0.2 (grid resolution of 576 × 201).

Grid Point Distribution

The unconventional shape of a LEI wing profile complicates the process of distributing the grid points
along the wall boundary. Unlike conventional wing profiles such as the NACA airfoil series, there is no
established means of discretising the surface of a LEI wing profile.

Images of LEI wing profile grids, with structured O-grid topologies, have been presented in the work
of Folkersma et al. [21] and Deaves [15]. However, both studies do not explicitly describe the means
by which the grid points have been distributed. As such, a method for distributing the nodes along the
surface of a LEI wing profile grid has been developed such that the qualitative aspects of the reference
grids are recreated.

The applied method is evident in Figure 6.3, where the total number of wall nodes (in this case 576) is a
prescribed mesh parameter. In order to maintain the circular profiles of the trailing edge and the leading
edge tube, the grid points are equally spaced. The number of equidistant nodes along the trailing edge
section displayed in Figure 6.3c has been kept constant at 10 throughout this study. In contrast, the
number of equally spaced nodes along the surface of the leading edge section displayed in Figure 6.3b
is dependent on the curvature of the profile. The same dependency applies to the number of nodes
along the canopy section displayed in Figure 6.3a, governed by means of a hyperbolic tangent (tanh)
distribution in order to ensure smooth transitions between the equally spaced sections at both ends.
Note that the suction and pressure sides of the canopy section have the same number of grid points.
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(a) Canopy section (pressure and suction sides): tanh node spacing.

(b) LE section: Equal node spacing. (c) TE section: Equal node spacing.

Figure 6.3: Grid point distribution along the surface of a LEI wing profile with shape parameters 𝑡 = 0.05, 𝜅 = 0.1 and 𝜂 = 0.2
(grid resolution of 576 × 201).

The equations used to calculate the number of nodes 𝑛 in the variable node sections are the following
(given 𝑛total = 575 and 𝑛TE = 10):

𝑛LE = 𝑝 ⋅ 𝑛total (6.1a)

𝑛canopy =
1
2 (𝑛total − 𝑛TE − 𝑛LE + 3) (6.1b)

The dependency on profile curvature is evident in Equation (6.1a) since the chordwise position of max-
imum camber 𝜂 controls the number of nodes in the leading edge section, thus removing the need
to individually mesh each profile under consideration. What follows is the calculation of the number
of nodes along the pressure and suction sides of the canopy section by means of Equation (6.1b).
The calculated values are subsequently rounded to the nearest integer. It should be clarified that the
node distribution along the mesh wall boundary is not equivalent to the geometric discretisation of the
simulated profile as this is governed by the methodology described in Chapter 5.

Mesh Layer Spacing

The spacing of the grid in the wall-normal direction is controlled by means of a geometric progression
method. The cells grow in size in the marching direction at a constant growth rate prescribed by the
user, typically between 1.1 and 1.2 [16]. A geometric growth rate of 1.1 was deemed to be suitable and
has been used for each grid generated within the scope of this study.

Also required as a prescribed quantity is the height of the wall-adjacent mesh layer 𝑦. The value of this
mesh parameter is calculated by means of the dimensionless metric of the distance normal to the wall
𝑦+, governed by the friction velocity 𝑢𝜏 = √𝜏𝑤/𝜌∞ and the free-stream fluid properties 𝜌∞ and 𝜇∞ (or
𝜈∞ = 𝜇∞/𝜌∞):

𝑦+ = 𝜌∞𝑦𝑢𝜏
𝜇∞

= 𝜌∞𝑦√𝜏𝑤/𝜌∞
𝜇∞

(6.2)
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The wall coordinate 𝑦+ scales with the boundary layer thickness, which in turn is dependent on the flow
conditions. The reason behind the choice of the velocity scale 𝑢𝜏 is the fact that the velocity at the wall
is zero due to the no-slip boundary condition and the free-stream velocity 𝑈∞ is of no consequence to
the universal shape of the boundary layer that develops close to the wall.

Regarding external aerodynamics cases which exhibit strong curvature, pressure gradient and sep-
aration effects, common convention dictates that a wall-resolved boundary layer meets the condition
𝑦+ < 1.

What follows is the estimation of the wall shear stress 𝜏𝑤, defined by Equation (6.3), through an empir-
ical avenue as this quantity is not known a priori.

𝜏𝑤 =
1
2𝑐𝑓𝜌∞𝑈

2
∞ (6.3)

The empirical relation in question is attributed to turbulent flat-plate boundary layer theory and dictates
the value of the local skin friction coefficient 𝑐𝑓. Namely, Prandtl’s one-seventh power-law for turbulent
flat-plate boundary layers [46]:

𝑐𝑓 =
0.027
Re𝑥

1/7 (6.4)

The chord based Reynolds number has been used to estimate 𝑐𝑓:

Re = 𝜌∞𝑈∞𝑐
𝜇∞

= 𝑈∞𝑐
𝜈∞

(6.5)

Assuming 𝜌∞ = 1kgm−3, 𝑈∞ = 1ms−1 and 𝑐 = 1m, the value of the Reynolds number is controlled by
altering 𝜇∞. The justification for this approach, rather than using representative free-stream quantities,
is that the non-dimensional aerodynamic coefficients are of prime interest.

Worth repeating is the fact that the value of the initial cell height 𝑦 calculated through this approach
is an estimate. In practice, 𝑦+ varies over the airfoil surface due to the wall shear stress distribution.
But instead of computing the distribution of 𝑦+, the surface distribution of the turbulent kinetic energy
based wall-normal distance 𝑦∗, defined by Equation (6.12), has been calculated over the course of
each simulation conducted within the scope of this study. Launder and Spalding [28] proposed 𝑦∗ as
an alternative to 𝑦+ as a manner of circumventing singularities due to stagnation and separation points
where 𝜏𝑤 ≈ 0. Nevertheless, 𝑦∗ and 𝑦+ generally are equivalent quantities whereby the condition of
𝑦∗ < 1 must be met across the entire surface of the airfoil for a wall-resolved boundary layer. It is not
known in advance if the 𝑦∗ < 1 condition is met until the results of a simulation have been processed.
If the maximum value of 𝑦∗ is too large and violates the 𝑦∗ < 1 condition, then the mesh is further
refined by reducing the initial cell height 𝑦 and simulated again. This process is iterated until the 𝑦∗ < 1
condition is met.

Smoothing Parameters

The irregular shape of the LEI wing profile and subsequent high degree of concavity observed in a
numerical grid, as evident in the example of Figure 6.2, demands the use of mesh smoothing param-
eters in order to avoid numerical instabilities and prevent grid lines from intersecting. The hyperbolic
extrusion method of Pointwise permits the application of explicit smoothing, implicit smoothing, Kinsey
Barth smoothing and volume smoothing. The explicit and implicit smoothing parameters both act in the
transverse direction, whereby the latter coefficient must always be double the value of the former (the
default values are 0.5 and 1.0 respectively). The Kinsey Barth smoothing parameter acts in the wall-
normal direction, has a default value of 0.0 and is typically activated in the event of severe concavities
leading to grid line intersections. For such circumstances, it is recommended to use a coefficient value
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greater than 3.0. Finally, the volume smoothing parameter controls the rate at which grid clustering
is relaxed towards the front of the extrusion. This coefficient has a default value of 0.5, but can take
any value between 0.0 and 1.0. A volume smoothing coefficient of 0.0 constitutes a fully intact grid
clustering towards the boundary of the extruded domain.

Adjusting the mesh smoothing parameters for each individual grid generated for the purposes of this
work would be arduous and excessive due to the shear quantity of profiles under examination. As such,
appropriate coefficient values have been determined by means of trial-and-error on a single airfoil. A
highly cambered profile with the largest permissible tube diameter was chosen for this purpose in order
to maximise the curvature and concavity observed in the numerical grid. A more stringent smoothing
regime is required for such a grid since deterioration in mesh quality is more prevalent. The outcome of
this approach is a set of smoothing coefficients that can be applied to a wide range of grids with varying
degrees of curvature and concavity. The final outcome of the grid smoothing calibration performed on
the airfoil in question is displayed in Figure 6.4.

Figure 6.4: Mesh of the profile used to determine suitable smoothing coefficients. Shape parameters are 𝑡 = 0.15, 𝜅 = 0.3 and
𝜂 = 0.4. Grid resolution is 575 × 201.

The coefficient values acquired from the grid smoothing calibration are the following:

Table 6.1: Values of hyperbolic extrusion smoothing parameters (see visual representations Figure 6.2 and Figure 6.4).

Smoothing parameter Value Notes
Explicit 5.0
Implicit 10.0 Double the explicit coefficient
Kinsey Barth 5.0 High concavity → ≥3.0
Volume 0.5 Default value

The values presented in Table 6.1 have been consistently used for the purpose of generating smooth
grids used throughout this study.

Stop Conditions

Hyperbolic mesh extrusion is immediately terminated upon the violation of the Jacobian grid quality
criteria. The grid generation process ceases for cases which exhibit positive skew, negative skew, zero
Jacobian, or negative Jacobian. Activating these criteria prevents the formation of negative volume or
highly skewed cells.
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6.1.3. Mesh Convergence

Failing to meet certain mesh generation standards may cause the CFD solver to never reach conver-
gence or even to diverge. It is also possible that convergence is reached with a poor quality mesh,
but at the expense of computational cost and/or simulation accuracy. The quality of a mesh depends
on the level of grid refinement and an established set of quality metrics (skewness, cell orthogonality,
etc.). Grid refinement affects the simulation accuracy, whereas the grid quality metrics influence the
tendency towards convergence and the errors that arise from discretisation. Since a suitable cell count
and grid density are not known a priori, a mesh convergence study is required to gauge the extent to
which the simulation results vary with the level of refinement. As such, an appropriate range of “coarse”
and “refined” grids have to be simulated at varied angles-of-attack and Reynolds numbers, after which
the results are compared. [20]

The choice of Reynolds numbers for the mesh convergence simulations has been partly based on
the experimental in-flight data based estimations presented in Section 2.3. Folkersma et al. [21] con-
ducted numerical simulations using a wide range of Reynolds numbers, including values that are either
close to or within the ranges expressed in Section 2.3, namely Re = 2 × 106, Re = 5 × 106 and
Re = 10 × 106. The aforementioned Reynolds numbers have been applied in this mesh conver-
gence study in order to allow for comparisons with the numerical results of Folkersma et al. [21]. The
numerical results in question are the 2D aerodynamic coefficients 𝐶𝑙, 𝐶𝑑 and 𝐶𝑚 defined as follows:

𝐶𝑙 =
𝐿

1
2𝜌∞𝑈∞

2𝑆𝑟
(6.6) 𝐶𝑑 =

𝐷
1
2𝜌∞𝑈∞

2𝑆𝑟
(6.7) 𝐶𝑚 =

𝑀
1
2𝜌∞𝑈∞

2𝑆𝑟𝑐
(6.8)

The results presented in Table 6.2 and plotted in Figure 6.5 show that the level of refinement along
the airfoil surface has a more prominent effect on the lift coefficient than on the other aerodynamic
coefficients given 𝛼 = 10∘ and Re = 5 × 106. It should be noted that the simulations for refinement
levels 3 to 5 have not converged for 𝛼 = 15∘ since the aerodynamic coefficients do not stabilise over
the range of iterations. As such, the results presented for these refinement levels given 𝛼 = 15∘ are not
converged solutions (see Section 6.2.4). Converged solutions have been attained for each refinement
level given 𝛼 = 0∘, yet a more prominent mesh dependency is evident compared to the results of
𝛼 = 10∘. This is likely a result of pressure side instabilities arising from the recirculation zone behind
the leading-edge tube, which is more prominent at lower angles-of-attack and thus leads to greater
mesh sensitivity. Nevertheless, it is deemed that sufficient mesh convergence has been attained.

Table 6.2: Computed aerodynamic coefficients (rounded to three significant figures) given Re = 5 × 106 for different mesh
resolutions tangent to the surface of an airfoil with shape parameter specifications 𝑡 = 0.15, 𝜅 = 0.3 and 𝜂 = 0.4.

Mesh 𝐶𝑙 𝐶𝑑 𝐶𝑚
Resolution 𝛼 = 0∘ 𝛼 = 10∘ 𝛼 = 15∘ 𝛼 = 0∘ 𝛼 = 10∘ 𝛼 = 15∘ 𝛼 = 0∘ 𝛼 = 10∘ 𝛼 = 15∘

171×201 (Level 1) -0.340 0.963 1.392 0.0906 0.166 0.224 0.0625 -0.214 -0.283
255×201 (Level 2) -0.329 0.962 1.367 0.0830 0.162 0.221 0.0639 -0.212 -0.278
384×201 (Level 3) -0.336 0.944 1.408 0.0815 0.162 0.253 0.0644 -0.210 -0.296
575×201 (Level 4) -0.343 0.926 1.367 0.0801 0.164 0.259 0.0644 -0.210 -0.293
864×201 (Level 5) -0.331 0.926 1.492 0.0765 0.165 0.300 0.0578 -0.215 -0.326

The mesh refinement levels in the wall normal direction were selected such that the outer boundary of
the grid domain maintains a distinct circular profile. This outcome is not guaranteed for surface normal
resolutions below the lowest observed refinement level (level 3 in this case). Table 6.3 shows that
the effects of the surface normal refinement level are inconsequential with regard to the aerodynamic
coefficients and dimensionless wall distance 𝑦∗, with the exception of the change in lift coefficient from
refinement level 3 to 4 for each observed Reynolds number. Otherwise, the number of mesh layers in
the wall normal direction is a near arbitrary quantity. Another observation is the fact that even small
changes in the Reynolds number seems to affect the aerodynamic coefficients quite substantially, which
is not the case in the work of Folkersma et al. [21]. However, this is likely due to geometric differences
between the simulated profiles, as the work of Folkersma et al. [21] examined a far more moderately
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cambered airfoil with a lower tube diameter.

Table 6.3: Computed aerodynamic coefficients (rounded to three significant figures) given 𝛼 = 10∘ for different mesh
resolutions normal to the surface of an airfoil with shape parameter specifications 𝑡 = 0.15, 𝜅 = 0.3 and 𝜂 = 0.4.

Dimensionless
Coefficient [-]

Reynolds
Numbers [-]

Mesh Resolutions
575 × 136 575 × 201 575 × 301
(Level 3) (Level 4) (Level 5)

𝑦∗𝑚𝑎𝑥
2 × 106 0.128 0.129 0.129
5 × 106 0.150 0.152 0.152
10 × 106 0.175 0.176 0.176

𝐶𝑙
2 × 106 0.743 0.760 0.763
5 × 106 0.900 0.926 0.928
10 × 106 1.018 1.056 1.055

𝐶𝑑
2 × 106 0.176 0.176 0.176
5 × 106 0.165 0.164 0.164
10 × 106 0.156 0.154 0.153

𝐶𝑚
2 × 106 -0.181 -0.184 -0.185
5 × 106 -0.206 -0.210 -0.212
10 × 106 -0.222 -0.229 -0.230

(a) Lift coefficients per refinement level.

(b) Drag coefficients per refinement level. (c) Moment coefficients per refinement level.

Figure 6.5: Aerodynamic coefficients per mesh refinement levels of a parameterised LEI wing airfoil with shape parameters
𝑡 = 0.15, 𝜅 = 0.3 and 𝜂 = 0.4 at 𝛼 = 10∘ given Re = 5 × 106.
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6.2. Simulation Set-Up

An in-depth look at the employed CFD simulation set-up starts with a brief summary of the simulation
platform in Section 6.2.1. What follows is a detailed description of the applied boundary conditions and
initial values in Section 6.2.2, then an exploration of the numerical schemes and solver control set-
tings in Section 6.2.3. Concluding this section is an explanation of the applied simulation convergence
monitors in Section 6.2.4.

6.2.1. Simulation Platform

Constructing a polynomial regression model based on CFD data necessitates a considerable amount
of simulations due to the many possible configurations of a parameterised LEI kite airfoil. The high per-
formance computer cluster maintained by the Faculty of Aerospace Engineering at the Delft University
of Technology has been used for this purpose. Known as the HPC-12 cluster, this platform is capable
of performing large scale parallel computations that would otherwise not be feasible on a single work
station. As such, due to the high computational demands of simulating a vast range of airfoil configura-
tions, the HPC-12 cluster has been used to carry out the bulk of the simulations required for this project.
Since the operating system of the cluster is Linux-based, a basic grasp of the Linux command line is
demanded of the user. The HPC-12 cluster is a Beowulf class computer cluster in which an assembly
of nodes are connected through a local network to a master node. Each node is an individual computer
where parallel computational tasks are executed, whereas the purpose of the master node is to plan
and manage the tasks submitted by all users in a queuing system [26]. The master node is accessed
via an SSH link between the HPC-12 cluster and the user’s work station, permitting remote submission
of computational tasks referred to as ’jobs’.

6.2.2. Boundary Conditions & Initial Values

Rather than assessing the effects of the boundary conditions and initial values, this study has appro-
priated the set-up applied in the work of Folkersma et al. [21]. This calls for a probing of the employed
boundary conditions and initial values.

Far-field

The velocity vector �⃗�𝑖 of the flow at the inlet is defined by Equation (6.9) as a function of the angle-
of-attack 𝛼 and the free-stream velocity magnitude 𝑈∞. The vector components 𝑖, 𝑗 and 𝑘 denote the
chordwise, transverse and spanwise directions respectively. In the case of two-dimensional flow, the
spanwise vector component drops out (i.e. 𝑘 = 0) since side-slipping flow is inherently unfeasible.

�⃗�𝑖 = 𝑈∞ ⋅ (𝑖, 𝑗, 𝑘) = 𝑈∞ ⋅ (cos(𝛼), sin(𝛼), 0) (6.9)

Adjusting the inlet velocity vector with the angle-of-attack omits the need to rotate and re-mesh the
airfoil geometry. This is made possible by the O-grid topology of the structured grids.

The turbulent kinetic energy at the inlet 𝑘𝑖 depends on the free-stream velocity 𝑈∞ and the turbulence
intensity 𝐼:

𝑘𝑖 =
3
2 (𝑈∞𝐼)

2 (6.10)

The specific turbulent dissipation rate at the inlet 𝜔𝑖 is a function of the initial turbulent kinetic energy
𝑘𝑖 and the free-stream eddy viscosity ratio 𝜈𝑡

𝜈∞
:

𝜔𝑖 =
𝑘𝑖
𝜈∞
( 𝜈𝑡𝜈∞

)
−1

(6.11)
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Given the context of low-turbulence external aerodynamics, prescribing an eddy viscosity ratio is prefer-
able to estimating a turbulent length scale. The latter option is typically better suited for internal flows
or flows in which the cause of turbulence can be attributed to a defining physical feature.

The free-stream eddy viscosity ratio 𝜈𝑡
𝜈∞

and the turbulence intensity 𝐼 at the inlet are prescribed quan-
tities. Folkersma et al. [21] assessed the impact of varying the eddy viscosity ratio within the range
0.1 ≤ 𝜈𝑡

𝜈∞
≤ 10, concluding that the effects on the results are negligible. Demkowicz [16] came to the

same conclusion for the range 1 ≤ 𝜈𝑡
𝜈∞
≤ 50, whilst also disclosing that varying the turbulence intensity

from 0.5% to 20% similarly has an inconsequential outcome with regard to the aerodynamic coeffi-
cients. Demkowicz [16] and Folkersma et al. [21] conducted simulations with a constant turbulence
intensity of 2% (i.e. 𝐼 = 0.02) and a constant eddy viscosity ratio of 𝜈𝑡

𝜈∞
= 10. Therefore, in order to

permit comparisons with the aforementioned studies, the same prescribed quantities have been used
in this work.

Wall

A viscous fluid flowing across an impermeable solid will stick to the boundary of that solid. The so-
called no-slip boundary condition follows from this viscous flow phenomena, stating that the velocity of
a viscous fluid relative to a solid impermeable boundary is equal to the velocity at which the wall travels.
The assumption of impermeability equates the velocity of the flow normal to a solid boundary to the
normal velocity of the wall itself. Therefore, in the case of a stationary impermeable solid boundary, the
tangential and normal velocity components of the flow at any point on the wall are both equal to zero.
This condition applies to both the mean and fluctuating velocities. [19, 46]

Since the effects of turbulent fluctuations are inconsequential in the immediate vicinity of an imperme-
able solid boundary, the flow in this region is essentially laminar even in the context of a fully turbulent
boundary layer. As such, a turbulent boundary layer can be divided into sub-layers, whereby the ef-
fectively laminar near-wall region is referred to as the viscous sub-layer. Since the viscous sub-layer
is characterised by an effectively laminar flow regime, both the turbulent kinetic energy 𝑘 and eddy
viscosity 𝜈𝑡 at the wall are zero. As such, the effective viscosity at the wall 𝜈𝑤 (= 𝜈 + 𝜈𝑡) is equivalent
to the molecular viscosity of the fluid 𝜈 since 𝜈𝑡 = 0. In contrast, the specific turbulent dissipation rate
𝜔 is not zero at the wall due to the damping effect a solid boundary has on turbulent fluctuations. [19]

OpenFOAM Boundary Settings

The initial values and types of boundary conditions used in the OpenFOAM set-up have been sum-
marised in Table 6.4:

Table 6.4: OpenFOAM initial values and boundary conditions

Variable Far-field type Far-field value Wall type Wall value

𝑈 [𝑚/𝑠] inletOutlet inletValue = 𝑈𝑖 fixedValue (0, 0, 0)Initial value = 𝑈𝑖
𝑃 (= 𝑝/𝜌) [𝑚2/𝑠2] outletInlet outletValue = 0 zeroGradient -Initial value = 0

𝑘 [𝑚2/𝑠2] inletOutlet inletValue = 𝑘𝑖 fixedValue Value = 0Initial value = 𝑘𝑖
𝜔 [1/𝑠] inletOutlet inletValue = 𝜔𝑖 omegaWallFunction Initial value = 𝜔𝑖Initial value = 𝜔𝑖
𝜈𝑡 [𝑚2/𝑠] calculated Initial value = 0 nutkWallFunction Initial value = 0

The inletOutlet and outletInlet boundary types have been applied to the far-field such that initial values
can be prescribed for the given variables either at the inflow or the outflow respectively. Regarding the
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inletOutlet boundary type, a fixed value is prescribed by the user at the inflow whilst a zero-gradient
condition is imposed at the outflow. The reverse applies to the outletInlet boundary type, in which case
the zero-gradient condition is administered to the inflow whilst a user-prescribed fixed value is specified
at the outflow.

The calculated boundary type has been used to determine the eddy viscosity 𝜈𝑡 at the far-field since
it is calculated using the prescribed inlet values of the turbulent quantities. In the case of the 𝑘 − 𝜔
SST turbulence model, the eddy viscosity at the inlet is calculated using Equation (4.10) with 𝑘𝑖 and
𝜔𝑖 (Equation (6.10) and Equation (6.11) respectively). Nevertheless, an arbitrary initial value has to
be prescribed to start the simulation, as is the case for a variable to which a wall function has been
applied.

The nutkWallFunction boundary type sets the eddy viscosity in the wall adjacent cells to 𝜈𝑡 = 0 if the
viscous sub-layer is resolved. Having met this condition, the effective viscosity at any point within the
confines of a wall adjacent cell is equivalent to themolecular kinematic viscosity of the fluid 𝜈. Also worth
noting, the nutkWallFunction boundary type applies the turbulent kinetic energy based dimensionless
wall-normal distance 𝑦∗ instead of the wall shear stress based 𝑦+:

𝑦∗ =
𝑦𝑝√𝐶𝜇1/2𝑘𝑝

𝜈 (6.12)

As shown by Equation (6.12), the wall coordinate 𝑦∗ is a function of the kinematic viscosity of the fluid
𝜈, the empirical constant 𝐶𝜇 (= 0.09), the turbulent kinetic energy at the cell centroid 𝑘𝑝 and the normal
distance between the wall (at 𝑦 = 0) and the cell centroid 𝑦𝑝. As is the case with 𝑦+, a condition of
𝑦∗ < 1 must be met.

The turbulent kinetic energy at the wall has been prescribed a fixed value of 𝑘𝑤 = 0. The same does
not apply to the specific turbulent dissipation rate at the wall 𝜔𝑤 given the following near-wall condition
[30]:

𝜔 → 6𝜈
𝛽1𝑦2

as 𝑦 → 0 (6.13)

Nevertheless, an arbitrary non-zero initial value is prescribed at the wall: 𝜔𝑤 = 𝜔𝑖. What follows is
the calculation of the specific turbulent dissipation rate at the centroid of each wall adjacent cell 𝜔𝑝 by
means of the omegaWallFunction boundary type:

𝜔𝑝 =
6𝜈
𝛽1𝑦𝑝2

(6.14)

6.2.3. Numerical Schemes & Solver Control Settings

The following mathematical terms calculated in OpenFOAM simulations are approximated using nu-
merical schemes:

• Time derivatives: 𝜕
𝜕𝑡 ,

𝜕2
𝜕𝑡2

• Gradient terms: ∇

• Divergence terms: ∇⋅

• Laplacian terms: ∇2

• Interpolation schemes: Interpolation of values from cell centroid to cell faces.

• Surface normal gradient terms: Cell face normal gradient component.
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The numerical schemes applied to the mathematical terms listed above are assigned in the fvSchemes
dictionary and have been listed (in OpenFOAM format) in Table 6.5. Assessing the capabilities of
different numerical schemes available in OpenFOAM is beyond the scope of this work. As such, the
same settings applied in the work of Folkersma et al. [21] have been utilised.

Table 6.5: Applied numerical schemes

Category Numerical scheme
Time steadyState
Gradient Gauss linear
Divergence (𝑈) bounded Gauss linearUpwind default
Divergence (𝑘, 𝜔) bounded Gauss upwind
Laplacian Gauss linear corrected
Interpolation linear
Surface normal gradient corrected

Since the simpleFoam solver is inherently steady-state, all time derivatives have been set to zero by
applying the steadyState time scheme. Assigning a transient numerical scheme instead would lead to
erroneous solutions. Gradient terms have been approximated by means of the Gauss linear numerical
scheme, the implication being that Gaussian integration comprises a linear interpolation from the cell
node centres to the cell faces.

Numerical schemes are assigned to advective terms by using the div(phi,...) identifier, where the
phi term denotes the volumetric velocity flux at the cell faces when simulating incompressible flow:
𝜙 = U𝑓 ⋅S𝑓. Gauss integration forms the basis of all divergence schemes, where the bounded version is
used in order to improve the stability of the steady-state solution convergence. The upwind interpolation
scheme is first order and bounded, whereas the linearUpwind interpolation scheme is second order,
unbounded and upwind-biased. The latter interpolation scheme requires an assigned velocity gradient
discretisation and is not available for the advection of scalar fields such as the turbulent quantities 𝑘
and 𝜔.

As with any CFD solver utilising the finite volume method, flow variables are calculated and stored
at the centroid of a cell. This necessitates the implementation of an interpolation scheme in order to
calculate the values of the flow variables at the centre of each cell face. This only concerns internal
faces that connect two cells, whereas the treatment of boundary faces that connect a cell to the wall
has been described in Section 6.2.2. The calculation of a flow variable quantity at the centre of an in-
ternal face depends on the values stored at the centroids of the connected cells (the owner cell and the
neighbouring cell). Linear (central differencing) interpolation is the most straightforward scheme since
the variation of a flow field quantity between cell centroids is linear. Although a second order accu-
rate interpolation scheme, its unboundedness makes it prone to oscillations, a particularly detrimental
phenomenon often observed in steady-state simulations. Whilst suitable for interpolating the diffusion
term 𝜈∇2U in the RANS equations, the convection term ∇ ⋅ (UU) requires a different approach in order
to prevent non-physical oscillations in the solution. An alternative interpolation scheme suitable for the
convection term is the upwind differencing method, which is dependent on the mass flux direction. If
the mass flows out of the owner cell, then the value of a flow variable at the shared cell face centre is
equal to the centroid value of the owner cell. Otherwise, the value at the cell face centre is equal to the
centroid value of the neighbouring cell for cases in which the mass flows into the owner cell. As such,
upwind differencing is a first-order accurate interpolation scheme since the value of a flow variable re-
mains constant between the centroid and the cell face centre. Although upwind differencing is not as
accurate as central differencing, it is nonetheless more suitable for convection dominated flows since
it is a bounded interpolation scheme that leads to non-oscillatory solutions. A more accurate alterna-
tive is the linear upwind differencing scheme which conducts an extrapolation using the gradient of the
interpolated field quantity. This leads to a linear variation of the interpolated flow variable between the
cell centroid and cell face centre, thus implying (nominal) second-order accuracy. But what is gained
in solution accuracy is lost in stability due to the possible formation of local maxima and minima if the
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gradient is not limited.

The surface normal gradient is the component of a gradient term normal to the centre of a shared
face connecting two cells. If the face normal vector is not aligned with the vector connecting the two
cell centroids, then the shared face is classified as non-orthogonal with the angle between the two
vectors referred to as the non-orthogonality angle. Such is the case for the numerical grids simulated
as part of this study (and most practical applications for that matter). Common convention dictates a
highly non-orthogonal cell as comprising an non-orthogonality angle in excess of 70∘, a guideline which
OpenFOAM adheres to. Cells with non-orthogonality angles well below the aforementioned threshold,
as observed in the grids simulated throughout this study, justify the application of the corrected numerical
scheme to the surface normal gradient terms. This numerical scheme applies an explicit non-orthogonal
correction for the purpose of maintaining second-order accuracy.

The corrected numerical scheme has also been used to evaluate the surface normal gradients of the
Laplacian terms. Discretisation of the Laplacian terms is limited to the Gauss scheme where only the
linear interpolation scheme can be applied to the diffusion coefficient. Linear interpolation of variables
from cell centroids to face centres is made possible by the linear numerical scheme.

Table 6.6: Applied solver control settings

Category Settings
Solver (𝑝) GAMG

smoother GaussSeidel
Solver (𝑈, 𝑘, 𝜔) smoothSolver

smoother symGaussSeidel
SIMPLE consistent yes

nNonOrthogonalCorrectors 0
Relaxation factors
Equations
𝑈 0.9
𝑘, 𝜔 0.7

The multi-grid method is capable of solving large sets of linear algebraic equations encountered in CFD
simulations. The main working principle of the multi-grid method is to utilise solutions acquired from a
coarse grid, which benefit from faster convergence due to smaller sets of algebraic equations, as initial
conditions for solving a finer grid.

The numerical order of the cells in a grid is typically randomly generated by the mesh generation soft-
ware. Since the cell numbering affects the convergence speed of the Gauss-Seidel algorithm, renum-
bering the cells of a mesh may lead to faster convergence. Mesh renumbering in OpenFOAM is re-
alised by means of the Cuthill-Mckee algorithm. Convergence is further improved with the symmetric
Gauss-Seidel algorithm in which every other solution propagation acts in the opposite direction of the
numerical order.

Grids comprising highly non-orthogonal cells require supplementary inner loops of the pressure equa-
tion when simulated with the SIMPLEC algorithm. Such additional inner loops are referred to as non-
orthogonal correctors and are prescribed using the nNonOrthogonalCorrectors entry in the fvSolution
dictionary. As displayed in Table 6.6, no additional non-orthogonal corrector loops have been intro-
duced since the maximum non-orthogonality angle is well below the 70∘ threshold for all simulated
grids. For such grids, convergence is attainable by means of the outer loops in the SIMPLEC algo-
rithm. Introducing additional non-orthogonal correctors would slow-down the simulation with little added
benefit.

Steady-state solvers are highly prone to divergence unless numerically stabilised. Alleviation of this
adverse computational phenomenon is made possible by applying an iterative relaxation method. The
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advancement of a steady-state solution, with relaxation, is similar to the development of a solution
over time of a transient simulation. An iterative relaxation method assigns the same relaxation factor
to every cell in the grid, which corresponds to a different pseudo time step in each cell. The value of
the relaxation factor only affects the intermediate solutions of a flow variable and not the converged
solution. A relaxation factor lower than one constitutes under-relaxation, which is the method applied to
the flow variables listed in Table 6.6. Reducing the under-relaxation factor alleviates oscillatory motions
and improves stability. However, convergence speed is increased with a larger under-relaxation factor.
Default values of CFD solvers have been selected such that a careful balance is struck between stability
and convergence speed based on a wide range of cases. OpenFOAM allows either explicit or implicit
relaxation, whereby the former method modifies a field quantity directly and the latter method adapts
the algebraic equations of a field quantity prior to solving. Under-relaxation of the pressure field is
inherently absent in the context of a consistent formulation of the SIMPLE algorithm. The remaining
variables have been subject to implicit under-relaxation, proposed by Patankar [34] as a means to
address momentum equation non-linearities observed in the SIMPLE algorithm.

6.2.4. Convergence Monitoring

Assessing whether a steady-state CFD simulation has converged requires a considerable number of
iterations for greater assurance. For this particular convergence study, a fixed total of 5000 iterations
per simulation was deemed suitable when accounting for computational cost and simulation accuracy.
The conventional means of assessing simulation convergence is to monitor the progression of the
initial residual of each flow variable over the full range of iterations. However, using the progression of
the initial residuals as the sole measure of convergence would lead to an insufficient and incomplete
conclusion. For this reason, convergence is also monitored via the progression of the aerodynamic
coefficients over the fixed iteration range. As an example, Figure 6.6 displays the progression of the
residuals and aerodynamic coefficients of a converged simulation. The continually decreasing residuals
and stabilised aerodynamic coefficients are characteristics that reliably indicate convergence.

(a) Progression of initial residuals. (b) Progression of (absolute) aerodynamic coefficients.

Figure 6.6: Example of converged simulation of LEI wing profile with parameters 𝑡 = 0.15, 𝜅 = 0.3 and 𝜂 = 0.4 at 𝛼 = 10∘.

In contrast, stagnant residuals and oscillating aerodynamic coefficients imply that a simulation has
not converged, as is the case for the progressions displayed in Figure 6.7. The oscillatory motions
evident in Figure 6.7 are indicative of transient flow behaviour since unsteadiness in the flow field can
be manifested as unsteadiness in the residual progressions. Poor mesh quality and poorly specified
boundary conditions may also be the cause of oscillatory progressions. In order to gauge the true
cause of the oscillatory motions, it is necessary to conduct transient simulations.
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(a) Progression of initial residuals. (b) Progression of (absolute) aerodynamic coefficients.

Figure 6.7: Example of non-converged simulation of LEI wing profile with parameters 𝑡 = 0.15, 𝜅 = 0.3 and 𝜂 = 0.4 at 𝛼 = 15∘.



7
LEI Wing Profile Aerodynamics

Results from the CFD simulations have been visualised, examined and scrutinised in this chapter in
order to gain insight into the various flow phenomena endured by a LEI wing profile immersed in a
flow field. All results presented in this chapter have been acquired from CFD simulations given Re =
5 × 106. Every measurement of the moment coefficient 𝐶𝑚 has been taken about the quarter-chord
point 𝑐/4. The effects of the non-dimensional shape parameters on the flow fields and the aerodynamic
coefficients have been examined in Section 7.1. The findings of this study have been compared to the
results of preceding studies in Section 7.2.

7.1. Shape Parameter Effects

A scrutiny of the applied airfoil parameterisation is made viable through examining the holistic effects
the non-dimensional shape parameters have on the aerodynamic loads acting on a LEI wing profile
immersed in a flow field. The purpose of this analysis is to gauge whether the applied non-dimensional
shape parameters are indeed required to accurately represent the geometry of a parameterised airfoil.
Of particular interest is how the incorporation of the chordwise position of maximum camber 𝜂 as a
shape parameter affects the flow field since this has not been examined in the study of Breukels [7].
As such, the influences of the shape parameters on the flow field have been individually assessed and
compared.

A crucial aspect of this analysis has been to examine the impact the shape parameters have on re-
versed flow regions. The occurrence of flow reversal is certified by the chordwise distribution of the
𝑥−component of the local skin friction coefficient 𝑐𝑓,𝑥 (defined by Equation (7.1)) since a negative value
of 𝑐𝑓,𝑥 is a manifestation of flow reversal.

𝑐𝑓,𝑥 =
𝜏𝑤,𝑥

1
2𝜌∞𝑈∞

2 (7.1)

As is evident in Equation (7.1), 𝑐𝑓,𝑥 is dependent on the 𝑥−component of the wall shear stress 𝜏𝑤,𝑥:

𝜏𝑤,𝑥 = 𝜇
𝜕𝑈𝑥
𝜕𝑦 |𝑦=0

(7.2)

Furthermore, the extent to which the shape parameters affect the chordwise distribution of the pressure

47
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coefficient 𝐶𝑝 has also been examined:
𝐶𝑝 =

𝑝 − 𝑝∞
1
2𝜌∞𝑈∞

2 (7.3)

The chordwise distribution of 𝐶𝑝 provides insight into the flow field characteristics since flow separation
is caused by a steep adverse pressure gradient, which entails a rapid increase in the static pressure
𝑝 downstream. A consequence of flow separation is a substantial decrease in lift and the introduction
of pressure drag, which increases the total drag exerted on the airfoil. The distribution of 𝐶𝑝 along the
chord length also reveals the position of the stagnation point, where 𝐶𝑝 = 1 for incompressible flows,
near the leading edge.

Regarding flow simulations that incorporate transition modelling, the chordwise distributions of 𝑐𝑓,𝑥
and of 𝐶𝑝 can be used to estimate the point at which the boundary layer transitions from laminar to
turbulent. In the case of the chordwise distribution of 𝑐𝑓,𝑥, an abrupt increase away from the leading
edge (assuming a low enough Reynolds number) is indicative of laminar-to-turbulent transition. As to
the chordwise distribution of 𝐶𝑝, it is known that a favourable pressure gradient (implying a downstream
decrease in the static pressure 𝑝) near the leading edge helps preserve laminar flow, whereas an
adverse pressure gradient promotes the onset of boundary layer transition.

Nevertheless, the assumption of a fully turbulent boundary layer with regard to the simulations con-
ducted for the purposes of this study negates the occurrence of laminar flow and a subsequent down-
stream delay in transition. As such, a downstream surge in 𝑐𝑓,𝑥 is only observed near the leading edge
and the presence of a steep adverse pressure gradient is solely a manifestation of flow separation.
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7.1.1. Non-dimensional LE Tube Diameter 𝑡

The influence of the LE tube diameter is manifested by the non-dimensional airfoil thickness 𝑡 (i.e.
non-dimensional tube diameter). For each case displayed in Figure 7.1, 𝐶𝑙 decreases with 𝑡. It is also
evident that increments in the maximum camber magnitude 𝜅 do not always lead to an increase in 𝐶𝑙
as is observed for 𝛼 = 10∘. In fact, at 𝛼 = 15∘ an increase in 𝜅 leads to a decrease in 𝐶𝑙, which is not
the case for 𝛼 = 0∘ and 𝛼 = 5∘.

(a) 𝛼 = 0∘ (b) 𝛼 = 5∘

(c) 𝛼 = 10∘ (d) 𝛼 = 15∘

Figure 7.1: 𝐶𝑙 versus 𝑡 given a constant 𝜂 = 0.22 and varying 𝜅.
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Figure 7.2 shows that 𝐶𝑑 increases with 𝑡 for 𝛼 = 0∘, 5∘ and 10∘ for all displayed curves. In the case
of 𝛼 = 15∘, the aforementioned trend appears to be reversed for larger values of 𝜅. What is apparent
though is that an increase in 𝜅 leads to an increase in 𝐶𝑑 for each observed angle-of-attack.

(a) 𝛼 = 0∘ (b) 𝛼 = 5∘

(c) 𝛼 = 10∘ (d) 𝛼 = 15∘

Figure 7.2: 𝐶𝑑 versus 𝑡 given a constant 𝜂 = 0.22 and varying 𝜅.
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Judging from Figure 7.3, increments in 𝐶𝑚 with 𝑡 are evident for 𝛼 = 0∘, 5∘ and 10∘. For 𝛼 = 15∘, it is
clear that the effects of 𝑡 on 𝐶𝑚 are negligible for the low maximum camber magnitudes 𝜅 = 0.14 and
0.16, whereas small increments in 𝐶𝑚 with 𝑡 are evident for the larger 𝜅 = 0.18 and 0.20. Furthermore,
the impact of 𝜅 on 𝐶𝑚 becomes more pronounced as the angle-of-attack increases.

(a) 𝛼 = 0∘ (b) 𝛼 = 5∘

(c) 𝛼 = 10∘ (d) 𝛼 = 15∘

Figure 7.3: 𝐶𝑚 versus 𝑡 given a constant 𝜂 = 0.22 and varying 𝜅.
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The 𝑐𝑓,𝑥 distributions displayed in Figure 7.4 show that the flow remains fully attached over the suction
side for each observed value of 𝑡 given 𝛼 = 0∘. The small variations in the suction side 𝑐𝑓,𝑥 distribution
with increasing 𝑡 evidently show mild changes in the shape of the membrane canopy near the leading
edge. Varying 𝑡 changes the slope at the canopy-tube intersection point, thus affecting the suction-side
flow near the leading edge. Switches in sign of 𝑐𝑓,𝑥 on the pressure side are delayed with increasing
𝑡. The implication of these delays is that increments in 𝑡 cause the pressure-side separation and
reattachment points to shift further downstream. Nevertheless, the region of recirculating flow behind
the LE tube on the pressure side remains relatively consistent in chordwise length with increasing
values of 𝑡.

Figure 7.4: Chordwise distributions of 𝑐𝑓,𝑥 for different values of 𝑡 given 𝛼 = 0∘, 𝜅 = 0.14 and 𝜂 = 0.22.

The occurrence of suction-side flow separation given 𝛼 = 15∘ is clearly distinguishable for all observed
values of 𝑡 in Figure 7.5. The movement of the suction-side separation point with increasing 𝑡 is rather
muted compared to the downstream shift of the pressure-side separation and reattachment points.
Similar to the 𝛼 = 0∘ case, the chordwise length of the pressure-side recirculating flow region remains
relatively stable the same with varying 𝑡. What is also apparent is the negative peak near the leading
edge that is quelled with increasing 𝑡 and is the result of the flow having to move up the circular LE
tube profile where 𝜏𝑤,𝑥 acts opposite to the streamwise direction.

Figure 7.5: Chordwise distributions of 𝑐𝑓,𝑥 for different values of 𝑡 given 𝛼 = 15∘, 𝜅 = 0.14 and 𝜂 = 0.22.
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Substantial pressure-side load relief with increasing 𝑡 is evident in Figure 7.6 over the entire length
of the chord. Given 𝛼 = 0∘, the pressure-side recirculation zone encompasses almost the entire area
enclosed by the membrane canopy. Increasing 𝑡 also has the effect of mildly increasing the loads acting
on the suction side due to the modest decrements of the suction-side peak. Whilst the suction-side
adverse pressure gradient of each 𝐶𝑝 distribution is not steep enough to facilitate flow separation, each
distribution does display a strong adverse pressure gradient on the pressure side such that the flow
separates from the leading-edge tube. An increase in 𝑡 evidently shifts the pressure-side separation
point further downstream given the changes in chordwise position of the adverse pressure gradient.

Figure 7.6: Chordwise distributions of 𝐶𝑝 for different values of 𝑡 given 𝛼 = 0∘, 𝜅 = 0.14 and 𝜂 = 0.22.

Regarding the pressure distributions displayed in Figure 7.7, the pressure-side pressure gradient moves
further downstream with increasing 𝑡 given 𝛼 = 15∘, implying a delay in pressure-side flow separation.
Increasing 𝑡 also leads to a slight relieving of the pressure side load distribution upstream 𝑥/𝑐 = 0.5,
which is the area encompassed by the diminished recirculating flow region (given the high angle-of-
attack). As for suction-side flow separation, a slight alleviation of the pressure gradient is evident with
increasing 𝑡.

Figure 7.7: Chordwise distributions of 𝐶𝑝 for different values of 𝑡 given 𝛼 = 15∘, 𝜅 = 0.14 and 𝜂 = 0.22.
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The contour plot displayed in Figure 7.8 exhibits fully attached flow on the suction side and a region of
recirculating flow on the pressure side of the LEI wing profile with shape parameters 𝜂 = 0.22, 𝜅 = 0.14
and 𝑡 = 0.14 immersed in a flow field given 𝛼 = 0∘. The region of recirculating flow emanating from the
pressure side of the leading-edge tube extends nearly all the way to the trailing edge. The pressure-
side separation point is approximately located at the bottom of the leading-edge tube, whereas the
reattachment point is positioned just upstream the trailing edge. Comparing Figure 7.8 to Figure 7.17
and Figure 7.26 shows that an increase in the angle-of-attack leads to a decrease in the size of the
recirculating flow region.

Figure 7.8: Visualisation of normalised flow velocity and streamlines around LEI wing profile with shape parameters 𝜂 = 0.22,
𝜅 = 0.14 and 𝑡 = 0.14 at 𝛼 = 0∘.

Whilst the pressure distribution along the suction side remains relatively consistent with varying values
of 𝑡, Figure 7.6 shows an increase in 𝑡 leads to a decrease in pressure on the pressure side given
the same position along the chord. Therefore, increasing 𝑡 reduces the pressure difference between
the upper and lower surfaces, leading to a loss of lift and subsequent decrease in 𝐶𝑙 as observed in
Figure 7.1a. This outcome can be attributed to the fact that an increase in 𝑡 shifts the pressure-side
separation point further downwards, thus extending the vertical length of the pressure-side reversed
flow region along the chord whilst maintaining an approximately constant chordwise length. The overall
increase in size of this region of reversed flow is what causes the loss of lift and increase in pressure
drag, leading to an increase in 𝐶𝑑 with 𝑡 evident in Figure 7.2a. The observed changes in the pressure-
side pressure distribution with increasing 𝑡 also have the effect of increasing 𝐶𝑚 (see Figure 7.3a), thus
diminishing the tendency of the airfoil to pitch downwards. The pressure difference near the trailing
edge becomes more narrow with increasing 𝑡 which subsequently relieves the rearward loading as a
result. Given the large moment arms between loads exerted near the trailing edge and the quarter-
chord point, the disposition to pitch-downwards is abated with increasing 𝑡 and is manifested by a less
negative 𝐶𝑚.

With increasing angle-of-attack, the overall size of the pressure-side recirculating flow region decreases
as the reattachment point moves further upstream, thus leading to an increase in lift and decrease in
pressure drag. This favourable development is subsequently counteracted by suction-side flow sepa-
ration upon reaching 𝛼 = 15∘, causing a drop in lift evident in Figure 7.9a and introducing additional
pressure drag leading. Figure 7.9b shows a decrease in 𝐶𝑑 for all values of 𝑡 with respect to the pro-
gression from 𝛼 = 0∘ to 𝛼 = 5∘. As the flow over the suction-side remains attached after the given
rise in angle-of-attack, it is evident that the subsequent reduction in pressure drag due to a diminish-
ing pressure-side recirculating flow region causes the drop in 𝐶𝑑. But in the progression from 𝛼 = 5∘
to 𝛼 = 10∘, 𝐶𝑑 remains relatively the same. In this case, the decrease in pressure drag due to the
pressure-side reversed flow region is balanced out by an increase in skin-friction drag and the intro-
duction of additional pressure drag from a mild pocket of suction-side reversed flow at the trailing edge.
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The ensuing surge in 𝐶𝑑 going from 𝛼 = 10∘ to 𝛼 = 15∘ is a result of the increase in pressure drag
due to separation from the suction-side largely overcoming the decrease in pressure drag from the
pressure-side recirculating flow region. An increase in 𝑡 also expands the wetted area (i.e. the total
surface area exposed to the external flow) since the widening of the leading-edge tube diameter leads
to a larger surface area on the pressure side. As displayed in Figure 7.4 and Figure 7.5, the pressure-
side spike in 𝑐𝑓,𝑥 over the leading-edge tube is prolonged given an increase in diameter, thus leading to
an overall increase in skin-friction drag. Regarding 𝐶𝑚, Figure 7.9c shows that variations with 𝑡 become
more subdued for larger angles-of-attack, an observation which is supported by Figure 7.7 given the
relatively small differences between the displayed pressure distributions of the applied range of 𝑡.

(a) 𝐶𝑙 versus 𝛼.

(b) 𝐶𝑑 versus 𝛼. (c) 𝐶𝑚 versus 𝛼.

Figure 7.9: Aerodynamic coefficients versus 𝛼 for varying values of 𝑡 given a constant 𝜂 = 0.22 and 𝜅 = 0.14.
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7.1.2. Chordwise Position of Maximum Camber 𝜂

Judging from Figure 7.10, the small increments in 𝐶𝑙 with the chordwise position of maximum camber 𝜂
at 𝛼 = 0∘, 5∘ and 10∘ suggest that 𝜂 has a meager influence on 𝐶𝑙 at low-to-moderate angles-of-attack.
At 𝛼 = 15∘ the flow separates from the suction side of the airfoil (see Figure 7.14), leading to amplified
changes in 𝐶𝑙 with 𝜂. An increase in 𝜂 delays the flow separation at 𝛼 = 15∘, thus leading to an increase
in 𝐶𝑙. In all cases, 𝐶𝑙 increases with 𝜂.

(a) 𝛼 = 0∘ (b) 𝛼 = 5∘

(c) 𝛼 = 10∘ (d) 𝛼 = 15∘

Figure 7.10: 𝐶𝑙 versus 𝜂 given a constant 𝜅 = 0.16 and varying 𝑡.
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Figure 7.11 reveals a similar pattern for 𝐶𝑑 as observed with 𝐶𝑙, namely that the chordwise position of
maximum camber 𝜂 has a greater influence on 𝐶𝑑 as the angle-of-attack increases. The effects of 𝜂 on
𝐶𝑑 at 𝛼 = 0∘ and 5∘ appear to be inconsequential. Discernible increments in 𝐶𝑑 with 𝜂 are evident at
𝛼 = 10∘. But at 𝛼 = 15∘ the flow separates from the suction side of the airfoil, leading to more drastic
changes in 𝐶𝑑 as 𝜂 is varied. As previously stated, flow separation is delayed with increasing 𝜂, which
leads to a drop in 𝐶𝑑 at 𝛼 = 15∘.

(a) 𝛼 = 0∘ (b) 𝛼 = 5∘

(c) 𝛼 = 10∘ (d) 𝛼 = 15∘

Figure 7.11: 𝐶𝑑 versus 𝜂 given a constant 𝜅 = 0.16 and varying 𝑡.
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As similarly observed with 𝐶𝑙 and 𝐶𝑑, Figure 7.12 shows that the influence of the chordwise position of
maximum camber 𝜂 on 𝐶𝑚 increases with the angle-of-attack. At 𝛼 = 0∘, 5∘ and 10∘ it is clear that 𝐶𝑚
decreases with 𝜂. This pattern is reversed at 𝛼 = 15∘ where there appears to be a change in slope.

(a) 𝛼 = 0∘ (b) 𝛼 = 5∘

(c) 𝛼 = 10∘ (d) 𝛼 = 15∘

Figure 7.12: 𝐶𝑚 versus 𝜂 given a constant 𝜅 = 0.16 and varying 𝑡.
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As is evident in Figure 7.13, the chordwise distribution of 𝑐𝑓,𝑥 on the pressure-side is not discernibly
affected by changes in 𝜂 since the attachment and reattachment points remain effectively fixed in posi-
tion along the chord. The differences between the given suction-side distributions of 𝑐𝑓,𝑥 show that an
increase in 𝜂 reduces the wall shear stress over the front of the surface due to lower velocity gradients.
However, the contraction of the suction-side peak leads to a slower descent in 𝑐𝑓,𝑥 towards the trailing
edge.

Figure 7.13: Chordwise distributions of 𝑐𝑓,𝑥 for different values of 𝜂 given 𝛼 = 0∘, 𝜅 = 0.16 and 𝑡 = 0.14.

Proof of delayed flow separation with increasing 𝜂 for 𝛼 = 15∘ is confirmed by the chordwise distribu-
tions of 𝑐𝑓,𝑥 displayed in Figure 7.14. As 𝜂 increases, 𝑐𝑓,𝑥 switches from positive to negative on the
suction side further towards the trailing edge, implying that the separation point is moved further down-
stream. What is also evident in Figure 7.14 is the fact that changes in 𝜂 appear to have little effect on
the chordwise positions of the separation and reattachment points of the pressure-side recirculating
flow region.

Figure 7.14: Chordwise distributions of 𝑐𝑓,𝑥 for different values of 𝜂 given 𝛼 = 15∘, 𝜅 = 0.16 and 𝑡 = 0.14.
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Whilst the pressure-side pressure distribution remains consistent with increasing 𝜂, a reduction in the
suction-side peak (i.e. an increase in pressure) is apparent in Figure 7.15. As a result, the adverse
pressure gradient becomes less steep, thus bolstering the conditions for attached flow.

Figure 7.15: Chordwise distributions of 𝐶𝑝 for different values of 𝜂 given 𝛼 = 0∘, 𝜅 = 0.16 and 𝑡 = 0.14.

The chordwise distributions of 𝐶𝑝 displayed in Figure 7.16 further prove that 𝜂 has a minor effect on the
pressure-side flow. It is evidently clear in Figure 7.16 that increasing 𝜂 leaves the pressure-side pres-
sure distribution along the chord relatively unchanged, but causes a substantial decrease in pressure
on the suction side region near the leading edge given the onset of flow separation when 𝛼 = 15∘. This
subsequently leads to a larger pressure difference, thus increasing the lift. What is also apparent is
that the suction-side adverse pressure gradient becomes less steep with increasing 𝜂, thus implying a
downstream shift of the separation point and a reduction in the overall size of the reversed flow region.

Figure 7.16: Chordwise distributions of 𝐶𝑝 for different values of 𝜂 given 𝛼 = 15∘, 𝜅 = 0.16 and 𝑡 = 0.14.
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The visualisation of the flow field surrounding the airfoil with shape parameters 𝜂 = 0.22, 𝜅 = 0.16 and
𝑡 = 0.14 inclined at 𝛼 = 15∘ displayed in Figure 7.17 complements the observation that an increase
in angle-of-attack leads to an upstream shift of the pressure-side reattachment point. As a result, the
region of recirculating flow on the pressure side reduces in size. But the subsequent increase in lift
and decrease in pressure drag is counteracted by the adverse effects of the flow separating from the
suction side of the airfoil.

Figure 7.17: Visualisation of normalised flow velocity and streamlines around LEI wing profile with shape parameters 𝜂 = 0.22,
𝜅 = 0.16 and 𝑡 = 0.14 at 𝛼 = 15∘.

Given the conditions for suction-side flow separation, increasing 𝜂 shifts the separation point further
downstream, thus reducing the overall size of the reversed flow region emanating from the suction
side. This subsequently leads to an increase in lift and decrease in pressure drag due to the flow
separating from the suction side. It has already been established that 𝜂 has an inconsequential effect
on the chordwise positions of the pressure-side separation and reattachment points. As such, the drop
in lift and increase in pressure drag associated with the pressure-side reversed flow region remain
relatively consistent with varying 𝜂. Therefore, increasing 𝜂 given suction-side flow separation leads
to an increase in 𝐶𝑙 and decrease in 𝐶𝑑 as observed in Figure 7.10d and Figure 7.11d respectively.
The chordwise distributions of 𝐶𝑝 displayed in Figure 7.16 show that front loading on the suction side is
alleviated with increasing 𝜂, whereas rearward loading downstream 𝑥/𝑐 = 0.5 remains effectively the
same. Whilst this has the effect of subsiding the tendency to pitch downwards in the progression from
𝜂 = 0.22 to 𝜂 = 0.24, given the increase in 𝐶𝑚 evident in Figure 7.12d, further increasing 𝜂 causes
the reverse effect as an amplification of the propensity to pitch downwards is revealed by a decreasing
𝐶𝑚. Increasing 𝜂 leads to larger pressure differences just downstream the quarter-chord point, thus
introducing larger pitch-downward loads that overcome the upstream front loading.

In the case of attached flow over the suction-side, the slight increments in 𝐶𝑙 with increasing 𝜂 evident
in Figure 7.10 are attributed to a slight enlargement of the pressure difference resulting from a less
steep pressure gradient (see Figure 7.15). Nevertheless, Figure 7.18a affirms that changes in 𝐶𝑙 due
to 𝜂 given attached flow are indeed marginal. Increasing 𝜂 also has the effect of intensifying the front
loading on the suction side, thus leading to a stronger pitch-downward bias manifested as decrements
in 𝐶𝑚 (see Figure 7.12 and Figure 7.18c). The fact that 𝐶𝑑 remains effectively constant over the applied
range of 𝜂 for 𝛼 = 0∘ and 𝛼 = 5∘ as observed in Figure 7.11 implies that the pressure drag resulting
from the pressure-side recirculating flow region and the skin-friction drag are practically not affected by
𝜂. Figure 7.18b confirms this observation, whilst also showing that the slight increments in 𝐶𝑑 due to 𝜂
given 𝛼 = 10∘ evident in Figure 7.11c are of little consequence to the drag curve. Nevertheless, this is
the result of a small pocket of suction-side reversed flow near the trailing edge given the combination of
𝜅 = 0.16 and 𝛼 = 10∘. Varying 𝜂 over the applied range does not appear to cause substantial changes
in the wetted area, thus constituting a diminished impact on the skin-friction drag.
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(a) 𝐶𝑙 versus 𝛼.

(b) 𝐶𝑑 versus 𝛼. (c) 𝐶𝑚 versus 𝛼.

Figure 7.18: Aerodynamic coefficients versus 𝛼 for varying values of 𝜂 given a constant 𝜅 = 0.16 and 𝑡 = 0.14.
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7.1.3. Maximum Camber Magnitude 𝜅

Judging from Figure 7.19, 𝐶𝑙 increase with the maximum camber magnitude 𝜅 at 𝛼 = 0∘ and 5∘. At
𝛼 = 10∘ there is a distinct change in slope and at 𝛼 = 15∘ changes are amplified as 𝐶𝑙 decreases
with 𝜅. Given the occurrence of flow separation from the suction side of the airfoil at 𝛼 = 15∘ (see
Figure 7.23), it would appear that an increase in 𝜅 leads to an earlier onset of flow separation due to
the steady decrease in 𝐶𝑙.

(a) 𝛼 = 0∘ (b) 𝛼 = 5∘

(c) 𝛼 = 10∘ (d) 𝛼 = 15∘

Figure 7.19: 𝐶𝑙 versus 𝜅 given a constant 𝜂 = 0.22 and varying 𝑡.
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Figure 7.20 shows that in all cases 𝐶𝑑 increases with the maximum camber magnitude 𝜅. Variations in
𝐶𝑑 are steadily amplified as the angle-of-attack increases. As observed with 𝐶𝑙, an increase in 𝜅 leads
to an earlier onset of flow separation for 𝛼 = 15∘ since 𝐶𝑑 increases with 𝜅.

(a) 𝛼 = 0∘ (b) 𝛼 = 5∘

(c) 𝛼 = 10∘ (d) 𝛼 = 15∘

Figure 7.20: 𝐶𝑑 versus 𝜅 given a constant 𝜂 = 0.22 and varying 𝑡.
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As observed with 𝐶𝑑, Figure 7.21 reveals that the influence of the maximum camber magnitude 𝜅 on 𝐶𝑚
increases with the angle-of-attack. At 𝛼 = 5∘, 10∘ and 15∘ it is evident that 𝐶𝑚 consistently decreases
with 𝜅. At 𝛼 = 0∘ there appears to be a change in slope.

(a) 𝛼 = 0∘ (b) 𝛼 = 5∘

(c) 𝛼 = 10∘ (d) 𝛼 = 15∘

Figure 7.21: 𝐶𝑚 versus 𝜅 given a constant 𝜂 = 0.22 and varying 𝑡.



7.1. Shape Parameter Effects 66

Judging from Figure 7.22, the flow over the suction side given 𝛼 = 0∘ remains attached for all displayed
chordwise distributions of 𝑐𝑓,𝑥. However, increasing 𝜅 has the effect of diminishing 𝑐𝑓,𝑥 over the rear-
ward section of the suction-side, thus promoting the onset of mild flow separation. Influences on the
pressure-side recirculating flow region are inconsequential given the negligible shifts in separation and
reattachment points along the chord. What is also apparent is the ascent of the peak near the leading
edge as 𝜅 increases due to higher local flow velocities over the suction side, which inevitably causes
an increase in skin-friction drag.

Figure 7.22: Chordwise distributions of 𝑐𝑓,𝑥 for different values of 𝜅 given 𝛼 = 0∘, 𝜂 = 0.22 and 𝑡 = 0.14.

The chordwise distributions of 𝑐𝑓,𝑥 displayed in Figure 7.23 prove that an increase in the maximum
camber magnitude 𝜅 causes an earlier onset of flow separation from the suction side given 𝛼 = 15∘.
The switch from positive to negative 𝑐𝑓,𝑥 on the suction side of the airfoil occurs closer towards the
leading edge as 𝜅 increases, implying the separation point moves further upstream. There also appears
to be an increase in the chordwise length of the pressure-side recirculation zone as 𝜅 increases since
the change in sign of 𝑐𝑓,𝑥 from negative to positive is delayed with increasing 𝜅, implying that the
reattachment point moves further downstream.

Figure 7.23: Chordwise distributions of 𝑐𝑓,𝑥 for different values of 𝜅 given 𝛼 = 15∘, 𝜂 = 0.22 and 𝑡 = 0.14.
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A drop in suction-side front loading with increasing 𝜅 is evident in Figure 7.24 whilst the rearward loading
near the trailing edge remains effectively the same. This subsequently amplifies the adverse pressure
gradient, but not enough to warrant suction-side flow separation for 𝛼 = 0∘. Disparities between the
pressure distributions exerted on the two surfaces become more pronounced with increasing 𝜅 since
changes in 𝐶𝑝 across the pressure side are negligible. This has the effect of increasing the lift force.

Figure 7.24: Chordwise distributions of 𝐶𝑝 for different values of 𝜅 given 𝛼 = 0∘, 𝜂 = 0.22 and 𝑡 = 0.14.

Adverse pressure gradients on the suction side become more steep and move further upstream in
Figure 7.25 as 𝜅 increases, which is consistent with the fact that an earlier onset of suction-side flow
separation occurs with increasing 𝜅 for 𝛼 = 15∘. What is also evident is the substantial decrease in
pressure difference that is a result of intensified front loading on the suction side and relieved loading
on the pressure side as 𝜅 increases.

Figure 7.25: Chordwise distributions of 𝐶𝑝 for different values of 𝜅 given 𝛼 = 15∘, 𝜂 = 0.22 and 𝑡 = 0.14.
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The flow field around the airfoil with shape parameters 𝜂 = 0.22, 𝜅 = 0.20 and 𝑡 = 0.14 at 𝛼 = 15∘ has
been visualised in Figure 7.26. Comparing Figure 7.17 and Figure 7.26 reveals that both the region of
recirculating flow on the pressure side of the airfoil and the area encompassed by the separated flow
emanating from the suction side increase in size with 𝜅.

Figure 7.26: Visualisation of normalised flow velocity and streamlines around LEI wing profile with shape parameters 𝜂 = 0.22,
𝜅 = 0.20 and 𝑡 = 0.14 at 𝛼 = 15∘.

Since both the pressure-side and suction-side regions of reversed flow increase in size with 𝜅, the
combined pressure drag resulting from both regions also increases whilst the lift decreases. The added
effects explain the substantial decline in 𝐶𝑙 and surge in 𝐶𝑑 with increasing 𝜅 as observed in Figure 7.19d
and Figure 7.20d respectively. The drop in 𝐶𝑚 with increasing 𝜅 evident in Figure 7.21d is attributed
to the amplification of suction-side front loading and relieved loading on the pressure side. This has
the effect of diminishing the pitch-upward loads upstream the quarter-chord point and subsequently
exacerbating the pitch-downward trend.

The substantial effect 𝜅 has on the flow stability is further emphasised by Figure 7.27. In the case of
𝛼 = 0∘ and 𝛼 = 5∘, the flow over the suction side remains attached and an increase in 𝜅 causes a mild
gain in 𝐶𝑙 as evidenced by Figure 7.19a and Figure 7.19b respectively (as well as Figure 7.27a). But
for 𝛼 = 10∘, the rise in 𝐶𝑙 with 𝜅 becomes progressively more subdued until eventually a decrease in
𝐶𝑙 moving from 𝜅 = 0.18 to 𝜅 = 0.20 is observed in both Figure 7.19c and Figure 7.27a. As is evident
in Figure 7.22, the flow is more inclined to separate from the suction side given a larger value of 𝜅, a
tendency which is amplified for high angles-of-attack. This is evidently the case for the applied range
of 𝜅 given 𝛼 = 10∘, whereby increasing 𝜅 further expands the region of separated flow emanating from
the suction to the point where the loss in lift causes a reduction in 𝐶𝑙. The subsequent increase in
pressure drag due to the suction-side separated flow is evident in both Figure 7.20c and Figure 7.27b
given the larger differences in 𝐶𝑑 between the curves as the angle-of-attack increases. Similar to the
results of 𝛼 = 15∘, increasing 𝜅 given 𝛼 = 10∘ also shifts the pressure-side reattachment point further
downstream whilst the separation point remains at approximately the same chordwise location. This
has the effect of increasing the total pressure drag and lowering the lift, thus adding to the adverse
effects of the suction-side flow reversal. Intuitively, the area enclosed by the canopy is expanded upon
increasing 𝜅, thus leading to a larger region of recirculating flow on the pressure side. This appears to
have a negligible effect on the pressure-side flow for low angle-of-attack cases (see Figure 7.22 and
Figure 7.24). Furthermore, increasing 𝜅 expands the wetted area, thus leading to a higher skin-friction
drag contribution to 𝐶𝑑.
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Similar to the 𝐶𝑑 curves displayed in Figure 7.27b, differences in 𝐶𝑚 between the curves displayed
in Figure 7.27c are more distinct with an increasing angle-of-attack. Judging from Figure 7.20a and
Figure 7.27c, the rise in suction-side front loading with increasing 𝜅 roughly balances out the rise in
rearward loading downstream the quarter chord point as variations in 𝐶𝑚 are minimal compared to
larger angles-of-attack. Regarding the 𝛼 = 5∘ and 𝛼 = 10∘ cases presented in Figure 7.21b and
Figure 7.21c respectively, the distributed load imbalance with increasing 𝜅 exacerbates the tendency
to pitch downwards.

(a) 𝐶𝑙 versus 𝛼.

(b) 𝐶𝑑 versus 𝛼. (c) 𝐶𝑚 versus 𝛼.

Figure 7.27: Aerodynamic coefficients versus 𝛼 for varying values of 𝜅 given a constant 𝜂 = 0.22 and 𝑡 = 0.14.
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7.2. Comparisons with Literature

The numerical study of Demkowicz [16] examined the flow field around a 3D LEI wing using the 𝑘 − 𝜔
SST turbulence model both with and without the 𝛾 − 𝑅𝑒𝜃𝑡 transition model. The findings of cases in
which the transition model is utilised show that a laminar separation bubble forms near the leading edge
of the airfoil for low Reynolds numbers (in this case Re = 5×105). Given the same flow conditions, the
separation bubble does not manifest without the activation of the 𝛾 − 𝑅𝑒𝜃𝑡 transition model. However,
even with the 𝛾 − 𝑅𝑒𝜃𝑡 transition model activated, a laminar separation bubble does not form near the
leading edge from Re = 3 × 106 onward since laminar-to-turbulent transition occurs earlier. The 2D
numerical results of Folkersma et al. [21] attained from 𝑘 − 𝜔 SST simulations of the flow field around
a LEI wing profile with the 𝛾 − 𝑅𝑒𝜃𝑡 activated show that a laminar separation bubble does not form
near the leading edge from Re = 5 × 106 onward. The absences of laminar separation bubbles in the
contour plots of Figure 7.8, Figure 7.17 and Figure 7.26 are consistent with the findings of Demkowicz
[16] and Folkersma et al. [21] given the omission of transition modelling from the simulations conducted
for the purposes of this study. Simulating the same flow fields with integrated turbulence and transitions
models would likely not lead to the formation of laminar separation bubbles near the leading edge of a
parameterised LEI wing profile given the same flow conditions since the applied Reynolds number of
Re = 5 × 106 meets the threshold established by Folkersma et al. [21] for 2D profiles.

Remaining on the subject of reversed flow, a key finding of the work of Folkersma et al. [21] is the fact
that the region of recirculating flow on the pressure side of a LEI wing profile immersed in a flow field
decreases in size with the angle-of-attack, leading to an increase in lift and decrease in pressure drag.
One can come to the same conclusion when comparing Figure 7.8 to Figure 7.17 and Figure 7.26. It
is evidently clear in Figure 7.8 that for 𝛼 = 0∘ the recirculating flow region extends over the entire area
enclosed by the pressure side of the canopy and leading-edge tube. In contrast, both Figure 7.17 and
Figure 7.26 show a diminished region of recirculating flow for 𝛼 = 15∘. But the subsequent increase
in lift and decrease in pressure drag is counteracted by the adverse effects of flow separation on the
suction side of the airfoil.

The effects of the aforementioned viscous flow phenomena emerge in the computed lift and drag co-
efficients. Therefore, comparisons have been made with the lift and drag curves of Folkersma et al.
[21] in Figure 7.28. The displayed reference results have been attained from fully turbulent (i.e. no
transition modelling) 𝑘 − 𝜔 SST simulations on a LEI wing profile given Re = 5 × 106.

(a) 𝐶𝑙 versus 𝛼. (b) 𝐶𝑑 versus 𝛼.

Figure 7.28: Aerodynamic coefficients computed in this study (solid lines) compared to numerical results from the work of
Folkersma et al. [21] (dashed lines). The shape parameters 𝜅 and 𝜂 of the airfoil examined in the study of Folkersma et al. [21]

have been estimated according to the definitions used in this study (see Section 2.1.3).
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Despite differences in shape parameters, the drag coefficients computed for the purposes of this study
appear to closely match the drag curve relation established by Folkersma et al. [21] given the same
flow conditions. An exception to this trend is observed for 𝛼 = 15∘ as the airfoil examined by Folkersma
et al. [21] stalls earlier given the surge in 𝐶𝑑 and drop in 𝐶𝑙. Discernible differences in 𝐶𝑙 are evident in
Figure 7.28a given the same free-stream conditions. This outcome is consistent with the observation
that an airfoil with a larger maximum camber magnitude 𝜅 generates a higher lift force given the same
free-stream conditions and attached flow over the suction side. The earlier onset of stall observed with
regard to the simulation results of Folkersma et al. [21] for a lower value of 𝜅 is not consistent with
the findings of this study. This is likely due to differences in the shape of the canopy resulting from
the application of different systems of interpolation. The rearward section of the membrane canopy
of the airfoil examined by Folkersma et al. [21] is effectively approximated as a straight line extending
from the trailing edge to just downstream the maximum camber point where the line starts to curve and
descend towards the leading edge. This evidently has the effect of reducing the critical angle-of-attack
compared to the similar parameterised airfoils of this study which are characterised by more curvature.

The method of parameterisation applied by Breukels [7] has led to similarly curved airfoils. The contour
plot displayed in Figure 7.29 from the work of Breukels [7] has been used to estimate the maximum
camber magnitude 𝜅 of the displayed airfoil according to the definition used in this study (see Sec-
tion 2.1.3). According to the definition of “airfoil camber” used by Breukels [7], it has a camber of 8%
(assumed to be relative to the chord length). But according to the definition of “maximum camber mag-
nitude” used in this study, 𝜅 ≈ 0.17 for the airfoil displayed in Figure 7.29. The “airfoil thickness” of
the LEI wing profile displayed in Figure 7.29 has not been explicitly stated in the work of Breukels [7].
However, based on the profile displayed in Figure 2.2, which is claimed to have an “airfoil thickness” of
20% (also assumed relative to the chord length), it would appear Breukels [7] uses the same definition
of “airfoil thickness” as has been used in this study (see Section 2.1.3).

Figure 7.29: Turbulence intensity contour plot from the work of Breukels [7]. The displayed LEI wing profile is inclined at 𝛼 = 0∘
and has a camber of 8% according to the definition of “airfoil camber” used by Breukels [7]. According to the definition of

“maximum camber magnitude” used in this study, 𝜅 ≈ 0.17 for the displayed airfoil.

As such, it is assumed the same definition of “airfoil thickness” has been used and that a camber of
8% in the work of Breukels [7] is equivalent to a maximum camber magnitude of 𝜅 ≈ 0.17 as per this
study. The calculated aerodynamic coefficients of an airfoil inclined at a wide range of angles-of-attack
with shape parameters 𝑡 = 0.15 and 𝜅 ≈ 0.17 from the results of Breukels [7] have been compared
to the numerical results attained in this study from parameterised LEI wing profiles with similar shape
parameters in Figure 7.30. Note that Breukels [7] kept the chordwise position of maximum camber
constant for all simulated airfoils [8].



7.2. Comparisons with Literature 72

(a) 𝐶𝑙 versus 𝛼.

(b) 𝐶𝑑 versus 𝛼. (c) 𝐶𝑚 versus 𝛼.

Figure 7.30: Aerodynamic coefficients computed in this study (solid lines) compared to numerical results from the work of
Breukels [7] (dashed lines). Note that the maximum camber magnitude 𝜅 of the reference has been estimated according to the

definition used in this study (see Section 2.1.3).

The numerical results from the work of Breukels [7] presented in Figure 7.30 have been attained by
means of the 𝑘−𝜔 SST turbulence model whilst also “incorporating transitional flows” [7]. This quote is
interpreted as an allusion to the inclusion of transitionmodelling, although exactly which transitionmodel
has been implemented has not been explicitly stated. Another critical missing piece of information
is the Reynolds number or flow velocity used to simulate the flow fields from which the aerodynamic
coefficients have been calculated. The Reynolds number has a substantial effect on the boundary layer
thickness and the size of the recirculating flow region on the pressure side of the airfoil, as established
by Folkersma et al. [21], which in turn affects the aerodynamic coefficients.

Compared to the reference lift and drag curves, the values of 𝐶𝑙 and 𝐶𝑑 from the given examples of
this study are generally greater and smaller respectively given the same angle-of-attack. Since the
airfoil from the reference study has a value of 𝜅 between the two given examples and a similarly curved
canopy, a close match between the reference and example curves would be expected if the free-stream
conditions were the same. This is evidently not the case and is indicative of different free-stream
conditions.



8
Regression Analysis

An elucidation of the general principles constituting regression analysis is required for the purposes of
this work. This chapter commences with a description of the method of least squares in Section 8.1,
followed by an explanation of statistical quality indicators in Section 8.2 used to assess the regres-
sion model. The final development of the revised aerodynamic load model has been presented in
Section 8.3.

8.1. Method of Least Squares

Whilst the method for solving least squares problems described in Section 8.1.1 gives a more intuitive
understanding of the method of least squares, the actual method applied in this study is explained in
Section 8.1.2.

8.1.1. Normal Equations

At its core, regression analysis serves as a means to model a relationship between a response variable
𝑌 and a set of predictor variables 𝑋𝑖 = (𝑋1, 𝑋2, … , 𝑋𝑚) in the following general form:

𝑌 = 𝑓 (𝑋𝑖 , 𝛽) + 𝜖 (8.1)

The model function 𝑓 (𝑋𝑖 , 𝛽) is defined by the predictor variables 𝑋𝑖 and the unknown parameters
(i.e. constant coefficients) in vector 𝛽, which are to be estimated from the data. The random error 𝜖
resulting from the regression analysis is usually assumed to be independent, with a zero mean normal
distribution [18]. Although the data fitted model may be non-linear, as is the intended outcome of
polynomial regression, the statistical estimation itself is linear in the parameters of vector 𝛽.

Therefore, it is possible to express the model as a system of linear equations given multiple observa-
tions of the response variable 𝑌:

�⃗� = 𝐗𝛽 + 𝜖 (8.2)

Equation (8.2) expresses the vector of observations �⃗� in terms of the matrix of predictor variables (i.e.
design matrix) 𝐗, the vector of parameters to be estimated 𝛽 and the error vector 𝜖. A crucial note is the
fact that 𝛽 and 𝜖 are unknown. Whilst 𝜖 changes with every observation of 𝑌, the parameters of vector
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𝛽 remain fixed and are estimated using a sufficiently large set of observations. Vector 𝛽 comprises the
estimated parameters whereby the values of the response variable 𝑌 are predicted for a given 𝑋𝑖 by
means of the matrix relation 𝑌 = 𝐗𝛽 (the symbol ̂ denotes a vector of predicted or estimated values).
The method of least squares, whereby the sum of squared errors 𝜖⊺𝜖 is minimised, is employed for the
purpose of estimating the parameters.

The calculation of the least squares estimates starts with the following formulation of the sum of squared
errors:

𝜖⊺𝜖 = (�⃗� − 𝐗𝛽)
⊺
(�⃗� − 𝐗𝛽) (8.3)

Differentiating Equation (8.3) with respect to 𝛽, equating the outcome to zero and subsequently rear-
ranging the resultant matrix equation with 𝛽 replaced by 𝛽 leads to the so-called normal equations:

(𝐗⊺𝐗)𝛽 = 𝐗⊺�⃗� (8.4)

The inverse of 𝐗⊺𝐗 exists only if it is non-singular, a necessary condition to permit the rearrangement
of Equation (8.4) such that the least squares estimates 𝛽 can be calculated:

𝛽 = (𝐗⊺𝐗)−1 𝐗⊺�⃗� (8.5)

If the inverse of 𝐗⊺𝐗 exists, the least squares estimates 𝛽 are subsequently used to calculate the
response variable estimates 𝑌.

8.1.2. QR Decomposition

Although the implementation of the normal equations is more straightforward in a least squares context,
the regression analysis is subsequently more prone to numerical instabilities. An alternative and more
numerically stable approach would be to decompose the 𝑚 × 𝑛 design matrix 𝐗 (given 𝑚 > 𝑛) as the
product of an 𝑚×𝑚 orthogonal matrix 𝐐 and an 𝑚×𝑛 upper triangular matrix 𝐑, a process referred to
as QR decomposition or QR factorisation [23]. The design matrix 𝐗 has more rows than columns given
the over-determined linear system of equations.

Furthermore, the elements of the bottom 𝑚− 𝑛 rows of matrix 𝐑 are all zero (and contained within the
zero matrix 𝟎), thus permitting the following matrix partition:

𝐗 = 𝐐𝐑 = [𝐐1 𝐐2] [
𝐑1
𝟎 ] = 𝐐1𝐑1

Referred to as thin QR factorisation, the outcome of this adaptation is a design matrix 𝐗 defined as
the product of an 𝑚 × 𝑛 semi-orthogonal matrix 𝐐1 and an invertible 𝑛 × 𝑛 upper triangular matrix 𝐑1
[23]. The columns of matrix 𝐐1 are orthonormal vectors since the number of rows exceeds the number
of columns (𝑚 > 𝑛), from which can be deduced that 𝐐⊺1𝐐1 = 𝐈𝑛 where 𝐈𝑛 denotes the 𝑛 × 𝑛 identity
matrix. The reader should be conscious of the fact that 𝐐⊺1𝐐1 and 𝐐1𝐐⊺1 are not equivalent since 𝐐1 is
not a square matrix.

Plugging 𝐗 = 𝐐1𝐑1 into Equation (8.4) transforms the normal equations to the upper triangular system,
leading to the unique least squares solution after rearrangement:

𝛽 = 𝐑−11 𝐐⊺1�⃗� (8.6)

In the case of pivoted QR decomposition, the design matrix 𝐗 is column-permuted by means of the
permutation matrix 𝐏 such that the absolute values of the diagonal elements of matrix 𝐑 decrease in
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magnitude towards the last column:
𝐗𝐏 = 𝐐𝐑 (8.7)

For further insight into QR decomposition the reader is referred to Golub and van Loan [23].

8.2. Statistical Quality Indicators

Any deviation between an observation of 𝑌 and its predicted value is stored in the residual vector
𝑒 = �⃗� − 𝑌. Intuitively, small residuals are indicative of a suitable model that accurately fits the data.
The standard measure of this particular statistical quality is the residual sum of squares RSS, which
equates to 𝑒⊺𝑒 when expressed in the same format as Equation (8.3).

Similar statistical quality assessment quantities are the explained sum of squaresESS and the total sum
of squares TSS. The former quantity is defined as the sum of all squared discrepancies between the
predicted values of the response variable 𝑌 and the overall mean 𝑦 of the response vector �⃗�, whereas
the latter is the sum of all squared differences between the actual observations of the response variable
𝑌 and 𝑦.

The construction of vector 𝑌, with the sample mean 𝑦 as each element (i.e. 𝑌 = (𝑦, 𝑦, … , 𝑦)) and given
the same dimension as �⃗� and 𝑌, permits the expression of ESS and TSS in matrix form (NB the mean
of the estimated quantities is equivalent to the mean of the observations 𝑌):

RSS = (�⃗� − 𝑌)
⊺
(�⃗� − 𝑌) = 𝑒⊺𝑒 (8.8a)

ESS = (𝑌 − 𝑌)
⊺
(𝑌 − 𝑌) (8.8b)

TSS = (�⃗� − 𝑌)
⊺
(�⃗� − 𝑌) = RSS+ ESS (8.8c)

Intuitively, ESS is a measure of the variations of the model estimated quantities, whereas TSS indicates
the extent to which the actual observed quantities vary. The relation TSS = RSS + ESS shows that
variations in the observations of 𝑌 about the mean are partially a result of the regression analysis itself
and partially due to the fact that the actual observations are not an exact fit of the model. If the latter
case were to be true instead, where each observation of 𝑌 is estimated exactly by the model, then
RSS = 0. Though ideal, this is an improbable scenario and instead the focus lies in minimising the
value of RSS relative to TSS.

Therefore, the following expression is used to assess the quality of a regression analysis:

𝑅2 = ESS
TSS = 1 − RSS

TSS (8.9)

The statistical quantity 𝑅2, which ranges between 0 and 1, gives the ”proportion of total variation about
the mean explained by the regression” [18]. The regression analysis should lead to a value of 𝑅2 as
close as possible to unity as this implies that most of the total variation in the data is explained by the
fitted model.

Another prominent quality indicator is the root-mean-squared error (RMSE), which is the square root
of the mean of the RSS:

RMSE = √RSS = √𝑒⊺𝑒 (8.10)

Contrary to 𝑅2, the RMSE is to be minimised since a low value is indicative of better accuracy. The
RMSE is either positive or equal to 0, whereby the latter case constitutes a perfect data fit and is a rare
occurrence in practice.
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Although 𝑅2 and the RMSE give insight into the overall quality of a fitted model, by no means are these
statistical quantities the sole measures by which a regression analysis should be scrutinised. Suitable
values of 𝑅2 and the RMSE are also attained in cases of over-fitting whereby the fitted model shows
poor overall performance as an estimator. Large variances of the estimated parameters are evidence
of over-fitting, thus showing a considerable dependence on the data used for the regression analysis.

8.3. Polynomial Equations of Aerodynamic Coefficients

The ultimate goal of the regression analysis is to devise polynomial equations expressing the aerody-
namic coefficients in terms of the angle-of-attack 𝛼 and the non-dimensional airfoil shape parameters
𝜂, 𝜅 and 𝑡:

𝐶𝑙 = 𝑓 (𝛼, 𝜂, 𝜅, 𝑡)
𝐶𝑑 = 𝑔 (𝛼, 𝜂, 𝜅, 𝑡)
𝐶𝑚 = ℎ (𝛼, 𝜂, 𝜅, 𝑡)

Assessing the fidelity and accuracy of the polynomial fits is made possible by the established statistical
quality indicators described in Section 8.2. Finding suitable approximating equations is an iterative
process in which one gauges the effects of omitting certain polynomial terms (e.g. 𝛼2𝜂𝜅, which is a 4th
degree term). The omission of terms should partly be based on the desired degree of the approximating
polynomial since it is equivalent to the highest observed degree in the terms. For example, if the fitted
equation is to be a 3rd degree polynomial, then the 4th degree term 𝛼2𝜂𝜅 will have to be omitted along
with every other term with a degree larger than three.

Therefore, if the degree of an approximating polynomial is known, one can proceed to omit the relevant
terms, thus simplifying the equation. Plotting the aerodynamic coefficients vs. an input variable whilst
keeping the other predictors constant reveals the degree the examined predictor variable should take
in the approximating equation. Common convention dictates that a lift-polar is suitably modelled by a
cubic curve, whilst the drag and moment coefficients benefit from a lower order quadratic fit in 𝛼. The
example given in Figure 8.1 satisfies this notion, as is the case for all other simulated parameterised
airfoil configurations.
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(a) Cubic fits of 𝐶𝑙 in 𝛼.

(b) Quadratic fits of 𝐶𝑑 in 𝛼. (c) Quadratic fits of 𝐶𝑚 in 𝛼.

Figure 8.1: Example plots of aerodynamic coefficients versus 𝛼 given a constant 𝜂 = 0.22 and 𝑡 = 0.06.

Determining the degrees of the remaining predictor variables, namely the non-dimensional shape pa-
rameters, in the approximating polynomials is less straightforward since general trends are less evident.
Nevertheless, either linear or quadratic curves seem to best describe the relations between the aero-
dynamic coefficients and the shape parameters with the remaining predictor variables kept constant.
Based on these observations, the range of suitable approximating polynomials is further narrowed
down for the regression analysis.

The numerical data used to calculate the least squares estimates has been acquired from the simulated
flow fields of 64 unique parameterised LEI wing profiles, each subjected to four different angles of
attack (𝛼 = [0∘, 5∘, 10∘, 15∘]), thus leading to a total of 256 data points. The parameterised profiles
were generated using all combinations of 𝜂 = [0.22, 0.24, 0.26, 0.28], 𝜅 = [0.14, 0.16, 0.18, 0.20] and
𝑡 = [0.06, 0.08, 0.12, 0.14]. The Reynolds number was kept constant at Re = 5×106 for each simulation.

Whilst the parameter estimates for 𝐶𝑑 (see Table 8.2) and 𝐶𝑚 (see Table 8.3) seem satisfactory, the
inflated estimates of the 𝐶𝑙 equation presented in Table 8.1 are indicative of over-fitting. Possible
causes are deficiencies in the quality or quantity of the numerical data, or perhaps even the applied
statistical method itself is not suitable for modelling in this particular case. Irregardless, it is expected
that Equation (8.11) will exhibit poor predictive qualities.
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After iterating the regression analyses with different combinations of degrees in the shape parameters,
the following approximating polynomials and parameter estimates have been settled upon (𝛼 inputs
need to be in radians and must not exceed deep stall thresholds):

𝐶𝑙 = 𝛽1𝛼3 + 𝛽2𝛼2 + [𝛽3𝜂 + 𝛽4𝜅 + 𝛽5𝑡 + 𝛽6] 𝛼
+ [𝛽7𝜅 + 𝛽8𝑡 + 𝛽9] 𝜂 + [𝛽10𝑡 + 𝛽11] 𝜅 + 𝛽12𝑡2 + 𝛽13𝑡 + 𝛽14

(8.11)

Table 8.1: Parameter estimates governing Equation (8.11) [𝑅2 = 0.9582, RMSE = 0.1181].

Value Value
𝛽1 −146.2217 𝛽8 −1.6721
𝛽2 16.4505 𝛽9 −2.5755
𝛽3 16.5034 𝛽10 −9.8052
𝛽4 −66.1728 𝛽11 4.1254
𝛽5 2.9489 𝛽12 −0.2872
𝛽6 16.7412 𝛽13 −0.5613
𝛽7 11.8057 𝛽14 0.3124

𝐶𝑑 = 𝛽15𝛼2 + [𝛽16𝜂 + 𝛽17𝜅 + 𝛽18𝑡 + 𝛽19] 𝛼
+ [𝛽20𝜅 + 𝛽21𝑡 + 𝛽22] 𝜂 + [𝛽23𝑡 + 𝛽24] 𝜅 + 𝛽25𝑡2 + 𝛽26𝑡 + 𝛽27

(8.12)

Table 8.2: Parameter estimates governing Equation (8.12) [𝑅2 = 0.8971, RMSE = 0.0184].

Value Value
𝛽15 3.7796 𝛽22 0.8397
𝛽16 −2.7567 𝛽23 −0.9996
𝛽17 9.7603 𝛽24 0.6498
𝛽18 −0.3538 𝛽25 −0.0332
𝛽19 −1.5589 𝛽26 0.2367
𝛽20 −3.9806 𝛽27 −0.1214
𝛽21 0.0592

𝐶𝑚 = 𝛽28𝛼2 + [𝛽29𝜂 + 𝛽30𝜅 + 𝛽31𝑡 + 𝛽32] 𝛼
+ [𝛽33𝜅 + 𝛽34𝑡 + 𝛽35] 𝜂 + [𝛽36𝑡 + 𝛽37] 𝜅 + 𝛽38𝑡2 + 𝛽39𝑡 + 𝛽40

(8.13)

Table 8.3: Parameter estimates governing Equation (8.13) [𝑅2 = 0.9791, RMSE = 0.0088].

Value Value
𝛽28 3.9178 𝛽35 −0.3243
𝛽29 0.6127 𝛽36 2.1179
𝛽30 −4.0266 𝛽37 −0.2190
𝛽31 −1.8405 𝛽38 0.3620
𝛽32 −0.7922 𝛽39 −0.0460
𝛽33 −0.4343 𝛽40 0.0128
𝛽34 0.9448
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Conclusions & Recommendations

As there is no standardised means to generate the shape of a LEI wing profile, unlike the conventional
NACA airfoil series for example, the parameterisation and geometric construction of such an unconven-
tional shape should be given a detailed description. Such an explanation is missing from the primary
source of the reference aerodynamic load model developed by Breukels [7]. Whilst the general shape
of a 2D LEI wing appears to have been parameterised by Breukels [7], the shape parameters have not
been explicitly defined. As a result, there have been inconsistencies between the assertions of the pri-
mary source and interpretations by users of the model in succeeding studies. In order to alleviate this
problem for potential future users, a detailed description of the shape parameterisation and geometric
construction can be found in Chapter 5. In this regard, the revised aerodynamic load model is likely an
improvement over the original due to relative ease of interpretation.

As for the addition of the chordwise position of maximum camber 𝜂 as a shape parameter, greater
control over the shape of the parameterised LEI wing profile has been granted. Given attached flow
over the suction side, increasing 𝜂 leads to a more negative 𝐶𝑚 due to changes in the load distribution
whilst 𝐶𝑙 and 𝐶𝑑 remain effectively the same given a low-to-moderate angle-of-attack. In the case of
suction-side flow separation at high angles-of-attack, an increase in 𝜂 shifts the chordwise position
of the separation point further downstream, thus alleviating the loss in lift and reducing the resultant
pressure drag. The aforementioned descriptions allude to a discernible impact on the flow field, thus
favouring the inclusion of the chordwise position of maximum camber 𝜂 as a non-dimensional quantity
describing the shape of a parameterised LEI wing profile.

The maximum camber magnitude 𝜅 has a prominent effect on the flow stability at high angles-of-attack.
All simulations of the flow fields around parameterised profiles given 𝜅 = 0.3 and 𝛼 = 15∘ did not con-
verge, a phenomenon indicative of exacerbated transient flow effects since converged solutions were
acquired from simulations of profiles given 𝜅 ≤ 0.2 and 𝛼 = 15∘. As such, numerical data acquisition
for the regression analysis has been limited to LEI wing profiles that satisfy the 𝑡/2 ≤ 𝜅 ≤ 0.2 condition.
Even within this limit, an increase in 𝜅 reduces the critical angle-of-attack, leading to an earlier onset
of stall.

A strong interdependence between 𝜅 and 𝜂 became evident when generating profiles since the suction-
side spline would often overshoot vertically beyond the maximum camber point if there were compat-
ibility issues between the two shape parameters. For this reason, the approach to generating profiles
for the purposes of this work was first to establish the range of values for 𝑡 and then the 𝜅 range as
these shape parameters have a more dominant effect on the flow field. Then either a suitable range
for 𝜂 would be settled upon after enough iterations, or a new range of values for 𝑡 and/or 𝜅 would be
selected and scrutinised according to the same iterative process. Whilst the employed system of inter-
polation described in Chapter 5 may seem sensitive and limited in scope, it does provide a more firm
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foundation since a strong interdependence between 𝜅 and 𝜂 is expected in reality.

Possibilities for further improving the method of parameterisation such that greater control over the
shape of a LEI wing profile is granted would be the addition of another possible shape parameter.
Namely, the point of intersection between the suction-side spline profile of the canopy and the circular
profile of the LE tube, which is represented by the angular position 𝜃𝑠𝑢𝑐𝑡𝑖𝑜𝑛 relative to the centre of the
leading-edge tube. This point dictates the extent to which the circular LE tube profile is present on the
suction side of the LEI wing profile. As the suction side of a rigid LEI wing profile shows similar aero-
dynamic characteristics to a conventional airfoil, further investigation of the effects of altering 𝜃𝑠𝑢𝑐𝑡𝑖𝑜𝑛
could be warranted for future work. If it follows that 𝜃𝑠𝑢𝑐𝑡𝑖𝑜𝑛 has a substantial impact on the flow field,
there may be a case for its incorporation into an updated aerodynamic load model depending on user
demand.

As for the aerodynamic load model developed within the scope of this study (see Chapter 8), evidence
of over-fitting necessitates a revision of the applied strategy. Including more data points may potentially
lead to an improved model, but the problem may also lie with the applied method of statistical modelling
itself. Further research into alternatives to multivariate polynomial regression analysis could facilitate
the development of an improved model.
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