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Abstract—Numerous techniques have been developed in order
to explain the reasoning process of black-box models. Among
them is a class of models that are designed to be inherently
interpretable: select-then-predict models (a.k.a. rationale-based
models). These models are meant to explain their prediction by
highlighting part of the input as evidence. The evidence, called
the rationale, should consist of the most salient parts of the input
text that contribute the most to the model’s decision. However,
according to some recent studies, these models are not truly
interpretable, because they do not provide faithful explanations
(i.e., explanations that accurately reflect the true reasoning
process of the model). In this thesis we give a formal definition of
the degree of unfaithfulness to quantify unfaithful behavior. Then,
we introduce an experiment to test the faithfulness of select-
then-predict models and prove that select-then-predict models
can provide unfaithful rationales. Lastly, we introduce a loss
function, which we call the unfaithfulness loss, which minimizes
the degree of unfaithfulness of select-then-predict models and
teaches them to produce more faithful and plausible rationales.
The code to our experiments is available on github1.

I. INTRODUCTION

As the use of deep learning models continues to grow,
model interpretability is becoming increasingly important in
the field of Artificial Intelligence (AI) and Natural Language
Processing (NLP). Nowadays, most deep learning models have
a black-box architecture, which means that their reasoning
process is unclear and that it is difficult for the user to
understand how the models process and analyze their inputs to
make a certain prediction. A rapid growth of model size and
complexity makes it even more difficult to understand how
these models make their predictions.

Although it is difficult to find a unanimous definition of
interpretability, Miller [1] defines it as “the degree to which a
human can understand the cause of a decision”. In this work,
we adhere to this definition and define it as the extent to which
the reasoning behind model predictions can be explained and
understood by humans.

The interpretability of machine learning models is important
for multiple reasons. Understanding the reasoning process of
black-box models can help us understand which parts of the
input have the most influence on a prediction. It can help
discover patterns and detect biases in the data that went
unnoticed by the engineers, but that the models are able to
pick up on [2]. Interpretability can help us increase trust in
AI and build better and more robust models by understanding

1https://github.com/lauraholv/MSc-Thesis

their strengths and weaknesses [3]. Its importance is also
stressed in recent regulations, such as the EU AI act [4],
which aims to ensure “that AI systems used in the EU are safe,
transparent, traceable, non-discriminatory and environmentally
friendly” [5]. These and similar regulations call for a better
understanding of the AI tools that are being introduced into
the market and show an increasing need for more explainable
AI systems.

Rationale-based models (a.k.a., select-then-predict models)
[6, 7] are a class of interpretable models that are meant to
provide an explanation of their output by highlighting the parts
of the input that are used to make the prediction. Such models
usually consist of two smaller components: a selector and a
predictor. The former extracts the most important sequences
of text from the input and passes them to the predictor, which
makes the final prediction based only on the selection, as can
be seen in fig. 1.

Fig. 1: Basic architecture of select-then-predict models

The extracted sequences are called rationales and they are
meant to explain the model’s decision. Figure 2 provides
an example of a rationale produced by a select-then-predict
model, from the paper of Lei et al. [6].

Fig. 2: Rationale provided by the model to explain the pre-
dicted rating of the look aspect of a beer review. The text
highlighted in red represents the rationale chosen by the model
[6].

The fact that the predictor makes its decision based solely
on the meaning of the words within the rationale is meant to
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guarantee faithfulness, i.e. that the model did indeed rely only
on the rationale to make the prediction and did not use some
other information. However, prior research has presented the
intuition that these select-then-predict models do not always
produce faithful explanations and that they can sometimes
encode the prediction in the selected rationale in a way that is
not clear to humans [8, 9]. This can happen when the selector
already makes the prediction (instead of only selecting the
rationale, as intended) using the full input and communicates
it via a hidden message to the predictor, which learns to extract
the prediction from the message, as can be seen in fig. 3b. The
main characteristic of these messages is that they encode the
prediction in any way that is not connected to the semantic
meaning of the terms in the rationale.

We assume that this unfaithful behavior is a consequence
of the joint training of the selector and the predictor models,
which is efficient and allows the rationale selection process
to be learned in an unsupervised manner, but can lead to the
above mentioned failure case [10]. This training configuration
allows the selector to learn to make a prediction on the full
input and to encode it in the rationale, while the predictor
can learn to decode it. This behavior can appear because there
are no explicit constraints that prevent it during training: the
selector is trained to select a subset of the input (i.e. the
rationale) and the predictor is taught to make a prediction
based on it. However, there is no constraint to ensure that the
prediction is made on the semantic meaning of the rationale
and not on another signal encoded in the selection.

(a) A faithful select-then-predict model, where the selector
faithfully chooses the most meaningful parts of the input as
rationale and passes them to the predictor.

(b) An unfaithful select-then-predict model, where the selector
makes the prediction, i.e. label y, on the full input and encodes
it inside the selected rationale. The corresponding predictor
extracts the encoding of label y and presents it as its prediction.

Fig. 3: Figures representing a faithful (a) and an unfaithful (b)
select-then-predict model.

Such unfaithful explanations can be incorrect and mislead-
ing, since they do not actually clarify how the black-box model
reached a specific prediction. However, if these explanations
seem plausible enough, they might lead to misguided trust in
the model’s predictions and explanations as well as to poorly
informed decision-making. Therefore it is crucial to study this

failure case and to better understand how select-then-predict
models work.

Some of these studies have also attempted to show that
select-then-predict models are not faithful, however, the main
focus of these studies was to provide a solution for unfaithful
behavior, rather than to provide evidence of it. To the best of
our knowledge, there is no comprehensive study that analyzes
the faithfulness of select-then-predict models and the above
mentioned failure case. Therefore, the goal of this thesis is
to analyze unfaithful behavior in select-then-predict models.
We provide a definition of unfaithful behavior, study and
provide evidence of it and then attempt to analyze it further.
Afterwards, we provide a way to mitigate it by introducing an
additional loss term that minimizes the degree of unfaithful-
ness.

We formalize these goals in the following research ques-
tions:

RQ1: How can we formally define unfaithful behavior and
is it possible to find evidence that select-then-predict
models are unfaithful?

RQ2: If these select-then-predict models are unfaithful, can
this phenomenon be spotted?

RQ3: How can unfaithful behavior be alleviated or
avoided?

The rest of this paper is structured as follows: in section II
we outline the related work. In section III, we explain the
methodology of our research. Section IV covers the experi-
mental setup, such as the dataset and hardware used, as well
as the models that are used for our research. In section V we
analyze the results of the experiments that were performed.
Lastly, in section VI we present the conclusions and analyze
the limitations of this work.

II. RELATED WORK

In this section we will first give a broad overview of the
field of interpretability, then we will present an overview of
some select-then-predict model architectures and lastly we will
illustrate existing literature that addresses the unfaithfulness of
these models.

A. Interpretability

Over the years, various approaches aimed at interpreting
black-box models have been developed. These approaches
can be categorized into two groups: post-hoc interpretability
methods and intrinsically interpretable models. Post-hoc inter-
pretability refers to methods that provide an explanation of a
model’s prediction after inference. Many post-hoc methods are
model-agnostic (i.e. they do not require a specific model ar-
chitecture in order to generate explanations) and they include:
gradient based methods [11, 12, 13, 14], surrogate model based
methods [15] and attention based methods. Other post-hoc
interpretability methods, such as SHAP (SHapley Additive
exPlanations) by Lundberg and Lee [16] and Shapley Value
Sampling [17, 18] aim to explain individual predictions of a
model using an approach from game theory - Shapley values
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[19]. They attempt to explain a prediction by computing the
contribution of each feature to this prediction [2].

The survey by Madsen et al. [20] provides a more detailed
overview of many other post-hoc interpretability methods and
an in-depth explanation of their workings.

Intrinsically interpretable models (also called inherently in-
terpretable models) are models that are interpretable by design.
Some models can be considered inherently interpretable thanks
to their transparent architecture, such as simpler ML models
like linear regression models or decision trees, the reasoning
process of which is more easily understandable to humans.
Other models still involve black-box architectures, but are built
to generate explanations while running inference, i.e. they are
able to ‘self-explain’ while making predictions [21].

There is no agreement on which class of methods is bet-
ter: inherently interpretable ones, or post-hoc interpretability
methods. Madsen et al. [3] claim that these two paradigms
are incompatible because, according to them, only inherently
interpretable models are truly interpretable and provide faithful
explanations, since they were built to do so, whereas post-hoc
methods are not able to represent the complex functioning of
black-box models and, therefore, do not guarantee faithful ex-
planations [22]. But intrinsically interpretable models are not
necessarily better: in some cases a trade-off can be observed
between model interpretability and their performance [23, 24]
and several studies show that these models can still produce
unfaithful explanations, as will be discussed in section II-C.

B. Select-then-predict Models

Select-then-predict models, which are the subject of this
thesis, are a class of inherently interpretable models. These
models, also referred to as rationale-based models, provide
natural language explanations to justify their predictions and
to reflect their decision making process [25]. This approach is
based on the human cognitive process of focusing on specific
evidence to base a decision on. As the name suggests, select-
then-predict models consist of two smaller components: a
selector model, that processes the input text and extracts the
most important and representative parts (i.e., the rationale)
from it, and a predictor model that receives the rationale as
its input and provides the final output. Since the rationale is
the only input available to the predictor, it is considered to be
the explanation of the model’s output [21]. Select-then-predict
models can be applied to various natural language processing
tasks, such as machine reading comprehension, sentiment
analysis, text classification, natural language inference etc., in
order to make the predictions more interpretable.

Select-then-predict models are trained by jointly training
the selector and the predictor components, which allows the
rationale selection process to be learned in an unsupervised
manner. This is beneficial because it allows the select-then-
predict models to be trained end-to-end on the same data as
the original full context models.

Zaidan et al. [26] were the first to introduce the use of
rationales in machine learning. They use human-annotated
rationales to design a more efficient training framework for

ML models. These rationales serve as evidence, provided by
the annotator, that supports the prediction. These additional
annotations are intended to help the algorithm learn which
features are actually responsible for the prediction and to help
the model learn the decision making strategy of the annotator.

Although Zaidan et al. [26] introduced the use of rationales
in the context of ML, Lei et al. [6] applied them in the context
of interpretable ML models. Their goal is to train a model
that learns to generate explanations, i.e. rationales, that are
short and coherent, but that are also sufficient to make a
prediction, therefore they build a select-then-predict model.
The authors conclude that their select-then-predict model can
extract quality rationales, achieving up to 96% precision in
the rationale selection task. In addition, this select-then-predict
model maintains a similar end-task performance as the model
that uses the full input text.

Paranjape et al. [7] introduce another rationale-based model,
that is meant to address the trade-off between short explana-
tions and task accuracy. The approach, that the authors refer to
as Sparse IB, is based on controlling rationale sparsity, using
an Information Bottleneck principle; the goal is to select a
rationale as a ‘compressed’ representation of the input that
contains the minimal required information about the original
input, but that is maximally informative about the final label.
This training objective gives more control over the proportion
of the input that is going to be selected as the rationale,
controlled by the parameter π.

Numerous other variants of select-then-predict models have
been developed over the years in the attempt to make neural
language models more interpretable and their interpretations
more faithful. Among these are the methods developed by Jain
et al. [27], Yue et al. [28], Bastings et al. [29] and Yue et al.
[30].

C. Unfaithfulness of Select-then-Predict Models

Several recent studies mention the possibility that the ratio-
nales provided by select-then-predict models are not faithful
and that they do not always show which parts of the input the
model focused on to make the prediction.

Zheng et al. [21] argue that select-then-predict models do
not automatically imply inherent interpretability, since the
selector and the predictor can exploit imperceptible messages
to encode and communicate the prediction. In their paper,
the authors show that the rationale selection process is not
interpretable to humans and they call for a more rigorous
analysis of the interpretability of neural rationale models.

Yu et al. [31] refer to this phenomenon as rationale degen-
eration, which occurs when the selector (generator) and the
predictor employ a communication scheme in order to encode
the predicted label in a human-imperceptible way. However,
proving that select-then-predict models can provide unfaithful
explanations was not the main goal of this paper, therefore the
authors do not provide an in-depth description of this failure
case and do not study it further.

Jacovi and Goldberg [9] also discuss the potential failure
cases of select-then-predict models, which they define as
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Trojan explanations and a dominant selector. According to
the authors, a Trojan explanation is a rationale that contains
information encoded in ways that are unintuitive or unclear to
humans. The authors name several ways in which the predicted
class could be encoded within the rationale, such as by using
the location of the selected words within the full input (e.g.
if the selected words are in the beginning of the input text,
the predicted class is positive, otherwise it is negative, or vice
versa), the number of selected tokens, or some kind of arbitrary
token mapping (e.g., using periods to represent one class and
commas to represent the other). This failure case corresponds
to the unfaithful behavior described in other papers and to the
behavior that we aim to study in this thesis.

Hu and Yu [32] address the problem of sub-optimal ratio-
nales (i.e., rationales that are not meaningful or informative
and that do not align with human judgments) and of rationale
failure (which we refer to as unfaithful behavior) and introduce
a method called G-RAT (Guidance-based Rationalization).
This method uses a two-module framework, consisting of
a select-then-predict model and a guidance module, which
regularizes the selector to prevent rationale failure and regu-
larizes the predictor to avoid sub-optimal and non-informative
rationales. The guidance model gives a weighted score and a
prediction distribution. The weighted score consists of con-
tinuous importance scores for each token, used to teach the
selector to pick semantically important tokens, similar to those
chosen by the guidance model. The prediction distribution is
used to avoid sub-optimal rationales and to ensure that the final
prediction distribution of the select-then-predict model and the
guidance model align. The Jensen-Shannon divergence [33]
between these two distributions is minimized, which forces the
prediction on the rationale to approximate the prediction on the
full input. Experimental results show that this method is robust
to both suboptimal rationale selection and to the problem of
rationale failure.

III. METHODOLOGY

In this section we formally define select-then-predict models
and provide a definition of unfaithfulness. After that, we
describe the loss functions used to train our select-then-predict
models: Lclaim, used to demonstrate the unfaithful behavior
of select-then-predict models, and Lu, used to minimize the
unfaithfulness of these models.

A. Terminology

In this subsection we introduce some terms that we will use
throughout the paper:

Unbiased predictor: a model that has been trained separately
from the selector and therefore has not learned any potential
encoding of the label. A full context model, trained on the full
inputs can be considered an unbiased predictor.

Faithful selector/predictor: a model that performs the task
‘assigned’ to it: a faithful selector will only choose the
rationale, whereas a faithful predictor will use the rationale to
predict the final label. A faithful predictor is also an unbiased
predictor.

Unfaithful selector/predictor: a model that learns to perform
a different task than foreseen by the architecture and, therefore,
provides unfaithful rationales.

B. Select-then-Predict Models and Definition of Unfaithful-
ness

As mentioned in section II-B, select-then-predict models
consist of two components:

A selector model, characterized by the function ψ(x) that
takes the full input sequence (i.e., the entire sequence of
tokens) x = (x1, ..., xn) and outputs a binary token-level mask
ψ(x) = (z1, ..., zn), where zi ∈ {0, 1}.

A predictor ϕ takes the masked input, i.e., the rationales,
given by the element-wise multiplication of the mask and the
original input x · ψ(x), and outputs the final label y:

y = ϕ(x · ψ(x)) (1)

In order to answer our research questions, we first define
what we consider to be unfaithful behavior. An important
assumption we make is that unfaithfulness is not inherent in
select-then-predict models, but is a learned behavior.

Such behavior can only be learned if the selector and the
predictor models are trained jointly and the predictor can learn
to decode the outputs of its corresponding selector. Therefore,
two select-then-predict models might learn different commu-
nication schemes and not be able to understand each other’s
rationales. Similarly, an unbiased model (cf. section III-A) will
also not be able to make correct predictions using only the
rationales chosen by an unfaithful selector. Therefore, we refer
to the difference in accuracy of a select-then-predict model
and the accuracy of an unbiased predictor evaluated on the
selector’s rationales as the degree of unfaithfulness, formally
defined in eq. (2).

Given a selector ψ and a predictor ϕ, we define unfaithful-
ness as:

u(ϕ, ψ) = acc(ϕ(x · ψ(x)))− acc(ϕ∗(x · ψ(x))) (2)

where ϕ∗ is an unbiased predictor (cf. section III-A). The
acc metric is defined in eq. (6). This is further illustrated in
fig. 4.

Fig. 4: On top: a typical select-then-predict model. On the
bottom: evaluation of the rationales chosen by the selector
using an unbiased predictor. The difference in accuracy of
these two models represents the degree of unfaithfulness.
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The degree of unfaithfulness can also show us whether the
selected rationale is informative enough to predict the label.
A high degree of unfaithfulness indicates that an unbiased
predictor is not able to make a prediction based on the rationale
alone, whereas an unfaithful predictor (cf. section III-A),
trained together with the selector, is able to achieve above
average performance. Therefore, a high unfaithfulness value
shows that a selector and a predictor that were trained together
have learned a common encoding of the prediction that is
undecipherable to another, unbiased, model.

C. Lclaim Regularizer

In order to verify whether select-then-predict models are
able to provide unfaithful rationales, we introduce an exper-
iment that consists of adding an additional loss term when
training the select-then-predict models. The experiment is
specifically designed for a scenario in which we can establish
a subset of the input text that is essential to make a prediction.
This can be a fact verification task, where the end-task is to
predict whether a claim is supported or refuted by a document
associated to it. Therefore, we use the FEVER dataset for our
experiments: as explained in section IV-A, this task allows us
to identify a part of the input that is always necessary to make
a prediction: the claim.

The additional loss term, which we also refer to as a
regularizer, penalizes the inclusion of tokens from the claim
into the rationale and is defined as:

Lclaim =

i[SEP]∑
i=1

zi (3)

Where i[SEP] refers to the index of the [SEP] token, which
defines the end of the claim and the beginning of the context
document and z = (z1, ..., zi) is the mask given by the
selector.

Because of how the FEVER dataset is made, the claim is
necessary in order to predict whether the associated documents
support it or not. Therefore, we can assume that a faithful
selector (cf. section III-A) must select at least part of the claim,
so that the predictor can classify it as supported or refuted
(as was confirmed when we trained a FC model only on the
context as input, as mentioned in section IV-B).

The purpose of this experiment is to verify whether the
model is still able to perform well when a crucial part of
the input is missing. If the model is able to achieve good (or
above random) performance, without selecting the claim, the
hypothesis that the selector model is making the prediction
and encoding it in the rationale, is confirmed.

In section V-B we present and analyze the results of this
experiment.

D. Unfaithfulness Loss

In order to decrease the unfaithfulness of select-then-predict
models, we introduce an additional loss term, which we refer
to as unfaithfulness loss, since it is meant to reduce the degree
of unfaithfulness of these models. The unfaithfulness loss

minimizes the difference between the prediction of the select-
then-predict model and the prediction of an unbiased predictor.
This loss term is defined in eq. (4):

Lu =
1

n

n∑
i=1

(yi − ŷi)
2 (4)

Where yi are the output logits of the select-then-predict
model that is being trained, whereas ŷi represents the output
logits of the unbiased model, evaluated on the rationale chosen
by the selector and n is the number of samples. In this setup,
the unbiased model is used during training, but its weights are
not being updated; it is just being used to improve rationale
quality.

This term is meant to help the model learn to be more
interpretable and to select rationales that contain enough
information to make a prediction. It discourages the selector
and the predictor from learning a common encoding of the
label, which would be unintelligible to the unbiased model
and, therefore, would impact its performance.2

IV. EXPERIMENTAL SETUP

In this section, we will explain the experimental setup, such
as the dataset, the baselines and details about model training.

A. Dataset

FEVER [34] is a fact extraction and verification dataset
that consists of claims generated using sentences taken from
Wikipedia articles and of a collection of source documents,
used to verify if the claim is supported, refuted or if there is
not enough info.

We chose this dataset because it allows us to clearly identify
part of the input that is crucial in order to make the prediction,
i.e. the claim. Therefore, if the selector omits the claim from
the selected rationale, it strongly indicates unfaithful behavior.

We use the ERASER benchmark [35] version of this dataset
that consists of a subset of the original dataset and contains
only supported or refuted claims. The dataset consists of 97957
training samples, 70967 of which are labeled ‘Supports’, while
the rest are labeled ‘Refutes’. We undersampled the training set
in order to make it balanced and the final label distribution is
shown in table I. Figure 5 presents an example of an instance
from the dataset. The union of the claim and the associated
document is used as input for the model.

Split Supports Refutes Total

Train 26990 26990 53980
Val 3019 3103 6122
Test 3033 3078 6111

TABLE I: Label distribution in the FEVER dataset.

2As mentioned in section II-C, Hu and Yu [32] also use a guidance
model in order to avoid rationale failure (i.e., unfaithful behavior). Our
approach is different from theirs in that we minimize the difference between
the predictions of the select-then-predict model and the unbiased predictor
evaluated on the rationales. The guidance model in [32] is always evaluated
on the full input and is used as a supervisory signal to determine which tokens
are important and what the correct prediction should be.
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Fig. 5: Example instance from the FEVER dataset. The claim,
together with the text of the document is used as input to the
models. The models are trained to predict whether the claim
is supported or refuted by the document.

B. Baselines

We compare the performance of the select-then-predict
models with a couple of baseline models.

The first baseline is a full-context (FC) model: we use
BERT-base, a transformer-based language model developed
by Devlin et al. [36] and pre-trained on corpora such as
English Wikipedia and BooksCorpus. The BERT model is
good at capturing contextual word representations. Thanks to
its pre-training, it can be fine-tuned for various tasks, such
as sentiment classification or question answering, by simply
adding an additional output layer.

We fine-tune a BERT-base model on the FEVER dataset
to perform the task on the full input, without providing any
rationale. The BERT FC model achieves 0.92 accuracy on the
test set.

In order to establish an upper performance limit on a subset
of the full input, we train a BERT-base model only using
gold rationales (ground truth rationales annotated by humans),
provided in the FEVER dataset from the ERASER benchmark.
The BERT FC Gold model achieves 0.94 accuracy on the test
set.

Finally, in order to verify whether the documents in the
FEVER dataset contain any patterns that correlate with the
label that would enable the model to make a correct prediction
even without seeing the claim, we train a model on the FEVER
dataset using only the context documents as input, without the
claim. This model achieves 0.53 validation accuracy and 0.56
accuracy on the test set indicating that there is little correlation
between the document and the labels and that it is not possible
to make a prediction based on the evidence documents alone
(these results are shown in table II).

We fine-tune these models using the AdamW optimizer [37]
and a linear learning rate scheduler with warmup. The initial
learning rate is set to 5e-5. We use a batch size of 12, with 10
gradient accumulation steps. Further details regarding model
training are provided in appendix B.

C. Select-then-Predict Model

For the select-then-predict model we adopt the Sparse IB
model by Paranjape et al. [7]. We chose this model as a
representative example of the select-then-predict architecture.
This model has been used as a state-of-the-art rationale-based
model in other works that analyze and implement the select-
then-predict architecture (e.g., in [38]).

As explained in section II-B, this model aims to control
rationale sparsity using an Information Bottleneck principle.

We use the code of Chen et al. [38] as a starting point for the
implementation of our model. The selector and the predictor
components of this model are pre-trained BERT-base models.

The model takes a tokenized text sequence x = (x1, . . . , xn)
as input. The selector outputs contextualized token repre-
sentations of the input sequence x. A linear layer, referred
to as the rep-to-logit layer, is then applied to each token
representation to produce token-level logits (log probabilities),
that correspond to parameters of a Bernoulli distribution.
During training, the selector samples a soft token-level mask
z∗ = (z∗1 , . . . , z

∗
n) ∈ (0, 1) from the token-level logits in the

Bernoulli distribution, using the Gumbel-Softmax trick [39]).
A soft mask means that each token is assigned a value between
0 and 1, indicating how likely it is to be selected, rather than
enforcing a binary choice. This soft mask makes the sampling
process differentiable, which is important because it allows
the model to be trained using gradient-based optimization. As
a result, gradients can flow through the selection process and
help improve the rationale selection during training.

This soft mask is then used during training to mask the input
sentences and the element-wise multiplication z∗ ·x is used as
input to the predictor. The following objective is optimized:

LV IB = − log p(y|z∗ · x) +KL[p(z|x)||p(z)] (5)

The first term represents the prediction loss. It is a cross
entropy loss that ensures that the model correctly predicts
the label using only the rationale. The second term represents
the sparsity loss, which ensures that the extracted rationale is
concise and that it stays close to the predefined prior p(z). By
minimizing the KL divergence term, the model is encouraged
to select only the most relevant parts of the input.

During inference, the top-k tokens are selected, where k is
determined by the sparsity π and the resulting binary token
level mask z = (z1, ...zn) ∈ {0, 1} is passed to the predictor,
which makes the final prediction.

We train several instances of this model, initialized with
different random seeds3. We train models with two different
values of the sparsity parameter π, which represents the
fraction of the full input that is selected as rationale. We
evaluate models that select 10% and 20% (π = 0.1 and
π = 0.2 respectively) of the full input as rationale.

Seven training runs were conducted for the select-then-
predict models without regularization for each value of the
parameter π. For the select-then-predict models with regu-
larization and for the faithful select-then-predict models we
conducted five training runs for each value of π. The results
of each run can be found in appendix C.

The select-then-predict models are trained using the same
optimizer and hyperparameters as the baseline models. Ad-

3The random seed influences the initialization of the rep-to-logit layer that
converts the token embeddings into token-level logits, from which the rationale
mask is sampled, and the parameters of the sampling function, that selects
the rationale.
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ditional details regarding model training are provided in ap-
pendix B.

D. Evaluation of the Models

In order to evaluate the performance of select-then-predict
models we evaluate two aspects: their performance on the end
task and the quality of the selected rationales.

1) Evaluation of the predictive performance: In order to
evaluate the predictive performance of these models we use
the metrics commonly used for classification tasks: accuracy
and F1 score, defined in eq. (6) and eq. (7):

acc =
TP + TN

TP + TN + FP + FN
(6)

where TP = true positives, TN = true negatives, FP = false
positives and FN = false negatives.

F1 = 2
precision ∗ recall
precision+ recall

(7)

where precision and recall can be defined as:

precision =
TP

TP + FP
(8)

recall =
TP

TP + FN
(9)

2) Evaluation of rationale quality: We evaluate the qual-
ity of the generated rationales using a metric proposed by
DeYoung et al. [35]: the token-level IoU score (intersection
over union). We measure it with respect to human annotated
rationales, a.k.a., gold rationales. This score represents the
overlap between the tokens that belong both to the gold
rationale and to the selected rationale, divided by their union.
A higher IoU score indicates that the model is selecting
rationales that closely match human annotated gold rationales,
whereas a low score shows little agreement with the human
annotated ground truth. We refer to this score as alignment,
because it illustrates the alignment with human rationales, and
we define it in eq. (10).

alignment =
|z ∩ z∗|
|z ∪ z∗|

(10)

However, as was also mentioned by DeYoung et al. [35],
the agreement with human rationales is a better indicator of
the plausibility of the rationales, i.e. whether they are seen as a
good explanation by humans, rather than of their faithfulness.
Therefore, a higher alignment score does not indicate that
the model relied exclusively on the information contained
within rationale to make the prediction. As a result, this metric
alone is not a definitive measure of rationale quality and of
their faithfulness. Not only does the alignment capture the
plausibility of the models rather than their faithfulness, but
using human annotated gold rationales also assumes that they
are the ground truth answer. The rationales provided in this
dataset are sufficient to make a prediction, but they are not
necessarily comprehensive, i.e., they might not contain all the

information related to the claim and the label. Appendix A
illustrates two examples where the quality of human annotated
rationales might impact the alignment score.

Therefore, in addition to evaluating the plausibility of
rationales with the alignment score, we use the degree of
unfaithfulness, defined in eq. (2) as a metric to evaluate the
sufficiency of the rationales, i.e., to evaluate whether they
contain enough information regarding the label and whether
they are sufficient to make a prediction. As explained in
section III-B, this is measured by testing whether an unbiased
predictor is able to predict the correct label based on the
rationales.

E. Hardware and Software Specifications

All the models were trained on the Delft Blue Supercom-
puter [40], on NVIDIA Tesla V100 GPUs. The models were
trained on two GPUs used in parallel.

The models were built and trained using the Pytorch Light-
ning library [41], which is a PyTorch wrapper for building and
training ML models.

V. RESULTS

In this section we describe the experiments performed to
answer the research questions and their results.

A. Performance of the Select-then-Predict Models

As mentioned in section IV-C, we train select-then-predict
models with a Sparse IB architecture. The models are trained
on the FEVER dataset, where their task is to predict whether
a claim is supported or refuted by the associated documents.

Table II reports the performance of the select-then-predict
models with the highest validation accuracy (table VII pro-
vides a comprehensive overview of the performance of all
the models trained during our experiments). To distinguish
the select-then-predict models trained without the additional
loss terms: Lclaim and Lu, we call them ‘simple’ select-then-
predict models.

Our experiments show high variation in performance for
models initialized with different random seeds, as shown in
fig. 6. The accuracy of models trained without regularizer
ranges between 0.78 and 0.87 for π = 0.1 and between 0.86
and 0.88 for π = 0.2. This hints that, at every initialization,
the models learn a different solution, meaning that they learn
to select different parts of the input as rationales. In order to
see if the models choose crucial parts of the input, we compute
the percentage of the claim that is selected as rationale.
We observe that this percentage varies significantly between
models, ranging from 2% to 94% (this is also reported in
fig. 10b). These results show that, rather than always selecting
the parts of the input that are related to the claim, the models
learn how to pass the label in a way that adheres to the
constraints, but that does not explain how they reached the
prediction.

Some of the models achieve good performance (between
0.85 and 0.86 validation accuracy and 0.75 and 0.77 test
accuracy) while only selecting 2% - 4% of the claim. This
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Fig. 6: Box plot representing the variation in validation ac-
curacy of select-then-predict models on the FEVER dataset.
The first two boxes (in blue) refer to select-then-predict models
without regularizer trained with a sparsity value π = 0.1 and π
= 0.2, respectively. The following two boxes (in yellow) refer
to select-then-predict models trained with regularizer, with π
= 0.1 and π = 0.2, respectively. The final two boxes (green)
refer to models trained with the additional unfaithfulness loss,
with π = 0.1 and π = 0.2, respectively.4

strongly suggests that the selector model is using the rationale
to encode a prediction that it has already made, rather than
choosing the most meaningful parts of the input, since a
faithful predictor needs to see the claim to make a prediction.

B. Select-then-Predict Model with Regularizer

As explained in section III-C, in order to prove that select-
then-predict models can provide unfaithful rationales, we train
them with an additional loss term that teaches them to not
select the claim as rationale. The total loss that this class of
models was trained with is reported in eq. (11).

Ltotal = LV IB + Lclaim (11)

Table II reports the performance of the models trained with
the regularizer (models with the highest validation accuracy
are reported). We observe that the models trained to not select
the claim still achieve above random performance: the models
with the best validation performance achieve 0.82 accuracy
on the validation set both for π = 0.1 and π = 0.2 and 0.80
and 0.78 on the test set, while selecting 0% of the claim.
These accuracy values are comparable to the performance of
models trained without regularizer. It is important to note that
the BERT FC no claim baseline, which represents the full
context model trained on the context documents without the
claim, achieves 0.53 and 0.56 accuracy on the validation and
the test sets respectively, showing that it is impossible to make
a prediction based on the documents alone, without seeing the
claim. Therefore, the high performance achieved by the select-
then-predict models that do not select the claim, shows that the
models are providing unfaithful rationales, that contain some

encoding of the final label. This result confirms our hypothesis
that the selector can make the prediction on the full input and
encode it into the rationale.

C. Evaluating Rationale Quality

As mentioned in section IV-D, we evaluate the quality of
the rationales by computing their alignment scores (defined in
eq. (10)) as well as by computing the degree of unfaithfulness
(eq. (2)) of the models. The BERT FC model is used as the
unbiased model ϕ∗. Figure 4 illustrates this experiment.

The alignment scores are reported in table II. The models
trained without regularizer present higher alignment scores
than those trained with regularizer, meaning that the rationales
of the models trained without Lclaim match the gold rationales
more closely and, therefore, are more plausible. However, a
higher alignment does not imply a higher degree of faithful-
ness, as mentioned in section IV-D.

Fig. 7: Box plot representing the variation of the degree of
unfaithfulness of the select-then-predict models on the FEVER
dataset. The first two boxes (in blue) refer to select-then-
predict models without regularizer trained with a sparsity value
π = 0.1 and π = 0.2, respectively. The following two boxes
(in yellow) refer to select-then-predict models trained with
regularizer, with π = 0.1 and π = 0.2, respectively. The final
two boxes (green) refer to models trained with the additional
unfaithfulness loss, with π = 0.1 and π = 0.2, respectively.4

Table II reports the degrees of unfaithfulness of the models
with highest validation accuracy and fig. 7 shows the variation
of the degrees of unfaithfulness of all the models trained
during our experiments. The models trained without Lclaim

present much lower degrees of unfaithfulness compared to the
models trained with Lclaim. This shows that the rationales
selected by the models without regularizer contain more in-
formation regarding the label and that an unbiased predictor
is able to achieve good performance when evaluated on them.
The rationales of the models trained with regularizer, on the

4In the box plots, the box represents the interquartile range, with the lower
and upper edges corresponding to the first and third quartiles, respectively.
The whiskers extend to the minimum and maximum values of the data. The
x indicates the mean, whereas the line shows the median.
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Model type π Validation Accuracy Test Accuracy F1 Percentage of
claim selected

Accuracy
ϕ∗

Unfaithfulness
u(ϕ, ψ)

Alignment

Baseline models

Bert FC 1 0.93 0.92 0.92 - - - -
Bert FC Gold 1 0.94 0.94 0.93 - - - -
Bert FC no claim 1 0.53 0.56 - - - - -

‘Simple’ select-then-predict models without regularizer

Sel Pred 0.1 0.87 0.84 0.85 90% 0.84 0.03 0.27
Sel Pred 0.2 0.88 0.89 0.89 93% 0.81 0.07 0.28

Select-then-predict models with regularizer

Sel Pred + reg 0.1 0.82 0.80 0.80 0% 0.49 0.33 0.10
Sel Pred + reg 0.2 0.82 0.78 0.81 0% 0.49 0.33 0.15

‘Faithful’ select-then-predict models with unfaithfulness loss

Sel Pred Faithful 0.1 0.85 0.80 0.84 80% 0.73 0.12 0.23
Sel Pred Faithful 0.2 0.89 0.90 0.89 78% 0.88 0.01 0.23

TABLE II: Performance of the models on the FEVER dataset. The performance of the models with the highest validation
accuracy is reported. The ‘simple’ select-then-predict models are trained without regularization and without the unfaithfulness

loss. The models with regularizer are trained with Lclaim and the ‘faithful’ models are trained with Lu.

other hand, obtain poor performance when evaluated on an
unbiased predictor: 0.49 accuracy, which indicates that they
are not sufficient to make a prediction. Figure 7 shows that,
on average, the models trained with regularizer present higher
degrees of unfaithfulness than the models trained without it.

Figure 8 shows the correlation between the percentage of
the claim selected as rationale and the degree of unfaithfulness.
The figure shows that models that select a smaller percentage
of the claim as rationale exhibit a higher degree of unfaith-
fulness. This trend is apparent when evaluating the models
trained with Lclaim, which are taught to not choose the claim
as rationale. However, it can be observed that some of the
select-then-predict models trained without Lclaim also learn to
select small percentages of the claim and present high degrees
of unfaithfulness. This shows that the models are not only able
to provide unfaithful rationales, when taught to do so by the
Lclaim term, but also that they sometimes learn this solution
on their own, based on their initialization.

In addition, from this trend we can conclude that, while the
select-then-predict models that select small parts of the claim
are able to achieve good performance on the end task, their
rationales do not contain enough information for an unbiased
model to make a prediction, meaning that these rationales are
not faithful and that the final label must be encoded in them.

These results show complicity between the selector and the
predictor: when the models are trained jointly, they can learn a
common pattern. However, this pattern is not understood by a
model trained on the full inputs, which leads to a high degree
of unfaithfulness. This is also in line with our assumption
that unfaithfulness is a learned behavior, as mentioned in
section III-B, and it can appear when the selector and the
predictor are trained together.

Fig. 8: Plot of the unfaithfulness against the percentage of
the claim included in the rationale. Points corresponding to
the legend π = 0.1 and π = 0.2 represent select-then-predict
models trained without Lclaim, whereas reg π = 0.1 and reg
π = 0.2 represent models trained with Lclaim.

D. Qualitative Analysis of Rationales

In addition to quantitatively evaluating the rationales by
computing the alignment scores and the degree of unfaithful-
ness of the models, we perform a qualitative evaluation of the
rationales. We analyze the rationales selected by the models
that show the highest validation accuracy. The rationales are
related to samples from the test set used to evaluate model
performance. We analyze rationales generated by the select-
then-predict models trained without Lclaim and with it, and
study the differences between them.

Table III shows examples of rationales generated by the
select-then-predict models. The Input field is the full input to
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the model, where the part between the [CLS] and the [SEP]
tokens is the claim and the rest is the related document that
contains information to support or to refute the claim. The
rationale chosen by the models is highlighted in bold and can
also be seen in the Rationale field.

Overall, it can be observed that the models trained without
Lclaim output more coherent rationales and select higher
percentages of the claim (as can be seen in fig. 10b). On
the other hand, the models trained with Lclaim do not select
the claim and choose rationales that are less coherent and do
not contain sufficient information to make a prediction on the
semantic meaning of the text alone, which is also shown by the
high degrees of unfaithfulness of these models. This behavior
is illustrated in table III and more examples of this can be
found in appendix D.

In general, we found that the models often fail to select ra-
tionales that include the necessary information to support or to
refute the claim, and instead tend to highlight irrelevant words.
We observe that even the models trained without regularization
tend to select words that are seemingly unrelated to the claim,
such as the [SEP] token. In many cases these rationales do
not fulfill their purpose of explaining model predictions to a
human user and of making the model’s reasoning process more
understandable and transparent.

We also notice that the models trained with Lclaim tend
to select more nouns and numbers, and rarely select verbs as
part of their rationale. Their rationales often contain repetitive
words, as can be seen in Example 3 of table III and in the
examples provided in appendix D. This makes them even
less faithful and interpretable: the rationale “papua indonesia
guinea papua papua guinea papua indonesia papua papua”
does not contain any useful information regarding the claim,
let alone why the model labeled it as supports. It is possible
that this behavior contains a pattern used by the selector to
encode the final label, however we have not been able to detect
it. Currently, we do not have a definitive explanation for this
behavior and further analysis is left for future work.

E. How Do the Models Encode Their Predictions?

During our analysis of the rationales selected by the models,
we did not observe a specific pattern, which would allow
us to understand how the label could be encoded within the
rationale. Detecting such patterns is not a trivial task and there
might be no definitive answer to this question. It is likely that
the labels are encoded in a way that cannot be detected only
by analyzing the words contained in the rationales or their
embeddings. The label is likely to be contained in the binary
mask that is passed by the selector to the predictor; however
further analysis of the masks and the patterns that could be
used to encode the label, is left for future work.

As explained in section V-G, we attempted to apply a post-
hoc interpretability method in order to analyze the rationales
and to understand which part of the rationales the models focus
on. This, however, lead to inconclusive results and did not
prove useful to understand how the label is encoded in the
rationale.

F. Reducing the Unfaithfulness of Select-then-Predict Models

In order to avoid unfaithful behavior to decrease the degree
of unfaithfulness of select-then-predict models, we train them
with an additional loss term: the unfaithfulness loss, introduced
in section III-D.

The total loss that these models are trained with is:

Ltotal = LV IB + Lu (12)

The performance of the select-then-predict models trained
with the additional unfaithfulness loss term is reported in
table II, under the name ‘faithful’ select-then-predict models.
With this name we do not imply that these models are entirely
faithful, only that they are trained with Lu.

The performance of these models in terms of accuracy
remains similar to the ones trained without Lu. However, it
can be observed that the ‘faithful’ models present lower values
of unfaithfulness. In table IV, average values of the degree
of unfaithfulness and of the alignment score are presented
per model class. On average, the ‘faithful’ models present
an unfaithfulness value of 0.08 and 0.03 for π = 0.1 and
π = 0.2, respectively, as opposed to ‘simple’ select-then-
predict models, with average values of unfaithfulness equal
to 0.21 and 0.11. Figure 7 also shows that ‘faithful’ select-
then-predict models present much less variation of the degree
of unfaithfulness, compared to the ‘simple’ select then predict
models. This shows that the models trained with Lu learn to
select more faithful rationales also over different initializa-
tions.

The higher alignment scores of the ‘faithful’ models show
(cf. table IV) that their rationales are more plausible and align
better with human annotations compared to the models trained
without Lu.

We also observe smaller variations in the percentage of the
claim included in the rationale (this is illustrated in fig. 10b
in appendix C). While for the ‘simple’ select-then-predict
models, the variation is very high, ranging from 2% to 94% of
the claim selected, this percentage is much smaller for models
trained with Lu and it ranges between 60% and 98% of the
claim. From this we can determine that these models are better
at learning to distinguish and to select important parts of the
input.

G. Post-hoc Interpretability of the Rationales

In order to understand how a prediction could be encoded
within a rationale and to find a specific pattern, we attempted
to analyze the select-then-predict models using the Shapley
Value Sampling interpretability method, provided by the Cap-
tum library [42], which is a model interpretability library for
PyTorch [43] models. Shapley Value Sampling [17, 18] is a
method used to estimate Shapley values, which are used to
calculate the contribution of each input feature to a model’s
prediction. This method is meant to reduce the computational
complexity of calculating Shapley values by sampling subsets
of input features, rather than computing all possible subsets.
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Example 1

Without regularization
Input: [CLS] wish upon did not star ryan phillipe. [SEP] wish upon is a 2017 supernatural horror thriller film directed by john

r. leonetti and starring joey king, ryan phillipe, ki hong lee, shannon purser, sydney park and sherilyn fenn. it is set to be
released in theaters on july 14, 2017, by broad green pictures and orion pictures. [SEP]

Rationale: [did, not, star, ryan, phillipe, [SEP], [SEP]]
Predicted label: Refutes
Gold label: Refutes

With regularization
Input: [CLS] wish upon did not star ryan phillipe. [SEP] wish upon is a 2017 supernatural horror thriller film directed by john

r. leonetti and starring joey king, ryan phillipe, ki hong lee, shannon purser, sydney park and sherilyn fenn. it is set to be
released in theaters on july 14, 2017, by broad green pictures and orion pictures. [SEP]

Rationale: [[SEP], upon, thriller, ryan, phillipe, sydney, 2017, [SEP]]
Predicted label: Refutes
Gold label: Refutes

Example 2

Without regularization
Input: [CLS] Harris Jayaraj is Indian. [SEP] Harris Jayaraj -LRB- born 8 January 1975 -RRB- is an Indian film composer from

Chennai, Tamil Nadu. He composes scores and soundtracks predominantly for Tamil films, while also composed for a few
films in Telugu and Hindi languages. [SEP]

Rationale: [is, Indian, [SEP], Harris, Jayaraj, [SEP]]
Predicted label: Supports
Gold label: Supports

With regularization
Input: [CLS] Harris Jayaraj is Indian. [SEP] Harris Jayaraj -LRB- born 8 January 1975 -RRB- is an Indian film composer from

Chennai, Tamil Nadu. He composes scores and soundtracks predominantly for Tamil films, while also composed for a few
films in Telugu and Hindi languages. [SEP]

Rationale: [[SEP], Harris, Jayaraj, Indian, Telugu, [SEP]]
Predicted label: Supports
Gold label: Supports

Example 3

Without regularization
Input: [CLS] papua comprised all of indonesian new guinea and it was cultured. [SEP] papua is the largest and easternmost

province of indonesia, comprising most of western new guinea. papua is bordered by the nation of papua new guinea to the
east, and by west papua province to the west. its capital is jayapura. it was formerly called irian jaya - lrb - before that west
irian or irian barat - rrb - and comprised all of indonesian new guinea. in 2002 the current name was adopted and in 2003
west papua province was created from western parts of papua province. [SEP]

Rationale: [comprised, all, of, indonesian, new, guinea, and, it, was, cultured, [SEP]]
Predicted label: Refutes
Gold label: Supports

With regularization
Input: [CLS] papua comprised all of indonesian new guinea and it was cultured. [SEP] papua is the largest and easternmost province

of indonesia, comprising most of western new guinea. papua is bordered by the nation of papua new guinea to the east,
and by west papua province to the west. its capital is jayapura. it was formerly called irian jaya - lrb - before that west irian
or irian barat - rrb - and comprised all of indonesian new guinea. in 2002 the current name was adopted and in 2003 west
papua province was created from western parts of papua province. [SEP]

Rationale: [[SEP], papua, indonesia, guinea, papua, papua, guinea, papua, indonesian, papua, papua, [SEP]]
Predicted label: Supports
Gold label: Supports

TABLE III: Rationales generated by the select-then-predict models on the FEVER dataset. The Input field represents the full
input to the model, while the words highlighted in bold are part of the selected rationale, also shown in the Rationale field.
On top is the rationale generated by a model without regularizer (i.e., Lclaim), on the bottom is a rationale generated by a
model with the Lclaim regularizer.

The goal was to understand which words in the rationale the
model was paying most attention to and to analyze potential
differences between positive and negative predictions.

However, deriving conclusive insights from this analysis
proved to be impossible due to the computational complex-
ity of this explainability method. Even though this method
is meant to approximate Shapley values and, therefore, to
reduce computational costs, the complexity of this method still

increases with the number of input features, making it partic-
ularly computationally expensive for longer input sequences,
such as instances from the FEVER dataset. Furthermore,
Shapley Value Sampling relies on multiple forward passes
through the model to evaluate the impact of perturbed inputs
on the predicted output. The process requires perturbing the
input data and computing the corresponding model predictions,
which leads to a high computational complexity. Since the
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π Average unfaithfulness Average alignment

‘Simple’ select-then-predict without regularizer

0.1 0.21 0.15
0.2 0.11 0.24

Select-then-predict models with regularizer

0.1 0.25 0.08
0.2 0.29 0.13

Faithful select-then-predict models with unfaithfulness loss

0.1 0.08 0.21
0.2 0.03 0.26

TABLE IV: Comparison of average values of unfaithfulness
and of alignment scores for different model classes on the
FEVER dataset.

Shapley values are estimated by averaging the contributions
of different feature subsets to the model’s prediction, the
number of sampled subsets directly affects the reliability of the
estimates. If too few samples are used, the estimates become
unreliable and may not accurately reflect the model’s decision-
making process. On the other hand, increasing the number
of samples improves accuracy but makes the process much
more computationally expensive, making it impractical for
long input sequences and complex models like BERT.

Therefore, the Shapley Value Sampling method could be
effective at explaining feature importance for simpler models,
or for shorter input sequences. However, it proved to be less
effective for our use case. In appendix F we present some
examples of attributions obtained while analyzing the select-
then-predict models.

H. Generalizability to Other Datasets

In order to analyze the behavior of the select-then-predict
models on a second dataset, we trained the select-then-predict
models on the MultiRC dataset [44]. We used the version
provided by DeYoung et al. [35]. MultiRC is a reading com-
prehension dataset, which consists of multiple choice ques-
tions. These instances are reformulated as yes/no questions by
providing question/answer/document triplets as input to the
model, whose task it is to verify whether the answer is correct
based on the provided documents. Examples of instances from
the MultiRC dataset are provided in appendix E. In this case,
the Question + Answer section of the input represents the
part of the input that is crucial in order to make a prediction:
it is not possible to predict whether an answer is correct
without knowing the question or the answer. Therefore, for this
dataset, the Q + A is analogous to the claim in the FEVER
dataset and if the models learn to make correct predictions
without selecting this part of the input, they must be providing
unfaithful rationales.

As done with our initial experiments on the FEVER dataset,
we first trained a full context baseline on the task, which
achieves 0.74 accuracy. We then proceeded to train select-then-
predict models on this dataset. We trained models with values

of π = 0.4 and π = 0.2. The resulting model performances
are reported in table V.

It can be observed that the select-then-predict models
achieve much lower performance on the MultiRC dataset,
compared to FEVER.5 This is likely due to the complexity
of the task: as can be seen in the examples in appendix E,
the task might be more difficult than fact verification, because
it requires more complex reasoning, as in fig. 13a, where the
answer is only partially incorrect and is still labeled as false.
This assumption is also supported by the lower performance of
the FC model on this dataset: it achieves an accuracy of 0.74
on this task, significantly lower than the accuracy achieved by
a FC model on the FEVER dataset. This indicates that the
BERT model might be too simple for this task.

Despite this, we can see a similar pattern to what we saw
in the previous experiments: the select-then-predict models
achieve lower accuracy than the FC model. The models trained
with Lclaim also present a drop in performance, but their accu-
racy is still above the random baseline, while selecting 0% of
the question + answer (Q + A) part of the input. However, the
values of unfaithfulness of these models are lower compared
to the models trained on the FEVER dataset. This is due to
the fact that the accuracy of the select-then-predict models is
lower, therefore performance gap between these models and
the random baseline is also smaller. These results demonstrate
that, even on a more difficult task, the models still learn to
make correct predictions while not selecting a crucial part of
the input, showing that they can encode the prediction within
the rationale.

Lastly, we observe that the select-then-predict models
trained with the unfaithfulness loss learn to select higher
percentages of the question + answer (Q + A) part of the input.
The performance of an unbiased predictor on their rationales
is higher compared to the models without unfaithfulness loss,
which shows that these rationales are more informative.

These results indicate that training the models with the ad-
ditional Lu loss term helps reduce the degree of unfaithfulness

These results show that incorporating the additional loss
term Lu during training helps reduce the degree of unfaithful-
ness, also when the models are trained on the MultiRC dataset.

VI. CONCLUSION

In this work, we investigate the unfaithful behavior of select-
then-predict models.

The select-then-predict architecture was created in order
to better understand the predictions of black-box models by
teaching the models to select a small, yet significant, part of
the input that leads them to make the final prediction. With
this thesis we investigate the hypothesis, already presented in
prior work, that these so-called inherently interpretable models

5These results are in line with previous work: in [38], the Sparse IB select-
then-predict model trained on the MultiRC dataset achieves 0.65 accuracy
with π = 0.2, whereas their FC baseline achieves 0.71 accuracy. We did
not manage to reproduce the results presented in this paper, since we get
0.65 accuracy only when using π = 0.4. This is likely due to differences in
training parameters and initialization. For example, they use a batch size of
32, whereas we use a batch size of 12 due to memory constraints.
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Model type π
Validation
Accuracy

Test
Accuracy F1 Percentage of

Q + A selected Accuracy ϕ∗ Unfaithfulness u(ϕ, ψ)

Baseline models

BERT FC 1 0.74 0.74 0.73 – – –

Select-then-predict models without regularizer

Sel Pred 0.2 0.61 0.59 0.57 19% 0.50 0.11
Sel Pred 0.4 0.65 0.63 0.63 84% 0.65 0.00

Select-then-predict models with regularizer

Sel Pred + reg 0.2 0.58 0.60 0.51 0% 0.55 0.03
Sel Pred + reg 0.4 0.60 0.64 0.57 0% 0.52 0.08

Select-then-predict models with unfaithfulness loss

Sel Pred faithful 0.2 0.62 0.64 0.59 47% 0.58 0.04
Sel Pred faithful 0.4 0.64 0.66 0.60 77% 0.62 0.02

TABLE V: Performance of the models on the MultiRC dataset. The performance of the models with the highest validation
accuracy is reported. The ‘simple’ select-then-predict models are trained without regularization and without the unfaithfulness
loss. The models with regularizer refer to models trained with Lclaim and the ‘faithful’ models are trained with Lu.

are not faithful by design. We present a formal definition of
unfaithfulness, which can be used as a measure to determine
the degree of unfaithfulness of a model and to judge how
informative the selected rationales are. A high degree of
unfaithfulness shows that the rationales chosen by a selector do
not contain the information necessary for an unbiased model to
make a prediction and, therefore, are not faithful. This provides
an answer to RQ2, because the degree of unfaithfulness allows
us to identify unfaithful behavior in select-then-predict models.

Our experiments show that select-then-predict models are
able to learn unfaithful behavior. We demonstrate this by using
an additional loss term, Lclaim, that teaches the model to not
include a part of the input that is crucial for the prediction
into the rationale. We observe that these models are still able
to achieve performance that is significantly above the random
baseline without seeing the claim, proving that the selector is
able to make a prediction based on the full input and to encode
it into the selected rationale.

Furthermore, we show that unfaithful behavior can also
emerge on its own: the select-then-predict models have varying
degrees of unfaithfulness and, based on the initialization of
the weights, some models learn this unfaithful behavior even
without the Lclaim loss term that we added for the sake of our
experiments. This shows that the failure case that we described
is not only plausible, but is also learned by some select-then-
predict models.

These results provide an answer to RQ1 and prove that,
without other specific constraints, the select-then-predict ar-
chitecture is prone to unfaithful behavior and that we cannot
guarantee their faithfulness based solely on the fact that the
only input received by the predictor is the rationale.

In order to answer RQ3, we train the models using an
additional loss term, the unfaithfulness loss. We show that the
use of an additional loss term during training can help reduce
the degree of unfaithfulness of select-then-predict models and
it can help to make the selected rationales more plausible.
Our experiments show that the Lu term acts as a regularizer

that can prevent select-then-predict models from learning to
select unfaithful rationales. This demonstrates that adding a
constraint can help prevent select-then-predict models from
encoding the prediction inside the selected rationales.

In conclusion, our research shows that it is important to
verify claims of inherent interpretability. Even architectures
that are seemingly interpretable by design might present
unforeseen failure cases, as demonstrated in our study. There-
fore, it remains crucial to continue research on interpretable
language models in order to better understand their limitations
and to develop more transparent and trustworthy AI systems.

A. Limitations and Future Work

This work has several limitations that indicate some direc-
tions for future research. First of all, due to time constraints,
the analysis was limited to a single select-then-predict archi-
tecture. Future studies could extend this work to a broader
set of select-then-predict models to determine if and how
this behavior appears in other select-then-predict architectures
and if they exhibit the same behavior when trained with a
regularizer.

Another interesting direction for future research involves
training a select-then-predict model with a simpler selector
model. In this research, BERT-base was used for both the
selector and the predictor, creating a setting in which the
selector is powerful enough to make a prediction and encode
the output within the rationale. As we showed in this work,
this can lead to unfaithful behavior. To address this issue,
future research could investigate the use of simpler selector
models, such as LSTM models, which might not be complex
enough to perform the prediction task, but might generate
informative and meaningful token representations, from which
the rationale could be sampled. This could lead to a more
faithful model, where the selector would not be complex
enough to learn this type of unfaithful behavior.

As mentioned in section V-E, it can be beneficial to study
how information regarding the final label is encoded in the
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selected rationale. This analysis could help provide insights
into the behavior of black-box models and it could help iden-
tify potential failure cases. Understanding how models secretly
communicate the label through selected tokens can help the
development of more robust and faithful architectures. Finding
the patterns used to encode the labels can lead researchers
to design solutions to limit this behavior and ensure that
rationales truly explain the model’s decision-making process.

Furthermore, this work was conducted on two datasets,
which may not be representative of all types of tasks that
select-then-predict models could be applied to. Our choice
of datasets was motivated by the structure of the dataset,
as discussed in section IV-A. However future work could
incorporate other datasets in order to assess how common this
type of unfaithful behavior is when using different datasets.

Another important consideration concerns the training setup
of select-then-predict models. In this work, the selector and
predictor are trained jointly, which is a common training setup
due to the fact that it does not require additional annotated
data and because it can be trained end-to-end. However, this
setup allows the selector and the predictor models to learn
a common encoding of the prediction. As a direction for
future work, it can be valuable to explore different select-
then-predict architectures where the selector and predictor are
trained independently. This would ensure that the selector
learns the task it is meant to learn: to select rationales and not
to perform the final prediction, thereby ensuring more faithful
rationales. However, this approach has certain downsides:
it requires additional supervision to train the selector, for
which human-annotated rationales are usually used. Human
annotations are expensive and are often subjective. In addition,
training on human annotated rationales assumes that these
are the only true explanation for a model’s decision, which
is not necessarily true in this case. This training setup can,
therefore, introduce human bias into the rationale selection
process and might not truly reflect how the models would
make their predictions.

Overall, these points show the importance of further studies
on the select-then-predict architecture and the need for more
research into explainable AI.
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APPENDIX

A. Examples from FEVER dataset

Table VI shows two instances from the FEVER dataset where human annotated rationales are not comprehensive or contain
too much information, which could reduce the alignment score. In Example 1, the gold rationale includes redundant information
and the sentence “hale first came to prominence as one of the five winners of the reality show american juniors” would have
been sufficient to make a prediction. However, if a selector omitted the last part of the sentence (i.e., “a children’s spin off of
american idol.”), it would have been penalized and would have gotten a lower alignment score, while still selecting a ‘correct’
rationale.

Example 2 demonstrates a case where another part of the input, not only the gold rationale, can be an explanation of the
prediction. The sentence that follows the one chosen as gold rationale: “. . . then became an investment banker at rothschild
& cie banque.” could also refute the given claim, but it was not included in the human annotated gold rationale. If a model
chose this as explanation, it could be seen as an acceptable explanation of a negative label, however this rationale would get
an alignment score equal to 0.

These examples show that the alignment score is not a comprehensive indicator of rationale quality and of their faithfulness.

Example 1

lucy hale was not in american juniors. karen lucille hale - lrb - born june 14, 1989 - rrb - is an american actress and singer.
earlier in her career, she was sometimes credited as lucy kate hale. hale first came to prominence as one of the five
winners of the reality show american juniors, a children’s spin off of american idol. she is best known for her role as
aria montgomery on the freeform series pretty little liars, which won her a people’s choice award for favorite cable tv actress
in 2014. the same year, she released her debut studio album, road between.

Example 2

emmanuel macron refused to work as an investment banker. emmanuel jean - michel frederic macron; born 21 december
1977 - rrb - is the president of france and ex officio co - prince of andorra, having assumed these offices on 14 may 2017. a
former civil servant and investment banker, he studied philosophy at paris nanterre university, completed a master’s
of public affairs at sciences po, and graduated from the ecole nationale d’administration - lrb - ena - rrb - in 2004.
he worked as an inspector of finances in the inspectorate general of finances - lrb - igf - rrb -, then became an investment
banker at rothschild & cie banque. macron was appointed deputy secretary-general in francois hollande’s first government in
2012, having been a member of the socialist party from 2006 to 2009. he was appointed minister of economy, industry and
digital affairs in 2014 under the second valls government, where he pushed through business-friendly reforms. he resigned in
august 2016 to launch a bid in the 2017 presidential election. in november 2016, macron declared that he would run in the
election under the banner of en marche!, a centrist political movement he founded in april 2016, and won the election on 7
may 2017. macron, at the age of 39, became the youngest president in the history of france. upon his inauguration, macron
appointed le havre mayor edouard philippe to be prime minister on 15 may 2017.

TABLE VI: Instances from the FEVER dataset, where human annotated rationales do not represent the only correct answer
and therefore can be misleading. The human annotated gold rationale is shown in bold.
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B. Additional Training Details

In this section we provide additional details regarding training of the models.
We utilize gradient accumulation to train the models. Gradient accumulation is a technique that allows to simulate a larger

batch size, without exceeding GPU memory limits. Instead of updating model weights after every batch, model weights are
accumulated over multiple batches before the weights are updated. This technique allows us to achieve a larger effective batch
size, which leads to more stability during training.

During training we use a learning rate scheduler - the linear schedule with warmup from the transformers library [45].

Full Context Select-then-predict

Maximum number of epochs 15 15
Maximum input length 512 512
Batch size 12 12
Learning rate 5e-5 5e-5
Gradient accumulation steps 10 10
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C. Performance of Select-then-Predict Models

The images below demonstrate the variation of the F1 score, the percentage of claim that is selected and the alignment score
of select-then-predict models across different initializations and and different select-then-predict model types.

The variation in performance is caused by the sampling function that selects the rationales, therefore it can be seen that the
higher the percentage of the full input that is selected (represented by the parameter π), the lower the variation in performance.

Fig. 9: Box plot representing the variation of F1 score of the select-then-predict models on the FEVER dataset. The first
two boxes (in blue) refer to select-then-predict models without regularizer trained with a sparsity value π = 0.1 and π = 0.2,
respectively. The following two boxes (in yellow) refer to select-then-predict models trained with regularizer, with π = 0.1 and
π = 0.2, respectively. The final two boxes (green) refer to models trained with the additional ‘unfaithfulness’ loss, with π =
0.1 and π = 0.2, respectively.
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(a) Percentage of claim selected as rationale

(b) Alignment scores

Fig. 10: Box plots representing the variation of the percentage of the claim included in the rationale and of alignment scores
related to different select-then-predict models, trained on the FEVER dataset. The first two boxes (in blue) refer to select-then-
predict models without regularizer trained with a sparsity value π = 0.1 and π = 0.2, respectively. The following two boxes
(in yellow) refer to select-then-predict models trained with regularizer, with π = 0.1 and π = 0.2, respectively. The final two
boxes (green) refer to models trained with the additional ‘unfaithfulness’ loss, with π = 0.1 and π = 0.2, respectively.
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Random
Seed π

Validation
Accuracy

Test
Accuracy F1 Score Percentage of

Claim Selected
Accuracy

ϕ∗
Unfaithfulness

u(ϕ, ψ)
Alignment

‘Simple’ select-then-predict models without regularizer

8 0.1 0.82 0.79 0.80 15% 0.50 0.32 0.10
78 0.1 0.78 0.74 0.74 16% 0.49 0.29 0.12
10 0.1 0.86 0.84 0.83 87% 0.76 0.1 0.24
11 0.1 0.85 0.75 0.78 2% 0.49 0.36 0.06
12 0.1 0.82 0.83 0.80 27% 0.55 0.27 0.12
15 0.1 0.87 0.84 0.85 90% 0.84 0.03 0.27

9 0.1 0.81 0.76 0.69 69% 0.72 0.09 0.17
3 0.2 0.88 0.87 0.88 88% 0.77 0.11 0.25

10 0.2 0.88 0.89 0.89 93% 0.88 0.00 0.28
5 0.2 0.88 0.85 0.87 94% 0.81 0.07 0.27
9 0.2 0.87 0.88 0.88 70% 0.87 0.00 0.34

15 0.2 0.86 0.77 0.80 4% 0.49 0.37 0.10
12 0.2 0.87 0.81 0.84 42% 0.66 0.21 0.15
11 0.2 0.86 0.87 0.88 94% 0.82 0.04 0.26

Select-then-predict models with regularizer

10 0.1 0.76 0.76 0.74 49% 0.59 0.17 0.14
2 0.1 0.73 0.73 0.73 0% 0.49 0.24 0.06
6 0.1 0.82 0.80 0.80 0% 0.49 0.33 0.1
3 0.1 0.77 0.72 0.75 2% 0.49 0.28 0.07
8 0.1 0.70 0.70 0.69 0% 0.49 0.21 0.05

10 0.2 0.70 0.66 0.68 0% 0.49 0.21 0.09
8 0.2 0.79 0.76 0.79 2% 0.49 0.30 0.14
2 0.2 0.82 0.78 0.81 0% 0.49 0.33 0.15
7 0.2 0.81 0.80 0.81 1% 0.49 0.32 0.13
9 0.2 0.78 0.78 0.78 2% 0.49 0.29 0.12

‘Faithful’ select-then-predict models with unfaithfulness loss

2 0.1 0.77 0.70 0.77 64% 0.72 0.05 0.25
5 0.1 0.83 0.65 0.83 59% 0.63 0.20 0.18
9 0.1 0.77 0.74 0.76 90% 0.71 0.06 0.21

17 0.1 0.83 0.80 0.83 72% 0.74 0.09 0.20
8 0.1 0.85 0.80 0.84 80% 0.73 0.12 0.23
5 0.2 0.87 0.83 0.86 99% 0.80 0.07 0.30
2 0.2 0.89 0.90 0.89 78% 0.88 0.01 0.23
9 0.2 0.87 0.84 0.87 82% 0.88 -0.01 0.25

11 0.2 0.87 0.85 0.87 97% 0.79 0.08 0.24
16 0.2 0.89 0.88 0.89 91% 0.88 0.01 0.29

TABLE VII: Performance of the select-then-predict models trained during our experiments, on the FEVER dataset. The
‘simple’ select-then-predict models are trained without regularization and without the unfaithfulness loss. The models with

regularizer are trained with Lclaim and the ‘faithful’ models are trained with Lu.
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Random Seed π
Validation
Accuracy

Test
Accuracy F1 Percentage of

Q + A selected
Accuracy
ϕ∗

Unfaithfulness
u(ϕ, ψ)

‘Simple’ select-then-predict models without regularizer

9 0.2 0.61 0.59 0.57 19% 0.50 0.11
7 0.2 0.59 0.62 0.55 17% 0.58 0.01
5 0.2 0.60 0.61 0.60 69% 0.58 0.02
9 0.4 0.65 0.63 0.63 87% 0.62 0.03

12 0.4 0.65 0.63 0.63 84% 0.65 0.00

Select-then-predict models with regularizer

10 0.2 0.58 0.60 0.51 0% 0.55 0.03
7 0.2 0.58 0.59 0.51 0% 0.55 0.03

17 0.4 0.60 0.61 0.55 0% 0.55 0.05
7 0.4 0.60 0.64 0.57 0% 0.52 0.04

Select-then-predict models with unfaithfulness loss

7 0.2 0.62 0.64 0.59 47% 0.58 0.04
15 0.4 0.64 0.66 0.60 77% 0.62 0.02

TABLE VIII: Performance of the select-then-predict models trained during our experiments, on the MultiRC dataset. The
‘simple’ select-then-predict models are trained without regularization and without the unfaithfulness loss. The models with

regularizer are trained with Lclaim and the ‘faithful’ models are trained with Lu.
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D. Examples of Rationales

Fig. 11: Rationales generated by the select-then-predict models with the highest validation accuracy. The third column represents
rationales selected by a model trained without Lclaim, whereas the fourth column contains rationales selected by a model trained
with Lclaim. Both models were trained with a sparsity parameter π equal to 0.1.
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Fig. 12: Rationales generated by the select-then-predict models with the highest validation accuracy. The third column represents
rationales selected by a model trained without Lclaim, whereas the fourth column contains rationales selected by a model trained
with Lclaim. Both models were trained with a sparsity parameter π equal to 0.2.
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E. MultiRC Dataset Examples

(a) Example of an instance from the MultiRC dataset.

(b) Example of an instance from the MultiRC dataset.

Fig. 13: Examples of instances from the MultiRC dataset. The Question + Answer field represents a question and a potential
answer to it. The document snippet in Docs contains information to verify whether the provided answer is true or false. The
text in bold shows the human annotated golden rationale. The models we train have the task of predicting whether the answer
to the question is true or false based on the provided document.

25



F. Post-hoc Interpretability of the Rationales

Figures 14 and 15 show the outputs of the Shapley Value Sampling method used to analyze model predictions. We first
analyze the full context model in order to use it as a baseline for the analysis of the select-then-predict models. In fig. 14
it can be observed that, in the case of a FC model and of the select-then-predict models without regularizer, the prediction
is mainly attributed to one word, i.e. ‘successful’, whereas from these attribution scores it seems that the other words from
the input do not bear much importance for the final prediction. A similar observation can be made for fig. 15, where for the
prediction of the FC model and of the select-then-predict model, a lot of importance is assigned to one word. However, in this
case we see that the word is different for these two models: it appears that for the FC model, the word ‘pyrenees’ contributes
positively to the prediction, whereas for the select-then-predict model, the word ‘mount’ has the highest importance score. It
is also important to note that the word that gets the highest attribution score in the FC model’s attributions, does not even
get selected as part of the rationale. This can indicate several things: that the select-then-predict model does not select the
most meaningful words from the input or that the attribution scores do not provide an accurate representation of the model’s
reasoning process.

In fig. 14c and fig. 15c, which refer to the models trained with regularizer, all the input tokens are given very low attribution
scores and, from these attributions, it is not clear which tokens had a higher impact on the final prediction. This shows that
this attribution method failed to discern which tokens are important for the final prediction and, therefore, does not provide
any information regarding the decision making process of the model.

These examples demonstrate that in our use case, the Shapley Value Sampling method did not yield meaningful insights
into the predictions of our select-then-predict models.

For the full context model (in fig. 14a and fig. 15a) we set the n samples parameter (i.e., the number of feature permutations
tested) to 100, whereas for the select-then-predict models we set it to 20. We set the baseline, i.e. the reference input, to the
[PAD] token.
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(a) Attributions for the full context model

(b) Attributions for the select-then-predict model trained without regularizer

(c) Attributions for the select-then-predict model trained with regularizer

Fig. 14: Attributions of the Shapley Value Sampling method used to analyze the predictions of the select-then-predict models.
Words highlighted in green have higher attribution scores, meaning that they contribute towards the predicted label, while
words highlighted in red contribute negatively to the prediction (i.e., they make the model less confident in the prediction). The
three subfigures refer to the same full input text, that can be seen in fig. 14a. In figures fig. 14c and fig. 14b only the rationale
selected by the model is shown. The attribution score represents the sum of the marginal contributions to the prediction of all
the input tokens.
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(a) Attributions for the full context model

(b) Attributions for the select-then-predict model trained without regularizer

(c) Attributions for the select-then-predict model trained with regularizer

Fig. 15: Attributions of the Shapley Value Sampling method used to analyze the predictions of the select-then-predict models.
Words highlighted in green have higher attribution scores, meaning that they contribute towards the predicted label, while
words highlighted in red contribute negatively to the prediction (i.e., they make the model less confident in the prediction). The
three subfigures refer to the same full input text, that can be seen in fig. 15a. In figures fig. 15c and fig. 15b only the rationale
selected by the model is shown. The attribution score represents the sum of the marginal contributions to the prediction of all
the input tokens.
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