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Abstract

For scaling up the qubits in silicon quantum computers, it is vital to determine crosstalk effects that can lower
the fidelity of the computer. In this computational project, we examine single-qubit gate-fidelities in the pres-
ence of crosstalk for uncoupled spin qubits that are driven with X-gates via electron dipole spin resonance
(EDSR). We introduce two models: the first model introduces the AC Stark shift and the novel second model
expands on this by adding a resonance frequency shift on top. We assume the latter resonance frequency shift
to be due to heating effects. We optimize the gate-fidelity for a qubit coupled to up to six drives as a function
of the overall driving time and -frequency of a single drive for both models using the Nelder-Mead algorithm.

Using the AC Stark shift model, we still obtain 0.99999 fidelity if we do not account for the crosstalk. How-
ever, when using the second model, the fidelity drops to 0.69 in the presence of two drives when we do not
correct for the heating-induced resonance frequency shift and the AC Stark shift. Furthermore, the fidelity
decreases linearly with the number of drives coupled to the qubit, implicating that the resonance frequency
shift will become a significant problem for the scalability of silicon quantum computers. We find that we can
correct for the resonance frequency shift entirely by using optimized driving time and -frequency, where most
gain comes from optimizing the driving frequency. Moreover, we discover that there is a linearly increasing
dependence of the resonance frequency shift at the theoretical driving time as a function of the total drives.
Up to a translation factor of 0.5 MHz, we discover the same linear relationship for the correction needed on
the theoretical driving frequency to hit maximum fidelity as a function of the total drives.
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1
Introduction

A lot of effort has been directed into designing quantum systems that can function as computers, so-called
quantum computers. The advantage of quantum computers over classical computers is that quantum com-
puters can perform specific tasks orders of magnitude faster than classically possible. Spin qubits are quan-
tum bits that form a two-level system based on the spin of an electron or the absence of an electron, called
an electron-hole, in semiconductor devices. Due to the nature of spin-qubits, we can control how they be-
have via magnetic and/or electric fields. Using spin qubits for quantum computing was first proposed back
in 1998 [10], and silicon-based quantum computing is a promising platform for quantum computers due to
their small size and relatively long memory lifetime (called coherence time). In addition, semiconductor quan-
tum devices could be easily integrated into the existing semiconductor manufacturing infrastructure [23],[28].
During the past 20 years, a lot of advances in the area have been made and, recently, it has been demonstrated
that universal control of six qubits in a silicon quantum computer is possible [16], which would correspond to
64 bits on a classical computer.

To enable reliable large-scale quantum computing, it is necessary to scale up the number of qubits while
maintaining high fidelities, which is a measure of how trustworthy the computer performs its operations on
the qubits. One of the errors that can lower the fidelity of a quantum processor is crosstalk, which are errors
due to some subsystem of the computer unintentionally influencing another subsystem [21],[26]. To correct
for crosstalk, it is essential to investigate its origin and consequences. The aim of this thesis is to evaluate and
optimize the fidelity of a single qubit in a two- to six-qubit system that feels two types of crosstalk due to the
operations that are performed on the other qubits.

Before we can calculate the fidelity, we first build a model in which spin-qubits are driven via a method
called electron dipole spin resonance (EDSR). This method uses a combination of magnetic fields in such
a way that we can perform operations on the qubits individually by using magnetic fields that oscillate at a
qubit-specific frequency, called the qubit’s resonance frequency. This frequency is different for all the qubits
in the system, enabling us to perform various operations on other qubits. Next, we introduce the AC Stark
shift in the model, which is a type of crosstalk that shifts the resonance frequency of the qubits as a conse-
quence of the qubits ’feeling’ not only the operation we intend it to feel, but also the operations on other
qubits, driven with different frequencies. Furthermore, "AC" stands for the alternating source of the drives. To
expand on this model, we introduce a resonance frequency shift of unknown nature that has been observed
by several research groups [3],[24],[20],[29],[16]. We assume that this form of crosstalk is due to the energy that
the magnetic fields performing the qubit operations feed into the system, which heats the qubits. We calcu-
late the fidelities of a qubit that is influenced by the crosstalk in both models (AC Stark shift with and without
heating). Afterward, in the hope of correcting for the crosstalk effects, we use an optimization algorithm, the
Nelder-Mead simplex algorithm, to find the optimal operation time and the optimal frequency for performing
an operation on the qubit to get the optimal fidelity for said qubit.

This thesis is structured as follows. The theoretical background, including the Nelder-Mead algorithm
needed for this project, is contained in chapter 2. We explain the model in chapter 3 and the results are pre-
sented in chapter 4. We discuss the limitations of the model and the implications of the results in chapter 5.
The conclusion of this thesis can be found in chapter 6.
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2
Theory

The purpose of this chapter is to give the theoretical background that forms the basis of this thesis. We cover
the basic mathematics behind quantum gates on qubits, a way to perform quantum operations in the labora-
tory called EDSR and a characterization of how well these operations are performed as compared to the ideal
operations. Lastly, we present an optimization algorithm called Nelder-Mead which we will use to maximize
the performance of our qubit operations for a given set of parameters.

2.1. Qubits and qubit operations
The memory cells of our quantum computer are qubits and we can represent their value, the so-called qubit
state, as a superposition of the set of statevectors forming an orthonormal basis in the 2-dimensional Hilbert
space H2. We can choose any orthonormal basis, but for simplicity we pick the following basis:{

|0〉 =
(
1
0

)
, |1〉 =

(
0
1

) }
,

which basisvectors |0〉 and |1〉 are called ’up’ and ’down’, respectively. Our qubit state |ψ〉 ∈H2 is then given by:

|ψ〉 =α |0〉+β |1〉 , |α|2 +|β|2 = 1 , α,β ∈C .

An alternative to the representation above is |ψ〉 = cos θ
2 |0〉 + e iφ sin θ

2 |1〉 with θ ∈ [0,π] and φ ∈ [0,2π). All
possible states can then be easily visualized with the help of the Bloch sphere, see figure 2.1.

Figure 2.1: A statevector of a qubit represented on the Bloch sphere. The sphere has a radius of 1 and the vectors of the
orthonormal basis are on both sides of the z-axis. Pure qubit states can be represented by the coordinates (θ,φ) on the

Bloch sphere. Mixed qubit states are represented by the coordinates (r, θ,φ) for some r ∈R with r < 1, which correspond to
points within the Bloch sphere. The figure was taken from [19] and is unchanged (available via license: CC BY 4.0).

In order to make use of qubits, we need to be able to perform operations on them, which we call quantum
gates. Gates change the state of the qubit, which we can visualize as changing from one point on/in the Bloch
sphere to another point on/in the sphere. An important characterization of quantum gates is that they are
unitary, which makes the gates norm preserving.
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Possible (single-qubit) gates are the X-, Y- and Z-gates, which rotate the qubit’s state by 180 degrees around
the x-, y- or z-axis, respectively:

X = σ̂x , Y = σ̂y , Z = σ̂z ,

with σ̂x , σ̂y , σ̂z the Pauli matrices. Note that performing an X- or Y-gate on a qubit in up- or down-state is
indistinguishable from one another except for a phase constant. Another possible gate is the SWAP-gate, which
is a two-qubit gate that swaps the states of two qubits. Another two-qubit gate is the CNOT gate, which flips
the value of a qubit if and only another qubit is in an up-state. In systems with more than one qubit, single
and multiple qubit gates can be combined using tensor products, which are notated with the ⊗ symbol. For
instance, performing an X-gate on qubit 1 and a Y-gate on qubit 2 would result in a total quantum gate of X ⊗Y .

2.2. Time evolution
To get the full picture of how qubits work, we also need to know how qubits behave in time. For this, we turn
to the qubit’s Hamiltonian Ĥ , which tells us the kinetic and potential energy of our qubit. The Schrödinger

equation iħ ∂ψ
∂t = Ĥψ then tells us the time evolution of the qubit, where ħ is Planck’s constant divided by 2π

[14].
Instead of constantly solving this differential equation, we can also find a direct formula for the time evo-

lution using the propagator Û (t ), given an initial state |ψ(0)〉:

|ψ(t )〉 = Û (t ) |ψ(0)〉 .

The propagator can be calculated from the Hamiltonian Ĥ . For a time-dependent Hamiltonian, the propaga-
tor can be computed as follows:

Û (t ) =T

[
exp

(−i

ħ
∫ t

0
Ĥ(τ)dτ

)]
, (2.1)

where T is the time-ordering operator. This calculation is not has no closed-form solution and to solve this
one would need to turn to a numerical simulation. However, for a time-independent Hamiltonian equation
2.1 simplifies [8]:

Û (t ) = exp

(−i Ĥ t

ħ
)

. (2.2)

2.3. Electron dipole spin resonance
To be able to make use of the qubits, we need a way to perform the quantum gates on them. One method of
doing this is called electron dipole spin resonance (EDSR). [17] This technique cleverly makes use of a slanted
static external magnetic field B⃗z , which ensures we can address the qubits separately from one another, and
an effective alternating magnetic field B⃗(t ) to perform the quantum gates, also further referred to as ’the drive’.

2.3.1. Effective Hamiltonian
The potential energy of a qubit in the presence of a magnetic field is given by the Hamiltonian H = −µ⃗ · B⃗ ,

where µ⃗= −gµB S⃗
ħ , in which g is the Landé g -factor, µB is the Bohr magneton, ħ is Planck’s constant divided by

2π and S⃗ is the spin operator. By now applying a static magnetic field in the z-direction, the energy levels of
the qubit get separated, which is known as ’Zeeman splitting’. The contribution of the static magnetic field to

the Hamiltonian is Hs = −ω
2 Z , where Z is the Z-gate and ω = gµB B

ħ (with B the static magnetic field strength)

is called the Larmor frequency [4]. The contribution of the alternating magnetic field B⃗(t ) =Ωcos(w̃ t ) in the
x-direction is Hac (t ) = Ωcos(w̃ t )X , where Ω is the drive strength of the magnetic field and w̃ is the driving
frequency. For qubits that undergo no qubit-qubit interactions, our effective total single-qubit Hamiltonian
when driving an X-gate looks as follows:

H(t ) =−ω
2

Z + Ω
2

cos(w̃ t )X . (2.3)
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2.3.2. Driving time
We clearly see the EDSR Hamiltonian and our drive are time-dependent. As a consequence, if we want to drive
a certain gate on a qubit, it matters for how long we keep driving the qubit with the alternating magnetic field.
For instance, if we would like to perform a perfect X-gate, having a driving time that is too short or long, results
in a rotation around the x-axis that is not a perfect 180 degrees. The driving time τ for an X- and Y-gate depends
on the driving strengthΩ by τ= 2π

Ω .

2.3.3. Rotating wave approximation
So far, everything that has been considered has been done in the laboratory frame of the qubit. In some cases,
converting the qubit to the rotating frame of the qubit can simplify calculations or offer valuable insight into
the dynamics. Transforming the Hamiltonian to the rotating frame of the qubit, notated by H̃ , can be achieved
with H̃ = RH(t )R†+ i dR

d t R†, where R = exp(−iωt Z
2 ), with all the other parameters defined as above. Transform-

ing the propagator U to the rotating frame is achieved with the formula Ũ = RU . When we mention an ideal
operation being some gate, we mean that this gate defined in the rotating frame of that qubit. This is because
said rotating frame removes the effect of the precession around the z-axis that is due to the external magnetic
field on the qubit, which is a movement the qubit does regardless of which operation we perform on the qubit.

For drives that have a small detuning from the resonance frequency of the qubit, we can make an approxi-
mation for the Hamiltonian in the rotating frame [27]. Since the fast rotating terms of the Hamiltonian evaluate
to zero when integrating over relatively large times, we can ignoring these fast rotating terms. We call this the
Rotating Wave Approximation (RWA). Conveniently enough, the time-dependent Hamiltonian in equation 2.3
evaluates to the following time-independent Hamiltonian in the rotating frame

H̃RW A =−ω− w̃

2
Z + Ω

4
X .

To extract the propagator from the Hamiltonian above, we can then use equation 2.2. Physically, the effect of
driving the qubit with a slightly off-resonant frequency causes the qubit to undergo perturbed Rabi-oscillations

with a frequency of
√

(Ω/2)2 + (∆w)2, where ∆w is the detuning of the drive. Rabi-oscillations describe the
periodic flopping of a qubit from one of its eigenstates (up- and down-state) to the other in the presence of a
slightly detuned drive [4].

However, when an qubit gets driven with multiple drives with different driving frequencies, we cannot use
the RWA anymore since the detuning of all the different drives together is not small enough anymore for the
RWA to be applicable [5]. Thus, the Hamiltonian remains time-dependent, which makes extracting the propa-
gator hard. Another way of approximating the propagator directly is by using the Floquet-Magnus Expansion
[11]. However, in this project we turn to the numerical ODE solvers of Python 3’s QuTiP package to calculate
the propagators, since we can control numerical errors more easily than errors in approximating the propaga-
tor itself. Numerical methods aim to approximate the solution (which is a function) of a differential equation
by discretization of the grid function at points in the domain of the function we solve for. After discretization,
numerical algorithms give a recipe for how to go about approximating the solution of the function at the dif-
ferent points of the domain. To calculate the propagators, the numerical methods solve another form of the
time-dependent Schrödinger equation: iħ ∂U (t ,t0)

∂t = ĤU (t , t0) with the initial value U (t0, t0) = I , where I is the
identity operation in H2 in the case we consider a 2-dimensional Hamiltonian. For a detailed explanation of
the methods that are used for solving said equation, we refer to the sections on Adam-Moulton methods and
Backwards Differentiation Formulas in paper [2].

2.4. Fidelity
Next, we would like to know if the operations that we perform on the qubits are the same as we intend them
to be. We characterize this by calculating the gate fidelity of one or more qubits within the system. The gate
fidelity compares the actual performed operation with the intended operation and averages over all possible
initial states that the qubits could have. The gate fidelity can be found in the following equation:

F (t ) =
d +|Tr[U †

i deal (t )Uactual (t )]|2
d(d +1)

, (2.4)

in which d is the dimension of the Hamiltonian of the qubits we are interested in, Uactual is the propagator
of the performed qubit operation and Ui deal is the propagator of the intended qubit operation. This formula
rests on the diagonizability of Hermitian matrices and on the fact that any matrix can be split into a Hermitian
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and an anti-Hermitian counterpart [15]. To find the fidelity of a certain gate, we can take the time t in the
above equation to be equal to the driving time.

For a quantum computer to become scalable, we need to achieve very high fidelities. For instance, 0.99
fidelity corresponds to 1 in a 100 operations generating an error. Thus, for quantum computers to become
reliable enough to work with, we need a fidelity that has a value that is extremely close to 1.

2.5. Crosstalk
One phenomenon that affects the gate fidelities in an experimental set-up is called crosstalk. Crosstalk is
any kind of unintended influence that some subsystem of our set-up exercises on another subsystem. Within
experimental quantum computing, there exist several kinds of crosstalk, such as AC stark shift, heating effects
and coupling of the qubits [26]. For the purpose of this thesis, we only elaborate on the AC stark shift and we
introduce an additional resonance frequency shift that has not been understood yet.

2.5.1. AC stark shift
The AC Stark shift is a crosstalk effect caused by capacitively induced gate coupling of the driving fields of EDSR
that are meant to drive gates on other nearby qubits. In essence, the qubit of interest is then driven by several
off-resonant drives, resulting in an off-resonant Rabi-oscillation with a detuned Rabi frequency. Effectively,
this means that the qubit’s axis of quantization, the axis on which the up- and down-state are defined, changes
slightly. Because of this, the qubits resonance frequency changes slightly together with the new quantization
axis.

More specifically, the AC Stark shift is caused by an alternating (hence the ’AC’) and non-resonant field of
the form Vor cos(wor t )/2, where wor is the off-resonance frequency of the drive and Vor the driving strength
of the off-resonant drive. We can move into the rotating frame of the difference between the on-resonant and
off-resonant drive with frequency ∆wor = w0 −wor , where w0 is the on-resonance frequency. Next, we apply
the RWA to arrive at the following Hamiltonian: HRW A = ∆wor Z /2+Ωor X /2, where Ωor is the amplitude of
the off-resonant Rabi-oscillation. We can now define a new quantization axis with an effective detuning of

∆we f f =
√
∆w2

or +Ω2
or . The original frame of reference was rotation at w0, so the new resonance frequency

becomes wr es = w0+∆we f f , which approximates to wr es ≈ w0+ Ω2
or

2(w0−wor ) . The effective resonance frequency
shift is given by

wshi f t ,AC St ar k ≈ Ω2
or

2(w0 −wor )
, (2.5)

whereΩor =Vor /2.

2.5.2. Resonance frequency shift
Another phenomenon that has been observed in experimental quantum computing in silicon is a resonance
frequency shift of a qubit in the presence of drives on other qubits that has a much larger order of magnitude
than the AC Stark shift. Different research groups have observed this shift, but the nature of the shift is un-
known [3],[24],[20],[29],[16]. The shift is reportedly about 2 MHz and it is suggested that the frequency change
might be due to some property of the quantum dots used in the experimental set-up [24]. In this project, we
will model it as if the nature of this shift is heating. The reason for this is that an explicit temperature depen-
dence of the Larmor frequencies has been confirmed in the lab [22]. The precise model for this heating is given
in chapter 3.

2.6. Optimization
When trying to correct for crosstalk, we can optimize the gate fidelity of a qubit. In general, in optimization
we try to find the best solution out of all feasible solutions for a given set of variables. For optimization for a
function f :Rn −→R depending on continuous variables, the standard optimization problem looks as follows:

min
x

f (x)

s.t. ai (x) ≤ 0, i = 1, ..., l

b j (x) = 0, j = 1, ...,k

5



where f (x) is called the objective function that depends on a vector x ∈ Rn , which represents the n-variables
that we optimize for. The functions ai , b j :Rn −→R for l , p ≥ 0 represent the inequality and equality constraints,
respectively, that we put on the objective function. We can write a maximization problem as a minimization
problem by simply minimizing the negative objective function of the maximization problem. Furthermore, we
call the optimization problem unconstrained when l , p = 0. [7]

2.6.1. Nelder-Mead optimization
The Nelder-Mead algorithm (NM) aims to minimize a scalar-valued objective function for one or more vari-
ables. [13] NM is a direct search method, meaning that it does not use any derivative information about the
scalar functions. Instead, it relies on evaluating the function values for test-points that lie on a simplex, which
is an n-dimensional geometric object that has n + 1 vertices. Based on the function values, the algorithm
chooses more test-points and adapts the shape of the simplex in the direction of the best function value. It dis-
cards the test points with the worst function values by moving away from them. The simplex so to say ’walks’
over the landscape of the objective function’s range. By the direction of the ’best’ value is meant that when we
see the function value decrease, it is considered to be in the direction of the minimum we aim to find. As a con-
sequence of this, the Nelder-Mead algorithm can converge to a local minimum instead of a global minimum,
depending on which starting test-points are chosen. Checking if the algorithm finds a global minimum can
be effectively done with a brute-force grid search over the optimization variables. The grid search will output
the fidelity values for a predefined grid and it gives information about the approximate location of the global
optimum.

We proceed to describe the steps of the Nelder-Mead algorithm in more detail. Each iteration of NM has
a simplex where the vertices xi for i = 1, ...,n +1 are points in Rn with the corresponding function value. The
outcome of each iteration is either a new vertex that replaces the worst vertex of the previous simplex, or a set
of n new vertices that form a ’smaller’ simplex together with the best vertex of the previous simplex. We can
perform a total of four operations on the simplex, associated with a corresponding scalar parameter: reflection
ρ, expansion χ, contraction γ and shrinkage σ. An iteration of the algorithm is visualized in figure 2.2 and
contains the following steps [25], [9]:

1. Ordering: the vertices are ordered from the best to worst function value and given the labels x1 to xn+1

respectively.

2. Reflecting: calculate the reflection point

xr = x̄ +ρ(x̄ −xn+1) ,

where x̄ = ∑n
i=1 xi /n. If the function value of this new point is better than the function value of the

worst vertex, f (x1) ≤ f (xr ) < f (xn+1), the worst function value is replaced by the reflection point and the
iteration starts from scratch. If this is not the case, go on to step 3.

3. Expanding: if f (xr ) ≤ f (x1), we calculate the expansion point

xe = x̄ +χ(xr − x̄) .

If f (xe ) < f (xr ), we accept xe as a new vertex and discard xn+1 and the iteration starts from scratch. If
this is not the case, we will continue with the next step.

4. Contracting: if f (xr ) ≥ f (xn) and

• Inside contraction: the value of xr is strictly better than the value of xn+1, we calculate xc = x̄ +
γ(xr − x̄). If f (xc ) ≤ f (xr ), we accept xc and discard xn+1. The iteration terminates. Go to step 5 if
this is not the case.

• Outward contraction: the value of xr is worse than the value of xn+1, we calculate x ′
c = x̄ −γ(x̄ −

xn+1). If f (x ′
c ) ≤ f (xn+1), we accept x ′

c and discard xn+1. The iteration terminates. Go to step 5 if
this is not the case.

5. Schrinking: we define n new vertices vi for i = 2, ...,n +1 from

vi = x1 +σ(xi −x1) ,

and we start a new iteration with the simplex that has vertices x1, v2, ..., vn+1.

6



Since each iteration is done for a given simplex, an initial simplex and a set of criteria for when to terminate
the algorithm have to be specified. Often, programmed algorithms generate this simplex when the algorithm
is supplied with an initial guess for one of the vertices.

Figure 2.2: Visualization of the different steps of a single iteration in the Nelder-Mead algorithm for a 2-dimensional
optimization problem. The original 3-dimensional simplex at the start of the iteration is displayed in the top left corner of
the figure. Point ’w’ displays the vertex with the worst function value. Point ’c’ displays the location of x̄. ’r’ is the reflection

point. The figure was taken from [6] and is unchanged (available via license: CC BY 4.0).
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3
Model

In this chapter, we explain the model used in this project. The entire model is programmed in Python3. We
present the relevant equations for the Hamiltonian of a single-qubit that is controlled via EDSR and feels the
effect of gates being driven on neighbouring qubits. Next, we expand on this model by adding a term that
represents the resonance frequency shift as a consequence of heating. We generalize both the model with and
without a resonance frequency shift due to heating for a single qubit that is affected by multiple drives, which
gives us information about how a single-qubit will behave in a system that encompasses multiple driven qubits
in total. Lastly, we present the optimization problem solved by the Nelder-Mead algorithm to find the max-
imum obtainable single-qubit gate fidelity. The values of all parameters thare are introduced in this chapter
can be found in Appendix A.

3.1. AC Stark shift
To examine how the AC Stark shift affects the single-qubit gate fidelity, we take the effective EDSR Hamiltonian
from equation 2.3 and expand this model by adding a driving term to this Hamiltonian. We further refer to
the effective EDSR Hamiltonian as the ’EDSR Hamiltonian’. The extra driving term represents the influence of
a nearby qubit on which a quantum gate is performed for a certain amount of time. Effectively, the qubit in
question then feels an extra off-resonant drive. Since X- and Y-gates only differ by a 90 degrees phase factor,
we can choose to drive all qubits with a X-or Y-gate without loss of generality. Hence, all drives in this project
are X-gates and we set ħ = 1. Moreover, all drives throughout this project have a rectangular pulse envelope.
The single-qubit Hamiltonian H2 ∈H2 of qubit 2 in the presence of qubit 1 is then given by:

H2 =−w2

2
σ̂z + Ω2

2
cos(w2t )σ̂x +αΩ1

2
cos(w1t )σ̂x , (3.1)

where w1 and w2 are the resonance frequencies in units of rad Hz of the qubit 1 and qubit 2, respectively, Ω1

and Ω2 are the driving amplitudes in units of rad Hz of the X-gates being performed on qubit 1 and qubit 2,
respectively, andα is the unitless crosstalk factor that represent how much the drive of qubit 1 couples to qubit
2.

Ultimately, we would like to know the gate fidelity of qubit 2 by using equation 2.4. We assume all the
qubits that we consider are uncoupled and because of this assumption, we can consider single-qubit Hamil-
tonians instead of considering the Hamiltonian of the whole system. To compute the gate fidelity, we take the
actual Hamiltonian Hactual to be H2 in which crosstalk effects are present and we take the ideal Hamiltonian
Hi deal to be the same as the EDSR Hamiltonian in equation 2.3. The propagators of these (time-dependent)
Hamiltonians, Uactual and Ui deal are computed by numerical integration methods that are available in the
QuTiP package in Python3. For said computation, we use the theoretical driving time τ to perform a perfect
π rotation around the x-axis of the Bloch sphere (X-gate). Next, we perform a transformation to the rotating
frame of qubit 2 on both propagators by Ũ = RU , where R = exp(−iτσ̂z w2).

Hereafter, we perform a virtual phase correction, done via a virtual Z-gate, on the actual propagator in the
rotating frame by performing the transformation Ũ∗ = CŨ , where C = exp(−iφσ̂z ) for some φ ∈ [0,2π) such
that the gate fidelity is maximized when substituting Ũ∗

actual and Ũi deal in the gate fidelity equation 2.4. To
find the optimal value of φ, we use the Nelder-Mead algorithm with φ= 0 as initial guess. A virtual Z-gate can
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be easily implemented in the software of a quantum computer [12], and doing a phase correction is necessary
since we examine the ideal propagator for a ideal X-gate, which has a known driving time. If we evaluate the
actual propagator for some other driving time, we will be off by some phase constant and the gate we have
performed could still be the gate we want it to be, only shifted in the (x,y)-plane of the Bloch sphere. By
performing a phase correction, we ensure that we get a high fidelity when we drive the correct gate, even if it
is off by a phase constant.

3.2. Resonance frequency shift due to heating
To add the heating-induced resonance frequency shift phenomenology to the model, we use experimental
data on the dependence of a qubits resonance frequency on the driving time as depicted in figure 3.1. We
assume the frequency shift to be due to heating (dielectric and conductive losses), such that the shift depends
on the energy P of the driving pulses f (t ) = Ω2

2 cos(w2t )+αΩ1
2 cos(w1t ) in units s−1 on qubit 2, given by the

formula for time-averaged Joule heating in units of J :

P = A
∫ tdr i ve

0
| f (t )|2d t , (3.2)

where A is some constant in units Sm2 [18]. We have assumed that the pulses f (t ) have a rectangular pulse
envelope. By curve-fitting the data in figure 3.1 to the function y = axb , we find that the resonance frequency
shift of the qubit depends on the energy of the driving pulses with a

Ab ≈ 8.72∗10−3 skg−1m−2 and b ≈ 0.292 as
follows:

wshi f t = a

(
P

A

)b

. (3.3)

We see then that the resonance frequency shift depends on the driving pulse amplitude and the driving
time, which adds an extra time-dependent term to the Hamiltonian. The new Hamiltonian is formed by adding
the resonance frequency shift to the Larmor frequency of the second qubit in the AC Stark shift Hamiltonian
in equation 3.1, leading to the shifted Hamiltonian H2,shi f t ∈H2:

H2,shi f t =−w2 +wshi f t (t )

2
σ̂z + Ω2

2
cos(w2t )σ̂x +αΩ1

2
cos(w1t )σ̂x . (3.4)

To find the single-qubit gate fidelity for a qubit that suffers from resonance frequency shift, we can follow
the method of calculating the gate fidelity described in the section above by replacing H2 by H2,shi f t .
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Figure 3.1: Curve-fit of the experimental data of a qubit’s resonance frequency shift wshi f t in MHz as function of the
energy P/A, when applying some off-resonant microwave pulse for variable amount of time. The driving time and driving
amplitude are converted to units of energy by using formula 3.2 with the factor A incorporated in the curve-fit parameters.

The fitted graph is of the form y = axb with a
Ab ≈ 8.72∗10−3 skg−1m−2 and b ≈ 0.292. The experimental data was

obtained during private communications with B.W. Undseth.
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3.3. Generalization to multiple drives
Suppose we now want to generalize our model to the case where a single qubit, driven with an X-gate, feels
the crosstalk of M −1 other drives from other qubits in the total system that are also driven with X-gates. The
single-qubit Hamiltonian HN ∈H2 with N ≤ M will now look as follows:

HN =−wN

2
σ̂z + ΩN

2
cos(wN t )σ̂x +

M∑
j=1, j ̸=N

α j
Ω j

2
cos(w j t )σ̂x , (3.5)

where wi andΩi for i = 1, ..., M are the resonance frequencies and driving amplitudes (both in rad Hz) of qubits
1 to qubit M respectively. The factor a j for j ∈ {1, ..., M } \ {N } represents the amount of influence that qubit N
feels of the drives on all other qubits in the system.

If we now add the Larmor frequency shift model into our Hamiltonian, we will get the following Hamilto-
nian HN ,shi f t ∈H2:

HN ,shi f t =−wN +wshi f t (t )

2
σ̂z + ΩN

2
cos(wN t )σ̂x +

M∑
j=1, j ̸=N

α j
Ω j

2
cos(w j t )σ̂x . (3.6)

Again, the only difference with the previous Hamiltonian is the wshi f t (t ) function. The wshi f t (t ) depends on

the time and can be calculated by taking f (t ) = ΩN
2 cos(wN t )+∑M

j=1, j ̸=N α j
Ω j

2 cos(w j t ). Since numerical inte-

gration of | f (t )|2 takes too long if we afterwards also numerically solve the time-dependent Schrödinger equa-
tion to compute the propagator, we solve

∫ tdr i ve
0 | f (t )|2d t analytically: assuming f (t ) =Ω/2∗∑N

n=1αn cos(wn t ),

we can solve
∫ tdr i ve

0

∑N
n=1αn cos2(wn t )+2

∑N
j=1

∑ j−1
i=1 αiα j cos(wi t )cos(w j t )d t instead.

3.4. Optimization of the gate fidelity
To make silicon quantum computers as useful as possible, we want to obtain the highest possible gate fidelity
values. In order to compensate for the AC stark shift and the resonance frequency shift, we investigate if we
can find an optimal driving time and driving frequency of qubit N for which we are calculating the single-qubit
gate fidelity. The optimization problem that we will be solving is given by

min
a≤tdr i ve≤b, c≤wdr i ve≤d

−F (tdr i ve , wdr i ve )

s.t . F (tdr i ve , wdr i ve ) ≤ 1

−F (tdr i ve , wdr i ve ) ≤ 0.

In the equations above, the function F that depends on the driving time tdr i ve and wdr i ve is given by
equation 2.4. The actual propagator is computed from the EDSR Hamiltonian in equation 2.3 and the actual
propagator computed from either the AC stark shift Hamiltonian in equation 3.5 or the Hamiltonian including
both the AC stark shift and the resonance frequency shift in equation 3.6, by replacing the cos(wN t ) term by
cos(wdr i ve t ). For the bounds of the driving time, we take a = 100 ns and b = 500 ns and for the bounds of the
driving frequency we take c = wN −2π∗600 MHz and d = wN +2π∗600 MHz. The driving time bounds include
the theoretical driving time ttheo (calculated for when we assume there is no crosstalk), which is about 200 ns.
The driving frequency bounds are chosen such that the driving frequency is closer to the theoretical driving
frequency wtheo = wN than the resonance frequency of a neighbouring qubit. The theoretical driving time
and -frequency are the optimal parameters in case we do not take crosstalk into account, since Ui deal would
be equal to Uactual in that case, see section A.1 for more detail.

We solve the above optimization problem using the Nelder-Mead algorithm with ttheo , wtheo as initial
guess. Furthermore, for 2 drives, we perform a brute force grid search for tdr i ve and wdr i ve to investigate
how much deviation is permitted from the optimal driving time and -frequency to still obtain 0.99 fidelity. The
grid search validates of the optimal parameters found by the Nelder-Mead algorithm, ensuring the algorithm
has found a global minimum.
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4
Results

In this chapter, we evaluate the model introduced in chapter 3. Following the structure of the previous chapter,
we first analyze the AC Stark shift model mentioned in section 3.1. We validate said model in Appendix B by
reproducing the results from previous research published in the paper [5]. In the current chapter, we turn to
analyzing single-qubit gate fidelities as a function of the driving time and the driving frequency in the presence
of two and more drives. We then go on to do the same for the model that includes the resonance frequency
shift as mentioned in section 3.2.

4.1. Gate fidelity in the presence of AC Stark shift
4.1.1. Two drives
First, we examine the single-qubit gate fidelities in the presence of AC Stark shift when we apply one on-
resonant drive and one off-resonant drive. This is effectively a two-qubit system, where we examine the ef-
fect on one of the two qubits. We investigate the effect of applying drives with constant driving amplitude Ω,
but with different driving times tdr i ve and different driving frequencies, notated either with wdr i ve in units
rad Hz or fdr i ve in units of Hz. We have plotted the grid of gate fidelities in figure 4.1a and we zoomed-in on
the high-fidelity values in this figure, which is shown in figure 4.1b. From said figures, we can see that there
seems to be a global optimum in the region of tdr i ve , fdr i ve ≈ 200 ns, 18.693 GHz, which are also the theoret-
ical optimal driving values we use throughout the rest of this chapter when we compare the ideal propagator
with the actual propagator, as discussed in section A.1. We may also refer to these theoretical optimal values
by ttheo , wtheo . We proceed to find the optimal driving time and -frequency with the Nelder-Mead algorithm.
The calculated optimal values are tdr i ve , fdr i ve = 200.000281 ns, 18.6929739 GHz, which differ only slightly
from the theoretical values. Whenever we refer to calculated optimal values, we mean optimal values that are
a result of the Nelder-Mead algorithm.

4.1.2. Three to six drives
We repeat the same process for up to and including six drives in total. The driving frequencies of the drives
differ by a positive or negative integer of a constant value around the resonance frequency of the qubit that
we investigate, as shown in figure A.1 in appendix A. We assume this is the case so that the results do not
depend on a specific set of resonance frequencies, which limits the parameters we have in our model. The grid
searches for all of these drives reveal no significant change as compared to the grid search for the 2 drive case.
When plotting the (squared and absolute value of) fidelity difference between 2 and 3 drives in figure 4.2, we
notice that there is at most a 0.0003 fidelity difference within a 5 nanosecond and 0.1 MHz window around the
theoretical optimum ttheo , wtheo . This leads us to believe that scaling up the number of drives in the system in
the presence of only the AC Stark shift does not change the location of the calculated optimal driving time - and
frequency. From figure 4.2a, we can also see that small changes in fidelity appear periodically with a period
of slightly less than 5 ns, which is around the order of magnitude of the period of the resonance frequency
between the drives |∆ f | = 0.2 GHz. Figure 4.2b also reveals an interesting pattern of lines with minimal fidelity
difference, but the difference with the rest of the region in the same figure is 0.00005 fidelity difference, which
is minimal.
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Figure 4.1: Grid of the single-qubit gate fidelity for a qubit being driven with a resonant and off-resonant X-gate. The fidelity
is a function of driving time tdr i ve and driving frequency with the theoretical optimal driving frequency wdr i ve −wtheo .

The colorbar represents the gate-fidelity value. Figure (b) is zoomed-in on the high-fidelity region in figure (a).
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Figure 4.2: Figures of (a) the square of the absolute value of the gate fidelity difference between a qubit experiencing effects
of 2 or 3 drives and (b) showing the region around the theoretical optimal driving time and -frequency: t = 200 ns and

(wdr i ve −w2)/(2π) = 0.0 MHz. Both figures show the gate fidelity as function of driving time and -frequency. We plotted
the square of the gate fidelity in the left figure, since the scaling reveals the details we are interested in most clearly.

The hypothesis that scaling up to more drives does not change the optimal parameters meaningfully is
further corroborated by the calculated optimal parameters for 2 to 6 drives that take into account the AC Stark
shift. The data is visualized in figures 4.3a and 4.3b and the exact data can be found in table C.1 in appendix C.
As we can see, the difference in driving time is about 5 orders of magnitude smaller than the theoretical driving
time, and the difference in driving frequency is 5 to 6 orders of magnitude smaller than the theoretical driving
frequencies. The order of magnitude of the shift (wdr i ve − wtheo)/(2π) also makes sense, since calculation
of equation 2.5 for 2 drives gives approximately a 20 kHz resonance frequency shift. Furthermore, we notice
in figure 4.3b that for 3 and 5 drives, the absolute frequency difference is zero, which is due to the choice of
resonance frequencies for the other qubits. Namely, when we consider the resonance frequency of the qubit
of interest for 3 and 5 drives, we have the same drives on the right of this resonance frequency as to the left of
this resonance frequency. Figure A.1 in appendix A visualizes this statement more clearly. Furthermore, when
we checked if we could also obtain high fidelities when we drive with the theoretical optimal values, we found
that we got at least 0.99999 fidelity for 2 to 6 drives (see table C.2 in appendix C for the exact values). This is
about the limit of fidelity that can be measured experimentally. Taking everything into account, we conclude
that optimization of the driving time and frequency when we just consider the AC Stark shift is not needed to
get much higher fidelities.
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Figure 4.3: Visualization of (a) the absolute difference between the theoretical driving time, 2π
Ω , and the calculated optimal

driving time in picoseconds and (b) the absolute difference between the theoretical driving frequency, equal to the qubit’s
resonance frequency wtheo , and the calculated optimal driving frequency in kHz. Both differences are plotted as a function

of the amount of drives M that we have evaluated the optimal driving time and -frequency for.

4.2. Resonance frequency shift due to heating
So far, we have evaluated what happens when we incorporate AC Stark shift in our model. We now turn our
attention to the resonance frequency shift due to the effect of other drives on nearby qubits on the qubit we
are interested in.

4.2.1. Heating model
First, to get a clear picture of the time-dependent resonance frequency shift we add to the model, we have
examined the resonance frequency shift as a function of driving time for 2 to 6 drives in total, see figure 4.4a.
We notice that as we drive for longer, we add more and more resonance frequency shift to the qubit’s original
resonance frequency, which makes sense because of the function that models the shift (equation 3.3). We
also see a constant change between drive 1 and 2, 2 and 3, etc., which is presumably due to the crosstalk
factor α of all the off-resonant drives being equal to 0.4 and not 1. In general, we notice that more drives add
(slightly) more resonance frequency shift. This is expected since we put more energy into the system. The
small oscillations in the graphs are due to the oscillatory behaviour of the pulses. Since the oscillations are
so small and the graphs for the several drives diverge from one another, the effect of the oscillations can be
ignored for driving times larger than a hundred nanoseconds since the graphs do not overlap anymore.

If we now plot the single-qubit gate fidelities for the heating model when driving them at the theoretical
optimal driving time tdr i ve = ttheo ns and wdr i ve = wtheo in figure 4.4b, we can see that the fidelities have sig-
nificantly decreased in comparison to the earlier near-perfect fidelities that we calculated for the same values
using the model discussed in the previous section. Furthermore, we note that the fidelity appears to decrease
linearly as a function of the amount of drives coupled to the qubit. This implicates that the resonance fre-
quency shift is a serious problem for currently existing quantum processors (which have up to 6 qubits) since
it affects the fidelities by 33 percent. What’s more, is that this linear decrease implies that the resonance fre-
quency shift will become a larger problem in terms of fidelity when quantum processors are scaled to more
qubits and we do not correct for the resonance shift.

4.2.2. Two drives
In order to find a way to correct for this significant decrease in fidelity, we proceed to evaluate the single-
qubit gate fidelities in the resonance frequency shift model as a function of the driving time and the driving
frequency in the same way as in the previous section. We have plotted the grid of gate fidelities in figure 4.5a
and we zoomed-in on the high-fidelity values in this figure, which is shown in figure 4.5b. When comparing
these figures with the same figures from before (figures 4.1a, 4.1b), we can see that the patterns on the larger
grids are almost the same, but that the pattern in figure 4.5a has slightly shifted to the right and has stretched
with respect to the frequency axis and it appears to tilt slightly to the top-right corner. For the resonance
frequency shift model, there still appears to be a global optimum around the theoretical driving time, but the
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Figure 4.4

optimal driving frequency seems to shifted along with the grid pattern by about 2 MHz. The tilt to the top-right
corner of the figure can be explained by a higher resonance frequency shift due to a longer driving time.

Again, we proceed to find the optimal driving time and -frequency with the Nelder-Mead algorithm. The
calculated optimal values are tdr i ve , fdr i ve = 200.66 ns, 18.694927215 GHz, which differ by approximately 0.66
ns and 1.93 MHz from the theoretical optimal values. These values are significantly larger than the values
found in section 4.1.1. Furthermore, we see from figure 4.5b that > 0.99 fidelity range is about the same as
for only AC Stark shift: 0.2 MHz and 15 ns around the calculated optimum. However, In terms of percentages,
these ranges are approximately 0.0002 % and 7.5% of wtheo and ttheo , respectively. Furthermore, the calculated
optimal driving time still lies within the 15 ns range from the theoretical optimum, so by driving at the theoret-
ical optimal driving time, we can still get more than 0.99 fidelity, whereas it is clear that when we incorporate
a resonance frequency shift due to heating, we do not obtain high-fidelities anymore. Both the ranges to get
0.99 fidelity and the fact that the theoretical driving time is still within this range, suggest that for obtaining
high fidelities, it is most important to focus on finding the optimal driving frequency and much less important
to find the optimal driving time.
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Figure 4.5: Grid of the single-qubit gate fidelity for a qubit being driven with a resonant and off-resonant X-gate. The
fidelity is a function of driving time tdr i ve and driving frequency wdr i ve . The colorbar represents the gate-fidelity value.

Figure (b) is zoomed-in on the high-fidelity region in figure (a).
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4.2.3. Three to six drives

We also investigate what happens to the optimal driving time and -frequency when we add more drives that
couple to the qubit. The parameters that are used for these extra drives are exactly the same as used for the
results of the previous model. Again we plot the absolute difference in driving time and the absolute difference
in driving frequency with respect to the theoretical optimum in figures 4.6a and 4.6b, respectively. From said
figures, we can see that the optimization yields about a 1% difference in terms of driving time and about a
0.002% difference in driving frequency with respect to the theoretical optimum. The data is included in table
C.3 in appendix C, and from this data we note that the optimized fidelity gives us at least 9 digits of 9 fideli-
ties again, implicating that we can completely correct for the heating-induced resonance frequency shift by
optimization of the driving time and -frequency. From figure 4.6b, we also note that the difference in driving
frequency seems to approximately linearly depend on the amount of drives coupling to the qubit. The plotted
orange line is given by the function ∆w = aM +b, where ∆w is the absolute frequency difference, M is the
number of drives, a = 0.066575 MHz/drive and b = 1.80 MHz. We also do not see a drop in the difference of the
driving frequency and the theoretical driving frequency for odd drives as we did previously. This is because the
resonance frequency shift is mainly caused by the energy of the drives and not so much the frequency of the
drives. Furthermore, since the resonance frequency shift has a much larger impact on the resonance frequency
than the AC Stark shift, the symmetry of the odd amount of drives around the qubit’s resonance frequency is
broken.
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Figure 4.6: Visualization of (a) the absolute difference between the theoretical driving time, 2π
Ω , and the calculated optimal

driving time in picoseconds and (b) the absolute difference between the theoretical driving frequency wtheo and the
calculated optimal driving frequency in MHz when there is a resonance frequency shift. Both differences are plotted as a

function of the amount of drives M that we have evaluated the optimal driving time and -frequency for. The dashed orange
line shows that the relation between the absolute driving frequency difference and the number of drives is almost linear.

The corresponding data is included in table C.3 in appendix C.

If we now plot the resonance frequency shift of the qubit at the theoretical driving time ttheo and the data
displayed figure 4.6b together in figure 4.7, we learn that the relation of the resonance frequency shift at the
theoretical driving time and the optimal calculated driving frequency are very similar, and differ by about 0.5
MHz. The spacing between the heating-induced resonance frequency shift and the driving frequency correc-
tion is presumably caused by the time-dependence of the heating term, and by the capacitive gate coupling
term that was already included in the first model. Since we only have a limited set of data points (5 data points),
further research efforts can go into repeating the same steps, but for more than six drives. Despite the small
amount of data available on which the 0.5 MHz difference has been found, it could provide a rough estimate
on what driving frequency could offer higher gate fidelities should the we know the resonance frequency shift
in advance.
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5
Discussion

In this chapter we discuss assumptions and limitations of the model and the way it is programmed into
Python3. Then, we give recommendations for driving gates on qubits that are resonance frequency shifted.
Finally, we provide suggestions for further research.

5.1. Model
First, we assumed that extra resonance frequency shift in the second model is due to the heating effect caused
by the AC electromagnetic fields that are driving the quantum gates on the qubits. There may be other (un-
known) electromagnetic wave-induced effects going on here that are not considered. The curve-fit that deter-
mines the dependence of the resonance frequency shift on the energy of the driving pulses is based on a single
data set. The dependence of the pre-factor A in formula 3.2 is absorbed into the factor a in equation 3.3, and
this factor is assumed to be constant for all drives we add to the system.

Secondly, we saw from figure 4.4a that the longer we drive the qubit, the more the resonance frequency
will shift. We only aimed to drive a single gate with high-fidelity, but for scalable quantum computing the gate
fidelities must remain high for driving multiple qubit gates after one another. Since we modelled this effect
as heating, this heating and thus the frequency shift will build up when gates or multiple gates are driving for
longer. Driving longer might lower fidelities significantly if we do not correct for this shift. Instead of correcting
for the shift, one could also allow the qubits to cool down after every operation to keep the resonance frequency
shift as low as possible. Of course, cooling time would significantly decrease the speed at which the quantum
computers can perform operations, which could defeat the purpose of a quantum computer.

We have also assumed that the crosstalk factor α is the same for all drives on other qubits. We expect
that this assumption does not hold for large 1D qubit arrays or other large 2D qubit arrays. Namely, localized
microwave pulses on one qubit located far away from a qubit will not impact as much as the effect a neigh-
bouring driven qubit. A possibility is to consider the middle most qubit of the qubit array such that the effects
of crosstalk are symmetric and/or let α decrease for qubits further away from the qubit we investigate.

On the design of the slanting magnetic field that gives the qubits an individual resonance frequency, we also
saw that for odd drives, the AC Stark shift is minimal. Suppose the resonance frequencies can be engineered
precisely so that each qubit differs by the same amount in resonance frequency. In that case, we can minimize
the effect of AC Stark shift on single-qubit gates by the design of the slanting magnetic field.

As discussed in section B.1 the choice of driving strengthΩ for each drive can also impact the gate-fidelities,
since the different driving strengths affect the detuning of a qubit’s Rabi frequency. The driving strength Ω is
chosen to be equal for all drives, for the reasons discussed in section B.1, but one could investigate how differ-
ent driving strengths for other drives impact the fidelity the qubit’s whose resonance frequency is shifted. By
equation 3.2, we expect that the driving strength Ω will have a significant impact on the resonance frequency
shift on the qubit.

Another issue encountered in this project is the sensitivity of the numerical integration methods used to
calculate the propagators. The default settings of the relative tolerance bounds were already limiting the accu-
racy of the results for two drives without resonance frequency shift. We have solved this issue by decreasing the
values for both the absolute and relative tolerance until decreasing further did not alter the fidelity results. We
proceeded to work with a relative and absolute tolerance of 1e-14 and 1e-13 respectively. In the grid searches
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done for more drives, using these tolerance settings resulted in continuous patterns, which leads us to believe
that any further decrease of tolerance settings is unnecessary and would only increase computation time.

5.2. Recommendations for experimental quantum computing in silicon
Based on the results, the effect of just the AC Stark shift on the single-qubit gate fidelities is negligible. Namely,
we still obtain very high fidelities and, optimization in terms of driving frequency and driving time only gives
a minimal improvement at the limit of what is measurable in experiments. However, when an extra resonance
frequency is added on top of the AC Stark shift, we have seen that we need to take the crosstalk into account
when we want to obtain high fidelities. Experimental research efforts should get conclusive proof that this extra
resonance frequency shift is indeed due to heating caused by the energy that the drives feed into the quantum
system. The resonance frequency as an effect of heating suggests that over longer driving times and for driving
more qubits, the shift will get larger and decrease fidelities further. This shift can be lowered by ensuring
the system has enough time to cool down after driving and/or it can be corrected by optimizing the driving
parameters. In terms of driving parameters, the driving frequency of the single qubit we evaluate the fidelity
of matters a lot, but the driving time is expected to matter less. In addition, the driving strength Ω has a lot of
impact on the energy we supply into the system, as discussed earlier in this chapter. We expect that keeping
the driving strength minimal and optimizing the driving frequency should already give much higher fidelities.
For optimization of single-qubit gate fidelities in presence of other drives, using the model that is presented
in this thesis should provide an indication for the optimal driving frequency. Furthermore, the relationship
between the resonance frequency shift at the theoretical driving time and the optimal frequency shift should
be investigated further for more drives. If the 0.5 MHz difference between the two holds, it is expected that it
provides an easy way to achieve high gate fidelities if the heating-induced resonance frequency shift is known.

5.3. Suggestions for further research
Because of long computation time (even when running the code in parallel), it was not possible to generate
data for more than 6 drives with resonance frequency added within the time-frame of this project. For further
research, we’d recommend generating data for more than six drives. More data-points will give more insight
into the dependence of the resonance frequency shift and the optimal driving values and one might gain valu-
able insights from this.

For this project we have assumed that qubits are uncoupled and that they therefore undergo no qubit-qubit
interactions. Further research can include qubit-qubit coupling and see how the results change. Researching
this is vital since universal high-fidelity quantum computing relies on the performance of a set of both single-
qubit and two-qubit gates. This set of gates should at least include some entangling gate such as the Controlled
NOT-gate, CNOT, which can entangle and disentangle qubits and all of the two-qubit gates, such as the CNOT
gate, rely on having the qubit-qubit interactions turned on instead of off. [1] Therefore, adding qubit-qubit
interactions to the model and evaluating the fidelities of two-qubit gates is suggested for further research.

Moreover, reliable quantum computers depend on the single-qubit gate fidelity, but also on the fidelity of
the whole system. To get the whole picture on how the crosstalk (AC Stark- and the extra resonance frequency
shift) affect the fidelity of a quantum computer, one should investigate this ’whole system’ fidelity. We can ex-
tract these fidelities for uncoupled qubits by taking the tensor product of all the single-qubit Hamiltonians and
computing the propagator. Note that the dimension of the Hilbert space will then scale with 2M for M qubits
in the total system, presumably making the calculations a lot heavier on the computer and thus data genera-
tion will take much longer. For coupled qubits, one cannot simply take the tensor product of the single-qubit
Hamiltonians, since the qubit-qubit interactions will add additional terms to the whole system Hamiltonian.

18



6
Conclusion

When including the AC Stark shift to the effective ESDR Hamiltonian, we can still obtain single-qubit fidelities
higher than 0.99999 even if we do not correct for the crosstalk. This lower bound for the fidelity is already very
high, and it is at the limit of the fidelity that can be measured experimentally at the moment, which means that
we could ignore the AC Stark shift when it is the only crosstalk that works on the qubits. However, should even
higher fidelities be preferred, one could change the driving time and driving frequency in ps and kHz range
respectively from the theoretical optimal driving parameters, calculated for when we do not take crosstalk into
account. When hitting the optimum, fidelities are higher than 10 digits of 9.

With our heating model, we compute resonance frequency shifts from 2.3 to 2.7 MHz for two to six drives,
respectively. Adding this shift on top of the AC Stark shift, we get at most 0.69 fidelity when we drive at the
theoretical optimal parameters that do not consider crosstalk. Furthermore, we see a linear decrease in the
fidelity when we add more drives that influence the qubit. Thus, to realize scalable silicon quantum computers
while maintaining high fidelities, it is very important to consider the resonance frequency shift as an effect of
heating. We find that we can correct for the decreasing fidelity by optimizing the driving time and -frequency in
the ns and MHz range, resulting in at least nine digits of 9 fidelity. For all drives, the correction that we perform
on the theoretical optimal driving values is much higher for the driving frequency than for the driving time (1%
and 0.002%, respectively), which implies that we can get the most fidelity gain from finding the optimal driving
frequency. The range for getting at least 0.99 fidelity is about 0.2 MHz around the optimal driving frequency for
two drives. Furthermore, we discover that there is a linearly increasing dependence of the resonance frequency
shift at the theoretical driving time as a function of the total drives. Up to a translation factor of 0.5 MHz,
we notice the same linear relationship for the correction needed on the theoretical driving frequency to hit
maximum fidelity as a function of the total drives. Due to the lack of a large data set for said relationship, we
suggest investigating this relationship more closely in further research. Evaluating multiple-qubit gate fidelity
and whole system fidelity is also left for further research, which is important for forming the entire picture
of how AC Stark shift combined with heating-induced resonance frequency shift affects a silicon quantum
computer.
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A
Parameters

In the following table, we introduce the values of all parameters that are introduced in Chapter 3.

Table A.1: Table containing all the parameters of Chapter 3 and corresponding
values that were used to generate data. As said before, we take ħ= 1.

Parameter Meaning of parameter Value Unit
w1 Resonance/Larmor frequency of the first qubit in the system 2 π * 18.493 rad GHz
∆w Frequency difference between the resonance frequencies of neighbouring qubits 2 π * 0.2 rad GHz

w j
j ∈ {1, ...M }. Resonance/Larmor frequencies of all qubits in the system, where
M signifies the last qubit.

see figure A.1 rad GHz

Ω j
j ∈ {1, ...M }. Driving amplitude of the quantum gates that are performed on the
system. Choice of driving amplitude is explained in section B.1.

2 π * 5 rad MHz

d Dimension of the Hilbert space of the Hamiltonian and Propagator for a single qubit. 2 -

α j
j ∈ {1, ...M } \ {N }. Crosstalk factor, symbolizing how much influence the drives of
quantum gates have on the single-qubit that we are interested in

0.4 -

Figure A.1: Resonance frequencies of the different drives used for in this project. We examine the effects of the drives on the
single-qubit gate fidelity of the qubit in orange with resonance frequency shift w2.

A.1. Theoretical optimal driving time and -frequency
Here we provide the derivation of the theoretical optimal driving time and frequency. Said theoretical values
are determined for the assumption that there is no crosstalk present in the system, so Hactual does not contain
crosstalk terms anymore and is equal to

H2 =−wdr i ve

2
σ̂z + Ω2

2
cos(w2t )σ̂x , (A.1)

where all parameters are as defined in chapter 3. The ideal Hamiltonian Hi deal is the same as the EDSR Hamil-
tonian in equation 2.3 and we use the theoretical driving time τ to perform a perfect π rotation around the
x-axis of the Bloch sphere (X-gate), as discussed in chapter 2 and 3. By comparing both equation 2.3 and A.1,
we note that the time evolution operators of both of the Hamiltonians can only be equal when wdr i ve = w2

(or equal to wN when we consider multiple drives) and tdr i ve = τ. Naturally, for two equal time evolution
operators, the fidelity is equal to one, which is the optimal fidelity that one can achieve:
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F (τ) =
d +|Tr[U †

i deal (τ)Uactual (τ)]|2
d(d +1)

=
2+|Tr[U †

i deal (τ)Ui deal (τ)]|2
2(2+1)

= 2+|Tr[I ]|2
2(2+1)

= 2+|2|2
6

= 1. ■
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B
Validation of AC Stark shift model

To validate the AC Stark shift model mentioned in section 3.1, we reproduced the results from previous re-
search published in [5]. Their research was done by using approximations such as the Rotating Wave Ap-
proximation for a single drive and the Floquet Magnus Expansion for two drives to extract the propagators of
interest, whereas this project uses the numerical tools that the QuTiP package in Python3 offers to extract the
propagators. The reason for using the numerical tools is the minimization of approximation errors and ease
of scaling up the drives affecting a single qubit.

All parameters used throughout this project are the same as the parameters used for the results of the
research we aimed to reproduce. The results of this reproduction are presented in figures B.1 and B.2. The blue
line in figure B.1 seems to reproduces the blue line in figure 2b of the article [5] quite accurately. The orange
line (overlapping the blue line) in figure B.1 represents the gate fidelity computed by using the numerical tools
in the QuTiP package. As the blue and orange lines overlap, we have corroboration that the programmed AC
Stark shift model for a single drive on an idling qubit is corroborated.

Figure B.2 aims to reproduce figure 5 of article [5]. From comparing these two figures, we see that these
seem to overlap quite accurately too. Note that to reproduce the results accurately, the tolerance bounds of the
numerical integration methods had to be increased as compared to the tolerance bounds used to generate the
data of the orange line in figure B.1. Again, we have more corroboration for assuming the AC Stark shift model
is correct.

Figure B.1: Gate fidelity of an idling qubit in the presence of a qubit being driven with a Y-gate closeby. The resulting drive
on the qubit in question is off-resonant. The crosstalk factor α is 0.4. The single-qubit gate fidelity is plotted as a function of

the driving strength By,11 of the Y-gate that’s being driven on another qubit. The driving strength By,11 uses the same
notation as in the article [5], but it is equal toΩ1 in the notation used throughout this project. The blue represents fidelity

calculated with the effective EDSR Hamiltonian in equation 2.3 as Hactual and the orange line shows the fidelity calculated
from the numerically calculated propagators.
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Figure B.2: Gate fidelity of a qubit driven with a Y-gate in the presence of another qubit being driven with a Y-gate. The
crosstalk factor α is 0.4. The qubit in question now feels both resonant and off-resonant drives. The single-qubit gate

fidelity is plotted for one qubit as function of the driving strength By,11 of the Y-gate that’s being driven on the other qubit.
The driving strength By,11 uses the same notation as in the article [5], but it is equal toΩ1 in the notation used throughout

this project. The driving strengthΩ2 used here is 5∗2π MHz. The blue represents gate fidelity calculated with the
numerically calculated propagators.

B.1. Synchronization condition
A result that follows directly from the two figures is that the driving strength we use to drive our qubits with
impacts the fidelity a lot. A way to optimize the gate-fidelities is to ensure the driving strengths of the several
drives working on the qubit follow the synchronization condition [5]. For idling qubits in the presence of
a single other off-resonant drive, the synchronization condition returns us the local maxima of the graphs in
figure B.1. For a driven qubit with a single other off-resonant drive nearby, the synchronization condition gives
us the local maxima of the graphs figure B.2. However, the end-goal of this project is to investigate effects of
resonance frequency shift on single-qubit gate fidelities, and the synchronization condition assumes that the
drive on the qubit of interest in on-resonance. We are unsure how this extra off-resonance drive changes the
analytical synchronization condition. We expect that in the presence of the resonance frequency shift, we will
have an effective off-resonant drive that is the sum of the two drives, since the drives are both X- or Y-gates. The
plot in figure B.1 then gives us the most information about which driving strength to use for driving the qubits.
From the figure we see that for By,11/2π⪅ 10 MHz oscillations in the gate fidelity are minimal. Therefore, we
choose to drive all of our gates with a driving strength that is beneath this bound, namely By /2π =Ω/2π = 5
MHz. Another reason for choosing a low driving strength is that it easier to use a lower driving strength in
laboratory experiments.
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C
Data

Here we put all the exact data values that are visualized in the results section.

Table C.1: Table showing the theoretical and optimized driving time tdr i ve and driving frequency wdr i ve for different drives in the AC
Stark model (no resonance frequency shift due to heating) and their difference with the idealized case, 200 ns and 1.17451582e11 rad Hz
respectively. We also give the rounded fidelity at the calculated optimal driving time and -frequency.

Drives Optimal tdr i ve [s] |tdr i ve − ti d | [ps] Optimal wdr i ve [rad Hz] |wdr i ve −wi d | [kHz] F
2 2.00000281e-07 0.281 1.17451419e+11 25.94225572 0.99999999997
3 1.99998926e-07 1.074 1.17451582e+11 0 0.99999999998
4 1.99998682e-07 1.318 1.17451614e+11 5.09295818 0.999999999999
5 1.99998423e-07 1.577 1.17451582e+11 0 0.99999999999
6 1.99998423e-07 1.577 1.17451602e+11 3.18309886 0.99999999997

Table C.2: Table showing the single-qubit gate fidelity for theoretical driving time ttheo and driving frequency wtheo for different drives
M when we only have AC Stark shift included in our model.

M F
2 0.9999892552087563
3 0.9999999991759733
4 0.9999974277794634
5 0.9999999967024421
6 0.9999989172259042

Table C.3: Table showing the theoretical and optimized driving time tdr i ve and driving frequency wdr i ve for different drives for the model
that includes the resonance frequency shift due to heating and their difference with the idealized case, 200 ns and 1.17451582e11 rad Hz
respectively. We also give the rounded fidelity at the calculated optimal driving time and -frequency.

Drives Optimal tdr i ve [s] |tdr i ve − ti d | [ns] Optimal wdr i ve [rad Hz] |wdr i ve −wi d | [MHz] F
2 2.00661138e-07 0.661 1.17463692e+11 1.927 0.99999999945
3 2.00039884e-07 1.123 1.17467336e+11 2.006 0.99999999997
4 2.01136756e-07 1.137 1.17464637e+11 2.078 0.99999999998
5 2.01250412e-07 1.250 1.17464998e+11 2.135 0.999999999996
6 2.01198604e-07 1.199 1.17465368e+11 2.194 0.999999999991
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