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Abstract
We investigate the migratory behaviour of juvenile loggerhead sea turtle (Caretta caretta) hatchlings
within a region of the North Atlantic Gyre. To do so, we develop and compare an individual based
(IB) model and a partial differential equation (PDE) model, specifically an advection-diffusion equation
derived from a position-jump process. We compare their behaviour and show that they yield similar
results, but that there are still some differences between the two. Using the IB model we assess survival
probabilities of hatchlings in recent years (2016-2023), revealing that survival rates are statistically
significantly (𝑝-value = 2.62 ⋅ 10−6) not constant over time in this region. However, there could be
global events that influence the survival probability, as years 2019 and 2023 have a large deviation in
survival probability.
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1
Introduction

Sea turtles are part of the group of animals who undertake vast migrations across the oceans. Among
them, the young loggerhead sea turtle undertakes a challenging migration across the North Atlantic
Gyre: a large system of ocean currents that circulates between Europe, Africa and the Americas. In
the north-eastern part of the gyre near Europe, this stream splits into a northbound stream headed
towards the cooler waters of Ireland and a southbound stream, towards the warmer waters of Azores,
the latter providing favourable survival conditions for this species [5]. Although work has been done
on the topic before, much still remains unclear about the navigation of these hatchlings inside the Gyre.

Our goals in this thesis are to

1. implement two models that both describe the migratory behaviour of the loggerhead hatchlings.

2. use the simulations to determine whether the probability of successfully traversing a region of the
Gyre has changed in recent years.

A large part of this work is dedicated to the derivation and implementation of these models, namely an
individual-based (IB) model and a partial differential equation (PDE) model. The IB model treats each
turtle as an individual, tracing its path step-by-step, whereas the PDE model captures the movement
of turtle population densities, describing how their collective presence spreads through the ocean over
time.

Thesemodels are not limited to the study of migrating sea turtles, or even to that of aquatic migration.
Variants of the PDE model we use in this thesis can be used to predict the spread of pollutants through
groundwater, the flow of heat in materials or spread of bacteria [10, 32, 33]. Variants of the IB model
can be used to understand phenomena such as particle movement in fluids and a diverse range of
animal movement models [1, 4, 17].

Previous work
The phenomenon we model is inspired by the work [24], but our approach is different. In [24], the
authors use a velocity-jump process (VJP) to derive a PDE known as the FAAD1 Equation. In a VJP,
the movement of an individual is described by discrete changes in velocity: the individual moves at a
constant speed in a given direction for a random period of time, and then jumps to a new velocity and
a new direction.

In contrast, we use a position-jump process (PJP), where movement is represented as a series of
discrete, instantaneous position jumps on a grid. In our specific PJP, every time an individual makes
a step, it moves to an adjacent location on a grid according to probabilities describing the likelihood of
moving in a certain direction.

In [24], the VJP and resulting FAAD equation are numerically implemented as models, and applied
to the sea turtle migration phenomenon using ocean stream data [16] from 2016 and 2017. Specifically,
the models start on 01-01-2016 and runs for 500 days. This ocean stream data is still publicly available,
1Fully anisotropic advection-diffusion
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2 1. Introduction

so we compare our results in the year 2016 with [24] to validate our models: if they are visually similar,
we are satisfied with the model.

Thomas Hillen and Kevin J. Painter, the authors of [24], have (co-)authored numerous works in the
context of animal migration models such as [14, 15, 19]. Turtle migration is a recurring topic in their
research. For instance, in [25] they develop and apply models to the homing behaviour of green turtles
migrating to Ascension Island, a common nesting ground for green turtles. In [24] they present the
derivation of PDE models from position-jump and velocity-jump processes and present applications to
loggerhead hatchling navigation (the topic also explored in this thesis). Finally, in [26], Painter revisits
the travel of green sea turtles to Ascension Island, this time incorporating additional navigational cues
into his model.

Considering [24] was published in 2018, and ocean stream data is now available2 until 2024, after
comparing our models, we aim to determine whether in recent years the probability of successfully
traversing this region has remained constant.

Our contribution to the topic lies in the derivation and custom implementation of different models
(the IB model and the PDE model) using Python, and an overview of the steps to reach that point as
well as how to use the models. We also utilize more recent ocean stream data to predict whether,
using the proposed survival metric, we can reasonably expect the survival rate to have changed in this
region.

Chapter Overview
In Chapter 2 we introduce a position jump model and show the derivation of a position jump model to
an advection-diffusion model.

In Chapter 3 we globally present the models we will be implementing, and explain some factors that
relate to this such as the simulation region, boundary conditions and initial conditions.

In Chapter 4 we discuss the implementation-related details of both models and provide directions for
those trying to reproduce results using the resources we have created.

In Chapter 5 we provide an overview of results our models have created. We compare our work to
[24], and determine whether the survivability of the region has changed recently.

In Chapter 6 we discuss the implications of our work, and bring some matters to light that require
discussion. We also point out where our work could be improved or continued upon, and conclude the
thesis.

2We can simulate up to and including 2023, as each simulation takes 500 days. The flow data between 01-01-2024 and 15-05-
2025 (500 days) is not currently available



2
Derivation:

From random walks to the
advection-diffusion equation

In this chapter we show how from a position jump process, under certain limits, a PDE can be derived.
We also demonstrate that this derivation works with probabilities depending on space and time. For
some solutions to simple cases of the PDE we find, we refer to Appendix D

2.1. The two-dimensional case
For a similar derivation as the one we present here, but in one dimension, we would like to refer to [4].
They provide resources not only on derivations of position (and velocity-) jump processes, but also on
more specific types of random walks than in this thesis.

In the one-dimensional random walk (RW), generally a probability of moving left 𝑙 and moving right
𝑟 are defined, for an individual walking on 𝛿ℤ = {… ,−2𝛿,−𝛿, 0, 𝛿, 2𝛿, … }. Extending this concept to two
dimensions, we introduce the probabilities 𝑙, 𝑟, 𝑢 and 𝑑 to denote the probability of an agent moving left,
right, up or down on 𝛿ℤ2. We also write 𝐻 = 𝑙 + 𝑟 and 𝑉 = 𝑢 + 𝑑, for the probability of a horizontal or
vertical step respectively, and 𝑙 + 𝑟 + 𝑢 + 𝑑 = 1: Standing still has probability 0.

These probabilities are currently not allowed to depend on space or time. Therefore, any agents
behaviour will probabilistically be the same in each location, at each moment in time. We start with the
derivation assuming this non-dependence, and in Section 2.2 we extend to probabilities that depend
on space and time.

Permit 𝑝(𝑥, 𝑦, 𝑡) to denote the probability of an agent on this grid being at position (𝑥, 𝑦) at time
𝑡. We can derive in 2 dimensions, in a similar fashion to the steps in [24], the probability of moving
towards position 𝑝(𝑥, 𝑦, 𝑡 + 𝜏) after having come from adjacent locations

𝑝(𝑥, 𝑦, 𝑡 + 𝜏) = 𝑙𝑝(𝑥 + 𝛿, 𝑦, 𝑡) + 𝑟𝑝(𝑥 − 𝛿, 𝑦, 𝑡) (2.1)
+ 𝑢𝑝(𝑥, 𝑦 − 𝛿, 𝑡) + 𝑑𝑝(𝑥, 𝑦 + 𝛿, 𝑡).

Taking the Taylor expansion about 𝑡 on the left-hand-side of Equation 2.1 and about 𝑥 on the right-
hand-side, denoting by 𝒪(𝑥𝑛) those functions which vanish at least as fast as 𝑥𝑛 near zero, writing 𝑝

3



4 2. Derivation: From random walks to the advection-diffusion equation

without its arguments for brevity, and contracting notation 𝜕𝑛
𝜕𝑥𝑛 ∶= 𝜕

𝑛
𝑥 , or simply

𝜕
𝜕𝑥𝑝 = 𝑝𝑥, we get

𝑝 + 𝜏𝑝𝑡 + 𝒪(𝜏2) = 𝑙 (𝑝 + 𝛿𝑝𝑥 +
𝛿2
2 𝑝𝑥𝑥 + 𝒪(𝛿

3))

+𝑟 (𝑝 − 𝛿𝑝𝑥 +
𝛿2
2 𝑝𝑥𝑥 − 𝒪(𝛿

3))

+𝑢 (𝑝 − 𝛿𝑝𝑦 +
𝛿2
2 𝑝𝑦𝑦 − 𝒪(𝛿

3))

+𝑑 (𝑝 + 𝛿𝑝𝑦 +
𝛿2
2 𝑝𝑦𝑦 + 𝒪(𝛿

3)) .

Using 𝑙 + 𝑟 + 𝑢 + 𝑑 = 1 to cancel all the terms containing 𝑝, collecting like terms in partial derivatives
of 𝑝, and moving all the 𝒪-terms to the right and contracting the 𝒪-notation, we get

𝑝𝑡 =
𝛿
𝜏 ((𝑙 − 𝑟)𝑝𝑥 + (𝑑 − 𝑢)𝑝𝑦) +

𝛿2
2𝜏 (𝐻𝑝𝑥𝑥 + 𝑉𝑝𝑦𝑦) + 𝒪 (𝜏,

𝛿3
𝜏 ) . (2.2)

Equation 2.2 is our first important result. When taking appropriate limits for the spatial- and temporal
discretization, this equation yields an advection-diffusion equation. Letting 𝑙, 𝑟, 𝑢 and 𝑑 be arbitrary and
valid probabilities, we can define some new terms that will help us in the next steps.

1. The horizontal (rightward) advection bias lim
𝛿,𝜏→0

𝛿
𝜏 (𝑟 − 𝑙) = 𝑎𝐻

2. The vertical (upward) advection bias lim
𝛿,𝜏→0

𝛿
𝜏 (𝑢 − 𝑑) = 𝑎𝑉

3. The diffusion intensity lim
𝛿,𝜏→0

𝛿2
2𝜏 = 𝑐

Note that these limits can all coexist at the same time, so long as (𝑟 − 𝑙) → 0 and (𝑢 − 𝑑) → 0 at the
same speed as 𝛿, which we assume.

Now we reintroduce Equation 2.2,

𝑝𝑡 =
𝛿
𝜏 ((𝑙 − 𝑟)𝑝𝑥 + (𝑑 − 𝑢)𝑝𝑦) +

𝛿2
2𝜏 (𝐻𝑝𝑥𝑥 + 𝑉𝑝𝑦𝑦) + 𝒪 (𝜏,

𝛿3
𝜏 ) ,

and take the limit of 𝛿 and 𝜏 to zero such that the three limits we just defined exist. This means that
lim
𝛿,𝜏→0

𝛿3
𝜏 = 0, as lim

𝛿,𝜏→0
𝛿2
2𝜏 = 𝑐 is a constant. Therefore the terms inside 𝒪 (𝜏,

𝛿3
𝜏 ) all go to zero:

𝑝𝑡 = −𝑎𝐻𝑝𝑥 − 𝑎𝑉𝑝𝑦 + 𝑐𝐻𝑝𝑥𝑥 + 𝑐𝑉𝑝𝑦𝑦
= −𝜕𝑥(𝑎𝐻𝑝) − 𝜕𝑦(𝑎𝑉𝑝) + 𝜕𝑥𝑥(𝑐𝐻𝑝) + 𝜕𝑦𝑦(𝑐𝑉𝑝). (2.3)

To move towards a nicer form of Equation 2.3, we use the Nabla operator, ∇ = ( 𝜕𝑥𝜕𝑦 ) .We can introduce
it by

𝑝𝑡 = (
𝜕𝑥
𝜕𝑦) ⋅ (

−𝑎𝐻𝑝
−𝑎𝑉𝑝) + (

𝜕𝑥
𝜕𝑦) ⋅ (

𝜕𝑥𝑐𝐻𝑝
𝜕𝑦𝑐𝑉𝑝)

= ∇ ⋅ (−𝑎𝐻−𝑎𝑉)𝑝 + ∇ ⋅ (
𝑐𝐻 0
0 𝑐𝑉)(

𝜕𝑥𝑝
𝜕𝑦𝑝)

= ∇ ⋅ (−𝑎𝐻−𝑎𝑉)𝑝 + ∇ ⋅ (
𝑐𝐻 0
0 𝑐𝑉)∇𝑝. (2.4)

Writing 𝐴 = ( 𝑎𝐻𝑎𝑉 ) and 𝐷 = ( 𝑐𝐻 0
0 𝑐𝑉 ) then we can further modify 2.4 to acquire our PDE:

𝑝𝑡 = ∇ ⋅ (−𝐴𝑝) + ∇ ⋅ 𝐷∇𝑝
= ∇ ⋅ (−𝐴𝑝 + 𝐷∇𝑝). (2.5)
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What if 𝜏 and 𝛿 scale differently?
One fair question to ask is when 𝜏 and 𝛿 don’t scale precisely as desired. These cases yield slightly
different equations to Equation 2.5.

One such case is when lim
𝛿,𝜏→0

𝛿
𝜏 is a constant. This means that, as 𝛿 → 0, the diffusion intensity

𝛿2
2𝜏 goes to zero. This means we are left with a model which is purely advective, so using a similar
derivation as to acquire Equation 2.5, we acquire

𝑝𝑡 = ∇ ⋅ (−𝐴𝑝). (2.6)

Alternatively, consider the case when 𝑙 = 𝑟 and 𝑢 = 𝑑, and lim
𝛿,𝜏→0

𝛿2
2𝜏 exists. Now the advective terms

𝑎𝐻 and 𝑎𝑉 become zero, while the diffusive term remains existent:

𝑝𝑡 = ∇ ⋅ (𝐷∇𝑝) (2.7)

Now assuming that 𝛿, 𝜏 → 0, we see we have exhausted our options. We have considered the
cases where 𝛿2

2𝜏 ,
𝛿
𝜏 (or combinations) converge to a constant while others go to zero. The last case,

where both of these terms go to zero, is not of great interest. There could be higher order limits worth
considering, when the Taylor expansions about 𝑥 and 𝑡 include even higher order terms, but in this
thesis we do not investigate these possibilities.

2.2. Spatial dependence of probability
Later on in this paper, we will see that the probabilities of moving, 𝑙, 𝑟, 𝑢, 𝑑 are also going to be functions
of space and time. This is because our agent is acting in a vector field represented by ocean stream
data. This data depends on space and time, so the probabilities will become functions of space and
time, too. To justify the consistency of the model we have presented when taking this spatial and
temporal dependence, we would like to also provide a derivation on the one-dimensional case, but
where 𝑙(𝑥, 𝑡) and 𝑟(𝑥, 𝑡) are the 𝑥- and 𝑡-dependent probabilities of moving left and right.

Again we start from

𝑝(𝑥, 𝑡 + 𝜏) = 𝑙(𝑥 + 𝛿, 𝑡)𝑝(𝑥 + 𝛿, 𝑡) + 𝑟(𝑥 − 𝛿, 𝑡)𝑝(𝑥 − 𝛿, 𝑡)

by taking a Taylor expansion, now also for 𝑙(𝑥 + 𝛿, 𝑡) and 𝑟(𝑥 − 𝛿, 𝑡) about 𝑥, and using the 𝒪-notation
to collect high-order terms,

𝑝 + 𝜏𝑝𝑡 + 𝒪(𝜏2) = (𝑙 + 𝛿𝑙𝑥 +
𝛿2
2 𝑙𝑥𝑥 + 𝒪(𝛿

3))(𝑝 + 𝛿𝑝𝑥 +
𝛿2
2 𝑝𝑥𝑥 + 𝒪(𝛿

3))

+ (𝑟 − 𝛿𝑟𝑥 +
𝛿2
2 𝑟𝑥𝑥 + 𝒪(𝛿

3))(𝑝 − 𝛿𝑝𝑥 +
𝛿2
2 𝑝𝑥𝑥 + 𝒪(𝛿

3))

= 𝑙𝑝 + 𝛿𝑙𝑝𝑥 +
𝛿2
2 𝑙𝑝𝑥𝑥 + 𝛿𝑙𝑥𝑝 +

𝛿2
2 𝑙𝑥𝑥𝑝 + 𝒪(𝛿

3)

+ 𝑟𝑝 − 𝛿𝑟𝑝𝑥 +
𝛿2
2 𝑟𝑝𝑥𝑥 − 𝛿𝑟𝑥𝑝 +

𝛿2
2 𝑟𝑥𝑥𝑝 + 𝒪(𝛿

3).

Note that 𝑙(𝑥, 𝑡)+𝑟(𝑥, 𝑡) = 1 always when evaluated at the same point. This also means that 𝑙𝑥+𝑟𝑥 = 0,
and 𝑙𝑥𝑥 + 𝑟𝑥𝑥 = 0. Using these, we can write

𝑝 + 𝜏𝑝𝑡 + 𝒪(𝜏2) = (𝑙 + 𝑟)𝑝 + 𝛿 ((𝑙 − 𝑟)𝑝𝑥 + (𝑙𝑥 − 𝑟𝑥)𝑝)

+ 𝛿
2

2 ((𝑙 + 𝑟)𝑝𝑥𝑥 + (𝑙𝑥𝑥 + 𝑟𝑥𝑥)𝑝) + 𝒪(𝛿
3)

𝑝𝑡 = 𝜕𝑥 (
𝛿
𝜏 (𝑙 − 𝑟)𝑝) + 𝜕

2
𝑥 (
𝛿2
2𝜏𝑝) + 𝒪 (

𝛿3
𝜏 , 𝜏) . (2.8)

Here we can finally see that the spatial dependency of the advective and diffusive terms does not yield
a different result to Equation 2.2. So long as the limits in 𝛿 and 𝜏 work as we required earlier, we find
that the spatial or temporal dependence of 𝑙(𝑥, 𝑡) and 𝑟(𝑥, 𝑡) do not matter.
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To informally point at the similarity between this result and the above Equation 2.5, we can sugges-
tively replace the remaining derivatives in Equation 2.8 by the ’one-dimensional’ ∇-operator, ∇ = 𝑑

𝑑𝑥
and appropriate in-product operators. This very liberal symbol-pushing approach yields (when taking
the limits of 𝛿 and 𝜏, and again using 𝐴(𝑥, 𝑡) and 𝐷 defined similarly in one dimension)

𝑝𝑡 = ∇ ⋅ (−𝐴(𝑥, 𝑡)𝑝) + ∇ ⋅ ∇𝐷𝑝
= ∇ ⋅ (−𝐴(𝑥, 𝑡)𝑝 + 𝐷∇𝑝) (2.9)

for a spatially and temporally dependent 𝐴(𝑥, 𝑡) and a constant 𝐷. In this thesis we heuristically extend
this concept to our application in two dimensions.



3
Model Descriptions

Asmentioned earlier, the aim of this thesis is to create models which can describe loggerhead migration
in a certain region of the North Atlantic Gyre, and to use these models to investigate whether the
probability for loggerhead hatchlings to remain in this Gyre has changed in the period 2016-2024.

Because it is quite a big step to immediately discuss implementation details after the mathematical
derivation we presented in Chapter 2, we provide a relatively high-level introduction of both the models
here.

We employ two modelling approaches: an IB model using Equation 2.1 and a PDE model using
Equation 2.9 derived by taking appropriate limits, both with time- and space-dependence. While both
models aim to describe the same behaviour, their implementation and interpretation differ. We first
introduce some physical concepts common between the models, after which we discuss approaches
specific to each model.

Shared concepts
The movement of loggerhead hatchlings we model is the result of three components:

1. Active undirected movement (diffusion): Turtles display locally random, wandering behaviour.
This is modelled as a diffusive process, and captures the variations in individual swimming paths.

2. Active directedmovement (advection): Turtles also exhibit directional or biased swimming. We
assume this bias to be constant throughout all simulations and model it as an advective process.

3. Passive movement due to ocean currents: In addition to their own swimming, turtles are car-
ried around by the ocean’s flow. This is not a result of the turtles’ own effort, and thus allows them
to travel large distances. This movement is also modelled as an advective process.

3.1. Individual based model
To implement Equation 2.1,

𝑝(𝑥, 𝑦, 𝑡 + 𝜏) = 𝑙𝑝(𝑥 + 𝛿, 𝑦, 𝑡) + 𝑟𝑝(𝑥 − 𝛿, 𝑦, 𝑡)
+ 𝑢𝑝(𝑥, 𝑦 − 𝛿, 𝑡) + 𝑑𝑝(𝑥, 𝑦 + 𝛿, 𝑡),

we use an IB model, in which each turtles position is updated in discrete time steps based on active
and passive movements.

The active movement factors are incorporated into the model through a set of constant probabilities
{𝑝𝑙 , 𝑝𝑟 , 𝑝𝑢 , 𝑝𝑑} that determine the direction a turtle moves in each time step. How these 𝑝𝑖 are found is
shown in Section 4.3. The passive movement is incorporated by linearly modifying these probabilities
with components of the flow {𝑓𝑙 , 𝑓𝑟 , 𝑓𝑢 , 𝑓𝑑} (which are assumed to be constant during a step, but the flow
field changes in time and space) and a constant unit-conversion factor 𝛾 by

𝑝𝑖 =
𝑝𝑖 + 𝛾𝑓𝑖

1 + 𝛾∑𝑗=𝑙,𝑟,𝑢,𝑑 𝑓𝑗
.
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Note that these 𝑝𝑖 , 𝑖 ∈ {𝑙, 𝑟, 𝑢, 𝑑} are the probabilities 𝑙(𝑥, 𝑦, 𝑡), 𝑟(𝑥, 𝑦, 𝑡), 𝑢(𝑥, 𝑦, 𝑡), 𝑑(𝑥, 𝑦, 𝑡) in Equation
2.1 (so for example the probability of moving left 𝑙(𝑥, 𝑦, 𝑡) becomes 𝑝𝑙 ). The 𝑝𝑖 ’s represent the constant
movement probabilities. We rename them for brevity in writing, as the function 𝑝(𝑥, 𝑦, 𝑡) is not needed
to represent populations any more. The flow dataset is updated every 24 hours, but the simulation
advances with smaller time steps within each day. It will be discussed in Section 4.3 how 𝛾 and the 𝑝𝑖
are found.

3.2. PDE-based model
In Chapter 2, we have shown that taking appropriate limits, the RW (Equation 2.1) leads to a PDEmodel.
The model we acquire is a partial differential equation in 𝑢(𝑥, 𝑦, 𝑡), with 𝑢 representing a population
density of turtles1.

𝑢𝑡 = ∇ ⋅ (−𝐴(𝑥, 𝑦, 𝑡)𝑢 + 𝐷∇𝑢)
with parameters 𝐴(𝑥, 𝑦, 𝑡) = 𝑎+𝛼𝑓(𝑥, 𝑦, 𝑡) the vector containing the advection terms and 𝐷 the diffusion
matrix being related to the probabilities in the IB model. The relations for the constant terms are found
in Chapter 2 as:

𝑎 = (𝑎𝐻𝑎𝑉)⏝⎵⏟⎵⏝
PDE

= 𝛿
𝜏 (
𝑝𝑟 − 𝑝𝑙
𝑝𝑢 − 𝑝𝑑)⏝⎵⎵⎵⏟⎵⎵⎵⏝
RW

,

𝐷 = (𝑑1 0
0 𝑑2)⏝⎵⎵⏟⎵⎵⏝
PDE

= 𝛿2
2𝜏 (

𝑝𝑙 + 𝑝𝑟 0
0 𝑝𝑢 + 𝑝𝑑)⏝⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏝

RW

.

These equations show that the advective terms are proportional to the bias or difference in the move-
ment probabilities, whereas the diffusion terms depend on the total movement activity or sum of the
probabilities in each direction.

Including the flow term

𝑓(𝑥, 𝑦, 𝑡) = (𝑓𝐻(𝑥, 𝑦, 𝑡)𝑓𝑉(𝑥, 𝑦, 𝑡))

with a unit conversion factor 𝛼, the model thus reads

𝑢𝑡 = ∇ ⋅ (− [(
𝑎𝐻
𝑎𝑉) + 𝛼 (

𝑓𝐻(𝑥, 𝑦, 𝑡)
𝑓𝑉(𝑥, 𝑦, 𝑡))] 𝑢 + (

𝑑1 0
0 𝑑2)∇𝑢) .

3.3. Simulation Domain and Units
Here we describe the space on which we simulate per model.

For the IB model, the space- and time step size 𝛿 and 𝜏 are assumed to be constant over the en-
tire domain. We set 𝛿 = 0.02∘, and although this is quite an idealized estimate, we assume 1∘ ≡ 100
km everywhere, so that the model makes steps of 2 km. The variable 𝜏 is set to be 1 day. In the
absence of a vector field this means each day 2 km is traversed. This 2 km of active swimming per day
is a modelling assumption taken from [24]. The amount of steps that must be taken each day with the
addition of a vector field is a point of discussion, see Appendix A.

The simulation for a turtle ends when it crosses the horizontal boundaries at [42.5∘, 46.5∘]N, or the
vertical boundaries at [−29∘, −11∘]E. As will become apparent in Chapter 5, most of the turtles cross a
horizontal boundary.

For the PDE model, the variable 𝑥 represents a longitude in the simulation, and is measured in
degrees East. Unfortunately, the datasets do not all utilize the same range for the longitudinal variable,
so 𝑥 can fall within the range [−29∘, −11∘]E, or equivalently [331∘, 349∘]E. This is a width chosen such
that (as will become apparent in Chapter 5) only very small densities reach it.
1In reality fractional turtles do not exist, but the relation between 𝑢 the density and the realized positions of turtles from the RW
model will resemble that of a probability density.
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Figure 3.1: A rough sketch of the simulation region. Exiting southbound is considered a success, while exiting northbound is
considered a failure.

Similarly 𝑦 represents a latitude in the simulation, which is measured in degrees North. We simulate
on the range 𝑦 ∈ [42∘, 47∘], but in the figures in Chapter 5 we only show the density for 𝑦 ∈ [42.5∘, 46.5∘].
This difference between simulation and visualization ranges is to minimize the effect the simulation
boundaries can have on the solution.

Both 𝑥 and 𝑦 are discretised by taking steps of 𝑑𝑥 = 𝑑𝑦 = 0.04∘. This means that the PDE model’s
simulation grid is a rectangle, subdivided into squares.

Finally, 𝑡 represents the simulation time. In this thesis, time is usually measured in days. Which
time ranges are used varies from run-to-run, but certainly to acquire the results in Chapter 5 (unless
specified otherwise), we have used 𝑡 such that2 the simulation range starts (𝑡 = 0) at 01-01-2016, and
ends when 𝑡 = 500 days. Time progresses in steps of 𝑑𝑡 = 0.025 days, which is equal to steps of 36
minutes. Turtles are introduced to the system for 365 days, the extra time is to let most turtles finish
their traversal of the region.

The boundary conditions we used for the PDE model are homogeneous Neumann type for the ver-
tical boundaries, and absorbing type for the horizontal boundaries. In the IBM these boundaries are
not present: each agent keeps track of its own location, and when it exceeds either the top or bottom
boundary, we assume it to never return to the simulation region.

Regarding initial conditions, to each system we introduce a mass of 2 turtles at the start of each sim-
ulation day, at the location (−25∘E, 44.5∘N). In the IBM this means we place two agents there, in the
PDE model this means we place a density of 2

𝑑𝑥𝑑𝑦 inside the cell containing (−25
∘E, 44.5∘N) each day.

2This is slightly more nuanced: the timestamps in the vector field data are measured in hours since 01-01-2000. To ease
implementation, the time 𝑡 is implicitly a day count from 01-01-2016, but a bonus time variable is used to track the hours passed
since 01-01-2000.





4
Implementation and

computation
In this chapter, we will take a look at how the mathematical model proposed in Chapter 2 and further
discussed in Chapter 3 are translated to problems computers can solve. We also explain how we
approached problems related to implementation, optimization in time and discuss some pitfalls.

As an important note, all the source code to this thesis can be found at:
https://github.com/Hephaestois/Thesis_HRemmen_2025. We intend for this chapter to rea-
sonably serve as explanation, but the research was never intended to be accompanied by a ready-
to-run program, or something necessarily easily adaptable. Therefore, it will not take the form of a
step-by-step description with pseudocode, and be more like a justification for the concepts written into
the code. Where to find the simulation data, and how this is handled in the programs is also discussed
in this chapter. We end the chapter with a short ’handbook’ on interacting with the code.

4.1. About the models
As the implementation of the model is a large part of this research, (and just plugging in numbers
and discussing results is not interesting without discussing how those results were found), we start by
giving an overview of which ’phases’ the models have gone through. Only the final versions will be
highlighted in more detail, with more detailed explanations about the specific approach, and why some
of the choices that were made have been made. By doing this, we hope the reader can appreciate the
factors the model accounts for.

For each IB model, a ’repeated’ version has also been implemented. These are functionally very
similar, but instead of simulating just one walk, they simulate multiple in one go. These will be used
for determining similarity between the continuous and discrete model, by means of visual comparison:
Does the density created by the PDE model reasonably represent the sample population generated
by the IB model? These ’repeated’ variants will not be treated separately, as there they are only small
variations from the non-repeated models.

4.2. Discrete models, overview
The ’simple’ random walk (RandomWalk.py)
As a first model, we implement a RW on a 2d grid, with the possibility to specify the probability of moving
left and right, and up and down.

To start, we create the class Walker. This will be the class describing the behaviour of the sea
turtles. In this first version, it takes a set of probabilities initProbs, describing the probability of
moving in each direction. The class function positionJumpProcess(𝑛) has the Walker move 𝑛
steps, according to the defined probabilities, and returns the set of locations which the Walker visited.
For a sample of a single RW, see Figure 4.1, left. For an impression of how the repeated RW would
look, see Figure 4.1, right. Here 500 walkers each started a RW in 𝑥0 = (−25, 44.5). It should be

11
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Figure 4.1: Left: A RW starting from (−25∘ , 44.5∘) (marked with a black dot), making 20 000 horizontal or vertical steps of 0.02∘,
with equal probabilities for each direction. Right: 500 RWs starting from (−25∘ , 44.5∘), each making 1000 steps of 0.02∘, with
equal probabilities.

noted that the apparent white-coloured grid in Figure 4.1, right is due to aliasing, and has no further
mathematical implications.

The random walk in a time-constant vector field (RWinCVF.py)
Because we wish to simulate a RW in ocean streams, we need some way to influence the behaviour
of a walker with a vector field. We import our dataset from HYCOM [16] using the netCDF4 package.
Then the walker class is adapted with two notable functions, getRWBiasInField(vectorfield)
and traverseVectorField(vectorfield,n), and given a new set of probabilities, probs, which
describe the local movement probability due to the vector field.

In Figure 4.2, top and bottom, we can see examples of this RW in a vector field. Note that, in the
top image, the probability of moving in a specific direction is now dictated by the vector field alone, but
that this is still a probability. This is why not all the walks head in the same direction, but do generally
all follow the ’flow’ of the vector field. In Figure 4.2, bottom, where the agents themself have agency,
we can see how this introduces a light downwards bias (there is less exploration at the top), but that
the effects of the vector field are clearly dominant.

The random walk in a time-dependent vector field (RWinVF.py)
The previous model we described is still missing one part, and it is the vector field changing over time.
In the spirit of [24], we want to simulate over a period of 500 days, introducing turtles for the first 365.
The changes between this and the time-constant vector field approach are mostly interesting for those
following the implementation, and are discussed in the details. Technically speaking, the only change
made is that every 24 hours of simulation time, the vector field which is used (as in the time-constant
case) is changed to a different field. Otherwise, it is functionally very similar.

Notably for those just trying to use the program, it is at this stage that we decided the runtime
exceeded a certain usability bound, and split the python program into one which creates data, and one
which plots data. All plotting scripts are under the /plotting directory, and in 4.6 we specify how to
use them.

4.3. Discrete model, details
Which factors contribute to the direction a turtle moves?
To model the movement of a turtle in the stream, we consider a set of probabilities (𝑝𝑟 , 𝑝𝑟 , 𝑝𝑢 , 𝑝𝑑), and
write components 𝑝𝑖 for 𝑖 ∈ {𝑙, 𝑟, 𝑢, 𝑑}. Each of these describes a probability to move left, right, up and
down, and are recalculated each time step. The influence of the walker’s own probability of movement
and the vector field’s influence, are both encoded into these four probabilities. The vector field acts in
the direction of the flow, and is affected by the magnitude of the flow. If 𝑓𝑖 denotes the local components
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Figure 4.2: 200 RWs starting at (−25∘ , 44.5∘), each moving in steps of 0.02∘. The vector field is sampled at a resolution of
0.08∘ × 0.04∘ (lon×lat) at 11-04-2015 (133893 hours from 01-01-2000, selected on visual complexity) and is kept constant
throughout the simulation. Top: all the movement is caused by the vector field; the turtles do not move. 1000 steps are made.
Bottom: the turtles’ swimming behaviour contributes to the movement. 100 days of swimming are simulated, the amount of steps
is determined by methods in Appendix A. The final position of the turtles is shown as black-and-white dots.

of the flow in an analogous (𝑓𝑙 , 𝑓𝑟 , 𝑓𝑢 , 𝑓𝑑) format (where either 𝑓𝑙 or 𝑓𝑟 is zero, 𝑓𝑢 or 𝑓𝑑 is zero, all are
≥ 0), and ̂𝑝𝑖 the walkers constant bias, then we could write

𝑝𝑖 =
̂𝑝𝑖 + 𝛾 ⋅ 𝑓𝑖

1 + 𝛾 ⋅ ∑𝑗=𝑙,𝑟,𝑢,𝑑 𝑓𝑗
(4.1)

for a certain weight 𝛾 ∈ ℝ for the vector fields’ influence. This weight needs to be introduced to account
for a mismatch in units. To begin with, the units of the flow field are given in m/s (metres per second),
so we convert it to ∘/day by 1 m/s = 0.864 ∘/day. The probabilities 𝑝𝑖 represent 2 km/day = 0.02∘/day,
so 𝛾 should be divided by this intensity: 𝛾 = 0.864

0.02 = 43.2.
When a turtle has determined its set of probabilities (𝑝𝑙 , 𝑝𝑟 , 𝑝𝑢 , 𝑝𝑑) and needs to choose a direction

to take a step in, we use the Python random.random() to generate a random number in [0, 1]. This
random number is compared to the cumulative sum of the probabilities.

How are the parameters calibrated?
The IB model simulation uses the units degrees (∘) and days (d). We assume that the turtles can do a
daily active swim of 2 km, and idealistically assume 2 km= 0.02∘.

To figure out the direction of the active advective and diffusive behaviour, we assume the turtle finds
itself in a zero-flow field. This means that each day, the direction to move in is sampled only from the
constant biases 𝑝𝑖 (Equation 4.1 with 𝑓𝑖 = 0). We propose that the von Mises distribution utilized in the
velocity-jump process in [24]1 can be integrated over appropriate domains to acquire the probabilities

1The von Mises distribution can be thought of as a circular Gaussian distribution. [24] use this to determine the direction a turtle
moves in the VJP model. Their parameters in the PDE are statistical results of the von Mises.
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in our position-jump process. For example, the probability of moving right would be

𝑝𝑟 = ∫
𝜋
4

−𝜋4
𝑓(𝑥|𝜇, 𝜅)𝑑𝑥,

the integral of the right quarter of a circle. The other probabilities are found by integrating over their
respective 𝜋

2 circle arc. The variable 𝑥 represent the angle at which the Von-Mises is sampled. Doing
this operation with the parameters 𝜇 = 5.0233 and 𝜅 = 0.875 proposed by [24] using the data collected
in [18], we acquire

⎧⎪
⎨⎪⎩

𝑝𝑙 = 0.1745
𝑝𝑟 = 0.2817
𝑝𝑢 = 0.0994
𝑝𝑑 = 0.4444,

(4.2)

whose bias ( 𝑝𝑟−𝑝𝑙𝑝𝑢−𝑝𝑑 ) = ( 0.108
−0.345 ) indeed points in a south-south-easterly direction (and whose sum

∑𝑖=𝑙,𝑟,𝑢,𝑑, 𝑝𝑖 = 1 indeed). This is the set of constant probabilities that every turtle uses.

How to incorporate a flow field into the simulation?
The goal is to simulate a walker acting inside a vector field. There is a subtle problem here, related to
the distance a walker could traverse with and without the influence of a vector field. As this requires a
rather mathematical explanation, we have opted to include this in Appendix A.

Using the method described in Appendix A, it only remains to integrate the flow data into the model.
This is done by a weighted sum as described in Section 4.3.

Some notes about acquiring ocean flow data
The data for the time-changing vector field is collected by the HYCOM consortium [16] (HYbrid Coor-
dinate Ocean Model), and is acquired from https://tds.hycom.org/thredds/catalog.html.
Specifically, the data used in this paper is from the GOFS 3.1: 41-layer HYCOM + NCODA Global
1/12∘ Analysis (NRL). This set contains data for the time period July 1st 2014 through to September 4th
2024, broken into periods of approx. 1.5 years. The data is used only at a depth level of 0 meters, as
the hatchling turtles can not dive deep enough to consider their depth displacement impactful, see [8].

It is also appropriate to notify future researchers that the ’time’ variable in the datasets we used
does not always have a consistent step size. It is measured in hours since 01-01-2000, and usually
has a step size of 3 hours. However, some data points are missing and have been simply removed.
This sometimes leaves a 6-hour gap, so letting the time variable progress by steps of 8 data points
(8 ⋅3 = 24 hours) will not always result in time steps of 24 hours. In this thesis this is solved by keeping
track of an independent time variable, moving in multiples of 24 hours. Then if at any simulation step
this data point happens to have been deleted, we select the most recent, earlier data point. There is a
point of consideration here that has to do with the tides, and it will be discussed in Chapter 6.

What if a turtle exceeds the simulation bounds?
Recall that exceeding the simulation bounds is precisely what we are after. In [24], a ’success measure’
is introduced to analyse how ’well’ the turtles have navigated the region. This measure is stated as

𝑝success at time T =
#Turtles who reached success boundary by time T

#Turtles who reached success/ failure boundary by time T (4.3)

Or phrased differently: Of the turtles (density) who swim outside of the range 42.5∘-46.5∘N, which
fraction exits on the 42.5∘-boundary or ”continue in the NA Gyre?”. When any boundary is reached,
the IB model updates a global counter for overflow through the top or bottom, depending on where the
turtle left. That turtle’s simulation then stops. After introducing turtles to the system for 365 days, we
continue simulating until day 500, as most turtles have finished simulation by then.

Some notes about optimization
The throughput of data required for the time-changing vector field is not spectacular (only a fewmegabyte
per iteration of the vector field), and is therefore not an interesting constraint for the programming side

https://tds.hycom.org/thredds/catalog.html
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of this thesis. One factor that deserves mention is that, until changing from a time-constant to a time-
dependent vector field, it has been possible to simulate one turtle through all its steps one at a time.

When the vector field in which the turtles are simulated changes every day, it makes more sense
to only progress through each day only once, to reduce the amount of times a new flow dataset needs
to be loaded. This means all the turtles need to be simulated at the same time, so that they can work
with the same data for the vector field. If the dataset is streamed remotely (so there exists no copy
of the data on the machine the simulations are being ran on), this makes all the more sense, due to
server response times and bandwidth limitations. This remote approach has proven itself feasible: in
our programs, the flow datasets do not need to exist locally to utilize the flow data.

4.4. PDE model, overview
We have seen the implementation of the IB model based on a position jump process, and wish to com-
pare results between that model and a PDE based model, we derived from it in Chapter 2. Therefore
we also implement a PDE based model. As is more common for use in PDE’s, we replace the variable
𝑝(𝑥, 𝑦, 𝑡) in Equation 2.9 by the variable 𝑢(𝑥, 𝑦, 𝑡), representing the turtle density.

The approach in this paper is by the Finite VolumeMethod (FVM) [29]. To achieve this, we discretize
our space with small surfaces 𝑑𝑥⨉𝑑𝑦 in the 2d domain and approximate the function 𝑢(𝑥, 𝑦, 𝑡) with a
matrix of 𝑢𝑖,𝑗(𝑡) evaluated on these surfaces, so that we can use numerical methods to solve it.

The advective and diffusive terms are handled in three separate parts. This is possible as the
equation we are solving 𝑢 for,

𝑢𝑡 = ∇ ⋅ (−𝐴(𝑥, 𝑦, 𝑡)𝑢 + ∇𝐷𝑢)
= ∇ ⋅ (−𝑎 − 𝛼𝑓(𝑥, 𝑦, 𝑡)) 𝑢 + ∇ ⋅ ∇𝐷𝑢
= ∇ ⋅ (−𝑎𝑢) + ∇ ⋅ (−𝛼𝑓(𝑥, 𝑦, 𝑡)𝑢) + ∇ ⋅ ∇𝐷𝑢

allows solving the advective and diffusive terms separately of each other and combining them. More-
over, there is a space- and time constant advection and diffusion caused by the behaviour of the turtle,
𝑎 and 𝐷, and a space- and time dependent advection caused by the influence of the ocean stream,
𝑓(𝑥, 𝑦, 𝑡) with a unit-conversion 𝛼. So together, we solve for three different components: the constant
advective and diffusive terms, and one non-constant advective term.

4.5. PDE model, details
How is the time progression handled?
The time variable has been discretised in steps 𝑑𝑡 = 0.025. To model the progression of time, we use
Forward Euler. As stated before, the density function 𝑢 is approximated by a matrix (NumPy array).
This is slightly more nuanced in implementation, as we define NumPy arrays u_old and u_new, and
when applying Forward Euler in time, calculate u_new←u_old+dt∗flux(u_old). After a day of
simulation time passes we assign u_old←u_new, and this process repeats. This process allows us to
calculate the fluxes one by one from u_old, add them up into u_new, and step time in one go. This has
a positive impact on the possibility to optimize the code, as only the flow field 𝑓(𝑥, 𝑦, 𝑡) is a non-constant
influence on 𝑢, and can be calculated independently of the influence of 𝐷 and of the constant advection
𝑎.

How is the ocean flow vector field handled?
After we acquire the data from HYCOM [16] each simulation day (see section 4.3), we create two
matrices in our simulation, 𝑓𝐻 and 𝑓𝑉, the horizontal and vertical components of the flow field. It is
important to mention again that the density function 𝑢(𝑥, 𝑦, 𝑡) is approximated by a matrix (𝑢𝑖,𝑗(𝑡)).

When we do this discretisation, we need to rethink in what sense 𝑓𝐻 and 𝑓𝑉 act on 𝑢. For the
sake of example, consider in just one dimension the pure advection equation we derived in 2.2 with an
advective term depending on space 𝑎(𝑥). This represents the vector field.

𝑢𝑡(𝑥, 𝑡) = 𝜕𝑥 (−𝑎(𝑥)𝑢(𝑥, 𝑡))

In the coming subsections we explain that we will use an upwind scheme (and what that means). For
simplicity let 𝑎 > 0, so we just use forward differences here. That means that the derivate should be
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evaluated numerically by

𝑢(𝑥, 𝑡 + 𝑑𝑡) − 𝑢(𝑥, 𝑡)
𝑑𝑡 = −𝑎(𝑥 + 𝑑𝑥)𝑢(𝑥 + 𝑑𝑥, 𝑡) − 𝑎(𝑥)𝑢(𝑥, 𝑡)𝑑𝑥

So 𝑎 works on 𝑢 as a scalar, evaluated at the same location. When having approximated 𝑢 and 𝑎 into
matrices, this means that 𝑎 and 𝑢 should be multiplicated element-wise.

Returning to our original question, considering this element-wise multiplication requires 𝑓𝐻, 𝑓𝑉 and 𝑢
are matrices of the same shape, we sample 𝑓𝐻 and 𝑓𝑉 at the locations where 𝑢 is defined. This means
that corresponding indices in the matrices 𝑓𝐻 and 𝑓𝑉 and 𝑢 represent the same physical location in our
simulation space.

Because the ocean flow dataset is not aligned to our simulation grid, we must do some form of
interpolation. For performance and simplicity, we use a nearest-neighbour approach. The step size in
the data is 0.08∘ × 0.04∘ (lon×lat or 𝑑𝑥 × 𝑑𝑦), and our (PDE) simulation never use resolutions for the
space discretisation finer than 𝑑𝑥 ×𝑑𝑦 = 0.04∘×0.04∘. By choosing this resolution, longitudinally each
point is (over)sampled twice, and longitudinally sampled just once. A finer resolution would start over-
sampling heavily, using certain data points more often, while a courser resolution would not capture all
the information provided by the flow field. Because the derivation in Chapter 2 requires the spatial step
size 𝛿 is constant and the same in both directions (so 𝑑𝑥 = 𝑑𝑦), we choose 𝑑𝑥 × 𝑑𝑦 = 0.04∘ × 0.04∘.

How are the parameters calibrated?
Another point of interest is how the entries for 𝑎 and 𝐷, representing the active advection and diffusion
terms in the PDEmodel, which are both constants, are found. First we determine the constant advection
𝑎. From Section 2.1 and Section 4.3 we know that the elements in 𝑎 = ( 𝑎𝐻𝑎𝑉 ) should be 𝑎𝐻 =

𝛿
𝜏 (𝑝𝑟 −

𝑝𝑙 ) =
0.02
1 (0.2817 − 0.1745) =

2
100(0.108) and 𝑎𝑉 =

𝛿
𝜏 (𝑝𝑢 − 𝑝𝑑) =

2
100(−0.345):

𝑎 = 2
100 (

0.108
−0.345)

Using the same method we can also find the elements of 𝐷 = ( 𝑐𝐻 0
0 𝑐𝑉 ) with 𝑐 =

𝛿2
2𝜏 and 𝐻 = 𝑝𝑙 +𝑝𝑟 =

0.4562, 𝑉 = 𝑝𝑢 + 𝑝𝑑 = 0.5438 to be

𝐷 = 10−5 (9.124 0
0 10.876)

Now including the strength of the vector field to the equation, we need to convert m/s to ∘/day,
for which we introduce conversion factor 𝛼. This conversion factor should be 0.864, as 1 m/s =
0.864 ∘/day. This means that, with all our parameters filled in, the PDE we solve is

𝑢𝑡 = ∇ ⋅ (− [
2
100 (

0.108
−0.345) + 0.864(

𝑓𝐻(𝑥, 𝑦, 𝑡)
𝑓𝑉(𝑥, 𝑦, 𝑡))] 𝑢 + 10

−5 (9.124 0
0 10.876)∇𝑢) (4.4)

How are the numerical schemes implemented?
The different parts in Equation 4.4 should be solved with different numerical methods. It is often not
entirely clear how these numerical methods are able to translate difference operators into operations
computers are able to do, and we feel this line of reason is sometimes obfuscated behind mathematical
notation in most literature. It is for this purpose that we have added a tangent on the topic into Appendix
B, which we hope can provide some insight into the more computer-oriented side of the story.

How are the boundary conditions handled?
The vertical homogeneous Neumann boundaries at −11∘E and −29∘E are handled using ghost nodes
on the boundaries (see for example [30]). The absorbing boundaries are implemented at 42∘N and
47∘N, where mass can flow out of our simulation region, but not back in. In Chapter 5, the figures show
the solution in the range [42.5∘, 46.5∘] to minimize the effect the boundaries have in these.

Due to the choice of absorbing boundaries on the horizontal sides, we have not been able to de-
termine how to also measure the out-flow in the PDE model. Calculating the downward flow of density
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over the horizontal 42.5∘N, and subtracting the upward back-flow is maybe viable, but the scope of this
paper has not permitted this being implemented.

4.6. Some comments about using the code
The more experimentally inclined reader might want to either re-run our models, or to just play around
with them. This is a great attitude, and we encourage interaction with the code-side of this thesis, which
can be found at https://github.com/Hephaestois/Thesis_HRemmen_2025. For those daring
people, this section exists.

The file structure
The project is structured so that different topics reside in different directories. That is, there are di-
rectories for: The IB model (/discrete_model), the PDE model (/pde_model), a globally shared
library (/library), a shared data reading/writing location (/data), files related to plotting images
(/plotting) and some directories to capture output from the plotting files.

All the data in the programs flows through /data: there is no (python) file that runs a model and
plots the related figures; they need to be called separately. This seems tedious, but permits greater
levels of automation and flexibility when handled properly. It also permits collecting data once, and
(re)making figures many times over.

Part of the need for separation is how the programs handles different years: we never implemented
a shared function that takes a year and day and returns the appropriate flow dataset for that day (which
would be a great tool for a future researcher to create!). This non-existence means that each year
gets its own file, with the appropriate dataset calls hardcoded2 in. This yearly separation unfortunately
also means that some tweaks (different parameters or just a bugfix) have to be made in a separate
file for each year. All the files share a library /library, which contains structures that are common
between the years, such as the IB models’ walker, or the PDE models’ grid, which is where the FVM
is implemented. The file functions.py contains some useful functions for saving and loading data,
as well as the highly-recommended-for-use function progressBar.py.

Running python files
As mentioned, the file structure and separation does permit a relatively streamlined workflow, provided
you do not need tweaks to the python files. Each python file gets a header so that they can find data
and library files. Also using sys.argv, the scripts can be called from the terminal with the following
signatures (for a specific year 2016-2023):

PDE : $ python pde_model/FVM<year>.py <sim_days> <dx> <dy> <dt>
IB : $ python discrete_model/RWinVF-<year>.py <sim_days> <n_per_day>

with ’sim_days’ the amount of days to simulate for (usually 500) and ’n_per_day’ the amount of agents
to release per day in the IB model.

Doing this, the appropriate model starts to run, and saves the data it generates to a location in
/data.

Automation
Because the models take on the order of tens of minutes to run, multiple runs should be automated
(to preserve sanity). This can be done by making a Bash script (see [12]), and running the models
sequentially. Because all data streams through the /data directory, such a workflow is possible. An
example of a plotting routine with newly generated data might be:

#!/bin/bash
ndays=500
dx=0.04
dy=0.04
dt=0.025
nperday=2

2Hardcoding is the act of setting parameters directly in code, instead of leaving them dependent/variable by a user. It simplifies
interacting with the program, but customizability suffers for it.

https://github.com/Hephaestois/Thesis_HRemmen_2025
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year=2016
frame=100
mode=both
offset=0

python ”discrete_model/RWinVF-${year}.py” $ndays $nperday
python ”pde_model/FVM${year}.py” $ndays $dx $dy $dt

python plotting/plot_image_fine.py $year $ndays $dx $dy $dt $nperday \
$offset $frame $mode

python plotting/plot_video_fine.py $year $ndays $dx $dy $dt $nperday \
$offset $mode

exit 0

There are some variables that warrant clarification:

1. frame is the day on which a plot should be made.

2. mode tells the plotting program which data to include. It can be ’rw’, ’pde’ or ’both’. When only
the results from the IB model are plotted, trails are added to better visualise the steps made. In
other visual modes these trails are too distracting.

3. offset is a value used to convert longitudes. Because some years use ∘E in [−180∘, 180∘],
others use [0∘, 360∘]. This offset makes sure that the plotting program can handle either of those.
As a rule of thumb, 2016 needs offset=0, the other years need offset=360.

4. The use of ’fine’: this is another pitfall of hardcoding. Due to the output of the PDE model
being total value inside a surface area, not value per surface area, taking finer resolutions requires
different graphical options for the density map. The two resolutions that are supported by default
are 0.1∘⨉0.1∘ and 0.04∘⨉0.04∘, the latter one making use of the ’fine’ plotting files. The values
of 𝑑𝑥 and 𝑑𝑦 could be used to determine these graphical options, but we didn’t spend the time to
figure them out.

The truly daring might even use the & operator in their automation routine to parallelize the processes.
This works great for plotting, but has not been tested on running the models, as these stream their data
over the internet.

We hope that this small handbook will aid any researchers trying to validate our research. There are a
few directions in which we could point development of these files to further ease usage, but it might be
debated how much time will be saved by improving the code compared to the time invested to modify
it. Regardless, this will be discussed in Chapter 6



5
Results

In this thesis, we have so far implemented two models, in an attempt to reproduce the results in [24]
with different techniques. In the first two sections of this chapter, we would like to discuss the results
from our models on their own, and then move on to our original goals:

1. Can we say our modelling approach provides mutually consistent results?

2. Can we conclude something about loggerhead hatchlings’ survival rate in recent years based on
new ocean stream data?

We also compare our results with [24], to show similarity. Before showing the result of the model
with all factors considered, we wish to show some intermediate states of each model. All the relevant
figures are placed at the end of this chapter. The effects of the flow fields are seen clearest when
looking at a time progression of these images. For this purpose, videos have been posted to https:
//www.youtube.com/playlist?list=PLdvQXQjD1hC0QMlMZs_tKMkSwqwe30PDN

5.1. The individual based model
For the IB model, before introducing the vector field’s contribution, we show the effect of the constant
advective and diffusive terms.

In Figure 5.1, we can see three results. Each figure is the snapshot at the end of day 100, with the
paths the agents took to get to that position. The top figure shows only constant diffusion, the middle
figure shows only constant advection and the bottom figure shows the combined effect of these two. It
should be noted that, because the active movement is calibrated to always contribute 2 km, separating
the effects of advection and diffusion yields a stronger diffusion and advection: they would normally
work against one another, whereas now in the separate figures, their effects are amplified. When they
are combined, their relative contributions balance out to their preferred values. The probabilities used
in Figure 5.1 are special, and described in the caption. In all the other figures in Chapter 5, we use the
probabilities we found in Equation 4.2. Figure 5.1, bottom, is most representative of the behaviour we
expect to see in still standing water, with shorter, somewhat spread out walks. When we add a flow
term, we expect that the distance travelled per day changes drastically, as flowing along a stream does
not take ’effort’ from the turtles.

So, including the vector field, a sudden explosion of complexity occurs. In Figure 5.2 we see three
figures showing a sample1 of the IB model. We can see complex behaviour arise from the rules the
turtles have to obey. It’s important to mention here that, although the turtles still act on a grid, due to the
way the amount of steps in a day is determined their day-to-day movement does to be appear off-grid:
their paths (which are drawn between the start and end of a day) may run from non-neighbouring cells,
thus creating lines between non-neighbouring vertices in the grid.

1Because the IB model is based off of probabilities, each run yields a different population. The IB model is ran once for all three
figures.
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Figure 5.1: Three samples (each after 100 days of simulation) of one run of the IB model. In each sub-figure the step size is
0.02∘ in both directions, and each day two turtles are placed at (−25∘E, 44.5∘N), which is marked in red. Top: only the diffusive
terms contribute to movement: (𝑝𝑙 , 𝑝𝑟 , 𝑝𝑢 , 𝑝𝑑) = (0.2281, 0.2281, 0.2719, 0.2719), where 𝑝𝑙 is the probability of moving left,
etc. Middle: only the active advective terms contribute to movement: (𝑝𝑙 , 𝑝𝑟 , 𝑝𝑢 , 𝑝𝑑) = (0, 0.2384, 0, 0.7616). Bottom: Both the
active and diffusive terms contribute to movement: (𝑝𝑙 , 𝑝𝑟 , 𝑝𝑢 , 𝑝𝑑) = (0.1744, 0.2817, 0.0994, 0.4444). Each image is captured
at the end of simulation day 100. The black-and-white dots indicate the position of turtles at this time, the thin red lines indicate
the paths they traversed.
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Figure 5.2: Three snapshots (day 100, 200, 300) of one continued run of the IB model starting on 01-01-2016. In each
sub-figure the step size is 0.02∘ in both directions and the constant probabilities for active movement are (𝑝𝑙 , 𝑝𝑟 , 𝑝𝑢 , 𝑝𝑑) =
(0.1744, 0.2817, 0.0994, 0.4444). Each image is captured at the end of the simulation day. The black-and-white dots indicate
active (moving) turtles, the crosses indicate those turtles who have reached a simulation bound and whose simulation has there-
fore stopped. The path each turtle traversed is drawn in red.
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5.2. The PDE model
For the PDE model, we can start with a similar approach, by including first only the constant diffusion
or only the constant advection, combining their effects, and then showing the full picture with also the
influence of the vector field.

In Figure 5.3 we can see the PDE model with these constant factors singled out: only the active
diffusion, active advection, or both. As opposed to the IB model, the influence of the diffusive and
advective operators is separated naturally, instead of implicitly in the probabilities. This means that the
diffusion portrays the behaviour we would expect from the diffusive parameters more accurately: note
how the high-density part is a lot smaller than in Figure 5.1, top. The spread of density above 0.001
is relatively large, but diffusion spreads a low amount of mass out very fast, while the massive peak is
mostly stationary. The active advection is seen in Figure 5.3, middle. This figure looks very sharp, due
to the nature of advection: it does not permit flow against the stream, so the source is the furthest left
and up our population can move. This is fine, as the against-the-bias flow is handled by the diffusion.
The third figure shows their effects combined, and as we hope, shows a very similar picture as in Figure
5.1, bottom.

In Figure 5.4 we can see three snapshots of the PDE model with the flow field included. For these
images, we also overlay the flow field itself. Each image shows the density at a certain moment in time,
and the density is cut-off below a value of 0.001, for better visibility of the resulting data.

5.3. Comparison between the models
With these two models, we can compare their performance, and determine whether they provide similar
results. To do so, we gather data from both models and combine their outputs into singular figures.
Since the PDE model yeilds population density functions which evolve over time, while the IB model
creates individual walks which should be a sample from this population, we compare snapshots of the
density functions overlaid with the positions of walkers at corresponding time steps. If these visually
coincide, we consider the models to be producing similar results.

We first turn our attention to the results in 2016. Running our model on a spatial resolution of
0.04∘⨉0.04∘, and a time step size 𝜏 = 0.025 day, we acquire the results in Figure 5.5. Here we can
see a good correlation between the spread of swimmers (white dots from the IB model) and population
density (PDE model) shown as a colour map. While the models are not in perfect agreement, as the
highly dense region in the top figure and the swimmer population seem misaligned, there is clear visual
similarity.

We are now also in a position to compare our models with those created and implemented in [24],
who modelled the same phenomenon. Their PDE model appears to capture more intricate details of
the flow fields, and our models appear to move upwards more strongly. In their IB model the agents
remain more closely together, especially near the source or high-density regions, where our agents are
usually spread out further. These observations are discussed in Chapter 6.

Turning attention to the survival rates we find, in 2016 with 2 km of active swimming per day, our
IB model (with 5 turtles introduced per day) yields a survival probability of 0.5505. This is significantly
lower than the 0.78 in Figure 11 of [24] (left sub-figure, red dashed line at ’2 km/day’). Despite this
difference, the relative values and trends over time remain valuable for statistical analysis.

Notably, it seems that there is a difference in how [24] and we acquire our flow data, as they are
visually dissimilar. We further discuss this in Chapter 6
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Figure 5.3: Three samples (each after 100 days of simulation) of the PDE model. In each sub-figure, 𝑑𝑥 = 𝑑𝑦 = 0.04∘ , 𝑑𝑡 =
0.025 days. Top: only diffusion affects the simulation. Middle: only advection due to active turtle movement. The hard edges are
due to the advection acting by itself: there will movement against the direction of the flow, so from the source term we only see
south-easterly movement of the population. Bottom: The combined effect of constant advection and diffusion. In each figure,
the values used are as in Section 4.5, and the advection due to a flow field is not present. The density is only shown for values
larger than 0.001 per cell for improved readability.
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Figure 5.4: Three samples (day 100, 200, 300) of one run of the PDE model starting on 01-01-2016. In each sub-figure 𝑑𝑥 =
𝑑𝑦 = 0.04∘ , 𝑑𝑡 = 0.025 days. The advective and diffusive terms are as in Section 4.5, with a flow field influencing the advective
term. Each image is captured at the end of the simulation day. The density is only shown for values larger than 0.001 per cell.
In this figure, the flow field we are working in is also included.
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Figure 5.5: Three samples (day 100, 200, 300) of one run of the IB and PDE model starting on 01-01-2016, combined into three
sub-figures. In each sub-figure for the PDE model 𝑑𝑥 = 𝑑𝑦 = 0.04∘ , 𝑑𝑡 = 0.025 days, for the IB model the step size was 0.02∘,
with constant probabilities as in 4.3. The parameters for the PDE are as in 4.5, and both models are affected by the same flow
field. Each image is captured at the end of the simulation day. The density is only shown for values larger than 0.001 per cell.
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Figure 5.6: Three sample of the models [24] created to model the same experiment as in Figure 5.5. This image is a copy of
Figure 9 in [24], and has been included for comparison purposes. They do not provide a legend for the population density
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5.4. What will happen to the loggerheads?
Considering the impact climate change can have on the ocean streams [21], we hypothesise that in
recent years, the survival probability 𝑝success might have changed.

To determine this, we use a success function inspired by [24]: the amount of turtles exceeding
the bottom boundary of the simulation zone divided by the amount of turtles exceeding any horizontal
boundary of the simulation zone, as generated by the IB model2. Formulated it reads

𝑝success =
Amount of turtles subceeding 42.5∘N

Amount of turtles exceeding 46.5 or subceeding 42.5∘N
. (5.1)

For the year 2016, utilizing the IB model to determine these probabilities, we acquire a success prob-
ability3 of 𝑝success = 0.5505. Continuing to run our model for subsequent years, we find the results in
Figure 5.7. Here, year 2017 does not have a data measurement.4

There are two trends here that deserve further investigation: the valleys seen in 2019 and 2023,
and the apparent upwards trend from 2016 to 2022.

The valleys in 2019 and 2023 could have a number of causes, which we discuss in Chapter 6.
Because they appear to be statistical outliers (2019 deviates 203 turtles from the average of other
years, 2023 deviates by 335 turtles), or at least influenced by some other events, we ignore them for
determining 𝑝success. Doing this exception, we see an upwards trend in the data in years 2016, 2018,
2020, 2021 an 2022, and we would like to determine whether we may statistically speak of a trend, or
whether the data lies within expectable variation.

We assume the data is binomially Bin(𝑁 = 1825, 𝑝success) distributed. That is, on a yearly basis,
each of the 1825 turtles crossing the region has an independent probability of successfully reaching
the bottom 𝑝success. We can formulate a null hypothesis 𝐻0, the statement we are trying to show to be
true or false [2]:

𝐻0 ∶ 𝑝success is a constant value.

Figure 5.7: A plot of the sample values for 𝑝success, as a function of the
year in which it is being sampled. The anomalies in 2019 and 2023 are
discussed in Chapter 6, and largely considered outliers for the statisti-
cal analysis; they are excluded from the data.

With this 𝐻0, we can apply some statis-
tical methods described in Appendix C. In
short, for each possible probability 𝑝success
we determine a 𝑝-value for each measured
outcome of the binomial process. That
is, we determine for each observation how
probable it is that we would make obser-
vations as extreme as in Figure 5.7, un-
der the assumption these results are drawn
from a Bin(1825, 𝑝success)-distribution. We
then combine these 𝑝-values using Fisher’s
method [11] into a single overall 𝑝-value.

In this way, we find that our null hypoth-
esis 𝐻0 has a 𝑝-value of 2.62 ⋅ 10−6, and
we can therefore reject (using most con-
ventional levels of significance) the notion
that the survival probability is binomially dis-
tributed by a constant probability of suc-
cess.

2Of course, it would be best to use both the IB and the PDE models’ results, but there are some limitations to using the PDE
model’s density that this thesis has not been able to overcome. These are discussed in Chapter 6

3Note that the turtles who exceed the vertical borders or never reach a horizontal border do not throw off the statistic: the
measured 𝑝success is calculated precisely as in Equation 5.1. We assume the turtles that didn’t finish simulation would have
contributed to the probability in the same way.

4In the year 2017, longitudinal measurement swapped from the range [−180∘ , 180∘] to [0∘ , 360∘]. Although the flow data is
therefore technically available, we did not expect this switch between ’units’ to happen. It is for technical limitations of our
implementation that we had to exclude 2017 from the simulations.
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Final thoughts

In this chapter, we cover three main topics: what differences we can see between our models and
between our models and the literature, how we can improve the models themselves, and how we can
extend the work presented in this thesis overall. We end by concluding the thesis.

6.1. Discussion about results
Before noting where our models differ, we should mention that we believe to have succeeded at our
goal of implementing two models that agree with each other, as well as with previous attempts in the
literature to model this phenomenon. We still think it valuable to discuss discrepancies between the
models and the literature, and what might have caused them.

Most notably, we want to talk about the observation of walkers generated by the IB model being
close to the densities generated by the PDE model (see Figure 5.5), but not quite overlapping: the
PDE density and the IB population seem close, but not quite convincingly so. There is always the
possibility of off-by-one errors in which day is plotted, but assuming the implementation is correct, a
likely reason for the difference may be a mathematical problem to do with determining the amount of
steps a walker makes. As discussed in Appendix A, the IB model likely permits the walkers to travel
more distance due to swimming when the influence of a flow field is added to the model.

Another difference we noticed between our and [24]’s outcome is that our models show an up-
ward bias compared to theirs, with our density often crossing the 46.5∘N boundary–where theirs rarely
reaches it. The IB model appears to have the same bias, as it agrees with the PDE, and produces a
substantially lower survival rate. We suspect this bias is due to the discretization of our space, together
with the assumption that 1∘ ≡ 100 km. This is further discussed in Section 6.2.

As a last observation, where in [24] turtles are very close together in areas of high density, our
turtles are more scattered. We think this is a symptom of using a PJP: where a VJP can move in a
precise direction, the PJP can only ever move along the axes. So to move in an off-axis direction, our
PJP needs to combine steps in two directions. We hypothesize that this necessity creates a sufficient
amount of noise in the movement pattern to reduce the likelihood of clusters occurring.

What happened in 2019 and 2023?
The survival rates in 2019 and 2023 seem to follow the pattern in the data poorly, so we look for some
causes that might explain these outliers: what happened in or during 2019 and 2023 that didn’t influence
other years? Unfortunately, thoroughly researching the causes to this observation is far outside the
scope of this research paper, but this is a clear area of continued research. Incorporating older flow
data1 might uncover larger-scale patterns related to successful migration and provide the statistical
power to link global weather events with the observed probabilities.

Speculating about the causes to the observation, [31] supports that the ocean streams in the North
Atlantic are changing in strength over time. This aligns with our result, as the probability of traversal

1HYCOM not only provides until 2024 now, but also back to 1994. Not using this older data was also a decision made in the
context of scope
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should remain constant with a non-changing gyre, which it isn’t. Additionally, according to the Coper-
nicus Climate Change Service [6], 2023 saw a sea surface temperature anomaly of +1.36∘ above
average. Although 2016-2022 were comparatively unremarkable years, this deviation could also have
had an indirect impact on the ocean streams; while temperature is not a direct factor our model con-
siders, it may have an influence of the direction of ocean flow, thus survival probability. Considering
this topic is so broad, we recommend this for further research to better understand the environmental
cues influencing turtle migration success.

6.2. Discussion about our methods
Throughout the thesis, some points of interest have been marked for further discussion. We go through
those topics here, as well as provide thoughts on further improvement on this work.

Should we use a better resolution?
The highest spatial resolution we utilize in this thesis is 0.04∘⨉0.04∘. This is for a reason, and it has
to do with the flow data. As mentioned before, the resolution of the flow data is 0.08∘⨉0.04∘ (lon⨉lat).
This means that, with our current method of nearest-neighbour sampling, we are doubly sampling in
longitudinal direction, and match the latitudinal axis. To avoid even higher oversampling rates, we
avoid a higher resolution. Essentially, we have used all the information the flow field could provide at
this resolution. We could choose to use an even finer scale and switch to linear (or higher!) interpolation
sampling, but the implementation of this interpolation has proven to exceed the scope of this thesis.

Improving the resolution of the time variable 𝑡might prove worthwhile. We later discuss whether the
influence of the tides as a point of interest, but stated simply: the flow data is provided at intervals of
three hours, but we use it with an interval of 24 hours. This means we could get an eightfold improve-
ment, but this also means that 8 times as much data would need to be sent around. Considering the
retrieval time of the data is already a considerable factor in the runtime of the models (and sometimes
a network failure causes tens of minutes of simulation time to become useless, a problem that can only
become worse when the total data volume grows), we have opted to remain at the 24-hour scale.

Should we use a better conversion between degrees and kilometres?
Throughout the thesis, the assumption has been made that 1∘ = 100 km everywhere. It should how-
ever be mentioned that this approximation is not great: in latitudinal (vertical) direction, degrees are
equidistant, but 1∘ ≡ 111 km. In longitudinal (horizontal) direction, their distance varies dependent on
the latitude. Our region runs from 42.5∘N (where 1∘ ≡ 82 km) to 46.5∘N (where 1∘ ≡ 76 km). The
choice to not include this varying term is due to the difficulty this variation introduces to the derivations:
all the derivations have been done with the assumption the spatial step size 𝛿 is the same across the
simulation space and the same in 𝑥- as 𝑦-direction. Correcting the 𝛿 to be more accurate across the
axes, or accurate across every location in the space would invalidate the current derivations, and the
scope of this thesis has not permitted the inclusion of this factor. So we chose a middle ground of
1∘ ≡ 100 km.

Is the flow sampled at the correct time?
Another point of interest is the observed difference between the vector fields shown in Figures 5.4 and
5.6. To highlight one difference: at day 100 their field seems to point globally south, while ours shows
generally rightward and locally rotational behaviour. Further comparison only reveals more differences
in the vector field. Based on the similarity of the solutions our and their models yield, this is likely a
problem to do with keeping track of time, or even a difference in phase at which we sample our 24-hour
intervals of the flow field.

Should the tides have an influence on our flow simulation?
According to the [22], during each 24 hours and 50 minutes coastal areas see the tide rise twice and
fall twice. This means that peak-to-peak, the tide has a period of 12 hours and 25 minutes. There are
two factors in the model that might suffer for this pattern: the fact datasets are swapped day-by-day,
and the way in which missing data is handled.

The first problem, the day-by-day swapping is not so subtle: A day lasts 24 hours and two tides
last 24 hours and 50 minutes, which means the calendar days and tidal period run 50 minutes out of
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phase every 24 hours. As a result, the influence of the tides could be seen with a phase of 28.8 days,
but running in reverse. This effect can be minimized by reducing the period between swapping out the
dataset: if we would use each 3-hour snapshot, we would capture the effect of the tide more accurately.
Considering the limiting factor of the runtime of the model is already swapping the flow data out, we
have chosen not to do this.

Recall the modelling approach for a missing data point is to utilize the most recent past existent
point. This is generally the one 3 hours earlier, as the time variable comes in steps of three. This is
where the concern related to the tides comes from: the tide at a 3-hour difference is very different.
Taking the snapshot 12 hours ago provides a far more similar tidal reference, but has the setback of
being more distant in time for the flow itself. We chose to use the most recent data point, as the tides
have not been a consideration throughout the report in general.

6.3. Further work
While we have met our original research goals, many avenues for further development and exploration
remain open.

On the mathematical side of these, the first that comes to mind is introducing a spatially varying step
size to the derivations in Chapter 2, or simply one that is different along the axes. This would allow us
to move beyond the simplifying assumption that 1∘ = 100 km, and thus hopefully improve the accuracy
of the model. In the same mathematical spirit, we have proven some matters in one dimension in
this paper, and assumed them to be true in two dimensions (Section 2.2, Section 4.5). These are not
complete proofs, and are thus areas where our work could be strengthened: Finalizing these proofs
would be valuable to the validity of our methods.

In a more computational context, there is much that can be done. First, creating functions that
download the flow data and save it locally would prove very valuable to the runtime of our models;
network and server latency are the primary bottlenecks in runtime. It would also make it possible to run
the models without an internet connection. Furthermore, functionality that takes a time as its argument
and returns a flow dataset would vastly simplify interaction with the program, as the current approach of
one-file-per-year is not friendly to customization. Furthermore, more sophisticated sampling methods
for the vector field than nearest-neighbour might open the possibility for higher spatial resolutions.
Swapping the vector field every 3 hours instead of 24 hours might introduce stronger tidal effects, and
generally improve the accuracy of the streams’ influence.

In a broader scientific context, one obvious next step would be tracing real loggerheads as they
migrate the region. While such a study [20] has been conducted, it did not focus on our simulation
zone. Of course, our study could be applied in this zone too, and then comparisons could be made.
Another possible direction to take this thesis is to use earlier stream data: HYCOM provides the ocean
flow data starting 01-01-1994, so instead of our 7 data points, there could be 29. This allows for more
detailed and more powerful statistical methods, and uncover larger-scale trends.

6.4. Conclusion
The migratory behaviour of loggerhead sea turtle hatchlings within the North Atlantic Gyre is a complex
interplay of biological instincts and dynamic ocean currents. We set out to model this phenomenon and
explore how it has evolved in recent years. Specifically, we set out to
1. implement an IB model and PDE model to describe the migratory behaviour of loggerhead hatch-

lings.

2. use the simulations to determine whether the probability of successfully traversing the region of
the Gyre has changed in recent years.

Our findings show a good, but not perfect visual consistency between the IB and PDE model. Over-
laying the IB model’s simulated agent positions with the PDE model’s density maps suggests that de-
spite differences in formulation and implementation, these models capture their underlying dynamics
in a similar way.

Beyond developing and implementing these models, our analysis has uncovered that the survival
probability has changed over recent years (𝑝 = 2.62⋅10−6), particularly marked by notable deviations in
2019 and 2023. These deviations suggest that external factors may be disrupting the survival rates of
loggerhead hatchlings, and highlight the need for further investigation into these yet unknown causes.
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A
How many steps should a walker make?
One of the issues we ran into while implementing the IB and PDE model, is that there is an important
difference between how the addition of a flow is incorporated into the model.

In the PDE model, 𝑢𝑡 = ∇ ⋅ (−𝐴(𝑥, 𝑦, 𝑡)𝑢 + 𝐷∇𝑢), when the term 𝐴(𝑥, 𝑦, 𝑡) becomes a combination
of the active and passive advection, so when 𝐴(𝑥, 𝑦, 𝑡) = 𝑎 + 𝛼𝑓(𝑥, 𝑦, 𝑡), we can rewrite the model to
𝑢𝑡 = ∇ ⋅ (−𝑎𝑢 + 𝐷∇𝑢) + ∇ ⋅ (−𝑓(𝑥, 𝑦, 𝑡)𝑢). This means that, while influencing the total behaviour, the
short-term effects of the flow field can be seen (and calculated!) separately. This idea is formalized
in Appendix D.2 for a one-dimensional equation with constant advection: after doing a coordinate
transformation that moves along the direction of advection, the apparent behaviour of the turtles is
independent of the strength and direction of the vector field1. This means that the distance traversed
by a turtle in a day can’t be constant: the distance it traverses through active movement should be
constant, but an unknown amount of movement will be introduced by the surrounding flow field.

Now we run into a problem: consider a PJP that moves 𝑁 steps each day inside a zero-flow vector
field, that chooses to only go downwards. If we were to run the same simulation inside a constant
right-ward vector field 𝑓(𝑥, 𝑦, 𝑡) = ( 𝑓𝑟0 ), 𝑓𝑟 > 0, we would expect the following two things to happen:
1. The total downwards movement of the turtle would remain 𝑁𝑑 = 𝑁 steps, as the vector field

moves orthogonal to its movement; their influences should not interfere.

2. The turtles’ sideways movement should increase from 0 to some amount 𝑁𝑟 caused by the
rightwards-flowing field 𝑓(𝑥, 𝑦, 𝑡).

With our current approach, we run into a contradiction: a turtle always makes 𝑁 steps per day, but now
it needs to move 𝑁𝑑 +𝑁𝑟 = 𝑁+𝑁𝑟 > 𝑁 steps. So if the total amount of steps the turtle makes remains
constant, the effects of the vector field and active movement are not fully represented.

To alleviate this issue, consider the method of determining the probability of moving along each
direction, 𝑖 ∈ {𝑙, 𝑟, 𝑢, 𝑑}:

𝑝𝑖 =
𝑝𝑖 + 𝛾𝑓𝑖

1 + 𝛾∑𝑗=𝑙,𝑟,𝑢,𝑑 𝑓𝑗
with the constant probabilities 𝑝𝑖 and the components of the flow field 𝑓𝑖. We can rewrite the fraction to
be

𝑝𝑖 =
𝑝𝑖

1 + 𝛾∑𝑗=𝑙,𝑟,𝑢,𝑑 𝑓𝑗⏝⎵⎵⎵⎵⏟⎵⎵⎵⎵⏝
Active movement

+ 𝛾𝑓𝑖
1 + 𝛾∑𝑗=𝑙,𝑟,𝑢,𝑑 𝑓𝑗⏝⎵⎵⎵⎵⏟⎵⎵⎵⎵⏝
Passive movement

.

Where we have split up the influence of the active movement and passive movement. We can now
reason how many steps a turtle should make: If we assume a turtle can actively swim 𝑁 km

day
, then a

simulation in a zero-flow field should have a traversed distance of 𝑁 km
day

. Stated differently, the final
probability of movement 𝑝𝑖 in a zero-flow field is fully caused by the turtles own behaviour 𝑝𝑖, so the
1A similar topic has been broadly studied in the context of physical laws, where these ’coordinate transformations along the
direction of advection’ are commonly referred to as ’moving frames of reference’, see for example [9]
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active-probability weighted distance is 𝑁 km⋅prob.
day

. If we introduce a vector field to the calculation, the
contribution of the probability caused by active movement becomes (summed over all directions)

∑
𝑖=𝑙,𝑟,𝑢,𝑑

𝑝𝑖
1 + 𝛾∑𝑗=𝑙,𝑟,𝑢,𝑑 𝑓𝑗

=
∑𝑖=𝑙,𝑟,𝑢,𝑑 𝑝𝑖

1 + 𝛾∑𝑗=𝑙,𝑟,𝑢,𝑑 𝑓𝑗
= 1
1 + 𝛾∑𝑗=𝑙,𝑟,𝑢,𝑑 𝑓𝑗

,

which means that a total of
𝑁

1 + 𝛾∑𝑗=𝑙,𝑟,𝑢,𝑑 𝑓𝑗
km ⋅ prob.

day

distance was influenced by the walkers’ own efforts.
Considering we stated the turtle should actively traverse 𝑁 km

day
, this means inside the vector field we

should make 𝑆 number of steps on any particular day so that

𝑆

∑
𝑘=1

𝑁
1 + ∑𝑗=𝑙,𝑟,𝑢,𝑑 𝑓𝑗(𝑥𝑡𝑘 , 𝑦𝑡𝑘 , 𝑡𝑘)

= 𝑁

or equivalently
𝑆

∑
𝑘=1

1
1 + ∑𝑗=𝑙,𝑟,𝑢,𝑑 𝑓𝑗(𝑥𝑡𝑘 , 𝑦𝑡𝑘 , 𝑡𝑘)

= 1

to acquire an equal amount of effort from the walkers. Doing this, the effect of the flow field is added
onto the already present effects, instead of wrongly reducing the influence of the active movement.

When we implement this in an arbitrary vector field, we keep track of the influence the turtle has
exerted itself, and make sure that it sums to 1. Each day, we let a turtle make steps where each step

add (1 + 𝛾 ∑𝑗=𝑙,𝑟,𝑢,𝑑 𝑓𝑗)
−1

to a counter, for the local 𝑓′𝑗 𝑠 (which change with the turtle’s movement every
day). When this counter equals or exceeds one, the turtle’s simulation is stopped for the day, and we
simulate the next. This is how the programs currently approach determining the amount of steps to
make.

There is a disadvantages to this approach, namely that it always overshoots the agency a turtle had.
To illustrate the problem, imagine that there is a weak flow field. In fact, let the flow field be only a small
∑𝑖=𝑙,𝑟,𝑢,𝑑 𝑓𝑖 = 𝜖 > 0 strong. Now the influence of the walker is scaled back by some amount 1

1+𝜖 < 1.
This means that the walker gets to make another step. But then the final influence the walker had over
its own movement is

2
1 + 𝜖 ≈ 2

If the influence is slightly above or below 1, that is fine; we would expect there to be some variance.
However, turtles traversing double the distance in a weak flow field seems unfavourable, and the ex-
pected agency exerted will always be 1 or larger, so the expected value of the influence is > 1. It
might seem intuitive to then set this constant value of 1 to some other number, but it is not immediately
obvious which number then to choose2.

We propose an alternative, but implementing this alternative into the program has not fit the scope
of this research. If an agent currently has exerted its own influence equal to 𝑛 < 1, and the next step
will add an influence of𝑚 such that 𝑛+𝑚 > 1, then it would have exerted more agency than we wanted
it to. To solve this, consider that there exists a number, 𝑞 ∈ [0,𝑚] such that 𝑛 + 𝑞 = 1. If we draw a
number 𝑥 from a Uniform[0,𝑚]-distribution, and only let the Walker act if 𝑥 ≤ 𝑞, then the probabilistic
balance is restored: the last step adds an expected value of 𝑞𝑚 ⋅𝑚 = 𝑞 agency to the count, of which we
knew 𝑛 + 𝑞 = 1. Unfortunately, the scope of the paper has not permitted this idea being implemented.

2Heuristically, 0.5 might seem like the better choice. However, reasoning back from the characteristics of the vector field, the
average overshoot should be half of the average undershoot to acquire a balanced influence. Choosing 0.5 assumes the
overshoot is always 1, while it is always known to be < 1, so would yield an expected under-agency. This problem is likely more
nuanced.



B
Formal derivation for difference

operators
To solve the different parts in ∇⋅(𝐴𝑢+𝐷∇𝑢), we need to use two different numerical methods, and here
we describe how they can be found and implemented.

The diffusive part is solved using a central difference scheme. To understand how we transform the
diffusive part, Equation 2.7, to matrix form (as 𝑢 remains a matrix for the computer!). Recall

𝑢𝑡 = ∇ ⋅ 𝐷∇𝑢

= (𝜕𝑥𝜕𝑦) ⋅ (
𝑐𝐻 0
0 𝑐𝑉)(

𝜕𝑥
𝜕𝑦)𝑢

= (𝜕𝑥𝜕𝑦) ⋅ (
𝑐𝐻𝜕𝑥𝑢
𝑐𝑉𝜕𝑦𝑢)

= 𝑐𝐻𝜕𝑥𝑥𝑢 + 𝑐𝑉𝜕𝑦𝑦𝑢.

We can now reason about what happens if we discretize the space. Let 𝑢𝑖,𝑗 ∈ ℝ denote the (𝑖, 𝑗)th
element in the matrix that represents the evaluation of 𝑢(𝑥, 𝑦, 𝑡) at spatial location (𝑖, 𝑗), so that 𝑢(𝑡) ∈
ℝ𝑛𝑥×𝑛𝑦 . Thus, 𝑢(𝑡)=(𝑢𝑖,𝑗(𝑡)). Considering our choice of a central difference scheme (and Forward
Euler in time!), we want to move towards a form of

𝑢𝑖,𝑗(𝑡 + 𝑑𝑡) = 𝑢𝑖,𝑗(𝑡) + 𝑑𝑡 ⋅ (∇ ⋅ 𝐷∇𝑢𝑖,𝑗(𝑡))

𝑢𝑖,𝑗(𝑡 + 𝑑𝑡) − 𝑢𝑖,𝑗(𝑡) = 𝑑𝑡 ⋅ ((
𝜕𝑥
𝜕𝑦) ⋅ (

𝑐𝐻 0
0 𝑐𝑉)(

𝜕𝑥𝑢𝑖,𝑗(𝑡)
𝜕𝑦𝑢𝑖,𝑗(𝑡)))

𝑢𝑖,𝑗(𝑡 + 𝑑𝑡) − 𝑢𝑖,𝑗(𝑡)
𝑑𝑡 = 𝑐𝐻𝜕𝑥𝑥𝑢𝑖,𝑗(𝑡) + 𝑐𝑉𝜕𝑦𝑦𝑢𝑖,𝑗(𝑡)

for each element in 𝑢(𝑡) = 𝑢𝑖𝑗(𝑡). Substituting in the central difference scheme,

𝜕𝑥𝑥𝑢𝑖,𝑗(𝑡) =
𝑢𝑖−1,𝑗(𝑡) − 2𝑢𝑖,𝑗(𝑡) + 𝑢𝑖+1,𝑗(𝑡)

𝑑𝑥2

we acquire (note the 𝜕𝑦𝑦 acts on the 𝑗-index!)

𝑢𝑖,𝑗(𝑡 + 𝑑𝑡) − 𝑢𝑖,𝑗(𝑡)
𝑑𝑡 = (𝑐𝐻

𝑢𝑖−1,𝑗(𝑡) − 2𝑢𝑖,𝑗(𝑡) + 𝑢𝑖+1,𝑗(𝑡)
𝑑𝑥2 + 𝑐𝑉

𝑢𝑖,𝑗−1(𝑡) − 2𝑢𝑖,𝑗(𝑡) + 𝑢𝑖,𝑗+1(𝑡)
𝑑𝑦2 )

Ignoring boundary conditions for now, we can find the 𝜕𝑥𝑥 operator as the left-applied 𝑛𝑥 ⨉𝑛𝑥-matrix
with −2 on the diagonal, and 1 on the off-diagonals. 𝜕𝑦𝑦 is the similarly defined 𝑛𝑦⨉𝑛𝑦-matrix, but
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38 B. Formal derivation for difference operators

should be right-applied.1

𝜕𝑥𝑥=̂
1
𝑑𝑥2

⎛
⎜

⎝

−2 1 0 … 0
1 −2 1 ⋮
0 1 −2 ⋱ 0
⋮ ⋱ ⋱ 1
0 … 0 1 −2

⎞
⎟

⎠
This matrix representation of the operator preserves the size of the axes of 𝑢, and is such that we

can implement the diffusion part with a matrix-only approach. This is computationally efficient, and
permits a simpler implementation by using the NumPy package.

In a similar fashion, we can reason what the advection operator should look like. For the advection,
we use a different numerical scheme, as we are looking for a first-order difference. We should however
note that for the flow field, the advective term is dependent on space. In 2.2 we have shown this to be
valid in 1D, and we heuristically assume this validity holds for 2D as well. For the constant advective
part, this derivation is the same. Similar to the diffusion we start at

𝑢𝑖,𝑗(𝑡 + 𝑑𝑡) = 𝑢𝑖,𝑗(𝑡) + 𝑑𝑡 ⋅ (∇ ⋅ −𝐴𝑖,𝑗𝑢𝑖,𝑗(𝑡))

= 𝑢𝑖,𝑗(𝑡) − 𝑑𝑡 ⋅ ( (
𝜕𝑥
𝜕𝑦) ⋅ (

𝑎𝐻𝑖,𝑗
𝑎𝑉𝑖,𝑗)𝑢𝑖,𝑗(𝑡))

𝑢𝑖,𝑗(𝑡 + 𝑑𝑡) − 𝑢𝑖,𝑗(𝑡)
𝑑𝑡 = −𝜕𝑥(𝑎𝐻𝑢)𝑖,𝑗(𝑡) − 𝜕𝑦(𝑎𝑉𝑢)𝑖,𝑗(𝑡)

In this last step, we have contracted the subscript-𝑖, 𝑗 to be over the element-wise multiplication of
𝑎𝐻 , 𝑎𝑉 and 𝑢. This is also precisely what happens computationally: 𝑎𝐻 and 𝑎𝑉 represent the ocean
data-produced flow field. They are matrices of equal size to 𝑢, so using ⊙ to denote the Hadamard
product, (𝑎𝐻⊙𝑢)𝑖,𝑗 is the 𝑖, 𝑗th entry of the element-wise multiplication between 𝑎𝐻 and 𝑢. This is useful,
because we want to use a first-order upwind scheme (introduced in [7] and further discussed in [27]).
This means we do first-order forward/backward difference, in the direction of local advection.

Again neglecting boundary conditions, the forward difference resp. backward difference in 𝑥-direction
are

𝜕+𝑥 (𝑎𝐻⊙𝑢)𝑖,𝑗 =
(𝑎𝐻⊙𝑢)𝑖+1,𝑗 − (𝑎𝐻⊙𝑢)𝑖,𝑗

𝑑𝑥 , 𝜕−𝑥 (𝑎𝐻⊙𝑢)𝑖,𝑗 =
(𝑎𝐻⊙𝑢)𝑖,𝑗 − (𝑎𝐻⊙𝑢)𝑖−1,𝑗

𝑑𝑥
then we acquire

𝜕+𝑥 =
1
𝑑𝑥
⎛
⎜

⎝

−1 1 0 … 0
0 −1 1 ⋱ 0
0 0 −1 ⋱ 0
⋮ ⋱ ⋱ ⋱ 1
0 0 0 0 −1

⎞
⎟

⎠

, 𝜕−𝑥 =
1
𝑑𝑥
⎛
⎜

⎝

1 0 0 … 0
−1 1 0 ⋱ 0
0 −1 1 ⋱ 0
⋮ ⋱ ⋱ ⋱ 0
0 0 0 −1 1

⎞
⎟

⎠

and similarly for 𝜕+𝑦 , 𝜕−𝑦 . The application side of this operator is similar to the diffusive operator. The
implementation in code is handled (for example in horizontal direction) by determining for which indices
(𝑎𝐻 ⊙ 𝑢)𝑖,𝑗 is positive/negative. Considering 𝑢 is a density function, when (𝑎𝐻 ⊙ 𝑢)𝑖,𝑗 is positive, the
direction of the vector field is positive. We then know to use the forward difference or vice-versa.
The matrix 𝑎𝐻 ⊙ 𝑢 is created using numpy.multiply, and the matrix multiplications are handled with
numpy.matmul. The flux terms then are implemented by

flux = −𝜕+𝑥max ((𝑎𝐻⊙𝑢) , 0) − 𝜕−𝑥min ((𝑎𝐻⊙𝑢), 0)

1This left- or right-side application really matters! The matrix defining the operator might be symmetric, but left-applying yields
rows in 𝑢 (try writing out the matrix multiplication), keeping 𝑗 constant for each element. This is exactly what 𝜕𝑥𝑥 requires, and
oppositely 𝜕𝑦𝑦 requires columns, meaning it needs to be right-applied.



C
Statistics on success probabilities

To determine whether the Null hypothesis

𝐻0 ∶ 𝑝success ∶= 𝑞 is a constant value

can justifiably be rejected, we have to do some statistics [2].
If we model the amount of turtles that make it to the correct side of the region as a binomial variable,

then the amount of surviving turtles 𝑇 is a binomially distributed variable by,

𝑇 ∼ Bin(1825, 𝑞)

where we know the sample size 𝑁 = 1825 = 365 ⋅ 5, as for our sample we release 5 turtles per day,
for 365 days.

Doing this, the question of whether 𝑞 is constant can be rephrased: What is the probability that a
number of samples as extreme as 𝑇1⋯𝑇𝑚 or worse are all drawn from the same Binomial process?

We can not simply compare the 𝑝-values of each sample we created to a significance level. To
determine the significance of drawing the complete sample (so all the probabilities we find), we have
to utilize Fishers Method, also discussed in [11], defining a test statistic that follows a 𝜒22𝑚-distribution
under the Null hypothesis (recall 𝑚 is the number of samples):

𝑥 = −2
𝑘

∑
𝑖=1

ln𝑝𝑖 .

We can now acquire our total 𝑝-value by testing the probability of this 𝑥 or more extreme values arising
from a 𝜒22𝑚 distribution, i.e.:

𝑝-value = 1 − ℙ(𝑥 ≥ 𝜒22𝑚)
This final evaluation is done using SciPy’s chi2.cdf.

We turn our attention to answering the original research question: can we reject 𝐻0? To answer this,
for each probability 𝑞 ∈ [0, 1] we plot the associated 𝑝-value (ignoring the data from 2019 and 2023),
to see if any 𝑞 exist so that we can accept 𝐻0.

Turning our attention to Figure C.1, we can see the result of this experiment. The 𝑞 with the highest
related 𝑝-value to our Null hypothesis is 𝑞 = 0.583. Plotting a dashed red line in the probabilities we
found per year, we can see 0.583 does indeed seem to be centred in the data. However, it should be
noted that the vertical axis for the 𝑝-values is at a very small scale, 10−6.

This means that, after already having omitted the data from 2019 and 2023, we find a 𝑝-value of
2.62 ⋅ 10−6 at best. So we can conclude that each year, the amount of turtles who make it across the
region is almost certainly not a binomial process with a constant probability: if the choice to model it as
a binomial is appropriate, then its probability 𝑝success must almost surely depend on the year.
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40 C. Statistics on success probabilities

Figure C.1: Top: The probabilities found by running the IB model, per year. A dashed red line is included at the maximum
likelihood estimator 𝑞 = 0.58518. Bottom: The 𝑝-value related to each 𝑞, assuming the data points in 2019 and 2023 are
exceptions and should therefore not be included. The maximum 𝑝-value lies at 𝑞 = 0.5824. Note the vertical axis scale factor
of 10−6



D
Solutions to advection-diffusion

equations
In Chapter 2 we have derived continuous PDE models from RWs, that describe densities in population
starting from assumptions about the behaviour of the individual agents. In this chapter we show that
there exist exact solutions to some simple cases of these PDE’s.

D.1. Diffusion equation on an infinite domain
We wish to solve the fully symmetric advection-diffusion equation. This is a PDE, so we need to also
determine a domain on which to solve, and an initial condition to solve with. As we are going to model
individual turtles, we choose to represent the initial condition as Dirac Delta distribution 𝛿(𝑥). The
resulting solution then describes the population density of the turtles over time.

As for the boundary conditions, to lead into a ’simpler’ version of the model, we start with an infinite
domain. After this we show the case with Neumann conditions.

Considering the above, we wish to solve

{ 𝑢𝑡(𝑥, 𝑡) = 𝑐𝑢𝑥𝑥(𝑥, 𝑡) 𝑥 ∈ ℝ, 𝑡 > 0, 𝑐 > 0
𝑢(𝑥, 0) = 𝛿(𝑥). (D.1)

The usual ansatz for a problem on an unrestricted domain is to use a Fourier transformation. We
refer to [13] for additional details on approaching this problem. Let

ℱ[𝑢(𝑥, 𝑡)](𝜔, 𝑡) =
1
√2𝜋

∫
∞

−∞
𝑒−𝑖𝜔𝑥𝑢(𝑥, 𝑡)𝑑𝑥 ∶= 𝑈(𝜔, 𝑡),

ℱ−1[𝑢(𝜔, 𝑡)](𝑥, 𝑡) =
1
√2𝜋

∫
∞

−∞
𝑒𝑖𝜔𝑥𝑈(𝜔, 𝑡)𝑑𝜔 = 𝑢(𝑥, 𝑡)

denote the Fourier transform in 𝑥, so 𝑝(𝑥, 𝑡) ℱ↔ 𝑃(𝜔, 𝑡) is a Fourier pair. Now applying the Fourier
transform to each side of equation D.1,

ℱ[
𝜕
𝜕𝑡𝑢(𝑥, 𝑡)](𝜔, 𝑡) =

𝜕
𝜕𝑡𝑈(𝜔, 𝑡) = 𝑈𝑡 ,

ℱ[𝑐
𝜕2
𝜕𝑥2𝑢(𝑥, 𝑡)](𝜔, 𝑡) = 𝑐(𝑖𝜔)

2ℱ[𝑢(𝑥, 𝑡)](𝜔, 𝑡) = −𝑐𝜔2𝑈

yields
𝑈𝑡(𝜔, 𝑡) = −𝑐𝜔2𝑈(𝜔, 𝑡),

which has the usual solution of
𝑈(𝜔, 𝑡) = 𝐶1𝑒−𝑐𝜔

2𝑡 , 𝐶1 ∈ ℝ. (D.2)
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42 D. Solutions to advection-diffusion equations

To determine 𝐶1 we will need the Fourier Transform of the initial condition, as we essentially want to
use 𝑈(𝜔, 0):

𝑈(𝜔, 0) = ℱ[𝛿(𝑥)](𝜔, 0) =
1
√2𝜋

.

Plugging this initial condition into equation D.2, we get

𝐶1 =
1
√2𝜋

.

So that it remains to determine 𝑢(𝑥, 𝑡) by means of Fourier inversion,
𝑢(𝑥, 𝑡) = ℱ−1[𝑈(𝜔, 𝑡)]

=
1
√2𝜋

∫
∞

−∞
𝑒𝑖𝑥𝜔𝑈(𝜔, 𝑡)𝑑𝜔

=
1
√2𝜋

∫
∞

−∞
𝑒𝑖𝑥𝜔

1
√2𝜋

𝑒−𝑐𝜔2𝑡𝑑𝜔

=
1
√2𝜋

⋅
1
√2𝜋

∫
∞

−∞
𝑒𝑖𝑥𝜔𝑒−𝑐𝜔2𝑡𝑑𝜔

=
1
√2𝜋

⋅
1

√2𝑐𝑡
𝑒
−𝑥2
4𝑐𝑡

=
1

√4𝜋𝑐𝑡
𝑒
−𝑥2
4𝑐𝑡 .

Here we use that ℱ [𝑒
−𝑥2
4𝑐𝑡 ] =

1
√2𝑐𝑡

𝑒−𝑐𝜔2𝑡, with our definition of the Fourier transform. See for example
[23] for a collection of Fourier Transforms.

D.2. Advection-diffusion equation, on an infinite domain
To present a slightly more complicated model, we can reintroduce the advective term. So, consider the
model

{ 𝑢𝑡 = 𝑎𝑢𝑥 + 𝑐𝑢𝑥𝑥 𝑥 ∈ ℝ, 𝑎 ∈ ℝ, 𝑡 > 0, 𝑐 > 0,
𝑢(𝑥, 0) = 𝛿(𝑥). (D.3)

The term describing an added velocity 𝑎 ∈ ℝ is constant, meaning that in a frame of reference moving
with this constant speed of advection 𝑎, no movement should be observed. Therefore, permit the
transformation 𝑥′ = 𝑥 + 𝑎𝑡 and 𝑡′ = 𝑡. We can then rewrite the derivatives using the chain rule

{
𝜕
𝜕𝑥 =

𝜕
𝜕𝑥′

𝜕𝑥′
𝜕𝑥 +

𝜕
𝜕𝑡′
𝜕𝑡′
𝜕𝑥 =

𝜕
𝜕𝑥′

𝜕
𝜕𝑡 =

𝜕
𝜕𝑡′
𝜕𝑡′
𝜕𝑡 +

𝜕
𝜕𝑥′

𝜕𝑥′
𝜕𝑡 =

𝜕
𝜕𝑡′ + 𝑎

𝜕
𝜕𝑥′.

Using this, we can rewrite the parts in Equation D.3 the above as follows:

𝑢𝑡 =
𝜕
𝜕𝑡′𝑢 + 𝑎

𝜕
𝜕𝑥′𝑢 = 𝑢𝑡′ + 𝑎𝑢𝑥′

𝑢𝑥 =
𝜕
𝜕𝑥′𝑢 = 𝑢𝑥′

𝑢𝑥𝑥 =
𝜕2
𝜕𝑥′2𝑢 = 𝑢𝑥′𝑥′ .

Filling in these new terms in Equation D.3, we find

𝑢𝑡 = 𝑎𝑢𝑥 + 𝑐𝑢𝑥𝑥
𝑢𝑡′ + 𝑎𝑢𝑥′ = 𝑎𝑢𝑥′ + 𝑐𝑢𝑥′𝑥′

𝑢𝑡′ = 𝑐𝑢𝑥′𝑥′ .
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Now we see the advective term vanish. This means that using the substitution 𝑥′ = 𝑥 + 𝑎𝑡 we have
reduced the model to a case which can be solved with the same approach as the previous section,
D.1. Therefore, we acquire the solution

𝑝(𝑥, 𝑡) =
1

√4𝜋𝑐𝑡
𝑒
−(𝑥−𝑎𝑡)2

4𝑐𝑡

and are thus finished.

D.3. Diffusion equation on a finite domain
There is a stark difference between approaching the solution of this equation when evaluated on a
finite or infinite domain. We just saw an infinite domain permits a Fourier transformation. For a finite
domain, a more suitable ansatz would be an eigenfunction expansion. As we want to model Neumann
boundary conditions, consider

⎧⎪
⎨⎪
⎩

𝑢𝑡(𝑥, 𝑡) = 𝑐𝑢𝑥𝑥(𝑥, 𝑡) 𝑥 ∈ [0, 𝐿], 𝑡 ≥ 0
𝑢(𝑥, 0) = 𝛿(𝑥 − 𝐿

2)
𝑢𝑥(0, 𝑡) = 0 𝑡 > 0
𝑢𝑥(𝐿, 𝑡) = 0 𝑡 > 0.

If we assume that 𝑢 consist of a multiplication between a spatially dependent and temporally dependent
part, so 𝑢(𝑥, 𝑡) = 𝑋(𝑥)𝑇(𝑡), we acquire

𝑋(𝑥)𝑇′(𝑡) = 𝑐𝑋″(𝑥)𝑇(𝑡)
1

𝑐𝑇(𝑡)𝑇
′(𝑡) = 1

𝑋(𝑥)𝑋
″(𝑥).

We now have an equation where a temporally dependent and spatially dependent part have to equal
to each other. This means that these terms must equal some shared constant 𝜆 ∈ ℝ,

{
1

𝑐𝑇(𝑡)𝑇
′(𝑡) = 𝜆

1
𝑋(𝑥)𝑋

″(𝑥) = 𝜆. (D.4)

We have now acquired two ordinary differential equations. To solve these, we need to consider values
for 𝜆, first determining possibilities for its sign.

First assume 𝜆 = 𝛼2 > 0. Solving the problem in 𝑋, we get

𝑋″(𝑥) = 𝛼2𝑋(𝑥)

which has a general solution in terms of cosh and sinh

𝑋(𝑥) = 𝐶1 cosh(𝛼𝑥) + 𝐶2 sinh(𝛼𝑥).

Applying the boundary conditions in 𝑋, so

{𝑢𝑥(0, 𝑡) = 𝑋
′(0)𝑇(𝑡) = 0

𝑢𝑥(𝐿, 𝑡) = 𝑋′(𝐿)𝑇(𝑡) = 0,

with the requirement that 𝑇 ≠ 0 for non-trivial solutions1, yields that 𝑋′(0) = 𝑋′(𝐿) = 0:

{𝐶1𝛼
2 cosh(0) + 𝐶2𝛼2 sinh(0) = 0

𝐶1𝛼2 cosh(𝛼𝐿) + 𝐶2𝛼2 sinh(𝛼𝐿) = 0.

Now realizing in the first sinh(0) = 0 implies 𝐶1 = 0. But then 𝐶2𝛼2 sinh(𝛼𝐿) = 0 must have 𝐶2 = 0,
as sinh(𝛼𝐿) = 0 only when 𝜆 = 𝛼2 = 0 or 𝐿 = 0. We have found 𝐶1 = 𝐶2 = 0, so 𝜆 > 0 yields only
trivial solutions.
1Note that when 𝑇 ≡ 0, 𝑢(𝑥, 𝑡) = 𝑇(𝑡)𝑋(𝑥) ≡ 0. These are obviously not interesting solutions, so we avoid them.
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Moving on to 𝜆 = 0 we see, again solving from 𝑋, that 𝑋″(𝑥) = 0 implies 𝑋(𝑥) = 𝐶3𝑥 + 𝐶4. Using
the boundary conditions quickly shows 𝐶3 = 𝐶4 = 0, which means 𝜆 = 0 only yields trivial solutions.

The last possibility is 𝜆 < 0. For this purpose write 𝜆 = −𝛽2 < 0. Writing out the eigenvalue problem
in 𝑋 again,

𝑋″(𝑥) = −𝛽2𝑋(𝑥),
which has solutions

𝑋(𝑥) = 𝐶5 sin(𝛽𝑥) + 𝐶6 cos(𝛽𝑥).
Now again filling in boundary conditions,

{𝑋
′(0) = 𝛽𝐶5 cos(0) − 𝛽𝐶6 sin(0) = 0
𝑋′(𝐿) = 𝛽𝐶5 cos(𝛽𝐿) − 𝛽𝐶6 sin(𝛽𝐿) = 0.

In the first of these, we know cos(0) = 1 and sin(0) = 0, so 𝛽𝐶5 = 0 implies 𝐶5 = 0. Now in the
second equation, −𝛽𝐶6 sin(𝛽𝐿) = 0. Considering 𝛽 > 0 (and 𝐶6 = 0 would imply only trivial solutions
can exist), we divide them out to acquire sin(𝛽𝐿) = 0. This means

sin(𝛽𝐿) = 0
𝛽𝑛𝐿 = 𝑛𝜋, 𝑛 ∈ ℤ

𝛽𝑛 =
𝑛𝜋
𝐿 , 𝑛 ∈ ℤ,

so there are multiple non-trivial solutions to the eigenvalue problem in 𝑋, which look like 𝑋𝑛(𝑥) =
𝐶𝑛,1 cos (

𝑛𝜋
𝐿 𝑥) depending on 𝑛. Due to the principle of superposition, we ignore this constant for now

as it will be combined with the one we find solving for 𝑇. Solving the eigenvalue problem for 𝑇𝑛(𝑡) with
𝜆𝑛 = −𝛽2𝑛 = −(

𝑛𝜋
𝐿 )

2
, we get

𝑇′𝑛(𝑡) = −(
𝑛𝜋
𝐿 )

2
𝑐𝑇𝑛(𝑡)

𝑇𝑛(𝑡) = 𝐶𝑛,2𝑒
−
𝑛2𝜋2𝑐
𝐿2 𝑡

.

To re-acquire our solution 𝑝(𝑥, 𝑡), we use the principle of superposition [13]. Reintroducing the con-
stants of the eigenfunctions as 𝐴𝑛, dependent on 𝑛,

𝑢(𝑥, 𝑡) =
∞

∑
𝑛=1
𝐴𝑛𝑋𝑛(𝑥)𝑇𝑛(𝑡)

=
∞

∑
𝑛=1
𝐴𝑛 cos (

𝑛𝜋
𝐿 𝑥) 𝑒

−
𝑛2𝜋2𝑐
𝐿2 𝑡

.

Solving for the initial condition 𝑢(𝑥, 0) = 𝛿(𝑥 − 𝐿
2), as to find 𝐴𝑛, consider

𝑢(𝑥, 0) =
∞

∑
𝑛=1

𝐴𝑛 cos (
𝑛𝜋
𝐿 𝑥) = 𝛿 (𝑥 −

𝐿
2) .

We take the inner product on the left and right side with cos (𝑚𝜋𝐿 𝑥) for some 𝑚 ∈ ℤ, with the standard
inner product < 𝑓, 𝑔 >= ∫𝐿0 𝑓(𝑥)𝑔(𝑥)𝑑𝑥.

∫
𝐿

0

∞

∑
𝑛=1

𝐴𝑛 cos (
𝑛𝜋
𝐿 𝑥) cos (

𝑚𝜋
𝐿 𝑥) 𝑑𝑥 = ∫

𝐿

0
cos (𝑚𝜋𝐿 𝑥) 𝛿 (𝑥 − 𝐿2)𝑑𝑥.
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Due to Fubini’s theorem [3], we are permitted to exchange summation and integration here. This yields

∞

∑
𝑛=1

∫
𝐿

0
𝐴𝑛 cos (

𝑛𝜋
𝐿 𝑥) cos (

𝑚𝜋
𝐿 𝑥) 𝑑𝑥 = ∫

𝐿

0
cos (𝑚𝜋𝐿 𝑥) 𝛿 (𝑥 − 𝐿2)𝑑𝑥.

Now we realize that when 𝑛 ≠ 𝑚, ∫𝐿0 𝐴𝑛 cos (
𝑛𝜋
𝐿 𝑥) cos (

𝑚𝜋
𝐿 𝑥) 𝑑𝑥 = 0. Therefore, those terms vanish

from the sum and we are left with

∫
𝐿

0
𝐴𝑚 cos (

𝑚𝜋
𝐿 𝑥)

2
𝑑𝑥 = ∫

𝐿

0
cos (𝑚𝜋𝐿 𝑥) 𝛿 (𝑥 − 𝐿2)𝑑𝑥

𝐿
2𝐴𝑚 = cos(𝑚𝜋𝐿

𝐿
2)

𝐴𝑚 =
2
𝐿 cos (

𝑚𝜋
2 ) .

We now have collected all the components to write down the final solution to our problem.

𝑢(𝑥, 𝑡) = 2
𝐿

∞

∑
𝑛=1

cos (𝑛𝜋2 ) cos (
𝑛𝜋
2 𝑥) 𝑒

−
𝑛2𝜋2𝑐
𝐿2 𝑡

.
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