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Abstract—The main focus of this paper is an active sensing
application that involves selecting transmit and receive sensors
to optimize the Cramér-Rao bound (CRB) on target parameters.
Although the CRB is non-convex in the transmit and receive
selection, we demonstrate that it is convex in the virtual array
weight vector, which describes the multiplicity of the virtual array
elements. Based on this finding, we propose a novel algorithm
that optimizes the virtual array weight vector first and then finds
a matching transceiver array. This greatly enhances the efficiency
of the transmit and receive sensor selection problem.

Index Terms—Active sensing, Cramér-Rao lower bound (CRB),
multiplicity, redundancy, sensor selection.

I. INTRODUCTION

With advances in hardware capabilities, the feasibility of
complex digital processing has increased, resulting in the use of
larger sensor arrays. Despite this progress, specific applications
remain constrained by limitations such as power constraints and
budgetary restrictions. Consequently, there is a motivation to
explore sparse arrays that can deliver comparable performance
while respecting resource constraints.

The utilization of sparse arrays is a topic that has received
significant attention for various applications such as automotive
radar [1] and wireless communications networks [2]. However,
it introduces the crucial challenge of waveform design and
sensor selection, both on transmit and receive.

The interplay between the transmit and receive sensors is
of great importance. It is well known that the identifiability
(number of identifiable targets) of a transceiver array is upper
bounded by the size of the virtual array (also named sum
co-array) [3]. Moreover, when the rank of the transmitted
waveform (often called the waveform rank) is smaller than
the number of transmitting sensors, the identifiability of the
transceiver array—even for full sum co-arrays—is affected
by the redundancy of the transceiver sensor positions [4].
This highlights the importance of selecting suitable transceiver
Sensors.

The research conducted in [5] demonstrated that the problem
of choosing a group of sensors (specifically, receiving sensors)
to enhance estimation performance, although inherently non-
convex and NP-hard, can be effectively addressed by using its
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convex relaxation. Since then, several studies have concentrated
on improving the selection of receive sensors (see, e.g., [6]—
[10]). The work in [6] and [7] discussed sparsity-aware sensor
selection in a centralized and decentralized scenario, while
[8]-[10] discuss greedy methods, where sensors are chosen
one by one. However, these papers discuss the selection of
only the receive sensors, whereas, for many active sensing
applications, the interplay between the transmit and receive
sensors is crucial.

The work in [11] discussed a multiple-input and multiple-
output (MIMO) radar scenario in which the number of de-
ployed sensors is minimized under a localization estimation
mean squared error (MSE) constraint and considers both the
transmit and receive selection. In [1], a genetic algorithm
originally proposed in [12], was used. In each iteration, the
“genes”, i.e., a set of transceiver selections, are ranked based
on the ambiguity function; only the ones ranked high are
used to generate a new set of genes for the next iteration.
Nevertheless, the research mentioned above has not considered
exploiting the interplay between the transmit and receive
selection, specifically the virtual array, which is ultimately
responsible for the estimation performance. Although the
authors of [13] proposed an approach to find a transceiver
selection that matches a desired virtual array, it does not cover
optimizing the virtual array with respect to a transmit/receive
objective. It also mainly considers virtual arrays for which an
exactly matching transceiver selection is known to exist.

This paper presents an approach that exploits the knowledge
of the virtual array for transmit and receive sensor selection.
This leads to a substantial improvement in complexity com-
pared to conventional approaches to address the sensor selec-
tion problem. The enhancement is rooted in the understanding
that although the performance measure typically exhibits non-
linearity in the selection of transmit and receive elements,
leading to a non-convex optimization problem, it is linear in the
multiplicity vector, resulting in a convex optimization problem.

II. SIGNAL MODEL AND PROBLEM STATEMENT

Consider an active sensing scenario with K targets in the
far field, which have reflection coefficients @ € R¥ and
incident angles 6 € [—m/2,7/2), as visualized in Fig. 1.

'The model and following derivations can be extended to o € C¥ trivially
as discussed in [14, Section 15.7].
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Fig. 1: Possible use-case of K moving targets.

The objective is to estimate certain parameters of the targets
using a uniform linear array (ULA) of transceivers. In this
work, we consider the reflection coefficients of the targets as
the parameters of interest, to improve the tracking performance
[15], and we assume the angles of incidence (Aols) known.

Suppose that a linear array of N; and N; colocated trans-
mitters and receivers is used, and the N; received signals
are collected for 7' time instances. Then, the data matrix
X € CMXT, under the narrowband assumption, can be
modelled by

K
X =) ara(0r)al (0:)S" + N,
k=1
= A, diag(a)ATST + N, (1)
where «j is the reflection coefficient of the kth
target, [a(.)(ﬂk)]i = exp(jmd;sin(;))  denotes  the

steering vector at the Aol 6; of the kth target, and
Ay = [a(61) a()(0k)]. The distance from the ith
array element to the reference element, here chosen as the
center of the array, is denoted by d;, S € CT*™ contains the
N, transmitted narrowband signals, and IN contains additive
Gaussian noise.

Constrained by budget and/or limited processing resources,
our objective is to choose a subset of transmit and receive
sensors from the set of candidates that performs better than any
other selection of the same number of sensors for estimation
of the target reflection coefficients. It should be noted that the
complexity of the algorithm is important here, as there is a
limited amount of time available before the situation, i.e., the
Aols, changes. Let p; and p; denote the selection vectors for
transmit and receive, respectively, which indicate with a one
(zero) when a sensor of the array should be selected (omitted).
The selection-dependent data model is then described by

X = ®(p;)A; diag(a)A-tr(I)T(Pt)ST + N, 2)

where the wide matrix ®(p) denotes a selection matrix that
contains only the rows of the identity matrix corresponding to
the indices where p has elements equal to one.
Finally, given a cost function f(p,p:), our problem is to
solve
min
Pu;Pr
where B(.) = {p e {0,13N0 [1Tp = M(.)}, and M, and M,
are the desired number of selected sensors.

f(ptapr) ) s.t. Yo € Bta Pr S Bry (3)

III. PERFORMANCE METRIC

We need a selection-dependent metric that describes the
array performance to compare different sensor selections. As
stated in Section II, the array will be used for estimating the
reflection coefficients of K targets given known Aols. We
will use a selection dependent Cramér-Rao Bound (CRB)
on the estimation of o« as the basis for our cost func-
tion. To simplify notation, we refer to the selection matrix
®(p()) € {0,1}MO7NO a5 & .

We first vectorize the data matrix X in (2) to obtain

sum co-array response

~ —
vec(x) —(Sely) (®A0®A)atn, @

where ® and © represent the Kronecker and Khatri-Rao
products, respectively. The sum co-array response could have
repeated rows, indicating these virtual elements have some
multiplicity. This notion of multiplicity can be used to re-write
the sum co-array response as

(I)lAt © (PrAr = ((I’l ® ¢r)’I.14E 5 (5)

where Y € {0, 1} s the redundancy pattern matrix
with Ny, = N 4+ N; — 1 the number of virtual array elements,
and Ay € CV=*K ig the virtual steering matrix containing
all steering vectors of the virtual array, without repeated rows
[16]. Note that in the formulation of (5), X and Ay refer to
the redundancy and steering matrices of the virtual array when
using all transceivers for transmit and receive.
Let E(py, pr) be the CRB matrix (CRBM), then

Var(&) > diag(E(py, pr)) = diag(l'_l) , 6)

where ¢ is an estimate of «, and Z is the Fisher information
matrix (FIM). Using (4) and (5), we find that the FIM is [14],

T= QRe{AgTT(S @ Iy)'R;Y (S ® IMr)TAE} , (D

where R, is the covariance matrix of the noise and
Y = (&, ® ®,)Y. We make two assumptions: The noise is
white, i.e. R, = JZI Mr,2 and the transmitting sensors send
orthogonal sequences (in time), i.e. S8 =T a,. Under these
assumptions, the FIM in (7) simplifies to
T= 2Re{Ag’i‘T'i‘Ag} . ®)

Before we continue to derive our sensor selection optimization
methods, let us investigate how Z depends on p; and p;.

Since Y'Y = diag(v), where v = p, * p, is the virtual
array weight (VAW) vector, indicating the multiplicities of the
virtual array elements,’ where * represents linear convolution.
With this, we can rewrite (8) as

T = 2Re{ AY diag(v)As} . ©)

So, the FIM is bilinear in the selection vectors p; and p;, and
linear in the VAW vector.

2We acknowledge that this might not be realistic for every application, as
it implies that noise is uncorrelated over the receiving sensors.

3The multiplicity vector vy, from [17], [18] is obtained by removing all zero
elements from v. A proof of this relation will be published in the extension
of this work.
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(a) A transceiver array, and their resulting sum array. Xs indicate unselected
sensors and empty virtual array positions.
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(b) The resulting VAW vector and VAW bounds for the example in Fig. 2a.

Fig. 2: Example of a transceiver array, and the resulting VAW.
Here, (Nx, Ny, Ny, My, M;) = (8,3,6,2,4).

In Fig. 2, an example of a sensor selection and the resulting
VAW vector are shown. Note that by construction via the
convolution, we have 1Tv = M, M,, and

v; <min(i, Ny + Ny — i, M, My), YieN, (10)
where N/ = {0,1,..., Ny }. The constraint in (10) results in
an upper bound on the vector v, shown in Fig. 2.

Although we now have a metric to evaluate the quality
of sensor selections, we do not yet have a convex scalar
cost function. There are several ways to obtain scalar cost
functions from a matrix. We focus on minimization of the
worst-case error, represented by the maximum eigenvalue of
E(v), commonly called the E-optimality. Analogous methods
involve considering the trace (A-optimality) or the logarithm
of the determinant (D-optimality) of E(v), as outlined in [19].
The problem at hand can now be formulated as

min
Pe,Pr

Amax (E(v)) st. p B, p€B;. (11)

IV. JOINT TRANSMIT AND RECEIVE SENSOR SELECTION

We discuss two methods of approximately solving the non-
convex program, as given in (11), using the properties of the
FIM noted in Section III.

A. Alternating between Transmit and Receive Selection

In Section III, we saw that the FIM is bilinear in the selection
vectors. To use this property, we first relax the binary con-
straints on the selection vectors by introducing box constraints
on new continuous variables p, € l”;’l and p, € l’;’r, where
By={peRYo |0<p<1A1Tp=DM,}. Additionally,
we express the problem in (11) in terms of the FIM instead

Algorithm 1 The “Alternating” algorithm.

Input: A, A;, M, M,, Stopping condition
Output: p, p;

1. 5«0

2: ﬁt(U) — shufﬁe([lyw[ OT‘_MJT

3: while Stopping condition is not met do

4 Jeg+l

5. pY) < Solution of (12) for p, = p

6 pY « Solution of (12) for p = p)

7: end while

8: p + randround (ﬁt(j )> , Pr  randround (ﬁﬁﬂ)

of the CRBM. Ignoring constant factors, this results in the
following optimization problem,

max A
AP, Dr

s.t. Re{Ag diag(p, * pr)As} — M = 0
P EB, pr€B:.

(12)

The problem is bilinear in the selection vectors and, hence,
non-convex. Therefore, an iterative algorithm that alternates
between solving only for p; or p;, keeping the other selection
vector fixed, can be applied. Once convergence to a local
minimum is achieved, the sensor selection is obtained from
the continuous vectors p; and p, by a randomized rounding
procedure, where the continuous values in p, and p, are
used as probabilities [20]. Alg. 1 describes this procedure,
which we will refer to as the “Alternating” method, where
randround(-) is the randomized rounding procedure [20] and
shuffle() returns the input vector with its elements randomly
ordered.

Note that in each iteration of Alg. 1 a semi-definite program
(SDP) of size K must be solved. The complexity of solving
an SDP with an interior point method depends mainly on the
complexity of calculating and inverting the Hessian of the log
barrier function in each iteration. This leads to a complexity
of about O(K?), assuming the number of iterations of the
interior point method is constant [21]-[23]. For more details,
the interested reader is referred to [23] and references therein.

This complexity introduces a problem for sensor selection.
The complexity of Alg. 1 is O(IK?), where I denotes the
number of iterations that the alternating approach needs to
converge. To tackle this complexity problem, we propose a
new method that uses the VAW vector.

B. Using Multiplicity

As shown in Section III, the FIM is linear in the vector v.
So, instead of directly trying to find the selection vectors, we
could first optimize for the VAW, using a new set of constraints
on v as derived in Section III. The optimization of the CRB
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Algorithm 2 The “Multiplicity” algorithm.

Input: A, A;, M, M,, Stopping condition
Ol.ltpllt: Dy, Pr

1: © < Solution of (13)

2: 740

3: pt(o) <+ shuffle [1}-\41 OyvlfMl]T)

7Y « shuffie (1}, OyvﬁMr]T)
while Stopping condition is not met do
j—J+1
(J) < Solution of (14) for p, = p,(J b
SJ )+ Solution of (14) for p, = p.*
end while

10: p; + randround <15t(j )) Pr — randround( 57 ))

R A A

over v can be described by the mixed-integer SDP,

max A
v€EZNS X\

st. Re{Af diag(v
0 <wv; <min(i, Ny + N, —
1o = MM, .

AE} M >0

i, M, M,), Vie N

Note that this embodies the fact that solely the combination of
transmitter and receiver selection determines the performance.
This motivates the following approach. We first solve the SDP
for v, followed by an iterative approach that, from v, calculates
the sensor selection. We relax the integer constraint to box
constraints on a new continuous vector variable ¥ to obtain
the convex problem

max A
DERNE A
st. Re{ A diag(s)As} — AT = 0 (13)
0 <9; <min(i,—i+ 1+ Ns, My, My), Vie N

1" = MM, .

Having solved for v, in the second step, we still have to use
an alternating approach to find the transmitter and receiver
selections that constitute ©. Unlike the previous alternating
approach, this will be independent of K. Note, however, that
v obtained from solving (13) contains continuous elements
instead of integer ones. Therefore, a binary selection exactly
matching ¥ probably does not exist. Additionally, the binary
constraints are non-convex.

Like before, we relax the problem by introducing box
constraints on the selection vectors and minimizing the [o-
norm. We end up with the following quadratic program (QP)
-9y, st peB, p B, (14

min
P, Pr

[1(Be* pr)

which is initialized by random selection vectors in B(.y. The
complete procedure, which we will refer to as the “Multiplicity”
method, is summarized by Alg. 2.

Note that in Alg. 2 we only need to solve an SDP once.
Subsequently, we proceed with iterations using a quadratic

50 Method
40 e Alg. 1
Alg. 2
h=1 >
g 30
S |
] [ ]
* ikl
4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8
Worst CRB x1073

Fig. 3: The worst CRBs for different initializations when
K =28.

program, rather than repeating the process with an SDP as in
Alg. 1. This drastically reduces the complexity of the sensor
selection problem, which we will corroborate with simulations
in the following section.

V. NUMERICAL RESULTS

To verify our proposed method, we performed Monte Carlo
trials to investigate the performance of the discussed methods
in terms of solve-time and the achieved CRBs. We take
Ny = N; = 32, My = M, = 16, and a half wavelength spaced
candidate ULA. We performed 20 trials, each for different
values of K. For each value of K, the targets are equally spaced
in their Aol. For each trial, both methods use the same ﬁt(o
and ﬁr(o). The stopping condition for both methods is Apin(Z)
not improving by 10~2 for three consecutive iterations.

We compare the methods using three different metrics.
First, we evaluate the methods by comparing the worst-case
of their resulting sensor selections. The worst-case CRB is
given by CRB,, = max(diag(lfl)). This will indicate
whether the methods produce selections that perform similarly
or that one is decidedly better than the other. Second, we
compare the total time needed to perform the methods on
equal computer platforms using off-the-shelf convex solvers.
Details of the implementation and comparison are available in
a supplementary code notebook.* Last, the time taken to solve
one iteration of alternating optimization on equal computer
platforms using off-the-shelf convex solvers between each
algorithm is compared. To be precise, one iteration refers to
executing lines 4 through 6 of Alg. 1, and lines 6 through 8
of Alg. 2.

The results of the CRB comparison over multiple random
initializations are presented in Fig. 3. It shows that the
difference in outcomes of both methods is small, with Alg. 2
being slightly more consistent. The total solve-time of the
methods as the number of targets changes is given in Fig. 4a.
We see that our hypothesis is confirmed: The solve-time of
Alg. 1 climbs much faster. There is some fluctuation in the
solve-time of Alg. 2, which we found to be due to the stopping
condition. As Fig. 4b shows, Alg. 2 typically requires more
iterations before the stopping condition is met. The stopping

“DOI: 10.5281/zenodo.11963748
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(a) Total solve-time of the algorithms.

Number of Targets

(b) The number of iterations of the alternating
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(c) Average solve-time per iteration of the alter-
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Fig. 4: The Monte-Carlo simulation results, for Ny = N, = 32 and M, = M, = 16. In these figures, DA refers to Alg. 1, and
UM refers to Alg. 2. The shaded regions in Figs. 4a and 4c are the 95 % confidence intervals.

condition is based on the FIM, which is not part of (14). We
chose this stopping condition for a fair comparison between
both methods, but in practice, a condition tailored to the
optimization problem would be more effective. In Fig. 4c,
we see the QP solve-time per iteration is much lower than
that of the SDP for a larger number of targets. As expected,
the solve-time per iteration of Alg. 2 does not scale with the
number of targets, only the number of available transceiver
positions.

VI. CONCLUSION

We have shown a joint transmit and receive sensor selection
method using the VAW vector. Compared to solving directly
the bilinear problem for the selection vectors, our method
has the benefit of lower complexity in the presence of many
targets. Additionally, the solve-time of our method fluctuates
less with the addition or removal of targets from the scene,
leading to better predictability and consistency of the execution
time. For future work, we will extend this method to unknown
Aols, estimating Aols, and non-co-located transmit and receive
arrays. We would also like to improve the solve-time by
reducing the number of iterations needed for convergence.
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