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Abstract

Understanding the role of genes and genetic variants is a key challenge in unraveling the driving mechanisms of Alzheimer’s
disease (AD). Single-cell RNA sequencing is a technique that quantifies gene expression at the cell (type) level enabling inves-
tigation of the roles of different cell types in disease. We analyzed changes in gene (co-)expression associated with genetic
variants using single-cell RNA sequencing data (>1.3 million cells) from the dorsolateral prefrontal cortex (DLPFC) of 379 in-
dividuals of the ROSMAP cohort. Our single cell expression quantitative trait loci (sc-eQTL) analysis determined 3,337,065
sc-eQTLs, linking 1,882,645 SNPs to changes in expression of 8,057 genes in 7 major cell types. Next, we investigated the as-
sociation of genetic variants with changes in co-expression for gene pairs (co-eQTLs), focusing on a set of variants and genes
relevant to AD. Our novel non-parametric method for co-eQTL analysis compares gene co-expression distributions between
SNP genotypes. We found 6,878 cell type specific co-eQTLs (variant-gene-gene combinations) relating to 18 AD variants. Al-
though a substantial proportion of the findings is driven by eQTL effects, our method identified co-eQTLs that would not have
been discovered in a correlation-based analysis. Most notable, we found variant rs13237518 (located in the TMEM106B gene)
to associate with expression changes in a subset of 25 genes in excitatory neurons which is possibly indicative of higher-level
disruptions related to the variant. Overall, we show that exploring genetic variant-associated changes in gene (co-)expression
is a promising approach in finding cell type specific mechanisms that may be altered in AD.

Introduction

Alzheimer’s disease (AD), the most common form of demen-
tia, is known for its hallmark symptoms like memory im-
pairment and decline in executive functioning (DeTure and Q,é
Dickson 2019). AD is a major healthcare burden on society

and a leading cause of death. At present, neither curative X

nor preventative treatment is available for AD (van der Flier Trait @ «—m & Exrf]rizgon
et al. 2023). Even though neuropathological features of AD DEA

are known, such as the presence of amyloid-beta plaques in )
the brain and neurofibrillary tau tangles in neurons (typically Differential Correlation
quantified with Braak staging and CERAD scores), the exact
disease mechanism is not fully understood (Bai et al. 2021).
AD is highly heritable (Bellenguez et al. 2022): in fact, the her-

co-eQTLs
Genetic Variants ———

Gene
Expression

Figure 1 Studies relating genetic variants and gene expression

itability of the most common form of the disease (Late Onset
Alzheimer’s Disease) ranges between 60-80% based on twin
studies (Gatz et al. 2006). Therefore, understanding the role
of genes and genetic variants is a key challenge in unravel-
ing the mechanisms driving the disease process, and finding
possible therapeutic targets.

In order to identify genetic modifiers of diseases, typ-
ically genome-wide association studies (GWAS) and differ-
ential expression analyses (DEA) are performed (Westra and
Franke 2014). GWAS compare the frequency of genetic vari-
ants (single nucleotide polymorphisms (SNPs), insertions
and deletions (indels)) between individuals with different
phenotypes (for example: AD patients and controls), to iden-

tify relevant disease loci. In DEA, gene expression is com-
pared between cases and controls, to identify genes with sig-
nificantly higher or lower gene expression between the re-
spective groups. While these approaches find genetic vari-
ants and genes of possible relevance, they do not directly re-
veal the functional consequences of genetic variants and/or
the effects on differential gene expression in disease.

To do so, expression quantitative trait loci (eQTL) are of-
ten used, which directly relate genetic variants to gene ex-
pression (Westra and Franke 2014). The loci correspond to
SNP genotypes which can be obtained from genotyping ar-
rays or whole genome sequencing (WGS) data. The quantita-
tive trait is the gene expression which can be obtained from
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Figure 2 Data and analysis overview of the (co-)expression QTL analyses

RNA sequencing data by quantification of RNA transcripts
mapped to a gene.

Bulk RNA sequencing data provides the number of RNA
transcripts on sample level, which reflects the average ex-
pression of a gene in a tissue and is strongly driven by the
RNA transcripts present in the most prevalent cell type(s)
(zhang and Zhao 2023; Mathys et al. 2019). In fact, different
cell types execute different functions and as such may have
different roles in disease. These functions of a cell are also
reflected in their transcriptome, the set of RNA transcripts
presentin a cell (Jovic et al. 2022a). In the past decade, single
cell RNA sequencing (scRNA-seq) techniques have been de-
veloped that allow for measuring transcripts at the level of in-
dividual cells (Jovic et al. 2022b). This uncovered a new layer
in assessing roles of genes and their relationship with dis-
ease. SCRNA-seq data, combined with genetic variant infor-
mation, enables the examination of eQTLs on cell type spe-
cific level (sc-eQTL), which also aids the discovery of eQTLs
in less abundant cell types which were previously obscured
in bulk eQTL analyses (Zhang and Zhao 2023).

Most eQTL analyses assess variant-gene pairs indepen-
dently and DEAs assess expression changes in individual
genes, while biological networks are characterized by genes
affecting and regulating the expression of other genes (Li
et al. 2023a). For example, a genetic variant relating to a tran-
scription factor may change its binding affinity and regulate
expression of another gene (Flynn et al. 2022). Therefore, a
co-expression analysis that considers genetic variants may
highlight these possible interactions.

Recent work by Bouland et al. (2023b) investigated gene-
gene relations in the context of AD. Their analysis determines
differential correlation between genes in a cell type-specific
context using scRNA-seq data of brain tissue from AD pa-
tients and controls. Significant differences in expression
correlation between groups (AD versus controls) are used

to build a differential co-expression network, a graph with
nodes for genes and edges determined by the differential
co-expression relation. Network-level assessment of differ-
ential correlation points towards hub genes that are involved
in altered associations between genes and can be used for
gene prioritization. As this study has a case-control design,
the influence of genetic variants on gene-gene relations has
not directly been taken into account, the findings do suggest
however that exploring gene-gene relations is a promising
direction in investigating the role of variants and genes in
AD.

Few studies used single cell RNA sequencing data ob-
tained from blood to determine the correlation between
gene expression, and further relate these with SNP geno-
types. For example, in Oelen et al. (2022), co-expression
QTLs, defined as 'SNP genotypes affecting the co-expression
relationship of a gene pair’, were assessed for peripheral
blood mononuclear cells (PBMCs) considering their response
to pathogen stimulation. The relationship was assessed by
determining the Spearman correlation coefficient between
genes using single-cell gene expression values for each indi-
vidual and relating the correlation to the SNP genotype in
a weighted linear model. Li et al. (2023a) extends on this
by integrating multiple PBMC datasets into a meta-analysis.
Spearman’s rank-based correlation was found to be the best
fit for their data analysis. The SNP-gene-gene set tested was
limited by considering only significant eQTLs from Vosa et al.
(2021) and testing those SNP-gene combinations for all genes
that were expressed in at least 50% of cells.

Here we present our eQTL and co-expression QTL (co-
eQTL) analysis performed with single nucleus RNA sequenc-
ing (sn-RNA seq) data from the dorsolateral prefrontal cor-
tex (DLPFC) of 379 participants of the ROSMAP cohort of
which 141 are diagnosed with AD. We show cell type spe-
cific eQTLs for 7 major cell types in the human brain: astro-



Cogdx | n | Coding
] 122 NCI: No cognitive impairment
(No impaired domains)
) 98 MCI: Mild cognitive impairment
(One impaired domain) and NO other cause of Cl
MCI: Mild cognitive impairment
3 3 (One impaired domain) AND another cause of Cl
4 121 AD: Alzheimer’'s dementia and
NO other cause of CI (NINCDS PROB AD)
5 20 AD: Alzheimer's dementia AND
another cause of ClI (NINCDS POSS AD)
6 1 cher dementia: .
Other primary cause of dementia

Table 1 Cognitive characteristics: number of individuals per
cognitive diagnosis along with diagnosis definition

cytes, endothelial cells, inhibitory neurons, excitatory neu-
rons, microglia, oligodendrocytes and oligodendrocyte pro-
genitor cells (OPCs) (Green et al. 2023).

We analyzed the influence of genetic variants on gene
co-expression (co-eQTL) focusing on a subset of variants and
genes relevant to Alzheimer’s disease from previous studies.
Unlike previous co-eQTL studies that link the correlation be-
tween expression of gene-gene pairs to genetic variants, we
used a non-parametric method to assess changes in expres-
sion of gene-gene pairs between SNP genotypes. This was
done because correlation measures assess linearity (Pear-
son) or monotonicity (Spearman) of the gene-gene relation,
while these assumptions might not hold as genetic regula-
tion mechanisms are known to be subject to non-linear dy-
namics (Kontio et al. 2020; Hou et al. 2022).

Demographics

We used data from participants of the Religious Orders Study
(ROS) and Rush Memory and Aging Project (MAP) (Bennett
et al. 2018). Both studies are longitudinal epidemiological
studies of elderly people who were recruited and followed
up over time to investigate the development of AD and other
diseases. We included only individuals that had both single-
cell RNA sequencing of brain tissue obtained from the dorso-
lateral prefrontal cortex (DLPFC) and genotyping information
(based on SNP array) available. In total, 379 individuals (ny
=126 / ng = 253) were included, all of European descent. Of
these, 141 (72.3% female) were AD cases , 13 (53.8% female)
were non-AD dementia cases, 103 (64.1% female) were diag-
nosed with mild cognitive impairment (MCI) and 122 (63.9%
female) were controls with no cognitive impairment (NCI). A
summary of neuropathological status (Braak stage for pres-
ence of neurofibrillary tangles and CERAD score for neuritic
plaques) and cognitive diagnosis of the selected individuals
is presented in Table 1 and Table 2 respectively.

Madelon Stol - Student Number 4237323 7

CERAD |
Braak — | o 1 2 3 4 5 6
4 4 15 15 46 19
3 5 8 14 10
2 1 1 6 40 57 24
1 15 38 56 3

Table 2 Neuropathological characteristics - Number of individuals
per Braak stage and CERAD score, severity of pathology increases
from the top left to the bottom right corner - Braak stage is a
measure for the presence of neurofibrillary tangles ranging from o
to 6 by increasing severity, where severity increases with increased
number of affected areas in the brain. CERAD score is a measure for
the presence of neuritic plaq(ues ra?ging from 1 (definite AD) to 4
no AD).

Analysis overview

First, we performed a cell type-specific eQTL (sc-eQTL) anal-
ysis to identify SNPs' that associate with variation in gene
expression. To do so, we used linear regression with SNP
genotypes as predictors for gene expression, testing variants
in the cis-region (+ 1Mbp) of the transcription start site (TSS)
for genes passing expression QC (see Methods). Our analy-
sis determined sc-eQTLs (cell type-specific SNP-gene pairs
with a significant association), resulting in sc-eSNPs (SNPs
that have a significant effect on gene expression in a specific
cell type) and sc-eGenes (cell type-specific genes whose ex-
pression is significantly affected by at least one SNP).

Knowing that genetic variants can be driving factors
in changes in co-expression relations between genes (Yang
et al. 2020), we extended our perspective from investigating
variance in gene expression explained by genetic variants (sc-
eQTL) to variant-associated change in the expression of gene
pairs (co-eQTL). We define a co-eQTL to be SNP-gene-gene
combination for which there is a significant change in the
joint expression of a gene pair across SNP genotypes.

Our method (Figure 3, see Methods) is hypothesis-free,
meaning that 1) the input set of variants and genes is not
constrained to hypotheses on how the variant may affect
the co-expression relation, such as that variants in regula-
tory domains may affect transcription factor binding with
consequences for the co-expression relation, and 2) the
method is non-parametric and therefore does not impose
any constraints, such as linearity or monotonicity, on the co-
expression relation of a gene-pair. This is different from com-
mon methods applied in gene co-expression network anal-
yses, which for simplicity assume linear relationships and
assess co-expression using Pearson’s correlation coefficient
while genetic regulation mechanisms are known to be sub-
ject to non-linear dynamics (Kontio et al. 2020; Hou et al.
2022). We do not limit ourselves to assessing whether there
is correlation of expression between genes, which is com-
mon in network-based gene co-expression analysis (van Dam
et al. 2018), but investigate any SNP-associated changes in
co-expression.

1 SNP is used to refer to both single nucleotide polymorphisms and small struc-
tural variants (indels) unless explicitly defined otherwise
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sc-eQTL analysis reveals cell type specific gene regula-
tion associated with SNPs

Our analysis found a total of 3,337,065 sc-eQTLs (Table 3), link-
ing 1,882,645 SNPs to changes in expression of 8,057 genes in
7 major cell types that were significant after multiple testing
correction (see Methods). The largest number of sc-eQTLs
(2,064,362) is found in excitatory neurons which is the most
abundant cell type present. The number of sc-eQTLs discov-
ered per cell type (Figure 4) correlates with the number of
cells per cell type in the input data (Pearson correlation: 0.82,
p = 0.0244), which can be explained by the fact that the inclu-
sion of more cells decreases noise in the expression data, in
turn leading to more confident results using a linear model.
Fujita et al. (2022) performed a similar eQTL analysis on the
same dataset, a comparison of results is presented in Supple-
mentary material where we conclude the main differences in
findings stem from differences in multiple testing correction
strategy, a lower number of individuals in our analysis, and
a different set of tested variants.

Of the 8,057 sc-eGenes, 4,024 (50%) were found to be an
eGene in a single cell type only, whereas other sc-eGenes
were found in multiple cell types, which emphasizes the im-
portance of analysis of sc-eQTLs on cell type level. Eight
genes were identified as eGene in all 7 cell types (HLA-A, HLA-
B, HLA-C, KANSL1, LRMDA, NUTM2B-AS1, RPS26, ZDHHC21). Of
note, the first 3 genes are part of the major histocompatibility
complex (MHC) class | and encode for cell surface proteins in-
volved in the regulation of the immune system (Janeway et al.
2001).

XRRA1 (X-ray radiation resistance associated 1) repeat-
edly appears in the top-ranked results (Supplementary ma-
terial Table 9) as an sc-eQTL with similar effect size and di-
rection for all cell types (mean effect size: -1.30 (-1.25 - max
-1.36, mean p-value: 4.07x1078° (9.37x10"15-2.44x10779)), this is
a demonstration of an eQTL effect that is shared across cell
types (Figure 5). Different SNPs are related to the most sig-

nificant eQTL for XRRA1 in different cell types, however as
these SNPs (rs10751241, rs4944963, rs2298746 and rs7102619)
are linkage with each other (R? 0.9776, p <0.0001 for all pos-
sible SNP-SNP combinations) these sc-eQTLs all relate to the
same effect.

Cell type | #sc-eQTls | #sc-eSNPs | # sc-eGenes

Astrocyte 799,682 600,552 2,51
Endothelial cells 16,095 15161 51
Excitatory neurons | 2,064,362 1,305,685 5,722
Inhibitory neurons 1,071,052 787,279 3,089

Microglia 207,966 181,847 666
Oligodendrocytes 776,375 581,892 2,416

OPCs 276,405 239,148 910

Table 3 Number of significant sc-eQTLs, sc-eSNPs and sc-eGenes per
cell type

2,064,362

1,071,052

799,682

776,375

Number of eQTLs

276,405
207,966

Ast End Exc Inh Mic Oli OPC

Figure 4 Number of sc-eQTLs per cell type showing that sc-eQTLs is
higher in the most abundant cell type: excitatory neurons

sc-eQTLs for AD-associated SNPs point to cell type spe-
cific gene regulation in AD

To investigate possible sc-eQTLs of relevance to AD, we fo-
cused on the 86 SNPs identified in the most recent GWAS of
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Figure 6 eQTL effect of rs1160871 on JAZF1 expression (log, CPM) for all cell types demonstrating opposite effect size in Microglia versus OPCs

AD (Bellenguez et al. (2022)) of which 57 SNPs were included
in our analysis based on their minor allele frequency (MAF
> 0.5). Of these, 41 (71.9%) were present in the significant
sc-eQTLs (FDR < 0.05) for at least one gene in at least one
cell type. In total, 132 (of which 85 unique) sc-eQTLs (SNP-
gene pairs) were related to AD SNPs, of which 31 were present
in more than one cell type. The majority of sc-eQTLs were
found in excitatory neurons (Figure 7), this does however not
imply that AD effects are more prominent in excitatory neu-
rons, but can be explained by the fact that excitatory neu-
rons have a higher relative abundance as well as higher RNA
content, resulting in higher (pseudobulk) expression levels
leading to increased likelihood of sc-eQTL discovery (Fujita
et al. 2022). Looking at the relation between the number of
sc-eQTLs found per cell type and the sc-eQTLs identified rel-
evant to the AD GWAS loci, we see a relative increase in sc-
eQTLs identified in microglia, the immune cells of the ner-
vous system, suggestive of their differential involvement in
AD (Hansen et al. 2018).

On investigation of AD-associated sc-eQTLs that were
shared across multiple cell types, we found that most of the
shared sc-eQTLs were shared between inhibitory- and exci-
tatory neurons (n = 16, Figure 8). For 16 variants, significant
sc-eQTLs were only found in a single cell type. In astrocytes,
these are rs76928645-EGFR (effect size: 0.24, p=3.79x10725)
and rs785129-HS3ST5 (effect size: -0.43, p=243x1077), both
EGFR and HS3STs5 are known to be over-expressed in AD (Fer-

Number of eQTLs AD

1

Ast End Exc Inh Mic

Oli 0OPC

Figure 7 Number of sc-eQTLs for AD GWAS variants per cell type

reira et al. 2022; Romano and Bucci 2020). In microglia, this
holds for rs10933431-INPP5D (effect size -0.05, p= 2.01x1074),
rs12590654-RIN3 (effect size -0.43, p= 5.01x107'°), rs6014724-
CASS4 (effect size -0.39 p= 5.37%107°), rs6584063-BLNK (ef-
fect size -0.28, p =6.80x107"4), rs6733839-BIN1 (effect size-
0.3, p= 6.28x1077 ) and rs73223431-PTK2B (effect size: -0.6,
p= 1.85x10723), all genes involved have been associated with
AD pathology and are also the nearest protein-coding of
the sc-eSNP (Tsai et al. 2021; Shen et al. 2020; Beck et al.
2014; Holler et al. 2014; Giralt et al. 2018). In oligodendro-
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cytes, the only AD-associated cell type specific sc-eQTL iden-
tified is rs456074-MAF (effect size -0.27, p= 1.41x1072°, no ev-
idence was found for MAF (MAF bZIP transcription factor)
involvement in AD. In excitatory neurons, these sc-eQTLs
are rs12592898-CTSH (effect size 0.14, p=1.05x1075), rs1800978-
FSD1L (effect size -0.02, p=7.83x107%), rs3848143-CIAO2A (ef-
fect size -0.03, p=7.90x107%) and rs6489896-RITA1 (effect size
0.0, p=1.70x10®) which are mostly the nearest-protein cod-
ing genes of the variants, only for CTSH we found evidence
of its involvement in AD beyond the GWAS association (Li
et al. 2023b). In inhibitory neurons, this holds for rs6846529-
AC006230.1 (HS3ST1 locus) (effect size 0.06, p=1.46x1072°),
which is associated with increased expression in AD (Wang
et al. 2023b).

Effect size and direction differences of eQTLs in different cell
types It should be noted that when an sc-eQTL is shared be-
tween multiple cell types, most often it does have the same
effect direction, however effect size and direction are not
necessarily the same pointing towards different effect of vari-
ance on gene expression between different cell types. For
example, rs1160871 (chr7:28129126:G:GTCTT), a regulatory vari-
ant located in one of the larger introns of JAZF1, has opposite
effect size in microglia and OPCs (Figure 6) pointing towards
differential regulation of JAZF1 expression. The difference
in effect direction can be possibly explained differences in
intron-mediated enhancement, which is a mechanism that is
poorly understood (Dwyer et al. 2021) or could possibly be
the result of differences in epigenetic regulation in microglia

compared to OPCs (Xiong et al. 2023).

Validation with eQTLs obtained from bulk RNA-
sequencing data

We compared the results of our sc-eQTL analysis to
Metabrain de Klein et al. (2023), a meta-analysis of eQTL stud-
ies that used bulk RNA sequencing data obtained from tissue
of different regions in the brain. We assessed the presence
of Metabrain cortex (EUR) eQTLs, significant at Q-value <0.05
in our results. Overall, 8,687 out of the 18,396 MetaBrain
eQTLs were an sc-eQTL for at least one of the cell types an-
alyzed (Table 4). The percentage of eQTLs shared between
MetaBrain and our analysis is higher for the larger cell types,
which can be explained by the fact that these cells are also
more prevalent in bulk samples and are therefore more rep-
resented in the results. The number of overlapping findings
correlates with the number of cells present per cell type in
our analysis (Table 5), confirming this effect (Pearson corre-
lation: 0.8099, p=0.02724). Further, we note that assessing
correspondence on eQTL (SNP-gene) level is sensitive to the
presence of SNPs in both analyses, where a comparison on
eGene level might have shown a stronger overlap between
results. Further, only single nucleotide polymorphisms were
considered in the Metabrain meta-analysis, where we also
consider small structural variants which could possibly ex-
plain the lower replication rate. Finally, differences could re-
sult from the fact that our sc-eQTL analysis was performed
with DLPFC tissue which is a subregion of the cortex consid-
ered in Metabrain.



Cell type Overlap | Percentage
Astrocyte 1,404 7.63%
Endothelial 37 0.20%
Excitatory neurons 3,334 1812%
Inhibitory neurons 1,802 9.80%
Microglia 348 1.89%
Oligodendrocytes 1,300 7.07%
OPCs 4,62 2.51%

Table 4 Number of sc-eQTLs from the replication study that are
present in MetaBrain Cortex CEUR significant eQTLs and the
percentage of Metabrain eQTLs that were also present as an

sc-eQTL in our analysis

AD-associated cell type specific co-eQTLs

We found 6,878 cell type-specific co-eQTLs relating to 18 vari-
ants associated with cell type specific co-expression changes.
Of these, 104 co-eQTLs were shared between cell types,
18 were shared between microglia and OPCs, all involving
rs1160871-JAZF1, and 86 were shared between excitatory and
inhibitory neurons, all involving rs13237518 and mostly involv-
ing CTNNB1 (54/86). First, we zoom in on the co-eQTLs iden-
tified in excitatory neurons, and afterwards extend to co-
eQTLs identified in the remaining 6 major cell types. We ana-
lyzed the resulting co-eQTLs in two ways: by assessing what
changes in co-expression are captured by the method and
by looking into functional and biological annotations of the
SNPs and genes involved.

AD associated co-eQTLs in excitatory neurons

In excitatory neurons, 6,587 significant co-eQTLs (variant-
gene-gene combinations) were found after correcting for
multiple testing (see Methods). The top 10 co-eQTLs (Supple-
mentary Material Table 10) are all related to rs13237518 (lo-
cated in gene TMEM106B) and are all associated with signifi-
cant sc-eQTL or differential correlation effect.

Top co-eQTL PLEKHA1 - SLC25A4 (rs13237518) The most signifi-
cant result was observed for the co-expression of PLEKHA1
(Pleckstrin Homology Domain Containing A1) and SLC25A4
(Solute carrier family 25 (mitochondrial carrier; adenine nu-
cleotide translocator), member &) for variant rs13237518 be-
tween genotype groups AA and CC. We observed a distance
(JSD) between the groups of 0172 (p=7.76x10"8). The result is
driven by sc-eQTL effect of rs13237518 on the expression of
SLC25A4 with increased expression in the AA versus the CC
genotype as can be seen in the co-expression distribution
obtained by kernel density estimation in Figure 9. Further,
there is a change in the variance of expression of PLEKHA1
between the genotypes. There is no differential correlation
between the genotype, Pearson correlation of the expression
of PLEKHA1 and SLC25A4 is -0.162 in AA and -0.059 in CC re-
spectively, while the overall correlation of expression of the
gene pair (considering all genotypes) is 0.059. The gene pair
has no significant GO term enrichment for involvement in a
common biological process and neither gene is a known tran-
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scription factor.

Differential correlation of CTNNB1 - IRS2 (rs13237518) We ob-
served a significant differential correlation, ranked 3 in the
top co-eQTLs, that was not driven by a significant eQTL ef-
fect, between genes CTNNB1 (Catenin beta-1) and IRS2 (In-
sulin receptor substrate 2) in relation to rs13237518 (between
genotypes AA and CC). The co-expression probability densi-
ties obtained through kernel density estimation per geno-
type are given in Figure 10. The distance (JSD) observed be-
tween the groups is 0158 (p=7.76x10"8). Even though there is
no significant eQTL effect for both genes, a slight increase in
gene expression is notable for both genes in genotype AA
with respect to genotype CC. This result is among the top
5% differentially correlated results, meaning that there is a
significant change in correlation between the expression of
genes across the SNP genotypes. The Pearson correlation
of the expression of CTNNB1 and IRS2 is 0.4538 for the AA
genotype and -0.0696 for the CC genotype. Both genes are
related to the GO terms phosphatase binding (G0O:0019902)
and protein phosphatase binding (G0O:0019903), but there is
no known protein-protein interaction according to STRING
and the gene TMEM106B in which the variant is located is
not a known transcription factor that could explain the co-
expression changes observed (Szklarczyk et al. 2022; Lambert
et al. 2018).

TMEM106B related variant rs13237518 involved in
widespread expression changes in excitatory neurons
At variant level, we note that rs13237518 (chr7:12229967:C:A)
is involved in most co-eQTLs (6,352/6,587), of which 3,012 in-
volve a significant eQTL effect and 601 involve a differen-
tial correlation (Supplementary material Table 16). Variant
rs13237518 is located in the intronic region of TMEM106B, but
rs13237518-TMEM1068B is not a significant eQTL. For rs13237518,
the A allele is associated with protection against AD (Bel-
lenguez et al. 2022) and which was also found to be en-
riched in cognitively healthy centenarians (Tesi et al. 2023).
TMEM106B (transmembrane protein 106B) is located in mem-
branes of endosomes and lysosomes, which are involved in
sorting and degradation of cellular waste respectively (Lang
et al. 2012). TMEM106B is known for association with mul-
tiple types of neurodegenerative disease (AD, Frontotempo-
ral lobar degeneration (FTLD) and limbic-predominant age-
related TAR DNA binding protein 43 (TDP-43) encephalopathy)
(Jiao et al. 2023).

Notably, 25 of the considered genes are a significant
eQTL for rs13237518 (KRAS, SLC25A4, CYCS, AKT2, RTN4, PSMD2,
EIF2AK2, RTN3, PSMD12, ATP2A2, NDUFA5, UQCRB, CALM2,
WIPI2, VDAC1, CALM1, CDK5R1, NDUFS1, UQCR10, EPDR1, MAPKO,
TUBA1A, UQCRH, CTSB, PIK3R1), all of which are trans-eQTLs,
as none of the genes are located in the cis-region of
rs13237518, most of the genes are not even located on the
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Figure 10 CTNNB1 and IRS2 for rs13237518 (chr7) in excitatory neurons demonstrate a co-eQTL driven by differential correlation
Left: co-expression distribution, every point represents the expression (CPM) of CTNNB1 and IRS2 for an individual assigned to genotype AA
(left) or CC (right) Middle: Probability density estimate obtained through kernel density estimation per genotype Right: Local JSD showing
large local contribution by lack of expression local expression density in genotype AA

same chromosome as rs13237518. No significant GO term
enrichment for these genes was found. For all but AKT2,
the eQTL effect is an increase in expression in genotype AA
compared to CC. A similar finding is reported in the brain
eQTL meta-analysis by de Klein et al. (2023), where 85% of
the trans-eQTLs found relate to the 7p21.3 locus (TMEM106B),
however none of these trans-eQTLs were significant after in-
cluding 100 expression PCs as a covariate. These 25 genes
are also strongly represented in the significant co-eQTLs, the
average number of co-eQTLs per gene is 129.08 (75-160).

The following 6 genes are a significant co-eQTL in every
gene pair these were tested in for rs13237518: AKT2, EIF2AK2,
KIF5B, KRAS, SLC25A4, and UQCRB, and all, but KIF5B, have
significant eQTL effect for rs13237518 (Figure 11). SLC25A4 and
KRAS are leading with co-eQTLs with large JSD. We looked
into the gene expression distribution between the genotypes
(Figure 11) to find possible pointers that explain this effect.
For SLC25A4 and KRAS, we see a strong peak (lower expres-
sion variance) for genotype CC, this effect is also present for
the majority of 25 eQTL genes mentioned earlier. This peak
is reflected in co-expression space as well and contributes
strongly to the distance between co-expression distributions.
The top co-eQTL (PLEKHA1 - SLC25A4) (Figure 9) demonstrates
the consequences of this effect on the distance between
co-expression distributions, the density peak for SLC25A4 in
genotype CC gives rise to the JSD in two ways: the peak den-
sity causes a high local JSD and the lack of density increase
the JSD as well.

We found the first principal component (PC1) of gene

expression in excitatory neurons to be correlated with
rs13237518 (Pearson correlation: -0.2475, p=1.07x107°), the
loading of PC1 is higher for most genes marked as an eQTL,
which also hints towards possible widespread variant-driven
expression disruption. PC1 is also correlated with age of
death (Pearson correlation: -0.1984, p=10"%) and cognitive di-
agnosis (Pearson correlation: -0.4554, p=2.42x1073), but less
strongly than with the rs13237518 genotype. As we look at a
limited subset of genes that show mostly upregulation with
respect to rs13237518 (genotype AA), it is likely worthwhile to
extend the analysis to the full set of genes for a complete
picture of the rs13237518 associated expression changes.

The fact that a SNP was identified in a GWAS as a sig-
nificant disease-related locus, does not necessarily imply
that the disease mechanism involves direct functional conse-
quences of the SNP. It is also possible that the GWAS signal
is related to another variant in linkage with the SNP, which
could be another SNP, but also longer structural variant (SV)
such as a variable number tandem repeat (VNTR) or a trans-
posable element. Structural variants (> 50bp) are known
to be associated with changes in gene expression (Scott
et al. 2021) and can be more confidently called with the re-
cent development of long-read sequencing techniques (Bal-
achandran and Beck 2020). Therefore, we explored known
associations for variants in linkage with rs13237518. Vari-
ant rs13237518 was found to be in strong linkage (R? = 0.90)
with a structural variant, a 323bp Alu deletion (chr7:12242077-
12242399) in exon 8 of TMEM106B (Wang et al. 2023a). Looking
at other consequences of the variant in literature, we found
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Figure 11 Distribution of gene expression (CPM) relating to rs13237518 genotype 'AA and CC of all genes that are a co-eQTL in excitatory

neurons for all other genes these were tested with. All genes but KIF5B are an eQTL for rs13237518, the distribution have high kurtosis and in
combination with a slight change in expression may drive these effects. KRAS and SLC25Az are most prominent in the top result, this is driven
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Figure 12 Top co-eQTL result CTNNB1 and COX7C for rs13237518 (chr7) in inhibitory neurons
Left: co-expression distribution, every point represents the expression (CPM) of CTNNB1 and COX7C for an individual which is assigned to
genotype AA (left) or CC (right) Middle: Probability density estimate obtained through kernel density estimation per genotype Right:
Point-wise contribution of Jensen-Shannon divergence between genotype AA and CC for CTNNB1 and COX7C for rs13237518 (chr7) for inhibitory
neurons

that Fujita et al. (2022) reports that rs5011436 (chr7:12229132),
which is in linkage (R? 0.9799 - p=<0.0001) with rs13237518, is
a fraction eQTL for sub-cell type Exc.2 meaning the variant
is linked to higher relative abundance of an identified sub-
cluster of excitatory neurons. The variant is also in linkage
with rs1990621 (R?= 0.9601, p=<0.0001), a TMEM106B variant
protective against Frontotemporal lobar degeneration (FTLD)
which is also associated with an increased proportion of neu-
rons in a study using bulk RNA-sequencing (Li et al. 2020).
These associations of variants in linkage with rs13237518 are
also suggestive of higher-order disruptions in gene expres-
sion.

AD-associated co-eQTLs in other major brain cell types
We identified 195 co-eQTLs (Supplementary Material Table 16)
in the remaining cell types, of which 117 co-eQTLs in microglia,
106 co-eQTLs in inhibitory neurons, 41 co-eQTLs in OPCs, 17
co-eQTLs in endothelial cells and 10 co-eQTLs in oligodendro-
cytes. No significant co-eQTLs were identified in astrocytes.
The variants present in significant co-eQTLs per cell type are
provided in Supplementary Material (Table 16) and the top 10
results per cell type are provided in Supplementary Material
(Inhibitory neurons: Table 11, Microglia: Table 12, Endothelial
cells: Table 13, Oligodendrocytes: Table 14, OPCs: Table 15).

In inhibitory neurons, rs13237518 is also key in co-eQTLs
with lower eQTL driven effects Similar to excitatory neurons,
rs13237518 is a key locus in the significant co-eQTLs for in-
hibitory neurons with 95/106 co-eQTLs being related to the

variant. A striking difference is observed when comparing
the co-eQTLs between the neuronal sub-types: in excitatory
neurons, the co-eQTLs are strongly driven by eQTL effect on
either of the genes involved, whereas this is not the case for
inhibitory neurons with only 5 out of 106 co-eQTLs being sub-
ject to significant eQTL effect. The most prominent co-eQTL
genes are CTNNB1 (catenin beta 1) (59/106 co-eQTLs), PPP3CC
(protein phosphatase 3 catalytic subunit gamma) (13/106 co-
eQTLs) and COX7C (cytochrome c oxidase subunit 7C) (10/106
co-eQTLs), the other genes were involved in 5 or less co-
eQTLs. The 3 genes are not significantly enriched for a GO
term that points towards involvement in a similar process.
CTNNB1 is a transcription factor, however it was not identi-
fied as a transcription factor that targets genes in the subset
of genes tested (Han et al. 2018). The only gene that quali-
fied as an eQTL for rs13237518 is RTN4 (reticulon 4) which is
involved in only 5 co-eQTLs, looking at the expression dis-
tribution of RTN4 (Figure 13: Bottom right) we see that the
expression for genotype AA is far less peaked compared to
genotype CC and this more homogeneous expression distri-
bution leads to less extreme distances as the distributions
overlap at the point where there is a peak in genotype AA
resulting in less pronounced changes in co-expression.

The top co-eQTL involves two genes that are highly preva-
lent in the significant co-eQTLs: CTNNB1 and COX7C relating
to rs13237518 (Figure 12), with JSD of 0141 (p=2.69x1076). Look-
ing into the changes in co-expression distribution, we ob-
serve that for COX7C, there is a notable increase in variance
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Figure 13 Gene expression (CPM) distribution in inhibitory neurons
relating to rs13237518 genotype AA and CC for top 3 genes in

co-eQTLs: COX7C, CTNNB1 and PPP3CC and the only significant eQTL
in for rs13237518: RTN4

in expression in genotype AA (var 26.29) with respect to CC
(var 598.02) where the lower variance in CC creates a local
peak in the co-expression distribution which is driving the
increase in JSD. The difference in expression correlation be-
tween the genotypes is also significant (Pearson correlation:
0.285 (AA)- 0.595 (CC) - 0.410 (all genotypes) - |A| correlation
(AA-CC): 0.311).

JAZF1 related co-eQTLs in microglia and OPCs point to method
sensitivity to strong eQTL effect Three SNPs, rs1160871 (38 /117
co-eQTLs), rs12590654 (35/117 co-eQTLs) and rs10437655
(33/117 co-eQTLs), are involved in the majority of significant
co-eQTLs in microglia (see Supplementary material Table 16).
For each variant, most co-eQTLs involve a single gene and the
SNP-gene combinations are a co-eQTL for every other gene
it is tested with.

rs1160871
754
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o Gene pairs
with JAZF1
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Figure 14 Histogram of JSD distribution for gene pairs tested for
rs1160871 in microglia, showing the difference in JSD for gene pairs

without JAZF1 compared to gene pairs with JAZF1

For rs1160871 (chr7:28129126:GTCTT:G), a regulatory vari-
ant located in one of the larger introns of JAZF1 (JAZF zinc
finger 1), most co-eQTLS (33/38) directly involved JAZF1. The
G allele is associated with lower odds of developing AD. (Bel-
lenguez et al. 2022). JAZF1is a glucose-production-promoting

transcriptional repressor, a known transcription factor and
was recently identified as a locus for epigenetic alterations
in microglia (Zhou et al. 2020; Xiong et al. 2023). The variant-
gene combination is a significant eQTL and a co-eQTL for ev-
ery gene it is tested with. JAZF1is prevalent in the top-ranked
co-eQTLs (see Supplementary material Table 12) and stands
out by co-eQTLs with large JSD (mean JSD 0.5019 (co-eQTLs
with JAZF1) mean JSD 0.1286 (co-eQTLs without JAZF1) - Fig-
ure 14).

Looking at the expression of JAZF1 for rs1160871 between
genotypes G/G and GTCTT/GTCTT (Figure 15 - Left), we see
there is hardly any overlap in expression density between the
genotypes. Taking the top co-eQTL rs1160871-JAZF1-NCK2 as
an example, we see the impact of the strong eQTL-effect of
rs1160871-JAZF1 on the co-eQTL: the separation of JAZF1 ex-
pression between the genotypes causes large local contri-
butions to the JSD on both sides of the co-expression dis-
tribution (Figure 16). These local distances exist regardless
of the expression of the second gene involved in the co-
eQTL and therefore do not effectively capture changes in co-
expression. This demonstrates a limitation of our method-
ology: unwanted inflation of results happens for co-eQTLs
where the expression distributions for a SNP-gene combina-
tion have little overlap. We conclude that the large distances
between co-expression distributions are driven by a method-
ological limitation and do not necessarily reveal a differen-
tial co-expression effect, even though this does not rule out
the possibility of existence of true co-eQTLs for SNP-gene-
gene combinations involving rs1160871-JAZF1.

JAZF1 RIN3 RTN3
/9 A h
rs1160871 rs12590654 rs10437655

0 500 1000 0 100 200 300 400 O 50 100 150 200

Figure 15 Density plot of gene expression (CPM - x-axis) in microglia
for 3 variant-gene combinations that are highly prevalent in the top

co-eQTLs. Left: rs1160871-JAZF1 between genotypes GTCTT/GTCTT

and ' GG showing strong eQTL effect and little overlap in
expression distribution between the genotypes Middle:
rs12590654-RIN3 between genotypes AA and | GG which has
significant eQTL effect Right: rs10437655-RTN3 between genotypes
AA and AG demonstrating there is no eQTL effect

Previously, we identified rs1160871-JAZF1 as an eQTL with
opposite effect in microglia compared to OPCs. This effect is
also showing in the co-eQTL results for OPCs: all co-eQTLs
involve rs1160871-JAZF1 which is a co-eQTL for 41/44 genes it
is tested with.

RIN3 (Ras and Rab interactor 3 - chr 14) is present in all
co-eQTLs relating to rs12590654 (chr14:92472511:G:A), which is
marked as a significant eQTL. The variant is located in the in-
tronic region of SLC24A4 (solute carrier family 24 member 4
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Figure 16 Microglia: paired expression of JAZF1 and NCK2 with respect to rs13237518
Left: co-expression distribution, every point represents the expression (CPM) of JAZF1 and NCK2 for an individual which is assigned to
genotype GTCTT/GTCTT (left) or G/G (right) Middle: Probability density estimate obtained through kernel density estimation per genotype
Right: Pointwise JSD between genotype G/G and GTCTT/GTCTT demonstrating the large distances created locally
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Figure 17 Oligodendrocytes: paired expression of GNAQ and TUBB4A with respect to rs1800978
Left: co-expression distribution, every point represents the expression (CPM) of GNAQ and TUBBsA for an individual which is assigned to
genotype C/C(left) or C/G (right) Middle: Probability density estimate obtained through kernel density estimation per genotype Right:
Pointwise JSD between genotype C/C (left) or C/G demonstrating the large local distance created by a local peak in co-expression in density
in genotype C/C where

(sodium/potassium/calcium exchanger)). RIN3 and SLC24As4
are adjacent genes in the genome with existing evidence for
interaction in STRING (Szklarczyk et al. 2022). The A allele of
rs1259065¢4 is associated with lower odds of developing AD
(Bellenguez et al. 2022). Expression of RIN3 is specific to mi-
croglia and upregulation of RIN3 was shown to compromise
endosomal function in a mouse study (Wang 2021; Shen et al.
2020). This corresponds to the increased RIN3 expression we
observe for genotype GG with respect to AA (Figure 15: mid-
dle). Even though the eQTL effect is less extreme compared
to rs1160871-JAZF1, we conclude the co-eQTLs are discovered
because of the eQTL effect of rs12590654-RIN3.

For rs10437655 (chr11:47370397:G:A), an intronic variant
in known transcription factor SPI1 (Spi-1 proto-oncogene)
with elevated expression in microglia, SPI1 did not meet the
threshold for inclusion in the analysis. All rs10437655-related
co-eQTLs found involve RTN3 (reticulon 3), reticulons are pro-
teins that localize in the endoplasmatic reticulum known for
involvement in neural regeneration and are associated with
amyloid deposition and neurodegenerative disease (Prad-
han and Das 2021; Kulczynska-Przybik et al. 2021). Unlike the
other key SNPs in microglia co-eQTLs, rs10437655-RTN3 is not
an eQTL. A quick glance at the expression of RTN3 between
genotype AA and AG (Figure 15 : right) shows why the SNP-
gene is involved in many co-eQTLs: the bimodal-like shape
distribution in genotype AA has a local lower density where
the high peak of genotype AG is situated, this difference gives
rise to larger distances between distributions.

Co-eQTLs in  oligodendrocytes  revolve  around
rs1800978-GNAQ In oligodendrocytes, rs1800978
(chr9:104903697:C:G) is the main locus present in 6/10
significant co-eQTLs, which is a SNP located in the 5" untrans-
lated region (UTR) of ABCA1 (ATP binding cassette subfamily
A member 1), 5 UTRs are known from their involvement
in the regulation of translation of RNA to proteins. GNAQ
(Guanine nucleotide-binding protein G(q) subunit alpha) is
present in 5/6 co-eQTLs relating to rs1800978, which is not
an eQTL. We note that the JSD for co-eQTLs involving GNAQ
is low (mean 0.0709 (0.0661-0.0838)) signalling less extreme
changes in the co-expression distribution. Looking at the
co-expression distribution between genotype CC and GC for
the top result relating to rs1800978 (Figure 17) for gene pair
GNAQ-TUBB4A with JSD 0.0838 (p = 2.46x1078), we note the
distributions are shifted towards the right because of an
apparent outlier with low expression for GNAQ (genotype
CC). Further, wed see that the largest contribution to the JSD
comes from a region with relatively low TUBB4A expression
and high GNAQ expression for genotype GC for which there is
no local density in genotype CC. Recalculation after removal
of the outlier (Figure 18) resulted in a JSD of 0.0842 (A-
0.0004), showing an example of possible robustness of the
method when outliers are present, even though robustness
to outliers of the method was not assessed on full scale and
is recommended to be done in future work.

Most co-eQTLs in endothelial cells involve CLU For endothe-
lial cells, the core co-eQTL genetic variant is rs11787077
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Figure 18 Oligodendrocytes: paired expression of GNAQ and TUBB4A with respect to rs1800978 after removal of outlier

(chr8:27607795:T:C) which is present in 14 out of 17 signifi-
cant results. The T allele of rs11787077 is associated with de-
creased odds of developing AD (Bellenguez et al. 2022). The
results are all driven by the strong eQTL effect of rs11787077
on the expression of CLU (clusterin - apolipoprotein J), CLU
is involved in amyloid metabolism and upregulated in AD pa-
tients (Liu et al. 2022).

Discussion

We presented a cell type specific eQTL and co-eQTL analysis
using genotyping and sn-RNA seq data of the dorsolateral
prefrontal cortex of 379 individuals from the ROSMAP cohort,
linking genetic variants to changes in gene (co-)expression.

sc-eQTL analysis

In our sc-eQTL analysis, we found 3,337,065 sc-eQTLs, linking
1,882,645 sc-eSNPs to changes in the expression of 8,057 sc-
eGenes in 7 major cell types and replicated our results in
an independent dataset of eQTLs obtained from bulk RNA-
sequencing data which shows partial overlap per cell type
correlating to the relative abundance of cell types included
in our analysis. We see that the number of eQTL discoveries
per cell type is correlated with the number of cells included,
which can be attributed to the fact that inclusion of more
cells increases the confidence of the analysis and therefore
results in higher significance of results.

Our results support that cell-type specific analysis allows
for the discovery of eQTL effects that are obscured in bulk-
based analyses. Of the 8,057 sc-eGenes, 4,024 (50%) were
found to be an sc-eGene in a single cell type only. For 16
AD GWAS SNPs (Bellenguez et al. 2022), we found the SNP to
be an sc-eQTL in a single cell type only: astrocytes (2), exci-
tatory neurons (6), inhibitory neurons (1), microglia (6) and
oligodendrocytes (1).

Strengths and limitations A major strength of our analysis
is the number of individuals included in the dataset that
was used, which gives our analysis increased eQTL discovery
power compared to earlier efforts. Further, the inclusion of
small SVs in the analysis allowed for the discovery of eQTL ef-
fects that are obscured in analyses that focus solely on SNPs.
Alimitation of our analysis is that we focused on eQTL discov-
ery in major cell types, while Fujita et al. (2022) shows that as-

sessment of eQTLs on cell sub-type level reveals sc-eGenes
that were not found on major cell type level.

co-eQTL analysis

In our co-eQTL analysis, we found 6,878 cell type-specific co-
eQTLs (SNP-gene-gene combinations) relating to 18 variants
associated with cell type-specific co-expression changes, re-
lating to a subset of AD variants and genes.

Most strongly, we found many co-eQTLs in excitatory neu-
rons in relation to rs13237518, located in TMEM106B, a trans-
membrane protein involved in lysosomal function known for
its association with AD and neurodegenerative processes
(Salazar et al. 2023; Jiao et al. 2023). These co-eQTLs involve a
subset of 25 genes, of which the majority is upregulated in the
AA genotype which is associated with protection against AD
(Bellenguez et al. 2022). The subset of genes is not enriched
for involvement in a certain biological process. As these re-
sults are suggestive of higher-level disruptions of gene ex-
pression in relation to the variant, we recommend further
analysis of expression changes that considers the full tran-
scriptome to gain further insight in the role of the variant in
neurodegenerative disease.

Strength and limitations To our knowledge, this work is the
first that assesses differences in co-expression associated
with genetic variants using a non-parametric method that
looks beyond differences in correlation between expression
of genes in relation to genetic variants. Our method is effec-
tive in doing so as we find the majority of significant co-eQTLs
driven by changes other than a difference in expression cor-
relation between genotypes (Figure 20).

The results have to be interpreted with consideration
when it comes to concluding that the variants involved in
significant co-eQTLs are associated with a change in co-
expression. We see that a vast proportion of our results
is related to eQTL effect of a SNP-gene involved in the co-
eQTL, for example, rs1160871-JAZF1 in microglia, rather than
changes in co-expression of the gene pair (Figure 19). Par-
ticularly in the case where a SNP-gene pair is a co-eQTL for
the majority of combinations tested, this is often found to be
driven by changes in the expression of a single gene between
the genotypes rather than co-expression changes.

Alimitation of our study is that we chose to constrain the
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Figure 20 Test space for co-eQTLs in Excitatory Neurons, 721,280
SNP-gene-gene combinations were tested of which 6,587 co-eQTLs
are significant. Of the tested co-eQTLs, 42,092 (of which 618
significant) were differentially correlated and 3,860 (of which 3,012
significant) had eQTL effect on at least one of the genes involved
looking at the intersection of eQTL and co-eQTL in the diagram.

variants and genes assessed to known relevant AD loci vari-
ants and genes, as analyzing the impact of genetic variants
on gene co-expression relations is subject to a tremendous
multiple testing burden. The limited set of genes considered
also hindered biological interpretation of the significant co-
eQTLs in enrichment analysis, as the limited set of tested
genes has to be considered as background. Our method does
not allow for assessing co-expression effects for alleles with
low prevalence as a minimum number of individuals needs
to be present for confident co-expression probability density
estimate.

We derived recommendations for future co-eQTL stud-
ies based on observations in our analysis. As our method
is shown to be sensitive to eQTL effects, we recommend fur-
ther analysis on how the method can be tailored to allow
for true co-eQTLs to be detected that involve changes in co-
expression rather than expression changes driven by a SNP-
gene effect. On re-evaluation, we consider the expression
threshold used for inclusion of genes in our analysis to be
overly conservative, as we see that selection of genes that
are expressed in the majority of cells only might lead to miss-
ing changes in co-expression which are driven by a suppres-
sive effect of a variant on transcription.

Even though we intentionally did not constrain the
search space in a hypothesis-driven way, we feel that for

future analysis this may be a useful way of limiting the
multiple-testing burden while assessing the effectiveness
of the method in discovery of true co-eQTLs.
work, we suggest constraining the search space to 1) known
transcription factors and/or RNA binding proteins, and vari-
ants in their proximity and test for changes in co-expression
with other genes and, 2) testing all other genes to for a

For future

known disease-associated variant-gene combination to iden-
tify downstream consequences of the variant. The input set
of genes can be further limited by determining genes with
high expression correlation, as genes with high expression
correlation are likely to result in similar co-eQTLs when their
co-expression is analyzed with a third gene.

As an alternative to pair-wise assessment of co-
expression relations between genes, methods that assess
co-expression changes on module level related to genetic
variants might be a better fit that is less sensitive to eQTL
effects of single genes while limiting the overall number of
tests. Modules in this case could be sets of genes known to
be involved in a biological function for example.

Overall, we show that exploring genetic variant-
associated changes in gene (co-)expression using sc-RNA
seq data is a promising approach in finding cell type-specific
mechanisms that may be altered in AD.
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Methods

Data sources and pre-processing

All data was obtained from the AD knowledge portal at
Synapse.org (https://adknowledgeportal.synapse.org/).

Genetic variants Raw PLINK files (bed/bim/fam) were
sourced from the Synapse portal (SynID: syn17008939). The
genotyping data consisted of two batches (n; = 1709 / n; =
382). The raw files were based on reference genome hg18 for
batch 1 and hg19 (GRCh37) for batch 2 respectively. Only vari-
ants on autosomal chromosomes were considered.

Individuals with low-quality genotyping data (>4% of
missing genotypes) were removed. Variants with low geno-
typing rate (<98%) were removed. The genotyping data
of batch 1 was lifted over to hg19 using the liftOver R
package using the hgi8ToHg19.over.chain coordinates file
from UCSC (http://hgdownload.soe.ucsc.edu/goldenPath/
hg18/liftOver/ (Bioconductor Package Maintainer 2023). Du-
plicate variants present in the data were removed.

Besides the genotyping data from ROSMAP, genotyping
data from Seattle Alzheimer’'s Disease Brain Cell Atlas was
sourced from the Synapse portal (SynID: syn28257618) for pos-
sible inclusion in further analysis. Only variants were kept
that are present in the genotyping data for Seattle AD and
both ROSMAP batches.

The genotyping data was prepared for imputation using
the Perl script (HRC-1000G-check-bim-v4.2.7) from the Mc-
Carthy Group (https://www.well.ox.ac.uk/~wrayner/tools/)
and compared to HRC reference panel (ftp://ngs.sanger.ac.
uk/production/hrc/HRC.r1-1/HRC.r1-1.GRCh37.wgs.mac5.
sites.tab.gz) using a frequency file generated with PLINK
v1.90b6.16 (Purcell and Chang 2023a; Chang et al. 2015). The
resulting PLINK files were converted to VCF using PLINK
v2.00a2.3LM (Purcell and Chang 2023b) and were imputed
using the TOPMED imputation panel (phasing Eagle v2.4
- rsq filter 0.2) (Taliun et al. 2021) (version R2 on GRCh38)
on the TOPMED Imputation Server 1.7.3 TOPMED r2 panel
(https:/ /imputation.biodatacatalyst.nhlbi.nih.gov), the
resulting variants are mapped to reference genome GRCh38.

Post imputation and QC, 5,519,683 variants with a minor
allele frequency (MAF) above 0.05 and a Hardy-Weinberg p-
value of 107® remained for analysis. Functional annotation
of genetic variants was done with snpXplorer (Tesi et al.
2021). Linkage of genetic variants was assessed using LDlink
(Machiela and Chanock 2015).

Genetic variants are reported in the following format:
chr7:28129126:G:GTCT, where chr stands for the chromosome
where the variant is located, followed by the position based
on reference genome hg3s, the first allele (G) is the counted
allele and the second (GTCT) is the alternative allele. Please
note that the counted and alternative allele do not necessar-
ily correspond to the major and minor allele of the variant.

Metadata Clinical data for the ROSMAP cohort was sourced
from the Synapse portal (SynID syn3191087). In the clini-
cal data, the exact age at the time of death was hidden for
individuals over 90 years old, in the analysis we use age
90 for these individuals. Specimen-level metadata was ac-
quired from the Synapse portal as well (SynID syn21323366
and syn21314550).

Single-cell RNA expression data Single-cell RNA-sequencing
data was obtained by preparing a sequencing library for a
batch of a maximum of 8 individuals. Per batch, a techni-
cal replicate was prepared with a different library, we refer
to the 2 replicates as A and B respectively. Every replicate
was sequenced at 2 centers. Figure 21 depicts the replicates
present in the data schematically. In the data available at
the Synapse portal, the results of the sequencing runs at 2
different centers were already merged into a single file per
library batch.

Processed count data was taken from the Synapse por-
tal (SynID syn51123521). The count data was obtained by ag-
gregating the results of the 2 sequencing runs, and demulti-
plexing (assigning the reads to an individual) was done using
WGS data. The reads were assigned to genes using the tran-
scriptome model 'GRCh38-2020-A’" provided by 10X Genomics.
Please refer to Fujita et al. (2022) for the complete descrip-
tion of the sequencing workflow.

Cell type annotation and QC Cell types were annotated using
the annotation (SynID: syn51218314 V1) provided by the au-
thors of Green et al. (2023) which also links cell barcodes to in-
dividuals. Cells for the following major brain cell types were
retained for analysis: astrocytes, endothelial cells, excitatory
neurons, inhibitory neurons, oligodendrocytes, oligodendro-
cyte progenitor cells (OPCs) and microglia, as these cell types
are present in quantities sufficient for analysis with sufficient
detection power.

Cells that have a cell type annotation in Green et al. (2023)
are cells that have passed a thorough cell type-specific qual-
ity control which uses thresholds on the number of Unique
Molecular Identifiers (UMI) and the number of genes de-
tected on the cell type level. As the cells were already sub-
jected to a thorough quality control process, we refrained
from performing additional quality control, leaving a total
of 1,337,224 annotated cells for inclusion in the analysis (Ta-
ble 5).

Selection of individuals The individuals selected for this anal-
ysis are the individuals that have both genotyping and single
cell RNA-sequencing data available, and are present in the
cell type annotation by Green et al. (2023). Individuals that
were excluded on the individual level by the authors because
of quality control issues (such as duplicate samples, samples
that could not be demultiplexed because of missing whole
genome sequencing data and specimens with median UMI
counts less than 1500) were also excluded from the analysis.


https://adknowledgeportal.synapse.org/
http://hgdownload.soe.ucsc.edu/goldenPath/hg18/liftOver/
http://hgdownload.soe.ucsc.edu/goldenPath/hg18/liftOver/
https://www.well.ox.ac.uk/~wrayner/tools/
ftp://ngs.sanger.ac.uk/production/hrc/HRC.r1-1/HRC.r1-1.GRCh37.wgs.mac5.sites.tab.gz
ftp://ngs.sanger.ac.uk/production/hrc/HRC.r1-1/HRC.r1-1.GRCh37.wgs.mac5.sites.tab.gz
ftp://ngs.sanger.ac.uk/production/hrc/HRC.r1-1/HRC.r1-1.GRCh37.wgs.mac5.sites.tab.gz
https://imputation.biodatacatalyst.nhlbi.nih.gov
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Figure 21 Single cell RNA-sequencing workflow

Cell type | #cells | % of total
Astrocyte 189,874 14.20 %
Endothelial 8,479 0.63 %
Excitatory Neurons | 533,469 39.89 %
Inhibitory Neurons | 210,703 15.76 %
Microglia 69,370 519 %
OPCs 48,467 3.62 %
Oligodendrocytes | 276,862 20.70 %

Table 5 Number of cells per major cell type included in the sc-eQTL
analysis

sc-eQTL analysis

Pseudobulk pre-processing and normalization SCRNA-seq
data is known for its sparsity: for the majority of genes zero
transcripts are measured in a single cell and these zero mea-
surements can be the result of biological and technical fac-
tors (Kang et al. 2023; Luo et al. 2023; Bouland et al. 2023a).
We deal with this by aggregating the scRNA-seq count data
in a pseudobulk dataset containing an expression matrix for
each of the 7 cell types, with a column per individual and
a row per gene. The expression matrices were populated
with the sum of the counts assigned to a certain gene for
an individual. An individual was only included in the expres-
sion matrix for a specific cell type in case it had at least
10 cells for that respective cell type. Per individual, the
counts from both technical replicates (sequencing library A
and B) were aggregated together in a single pseudobulk ma-
trix. In total 1,336,849 cells qualified for inclusion in the anal-
ysis. All of the following steps were executed with R (ver-
sion 4.2.0). The data was subjected to the following nor-
malization pipeline. Per cell type, gene-level quality con-
trol using filterByExpr from edgeR (3.40.0) (Robinson et al.
2010) was performed with the default thresholds (min.count
= 10, min.total.count = 15, large.n = 10, min.prop = 0.7). This
function uses these thresholds to calculate library-size (CPM)
aware thresholds for retaining genes. The function calcNorm-
Factors from edgeR was used to obtain Trimmed mean of M-
values (TMM) normalization factors, these are subsequently
used with the voom function of limma (3.54.0) to obtain quan-
tile normalized log, CPM values. TMM normalization is a well-
established method for normalization of bulk-RNA sequenc-
ing (Yang et al. 2021). Genes with a mean expression (consid-
ering all individuals) of log, CPM <2 were discarded. Batch
correction was performed using the ComBat function from
the sva package (3.46.0) (Leek et al. 2012). The batches con-

sidered to be present in the data were taken to be the prefix
of the specimenID (for example: 190403-B4). Any resulting
gene with zero expression variance was removed.

Linear model with covariates The eQTL analysis was per-
formed using the package MatrixeQTL (2.3) (Shabalin 2012).
We used an additive linear model (dosage ~ gene expression)
with covariates to test for association between the genotype
and gene expression. An additive linear model assumes the
effect of a variant to be proportional with the number of al-
leles present. Nominal p-values for the resulting eQTLs were
determined using a t-statistic. For every gene, genetic vari-
ants were tested that were located in the range from -1Mbp
to +1IMbp from the transcription start site (TSS) as variants
associated with gene expression are known to cluster in this
region (Brown et al. 2013). The position of the TSS per gene
was determined by accessing the genomic coordinates for
the Ensembl gene IDs given in the features file of the scRNA-
seq data using Ensembl Biomart (www.ensembl.org/biomart
- accessed March 2023). Genes that could not be resolved to
a chromosome were excluded from the analysis.

The same covariates were included in our analysis as in
the Fujita et al. (2022) study: sex, post-mortem interval, age
at time of death, the first 3 principal components of the geno-
typing data, the first 30 principal components of the gene
expression data, the number of genes expressed per individ-
ual and whether the individual was part of the ROS or MAP
study. Genotype principal components were generated using
PLINK v2.00a2.3LM. Expression principal components were
determined per cell type using the built-in prcomp function
inR.

Multiple testing correction Multiple testing correction was
performed at the sc-eQTL, sc-eSNP and sc-eGene level. On
eQTL (eSNP-eGene) level per cell type, sc-eQTLs were consid-
ered significant at false discovery rate (FDR) < 0.05 by consid-
ering all tests for that cell type. The FDR was calculated using
the adapted Benjamini-Hochberg procedure implemented in
MatrixEQTL, the procedure is adapted so that the FDR can be
calculated without storing all intermediate results (Shabalin
2012). We considered all unique SNPs involved in sc-eQTLs
significant at FDR < 0.05 as eSNPs. On the sc-eGene level,
a Bonferroni corrected p-value per sc-eGene was calculated
by taking the lowest nominal p-value from all eQTLs relating
to that gene and multiplying it by the number of tests per-


www.ensembl.org/biomart
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formed for that gene. Significant sc-eGenes were determined
using the Benjamini-Hochberg procedure, ranking sc-eGenes
based on their Bonferroni corrected p-value and considering
sc-eGenes with an FDR below 0.05 as significant.

co-eQTL analysis

Pre-processing and normalization The scRNA-seq count data
was aggregated in pseudobulk matrices for every major cell
type as described for the eQTL analysis, but was subjected
to a different pre-processing workflow. Batch correction
was performed using the ComBat-seq function from the sva
package (3.46.0) (Leek et al. 2012), returning batch-corrected
count data. The count data was library-size normalized (CPM)
using the cpm function from edgeR (3.40.0) (Robinson et al.
2010).

Selection of genetic variants and genes As we are interested
in co-expression QTLs in the context of AD and unconstrained
analysis of gene pairs posed a vast multiple testing burden,
we limited this analysis to the set of known AD-associated
SNPs (Bellenguez et al. (2022)) potentially explaining changes
in co-expression of AD-associated genes from the AD KEGG
pathway (Kanehisa et al. 2023; Kanehisa 2019; Kanehisa and
Goto 2000) and the nearest protein-coding genes for the
GWAS SNPs. The reason for including the latter is that most
variants affect genes in their proximity and we are interested
in how this affects the co-expression relation (Cano-Gamez
and Trynka 2020). Changes in gene co-expression were in-
vestigated for all genes passing the cell-based expression
threshold (see Methods). We tested all variants for every
gene pair as we imposed no assumptions on the driving fac-
tors behind co-expression changes.
genotypes were considered that had at least 20 individuals,
this indirectly also excludes genetic variants with a low mi-
nor allele frequency (MAF), resulting in the inclusion of 56/86
genetic variants in the analysis.

Per variant, only the

Per cell type, an expression threshold was put used to
filter genes for inclusion in the analysis: per individual, the
fraction of cells that express a gene (gene count per cell >
0) was determined. Genes were included in further analysis
if the mean fraction of expression over all individuals was >
0.5. This threshold was chosen assuming that co-expression
effects of a gene pair can only be meaningful if both genes
have an important role in a cell type, which is assumed to be
the case when a gene is expressed in a considerable propor-
tion of cells. The number of genes and gene pairs tested per
cell type is given in Table 6.

Gene annotation and enrichment analysis Human tran-
scription factors were sourced from http://humantfs.ccbr.
utoronto.ca/ (Lambert et al. 2018). Gene names were
sourced from HGNC (www.genenames.org). Protein-protein
interactions of genes were determined using StringDB.
(Szklarczyk et al. 2022). GO term enrichment for biological

Cell type | #genes | #gene pairs

Astrocyte A 820
Endothelial 43 903

Excitatory Neurons 161 12,880

Inhibitory Neurons 91 4,095
Microglia 34 561
Oligodendrocytes 29 406
OPCs 45 990

Table 6 Number of genes and gene pairs tested per cell type in
co-eQTL analysis, all gene pairs are tested for every variant
considered

processes, cellular components, and molecular function
was evaluated using R package clusterProfiler (4.6.2) (Wu
et al. 2021), the subset of genes tested was considered as
background where applicable.

Density estimation of gene-pair co-expression distribution A
dosage for a genetic variant is a continuous value between
0 and 2, representing the probable number of counts for the
allele marked as the counted allele. We round the dosages to
the nearest integer and assign individuals to group o, 1 or 2
based on the number of copies of the counted allele present.

For every gene pair considered, a co-expression distri-
bution per cell type is created for every genotype group with
sufficientindividuals. This gives a scatter plot representation
per genotype group as shown in Figure 22 where every data
point represents an individual and the position is based on
the expression values for that individual for gene A (x-axis)
and gene B (y-axis) respectively. The axis limits are defined
by the minimum and maximum expression value of the genes
considering all genotypes jointly.

Genotype 0
O

Individual RXXXXXXX
Gene A B

A A A

Gene B

°

—» O

Expr (CPM) | 305.2 1274

Gene A

Figure 22 Co-expression for gene pair (A-B) per genotype group

Per genotype group, the probability density of the 2D co-
expression distribution for a gene pair is estimated by per-
forming kernel density estimation. Kernel density estimation
is a non-parametric method, that estimates the probability
density by placing a kernel on every data point and sum-
ming their contributions to the probability density. A kernel
density estimate (KDE) was calculated using a Gaussian ker-
nel with the kde2d function of MASS (7.3-60) in R (Venables
et al. 2002). The bandwidth of the kernel was set using band-
width.nrd based on the standard deviation and interquartile
range of the expression of the genes (for all genotype groups)
(Scott 1992). The contribution of all kernels is summed up,
and evaluated on a grid of 10 points in both x and y direction,


http://humantfs.ccbr.utoronto.ca/
http://humantfs.ccbr.utoronto.ca/
www.genenames.org

resulting in a 100-point local density estimate. The resulting
density was normalized to unit probability by dividing the lo-
cal density at a grid point by the sum of density. A graphic
example of the resulting probability density per group for a
gene pair is shown in Figure 23.

)

Gene B

Gene A

Density -I

Figure 23 Estimation of the probability density of gene
co-expression per genotype group through kernel density
estimation - Color gradient in the kernel density estimate

represents the local probability density

Distance between co-expression distributions The distance
between the kernel density estimates of 2 genotypes is deter-
mined by calculating the Jensen-Shannon Divergence (JSD),
which is a symmetric distance metric based on the Kullback-
Leibler divergence given in Equation 1, where P and Q are the
two probability distribution compared over a discrete grid
X with individual points x (Lin 1991). The distance is sym-
metrized by determining M, the average of distribution P and
Q as given in Equation 2, The resulting Jensen-Shannon diver-
gence can be calculated as per Equation 3.

P(x)
= log X
DL (PIIQ) XEZXPm ¢ 5050 ()
M= (P+Q) @)
JSD (PIIQ) = 3D (PIIM) + 3D (QIIM) G

The distance of a genotype group for a variant to the
other groups was only calculated in case the group contained
at least 20 individuals (5% of all individuals), as a minimum
number of individuals is needed to create a reliable kernel
density estimate. The JSD was calculated using the function
jsd from dlookr (version 0.6.2) in R (Ryu 2023). The overall
JSD is calculated by determining the local JSD for the same
gridpoint in the KDE for both genotype groups and summing
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all local distances over the grid.

The grid size of the KDE was optimized for the conver-
gence of the distance metric, meaning evaluation on a finer
grid would increase computational load without consider-
able changes in distances between distributions.

Statistical significance and multiple testing Per variant, an
empirical null distribution was created to evaluate the signif-
icance of a result (distance between 2 co-expression distribu-
tions) in the absence of a true null distribution of distances
between gene co-expression distributions.

At most three possible pair of genotype groups exist for
a variant (0-1, 0-2, 1-2). For every pair of genotypes, first, the
nominal distance between groups is calculated for all gene
pairs considered. Per variant, the combination of genotype
groups with the highest average nominal distance between
distributions is retained for analysis. This is done assum-
ing that if there is a significant effect of a variant on the co-
expression relations of gene pairs, this will be reflected most
strongly in the pair of groups with the largest distances be-
tween distributions. Rationale behind considering the com-
binations of genotype groups separately is that every group
has a different number of individuals, and keeping the imbal-
ance between the number of individuals the same will allow
for the identification of significant gene pairs at the variant
level as the distance between distributions are determined
between distributions with the same imbalance.

For the selected combination of genotype groups, the
empirical null distribution is built out of distances between
distributions for all gene pairs considered. For every gene-
pair, the genotype labels are permuted (re-distributed based
on random sampling, keeping the number of individuals per
genotype group the same), which gives a new co-expression
distribution per group for which a kernel density estimate is
determined.

The distance between the kernel density estimates is cal-
culated and added to the null distribution. This procedure is
performed 1000 times per gene pair to create a null distribu-
tion with sufficient resolution. The repeated calculation of
permuted distributions is computationally intensive which
needs to be considered when the analysis is applied for a
larger set of variants and genes.

The nominal significance (p-value) for a gene pair (for a
variant-genotype combination) is determined using the frac-
tion of distances in the null distribution for that variant that
are higher than the (non-permuted) distance result for that
gene pair. The Benjamini-Hochberg procedure is applied to
the nominal p-value to control for FDR of the results per vari-
ant, results with FDR < 0.05 are considered significant. Rea-
son for choosing the control for FDR instead of correcting for
family-wise error rate is that Bonferroni correction is based
on the assumption that the tests are independent were this
is not the case are genes re-occur in different tests for differ-
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(b) Post-permutation: co-expression distribution of genotype 0 and 2 - data
points are colored by the genotype where they originally belong to

Figure 24 Random permutation of the genotype labels

ent gene pairs.

Explaining co-expression variation To determine which fac-
tors are driving the significant co-eQTLs discovered we as-
sess whether the change in co-expression distribution is
driven by eQTL effect of the variant on either of the genes
involved and whether there is a change in expression corre-
lation between the genotypes for the gene-pair considered.

We use a simplified version of the eQTL workflow de-
scribed earlier to assess for presence of eQTL effect of the
variant on gene expression using a linear model (gene ex-
pression ~ dosage). The nominal p-values from the linear
regression were corrected for false discovery rate (FDR) us-
ing the Benjamini-Hochberg method, considered all findings
with an FDR <0.05 as an eQTL.

The correlation of expression for a gene-pair for a geno-
type was determined by calculating the Pearson correlation
coefficient (using cor.test in R) between the expression val-
ues of a gene-pair for every genotype for every variant. For a
result, the difference in correlation coefficient for a gene pair
between the genotypes was calculated. A result was consid-
ered to be driven by differential correlation, if the difference
in correlation coefficient between the genotypes for the gene
pair was in the top 5% of absolute differences in correlation.



Supplementary material

Comparison to the eQTL study by Fujita et al. (2022)
Our analysis was performed analogously to the analysis de-
scribed in Fujita et al. (2022) which was performed using
the same sn-RNAseq dataset of participants of the ROS and
MAP cohort studies. Comparing our analysis to the Fujita
et al. (2022) study, we identified the following differences:
we considered variants (SNPs and small structural variants)
on autosomal chromosomes from (imputed) genotyping data
(see Methods), whereas Fujita uses SNPs from autosomal and
sex chromosomes determined by whole genome sequenc-
ing (WGS). Our analysis includes less individuals (n=379) com-
pared to the Fujita study (n=424) as we had to exclude indi-
viduals with low quality genotyping. We consider inclusion
of small structural variants (indels) worthwhile as structural
variants are also identified as drivers of eQTL effects (Huang
et al. 2015). We limited ourselves to eQTLs present in major
cell types whereas Fujita also investigates eQTLs on cell sub-
type level.

In the Fujita study, a total of 5,678,710 variants was tested
compared to 5,293,613 variants in our analysis, in this com-
parison we only consider variants that are located in the cis-
region for at least one genes considered. In total 4,737,171
variants were present in both analyses (Figure 25). We ex-
pect the additional variants in the Fujita analysis to be vari-
ants that could be called with the WGS data but not with the
genotyping data, and low MAF variants that do not pass the
MAF filter for the subset of individuals we consider.

Fujita & Our

Sex Chr Variants

Our ¢ Fujita
339,521

4,737,171 Indels

Shared variants

Fujita

Our analysis

Figure 25 Comparison of variants tested in our analysis versus Fujita

et al. (2022) showed our analysis includes small SVs which were not

considered in Fujita and in Fujita variants on sex chromosomes are
considered.

We compared our results to the number of eQTLs, eSNPs
and eGenes reported by the author (Table 7). As can be seen,
in our analysis about twice (mean 1.96 (1.82-2.17)) the number
of eQTLs and eSNPs were found compared to Fujita. Consid-
ering eGenes, approximately three-quarters (mean 0.74 (0.66-
0.78)) of the number of eGenes found by Fujita were found in
our replication study. The excess findings in our analysis on
sc-eQTL and sc-eSNP level are contrary to what one would ex-
pect from an analysis with less individuals and less variants.

Many different approaches exist to multiple testing cor-
rection in eQTL studies and no best practice has been estab-
lished, this unclarity is reflected in the variance observed in
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approaches between studies (Huang et al. 2018). We compare
differences in the multiple testing strategy between our anal-
ysis and the Fujita study to see whether this explains the dif-
ference in results. In Fujita et al. (2022), significance of eQTLs,
eSNPs and eGenes is determined using a 3-step hierarchical
method?: 1) Bonferroni correction of the nominal p-values
by considering the number of tests per gene (local p-value),
2) per gene, the minimum local p-value is corrected for false
discovery rate using the Benjamini Hochberg procedure, and
3)for eGenes that are significant (FDR < 0.05) by step 2, eQTLs
and eSNPs are determined by applying a threshold to the lo-
cally adjusted p-values based on the maximum globally ad-
justed p-value that has FDR < 0.05.

On sc-eQTL and sc-eSNP level, we applied a different ap-
proach and controlled for false positives using the Benjamini-
Hochberg method and considered eQTLs at FDR < 0.05 as
significant, taking the SNPs in the significant sc-eQTLs as sc-
eSNPs. The method we applied is more lenient, in the sense
that overall more eQTLs are considered significant. A major
drawback is however that this does not account for the local
structure of tests performed per gene and therefore favors
results with low nominal p-values, which in turn may lead to
missed discoveries.

The summary statistics for the Fujita study were made
available on the Synapse portal (Synid: syn52363777) and we
applied our strategy for multiple testing correction on the
eQTL and eSNP level. This resulted in a dramatic change in
number of findings (Table 8) with on average an excess 25%
of eQTLs compared to our analysis which is to be expected
from an analysis that has more statistical power because of
the inclusion of more individuals.

On sc-eGene level, we have applied a similar multiple
testing procedure to Fujita and attribute the lower number of
discoveries in our analysis to the inclusion of a lower number
of individuals in our analysis and testing less genes because
we do not consider genes on sex chromosomes.

In conclusion, the large difference in findings can be
mostly attributed to differences in multiple testing correc-
tion strategy between our analysis and the Fujita study. Even
though the hierarchical method is very stringent and may
falsely discard findings as Bonferroni correction on gene-
level assumes independence of tests which is not the case,
for future analysis we will consider using an adapted hier-
archical approach instead to account for the local structure
(linkage) when evaluating sc-eQTLs and sc-eSNPs where we
currently only did this for sc-eGenes or consider taking into
account linkage of sc-eSNPs through a clumping strategy.

2 Multiple testing strategy based on email correspondence with the author, Oc-
tober 2023
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Number of sc-eQTLs Number of sc-eSNPs Number of sc-eGenes
Cell type This study Fujita A This study Fujita A This study  Fujita A
Astrocyte 799,682 406,890 392,792 600,552 321,885 278,667 2,511 3,350 -839
Endothelial cells 16,095 7,388 8,707 15,161 7,347 7,814 51 77 -26
Excitatory neurons | 2,064,362 1,128,711 935,651 1,305,685 804,223 501,462 5,722 7331 -1,609
Inhibitory neurons 1,071,052 559,689 511,363 787,279 437,607 349,672 3,089 47182  -1,093
Microglia 207,966 100,578 107,388 181,847 89,080 92,767 666 899 -233
Oligodendrocytes 776,375 411,615 364,760 581,892 319,215 262,677 2,416 3,115 -699
OPCs 276,405 142,048 134,357 239,148 122,005 117,143 910 1,272 -362
Table 7 Number of eQTLs, eSNPs, and eGenes found in our analysis compared to Fujita et al. (2022)
Number of sc-eQTLs Number of sc-eSNPs
This study Fujita A Fujita* A This study Fujita A Fujita* A
Astrocyte 799,682 406,890  -49.1% 976,413  +221% 600,552 321,885  -46.4% 722,721 +221%
Endothelial 16,095 7,388  -541% 22,224 +381% 15,161 7347  -51.5% 20,584  +381%
Excitatory neurons 2,064,362 1,128,711  -453% 2,520,204  +221% 1,305,685 804,223  -38.4% 1,549,766  +221%
Inhibitory neurons 1,071,052 559,689  -47.7% 1,319,603  +23.2% 787,279 437,607  -44.4% 948,424  +23.2%
Microglia 207,966 100,578  -51.6% 263,249 +26.6% 181,847 89,080  -51.0% 225,933 +26.6%
Oligodendrocytes 776,375 411,615  -47.0% 920,337 +18.5% 581,892 319,215  -451% 680,337 +18.5%
OPCs 276,405 142,048  -48.6% 346,244  +25.3% 239,148 122,005 -49.0% 208,436  +25.3%

Table 8 Number of eQTLs and eSNPs and eGenes found in our analysis compared to Fujita et al. (2022), Ashows the difference compared to
our analysis. Fujita* shows the results after applying of our multiple testing strategy to the summary statistics of the Fujita study, showing
that the difference in number of findings is driven by the difference in multiple testing strategy applied.
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Cell type Chr | Pos (hg38) rsid Allele Counted | Alt Gene Beta | P-value (nominal)
Astrocyte 1 74848863 rs10751241 G T XRRA1 -1.28 5.43%10'05
1 205820154 rs823080 G A AC119673.2 -1.24 9.56x1079°
1 30311469 rs7926465 C T AL358944.1 131 £4.28x10786
8 62256176 rs4738948 A G AC023095.1 1.03 5.24x10785
15 45264631 11631021 A G AC051619.5 -0.93 247x1078
Endothelial 7 71220553 rs35853756 T C GALNT17 0.92 2.32x1073
12 56042145 rs1131017 C G RPS26 0.80 8.14x10732
3 147317552 rs7639019 C G AC092957.1 -0.95 2.01x1073°
6 31268690 rs2524096 G T HLA-C 0.66 7.75%1073°
6 29951244 rs9260415 A C HLA-A -0.59 2.87x10724
Excitatory neurons 8 70778944 | rs201801376 C T XKR9 -119 8.74x107 144
11 74892136 14944963 G A XRRA1 -1.28 9.37x107"°
8 70805871 rs62508819 T C AC0228581 -1.22 1.30x10714
17 2037754 rs12451788 A G DPH1 1.05 2.39x1071°
7 26399032 rs1229663 C G ACO04540:1 116 5.87x107106
Inhibitory neurons | 11 74888549 rs59143825 C T XRRA1 -1.29 343%x1071%7
12 75473785 r$7969930 T C GLIPR1L2 1.01 1.38x10796
8 70781284 rs6993170 A T XKR9 -113 1.20x10™%
7 26399032 rs1229663 C G ACO04540:1 14 4.32x10793
10 58629241 rs2028205 A G BICC1 -0.92 £4.88x10™9
Microglia 13 50715893 rs2796882 T G DLEU1 1.27 5.63x10785
13 50718901 rs2761843 T C DLEU7 144 7.47%x10783
11 74933260 rs7102619 C T XRRA1 -1.31 2.44%1079
7 28137682 rs11495981 C T JAZF1 -1.09 816x1078
4 141208286 rs13111980 T C RNF150 1.25 7.46x1074
Oligodendrocytes 1 74848863 rs10751241 G T XRRA1 -1.36 3.18x10°%7
9 12745644 r$2209271 G A LURAP1IL -1.22 1.66x107%
9 12759782 rs1326788 C T LURAP1L-AS1 | -118 5.99x1079"
1 205813590 rs9438393 A G AC119673.2 -1.22 1.66x10787
4 92566314 rs6532377 C A GRID2 -1.32 3.90x10780
OPCs 1 74842789 rs2298746 [ T XRRA1 -1.25 2.27x10780
8 62256176 rs4738948 A G AC023095.1 119 3.04x10780
8 96692367 rs72682307 A G CcPQ 1.25 2.31x10766
1 72346757 rs2815752 G A AL513166.1 -0.99 8.15x1073
12 75472588 rs67705855 A G GLIPR1L2 1.02 2.02x10762
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Table 9 Top 5 sc-eQTLs per cell type. P-value reported is the nominal p-value from the test-statistic. We kept the sc-eQTL (SNP-gene pair)
with lowest nominal p-value per gene for display of the top results to avoid the top results showing multiple eQTLs for the same gene with

multiple SNPs in linkage
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Top co-eQTLs per cell type

# | Chr: pos (hg38) rsid Alleles GT | GeneA  Chr eQTL | GeneB  Chr eQTL | DC  Acor | JSD | FDR

1 7 : 12229967 rs13237518 C-A 0-2 | PLEKHA1 10 SLC25A4 4 X 0.103 04172 | 1.67E-04
2 7 : 12229967 rs13237518 C-A 0-2 KRAS 12 X PLEKHA1 10 0.016 | 0.159 | 1.67E-04
3 7 : 12229967 rs13237518 C-A 0-2 CTNNB1 3 IRS2 13 X 0.523 0.158 | 1.67E-04
4 7 : 12229967 rs13237518 C-A 0-2 PIK3CA 3 SLC25A4 4 X 0164 | 0453 | 1.67E-04
5 7 : 12229967 rs13237518 C-A 0-2 HS3STs5 6 KRAS 12 X 0.099 | 0.150 | 1.67E-04
6 7 : 12229967 rs13237518 C-A 0-2 ATG2B 14 KRAS 12 X X 0.316 | 04150 | 1.67E-04
7 7 : 12229967 rs13237518 C-A 0-2 HS3STs 6 SLC25A4 A X 0.080 | 0448 | 2.67E-04
8 7 : 12229967 rs13237518 C-A 0-2 ATG2B 14 SLC25A4 4 X 0.101 0148 | 2.67E-04
9 7 : 12229967 rs13237518 C-A 0-2 EIF2AK2 2 X PSMD1 2 0.069 | 0447 | 2.67E-04
10 7 : 12229967 rs13237518 C-A 0-2 ITPR1 3 SLC25A4 4 X 0.105 0447 | 2.67E-04

Table 10 Top 10 co-eQTL for excitatory neurons based on significance. Alleles: counted allele-alternative allele GT: Genotype groups between
which there is a significant change in co-expression for GeneA and GeneB (0: 2x alt allele - 1: 1x alt allele + 1 x counted allele - 2: 2 x counted
allele) / eQTL: marked when co-eQTL involves significant eQTL effect of the variant on either or both geneA and geneB / DC: checked when
co-eQTL involves significant differential correlation / |Al: absolute difference in Pearson correlation of expression of geneA and geneB
between the genotypes / JSD: distance (Jensen-Shannon divergence) of co-expression density between the genotype groups / FDR: false
discovery rate calculated with p-value based on null distribution determined per variant

# | Chr: pos (hg38) rsid Alleles GT | GeneA Chr eQTL | GeneB  Chr eQTL | DC |Alcor | JSD | FDR
1 7 : 12229967 rs13237518 C-A 0-2 CoxzC 5 CTNNB1 3 X 0.31 0141 | 110E-02
2 7 : 12229967 rs13237518 C-A 0-2 | CTNNB1 3 UQCRB 8 0.263 0133 | 1.40E-02
3 7 : 12229967 rs13237518 C-A 0-2 | CTNNB1 3 PPP3CC 8 0.261 0431 | 1.40E-02
4 7 : 12229967 rs13237518 C-A 0-2 | CTNNB1 3 PSMD1 2 0.002 0129 | 1.40E-02
5 7 : 12229967 rs13237518 C-A 0-2 BIN1 2 CTNNB1 3 0.079 0,127 | 1.40E-02
6 7 : 12229967 rs13237518 C-A 0-2 ATG2B 14 CTNNB1 3 0.030 0127 | 1.40E-02
7 7 : 12229967 s13237518 C-A 0-2 | CTNNB1 3 NDUFS1 2 0.190 0,127 | 1.40E-02
8 7 : 12229967 rs13237518 C-A 0-2 | PPP3CC 8 RTN3 1 X 0.352 0.127 | 1.40E-02
9 7 : 12229967 rs13237518 C-A 0-2 | CTNNB1 3 PIK3CB 3 0144 0.127 | 1.40E-02
10 7 : 12229967 rs13237518 C-A 0-2 | CTNNB1 3 UQCRH 1 0.273 0.127 | 1.40E-02

Table 11 Top 10 co-eQTL for inhibitory neurons based on significance. Alleles: counted allele-alternative allele GT: Genotype groups between
which there is a significant change in co-expression for GeneA and GeneB (0: 2x alt allele - 1: 1x alt allele + 1 x counted allele - 2: 2 x counted
allele) / eQTL: marked when co-eQTL involves significant eQTL effect of the variant on either or both geneA and geneB / DC: checked when
co-eQTL involves significant differential correlation / |Al: absolute difference in Pearson correlation of expression of geneA and geneB
between the genotypes / JSD: distance (Jensen-Shannon divergence) of co-expression density between the genotype groups / FDR: false
discovery rate calculated with p-value based on null distribution determined per variant

# | Chr: pos (hg38) rsid Alleles  GT | GeneA Chr eQTL | GeneB Chr eQTL | DC  |Alcor | JSD | FDR

1 7 : 28129126 rs1160871  GTCTT-G  0-2 JAZF1 7 X NCK2 2 0.231 0.543 | 3.03E-05
2 7 : 28129126 rs1160871  GTCTT-G  0-2 | ADAM10 15 JAZF1 7 X 0.257 0.531 | 3.03E-05
3 7 : 28129126 rs1160871  GTCTT-G  0-2 JAZF1 7 X RTN3 1 0.342 0.526 | 3.03E-05
4 7 : 28129126 rs1160871  GTCTT-G  0-2 GNAQ 9 JAZF1 7 X 0.107 0.525 | 3.03E-05
5 7 : 28129126 rs1160871  GTCTT-G  0-2 JAZF1 7 X MAF 16 0.334 0.517 | 3.03E-05
6 7 : 28129126 rs1160871  GTCTT-G  0-2 JAZF1 7 X MAP3Ks5 6 X 0.495 0.517 | 3.03E-05
7 7 : 28129126 rs1160871  GTCTT-G  0-2 CALM2 2 JAZF1 7 X 0.025 0.513 3.03E-05
8 7 : 28129126 rs1160871  GTCTT-G  0-2 JAZF1 7 X SORL 1 0.162 0.512 | 3.03E-05
9 7 : 28129126 rs1160871  GTCTT-G  0-2 AKT3 1 JAZF1 7 X 0.191 0.511 | 3.03E-05
10 7 : 28129126 rs1160871  GTCTT-G  0-2 GSK3B 3 JAZF1 7 X 0.044 0.507 | 3.03E-05

Table 12 Top 10 co-eQTL for microglia based on significance. Alleles: counted allele-alternative allele GT: Genotype groups between which
there is a significant change in co-expression for GeneA and GeneB (0: 2x alt allele - 1: 1x alt allele + 1 x counted allele - 2: 2 x counted allele)
|/ eQTL: marked when co-eQTL involves significant eQTL effect of the variant on either or both geneA and geneB / DC: checked when co-eQTL

involves significant differential correlation / |Al: absolute difference in Pearson correlation of expression of geneA and geneB between the

genotypes / JSD: distance (Jensen-Shannon divergence) of co-expression density between the genotype groups / FDR: false discovery rate
calculated with p-value based on null distribution determined per variant
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# | Chr: pos (hg38) rsid Alleles  GT | GeneA Chr eQTL | GeneB  Chr eQTL | DC |Alcor | JSD | FDR
1 17 : 1728046 rs35048651  TGAG-T 1-2 PPP3R1 2 RB1CC1 8 0.064 0.113 1.30E-02
2 2: 37304796 rs17020490 T-C 1-2 | PPP3R1 2 RB1CC1 8 017 0101 | 2.00E-02
3 8 : 27607795 rs11787077 T-C 0-2 CLU 8 X RTN3 1 0.208 0.136 | 2.68E-02
4 8 : 27607795 rs11787077 T-C 0-2 BRAF 7 CLU 8 X 0.207 04134 | 2.68E-02
5 8 : 27607795 rs11787077 T-C 0-2 CLU 8 X PPP3CC 8 0.086 0133 | 2.68E-02
6 8 : 27607795 rs11787077 T-C 0-2 APP 21 CLU 8 X 0.018 0132 2.68E-02
7 8 : 27607795 rs11787077 T-C 0-2 CLU 8 X CTNNB1 3 0.244 0430 | 2.88E-02
8 10 : 80494228 rs6586028 (e} 1-2 MAPK1 22 RTN4 2 0.035 0.252 | 3.10E-02
9 8 : 27607795 rs11787077 T-C 0-2 | ATP2A2 12 CLU 8 X 0.299 0.127 3.77E-02
10 8 : 27607795 rs11787077 T-C 0-2 CLU 8 X PIK3R3 1 0.246 0.127 3.77E-02

Table 13 Top 10 co-eQTL for endothelial cells based on significance. Alleles: counted allele-alternative allele GT: Genotype groups between
which there is a significant change in co-expression for GeneA and GeneB (0: 2x alt allele - 1: 1x alt allele + 1 x counted allele - 2: 2 x counted
allele) / eQTL: marked when co-eQTL involves significant eQTL effect of the variant on either or both geneA and geneB / DC: checked when
co-eQTL involves significant differential correlation / |Al: absolute difference in Pearson correlation of expression of geneA and geneB
between the genotypes / JSD: distance (Jensen-Shannon divergence) of co-expression density between the genotype groups / FDR: false

discovery rate calculated with p-value based on null distribution determined per variant

# | chr: pos (hg38) rsid Alleles GT | GeneA  Chr eQTL | GeneB Chr eQTL | DC |Alcor | JSD | FDR

1 9: 104903697 rs1800978 C-G 1-2 GNAQ 9 TUBB4A 19 0.183 0.084 | 1.00E-03
2 5: 14724304 rs112403360 T-A 1-2 CLU 8 RTN3 1 X 0.608 0.128 1.70E-02
3 15 : 58764824 rs602602 T-A 1-2 | ADAM10 15 X RTN4 2 0.023 0.056 | 2.00E-02
4 9 : 104903697 rs1800978 C-G 1-2 CALM2 2 GNAQ 9 0.087 0.071 | 3.00E-02
5 9 : 104903697 rs1800978 C-G 1-2 | PLEKHA1 10 RTN3 1 0.059 0.069 | 3.33E-02
6 8 : 11844613 rs1065712 G-C 1-2 AKT3 1 MAPK10 4 0.028 0.128 | 3.70E-02
7 9 : 104903697 rs1800978 C-G 1-2 BIN1 2 GNAQ 9 0.112 0.068 | 4.55E-02
8 9 : 104903697 rs1800978 C-G 1-2 CSNK1A1 5 GNAQ 9 0.074 0.066 | 4.77E-02
9 9 : 104903697 rs1800978 C-G 1-2 GNAQ 9 PSEN1 14 X 0.287 0.066 | 4.77E-02
10 14 1 92464917 rs7401792 G-A 0-2 | CSNK1A1 5 PIK3R1 5 0.057 0.123 | 4.90E-02

Table 14 Top 10 co-eQTL for oligodendrocytes based on significance. Alleles: counted allele-alternative allele GT: Genotype groups between
which there is a significant change in co-expression for GeneA and GeneB (0: 2x alt allele - 1: 1x alt allele + 1 x counted allele - 2: 2 x counted
allele) / eQTL: marked when co-eQTL involves significant eQTL effect of the variant on either or both geneA and geneB / DC: checked when
co-eQTL involves significant differential correlation / |Al: absolute difference in Pearson correlation of expression of geneA and geneB
between the genotypes / JSD: distance (Jensen-Shannon divergence) of co-expression density between the genotype groups / FDR: false

discovery rate calculated with p-value based on null distribution determined per variant

# | Chr: pos (hg38) rsid Alleles  GT | GeneA Chr eQTL | GeneB  Chr eQTL | DC |Alcor | JSD | FDR

1 7 : 28129126 rs1160871  GTCTT-G  0-2 JAZF1 7 X RTN4 2 0.193 0.303 | 6.02E-03
2 7 : 28129126 rs1160871  GTCTT-G  0-2 JAZF1 7 X PIK3CA 3 0.129 0.266 | 6.02E-03
3 7 : 28129126 rs1160871  GTCTT-G  0-2 JAZF1 7 X LRP1 12 0.256 0.265 6.02E-03
4 7 : 28129126 rs1160871  GTCTT-G  0-2 ANK3 10 JAZF1 7 X X 0.470 0.262 | 6.02E-03
5 7 : 28129126 rs1160871  GTCTT-G  0-2 JAZF1 7 X MAP3K5 6 0.345 0.262 | 6.02E-03
6 7 : 28129126 rs1160871  GTCTT-G  0-2 JAZF1 7 X PIK3R1 5 0.378 0.262 | 6.02E-03
7 7 : 28129126 rs1160871  GTCTT-G  0-2 JAZF1 7 X PPP3CC 8 0.059 0.260 | 6.02E-03
8 7 : 28129126 rs1160871  GTCTT-G  0-2 CLU 8 JAZF1 7 X 0.185 0.258 | 6.02E-03
9 7 : 28129126 rs1160871  GTCTT-G  0-2 | GAPDH 12 JAZF1 7 X 0477 0.257 6.02E-03
10 7 : 28129126 rs1160871  GTCTT-G  0-2 JAZF1 7 X MAPK8 10 0.187 0.257 | 6.02E-03

Table 15 Top 10 co-eQTLs for OPCs based on significance. Alleles: counted allele-alternative allele GT: Genotype groups between which there
is a significant change in co-expression for GeneA and GeneB (0: 2x alt allele - 1: 1x alt allele + 1 x counted allele - 2: 2 x counted allele) /
eQTL: marked when co-eQTL involves significant eQTL effect of the variant on either or both geneA and geneB / DC: checked when co-eQTL
involves significant differential correlation / |Al: absolute difference in Pearson correlation of expression of geneA and geneB between the
genotypes / JSD: distance (Jensen-Shannon divergence) of co-expression density between the genotype groups / FDR: false discovery rate
calculated with p-value based on null distribution determined per variant
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Variant level summary of co-eQTLs identified per cell type

T | Variant | rsid | # | #eQrL | #DC | GT
End chr8:27607795:T:C rs11787077 14 14 2 0-2
End chr10:80494228:C:T rs6586028 1 0o o] 1-2
End chr17:1728046:TGAG:T rs35048651 1 0o o] 1-2
End chr2:37304796:T:C rs17020490 1 0o o] 1-2
Exc chr7:12229967:C:A rs13237518 6532 3012 601 0-2
Exc chr7:7817263:T:C rs6943429 48 0o 13 0-2
Exc chr9:104903697:C:G rs1800978 4 o 1 1-2
Exc chr15:50701814:A:G rs8025980 1 o} 1 0-2
Exc chr17:1728046:TGAG:T rs35048651 1 o 1 1-2
Exc chr2:233117202:G:C rs10933431 1 o 1 0-2
Inh chr7:12229967:C:A rs13237518 95 5 13 0-2
Inh chr7:7817263:T:C rs6943429 8 o} 2 0-2
Inh chr11:47370397:G:A 10437655 1 o 1 0-2
Inh chr17:1728046:TGAG:T rs35048651 1 o o 1-2
Inh chr2:127135234:C:T rs6733839 1 0o o] 0-2
Mic | chr7:28129126:GTCTT:G rs1160871 38 33 3 0-2
Mic chr14:92472511:G:A rs12590654 35 33 5 0-2
Mic chr11:47370397:G:A rs10437655 33 0 2 0-1
Mic chr2:37304796:T:C rs17020490 8 o 1 1-2
Mic chr7:8204382:T:C 10952097 2 o o] 0-1
Mic chr15:50701814:A:G rs8025980 1 0o 1 0-1
oli chr9:104903697:C:G rs1800978 6 o 1 1-2
oli chr14:92464917:G:A rs12590654 1 0o o] 0-2
oli chr15:58764824:T:A rs602602 1 1 o] 1-2
oli chrs:14724304:T:A rs112403360 1 0 1 1-2
oli chr8:11844613:G:C rs1065712 1 o o) 1-2
OPC | chr7:28129126:GTCTT:G rs1160871 Al 41 4 0-2

Table 16 Summary results of significant co-eQTLS in all cell types, no significant co-eQTLs were found in astrocytes. CT: cell type / Variant:
chromosome:position_hg38:counted_allele:alternative_allele # : number of significant co-eQTLs for the variant / # DC: number of co-eQTLs
subject to differential correlation / GT: genotype groups involved in the co-eQTL - 0: 2x alternative allele - 1: 1x alternative allele + 1 x
counted allele - 2: 2 x counted allele



