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On 1D morphodynamic network models

R.J. FOKKINK', Z.B. WANG!, M.H.I. SCHROPP*
1 DELFT HYDRAULICS and Delft University of Technology, Delft, Netherlands
2 RIZA, Ministry of Public Works, Arnhem, Netherlands

INTRODUCTION

One-dimensional (1D) hydrodynamic network models for tidal predictions are
common in engineering practice. 1D morphodynamic network models,
however, have rarely been reported in the literature. This may be due to
difficulties in dealing with two fundamental uncertainties in morphodynamic
models: sediment transport and the distribution of sediment at bifurcations.
The purpose of the present paper is to show that the morphodynamic behav-
iour of the model is extremely sensitive to certain parameters in the sediment
transport formula and the nodal-point relation.

NODAL-POINT RELATIONS
In 1D models, the sediment distribution at a bifurcation has to be imposed by
means of an internal boundary condition. Such a condition is called a nodal-
point relation. The following nodal-point relation is recommended in {2].
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This is a relation between the specific sediment transport distribution and a
power of the specific discharge distribution. S denotes sediment transport, O
denotes discharge and B denotes channel width. The indices denote the
different channels and & is a positive exponent.

The distribution of sediment at a bifurcation depends on the local flow
conditions and the geometry. It is very hard, to measure the distribution in
nature. DELFT HYDRAULICS has measured the sediment distribution in a scale
model of the non-tidal Rhine branches at Pannerden, the Netherlands [4].
Fig. 1 shows the sediment distribution against the discharge distribution. The
data is fitted by a curve which relates sediment distribution to a power of the
discharge distribution. The measurements support relation (1) as the best-fit
curve is
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This agrees very well with the width ratio of the downstream branches at
Pannerden, which is approximately equal to

B, : B, = 1 : 2, More measurements are
needed to decide whether Equation (1) has
physical relevance.

SEDIMENT TRANSPORT FORMULA
The following equation encompasses many of
the customary sediment-transport formula’s

S=M@-cy @

In this equation, M is a constant and n is a

positive exponent. The constant ¢ is a thresh-

old value which signifies the initiation of sediment transport. The parameters
in formula (3) have to be determined by data fitting. The optimal choice of
the parameters depends on the sediment transport formula. For instance, the
threshold value c¢ is zero if the Engelund-Hansen formula is used, whereas it
is positive for the Meyer Peter-Miiller formula.

The present paper studies how variations of ¢ influence the morphodynamic
behaviour of the model. A previous paper studied the influence of the expo-
nent £ [2]. The small parameter ¢ has important consequences for morpho-
dynamic behaviour.

DIFFERENTIAL EQUATION OF MORPHODYNAMIC EVOLUTION
The change of volume of a channel bed is determined by the residual sedi-
ment transport rates at the two ends of the channel. For a bifurcating channel
this gives the following equation:

@

where the bar denotes averaging over a tidal period and a denotes water
depth. The channel boundary at the bifurcation is denoted by the subscript in.
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S., is determined by the nodal-point relation. The subscript out denotes the
opposite boundary, where S, is in equilibrium. Under the assumption that
the bathymetry of the channel can be represented by the average depth, this
is an ordinary differential equation.

Equation (4) can be written in the general form

9% _ f(apa

— ’a

az 1444, 4, )
da,

_d;' =f2(01,a2)

According to the qualitative theory of differential equations, the long-term
behaviour of this system is determined by the equilibrium states, i.e., f; and
f, are zero. The stability and the time-scales of the equilibrium follow from
the eigenvalues of the Jacobian.

EQUILIBRIUM STATES AND THEIR STABILITY
To analyze Equation (4) mathematically, it is simplified by assuming that the
flow is steady, i.e., the tide is considered only at one point of time. The
validity of the conclusions for steady flow have been verified by numerical
simulations for tidal flow [1]. For steady flow, it is relatively easy to relate
flow velocity, and hence sediment transport, to the water depth. So, the
functions f; and f, in Equation (5) are relatively easy to determine.
The long-term behaviour of Equation (4) is determined by its equilibrium
states and their stability. Consider the case in which the branches are sym-
metric: all geometrical and morphological parameters, except the water
depth, are identical. The width of the channels is half the width of the main
channel, before bifurcation. There are three obvious equilibrium states:
branch 1 and branch 2 have depth equal to the main channel (state 4); branch
2 is closed (state B); branch 1 is closed (state C). These three equilibrium
states, in fact, can be derived from a one-channel equilibrium.
The stability of state A has been analyzed in [3] (for ¢=0), where it is
concluded that A is stable if, and only if, k is greater than n/3. Extension of
this analysis shows that the stability of state B and C depends on the thresh-
old value c. If ¢ is larger than zero, these states are always stable. If ¢ is
equal to zero (power-law formula), then B and C are stable if, and only if, &
is less than n/3.

The long-term behaviour of Equation (4) can be represented graphically by a
phase diagram, which shows the evolution of a, against a,.
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Fig. 2 Phase diagram for k =

—f o]

Fig. 3

— gl

Phase diagram for £k = 10

The phase diagram can be computed numerically by plotting the vector
(fila, @) f(a,,a,)) at grid points (a,,a,). The magnitude of the vector repre-
sents the speed of the evolution and the direction represents the local direc-
tion of the evolution. Phase diagrams have been drawn in Figs. 2 and 3.
Because of large variations of the speed, the vectors in Figs. 2 and 3 have
been normalized. The equilibrium states are the intersections of the isolines

fi=0 and f;=0. The isoline fi=

includes the @, axis.
The parameters which have been used for these phase diagrams are given in
the table below. The channels are symmetric. The sediment transport formula

is the Meyer Peter-Miiller formula.

0 includes the a, axis and the isoline f,=

length

width

Chézy

Dmean

Q S

2400 m

130 m

45 m®3/s

1.45 mm

1600 m®/s 1.27 m’/s

The values for Q and S denote the transports in the main channel, before

bifurcation.

Figs. 2 and 3 demonstrate the sensitivity of the model to the value of %, as
has been analyzed in [2] for the case ¢=0. The only difference between the
figures is that the nodal-point relation has exponent k=1 in Fig. 2 and
exponent k=10 in Fig. 3. The influence of the theshold velocity ¢ is demon-
strated by Fig. 3, as follows. It has been shown in [2] that for ¢=0 only
three equilibrium states are present independent of ¢. These are the states A,
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B, C. For small values of k, the phase diagram is of the type of Fig. 2. For
large values of k, 4 turns into a stable state and B, C are unstable. As Fig. 3
demonstrates, there are two extra unstable states D and E in the case that ¢ is
greater than zero. The states B and C now remain stable for large values of
k. For small values of ¢, the states D and E are close to B and C. For large
values of c, they are close to A. For ¢ equal to zero, i.e., a power-law trans-
port formula, B coincides with D and C coincides with E.

In summary, the exponents &k and n mainly influence the state A, whereas the
threshold value ¢ influences the states B, C, D, E.

APPLICATIONS
The results can be readily applied for morphodynamic modelling of non-tidal
rivers, for which the differential equation (4) is relatively easy to compute.
For tidal rivers and estuaries, the differential equation is more involved as
sediment transport has to be averaged over a period of the tide. In this case,
it is not as easy to determine the phase diagram. The morphodynamic
behaviour of bifurcating tidal channels is the same as the behaviour of non-
tidal channels.
Fig. 4 shows the evolution of an ebb-channel flood-channel configuration in
an estuary. The channels have common boundaries at both sides. The boun-
dary at x=0 represents the sea-boundary; the boundary at the end of the
channel is connected to a large storage area. The sediment transport formula
is the Engelund-Hansen formula, for which ¢=0 and rn=35. The nodal-point
relation has exponent k=3, In this case, the states B and C are unstable, so
the system settles down in state A, independent of the initial condition.
The channels have opposite geometry. The width of the flood channel
increases linearly with its length. The ebb channel is the equal to the flood
channel, only in the opposite direction.
The tide is a flood-dominated M,-M, tide, with amplitude equal to 0.5 m for
M, and 0.1 m for M,. The main parameters of the flood channel are: length
of 8000 m, a Chézy value of 50 m®3/s and channel width increasing from 45
m to 55 m. The initial water depth of the channel is 5 m. The parameters are
the same for the ebb channel, only here width decreases from 55 to 45 m.
The evolution of this configuration is shown in Fig. 4. Clearly, it settles
down in equilibrium, ‘with a relatively shallow flood channel and a relatively
deep ebb channel.

CONCLUSIONS

Theoretical considerations and numerical simulations show that the behaviour
of 1D morphodynamic models is extremely sensitive to the parameters k, n
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and ¢ in the nodal- flood channel

point relation and the
sediment transport
formula. The analysis
presented in this pa-
per is a useful tool to
determine the beha-
viour
morphodynamic  mo-
dels.

paper,
has been used to stu-
dy the parameters k
and n. In the present

paper,
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