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Summary

In the Engineered-To-Order (ETO) branch of the construction industry, each construction project is unique.
To realize these unique constructions, unique (steel) structural elements (hereafter referred to as ’products’)
are required. Due to the high complexity, low volume characteristics of these products the prediction of re-
quired manufacturing times per manufacturing step is not straight forward.

Currently the construction industry relies on experience based manufacturing time predictions of shop
managers. This experience based approach is prone to estimation errors, leading to ineffective manufactur-
ing schedules.

In the past decade, the construction industry started using Building Information Models (BIM) more fre-
quently. In these models, information about the construction (physical properties of products) is stored.
Simultaneously, increasing research on the application of data analysis for improving different aspects of the
manufacturing process can be identified.

In this graduation thesis, a general manufacturing time prediction model is proposed using data from
BIM and the manufacturing process. The validation of the proposed manufacturing time prediction model is
performed in collaboration with Oostingh Staalbouw. Oostingh Staalbouw is a leading company specialized
in the design, manufacturing and assembling of unique steel structures, located in the Netherlands. Cur-
rently, the prediction of manufacturing times results in a Mean Absolute Percentage Error (MAPE) of 0.60
(60%) at Oostingh Staalbouw. Based on the level of human related uncertainty in the data, the objective is set
to reduce this MAPE to 0.30.

The manufacturing process of Oostingh Staalbouw consists of preprocessing, assembly, welding and coat-
ing. This research focused on the prediction of assembly and welding times. The available data for this re-
search consists of physical properties (both quantitative and categorical) and realized manufacturing times
per manufacturing step. A Spearman’s correlation rank analysis showed that a monotonic relationship exists
between the quantitative physical properties and realized manufacturing times. This analysis, however, re-
mained ambiguous whether the relationships are linear or nonlinear.

Several different prediction models are identified after reviewing related literature. These prediction mod-
els are compared based on generality (able to deal with both linear and nonlinear relationships), ability to
incorporate both quantitative and categorical input variables, robustness to uncertainty in the data and the
complexity of the prediction model. From this comparison, an opportunity for a general prediction model is
identified by combining a Support Vector Regression (SVR) and Linear Model Tree (LMT).

The proposed prediction model is able to split nonlinear relationships in several linear relationships us-
ing a decision tree. Using a greedy top down approach, the prediction model splits a node in a left and right
child node. A linear model is build in both left and right child. The combination of split variable and cor-
responding split value leading to the biggest reduction in standard deviation of the residuals from the linear
models is chosen. Upon splitting the relationships, an SVR prediction model is implemented in the nodes
of the decision tree. Therefore the proposed prediction model is called the Support Vector Regression Model
Tree (SVRMT). After the SVRMT prediction model is built, the tree is pruned in order to avoid overfitting.
Sharp discontinuities between adjacent leaves are compensated through a smoothing procedure.

Testing of the proposed SVRMT prediction model is conducted in two phases. First the assumptions that
the model is able to predict both linear and nonlinear relationships with added noise is verified. Afterwards,
the SVRMT model is tested in three real case scenarios in the second, validation phase. The first scenario
corresponds to the start of a new construction project where historical data from realized projects is used to
train the prediction model. The second scenario corresponds to a significant part of the construction project
having already been manufactured. The data from the manufactured products of the particular construction
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project is used to train the model. At last, in the third scenario, the available data from the first and second
scenario is combined to train the model.

The results of the second experimental phase showed a significant increase in prediction accuracy com-
pared to the currently used experience based predictions. For the first scenario, projects differing significantly
from historical projects are predicted less accurately than projects similar to historical projects. The second
scenario turned out to be especially interesting for projects with a significant number of repetitive products.
In the third scenario, outliers (both postive and negative) are flattened out, resulting in most consistent pre-
dictions in terms of absolute relative errors. The average MAPE of scenario 1, scenario 2 and scenario 3 are
respectively 0.41, 0.38 and 0.38.

Overall, the results of this research show that predicting manufacturing times can be improved through
implementation of prediction models. These prediction models are trained using historical data from BIM
and manufacturing times. The proposed prediction model turned out to perform best in terms of prediction
accuracy. There, however, still remains room for improving the prediction accuracy.



Samenvatting

In de Engineered-To-Order (ETO) branche van de bouw industrie is ieder gebouw uniek. Voor deze gebouwen
zijn unieke structurele elementen (’producten’) nodig. Door de hoge complexiteit en het lage volume van de
producten is het voorspellen van productietijden per productiestap niet vanzelfsprekend.

Momenteel maakt de bouwindustrie gebruik van ervaring van productiemanagers om voorspellingen te
doen over productietijden per productiestap. Aangezien deze methode gevoelig is voor fouten, leidt deze
methode tot minder effectieve productieplanningen.

In het afgelopen decennium wordt met toenemende mate gebruik gemaakt van Bouw Informatie Mod-
ellen (BIM). Het voordeel van deze modellen is dat informatie over constructies (op product basis) kan wor-
den opgeslagen. Tegelijkertijd wordt met toenemende mate onderzoek gedaan naar de implementatie van
data analyse ter verbetering van productieprocessen.

In dit afstudeeronderzoek is een algemeen model voor het voorspellen van productietijden per produc-
tiestap voorgesteld. Dit voorspellingsmodel maakt gebruik van opgeslagen data in BIM en productietijden
van geproduceerde producten. Het valideren van dit voorspellingsmodel is uitgevoerd in samenwerking met
Oostingh Staalbouw. Oostingh Staalbouw is gespecialiseerd in het ontwerpen, produceren en assembleren
van stalen constructies. Momenteel is de Mean Absolute Percentage Error (MAPE) van voorspelde produc-
tietijden bij Oostingh Staalbouw 0.60 (60%). Gebaseerd op (mensgerelateerde) onzekerheid in de data is het
doel gesteld om deze MAPE te reduceren tot 0.30.

Het productieproces van Oostingh Staalbouw bestaat uit voorbewerking, aanbouw, las en coating stap-
pen. Dit onderzoek is gefocust op het voorspellen van aanbouw en lastijden per product. Aanwezige data
voor dit onderzoek bestaat uit fysieke eigenschappen (zowel kwantitatief als categorisch) en gerealiseerde
productietijden per productiestap. Door middel van Spearman’s correlatie rank kan een monotone relatie
worden gevonden tussen kwantitatieve fysieke eigenschappen en gerealiseerde productietijden per produc-
tiestap. Deze analyse blijft echter ondubbelzinnig of de gevonden relatie lineair of niet lineair is.

Door middel van een literatuurstudie kunnen verschillende relevante voorspellingsmodellen worden geï-
dentificeerd. Deze modellen zijn vergeleken aan de hand van geïdentificeerde karakteristieken in de data.
Het voorspellingsmodel moet voor zowel lineaire als niet lineaire relaties accurate voorspellingen geven. Het
model moet robuust zijn tegen onzekerheid in de data en moet zowel kwantitatieve en categorische input
variabelen kunnen verwerken. Tot slot moet het model inzichtelijk zijn om de acceptatiegraad binnen de con-
servatieve bouwindustrie te verhogen. Door middel van deze vergelijking is een nieuw voorspellingsmodel
voorgesteld. Dit voorgestelde voorspellingsmodel is een combinatie tussen Support Vector Regression (SVR)
en een Linear Model Tree (LMT). Het voorgestelde voorspellingsmodel wordt voor de rest van dit onderzoek
de Support Vector Regression Model Tree (SVRMT) genoemd.

De SVRMT wordt opgebouwd door de relatie tussen input en output op te splitsen in lineaire segmenten.
Voor ieder knooppunt wordt gezocht naar een optimale split variabele en bijbehorende split waarde. Door
middel van een gretige zoekmethode, wordt de Model Tree van bovenaf gesplitst in een linker en rechter
knoop. In beide knooppunten wordt een lineair model geplaatst. De combinatie die tot grootste reductie
in standaarddeviatie van afwijking tussen lineair model en datapunten in de knoop leidt wordt gekozen als
beste split. Nadat de relatie is opgesplitst in lineaire segmenten worden SVR modellen in alle knopen van de
Model Tree geplaatst. Vervolgens wordt overfitting van de Model Tree tegengegaan door een ’pruning’ meth-
ode. Tot slot worden grote verschillen tussen aangrenzende knopen gecompenseerd door middel van een
’smoothing’ procedure.

Het voorgestelde SVRMT voorspellingsmodel is getest in twee fases. In de eerste fase zijn de aannames
voor het SVRMT voorspellingsmodel geverifieerd. Vervolgens is het SVRMT voorspellingsmodel gevalideerd
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door middel van drie verschillende case scenario’s, waar gebruik wordt gemaakt van data van Oostingh Staal-
bouw. Het eerste scenario komt overeen met de start van het produceren van een nieuwe constructie. Op dit
moment is geen gerealiseerde data aanwezig van de constructie. Daarom is het voorspellingsmodel volledig
afhankelijk van data van historische projecten. In het tweede scenario wordt uitgegaan van het moment dat
een significant deel van de constructie geproduceerd is. De gerealiseerde data van het project wordt gebruikt
om het voorspellingsmodel te trainen. Tot slot wordt in het derde scenario gebruik gemaakt van zowel data
van gerealiseerde projecten, als een significant geproduceerd deel van de te produceren constructie.

De resultaten van de tweede experimentele fase tonen een significante verbetering ten opzichte van de
huidige voorspellingsmethode. In het eerste scenario blijkt de voorspellingsnauwkeurigheid afhankelijk van
gelijkenissen tussen de verschillende constructies. Als een constructie significant verschillend is van de con-
structies die gebruikt zijn voor het trainen van het voorspellingsmodel, resulteert dit in minder nauwkeurige
voorspellingen. Het tweede scenario blijkt met name interessant voor projecten met veel repeterende pro-
ducten binnen de constructie. Scenario 3 resulteert in de meest constante resultaten tussen de verschillende
constructies. De gemiddelde MAPE voor scenario 1, scenario 2 en scenario 3 zijn respectievelijk 0.41, 0.38 en
0.38.

De resultaten van dit onderzoek tonen aan dat de implementatie van voorspellingsmodellen leidt tot
een significant verbeterde nauwkeurigheid in voorspelde productietijden. Het voorgestelede SVRMT voor-
spellingsmodel leidde tot meest nauwkeurige voorspelde productietijden per productiestap. De doelstelling
van een MAPE van 0.30 is echter niet gehaald, wat betekent dat er ruimte voor verbetering blijft voor verder
onderzoek.
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1
Introduction

1.1. Company background
Oostingh Staalbouw, since 2017 part of ASK Romein, is a leading company in designing, manufacturing and
assembling unique and complex steel structures in the Netherlands. In the past years, the number of orders
has increased rapidly. To cope with this development, improvements in the manufacturing process are re-
quired.

The uniqueness of the construction projects carried out by Oostingh Staalbouw, however, makes stan-
dardization a difficult task. In addition, structural elements (hereafter referred to as "products") are difficult
to handle due to their size and length, making transport of products inconvenient. An example of a product
is provided in Figure 1.1.

Figure 1.1: Example of a product manufactured at Oostingh Staalbouw

An example of a project being built by Oostingh Staalbouw in 2019 is the dome shown in Figure 1.2. This
dome spans an area with a diameter of 70 meters and is built on an existing construction. The construction
of this project requires a unique design, consisting of unique products.

1
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Figure 1.2: Example of project carried out by Oostingh Staalbouw

1.2. Problem definition
Due to the Engineered-to-order (ETO) nature of unique construction projects, each project demands differ-
ent products, which have varying physical properties. This variation in physical properties results in signif-
icant variations in manufacturing time per product. A histogram of the variation in required welding time
of different products at Oostingh Staalbouw is shown in Figure 1.3. Due to the low-volume, high complexity
nature of these structural elements, it is challenging to predict manufacturing times accurately [2]. Unreli-
able predictions lead to difficulties in formulating manufacturing schedules which balance the production
line and satisfy on-site demands [39].

Figure 1.3: Histogram of required welding time per product for the period November 2018 - February 2019 at Oostingh
Staalbouw

Currently, scheduling for off-site steel structure manufacturing processes is based on the experience of
fabrication shop managers. These managers estimate the complexity of a group of products (part of a con-
struction) on man-hours per tonne basis and manually produce a manufacturing schedule. This approach
relies on experience and knowledge of the estimator and is prone to errors, leading to inaccurate manufac-
turing schedules [26]. At Oostingh Staalbouw, scheduling is currently conducted likewise, resulting in inef-
fective manufacturing schedules. Experience based predictions currently yield Mean Absolute Percentage
Errors (MAPE) up to 0.60 (60%) at Oostingh Staalbouw.
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Figure 1.4: Visualization of data coupled to a product in BIM

Due to these prediction errors, and subsequently inaccurate manufacturing schedules, the workload of
successive manufacturing steps becomes unbalanced. This results in disrupted product flows between the
manufacturing steps, emerging in buffers of materials between the manufacturing steps. This leads to extra
transport, waiting times and searching for materials.

In the past decade, construction engineers started using Building Information Models(BIM) to design
complex structures. The main advantage of BIM is the integration of structural information with specific el-
ements. This integration of information enhances interoperability in building projects significantly [52]. An
example of information integration in BIM is provided in Figure 1.4. Despite the arsenal of possibilities, BIM
based models are still mainly used for 3D modelling [26].

Meanwhile, data analysis is becoming an indispensable technique for improving manufacturing pro-
cesses [11]. Data analysis can be implemented in numerous aspects of manufacturing, e.g. overall production
management, planning and scheduling, quality monitoring and fault detection [11].

An opportunity arises based on above mentioned developments. Combining historical data from both
BIM and the manufacturing process to improve the accuracy of predicted manufacturing times would there-
fore be an interesting research area [26]. This increased accuracy of predicted manufacturing times can be
used to create more effective manufacturing schedules.

Research on predicting manufacturing times of structural elements based on historical data is, however,
limited. Hu et al. [26] extracted physical properties, like size, weight and weld length of products from BIM.
This extracted data is used in combination with historical data of manufacturing times from the manufactur-
ing process to predict manufacturing times more accurately. A Multiple Linear Regression method (MLR) is
compared with traditional, experience based predictions. The MLR method significantly outperformed the
traditional approach in terms of prediction accuracy.

The study, however, is limited to the prediction of manufacturing times for entire projects, which is un-
suitable for generating detailed manufacturing schedules. Therefore the aim of this graduation thesis is to
predict manufacturing times per product per manufacturing step, paving the way for the generation of ef-
fective manufacturing schedules. Furthermore, the study from Hu et al. [26] only took into account MLR as
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prediction model, which is limited to processes where physical properties of products and manufacturing
times have linear relationships. A general model for predicting manufacturing times using information from
BIM is, to the best of the author’s knowledge, still missing.

1.3. Objective
This study aims to propose a manufacturing time prediction model based on historical information stored in
BIM and manufacturing times. Considering the wide variety of manufacturing processes in the construction
industry, generality will be taken into account for the manufacturing time prediction model.

The proposed general manufacturing time prediction model will be validated in a case study. For this
case study, the aim is to increase the accuracy of predictions of new, unique products manufactured at Oost-
ingh Staalbouw. Currently, the Mean Absolute Percentage Error (MAPE) of the experience based prediction
approach at Oostingh Staalbouw is up to 0.60 (60%). Uncertainty in the data accounts for an average relative
prediction error of 0.25. The determination of the relative prediction error caused by uncertainty in the data
used realized manufacturing times of the products. Since this information is only available after the product
has been manufactured, this approach is unsuitable for the prediction of new products. It is expected that
the prediction error for new products will be higher than 0.25. Therefore, the objective for this research is set
to reduce the MAPE for predicting manufacturing times of products from 0.60 to 0.30.

1.4. Research question
Based on the above mentioned research objective, the following research question can be formulated:

"How to develop a manufacturing time prediction model, using BIM and manufacturing data, in order to
create more effective manufacturing schedules?"

Before this research question can be answered, several sub-questions are to be answered:

• What is the current state at Oostingh Staalbouw?

• Which data can be extracted from BIM and the manufacturing process?

• Which manufacturing time prediction models are available in literature?

• Which conceptual prediction model can best be used to predict manufacturing times?

• How can the performance of prediction models be evaluated and compared?

• How can the conceptual prediction model be validated?

1.5. Research scope
Due to both limited available data and time constraints, this research is subject to several boundaries.

• Given condition: The case study is conducted at Oostingh Staalbouw. Oostingh Staalbouw is special-
ized in the steel structural part of construction projects. Available data for this case study are physical
properties stored in BIM and manufacturing times of products.

• Assumptions: It is assumed that Oostingh Staalbouw is representative for the manufacturing of (steel)
structural elements. Furthermore, constrained by available data, it is assumed that manufacturing
times are not influenced by process related and external factors like weather, day of the week, etc.

• Limitations: The validation of this research is limited to a case study for the manufacturing of steel
elements. Therefore the generality of the prediction model can only be validated in a hypothetical situ-
ation. In addition, the validation of the proposed prediction model is limited to the assembly and weld-
ing step. At last, this research is limited to proposing, modelling and validation of the manufacturing
time prediction model. The formulation of manufacturing schedules using the predicted manufactur-
ing times is left out of scope in this research.
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1.6. Methodology
The methodology used in this research is based on the Standard Process for Data Mining (CRISP-DM) [10].
According to these guidelines, a predictive data analytical project lifecycle consists of six key phases; business
understanding, data understanding, data preparation, modeling, evaluation and deployment.

This methodology remains ambiguous on how to determine beforehand which prediction model would
best apply to the problem. Therefore, in this research an update to this methodology is proposed and imple-
mented. For this research, reviewing literature for approaches in related problems is added to the methodol-
ogy. Additionally, emphasis is put on evaluating prediction models based on theory. Based on this evaluation,
the prediction model most likely to suit the defined problem is derived. This approach is opposed to the trial
and error approach currently used in the industrial standard for the selection of a prediction models.

First, the situation for the case study at the company will be explored; The manufacturing process will
be mapped and relevant aspects of the manufacturing process will be highlighted. Afterwards, the charac-
teristics of the available data will be investigated through data analysis. Based on identified characteristics
of the data, prerequisites for the prediction model will be set. Then, a literature study will be conducted on
integrating BIM in manufacturing processes. Furthermore, approaches for predicting manufacturing times
in other ETO industries will be studied. Based on the characteristics identified for the case study, along with
the studied literature, a conceptual prediction model will be proposed. Afterwards, this conceptual model
will be validated in both hypothetical and real case scenarios.

1.7. Structure of the report
At first, chapter 2 provides insight on the current state of the company for the case study, Oostingh Staal-
bouw. Chapter 3 reviews literature on predicting manufacturing times. Based on both available data and
prediction models, chapter 4 proposes a general prediction model for predicting manufacturing times using
BIM. The proposed prediction model is verified and validated in chapter 5 and at last, the conclusions and
recommendations of this research are presented in chapter 6.

Figure 1.5: Overview of methodology used in this research, along with corresponding chapters in this report





2
Current state at Oostingh Staalbouw

2.1. Introduction
In order to provide the reader an understanding of the background for this research, this chapter will discuss
key aspects of Oostingh Staalbouw, the company studied during this case study.

The major competitive advantage of Oostingh Staalbouw is that all aspects of the construction process for
steel structures are handled. From the design phase to manufacturing and the erection of the structure at the
building site are carried out by the company.

This research focuses on the relation between the design phase (physical properties stored in BIM) and
the manufacturing process at Oostingh Staalbouw (manufacturing times). This relation will be used to pre-
dict manufacturing times based on the design (physical properties) of unique products.

During the design phase of a project, a Building Information Model (BIM) is used by Oostingh Staalbouw.
BIM is used to store information about structural elements of a construction project as well as information
about the manufacturing process. The first part of this chapter will elaborate on what BIM is, and which data
is currently stored in these models.

Afterwards, an overview of the manufacturing process at Oostingh Staalbouw is provided. Onwards, the
collected data from the manufacturing process will be discussed.

This way both the subquestion "What is the current state at Oostingh Staalbouw" and "Which data can be
extracted from BIM and the manufacturing process" are aimed to be answered.

Figure 2.1: Second and third step of the used methodology for this research

7
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2.2. Building Information Modelling
In order to provide the reader a better understanding of Building Information Models, this section will discuss
BIM in more detail. At first, a definition of BIM is provided, along with relevant literature on BIM. Afterwards,
the information stored in BIM, available for this case study is discussed.

2.2.1. Definition of BIM
Building Information Modelling (BIM) technology can be used to digitally create an accurate virtual model
of a construction project. Upon completion, the model incorporates the precise geometry and other rele-
vant information, like construction order of the construction [18]. The model can be used for cooperation of
all involved members of the construction project during the entire lifetime of a building. Relevant informa-
tion from designing, manufacturing and assembling up to maintenance of the building can be stored in the
model. According to Eastman et al. [18], BIM can be described as:

"With BIM (Building Information Modelling) technology, one or more accurate virtual models of a building
are constructed digitally. They support design through its phases, allowing better analysis and control than
manual processes. When completed, these computer-generated models contain precise geometry and data
needed to support the construction, fabrication, and procurement activities through which the building is

realized."

Basically, BIM can be used to store information about each stage of the life cycle of a construction project.
All sorts of information can be coupled to either a single structural element or (a part of) the entire building
and the information can be accessed by all collaborators of the project. A visualization of BIM and it being
the spine of construction projects is shown in Figure 2.2

Figure 2.2: Visualization of the interconnectivity of BIM in the life cycle of a building [30]

In theory, all kinds of information can be stored in BIM. However, the use of BIM is still mainly used in the
design phase of construction projects, limiting the stored information to physical properties of the project
[26]. Oostingh Staalbouw is no exception to this rule.
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2.2.2. Related literature on using BIM for scheduling activities
Prior research on the implementation of BIM for scheduling activities focused on integrating the planning
between manufacturing and assembling [55] [44], and is extended to the integration of the design phase of
construction projects in planning activities [47]. Here the manufacturing process has been considered a black
box and ignores detailed manufacturing schedules.

Implementing information from BIM in on-site assembly planning of prefabricated components have
been addressed extensively by ? [? ]. The manufacturing of the prefabricated components, however, was left
out of scope in their research.

Predicting required man-hours for assembly on the construction site has been investigated by Lee et al.
[36]. In this research, the construction hours are predicted using a bill of materials, which is extracted from
BIM. Comparing different trendlines, they succeeded in making reliable predictions for required assembly
times.

Significantly less research has been conducted on using information from BIM for scheduling of off-site
manufacturing processes. Liu et al. [39] created a discrete event simulation for an off-site panel construction
factory in order to assist manufacturing planning. The physical aspects of the panels are extracted from BIM
and used as input for the simulation. During this research, however, the manufacturing times of the panels
were not predicted based on information from BIM. The manufacturing times of the several workstations
were estimated based on experience and kept deterministic, leading to a less realistic simulation.

An approach for man-hour estimation based on data from BIM and the manufacturing process has been
proposed by Hu et al. [26]. In this approach, physical properties of structural elements were extracted from
BIM. Using data from a real manufacturing process, evaluation of these different properties with respect
to the required manufacturing time was performed. In this case study, a Multiple Linear Regression (MLR)
approach increased the accuracy of predicting required manufacturing times, compared to a traditional, ex-
perience based approach.

Mohsenijam and Lu [40] used the prediction model from Hu et al. [26] during the design phase of building
projects. Through linking man-hour estimations with the design process, the study gained more insight in
the consequences of design choices for the required manufacturing times.

2.2.3. Data stored in BIM
At the start of each construction project, limited information is available. Before a project commences, an
initial drawing of the design of the structural construction is prepared. This fundamental drawing contains
information about the type. length and placement of the steel profiles that will be used.

As the design phase of the project progresses, details of the design are filled in, and more information
about the physical properties of the products becomes available. This information is stored in the Building
Information Model (BIM). Information can be extracted from this BIM either per product or per (part of a)
project. An example of extracted data on product level from BIM is provided in table 2.1.

Table 2.1: Example of extracted data from BIM

Product Count Main profile Weight product [MT] Length product [mm] Part number Profile part Length [mm] Weld thickness Hole diameter [mm] Amount
L570 2 33 22 1
L570 2 90 33 4
L570 1 233 5 1
L570 2 103 5 1
L570 2 300 5 1
L570 2 315 6 1
L570 4 300 6 1
L570 1 HEA360 0,394 3.158 L570 HEA360 3.118 1
L570 1 HEA360 0,394 3.158 P381 ST15X300 330 1
L570 2 HEA360 0,394 3.158 P42 ST20X300 400 1
L570 1 HEA360 0,394 3.158 P543 PL10X143 313 1
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The extracted data can be divided in both categorical and quantitative variables. Products consist of a
main profile, based on standard profile types. Four categories of standard profiles can be distinguished:

1. H-beam (Figure 2.3a)

2. U-Beam (Figure 2.3b)

3. Hollow section (Figure 2.3c)

4. Plate (Figure 2.3d)

It is expected that the handling of these different profiles varies slightly. In order to investigate the effect
of the different profile types on manufacturing time, the difference in profile type will be taken into account
by the prediction model. This leads to the prerequisite that the prediction model must be able to cope with
categorical input variables.

(a) H-beam [6] (b) U-beam [8]

(c) Hollow section [7] (d) Plate [6]

Figure 2.3: Visualization of the identified profile types

In addition, the following quantitative physical properties extracted from BIM can be identified:

• Total weight of the product

• Maximum length of the product

• Total weld length

• Number of parts

• Number of welds

• Number of holes

Data preparation
The extracted data is unprocessed data and should be prepared before it can be used properly. As shown in
table 2.1, each product consists of one or multiple welds, parts, holes etc. This data should be summarized
for each product. The weight and length of the products can be extracted directly. The number of parts, holes
and welds should be summed up per product.

The total weld length is calculated by taking into account the thickness of the welds. Different weld thick-
nesses require different number of layers to weld. It is assumed that each layer requires equal welding time.
Table 2.2 shows the relationship between weld thickness and the number of weld layers.
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Table 2.2: Table of weld thickness and corresponding number of weld layers

Weld thickness 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 30
No. weld layers 1 1 1 3 3 4 6 6 6 10 10 15 15 21 21 27 27 34 51

2.3. Manufacturing process
After the design phase of a construction project, the designed products are manufactured. In this section, the
outline of the manufacturing process at Oostingh Staalbouw is discussed. Afterwards, the collection of data
from the manufacturing process is considered.

2.3.1. Outline of the manufacturing process
The manufacturing process at Oostingh Staalbouw can be divided in preprocessing, assembly, welding and
coating of products. Figure 2.4 shows a flow diagram of the manufacturing process at Oostingh Staalbouw.
Noticeably, there is a storage step between each manufacturing step. These storage areas function as buffers
in order to compensate for disrupted flow of products due to ineffective manufacturing schedules. The phys-
ical properties of the products (on average a product weights 400 kg and is 4000 mm long) lead to significant
transfer and spatial costs for the use of these buffers.

Figure 2.4: Manufacturing flow at Oostingh Staalbouw. Notable are the storages (red boxes) between the subsequent
manufacturing steps.

Due to the Engineered-to-Order (ETO) nature of the construction projects carried out at Oostingh Staal-
bouw, in combination with the complexity of manufacturing operations makes it a process difficult to auto-
mate. Therefore humans are highly involved in the assembling, welding and coating phase. Inherent to this
extensive human involvement, uncertainty in manufacturing times is expected to arise.

In the remainder of this section, the various steps of the manufacturing process will be discussed in detail.

Preprocessing
Standard parts are supplied from steel producers. An example of standard parts are H-beams with a standard
length (6 or 12 meters). A major distinction can be made between steel profiles (H-beam, U-beams and Hol-
low Sections) and steel plates. During preprocessing, these standard parts are processed into custom sizes,
according to the requirements set in the design phase of the construction project.

Steel profiles
In the preprocessing stage of steel profiles, standard steel profiles are cut to the required length. Two different
Computer Numerical Control (CNC) machines are used parallel to each other; a torch cutting machine and
a sawmill. Each machine is capable of cutting a steel profile to the required length and drilling holes in the
profile. After the profile is processed, it is placed in a storage area. This storage area is divided into sections,
in which each section represents a truckload. A flow diagram of this manufacturing step is provided in Figure
2.5
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Figure 2.5: Flow diagram of the preprocessing of steel profiles at Oostingh Staalbouw

Steel plates
Similar to the preprocessing of steel profiles, custom steel plates are cut from standard steel plates by CNC
machines. These CNC machines use a laser to cut the steel plates in any arbitrary shape.

Assembly
During the assembly step, the preprocessed steel profiles and plates are joined according to the working
drawing. Each workplace consists of a workbench and a frame to put the product on. The workbenches
are standardized using the 5S principle [37] and can be used for all assembly operations. The parts to be
assembled are placed next to the assembly workbench (Figure 2.6). Each assembly employee is competent for
all assembly operations. Products, however, vary in length from 0.2 up to 20 meters. Therefore, one product
can occupy multiple workplaces.

Figure 2.6: Example of a standardized assembly workbench at Oostingh Staalbouw

The next steel profile to be assembled is transported to an empty assembly workplace by an overhead
crane. The corresponding steel plates are transported to the particular workplace either by hand or forklift
truck.

Preprocessed parts of a product are transported to an empty assembly workplace. An assembly employee
is assigned to this product and assembles the product according to the working drawing, specified in the
design phase. The assembly step is highly dependent on both the preprocessing and design phase of the
projects; if a defect occurs in one of the custom parts, this has to be corrected during the assembly step.
Additionally, in case of unclear working drawings resuling from errors in the design phase, investigation is
required during the assembly step. Therefore, it is expected that the manufacturing step is most sensitive to
human related uncertainty in manufacturing times.

After the product is assembled, an overhead crane is used to transport the product to a storage area be-
tween the workplaces, before it is transported to the workplace where the next manufacturing step will be
executed.
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The flow of products in the assembly step is shown in Figure 2.7.

Figure 2.7: Flowdiagram of the assembly step in the manufacturing process at Oostingh Staalbouw

Welding
After the separate, custom parts are assembled into one product, the product is transported from storage to
the welding step. The layout of this welding step is divided into two columns, each existing of multiple weld-
ing workplaces. Analogous to the assembly step, each workplace is standardized. Therefore each product can
be welded at each workplace, it should however, be taken into account that the number of occupied work-
places is dependent on the length of the product.

During the welding step, the parts connected through a spot weld in the assembly step are welded with
final welds. The prescribed quality and size of welds vary per product, but can vary for several parts of one
product as well.

After the product has been welded it is transported to a storage area.

Figure 2.8: Flowdiagram of the welding step in the manufacturing process at Oostingh Staalbouw

Coating
In order to prevent oxidation of the products, most products are coated. This process exists of two steps; the
blasting and painting of the products. The product is placed in a blasting machine, in which the surface of
the products is roughened. After the surface is prepared, the product is placed in a painting room, in which
a coating is applied. Afterwards, the product is left in the room until the coating has dried. A schematic
overview of this process is provided in Figure 2.9.

Due to the process characteristics of the coating step at Oostingh Staalbouw, the manufacturing time for
this step is not registered on product base. Therefore, the coating step is left out of scope for this research.

Focus of this research
Currently, the assembly and welding step account for 70% of manufacturing costs at Oostingh Staalbouw.
Furthermore, Oostingh Staalbouw currently has most difficulties predicting these manufacturing steps accu-
rately. Therefore, for the remainder of this research, emphasis will be put on the prediction of manufacturing
times for the assembly and welding step.
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Figure 2.9: Flowdiagram of the coating process at Oostingh Staalbouw

2.3.2. Data collection for the manufacturing process
Data from the manufacturing is collected in two ways. The preprocessing steps uses CNC machines. These
machines automatically store relevant information, like manufacturing time.

Information labels with barcodes are used for the manual manufacturing steps. On these labels, informa-
tion is written about the weight of the product, the required weld quality, applied coating, which project it
belongs to and on which truck it should be loaded. An example of an information label is provided in Figure
2.10

Figure 2.10: Example of information label used to measure product manufacturing times per manufacturing step at
Oostingh Staalbouw

These labels are scanned at the beginning and at the end of the manufacturing step. The manufacturing
time and employee ID are subsequently coupled to each product. This data is synchronized with BIM after
each work shift.

An example of unprocessed, exported data is provided in Table 2.3. In case multiple workshifts are re-
quired to finish the manufacturing step for a product, the registered hours are summed up.

Table 2.3: Example of data extracted from the manufacturing process

Employee ID JobDescription Hours Product ID
466 Welding 0,23 181017-L502-1
667 Welding 1,2 181017-L202-3
406 Welding 2,15 184030-VWS2-1
823 Welding 2,18 184030-VWS2-1
463 Welding 2,55 181017-L178-1
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2.4. Data analysis
Collected data from both design and manufacturing can be analysed in order to look for relationships in this
data. In this section the data analysis on the collected data from both design and manufacturing stage is
considered.

2.4.1. Correlation analysis
In order to test whether a relationship exists between quantitative physical properties and the manufacturing
time, a correlation coefficient is used. Two main types of correlation coefficients are commonly used; the
Pearson’s correlation coefficient and the Spearman’s correlation coefficient. Pearson’s correlation coefficient
is favorable under the assumption that the data is normally distributed. The histograms of the assembly
times (Figure 2.11a) and welding times (Figure 2.11b) show that the data is not normally distributed, therefore
Spearman’s correlation coefficient should be used. Using Spearman’s correlation coefficient, for each variable
the data is ranked. To determine the correlation between two variables, the difference between the ranks di is
summed over all data points (n) and put in equation 2.1. Values close to 1 indicate strong monotonic positive
correlation between two variables. [41]

rs = 1− 6
∑n

i=1 d 2
i

n(n2 −1)
(2.1)

The correlations between the physical properties and the manufacturing times at the assembly and weld-
ing step are provided in table 2.4. The relatively high correlation coefficients between the various physical
properties and the manufacturing times hints at a relationship between these variables.

The major drawback of using Spearman’s rank coefficient is that only shows that a monotonic relationship
exists between two variables; if one variable increases, the other variable will increase as well. The relation-
ship, however, can be either linear or nonlinear [41].

(a) (b)

Figure 2.11: Histogram of realised a) assembly and b) welding times at Oostingh Staalbouw. The non normal distribu-
tion of manufacturing times violates the assumption required for Pearson’s correlation analysis.
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Table 2.4: Derived Spearman correlation coefficient between physical properties and manufacturing times

Weight Length Weld length No. Parts No. Welds No. Holes Assembly Time Weld Time
Weight 1.0 0.87 0.93 0.82 0.73 0.61 0.80 0.88
Length 0.88 1.0 0.80 0.71 0.58 0.53 0.73 0.74
WeldLength 0.94 0.80 1.0 0.84 0.77 0.66 0.80 0.92
No. Parts 0.82 0.71 0.84 1.0 0.86 0.72 0.83 0.86
No. Welds 0.74 0.59 0.77 0.86 1.0 0.64 0.82 0.81
No. Holes 0.62 0.54 0.66 0.72 0.64 1.0 0.64 0.68
Assembly Time 0.80 0.74 0.80 0.83 0.82 0.64 1.0 0.81
Weld Time 0.89 0.75 0.92 0.86 0.81 0.68 0.81 1.0

2.4.2. Uncertainty in the data
As stated in section 2.3, human operators are highly involved in the manufacturing process. Inherent to
human involvement, uncertainty in manufacturing times is expected to be encountered. An example of this
uncertainty in manufacturing time is provided in table 2.5, along with the corresponding graph in Figure 2.12.
The data is this example relates to a product manufactured multiple times.

Table 2.5: Example of fluctuations in manufacturing times for an identical product, manufactured multiple times

1 2 3 4 5 6 7 8 9 10 11
Assembly Time [h] 0,57 1,67 1,63 1,03 0,97 0,67 1,43 0,63 0,55 1,63 0,48
Weld Time [h] 1,15 1,89 0,85 2,06 1,98 1,55 1,67 1,42 2,03 1,01 0,82

Figure 2.12: Example of uncertainty in the data for an identical product manufactured multiple times

Due to these fluctuations, a prediction error will always arise: the physical properties of these products are
identical, ergo the predicted manufacturing time will be identical as well. Since the realised manufacturing
times fluctuates, a deviation from the predicted manufacturing time will occur. Gaining insight in the size of
this error, the available data of products that are manufactured multiple times is evaluated. For each product
manufactured multiple times, the manufacturing time is predicted using the mean manufacturing time of
the repetitions of this product. The Mean Absolute Percentage Error (MAPE), Median Absolute Percentage
Error (MeAPE) and the Standard Deviation of the Absolute Percentage Error (Std) (Section 5.2.1) for both the
assembly and welding manufacturing step are summarized in table 2.6.

The results in table 2.6 imply that the possible prediction accuracy using this approach is 0.25 (25%). Since
this approach requires historical information of manufacturing times of the product, it is unsuitable to pre-
dict manufacturing times for new, unique products. It is expected that prediction models will yield a MAPE
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Table 2.6: Summary of absolute relative errors in data due to human related factors

Mean Median Std Cv

0.25 0.19 0.24 0.96

higher than 0.25. Therefore, the objective MAPE of this research is set to 0.30. This would be a significant
improvement compared to the MAPE of the currently used approach (0.60). Additionally, the Standard Devi-
ation of 0.24 gives insight in the distribution of the prediction errors for identical products.

The Coefficient of Variance (Cv = Std
Mean ) close to one implies that the relative uncertainty is relatively high

and follows an exponential distribution [1], [15]. The exponential distribution of absolute relative errors im-
plies that (significant) outliers are present. This leads to the significant difference between the Mean and
Median absolute relative error.

Figure 2.13 shows the residuals of the above mentioned approach versus the realized manufacturing
times. From these plots, it can be seen that the variance of the residuals is not constant for different manu-
facturing times. This phenomenon is called heteroskedasticity [21]. In this case the variance of the residuals
increase with increasing manufacturing times. This can be explained by external variables having a relative
influence on the manufacturing times of a product. For example, due to experience an employee might be
able to weld 10 % faster than inexperienced colleagues, this effect will amplify with increasing manufacturing
times.

(a) (b)

Figure 2.13: Residual plot versus realized manufacturing time for a) assembly and b) welding for the estimation of
uncertainty in manufacturing times.

2.4.3. Prerequisites for the prediction model
Based on the data analysis, several data characteristics can be identified. These data characteristics are used
to set prerequisites for the selection of a proper prediction model for the prediction of manufacturing times
per manufacturing step.

• Quantitative and categorical input variables; two types of physical variables are identified, quantita-
tive variables (length, weight, etc.) and the categorical variable profile type. Therefore the prediction
model should be able to cope with both quantitative and categorical input variables.

• Linear and nonlinear relationships; the correlation analysis between physical properties and manu-
facturing times remained ambiguous whether the relationship between these variables is linear or non-
linear. Additionally, considering the desired generality of the manufacturing time prediction model, the
proposed prediction model should be able to yield accurate predictions for both linear and nonlinear
relationships.

• Uncertainty in the data; due to human involvement, significant uncertainty in the data is present. The
prediction model should be robust against this uncertainty.
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2.5. Predictions of manufacturing times at Oostingh Staalbouw
Currently, manufacturing scheduling at Oostingh Staalbouw uses experience based estimations of manufac-
turing times by manufacturing managers. These estimations are produced for a group of products, which is
common for the construction industry [26].

In the recent past (2017), Oostingh Staalbouw conducted an experiment where manufacturing times were
predicted per product, rather than per group of products. This experiment resulted in a Mean Absolute Per-
centage Error (MAPE) of 0.60 for the experience based predictions of manufacturing times per product (over
a period of a year). After this experiment, Oostingh Staalbouw returned to the original approach of predicting
manufacturing times per groups of products. It is, however, assumed that the found MAPE is still representa-
tive for the prediction approach used in the manufacturing process.

2.6. Conclusion
In this chapter, the reader is provided an understanding of the current state at Oostingh Staalbouw, the com-
pany used as case study for this research. Both the subquestion "What is the current state at Oostingh Staal-
bouw" and "Which data can be extracted from BIM and the manufacturing process" are discussed in this
chapter.

The relationship between the design phase and the manufacturing process is the main focus area for this
research. During the design phase, a Building Information Model (BIM) is used to create a digital copy of the
construction. From this model, physical properties can be extracted. These properties can be divided in both
quantitative and categorical variables.

The manufacturing process consists of a preprocessing, assembly, welding and coating step. Apart from
the preprocessing step, the manufacturing steps consists mainly of human labour, leading to uncertainty in
manufacturing times. For the assembly and welding step, the manufacturing time per manufacturing step is
collected by scanning barcodes coupled to the product. No detailed information of manufacturing times per
product in the coating step is available. Therefore, in the remainder of this research, the focus will be on the
assembly and welding step at Oostingh Staalbouw.

Using Spearman’s correlation rank, a monotonic relationship between quantitative physical properties
and the manufacturing time per manufacturing step can be identified. The major drawback of this correla-
tion analysis is that it remains ambiguous whether the relationships are linear or nonlinear.

Based on a data analysis prerequisites for the prediction model can be derived. The prediction model
should be able to incorporate both quantitative and categorical input variables. Additionally, the prediction
model should be able to yield accurate results for both linear and nonlinear relationships. At last, uncertainty
in the data is identified. Therefore, the prediction model should be robust against this uncertainty.
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Literature Review

3.1. Introduction
Before a conceptual model for predicting manufacturing times based on data from BIM and the manufac-
turing processes can be developed, a literature review is conducted. This chapter aims at answering the
sub-question: "Which manufacturing time prediction models are available in literature?".

Before relevant literature is to be reviewed, it should be noted that the prediction problem identified for
this research is called a regression problem. Regression models aim to predict a continuous variable, using
the relation between several different input variables [48]. In the research area of regression, several different
prediction models can be identified.

In order to get an idea of implemented regression models in related research, a literature review is con-
ducted. Afterwards, the identified prediction models are explained in more detail. Based on the prerequisites
set for the prediction model (chapter 2) and the reviewed literature, a conceptual prediction model will be
proposed.

Figure 3.1: Fourth step of the used methodology for this research

19
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3.2. Manufacturing time prediction in related industries
As stated in section 2.2.2, prediction of manufacturing times based on historical data from BIM and the
manufacturing process is limited. Therefore, approaches in other industries with Engineered-to-order (ETO)
characteristics are reviewed. In this section, the related literature is discussed.

Tirkel [54] implemented a Neural Network (NN) model to predict the product lead time of wafer fabrica-
tion. Historical information like the week of manufacturing, product name and the required tools are fed into
the model, along with the realised lead times. The accuracy of the prediction model turned out to be highly
dependent on lead time duration, with accurate results on relatively short lead times and increasing error
with increasing lead time.

Pfeiffer et al. [45] integrated Multiple Linear Regression (MLR) and Tree Based Regression (TBR) predic-
tion models with a discrete event simulation of a manufacturing process in order to predict product lead
times. Based on the results of the discrete event simulation, the prediction models are trained and evaluated.
In this research, both MLR and TBR turned out to be capable of predicting product lead time accurately. Ap-
plication in a real case scenario, however, was not considered during this research.

Hur et al. [27] compared MLR with a TBR approach on a quarterly, monthly and daily estimation basis for
predicting the lead time of a shipbuilding process. As expected, both models became more accurate as the
timespan became shorter. Furthermore, the TBR approach slightly outperformed the MLR approach.

The combination of a Support Vector Regression (SVR) with a particle swarm optimization algorithm in
order to find the best parameters for the SVR algorithm is investigated by Yu and Cai [58]. In this study, the
final model was able to predict required man-hours for aircraft assembly with high accuracy.

Selecting the right input variables for MLR through stepwise regression is discussed in Arash et al. [4].
In this research, two case examples of the implementation of MLR are provided; the first case study aims at
predicting the amount of slump of a concrete mix. The second case is focused on predicting one-span instal-
lation cycle-time of a precast viaduct construction. In both cases, the required number of inputs could be
reduced by stepwise regression, while keeping an accurate prediction model.

MLR, TBR and SVR have been compared for use by an optical glass manufacturer by Gyulai et al. [23]. In
this study, TBR and SVR slightly outperformed the MLR approach in terms of accurately predicting product
lead times.

Nagahara and Nonaka [43] compared standard MLR with Ridge Regression and experience based pre-
dictions for product lead time of a variety of semiconductors. The prediction is based on product-specific
values, model parameters and measured manufacturing times. Both standard MLR and the Ridge Regression
approach outperformed the experience based predictions significantly.

Common prediction models are compared by Lingitz et al. [38] for predicting product lead time in a semi-
conductor manufacturing process. The Random Forest approach, which is an adaption of the TBR approach
turned out to be slightly more accurate than the other approaches in this research.

Lastly, as stated in section 2.2.2, Hu et al. [26] and Mohsenijam and Lu [40] use MLR for prediction of re-
quired man-hours of products based on data from BIM and the manufacturing process.

The conducted literature research on prediction models for making manufacturing process related pre-
dictions is summarized in table 3.1.

• MLR: Multiple Linear Regression

• TBR: Tree Based Regression

• SVR: Support Vector Regression

• NN: Neural Network
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Table 3.1: Overview of implemented prediction models in reviewed literature

Reference Year Industry MLR TBR SVR NN
Tirkel [54] 2013 Semiconductor X
Hu et al. [26] 2014 Prefabrication X
Pfeiffer et al. [45] 2015 X X
Hur et al. [27] 2015 Shipbuilding X X
Yu and Cai [58] 2015 Aircraft X
Mohsenijam and Lu [40] 2016 Prefabrication X
Arash et al. [4] 2017 Construction X
Lingitz et al. [38] 2018 Semiconductor X X X X
Nagahara and Nonaka [43] 2018 Semiconductor X
Gyulai et al. [23] 2018 Optical X X X

Table 3.1, shows that MLR, TBR, SVR and NN are common choices for predicting manufacturing times.
In the next section of this chapter, the underlying theory behind these prediction models will be discussed in
more detail. Due to time limitations, this research is limited to the basic prediction models and will not take
into account all varieties of the discussed models.

It should be noted that the covered literature focuses on predicting product lead times, rather than man-
ufacturing times per manufacturing step. The difference between the product lead time and the manufactur-
ing time per manufacturing step is that the product lead time is defined as "the time required once the product
began its manufacture until the time it is completely processed" [9]. The manufacturing time per manufactur-
ing step is the time it takes for the product to complete one step of the entire manufacturing process. There-
fore, the latter is especially useful for the formulation of manufacturing schedules. To the knowledge of the
author, literature focusing on the prediction of manufacturing time per manufacturing step is limited to the
research by Hu et al. [26].

Relevant input variables
Based on the covered literature, relevant input variables can be identified. Overall, a distinction can be made
between product related variables, process related variables and external influence variables.

Across the covered literature, studies focused on product related (phyiscal) variables for the prediction
of manufacturing time, while process related variables (occasionally in combination with external variables)
are used for the prediction of product lead times.

For the prediction of product lead time, manufacturing times of the various manufacturing steps are ap-
proximated using the mean manufacturing time for a category of products. This approach, however, is limited
to manufacturing processes with small variations between different products.

Figure 3.2 shows the identified categories of input variables. Each category contains examples of related
input variables. Note that the possible variables are depending on the characteristics of the manufacturing
process. Therefore, the possible variables are not limited to the examples shown in this Figure.

Figure 3.2: Identified categories of input variables, each category contains examples of related input variables
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As discussed in chapter 2, available data for this case study is limited to physical variables. Based on prior
research by Hu et al. [26], it is assumed that the absence of both process and external variables will have
limited influence on the accuracy of predicting manufacturing times.

3.3. Comparison of prediction models
In this section, the prediction models pointed out in Section 3.2 will be discussed in more detail. It should
be noted, that due to time constraints, this research is limited to the standard prediction models, rather than
reviewing all adaptions proposed throughout literature. Afterwards, the different prediction models are com-
pared using the requirements derived in section 2.4.3.

• Linear and nonlinear relationships: the correlation analysis between physical properties and manu-
facturing times remained ambiguous whether the relationship between these variables is linear or non-
linear. Additionally, considering the desired generality of the manufacturing time prediction model, the
proposed prediction model should be able to yield accurate predictions for both linear and nonlinear
relationships.

• Uncertainty in the data: due to high human involvement, significant uncertainty in the data is present.
The prediction model should be robust against these fluctuations.

• Quantitative and categorical input variables: two types of physical variables are identified, quantita-
tive variables (length, weight, etc.) and the categorical variable; profile type. Therefore the prediction
model should be able to cope with both quantitative and categorical input variables.

• Continuous output: the output variable (manufacturing time) is a continuous variable. In order for
the prediction model to be able to predict manufacturing times of new products, the output of the
prediction model should be continuous.

Furthermore, a prerequisite non related to the data characteristics should be taken into account.

• Interpretability: since the construction industry is known to be conservative, the prediction model
should be easily interpretable in order to increase the rate of acceptance in the industry.

3.3.1. Linear regression
Linear regression analysis is a technique used for making predictive models based on collected quantitative
data. It is a relatively easy and flexible technique and is therefore widely accepted for making predictions [4].
When a linear relation in a dataset (x1, y1), (x2, y2),...,(xn , yn) is expected, a (simple) linear regression model
can be used to make predictions for unseen data [15]. Linear regression aims at obtaining a linear function
that represents the data accurately. The basic formula for linear regression is shown in equation 3.1. An
example of a (visualized) linear regression model is provided in Figure 3.3. [15]

y =α+βx (3.1)

Where x is the predicting variable and y the response variable. α is called the intercept, and is the constant
value of y if x equals zero. β represents the slope of the linear function.
In order to identify α and β, the method of Ordinary Least Squares (OLS) is used. This method aims at mini-
mizing the total squared error between the predicted values and the measurements. The related function is
provided in Equation 3.2 [15].

S(α,β) = argmin
n∑

i=1
(yi −α−βxi )2 (3.2)

In order to build a valid MLR prediction model using OLS, several assumptions should be met: [4].

• There is no multicollinearity between input variables

• The variance of errors is constant

• There is no autocorrelation between errors

• The errors are normally distributed
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Figure 3.3: Example of (simple) linear regression [24]

While simple linear regression is limited to one input variable, multiple linear regression (MLR) takes into
account more than one input variables. In MLR each predicting variable has its own slope coefficient β j [20].
Implementing multiple input variables can result in more accurate prediction models. The standard formula
for MLR is provided in equation 3.3, where Y is the predicted value, α is the intercept of the slope, β1, ...βk are
the respective slopes of the input variables x1, ..., xk .

Y =α+β1x1 +β2x2 + ...+βk xk +ε (3.3)

Analogue to simple linear regression, the parameters for the input variables can be determined using the
least squares method (Equation 3.2). However, if multicollinearity exists between input variables, the least
squares method becomes unstable [16]. Additionally, the least squares method often results in low bias, but
high variance in the estimates [53]. An alternative exists in the Ridge regression approach, in which a little bias
is sacrificed in order to reduce variance, which results in equation 3.4. Ridge regression uses a regularization
parameter λ in combination with the variable slopes β j , in order to minimize the slopes of the respective
variables. The formula for Ridge regression is shown in equation 3.1. [16]

(α̂, β̂) = argmin

{
N∑

i=1

(
yi −α−∑

j
β j xi j

)2

+λ
∑

j
β2

j

}
(3.4)

The main challenge of using MLR for creating a prediction model, is selecting a proper set of input vari-
ables [40]. Implementing more input variables makes it possible to explain more of the variance in the output
variable. On the other hand, minimizing the number of input variables reduces the chance of collinearity,
over-fitting and transferring noise into the model [19].

The LASSO approach is based on the least squares method as shown in equation 3.2 and the Ridge Regres-
sion approach shown in equation 3.4. In contrast to Ridge Regression, LASSO could result in variable slopes
β j equal to zero, which implicates that the input variable is removed from the model. The resulting equation
is shown in equation 3.5 [53].

(α̂, β̂) = argmin

{
N∑

i=1

(
yi −α−∑

j
β j xi j

)2

+λ
∑

j

∣∣β j
∣∣} (3.5)
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With

t > 0,
p∑

j=0

∣∣β j
∣∣< t (3.6)

If a group of input variables is used, which have high pairwise correlations, LASSO selects one variable,
which is not necessarily the best input variable. In a situation where the number of observations is signifi-
cantly higher than the number of input variables, and high correlation exists between these variables, a Ridge
model usually outperforms the LASSO approach. [59]

Zou and Hastie [59] therefore proposed the ElasticNET, in which Ridge and LASSO are combined, to create
a model that performs well both with and without high correlation between inputs. The general equation of
ElasticNET is provided in equation 3.7.

β̂= argmin

{
N∑

i=1

(
yi −α−∑

j
β j xi j

)2

+λ2
∑

j

∣∣β j
∣∣+λ1

∑
j
β2

j

}
(3.7)

Models based on MLR provide a powerful and intuitive method to predict quantitative values. It is, how-
ever, limited to variables that have linear relationships and is inadequate to cope with categorical input vari-
ables.

3.3.2. Tree Based Regression
A different frequently used model to predict numerical values is Tree Based Regression (TBR). The construc-
tion of a regression tree is analogue to reasoning to a decision. Based on variable X1, a (sub)decision is made.
This process is repeated for all variables X1, X2, ...Xi , until the decision space is divided into a certain number
of non-overlapping regions R1,R2, ...,R J . For every observation that falls in region R J , the prediction is equal
to the mean of the training observations corresponding to region R J [29]. A visualization of a regression tree
is provided in Figure 3.4.

Figure 3.4: Example of a regression tree [29]

Finding decision, or split-criteria, that results in optimal predictions is proven to be NP-complete [28].
Therefore heuristics are commonly used to find near-optimal solutions for trees of growing size. Like in OLS
(equation 3.2), the aim is to minimise the prediction error of the model. For a regression tree this leads to
equation 3.8. [29]

J∑
j=1

∑
i∈R j

(yi − ŷR j )2 (3.8)

With yR j being the mean response of training samples yi within R j . With a growing number of vari-
ables, the number of possible regions R J increases significantly, resulting in infeasible computational times
for determining the optimal set of regions. Therefore, a greedy approach is commonly used, in which the
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decision space is divided into two regions R1, R2, using a splitting value resulting in the greatest reduction
in RSS (Equation 3.9). This process is repeated, dividing the previously identified regions, until a stopping
criterion is met. Equation 3.9 shows the optimization used during the greedy search. The combination of
input variable (j), with split value (s) resulting in the smallest prediction error between the real value yi and
the predicted value ŷR1 is used to determine the next split. [29].∑

i :xi∈R1( j ,s)
(yi − ŷR1 )2 +∑

i :xi∈R2( j ,s)

(yi − ŷR2 )2 (3.9)

Where

R1( j , s) = {X |X j < s} and R2( j , s) = {X |X j ≥ s} (3.10)

Using a TBR model for predicting a value based on its variables X1, X2, ..., X3 is a convenient approach,
since all decisions are insightful. Furthermore, TBR models allow for the implementation of discrete variables
in the decision process. A major drawback, however, is that if a value results in a certain regio R, the resulting
prediction is equal to the mean of the samples of region R. These discrete predictions lends itself less for the
prediction of new data. Additionally, TBR models tend to overfit to the training data, leading to inaccurate
predictions for new data.[29]

3.3.3. Linear Model Tree
As stated in section 3.3.2, Tree Based Regression (TBR) can be used to divide the dataset in smaller data sets.
TBR has values at the leaves of the tree, equal to the average of the training data reaching the leaf. Quinlan
[46] aims at combining the advantages of both MLR and TBR by proposing a Linear Model Tree (LMT). Like
TBR, a tree based model is constructed based on input variables, reducing the variance of the sample set. The
main difference is that rather than a value at the leaf, the leaves contain a MLR model. Consequently, predic-
tions become a continuous, rather than discrete function, enhancing the prediction model to yield accurate
predictions for new data [46]. A visualization of a LMT prediction model is provided in Figure 3.5.

Figure 3.5: Schematic of a Linear Model Tree for a data set with one input variable[57]

The main advantages of a LMT prediction model, is that categorical input variables can be implemented
in the model and that nonlinear trends can be divided into linear trends. Therefore, this approach is highly
flexible; it should only split the data if nonlinear trends arise and can thus be used in both linear and non-
linear situations. Like TBR models, LMT models are troubled by overfitting problems. In addition, the MLR
prediction models continue to be influenced by uncertainty in the data.
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3.3.4. Support Vector Regression
Support Vector Regression (SVR) is a regression approach introduced by Drucker et al. [17]. Instead of aiming
to find a line through the data points, like MLR, SVR attempts to find the narrowest tube around a function
f(x). This tube has at most ε deviation from this function f(x). Furthermore, the sum of the distance of data
points (ξ) deviating from this tube is minimized. This could be written as the optimization problem, de-
scribed in equation 3.11 and equation 3.12. Here w are the slopes of the variables, and C is a regularization
parameter. With increasing value C, the penalty on points outside the tube increases. The visualization of a
model built using SVR is provided in Figure 3.6. [5]

argmin

{
1

2
||w ||2 +C

l∑
i=1

(
ξi +ξ∗i

)}
(3.11)

Subject to

yi − {w, xi }−b ≤ ε+ξi

{w, xi }+b − yi ≤ ε+ξi

ξi ,ξ∗i ≥ 0

(3.12)

Figure 3.6: Visualization of Support Vector Regression [5]

Since each data point inside the tube does not influence the slope of the prediction model, SVR is less
influenced by noise than MLR. SVR can be applied in both linear and nonlinear cases. For nonlinear cases,
a trick is used where the data is mapped from a higher dimensional, or kernel space, to a linear space. This
trick, however, requires significant trial and error based parameter optimization. In addition, the kernel space
mapping trick comes with a reduction in interpretability of the SVR prediction model [51]. Similar to MLR
prediction models, (basic) SVR prediction models are inadequate to cope with categorical input variables
[17].

3.3.5. Neural Networks
Like the human brain, standard Neural Networks (NN) exists of many connected neurons. Neurons get acti-
vated upon an input, producing a sequence of activated neurons. Each neuron is weighted during the training
process. Upon an input signal, the combined weights of the sequence of activated neurons provide the output
the model. [50]

The training of a NN proceeds in two phases; the forward phase and the backward phase. In the forward
phase, an input signal is transmitted through the network, going from layer to layer, until the output layer
is reached. The output of the forward phase is compared by the desired response, and the resulting error is
sent through the network once again, but this time the procedure goes from back to forth. The weights of the
neurons are adjusted in this backward phase [25]. This process is shown in Figure 3.8.

Even though NNs tend to outperform other regression models in terms of prediction accuracy, the inter-
pretability of these models is significantly more challenging than previously discussed models [25]. Addition-
ally, NNs are relatively sensitive to uncertainty in the data [32].



3.3. Comparison of prediction models 27

Figure 3.7: Visualization of a standard Neural Network [25]

Figure 3.8: Visualization of the training process of a Neural Network [25]

3.3.6. Overview
In this section, identified prediction models are discussed in more detail. Based on the prerequisites derived
in section 2.4.3, the different prediction models can be compared.

The MLR model would not provide a general solution for predicting manufacturing times using BIM,
since it is only applicable in cases where the relation between physical properties and manufacturing times
is linear. Moreover, it is impossible to implement categorical input variables in a MLR based model. Sup-
port Vector Regression (SVR) models have the same drawbacks as MLR, with the exception that SVR is less
influenced by uncertainty in the data.

Tree Based Regression TBR overcomes the problem of nonlinear relationships in the data and is able to
take categorical variables into account. TBR, however, results in discrete, rather than continuous prediction
values.

The Linear Model Tree (LMT) approach combines advantages of both MLR and TBR models by construct-
ing a regression tree with linear models in the nodes of the tree. Since LMT models can be used both in case of
linear relationships (the root of the tree is a leaf) and nonlinear relationships (relationship is broken down to
multiple linear relationships), LMT models have high general capabilities for predicting manufacturing times.
Additionally, LMT models have high interpretability (especially compared with Neural Networks (NN)), since
each splitting criterium can be visualized in the tree structure.
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As discussed in section 3.3.5, Neural Networks (NN) tend to outperform more traditional methods like
MLR and SVR, but comes with significantly lower interpretability.

Table 3.2 shows a comparison of the evaluated prediction models, based on the prerequisites for the pre-
diction models to be used in this study. Considering generality, accuracy and interpretability of the evaluated
prediction models, the LMT prediction model seems to be the most promising solution for this research.
Therefore, the possibilities for implementing LMT models in order to predict manufacturing times using BIM
will be further investigated.

The identified drawback of the LMT prediction model is that the prediction model is influenced by uncer-
tainty in the data. As shown in section 3.3.1, the MLR prediction models in the nodes of the LMT model are
influenced by noise in the data. An opportunity for improvement can be identified by replacing the MLR pre-
diction models by SVR prediction models. SVR prediction models tend to outperform MLR models in case of
uncertainty in the data. It is therefore expected that the the proposed adaptation to the LMT yields accurate
predictions in datasets with significant uncertainty in the data as well. Since the proposed prediction model
is a Model Tree with Support Vector Regression models in its nodes, the proposed model will be named Sup-
port Vector Regression Model Tree (SVRMT). For convenience, the SVRMT prediction model is added to table
3.2.

Table 3.2: Comparison of different prediction models based on set prerequisites

Output function Input variables Accurate for Robust against uncertainty Interpretability
MLR Continuous Quantitative Linear No Good
SVR Continuous Quantitative Linear Yes Good
TBR Discrete Quantitative / Categorical Linear / Nonlinear No Good
NN Continuous Quantitative / Categorical Linear / Nonlinear No Bad
LMT Continuous Quantitative / Categorical Linear / Nonlinear No Good
SVRMT Continuous Quantitative / Categorical Linear / Nonlinear Yes Good

3.4. Conclusion
In this chapter, the state-of-the-art of predicting manufacturing times is discussed in order to answer the sub-
question: "Which manufacturing time prediction methods are available in literature?". Through a literature
review, several studies on predicting manufacturing times have been identified. From this literature review,
different prediction models are identified; Multiple Linear Regression (MLR), Tree Based Regression (TBR),
Linear Model Tree (LMT), Support Vector Regression (SVR) and Neural Networks (NN). These studies, how-
ever, include only limited research focusing on the construction industry. In addition, these studies focus on
predicting product lead time, rather than manufacturing time per manufacturing step.

After the various prediction models have been identified and explained in detail, the different prediction
models are compared using the prerequisites derived in section 2.4.3. Based on this comparison, the Linear
Model Tree (LMT) turned out to be the most promising prediction model for the prediction of manufacturing
times per manufacturing step. An adaptation to this prediction model is proposed. In this adaptation, the
MLR prediction models in the nodes of the Model Tree are replaced by SVR prediction models. It is expected
that this adaptation will make the Support Vector Regression Model Tree (SVRMT) more robust to uncertainty
in the data.
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Development of the prediction model

4.1. Introduction
In section 3.3 an overview is provided of various possible models suitable for predicting manufacturing times
using data from BIM. After these models are compared based on prerequisites derived in section 2.4.3, a com-
bination of a Linear Model Tree (LMT) with Support Vector Regression (SVR) prediction models in the nodes
of the tree is pointed out to be the (theoretically) most promising prediction model.

In this chapter, the development of the newly proposed Support Vector Regression Model Tree (SVRMT)
will be discussed in detail. The construction of the SVRMT prediction model is based mostly on the construc-
tion of a LMT prediction model.

This chapter aims at answering the sub question: "Which conceptual model can best be used to predict
manufacturing times?".

Figure 4.1: Fifth step of the used methodology for this research

29
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4.2. Construction of a SVRMT
Even though the first mention of a model tree is provided by Quinlan [46], details of the prediction model were
not given until Wang and Witten [56] extended the research on LMT models. Three steps can be identified in
the construction process of a model tree; the splitting of nodes, creating a MLR model for each node and the
pruning of the tree. The pseudo-code for the general construction of a model tree is provided in Algorithm 1.

Algorithm 1: Construction Model Tree

1 Construct Tree ;
2 root = node ;
3 Split(root) ;
4 foreach node do
5 model(node)

6 foreach interior node do
7 prune(node)

8 return Model Tree

4.2.1. Splitting an SVRMT
Since the splitting of an SVRMT prediction model is analogue to the splitting of a LMT prediction model, this
section elaborates on the splitting of a LMT as described by Quinlan [46] and Wang and Witten [56]. As stated
in section 3.3.2, finding an optimal regression tree is NP-complete. In order to find near-optimal decision
trees, heuristics are used during the construction of a regression tree. The heuristic used for constructing
a LMT varies slightly from the construction of a Regression Tree. During the construction of a LMT, the
standard deviation of the target values Y is calculated. For each variable, the set is sorted. All possible split
values of these variables are evaluated by calculating the standard deviations of the target values Y for both the
left and right split set. The reduction in standard deviation by splitting the node is derived using equation 4.1.
Using a greedy approach, the split leading to the biggest reduction in variance is chosen. The pseudo-code
for splitting nodes to construct a LMT is shown in Algorithm 2. [46]

SDR = sd(T )−∑
i

( |Ti |
|T | ∗ sd(Ti )

)
(4.1)

With:

• sd(): the standard deviation of the set

• T: the total inherited subset

• Ti : the subset derived from the splitting value

This process is repeated until the node reaches a certain size (at least the number of input variables), or until
splitting the node does not result in a reduction of standard deviation larger than 5% of the standard deviation
of the parental node . When this criteria is met, the node is called a leaf. [56]

The heuristic of the original LMT splitting procedure considers the reduction of standard deviation in tar-
get values (Y) that results from splitting the node. As stated by Karalič [31], this heuristic is not an appropriate
measure. Perfectly linear data can have a large standard deviation and would thus be split according to the
heuristic used in the original approach, even though the data can perfectly be described with a linear model.

Karalič [31] therefore proposes a heuristic that for each split a simple linear regression model using the
split variable is built for both the left and right child. The residuals are derived using the simple linear regres-
sion model and the reduction in standard deviation of the residuals is maximized.

This approach can be extended by building a MLR model using multiple input variables after each split.
Using MLR models instead of simple linear regression models is especially useful in case a split based on
a categorical input variable is considered. As stated in section 3.3.1 simple linear regression is unable to
incorporate categorical input variables. Therefore, a categorical input variable is less likely to be chosen over
a quantitative input variable as split variable. The major drawback of using MLR over simple linear regression
is that the computational complexity grows significantly with the number of input variables [31].
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Algorithm 2: Split Model Tree

Data: Node
Result: Split Node

1 foreach predictor variable do
2 foreach possible split value do
3 Split data ;
4 if size(left data) > MinSize AND size(right data > MinSize) then
5 Calculate SDR ;

6 if Improvement found then
7 node.attribute = predictor variable leading to maximum SDR ;
8 node.splitvalue = value leading to maximum SDR ;
9 node.type = interior;

10 create left child ;
11 create right child ;
12 split(left child);
13 split(right child);
14 else
15 node.type = leaf

An example of a LMT prediction model is provided in Figure 4.2. In this example, a quadratic relationship
between input (X) and output (Y) is split in multiple linear segments.

Figure 4.2: Schematic of a Linear Model Tree for a data set with one input variable

4.2.2. Node model
In the original LMT prediction model, a linear model is derived for each node. This could be either a simple
linear regression model, or an MLR. The approaches described in section 3.3.1 can be used for this step.

As discussed in section 3.3.4, SVR based models tend to outperform MLR models when uncertainty in the
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dataset is present. The data analysis in section 2.4 shows that uncertainty is present in the dataset of this case
study. Since this uncertainty is human related, it is expected that the presence of uncertainty will occur in all
construction industry related manufacturing processes. Therefore, in this study, Support Vector Regression
(SVR) models are suggested for the nodes. [5]

For the implementation of a SVR prediction model in each node of the tree, equation 4.2 is used.

argmin

{
1

2
||w ||2 +C

l∑
i=1

(
ξi +ξ∗i

)}
(4.2)

Subject to

yi − {w, xi }−b ≤ ε+ξi

{w, xi }+b − yi ≤ ε+ξi

ξi ,ξ∗i ≥ 0

(4.3)

In order to optimize a SVR prediction model, two parameters should be tuned. The value "C", which de-
termines the penalty for points not in the "tube" of the SVR prediction model. Additionally, the parameter ε
is used to determine the width of the "tube" in which points are not penalized in the optimization function.
Commonly, parameter tuning is performed using grid search. During grid search, several possible combina-
tions for C and ε are tested by splitting the data in a train and test set [12].

The grid search approach is performed through k-fold validation. K-fold validation splits the training data
in a training and validation fold in order to prevent overfitting to the training data. The size of both training
and validation fold is based on the value of k; the training fold covers a k−1

k portion of the original training

data, while the validation covers 1
k of the training data. After this split, the prediction model is trained using

the training fold and tested for the validation fold. This is repeated k times. Resulting from this strategy, each
data point is tested once, eliminating ’lucky guesses’. Upon completing all k tests, the results are averaged.
This k-fold validation is repeated for each possible combination of the grid search approach. A visualization
of 5-fold validation is provided in Figure 4.3. [34]

The combination of C and ε resulting in most accurate predictions is chosen. This approach is straight
forward, but a consideration between finding the best near optimal combination and computational costs
should be made. [12]

Figure 4.3: Visualization of 5-fold cross validation

Additionally, SVR prediction models have no feature selection methods embedded, therefore an alternate
approach should be taken to select an appropriate subset of input variables. A backward elimination feature
selection strategy will be used. This way input variables are dropped greedily, as long as they are not expected
to improve the models accuracy. This strategy is insightful, computational advantageous and robust against
overfitting [22].
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Figure 4.4 shows a constructed SVRMT prediction model. Notable are the differences in the nodes of the
model tree. Rather than a MLR model (a line through the points) a SVR model (smallest tube around the
flattest line) is placed in the nodes of the model tree.

Figure 4.4: Schematic of a Support Vector Regression Model Tree for a data set with one input variable.

4.2.3. Pruning a model tree
Like TBR, chance of overfitting arises for a LMT. In order to prevent this overfitting, Quinlan [46] proposes
a pruning method. After a prediction model is in place for each node, the tree is pruned. From the leaves
to the root, all interior nodes are tested. In this test, the mean of the absolute residuals for the data points
reaching the node is derived and multiplied by the factor of equation 4.4. This process is conducted for both
child nodes as well. If the error term of the parental node is smaller than the combined expected error of the
children nodes, the parental node is ’pruned’ and becomes a leaf. The pseudo-code for this process is shown
in Algorithm 3

Equation 4.4 is used for the computation of the expected error due to overfitting. With n the size of the
training set and v the number of input variables, y the real value and ŷ the predicted value.

Er r or = n + v

n − v
∗ 1

n

n∑
i=1

|yi − ŷi | (4.4)

Algorithm 3: Prune

Data: Interior node
1 calculate mean(residuals) of node;
2 use equation 4.4 to determine factor;
3 error = factor*mean(residuals);
4 foreach child node do
5 calculate mean(residuals of node ;
6 use equation 4.4 to determine factor;
7 error = factor*mean(residuals);

8 if error(node) <
∑

i

( |Ti |
|T | ∗er r ori

)
then

9 node.type = leaf;
10 else

11 node.type = interior;
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4.3. Predicting using a SVRMT
In order to predict a new value using the SVRMT prediction model, the SVRMT is descended using the deci-
sion criteria of the SVRMT until the matching leaf is reached. After the corresponding leaf has been found,
the SVR prediction model at the leaf is used to compute the predicted value. The prediction is smoothed by
ascending the tree from leaf to root. At each node along the path to the root, the predicted value is smoothed
using equation 4.5 to compensate for possible sharp discontinuities between adjacent leaves [46]. Where
n equals the number of training data points reaching the child node, p is the predicted value passed from
the child node, q is the predicted value using the linear model from the current node and k is a smoothing
parameter (Quinlan [46] suggests a default value 15 for k).

p ′ = np +kq

n +k
(4.5)

Algorithm 4: Smoothing Model Tree

Data: Leaf
Result: Smoothed prediction

1 while node is not root do
2 if node is leaf then
3 p = node.predict ;
4 node = node.parent ;
5 else
6 n = size(node.child) ;
7 q = node.predict;
8 calculate p using equation 4.5;
9 node = node.parent;

10 n = size(node.child) ;
11 q = node.predict;
12 calculate p using equation 4.5;
13 return p

4.4. Conclusion
Upon the comparison of different available prediction models in section 3.3.6, this chapter provides a de-
tailed description of the (theoretical) development of the most promising prediction model (Support Vector
Regression Model Tree (SVRMT) in order to answer the sub-question: "Which conceptual model can best be
used to predict manufacturing times?".

Basically, the construction of an SVRMT consists of a splitting, modelling and pruning phase. In order
to compensate for sharp discontinuities between adjacent leaves, the predictions are smoothed from leaf to
root. In order to be more robust against uncertainty in the data, it is proposed to use Support Vector Regres-
sion (SVR) models in the nodes of a Linear Model Tree, instead of Multiple Linear Regression (MLR) models.
For the tuning of these SVR prediction models, grid-search in combination with 5-fold validation is used to
find the (near) optimal combination of parameters.
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Model Validation

5.1. Introduction
After the development of the proposed Support Vector Regression Model Tree (SVRMT) has been discussed in
detail (chapter 4), the proposed prediction model is tested. Through a series of experiments, the sub-question
"How can the conceptual prediction model be validated?" is aimed to be answered in this chapter.

The validation of the conceptual prediction model is divided in two phases. In the first phase, the assump-
tions leading to the proposal of the SVRMT prediction model are verified in hypothetical situations. During
the second phase, the proposed SVRMT prediction model is validated in real case scenarios. For these real
case scenarios, data from Oostingh Staalbouw is used.

Prior to conducting the validation experiments, performance indicators for prediction models are iden-
tified. Using these performance indicators, the (different) prediction model(s) can be evaluated in terms of
prediction accuracy. This leads to answering the sub-question: "How can the performance of prediction mod-
els be evaluated and compared?"

Figure 5.1: Sixth step of the used methodology for this research

In the experimental phase of this research, the performance of the SVRMT prediction model is compared
with a Multiple Linear Regression (MLR), Support Vector Regression (SVR), Tree Based Regression (TBR) and
standard Linear Model Tree (LMT) prediction model. Unless stated otherwise, for each experiment discussed
in this chapter, the available data is split in a training and test set using a 70/30 ratio and is repeated tenfold.

For the implementation of the theoretical prediction model, Python 3.7 is used. Specifically, the Anaconda
distribution [3] is used due to the availability of data analysis libraries. The Python code used for this research
is provided in Appendix D.

35
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5.2. Evaluation of prediction models
In order to evaluate the performance of prediction models in terms of prediction accuracy, several common
methods are identified. These methods can be divided into metrical (Performance Indicators) and visual
(Indicator Plots) methods. This section highlights commonly used methods for evaluating and comparing
different prediction models.

5.2.1. Performance Indicators
Coefficient of determination
One numerical way to express the fitness of a relationship between predicted value and the real value is the
implementation of the coefficient of determination (R2, Equation 5.1). R2 is a measure of the variance of Y
explained by the model, where R2 = 0 implicates that none of the variance is explained by the model, and
R2 = 1 suggests that all variance can be explained by the model. [48]

R2 = 1−
∑

(Ŷ −Y )2∑
(Y −Y )2

(5.1)

Where

• Y : actual value of Y

• Ŷ : predicted value of Y

• Y : average value of Y

A model with R2 close to 1 therefore suggests that the prediction model performs well in terms of predic-
tion accuracy. However, a model with R2 close to 1 can also indicate that the model is overfitted; the model
is adjusted to noise in the training data and provides poor predictions on new data. A visualized example of
overfitting is provide in Figure 5.2.

Figure 5.2: Visual example of an overfitted prediction model [33]

RMSE
Another widely adapted performance indicator for determining the accuracy of a prediction is the Root Mean
Square Error (RMSE), in which the average prediction error is considered (Equation 5.2). RMSE can be used
to evaluate the quality of different prediction models, since the objective is to minimize the prediction error.
The statistic, however, is not effective for evaluating models across different datasets. Large values y, tend
to have larger absolute errors leading to increased RMSE. The formula for deriving the RMSE is provided in
equation 5.2, where yi is the actual value and ŷi is the predicted value. [23]
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RMSE =
√∑n

i=1(yi − ŷi )2

n
(5.2)

Since this Performance Indicator has limited usage to compare results between different data sets, the
RMSE Performance Indicator will not be used in this research.

MAPE
Where the main shortcoming of the RMSE perfomance indicator is that it is ineffective to compare the per-
formance of a prediction model across different data sets, the Mean Absolute Percentage Error (MAPE) offers
a solution to this problem. The MAPE takes the absolute error in order to tackle the problem of positive and
negative errors cancelling each other out. Since the performance indicator uses the relative absolute error,
this performance indicator shows the relative accuracy of the prediction model. Therefore, this performance
indicator is suitable to compare the accuracy of a prediction model across multiple datasets. Equation 5.3 is
used to compute the MAPE performance indicator. [42]

M APE = 1

n

n∑
i=1

|(yi − ŷi )/ŷi | (5.3)

The range of MAPE is [0, +∞], with 0 meaning the predicted values are equal to the real values. A MAPE
of 1 implying that the absolute error is equal to the real value (100% absolute relative error) and values greater
than 1 implying an absolute error greater than the real value.

Additionally, the Median of the Absolute Percentage Error (MeAPE) and Standard Deviation of the Abso-
lute Percentage Error (Std) can be used to gain further insight in the distribution of the absolute percentage
errors.

5.2.2. Indicator plots
Alongside performance indicators, the performance of prediction models can be evaluated visually. Real out-
put variables (Y) can be plotted against the predicted output variables (Ŷ ). If the plotted points are close to a
line under 45 degrees, this indicates that the prediction model is close to reality. These plots are called inverse
fitted value plots [48]. An example of an inverse fitted value plot is shown in Figure 5.3.

Figure 5.3: Example of an inverse fitted value plot. As the scatter points are close to a line under 45 degrees, this plot
implies that the prediction model is close to reality [48].

The performance of different prediction models can be visually compared using boxplots. By generating
a boxplot of the (absolute relative) residuals, the distribution of these residuals is shown visually. The mean,
median and standard deviation are shown in these boxplots. Plotting boxplots of different prediction models
next to each other provides (visual) insight in the relative performance of the different prediction models.
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An example of a boxplot of absolute relative residuals is provided in Figure 5.4. In this example, interesting
parts of the boxplot are highlighted.

• Median: The middle value of the dataset.

• Q1: This represents the middle number between the smallest number and the median of the dataset.

• Mean: The mean value of the dataset (MAPE), represented by the diamond shape in the Figure.

• Q3: This represents the middle number between the median and largest number of the dataset.

• IQR: The difference between Q1 and Q3.

• Q1-1.5*IQR (Minimum): Represents the lower whisker of the boxplot, points lower than this minimum
are considered outliers.

• Q3+1.5*IQR (Maximum): Represents the upper whisker of the boxplot, points higher than this mini-
mum are considered outliers.

Figure 5.4: Example of a boxplot of absolute relative residuals used in the second experimental phase of this research

5.3. Phase I: Verification
Based on the reasoning of chapter 4, the proposed Support Vector Regression Model Tree (SVRMT) should
be able to deal with both linear and nonlinear relationships. In addition, the proposed prediction model
should be robust against influence from uncertainty in the data. In order to verify these assumptions, several
hypothetical relationships are evaluated:

1. Linear: This relationship is tested in order to verify the assumption that the proposed prediction model
has comparable accuracy with linear prediction models.

2. Quadratic: This relationship is regarded to check the assumption that the proposed model is able to
yield accurate predictions for nonlinear relationships.

3. Step: In order to verify the assumption that both quantitative and categorical predictor variables (X)
can be taken into account by the proposed model, a step relationship is regarded.
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The robustness against uncertainty in the data is verified by adding heteroskedastic noise to the relation-
ships. The dependent variable (Y) of the relationship is multiplied by a normal distribution. For this normal
distribution µ is 0 and σ = 0.25 are used, which is in line with the standard deviation of manufacturing times
for identical elements manufactured at Oostingh Staalbouw, discussed in chapter 2.4 (table 2.5). In addition,
random outliers are added to the noise.

(a) (b) (c)

Figure 5.5: Plots of relationships used for verification. Respectively a) linear b) quadratic and c) the step relationship

For the MAPE, MeAPE and Std, a small alteration is made compared to the definition provided in section
5.2.1. In order to evaluate the ability of the prediction models to reconstruct the relationship without added
noise, the predicted relationship is compared with the real relationship, rather than the added noise. In the
remainder of this section, notable results are highlighted. For a complete overview of results of the verification
phase, the reader is directed to Appendix B.

5.3.1. Linear relationship
The first verification test is based on a linear relationship between the input (X) and output (Y) variable. This
experiment is used to verify the assumption that the proposed SVRMT prediction model has comparable per-
formance to linear models like MLR and SVR.

In table 5.1 the results of the verification experiment for the linear relationship are provided. The SVR,
LMT and SVRMT model outperform the MLR model slightly in terms of prediction accuracy. This strengthens
the expectation that the MLR is influenced more by uncertainty in the data than the SVR prediction model.
As expected, the SVR and SVRMT model yield equal results, which indicates that the SVRMT consists solely
of a root with a SVR model in it.

Table 5.1: Results of the evaluated prediction models for a linear relationship

MAPE MeAPE Std R2

MLR 0.06 0.03 0.02 0.84
SVR 0 0 0.02 0.99
TBR 0.10 0.05 0.35 0.83
LMT 0.04 0.02 0.07 0.88
SVRMT 0 0 0.02 0.99

The reconstruction of the linear relationship by the SVRMT prediction model is shown in Figure 5.6a. In
order to compare the reconstructed relationship with the real relationship, Figure 5.6b shows the predicted
value versus the real value (relationship without noise added). As the plotted points lie on a line under 45 de-
grees with the horizontal axis, this Figure indicates that the SVRMT prediction model is capable of accurately
reconstructing the linear relationship from the noisy data.

From table 5.1 the MAPE of the LMT prediction model suggests that this model is capable of reconstruct-
ing the linear relationship from the noisy data as well. Figure 5.7a shows that the LMT model is broken down
into several linear segments, with varying slopes. This implies that the LMT model is influenced by the noise
in the data and is getting trapped in local minima.

The difference between LMT and SVRMT models can be explained by the fact that the splitting procedure
of both the LMT and SVRMT model is done by evaluating a MLR model for both the left and right side of a
split. Since MLR is known to be easily influenced by uncertainty in the data (section 3.3.1) both the LMT and
SVRMT will overfit to the noise in the data. The SVRMT, however, creates SVR models in its leaves, which are
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(a) (b)

Figure 5.6: a) Reconstructed linear relationship by the SVRMT prediction model b)inverse fitted value plot linear rela-
tionship SVRMT prediction model

known to be less influenced by uncertainty in the data than MLR. Therefore, in case of a linear relationship
with significant uncertainty in the data, the SVRMT model will be pruned significantly more than the LMT
prediction model. As a result, the SVRMT model is less prone to overfitting to noise than the LMT model.

(a) (b)

Figure 5.7: a) Reconstructed linear relationship by the LMT prediction model b)inverse fitted value plot linear relation-
ship LMT prediction model

5.3.2. Nonlinear relationship

After the assumption that the SVRMT prediction model yields accurate results on a linear relationship is
verified, nonlinear relationships are tested. In order to verify this assumption, two different nonlinear rela-
tionships are tested; a quadratic and a step relationship.

Quadratic

For the purpose of verifying the assumption that the proposed SVRMT model is able to predict nonlinear
relationships, an experiment using a quadratic relationship is conducted. Analogue to the verification exper-
iment for linear relationships, heteroskedastic noise is added to the relationship.

The Performance Indicators, shown in Table 5.2, show a minor difference between the LMT and SVRMT
model. The reconstructed quadratic relationships by the LMT and SVRMT models are shown in respectively
Figure 5.8a and Figure 5.9a. Analogue to the experiment with the linear relationship, the LMT model is influ-
enced significantly more by uncertainty in the data compared to the SVRMT model.
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Table 5.2: Results of the evaluated prediction models for a quadratic relationship

MAPE MeAPE Std R2

MLR 9.24 0.41 43.95 0.59
SVR 7.15 0.24 41.93 0.80
TBR 0.36 0.07 1.84 0.87
LMT 0.10 0.06 0.34 0.91
SVRMT 0.06 0.02 0.34 0.91

(a) (b)

Figure 5.8: a) Reconstructed quadratic relationship by the LMT prediction model b)inverse fitted value plot quadratic
relationship LMT prediction model

(a) (b)

Figure 5.9: a) Reconstructed quadratic relationship by the SVRMT prediction model b)inverse fitted value plot quadratic
relationship SVRMT prediction model

Step

Last, a relationship with two input variables is evaluated; one quantitative and one categorical variable. The
relationship is linearly increasing if the categorical variable equals 1. If the categorical variable is 0, the rela-
tionship is constant, resulting in a step like function as shown in shown in Figure 5.5c.

The results shown in table 5.3, Figure 5.10a and Figure 5.10b show that the SVRMT is capable of recon-
structing the step function with a small error. This error mostly occurs due to the combination of sharp
discontinuities going from a constant relationship to a linear relationship along with the presence of noise.
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Table 5.3: Results of the evaluated prediction models for a step relationship

MAPE MeAPE Std R2

MLR 0.22 0.16 0.21 0.84
SVR 0.24 0,16 0.37 0.85
TBR 0.17 0.10 0.31 0.89
LMT 0.13 0.05 0.24 0.91
SVRMT 0.11 0.02 0.34 0.91

(a) (b)

Figure 5.10: a) Reconstructed step relationship by the SVRMT prediction model b)inverse fitted value plot step relation-
ship SVRMT prediction model

5.4. Phase II: Case study experiments
After the proposed prediction model is verified in several hypothetical scenarios, a case study is performed
with data from the manufacturing process of Oostingh Staalbouw. During this case study, the accuracy of
the proposed manufacturing time prediction model for real construction projects is evaluated. The proposed
prediction model (SVRMT) along with MLR, SVR, TBR and LMT prediction models are tested in three differ-
ent real case scenarios:

1. Leave one project out; In this scenario, all but one project are merged and used to train a prediction
model. This prediction model is used to predict manufacturing times of products for a new project.
This scenario represents the start of the manufacturing phase of a new project. Since no prior man-
ufacturing data of the new project is available at this stage of the project, historical data from real-
ized projects is the only suitable reference to predict the manufacturing times of products for this new
project. Since the dataset is split based on a project, leaving one project out, there is no random split
used. Therefore, no repetitional experiments are required for this scenario.

2. Project partly manufactured; This scenario corresponds to a stage where the manufacturing of the
project has been in progress for a considerable period. In this stage, historical manufacturing data of
the evaluated construction project becomes available. This historical data can be used to predict the
manufacturing times for the remainder of the construction project. Especially in case of relatively large
construction projects, a considerable amount of data can be gathered. The expectation is that this
data can be used to enhance the predictions of manufacturing times for the remaining products of the
project.

3. Combined scenario; This scenario corresponds to the manufacturing stage of a construction project
evaluated in scenario 2. Scenario 3, however, differs in that it uses both data from realized construc-
tion projects (analogue to scenario 1) along with gathered data from the specific construction project
(scenario 2).

The different scenarios are visualized in Figure 5.11.
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It is expected that the accuracy of the predictions will increase from scenario 1 through scenario 3 due
to the increasing availability of relevant data. From the uncertainty in manufacturing times of repetitive
manufactured products discussed in section 2.3.2 an objective MAPE of 0.30 will be used.

(a) (b) (c)

Figure 5.11: Visualization of a) scenario 1, b) scenario 2, and c) scenario 3. Each colored rectangle represent a different
construction project. The available training data is represented by the dashed rectangle.

5.4.1. Projects evaluated for real case validation
For these experiments, four projects carried out at Oostingh Staalbouw are evaluated. Three of these four
projects are the main projects carried out by the company in the last year (September 2018 - June 2019),
while one of them is manufactured in 2017 (project 2048). The latter project is taken into account to check
whether projects realized in previous years are still relevant for the prediction of new projects.

• Project 2048: A relatively small project with a large variety of products. This project is manufactured in
2017

• Project 181017: This project is a relatively large, industrial construction. This project took a significant
part of the evaluated period to be manufactured.

• Project 184062: This is a medium sized project with only a small number of repetitive products.

• Project 194003: This is a relatively small project consisting mainly of repetitive products. Additionally,
the physical properties of the products differ relatively more from the other evaluated projects.

A summary of properties of these projects, along with a visualization of the Building Information Models is
provided in Appendix C.1. Data of the products manufactured for these projects are used in order to validate
the proposed prediction model.

5.4.2. Scenario 1 - Leave one project out
For the first scenario, one project is left out from the training data. After the prediction model is trained using
data from the other projects, the model is used to predict the manufacturing time of products for the project
left out. This experiment is repeated for each project left out once. This scenario corresponds to the start of
the manufacturing of a new project. Since no manufacturing data of the project left out is included in the
prediction models, it is expected that the accuracy of the various prediction models is lowest in this scenario.

In table 5.4, the MAPE of the different prediction models for the experiments conducted for scenario 1
are shown. Notably are the differences between the linear models (MLR and SVR) compared to the nonlinear
(LMT and SVRMT) models for the prediction of assembly times. Both LMT and SVRMT prediction model re-
sult in more accurate predictions, suggesting that the relationship between physical properties and assembly
time is nonlinear. For the welding step, on the other hand, the small difference in terms of prediction ac-
curacy between the SVR and SVRMT implies that the relationship between physical properties and welding
time is linear.

Additionally, it is notable that the prediction of assembly times for project 194003 is slightly less accurate
compared to the other projects. This difference can be explained by the fact that project 194003 differs sig-
nificantly compared to the other projects in terms of physical properties.

For both the prediction of assembly and welding times, the proposed SVRMT yields both most constant
and accurate results in terms of prediction error.



44 5. Model Validation

Table 5.4: MAPE of the results for the different implemented prediction models in scenario 1 for predicting the assembly
(left) and welding (right) times. The bold numbers represent the lowest MAPE of the evaluated prediction models per
project.

2048 181017 184062 194003 Average
MLR 0.45 0.61 0.52 1.36 0.74
SVR 0.45 0.56 0.34 1.15 0.63
TBR 0.72 0.91 0.42 0.57 0.66
LMT 0.43 0.44 0.46 0.56 0.47
SVRMT 0.43 0.41 0.34 0.45 0.41

2048 181017 184062 194003 Average
MLR 0.45 0.36 0.51 0.41 0.43
SVR 0.44 0.34 0.42 0.40 0.40
TBR 0.53 0.62 0.63 0.38 0.54
LMT 0.41 0.36 0.56 0.43 0.44
SVRMT 0.42 0.36 0.42 0.41 0.40

In order to compare the different implemented models visually, Figure 5.12 and Figure 5.13 show respec-
tively the boxplots with the results of the prediction of assembly and welding times. The boxplots are drawn
for each implemented prediction model for all projects evaluated in scenario 1.

In line with the MAPE for the different experiments shown in table 5.4 the distribution of absolute relative
residuals for the assembly time varies between the linear and nonlinear prediction models.

Figure 5.12: Boxplots of the absolute relative residuals for scenario 1 under the implementation of the different assem-
bly time prediction models. The diamond shape and the orange line represent respectively the MAPE and MeAPE of
the absolute relative residuals.

Table 5.5 shows the results of the proposed SVRMT prediction model in scenario 1. For a complete
overview of the results for all prediction models in scenario 1, the reader is referred to Appendix C.2.1. It
is notable that the standard deviation of the absolute relative residuals for the prediction of assembly times is
significantly higher than the residuals of the predicted welding times (respectively 0.40 and 0.30).

This difference can be explained by the nature of the manufacturing steps. As discussed in section 2.3, the
assembly step is significantly more influenced by the variations in the products. Additionally, the assembly
step is more exposed to errors originated earlier in the manufacturing process. For example, an assembly
employee has to assemble multiple parts into one product. If one part is defect / missing, this leads to a dis-
ruption in the assembly process, while a welding employee gets an assembled product assigned and focuses
on the placement of the final welds.

Furthermore, the R2 is relatively high for the prediction of both assembly and welding time of the various
projects. This implies that the prediction model is able to explain a significant part of the variance in the
data. The exception is the R2 for both the prediction of assembly and welding time for project 194003. This
can be explained by the fact that this project has a significant number of repetitive products resulting in equal
predicted manufacturing times. There is, however, still a significant number of human related uncertainty in
the manufacturing times. In combination with the slightly higher MAPE for this project, due to the physical
properties varying from the other evaluated projects, this results in a significant lower R2.
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Figure 5.13: Boxplots of the absolute relative residuals for scenario 1 under the implementation of the different welding
time prediction models. The diamond shape and the orange line represent respectively the MAPE and MeAPE of the
absolute relative residuals

Table 5.5: Results for scenario 1 of the SVRMT prediction model for the prediction of the assembly (left) and welding
(right) times of the different construction projects

MAPE MeAPE Std R2

2048 0.43 0.41 0.30 0.90
181017 0.41 0.32 0.47 0.77
184062 0.34 0.27 0.32 0.92
194003 0.45 0.36 0.49 0.51

MAPE MeAPE Std R2

2048 0.42 0.37 0.26 0.84
181017 0.36 0.30 0.32 0.95
184062 0.42 0.35 0.33 0.88
194003 0.41 0.34 0.31 0.46

Comparison to current prediction approach
As stated in section 2.5, it is common for the construction industry to predict manufacturing times for a group
of products. Since the proposed prediction model predicts manufacturing time per product, comparing both
prediction strategies is not straightforward. In section 2.5, it was also stated that Oostingh Staalbouw pre-
dicted manufacturing times per product in 2017 for experimental purposes. Resulting from this experiment,
an average MAPE of 0.60 was derived for both assembly and welding.

Since project 2048 has been manufactured in 2017, the (experience based) predicted manufacturing times
for this project are on product base. An opportunity for comparing the current and proposed approach arises.
Table 5.6 shows the results of the different prediction models, along with the current prediction approach for
project 2048. For both the prediction of manufacturing times for assembly and welding, the current approach
is outperformed by the prediction models in terms of prediction accuracy.

Table 5.6: Results for scenario 1 of the different prediction model for the prediction of the assembly (left) and welding
(right) times of project 2048

MAPE MeAPE Std R2

Current 0.58 0.61 0.31 0.91
MLR 0.45 0.41 0.33 0.92
SVR 0.45 0.43 0.31 0.92
TBR 0.72 0.60 0.69 0.74
LMT 0.43 0.39 0.31 0.92

SVRMT 0.43 0.41 0.30 0.93

MAPE MeAPE Std R2

Current 0.64 0.67 0.28 0.80
MLR 0.45 0.40 0.31 0.85
SVR 0.44 0.40 0.28 0.86
TBR 0.53 0.41 0.61 0.67
LMT 0.41 0.36 0.27 0.88

SVRMT 0.42 0.37 0.26 0.88

The boxplots of the absolute relative residuals of the different prediction models are shown in Figure 5.14.
Interesting is that for both assembly and welding, the box of the boxplot for the current approach lies sig-
nificantly higher than the different prediction models. The size of both the box and the whiskers, however,
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does not differ significantly compared to the tested prediction models. This implies that the absolute relative
residuals of the current prediction approach are higher in general, but the distribution of absolute relative
residuals around the Mean Absolute Percentage Error is (more or less) the same for all prediction models.
Therefore, the different prediction models show an improvement on average prediction accuracy, but not in
prediction uncertainty.

Due to unavailable data of predictions from the current approach on a product basis for projects 181017,
184062 and 194003, the assumption that the MAPE of 0.60 is representative for new projects is used for com-
parison.

All in all, the prediction of an entire new project based on historical data from BIM and the manufacturing
times of other projects results in more accurate predictions. The MAPE of the evaluated prediction models is
significantly lower than the current, experience based method (0.41/0.60). Overall, the proposed SVRMT pre-
diction model yields both most constant and accurate results of the evaluated prediction models. However,
using the objective MAPE of 0.30, there is still room for improvement.

(a) (b)

Figure 5.14: Boxplot of Absolute Relative Residuals for predicted a) assembly and b) welding times for the evaluated
prediction models. Scenario 1, project 2048

5.4.3. Scenario 2 - Per project
Even though the conducted experiments in scenario 1 yielded an improvement over the current experience
based prediction method, the results are still off from the set objective MAPE of 0.30. In the second scenario, a
later stage in the manufacturing phase of the construction projects is regarded. Additionally, the training data
for the respective prediction models consists solely of historical data from the project being predicted. For
convenience, this experiment is conducted using the 70/30 ratio proposed in the introduction of this section.
This corresponds to the situation where 70 % of the project has been manufactured. Analogue to scenario 1,
the assembly and welding times are predicted for the products of each project.

The expectation is that the predictions derived in this scenario are more accurate than in scenario 1, since
the training data used for the prediction models is expected to be more relevant than data from other projects.

Table 5.7 shows the resulting MAPE of the different prediction models for respectively the a) assembly
and b) welding steps of the evaluated projects. Additionally, boxplots of the absolute relative residuals for the
implemented prediction models of the reviewed projects is provided in Figure 5.15 and Figure 5.16. Promi-
nently project 2048 and project 194003 show significantly different results between scenario 1 and scenario
2. The MAPE of project 194003 yields equal results as the indication of best possible accuracy determined in
section 2.3.2. This result can be explained by the high ratio of repetitive products occurring in this project.

Project 2048, on the other hand yields significantly worse results than scenario 1. This can possibly be
explained by the fact that it is both a relatively small project (small training set) and has a large ratio of unique
products along with a wide distribution of both physical properties and manufacturing times.

Project 181017 and project 184062 show similar results with scenario 1.
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Table 5.7: MAPE of the results for the different implemented prediction models in scenario 2 for predicting the assembly
(left) and welding (right) times. The bold numbers represent the lowest MAPE of the evaluated prediction models per
project.

2048 181017 184062 194003 Average
MLR 0.68 0.46 0.39 0.37 0.48
SVR 0.70 0.45 0.38 0.24 0.44
TBR 0.61 0.43 0.54 0.37 0.49
LMT 0.56 0.39 0.39 0.31 0.41
SVRMT 0.52 0.39 0.36 0.24 0.38

2048 181017 184062 194003 Average
MLR 0.56 0.40 0.39 0.31 0.42
SVR 0.70 0.40 0.35 0.29 0.44
TBR 0.63 0.41 0.54 0.32 0.48
LMT 0.56 0.39 0.40 0.28 0.41
SVRMT 0.51 0.37 0.35 0.26 0.37

Figure 5.15: Boxplots of the absolute relative residuals for scenario 2 under the implementation of the different assem-
bly time prediction models. The diamond shape and the orange line represent respectively the MAPE and MeAPE of
the absolute relative residuals

Figure 5.16: Boxplots of the absolute relative residuals for scenario 2 under the implementation of the different welding
time prediction models. The diamond shape and the orange line represent respectively the MAPE and MeAPE of the
absolute relative residuals

5.4.4. Scenario 3 - Mixed projects
Lastly, the available information from scenario 1 and scenario 2 is combined for scenario 3. This results in a
training set containing data from prior projects, along with data of realized products of the predicted project.
Similar to scenario 2, a 70/30 ratio for the realized products of the predicted project is used, corresponding to
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70% of the products already being manufactured.
Table 5.8 shows the MAPE of the results for the various prediction models considered in scenario 3. It

shows that outlying results of scenario 1 and scenario 2 are straightened out; With the exception of project
194003, the results of scenario 1 and 3 seem to be comparable.

Project 194003 is negatively influenced by data from the other projects, while project 2048 benefits greatly
from historical data of the other projects. This is in line with the results of scenario 1 and 2.

Table 5.8: MAPE of the results for the different implemented prediction models in scenario 3 for predicting the assembly
(left) and welding (right) times

2048 181017 184062 194003 Average
MLR 0.47 0.51 0.45 0.69 0.53
SVR 0.43 0.42 0.36 0.49 0.43
TBR 0.47 0.45 0.48 0.38 0.45
LMT 0.41 0.42 0.44 0.41 0.42
SVRMT 0.40 0.36 0.38 0.38 0.38

2048 181017 184062 194003 Average
MLR 0.45 0.38 0.42 0.39 0.41
SVR 0.44 0.37 0.38 0.34 0.38
TBR 0.57 0.41 0.49 0.27 0.44
LMT 0.36 0.36 0.43 0.36 0.38
SVRMT 0.40 0.36 0.41 0.34 0.38

Figure 5.17: Boxplots of the absolute relative residuals for scenario 3 under the implementation of the different assem-
bly time prediction models. The diamond shape and the orange line represent respectively the MAPE and MeAPE of
the absolute relative residuals

Figure 5.18: Boxplots of the absolute relative residuals for scenario 3 under the implementation of the different welding
time prediction models. The diamond shape and the orange line represent respectively the MAPE and MeAPE of the
absolute relative residuals
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5.4.5. Additional remarks
In addition to the results of the different experimental scenarios described in the above sections, additional
findings are encountered. Figure 5.3 shows the inverse fitted value plots for the predicted welding times of the
SVRMT prediction model for project 181017. This Figure shows the real welding times versus the predicted
welding times. Notable is that even though the MAPE does not differ significantly between the scenarios,
the distribution of the residuals does differ. In scenario 1, the predicted welding times is consistently lower
than the realized welding times for realized welding times above 10 hours. This can be explained by the fact
that products of project 181017 have on average longer welds than the other evaluated projects. After data
of realized products from project 181017 is added to the training data (Figure 5.3 b) and Figure 5.3 c)) the
distribution centers more around the 45 degrees line.

Various patterns can be identified for all projects. Therefore, adding more historical data to the training
set is recommended. It is expected that increasing the training set will decrease the variance of the residuals.
This increase of training data is less likely to reduce the MAPE of the predictions, which is more likely to
benefit from adding input variables [49].

(a) (b) (c)

Figure 5.19: Inverse fitted value plot for the predicted welding times for project 181017 in a) scenario 1, b) scenario 2
and c) scenario 3 using the SVRMT prediction model

Furthermore, the Coefficient of Variance (Cv , section 2.4) of the absolute relative residuals of the SVRMT
prediction model is approximately unity. This is in line with the the Cv derived for the uncertainty in the data
(section 2.4). Based on the Cv and the MeAPE derived throughout the various scenarios, it can be seen that
the MAPE is negatively influenced by significant outliers in the data.

Figure 5.20 shows the SVRMT prediction model constructed for the prediction of assembly times for
project 194003, scenario 1. Notable is that no splits are based on the categorical input variables (profile types).
This implies that the influence of profile type on the assembly time is negligible, which is in contrast to the
expectation as discussed in section 2.2.3.

In addition, the depth of the SVRMT remains relatively low, resulting in a small, interpretable tree. Con-
sidering the prerequisite that the prediction model should be easily interpretable, Figure 5.20 ratifies the
assumption that SVRMT prediction models meet this requirement.

The corresponding coefficients of the SVR prediction models of the respective nodes are provided in ta-
ble 5.9. Notable is that the no. holes is dropped in each prediction model, which is in line with the relatively
low correlation coefficient between physical properties and manufacturing time, derived in section 2.4. Fur-
thermore, the coefficients differ between the respective nodes, showing the nonlinearity of the relationship
between the physical properties and assembly time.

Table 5.9: Coefficients for the SVRMT model used for the predictions of assembly times for project 194003, scenario 1

Weight [kg] Length [mm] Weld length [mm] No. Parts No. Welds No. Holes
Root 2,94E-04 3,67E-05 4,18E-05 8,46E-02 9,64E-03
Node 1 1,58E-05 2,38E-05 1,66E-02 8,43E-03
Node 2 4,75E-04 3,54E-05 3,54E-05 8,08E-02 9,13E-03
Node 3 9,55E-04 4,15E-05 1,13E-02
Node 4 -1,62E-04 2,50E-04 3,74E-05 8,41E-02 2,52E-03
Node 5 4,95E-05 1,77E-04 1,63E-05 2,31E-01 -7,75E-02
Node 6 6,55E-04 5,90E-04 4,19E-04 6,06E-02 2,15E-02
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Figure 5.20: Example of SVRMT for the prediction of assembly times in scenario 1

Figure 5.21 shows the SVRMT model constructed for the prediction of welding times of project 194003,
scenario 1. Notable is that this tree is smaller than the SVRMT for the prediction of assembly times. From the
results shown in table 5.4, the SVR is slightly more accurate than the SVRMT prediction model (for project
194003 in scenario 1). This result, along with the tree shown in Figure 5.21, shows that small overfitting
occurred during the construction of the model. The coefficients of the SVR prediction models differ only
slightly across the different nodes of the tree. In combination with the small difference in MAPE between the
SVR and SVRMT prediction models, it can be seen that the effect of overfitting is limited.

Figure 5.21: Example of SVRMT for the prediction of welding times in scenario 1

Table 5.10: Coefficients for the SVRMT model used for the predictions of welding times for project 194003, scenario 1

Weight [kg] WeldLength [mm] No. Parts Length [mm] No. Welds No. Holes
Root 4,81E-04 2,03E-04 3,37E-02 -2,91E-05 1,64E-02
Node 1 3,50E-03 4,87E-05 3,37E-02 -8,30E-05 -1,52E-03
Node 2 3,96E-04 2,09E-04 2,91E-02 -1,20E-05 1,85E-02
Node 3 9,14E-05 1,88E-04 4,35E-02 4,17E-07 4,26E-02
Node 4 9,42E-04 2,01E-04 1,88E-02 -3,25E-05 4,55E-03
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5.5. Conclusion
In this chapter, the sub-question: "How can the conceptual prediction model be validated?" is discussed. The
conceptual prediction model is validated through two types of experiments. At first, the proposed prediction
model is verified in hypothetical situations. Afterwards the proposed prediction model is tested in several
real case scenarios.

Prior to the conduction of the validation experiments, the sub-question: "How can the performance of
prediction models be evaluated and compared?" is regarded. In order to evaluate different prediction mod-
els, several methods have been identified. A commonly used Performance Indicator is the Coefficient of
determination (R2), which expresses how much variance in the data is explained by the prediction model.
Furthermore, the Mean Absolute Percentage Error (MAPE) is used to express the average relative error of the
model. The MAPE is especially useful to evaluate the performance of prediction models in different data sets.

Besides metrical Performance Indicators, visual methods can be used to evaluate the performance of a
prediction model. Plotting the real value against the predicted value can be used to evaluate the ability of
the prediction model to reconstruct the real relationship. In addition, boxplots of residuals can be used to
visually compare the distribution of residuals from different prediction models.

After relevant Performance Indicators have been identified, the proposed Support Vector Regression Model
Tree (SVRMT) is tested in several hypothetical situations. During this experimental phase, the assumptions
that the SVRMT prediction model is able to yield accurate predictions for both linear and nonlinear relation-
ships with significant added noise are verified.

Upon the verification of the proposed SVRMT prediction model in hypothetical situations, the prediction
model is tested in three real case scenarios. These scenarios correspond to 1) the start of a new construction
project, 2) 70 % of the products for a construction project manufactured and 3) a scenario where information
from both historical and 70% of the project to be predicted is available. Along with the SVRMT prediction
model, Multiple Linear Regression (MLR), Support Vector Regression (SVR), Tree Based Regression (TBR)
and Linear Model Tree (LMT) prediction models are tested for comparison.

For scenario 1, predictions of manufacturing times based on historical data from construction products
have increased accuracy compared to the currently used, experience based approach. However, it is notable
that the prediction accuracy decreases if the physical properties of the project differ significantly from histor-
ical projects.

In scenario 2, increased accuracy compared to scenario 1 is yielded for projects with a high ratio of repet-
itive products. For relatively small projects with a small ratio of similar products, the accuracy decreases
significantly.

Overall, scenario 3 did not yield increased prediction accuracy compared to scenario 1 and scenario 2.
However, outliers (both positive and negative) are flattened out in this scenario, leading to most consistent
predictions in terms of accuracy.

Based on these results. it would be interesting to extend the database with projects from the past in order
to increase the variations in training data for the prediction model. It is expected that this increase of train-
ing data leads to more consistent predictions (smaller distribution of residuals) for all types of construction
projects. In addition, it is expected that extending the input variables will increase the average prediction
accuracy.

In addition, it would be interesting to investigate scenario 2 and 3 in more detail by conducting exper-
iments, for example after 25% or 50% of the products being manufactured. This way, more insight in the
increasing accuracy with increasing part of the project manufactured can be obtained.

In general, in each scenario, most tested prediction models yield more accurate predictions than the cur-
rent, experience based manufacturing time predictions (MAPE of 0.60). Overall, the proposed SVRMT pre-
diction model yielded both slightly more accurate and constant results predictions compared to the other
evaluated prediction models. With a yielded MAPE of 0.41, 0.38 and 0.38 for respectively scenario 1, sce-
nario 2 and scenario 3, the SVRMT prediction model is a significant improvement compared to the current
prediction approach.
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Even though there is still room for improvement (objective MAPE of 0.30 not met), it can be concluded
that it would be beneficial to implement the proposed SVRMT prediction model to improve the prediction
accuracy for manufacturing times per manufacturing step.
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Conclusion

Currently, the construction industry predicts manufacturing times of structural elements (products) based
on the experience of shop managers. This approach is prone to errors, leading to ineffective manufacturing
schedules. The company used for this case study, Oostingh Staalbouw, currently yields a Mean Absolute Per-
centage Error (MAPE) of 0.60 (60%) for the prediction of manufacturing times per manufacturing step.

The past decade, the construction industry started using Building Information Models (BIM) to central-
ize storage of information about construction projects. Along with this development, the application of data
analysis in the manufacturing industry grew rapidly.

The aim of this research has been to combine both developments by proposing a general manufactur-
ing time prediction model based on information stored in BIM along with manufacturing data. For the case
study, the objective was to reduce the MAPE of the predictions from 0.60 to 0.30. In order to reach this objec-
tive, the following research question is formulated:

"How to develop a manufacturing time prediction model, using BIM and manufacturing data, in order to
create more effective manufacturing schedules?"

Even though a general manufacturing time prediction model is to be proposed, the scope of this research
has been limited to manufacturing steps with high human involvement. The proposed manufacturing time
prediction model is validated in a case study in collaboration with Oostingh Staalbouw. Since the proceedings
of Oostingh Staalbouw are limited to the steel elements of constructions, validation of the prediction model is
only performed on the manufacturing of steel elements (products). It is however assumed that the proposed
prediction model is suitable for the manufacturing of all aspects of the construction industry.

The road towards answering the research question can be found by answering several sub questions:

What does the manufacturing process at Oostingh Staalbouw look like?
The manufacturing process of Oostingh Staalbouw can be divided in four steps. In the preprocessing step,
standard profiles are customized for the product. Afterwards, during the assembly step, the separate parts
for the products are assembled. In the welding step, the final welds are placed on the product. Finally, prod-
ucts can be coated in the coating step. Since this research focuses on manufacturing steps with high human
involvement, combined with the lack of accurate data from the coating step, the remainder of this research
focused on the prediction of manufacturing times for the assembly and welding step.

Which data can be extracted from BIM and the manufacturing process?
Even though BIM is capable of storing any kind of information, the actual stored information is currently still
limited to physical properties of products. Both quantitative and categorical properties can be identified.

Using Spearman’s correlation coefficient, monotonic relationships can be identified between different
quantitative physical properties and manufacturing times. The drawback of this approach is that it remains
ambiguous whether this relationship is linear or nonlinear.

53
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The identified categorical properties are the different profile types; H-beams, U-beams, Hollow sections
and Plates. It is expected that the handling of these profiles differs, having an impact on the manufacturing
time of the product.

In addition, data from the manufacturing process consists of manufacturing times. These manufacturing
times are measured by scanning barcodes coupled to the product, at the start and at the end of the manufac-
turing step. After each work shift, the scanned data is synchronized with BIM. Repetitive manufactured prod-
ucts are analyzed in order to get insight in the size of human related uncertainty in the data. The manufactur-
ing time of similar products are predicted using the mean manufacturing time of these repetitive products.
The Mean Absolute Percentage Error (MAPE) of this approach turned out to be 0.25 for both the assembly and
welding step. This approach, however, is unsuitable for the prediction of manufacturing times of completely
new, unique products. Therefore, it is expected that the MAPE of the predictions will be higher than 0.25,
leading to the objective MAPE of 0.30.

Based on the characteristics of the available data, several prerequisites for the prediction model are de-
rived. The prediction model should be able to deal with quantitative and categorical input variables. Addi-
tionally, the prediction model should be able to predict both linear and nonlinear relationships between the
input variables and manufacturing times. Furthermore, due to uncertainty in the available data, the predic-
tion model should be robust against this uncertainty.

In order to increase the rate of acceptance of the prediction model, the prediction model should be easily
interpretable.

Which manufacturing time prediction models are available in literature?
After determining the prerequisites for the prediction model, related research on the prediction of manufac-
turing times is reviewed. Research on using BIM to predict manufacturing times is limited to one study by
Hu et al. [26]. In this study, the implementation of a Multiple Linear Regression (MLR) model resulted in sig-
nificantly improved prediction accuracy compared to the experience based approach currently used in the
construction industry. The accuracy of this approach, however, is strongly depending on the linearity of the
relationship between physical properties and manufacturing times.

In comparable Engineered-to-Order industries (ETO), prediction models like Support Vector Regression
(SVR), Tree Based Regression (TBR) and Neural Networks (NN) are used for the prediction of product lead
time. Even though the product lead time is different from the manufacturing time per manufacturing step,
it would be interesting to evaluate these prediction models for the prediction of manufacturing times per
manufacturing step. Additionally, a prediction model named Linear Model Tree (LMT) is found in literature,
which combines advantages of MLR and TBR.

Based on the prerequisites for the prediction model and the available prediction models identified in the
literature, the LMT prediction model is chosen. Like TBR, the data is split in a decision tree like structure.
However, the LMT prediction model uses linear models in its nodes rather than the mean value of data reach-
ing the node. This way, the LMT prediction model is able to predict continuous values rather than discrete
values, making it more applicable for predicting manufacturing times of new products.

The drawback of the LMT is that it uses MLR prediction models in its nodes, which are sensitive to uncer-
tainty in the data. In this research, an adaptation is proposed which combines advantages of SVR and LMT
prediction models. SVR prediction models tend to outperform MLR prediction models if uncertainty in the
data arise. Therefore, the MLR prediction models in the nodes are replaced by SVR prediction models. It was
therefore expected that the proposed prediction model (Support Vector Regression Model Tree (SVRMT)) is
more robust against uncertainty in the data compared to the LMT prediction model.

Which conceptual prediction model can best be used to predict manufacturing times?
For the construction of a SVRMT prediction model several steps can be identified. At first, nonlinear data is
split into linear segments. Afterwards, an SVR prediction model is placed in each node of the model tree. At
last, the SVRMT is pruned in order to prevent overfitting.

For the prediction of new data, the model tree is descended to the corresponding leaf. After the leaf has
been reached, the manufacturing time is predicted using the corresponding SVR prediction model. In or-
der to compensate for sharp discontinuities between adjacent leaves in the model tree, the predictions are
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smoothed. In this smoothing the model tree is ascended from leaf to root. At each intermediate node, the
prediction is adjusted using the SVR prediction model of the node. After reaching the root of the tree, the
resulting prediction is the output of the prediction model.

How can the performance of prediction models be evaluated and compared?
For the evaluation and comparison of prediction models several methods can be used. The coefficient of
determination (R2) might be the most widely used metric for this purpose. This Performance Indicator, how-
ever, might imply that the prediction model fits the relationship well, even though the prediction model is
overfitted to uncertainty in the data.

The Mean Absolute Percentage Error (MAPE) can be used to compare results of prediction models across
different datasets. Since this metric shows the relative error, it provides insight in the size of the prediction
error. This Performance Indicator focuses on the reduction of the prediction error and is therefore identified
as main Performance Indicator of this study.

In addition, visual approaches for the evaluation of different prediction models can be identified. The
ability of the prediction model to accurately reconstruct a relationship between input and output can be
visualized using inverse fitted value plots. The comparison of the distribution of residuals from the imple-
mentation of different prediction models can be done by using boxplots.

How can the conceptual prediction model be validated?
For the validation of the SVRMT prediction model two experimental phases are performed.

At first, the assumptions that the proposed SVRMT prediction model is able to deal with both linear and
nonlinear relationships under the influence of uncertainty in the data is verified. During these verification
experiments, a linear, quadratic and step relationship with added heteroskedastic noise are reconstructed by
the proposed SVRMT prediction model. This prediction model is compared to the prediction models iden-
tified in related literature. The conducted experiments indicate that the SVRMT yields the most accurate
reproductions of the evaluated prediction models.

After this verification, the proposed prediction model is validated using data from Oostingh Staalbouw.
For this validation, four construction projects from the recent past (September 2018 - June 2019) are tested.
Three scenarios have been considered; the first scenario corresponds to the kick-off of the manufacturing of
a new project. At this stage, the available data is limited to historical data from other projects. This data is
used to train the prediction model. Afterwards, both assembly and welding times are predicted for the new
project. This experiment is repeated for all projects being left out once. The results for scenario 1 showed a
significant improvement over the currently used experience based approach. The MAPE of the predictions
for this experiments yielded an average accuracy of 0.41 (compared to 0.60 currently).

In the second scenario, a progressed stage of the manufacturing of a project is considered. For this sce-
nario, it is assumed that 70% of the project has already been completed. The prediction model is trained using
the data of realized products of the project. This turned out to be especially useful for projects differing sig-
nificantly from other projects. In addition, projects with a significant number of repetitive products yielded
increased prediction accuracy compared to scenario 1. Relatively small projects with limited repetition, on
the other hand, yielded decreased prediction accuracy compared to scenario 1.

Finally, a combination of scenario 1 and scenario 2 has been investigated. For this scenario, data from
historical projects, along with realized data of the project to be predicted is used to predict the manufactur-
ing times of the remaining products. Overall, outlying results (both positive and negative) are flattened out.
The average MAPE increased slightly compared to scenario 1 and scenario 2. Most notable is the increased
consistency of prediction accuracy across the different projects evaluated in scenario 3.

Overall, all evaluated prediction models resulted in increased accuracy for the prediction of manufactur-
ing times per manufacturing step compared to the current, experience based approach. Of all prediction
models, the proposed SVRMT prediction model showed both most constant and slightly more accurate re-
sults. Even though the SVRMT prediction model yielded significantly more accurate predictions, the MAPE
is still higher than the objective.
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Through this research, it can be concluded that there is significant room for improvement in the accu-
racy of predicting manufacturing times. Compared to the current, experience based approach taken in the
construction industry, the implementation of prediction models based on historical data from both BIM and
the manufacturing process yielded a significant improvement in terms of prediction accuracy. During this
research, the MAPE of predictions has been reduced from 0.60 to 0.38. This is a significant improvement
compared to the MAPE of the currently used approach. The proposed SVRMT showed in both hypothetical
and real-case scenarios to be able to yield most accurate predictions of the reviewed prediction models.

Recommendations
Even though the results of this research showed a significant improvement compared to the current approach,
the objective MAPE of 0.30 has not been met. Based on the findings of this research, several recommenda-
tions for further research can be proposed.

At first, the effect of increased accuracy in predicted manufacturing times on manufacturing schedules
should be studied. It was assumed that increased accuracy in predicted manufacturing times would result
in more effective manufacturing schedules. It is therefore recommended to verify this assumption by con-
ducting further research on the effect of more accurate predicted manufacturing times on manufacturing
schedules.

Furthermore, it would be interesting to test whether the proposed prediction model yields an increase of
prediction accuracy for other manufacturing processes in the construction industry. This way, the assump-
tion that the proposed manufacturing time prediction model is indeed a general model can be verified.

The implementation of different heuristics used for the construction of the SVRMT can be further studied.
In this research, a greedy, top down approach was used to construct a SVRMT. Heuristics based on evolution-
ary algorithms has been proposed in a series of papers by Kretowski and Czajkowski [35], Czajkowski and
Kretowski [13] and Czajkowski and Kretowski [14]. This might especially be interesting in case of a signifi-
cantly large set of historical data under computational time constraints.

In this research, the input variables are limited to information currently stored in BIM. This information
encompasses the physical properties of products. It would be interesting to relax the assumption that man-
ufacturing times of manufacturing steps are not influenced by process or external variables. Input variables,
like day of the week, weather conditions, the number of products scheduled for the day etc. can be taken into
account to study the influence of these variables on the accuracy of the prediction model.

Additional insight in the applicability of the prediction model, scenario 2 and scenario 3 can be evaluated
further. Especially for projects differing significantly from historical projects, it would be interesting to gain
insight in the turning point for using only information of the regarded project.

From the same perspective, scenario 3 can be investigated further. In that case it would be interesting to
study the effect of a weighing function based on the relationship to the products to be predicted. Products of
the same project can be given more emphasis in the prediction model than products from historical projects.

Last but not least, the predictions of manufacturing times per manufacturing step based on the physical
properties of products can be used to optimize the design of construction projects in terms of manufacturing
costs. During the design phase, the prediction model can predict the manufacturing time of the conceptual
design. In combination with insight of the effect of the various physical properties on the manufacturing
times, more sophisticated considerations on the design can be made.
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Abstract

In the construction industry, it is common to predict manufacturing times of structural elements based on
the experience of shop managers. With the increasing use of Building Information Models (BIM) and data
analysis in manufacturing processes an opportunity for improving the accuracy of predicted manufacturing
times arises. This research proposes a general prediction model based on physical properties of structural
elements extracted from BIM, along with manufacturing times of manufactured elements. The proposed
Support Vector Regression Model Tree (SVRMT) is tested in both hypothetical and real case scenarios.
Through validation in real case scenarios, the SVRMT prediction model turned out to be a significant
improvement in terms of prediction accuracy, compared to the current experience based approach.

I. Introduction

The Engineered-To-Order nature of unique
complex steel structures requires different
structural elements (hereafter referred to as
"products") for each construction project. Due
to the low-volume, high complexity nature of
these projects, it is challenging to predict man-
ufacturing times accurately [1]. Currently, the
construction industry predicts manufacturing
times based on the experience of shop man-
agers. This approach, however, is prone to
errors. These errors lead to inaccurate pre-
dictions, causing manufacturing schedules to
become ineffective [10].

These ineffective manufacturing schedules
result in an unbalanced workload between
subsequent manufacturing steps. Due to the
unbalanced workload, the flow of products
through the manufacturing process becomes
disrupted, leading to buffers between manufac-
turing steps.

The past decade, the construction indus-

try started using Building Information Mod-
els (BIM). In these models information about
the construction project is stored. The BIM is
shared between all collaborators in the project,
stimulating cooperation and reducing errors
due to miscommunication [7].

Concurrently, data analysis is becoming an
indespensable technique for manufacturing
processes [4].

In line with these developments, Hu et al.
[10] proposed a Multiple Linear Regression
(MLR) prediction model based on historical
data. For this prediction model, physical prop-
erties extracted from BIM are coupled to the
manufacturing time. This approach turned
out to improve the prediction accuracy signif-
icantly, compared to the current experience
based prediction approach. The MLR predic-
tion model, however, only yields accurate re-
sults if the relationship between physical prop-
erties and manufacturing times shows linear
behavior.

In this research a general prediction model is
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proposed for the prediction of manufacturing
times using (historical) information from (BIM)
and the manufacturing process. The proposed
prediction model is validated in a case study
conducted at Oostingh Staalbouw, a company
responsible for the design, manufacturing and
assembly phase of complex steel structures.

In the remainder of this paper, the available
data for this case study is discussed in section
II. The relevant literature is reviewed in section
III. The proposed prediction model is elabo-
rated in section IV and experiments in order
to verify and validate the proposed prediction
model are discussed in section V. In section VI
this paper is completed with a discussion and
recommendations for further research.

II. Available data

The available data for this research are the
physical properties of the products extracted
from BIM (input variables) and the manufac-
turing time per manufacturing step (output
variable). Both quantitative and categorical
physical properties can be identified.

The quantitative physical properties are:

• Total weight of the product
• Maximum length of the product
• Total weld length
• Number of parts
• Number of welds
• Number of holes

Spearman’s correlation coefficient is used
to determine whether a relationship exists
between these quantitative physical proper-
ties and manufacturing times. The found
correlation coefficients vary between 0.65 and
0.92, implying that a relationship exists. The
drawback of this approach, however, is that
it only shows that a monotonic relationship
exists, but it remains ambiguous whether this
relationship is linear or nonlinear [19].

The categorical physical properties distin-
guished are the different profile types for the
products:

• H-beam
• U-Beam
• Hollow section
• Plate

It is expected that handling of these profile
types differs slightly. Therefore the prediction
model should be able to incorporate these cate-
gorical input variables, along with quantitative
input variables.

Since the manufacturing process at Oostingh
Staalbouw has significant human involvement,
human related uncertainty in the data is
present. Therefore, the prediction model
should be robust against uncertainty in the
data.

Based on the available data, the prediction
model should be able to:

• Predict continuous variables
• Cope with linear and nonlinear relation-

ships
• Have quantitative and categorical input

variables
• Be able to deal with uncertainty in the data
• Be easily interpretable in order to increase

the rate of acceptance in the conservative
construction industry

III. Literature

Literature on the prediction of manufacturing
times using physical properties extracted from
BIM in combination with historical data is lim-
ited to one study by Hu et al. [10]. In this study,
a Multiple Linear Regression (MLR) prediction
model is proposed. This approach resulted
in significantly more accurate predictions of
manufacturing times compared to the current,
experience based approach common in the con-
struction industry.

In other industries, the main focus of re-
search is on the prediction of product lead
time rather than product manufacturing time
per manufacturing step. The main difference
between these two is that product lead time is
defined as the "The time required once the product
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began its manufacture until the time it is completely
processed" [3], while the manufacturing time
per manufacturing step is the time it takes for
the product to get processed at one manufac-
turing step.

In these studies, several common prediction
models are recognised: Multiple Linear Regres-
sion (MLR), Support Vector Regression (SVR),
Tree Based Regression (TBR), and Neural Net-
works (NN). An overview of the implemented
prediction models in related literature is pro-
vided in table 1.

Table 1: Overview of implemented models in reviewed
literature

Reference Year Industry MLR TBR SVR NN
Tirkel [24] 2013 Semiconductor X
Hu et al. [10] 2014 Prefabrication X
Pfeiffer et al. [21] 2015 X X
Hur et al. [11] 2015 Shipbuilding X X
Yu and Cai [26] 2015 Aircraft X
Mohsenijam and Lu [18] 2016 Prefabrication X
Arash et al. [2] 2017 Construction X
Lingitz et al. [17] 2018 Semiconductor X X X X
Nagahara and Nonaka [20] 2018 Semiconductor X
Gyulai et al. [9] 2018 Optical X X X

Along with the prediction models used
in the related literature, Quinlan [22] pro-
posed the Linear Model Tree (LMT). A LMT
prediction model constructs a tree, similar
to TBR, but rather than discrete values, it
contains MLR models in the leaves. This way,
nonlinear relationships can be broken down
into multiple linear relationships.

Using the prerequisites determined in sec-
tion II, the different prediction models are com-
pared. Based on this comparison, an opportu-
nity for an improved prediction model is found
by combining the LMT and SVR prediction
models.

Instead of MLR prediction models in the
nodes of the prediction tree, SVR prediction
models can be used. Since SVR is known to
outperform MLR if uncertainty in the data is
present, it is expected that the proposed adap-
tation is more robust against uncertainty in the
data [6]. This proposed adaptation to the LMT
will be named a Support Vector Regression
Model Tree (SVRMT) prediction model.

IV. Support Vector Regression
Model Tree

Basically, the construction of the SVRMT is
analogue to the LMT as discussed by Quinlan
[22] and Wang and Witten [25].

The construction of the SVRMT consists of
several steps; at first the data is split in linear
segments. Afterwards, a SVR prediction model
is placed at each leaf. To reduce the chance
of overfitting, the tree is pruned. In order to
compensate for sharp discontinuities between
adjacent leaves, the predictions are smoothed.

Splitting

Since the construction of the optimal predic-
tion tree is NP-complete [12], heuristics are
commonly used. For the LMT, a greedy search
is performed in order to get to a sub-optimal
tree. During this greedy search, for each node
the input variables are sort in ascending order.
For each possible split value of the predictor
variable, the data is split [14]. For both the left
and right side of the split, a linear model is
built. The standard deviation of the residuals
for both sides of the split are derived. The
standard deviation reduction compared to the
situation without a split (linear model in the
parental node) is calculated using equation 1.

SDR = sd(T)−∑
i

( |Ti|
|T| ∗ sd(Ti)

)
(1)

With T the parental node and Ti the respec-
tive child nodes. This process is repeated until
the number of data in the nodes is smaller than
the number of input variables, or until the SDR
is smaller than 0.05 times the standard devia-
tion of the parental node [25].

Modelling in the nodes

As stated in the introduction of this section,
the main difference between LMT and SVRMT
prediction models is in the prediction model
used in the nodes of the model tree. Instead
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Table 2: Comparison of prediction models using prerequisites based on data characteristics

Output function Input variables Accurate for Robust against uncertainty Interpretability
MLR Continuous Quantitative Linear No Good
SVR Continuous Quantitative Linear Yes Good
TBR Discrete Quantitative / Categorical Linear / Nonlinear No Good
NN Continuous Quantitative / Categorical Linear / Nonlinear No Bad
LMT Continuous Quantitative / Categorical Linear / Nonlinear No Good
SVRMT Continuous Quantitative / Categorical Linear / Nonlinear Yes Good

of MLR models, the SVRMT model uses SVR
models in its nodes.

Instead of aiming to find a line with least
deviation from the data points, like MLR, SVR
attempts to find the narrowest tube around
a function f(x), that has at most ε deviation
from this function f(x). Data points outside this
tube are penalized with factor C. This could be
written as the optimization problem, described
in equation 2 [6].

arg min

{
1
2
||w||2 + C

l

∑
i=1

(ξi + ξ∗i )

}
(2)

Subject to

yi − {w, xi} − b ≤ ε + ξi

{w, xi}+ b− yi ≤ ε + ξi

ξi, ξ∗i ≥ 0

The subset of input variables used in the
SVR model is found using greedy selection;
one by one, the input variables are left out. As
soon as dropping variables results in increased
expected error, the subset of input variables is
found.

For the determination of the best combina-
tion of C and ε a grid search method[8] is used
in combination with 5-fold cross validation
[15].

Pruning

Since Tree Based prediction models are known
to be prone to overfitting, precautions need to
be taken [13]. In order to reduce the chance of
overfitting the model, a pruning strategy can
be used. During the pruning of a SVRMT, the
expected error of parental nodes is compared
to the expected error of both left and right child

of the node. In order to get the expected error,
the error of the mean absolute error of the data
in the node is multiplied by a factor n+v

n−v , with
n the number of training data reaching the
node and v the number of input variables. The
expected error can be derived using equation
3.

Error =
n + v
n− v

∗ 1
n

n

∑
i=1
|y− ŷ| (3)

If the expected error of the parental node is
smaller than the error in the child nodes, the
parental node is pruned and becomes a leaf.
This process is repeated, from bottom to top,
for all nodes in the tree.

Predicting using SVRMT

In order to compensate for possible sharp dis-
continuities between adjacent leaves, a smooth-
ing procedure can be used. At first the corre-
sponding leaf for the value to be predicted is
found by descending the decision tree. The cor-
responding model in the leaf is used to predict
the value.

Afterwards, the tree is ascended from leaf to
root. At each node passed, a new prediction
q is made using the prediction model in the
node. The smoothed prediction p’ is made
using equation 4

p′ =
np + kq

n + k
(4)

Where p is the prediction passed from the
child node, n the number of data points reach-
ing the child node. k is a constant smooth-
ing parameter (Wang and Witten [25] suggests
k=15).
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V. Experiments

The verification and validation of the proposed
SVRMT prediction model is performed in a
series of experiments. In addition, MLR, SVR,
TBR and LMT prediction models are tested in
these experiments in order to compare the pro-
posed prediction model with prediction mod-
els used in literature.

The Mean Absolute Percentage Error
(MAPE) is a common performance indicator to
evaluate the prediction accuracy of prediction
models. Since this indicator uses the relative er-
ror, it can be used to compare results between
different studies [5]. The equation to compute
the MAPE is shown in equation 5.

MAPE =
1
n

n

∑
i=1
|(yi − ŷi)/yi| (5)

Where y is the real manufacturing time, ŷ is
the predicted manufacturing time and n is the
number of products predicted.

Unless stated otherwise, for each experiment
the data is split into a training and test set us-
ing a 70/30 ratio. Each experiment is repeated
tenfold, using different random seeds to split
the data set.

i. Verification

In order to verify the assumption that the pro-
posed SVRMT prediction model functions sat-
isfactory under the prerequisites set for the
prediction model, several theoretical experi-
ments are conducted. The proposed SVRMT
prediction model is tested for the following
relationships:

• Linear relationship
• Quadratic relationship
• Step relationship

Heteroskedastic noise is added to these re-
lationships in order to verify the assumption
that the proposed model is capable of recon-
structing relationships with uncertainty in the
data.

The evaluated relationships are shown in
Figure 1.

Results

The resulting MAPE of the experiments for the
different prediction models is shown in table
3. For the linear relationship, the proposed
SVRMT prediction model yields equal results
to the SVR prediction model. This implies that
the SVRMT prediction model consists solely
of a root with a SVR prediction model. For
nonlinear relationships (Quadratic and Step),
the SVRMT prediction model outperforms the
other evaluated prediction models in terms of
prediction accuracy.

Table 3: MAPE for the evaluated prediction models in
the verification phase

Linear Quadratic Step
MLR 0.47 9.24 0.22
SVR 0 7.15 0.24
TBR 0.10 0.36 0.17
LMT 0.04 0.10 0.13
SVRMT 0 0.06 0.11

ii. Validation

In order to validate the proposed prediction
model, the model is tested in a case study. For
this case study, three scenarios corresponding
to different phases in the manufacturing of
a construction project are studied (Figure 2).
Real manufacturing data is provided by Oost-
ingh Staalbouw. This data consists of products
manufactured for four projects in the period
September 2018-June 2019.

This research is limited to the assembly and
welding step in the manufacturing process of
Oostingh Staalbouw. Currently, it is common
for the construction industry to predict the
manufacturing time of a group of products
(for example per truck load), rather than to
predict the manufacturing time per product
[10]. In 2017, Oostingh Staalbouw conducted
an experiment to predict the manufacturing
time per product. From this experiment, a
MAPE of 0.60 can be derived. It is assumed
that this value is still applicable for this study.
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(a) (b) (c)

Figure 1: Respectively the a) linear, b) quadratic and c) step relationships with added noise

(a) (b) (c)

Figure 2: Respectively a) Scenario 1, b) Scenario 2 and c) Scenario 3. Each colored box represents data of a construction
project. The dashed lined box represents the available training data for the prediction model.

In order to gain insight in the possible
prediction accuracy, a benchmark is set. For
this benchmark, all repetitive products are
predicted using the mean of the specific,
repetitive product. The MAPE for this strategy
for the evaluated projects is 0.25. This strategy,
however, can not be applied for the prediction
of new, unique products. Therefore, it is
expected that the MAPE will be higher for
the prediction of manufacturing times of new
products. For this study, an objective MAPE of
0.30 has been used.

Scenario 1

In the first scenario, the manufacturing time of
products for a new construction project are pre-
dicted. The available information is limited to
realized projects by the company. This scenario
corresponds to the start of the manufacturing
phase of a new construction project.

This scenario is evaluated for each project
being left out once. Since this train / test split
is not random based, this experiment is per-
formed once.

Scenario 2

The second scenario is after a substantial part
of the products for a construction project are
manufactured. For convenience, 70% is used.

Scenario 3

The last scenario used to validate the proposed
SVRMT prediction model corresponds to the
same stage as scenario 2. In scenario 3, how-
ever, data of realized projects is available, along
with data of realized products from the project
to be predicted.

Results

The results of the experiments for the various
scenarios are summarized in table 4 and table
5.

Notable is the difference between the lin-
ear models (MLR and SVR) and the nonlinear
models (LMT and SVRMT) for the prediction
of assembly times. The nonlinear models yield
significantly more accurate results than the lin-
ear models, implying that the relationship be-
tween physical properties and assembly time
is nonlinear. In addition, the proposed SVRMT
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Table 4: Averaged MAPE over the evaluated projects by
the compared prediction models for the assembly
step

Scenario 1 Scenario 2 Scenario 3
MLR 0.74± 0.37 0.48± 0.12 0.53± 0.09
SVR 0.63± 0.32 0.44± 0.17 0.43± 0.05
TBR 0.66± 0.18 0.49± 0.09 0.45± 0.04
LMT 0.47± 0.05 0.41± 0.09 0.42± 0.01
SVRMT 0.41± 0.04 0.38± 0.10 0.38± 0.01

prediction model yields both most accurate and
constant results. In scenario 1, less accurate pre-
dictions are yielded for projects significantly
different, in terms of physical properties, from
the projects used as training data.

The accuracy of the predictions for the
assembly step increases from scenario 1 to
scenario 2. Predictions in scenario 2 turned
out to be increasingly accurate with increasing
ratio of repetitive products in the construction
project. On the other hand, predictions were
less accurate for relatively small construction
projects with a small ratio of repetitive prod-
ucts. In scenario 3, both positive and negative
outliers across the projects were flattened out,
leading to most constant results.

Table 5: Averaged MAPE over the evaluated projects by
the compared prediction models for the welding
step

Scenario 1 Scenario 2 Scenario 3
MLR 0.43± 0.05 0.42± 0.09 0.41± 0.03
SVR 0.40± 0.04 0.44± 0.11 0.38± 0.04
TBR 0.54± 0.10 0.48± 0.12 0.44± 0.11
LMT 0.44± 0.09 0.40± 0.09 0.38± 0.03
SVRMT 0.40± 0.02 0.37± 0.09 0.38± 0.03

For the welding step, more constant results
across different prediction models are found.
The small difference in terms of accuracy
between the various prediction models (with
the exception of the TBR model) implies
that the relationship between the physical
properties and the welding time is linear.

Overall, all implemented prediction mod-
els have increased accuracy over the current,

experience based predictions. The proposed
SVRMT prediction model yields slightly more
accurate predictions over the prediction mod-
els used in comparable studies.

VI. Conclusion

Currently, it is common for the construction in-
dustry to predict manufacturing times of prod-
ucts based on experience of shop managers.
This approach is prone to errors, leading to
ineffective manufacturing schedules. In this
paper, a new approach for predicting manu-
facturing times per manufacturing step based
on (historical) data from Building Information
Models (BIM) and the manufacturing process
has been proposed.

In this paper, a combination of Linear Model
Trees (LMT) and Support Vector Regression
(SVR) models has been proposed. It was
expected that the Support Vector Regression
Model Tree (SVRMT) was able to yield accu-
rate predictions for both linear and nonlinear
relationships under influence of uncertainty in
the data.

During verification of the SVRMT predic-
tion model, it was shown that the prediction
model meets this expectation. Afterwards, the
SVRMT prediction model was validated in
three real case scenarios. For these real case
scenarios, data from Oostingh Staalbouw has
been used.

Compared to the current, experience based
approach the proposed SVRMT prediction
model turned out to be a significant improve-
ment. The Mean Absolute Percentage Error
was reduced from 0.60 up to 0.37.

Even though, the objective MAPE of 0.30
was not met, the proposed prediction model
is a signification improvement compared to
the current approach. Based on this research,
recommendations for further research can be
identified.

During this research, process related input
variables were not taken into account for
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the prediction model. It is expected that
embedding more relevant input variables will
increase the accuracy of the prediction model.
In addition it would be interesting to enlarge
the training data with more projects carried
out by the company, which will likely decrease
the variance of residuals [23].

In this research, a standard top-down
approach is used, while Kretowski and
Czajkowski [16] proposed an evolutionary
approach for the construction of model trees.
It would therefore be interesting to com-
pare Model Trees constructed using various
heuristics to find the optimal prediction model.

Furthermore, the application of the predic-
tion model can be extended to the design phase
of construction projects. Based on the manu-
facturing time prediction model, more sophis-
ticated design choices can be made to optimize
products in terms of manufacturing costs.

Lastly, the proposed SVRMT prediction
model should be tested in different manufac-
turing processes (in the construction industry)
to elaborate on the generality of the prediction
model.
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B
Verification

B.1. Linear

a) Reconstructed linear relationship by the MLR prediction model b)inverse fitted value plot linear relationship MLR
prediction model

a) Reconstructed linear relationship by the SVR prediction model b)inverse fitted value plot linear relationship SVR
prediction model



B. Verification

a) Reconstructed linear relationship by the TBR prediction model b)inverse fitted value plot linear relationship TBR
prediction model

a) Reconstructed linear relationship by the LMT prediction model b)inverse fitted value plot linear relationship LMT
prediction model

a) Reconstructed linear relationship by the SVRMT prediction model b)inverse fitted value plot linear relationship
SVRMT prediction model



B.2. Quadratic

B.2. Quadratic

a) Reconstructed Quadratic relationship by the MLR prediction model b)inverse fitted value plot Quadratic relationship
MLR prediction model

a) Reconstructed Quadratic relationship by the SVR prediction model b)inverse fitted value plot Quadratic relationship
SVR prediction model

a) Reconstructed Quadratic relationship by the TBR prediction model b)inverse fitted value plot Quadratic relationship
TBR prediction model



B. Verification

a) Reconstructed Quadratic relationship by the LMT prediction model b)inverse fitted value plot Quadratic relationship
LMT prediction model

a) Reconstructed Quadratic relationship by the SVRMT prediction model b)inverse fitted value plot Quadratic relation-
ship SVRMT prediction model

B.3. Step

a) Reconstructed Step relationship by the MLR prediction model b)inverse fitted value plot Step relationship MLR pre-
diction model



B.3. Step

a) Reconstructed Step relationship by the SVR prediction model b)inverse fitted value plot Step relationship SVR pre-
diction model

a) Reconstructed Step relationship by the TBR prediction model b)inverse fitted value plot Step relationship TBR pre-
diction model

a) Reconstructed Step relationship by the LMT prediction model b)inverse fitted value plot Step relationship LMT pre-
diction model



B. Verification

a) Reconstructed Step relationship by the SVRMT prediction model b)inverse fitted value plot Step relationship SVRMT
prediction model



C
Validation

C.1. ProjectSummary

Summary of properties evaluated in this research

2048 181017 184062 194003
Size 504 4568 996 407
Ratio Unique Products 0,64 0,65 0,72 0,10
Mean Assembly Time [h] 3,30 2,00 2,52 1,75
Median Assembly Time [h] 1,47 1,17 1,44 0,97
Std Assembly Time [h] 4,63 2,20 2,82 2,54
Max Assembly Time [h] 30,28 28,65 20,17 15,62
Mean Weld Time [h] 2,46 3,35 2,57 2,24
Median Weld Time [h] 1,34 1,77 1,53 1,85
Std Weld Time [h] 2,72 4,35 4,04 1,35
Max Weld Time [h] 15,05 43,26 34,88 8,70
No. Parts mean 7,10 6,39 7,27 6,39
No. Parts median 6,00 5,00 6,00 7,00
No. Parts std 3,83 4,07 4,44 2,09
No. Welds mean 5,20 17,41 11,69 10,05
No. Welds median 2,00 14,00 8,00 6,00
No. Welds std 10,18 13,60 13,64 6,46
Weight [kg] mean 708,94 770,68 747,83 373,42
Weight [kg] median 427,50 443,00 591,00 180,00
Weight [kg] std 746,81 847,26 958,44 450,37
Length [mm] mean 6576,10 5310,42 8835,13 3962,77
Length [mm] median 4886,00 4887,00 7500,00 2790,00
Length [mm] std 4539,13 3463,99 4555,25 2292,71
WeldLength [mm] mean 5919,01 12414,36 8409,33 5479,57
WeldLength [mm] median 3336,00 5273,50 6009,50 3380,00
WeldLength [mm] std 9459,52 16826,03 7601,24 4683,68
H 0,50 0,92 0,24 0,29
K 0,47 0,03 0,73 0,60
U 0,01 0,05 0,03 0,00
P 0,02 0,00 0,00 0,04



C. Validation

C.1.1. Project 2048



C.1. ProjectSummary

C.1.2. Project 181017



C. Validation

C.1.3. Project 184062



C.1. ProjectSummary

C.1.4. Project 194003



C. Validation

C.2. Tables
C.2.1. Scenario 1
2048

Results of Scenario1 for 2048 Assembly

Assembly MAPE MeAPE Std R2

MLR 0.45 0.41 0.33 0.92
SVR 0.45 0.43 0.31 0.92
TBR 0.72 0.6 0.69 0.74
LMT 0.43 0.39 0.31 0.92

SVRMT 0.43 0.41 0.3 0.93

Results of Scenario1 for 2048 Weld

Weld MAPE MeAPE Std R2

MLR 0.45 0.4 0.31 0.85
SVR 0.44 0.4 0.28 0.86
TBR 0.53 0.41 0.61 0.67
LMT 0.41 0.36 0.27 0.88

SVRMT 0.42 0.37 0.26 0.88

184062

Results of Scenario1 for 184062 Assembly

Assembly MAPE MeAPE Std R2

MLR 0.52 0.38 0.55 0.74
SVR 0.34 0.28 0.31 0.91
TBR 0.42 0.32 0.5 0.81
LMT 0.46 0.33 0.58 0.75

SVRMT 0.34 0.27 0.32 0.9

Results of Scenario1 for 184062 Weld

Weld MAPE MeAPE Std R2

MLR 0.51 0.43 0.41 0.78
SVR 0.42 0.33 0.33 0.85
TBR 0.63 0.39 0.71 0.53
LMT 0.56 0.45 0.43 0.74

SVRMT 0.42 0.35 0.33 0.85

181017

Results of Scenario1 for 181017 Assembly

Assembly MAPE MeAPE Std R2

MLR 0.61 0.44 0.61 0.47
SVR 0.56 0.49 0.48 0.61
TBR 0.91 0.47 1.43 -1.06
LMT 0.44 0.33 0.55 0.64

SVRMT 0.41 0.32 0.47 0.72

Results of Scenario1 for 181017 Weld

Weld MAPE MeAPE Std R2

MLR 0.36 0.3 0.32 0.94
SVR 0.34 0.29 0.29 0.95
TBR 0.62 0.42 0.73 0.76
LMT 0.36 0.3 0.32 0.94

SVRMT 0.36 0.3 0.32 0.94

194003

Results of Scenario1 for 194003 Assembly

Assembly MAPE MeAPE Std R2

MLR 1.36 1.17 0.92 -1.95
SVR 1.16 0.9 0.94 -1.52
TBR 0.57 0.31 0.72 0.04
LMT 0.56 0.42 0.7 0.12

SVRMT 0.45 0.36 0.49 0.51

Results of Scenario1 for 194003 Weld

Weld MAPE MeAPE Std R2

MLR 0.44 0.31 0.4 0.41
SVR 0.36 0.27 0.34 0.59
TBR 0.39 0.27 0.42 0.46
LMT 0.34 0.27 0.3 0.65

SVRMT 0.41 0.34 0.31 0.46



C.2. Tables

C.2.2. Scenario 2
181017

Results of Scenario2 for 181017 Assembly

Assembly MAPE MeAPE Std R2

MLR 0.46 0.35 0.42 0.72
SVR 0.45 0.36 0.39 0.74
TBR 0.43 0.31 0.52 0.67
LMT 0.39 0.31 0.35 0.8

SVRMT 0.39 0.31 0.34 0.81

Results of Scenario2 for 181017 Weld

Weld MAPE MeAPE Std R2

MLR 0.4 0.28 0.42 0.91
SVR 0.4 0.28 0.42 0.91
TBR 0.41 0.3 0.47 0.9
LMT 0.39 0.27 0.4 0.92

SVRMT 0.37 0.28 0.36 0.93

2048

Results of Scenario2 for 2048 Assembly

Assembly MAPE MeAPE Std R2

MLR 0.68 0.4 0.8 0.71
SVR 0.7 0.43 0.92 0.64
TBR 0.61 0.35 0.81 0.67
LMT 0.56 0.4 0.6 0.83

SVRMT 0.52 0.38 0.57 0.84

Results of Scenario2 for 2048 Weld

Weld MAPE MeAPE Std R2

MLR 0.56 0.36 0.64 0.64
SVR 0.58 0.4 0.68 0.55
TBR 0.63 0.4 0.85 0.32
LMT 0.54 0.36 0.59 0.69

SVRMT 0.51 0.38 0.52 0.73

184062

Results of Scenario2 for 184062 Assembly

Assembly MAPE MeAPE Std R2

MLR 0.39 0.28 0.39 0.86
SVR 0.38 0.28 0.35 0.87
TBR 0.54 0.37 0.66 0.64
LMT 0.39 0.28 0.39 0.86

SVRMT 0.36 0.27 0.36 0.88

Results of Scenario2 for 184062 Weld

Weld MAPE MeAPE Std R2

MLR 0.39 0.32 0.35 0.86
SVR 0.35 0.29 0.28 0.9
TBR 0.54 0.36 0.67 0.23
LMT 0.4 0.32 0.34 0.86

SVRMT 0.35 0.27 0.3 0.89

194003

Results of Scenario2 for 194003 Assembly

Assembly MAPE MeAPE Std R2

MLR 0.37 0.31 0.28 0.76
SVR 0.24 0.2 0.19 0.9
TBR 0.37 0.24 0.43 0.55
LMT 0.31 0.26 0.23 0.83

SVRMT 0.24 0.2 0.19 0.9

Results of Scenario2 for 194003 Weld

Weld MAPE MeAPE Std R2

MLR 0.31 0.21 0.29 0.68
SVR 0.29 0.2 0.27 0.71
TBR 0.32 0.22 0.32 0.68
LMT 0.28 0.2 0.27 0.73

SVRMT 0.26 0.2 0.24 0.77



C. Validation

C.2.3. Scenario 3
2048

Results of Scenario3 for 2048 Assembly

Assembly MAPE MeAPE Std R2

MLR 0.47 0.39 0.41 0.89
SVR 0.43 0.4 0.3 0.92
TBR 0.47 0.35 0.51 0.86
LMT 0.41 0.37 0.3 0.93

SVRMT 0.4 0.37 0.26 0.94

Results of Scenario3 for 2048 Weld

Weld MAPE MeAPE Std R2

MLR 0.45 0.38 0.43 0.8
SVR 0.44 0.38 0.34 0.85
TBR 0.57 0.39 0.75 0.47
LMT 0.36 0.31 0.3 0.89

SVRMT 0.4 0.35 0.29 0.88

184062

Results of Scenario3 for 184062 Assembly

Assembly MAPE MeAPE Std R2

MLR 0.45 0.32 0.46 0.81
SVR 0.36 0.28 0.38 0.87
TBR 0.48 0.31 0.63 0.68
LMT 0.44 0.35 0.43 0.83

SVRMT 0.38 0.28 0.38 0.87

Results of Scenario3 for 184062 Weld

Weld MAPE MeAPE Std R2

MLR 0.42 0.34 0.31 0.86
SVR 0.38 0.33 0.28 0.89
TBR 0.49 0.34 0.57 0.69
LMT 0.43 0.35 0.31 0.86

SVRMT 0.41 0.35 0.31 0.86

181017

Results of Scenario3 for 181017 Assembly

Assembly MAPE MeAPE Std R2

MLR 0.51 0.38 0.48 0.65
SVR 0.42 0.33 0.39 0.77
TBR 0.45 0.33 0.57 0.62
LMT 0.42 0.32 0.37 0.78

SVRMT 0.36 0.29 0.33 0.83

Results of Scenario3 for 181017 Weld

Weld MAPE MeAPE Std R2

MLR 0.38 0.28 0.4 0.92
SVR 0.37 0.27 0.37 0.93
TBR 0.41 0.3 0.47 0.9
LMT 0.36 0.27 0.35 0.94

SVRMT 0.36 0.27 0.34 0.94

194003

Results of Scenario3 for 194003 Assembly

Assembly MAPE MeAPE Std R2

MLR 0.69 0.63 0.49 0.22
SVR 0.49 0.4 0.44 0.52
TBR 0.38 0.27 0.48 0.56
LMT 0.41 0.34 0.35 0.67

SVRMT 0.38 0.33 0.3 0.74

Results of Scenario3 for 194003 Weld

Weld MAPE MeAPE Std R2

MLR 0.37 0.25 0.35 0.51
SVR 0.34 0.26 0.3 0.67
TBR 0.27 0.19 0.25 0.78
LMT 0.36 0.25 0.34 0.61

SVRMT 0.34 0.27 0.3 0.67



C.3. Inverse Fitted Value Plots Validation

C.3. Inverse Fitted Value Plots Validation

(a) (b) (c)

Inverse fitted value plot for the predicted welding times for project 181017 in a) scenario 1, b) scenario 2 and c) scenario
3 using the SVRMT prediction model

(a) (b) (c)

Inverse fitted value plot for the predicted assembly times for project 181017 in a) scenario 1, b) scenario 2 and c) sce-
nario 3 using the SVRMT prediction model

(a) (b) (c)

Inverse fitted value plot for the predicted assembly times for project 184062 in a) scenario 1, b) scenario 2 and c) sce-
nario 3 using the SVRMT prediction model

(a) (b) (c)

Inverse fitted value plot for the predicted assembly times for project 194003 in a) scenario 1, b) scenario 2 and c) sce-
nario 3 using the SVRMT prediction model



C. Validation

(a) (b) (c)

Inverse fitted value plot for the predicted Weld times for project 2048 in a) scenario 1, b) scenario 2 and c) scenario 3
using the SVRMT prediction model

(a) (b) (c)

Inverse fitted value plot for the predicted Weld times for project 181017 in a) scenario 1, b) scenario 2 and c) scenario 3
using the SVRMT prediction model

(a) (b) (c)

Inverse fitted value plot for the predicted Weld times for project 184062 in a) scenario 1, b) scenario 2 and c) scenario 3
using the SVRMT prediction model

(a) (b) (c)

Inverse fitted value plot for the predicted Weld times for project 194003 in a) scenario 1, b) scenario 2 and c) scenario 3
using the SVRMT prediction model



D
Python Code

# −*− coding : utf−8 −*−
" " "
Created on Wed Jun 5 10:53:13 2019

@author : l . vanderplas
" " "

import pandas as pd
import numpy as np
import time
import copy
import math
from sklearn import linear_model
from sklearn import svm
from sklearn . feature_select ion import RFECV
from sklearn . svm import SVR
from sklearn . tree import DecisionTreeRegressor

from sklearn . model_selection import GridSearchCV , t r a i n _ t e s t _ s p l i t
from sklearn . preprocessing import RobustScaler , StandardScaler
from pandas import ExcelWriter
from pandas import ExcelFi l e

global AllColumns
global Continuous
global YColumn
global AllNodes

# Predict f o r a l l products in Test Set
def ResultatenZoeker ( i , TestSet , TreeType ) :

SmallResults = pd . DataFrame ( )
for index , row in TestSet . iterrows ( ) :

X = TestSet . loc [ [ index ] , AllColumns ]
YTest = TestSet . loc [ [ index ] , YColumn ] . values
YPred , l e a f = TreeType . search (X)

# SmallResults . at [ i , ’X ’ ] = X
SmallResults . at [ s t r ( i ) + ’− ’+ s t r ( index ) , ’Y ’ ] = YTest
SmallResults . at [ s t r ( i ) + ’− ’+ s t r ( index ) , ’ YPred ’ ] = YPred
SmallResults . at [ s t r ( i ) + ’− ’+ s t r ( index ) , ’ Res ’ ] = YTest − YPred
SmallResults . at [ s t r ( i ) + ’− ’+ s t r ( index ) , ’ RelRes ’ ] = ( YTest − YPred ) / YTest
SmallResults . at [ s t r ( i ) + ’− ’+ s t r ( index ) , ’ AbsRes ’ ] = np . abs ( ( YTest − YPred ) )
SmallResults . at [ s t r ( i ) + ’− ’+ s t r ( index ) , ’ AbsRelRes ’ ] = np . abs ( ( YTest − YPred ) / YTest )

return SmallResults

#Compute Performance Indicators f o r Test Set
def Metrics ( SmallResults , Runtime , i ) :

SmallMetrics = pd . DataFrame ( )
SmallMetrics . at [ i , ’MAPE’ ] = SmallResults [ ’ AbsRelRes ’ ] . mean( )
SmallMetrics . at [ i , ’MeAPE ’ ] = SmallResults [ ’ AbsRelRes ’ ] . median ( )
SmallMetrics . at [ i , ’ Std ’ ] = SmallResults [ ’ AbsRelRes ’ ] . std ( )
SmallMetrics . at [ i , ’R2 ’ ] = 1−(np . square ( SmallResults [ ’ YPred ’ ] − SmallResults [ ’Y ’ ] ) .sum( ) / (np . square ( SmallResults [ ’Y ’ ]−

SmallResults [ ’Y ’ ] . mean( ) ) .sum( ) ) )
SmallMetrics . at [ i , ’Runtime [ s ] ’ ] = Runtime

return SmallMetrics

#Combine Results with Test Set
def Resultaten ( XTest , YTest , YPred ) :
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SmallResults = XTest
SmallResults [ ’Y ’ ] = YTest
SmallResults [ ’ YPred ’ ] = YPred
SmallResults [ ’ Res ’ ] = YTest − YPred
SmallResults [ ’ RelRes ’ ] = ( YTest − YPred ) / YTest
SmallResults [ ’ AbsRes ’ ] = np . abs ( ( YTest − YPred ) )
SmallResults [ ’ AbsRelRes ’ ] = np . abs ( ( YTest − YPred ) / YTest )

return SmallResults

#Build MLR Prediction Model
def RAWMLR( TrainSet , TestSet ) :

XTrain = TrainSet [ Continuous ]
YTrain = TrainSet [YColumn]
XTest = TestSet [ Continuous ]
YTest = TestSet [YColumn]

s c a l e r = RobustScaler ( ) . f i t ( XTrain )
XTrainScaled = s c a l e r . transform ( XTrain )
XTestScaled = s c a l e r . transform ( XTest )
reg = linear_model . ElasticNetCV ( cv =5) . f i t ( XTrainScaled , YTrain )
YPred = reg . predict ( XTestScaled )

SmallResults = Resultaten ( XTest , YTest , YPred )

return SmallResults

#Build SVR Prediction Model
def RAWSVR( TrainSet , TestSet ) :

parameters = [ { ’C ’ : [ 0 . 1 , 1 , 10 ,25] , ’ epsilon ’ : [ 0 . 1 , 0 . 5 , 1 ] } ]
ColumnSet = [ ]

Verbetering = True

XTrain = TrainSet [ Continuous ]
YTrain = TrainSet [YColumn]

XTest = TrainSet [ Continuous ]
YTest = TrainSet [YColumn]

Scaler = RobustScaler ( ) . f i t ( XTrain )
XTrainScaled = Scaler . transform ( XTrain )
XTestScaled = Scaler . transform ( XTest )

Reg = GridSearchCV (svm . LinearSVR ( ) , parameters , cv =5)
Reg . f i t ( XTrainScaled , YTrain )

i f len ( XTrain . columns ) == 1 :
YPred = Reg . predict ( XTestScaled )
SmallResults = Resultaten ( XTest , YTest , YPred )
return SmallResults

#Greedy Backwards Elimation
else :

YPred = Reg . predict ( XTrainScaled )
Residuals = np . abs ( YTrain−YPred )

n = len ( XTrain )
v = len ( Continuous )
f a c t o r = (n+v ) /(n−v )

Error = f a c t o r * Residuals .mean( )

BestColumn = Continuous
BestReg = Reg
BestScaler = Scaler

YTrain = TrainSet [YColumn]
YTest = TestSet [YColumn]

while Verbetering :
Verbetering = False
for column in Continuous :

i f column not in ColumnSet :
SmallColumn = ColumnSet . copy ( )
SmallColumn . append(column)

X = TrainSet [ SmallColumn ]
Scaler = RobustScaler ( ) . f i t (X)
Xscaled = Scaler . transform (X)

Reg = GridSearchCV (svm . LinearSVR ( max_iter=−1) , parameters , cv =5)
Reg . f i t ( Xscaled , YTrain )



Y_pred = Reg . predict ( Xscaled )
Residuals = np . abs ( YTrain−Y_pred )

n = len (X)
v = len ( SmallColumn )
f a c t o r = (n+v ) /(n−v )

SmallError = f a c t o r * Residuals .mean( )
i f SmallError <= Error :

Verbetering = True
Error = SmallError
BestColumn = column
BestReg = Reg
BestScaler = Scaler

i f Verbetering :
ColumnSet . append( BestColumn )

i f len ( ColumnSet ) == 0 :
ColumnSet = Continuous

XTest = TestSet [ BestColumn ]

i f type ( XTest ) == pd . core . s e r i e s . Series :
XTest = XTest . values . reshape (−1 ,1)

XTestScaled = BestScaler . transform ( XTest )
YPred = BestReg . predict ( XTestScaled )
SmallResults = Resultaten ( XTest , YTest , YPred )

return SmallResults

#Define Node Object f o r Model Tree
class Node ( ) :

# I n i t i a l i z e
def _ _ i n i t _ _ ( s e l f , DataSet , Parent , Name, Depth ) :

s e l f . Parent = Parent
s e l f . DataSet = DataSet
s e l f .Name = Name
s e l f . Leaf = False
s e l f . Depth = Depth
s e l f . prune = True
s e l f . Left_chi ld = None
s e l f . Right_child = None

def GreedySplit ( s e l f , NodeList ) :
Verbetering = False
SDR = 0

Xset = s e l f . DataSet
Yset = s e l f . DataSet [YColumn]

YPredSet = RAWMLR( Xset [ Continuous ] , Yset )
Residuals = ( Yset − YPredSet ) / Yset
STDAll = np . std ( ( Residuals ) )

#Go through a l l input variables
for column in AllColumns :

TussenTijd = time . time ( )
Set = Xset [ column ] . drop_duplicates ( ) . sort_values ( )

#For each unique value in input variable
for i in ( Set ) :

YLeft = Xset . loc [ Xset [ column ] <= i ] [ YColumn] #Define L e f t Set
XLeft = Xset . loc [ Xset [ column ] <= i ] [ Continuous ]

YRight = Xset . loc [ Xset [ column ] > i ] [ YColumn] #Define Right Set
XRight = Xset . loc [ Xset [ column ] > i ] [ Continuous ]

i f len ( XLeft ) > MinSize and len ( XRight ) > MinSize :
YPredLeft = RAWMLR( XLeft , YLeft )
ResidualsLeft = np . std ( ( YLeft − YPredLeft ) / YLeft )

YPredRight = RAWMLR( XRight , YRight )
ResidualsRight = np . std ( ( YRight − YPredRight ) / YRight )

# Calculate Standard Deviation Reduction
SDR_small = STDAll − ( ( len ( YLeft ) * ResidualsLeft ) + ( len ( YRight ) * ResidualsRight ) ) / len ( Yset )

i f SDR_small > SDR and SDR_small > 0.05* STDAll :
Verbetering = True
SDR = SDR_small
SplitValue = i
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SplitColumn = column
print ( time . time ( ) − TussenTijd )

# I f improved s p l i t i s i d e n t i f i e d
i f Verbetering :

print ( ’ Verbetering ’ )
print ( ’ I n i t a l STD ’ + s t r ( STDAll ) )
DataLeft = Xset . loc [ Xset [ SplitColumn ] <= SplitValue ]
DataRight = Xset . loc [ Xset [ SplitColumn ] > SplitValue ]

s e l f . Left_chi ld = Node( DataLeft , s e l f , ( len ( AllNodes ) ) , ( s e l f . Depth+1) ) #Create L e f t Child
NodeList . append( s e l f . Left_chi ld )
AllNodes . append( s e l f . Left_chi ld )

s e l f . Right_child = Node( DataRight , s e l f , ( len ( AllNodes ) ) , ( s e l f . Depth+1) ) #Create Right Child
NodeList . append( s e l f . Right_child )
AllNodes . append( s e l f . Right_child )

#Appoint SplitColumn and SplitValue to the node
s e l f . PivotColumn = SplitColumn
print ( s e l f . PivotColumn )
s e l f . PivotValue = SplitValue

print ( ’ Verbeterde variabele : ’ + s t r ( SplitColumn ) )
print ( ’ S p l i t waarde : ’ + s t r ( SplitValue ) )
print ( ’ Reduction : ’ + s t r (SDR) )

# I f the node i s a l e a f
else :

s e l f . Leaf = True
s e l f . prune = False
print ( ’ This i s a l e a f ! ’ )

Tree . Constructor ( NodeList )

#Build model in node
def Model( s e l f , ModelType) :

# Set parameters f o r grid search
parameters = [ { ’C ’ : [ 0 . 0 1 , 0 . 1 , 0 . 5 , 1 , 10] , ’ epsilon ’ : [ 0 . 0 1 , 0 . 1 , 0 . 5 , 1 ] } ]

ColumnSet = [ ]
Y = s e l f . DataSet [YColumn]

Verbetering = True

X = s e l f . DataSet [ Continuous ]

Scaler = RobustScaler ( ) . f i t (X)
XScaled = Scaler . transform (X)

#Model f o r LMT
i f ModelType == ’MLR’ :

Reg = linear_model . ElasticNetCV ( cv =5)
Reg . f i t ( XScaled , Y)

#Model f o r SVRMT
e l i f ModelType == ’SVR ’ :

Reg = GridSearchCV (svm . LinearSVR ( max_iter =100000) , parameters , cv =5)
Reg . f i t ( XScaled , Y)

Y_pred = Reg . predict ( XScaled )
Residuals = np . abs (Y−Y_pred )

n = len (X)
v = len ( Continuous )
i f n == v :

f a c t o r = (n+v ) /(n−v+1)
else :

f a c t o r = (n+v ) /(n−v )

Error = f a c t o r * Residuals .mean( )

BestColumn = Continuous
BestReg = Reg
BestScaler = Scaler

while Verbetering :
Verbetering = False
for column in Continuous :

i f column not in ColumnSet :
SmallColumn = ColumnSet . copy ( )
SmallColumn . append(column)

X = s e l f . DataSet [ SmallColumn ]



Scaler = RobustScaler ( ) . f i t (X)
Xscaled = Scaler . transform (X)

i f ModelType == ’MLR’ :

Reg = linear_model . ElasticNetCV ( cv =5)
Reg . f i t ( Xscaled , Y)

e l i f ModelType == ’SVR ’ :
Reg = GridSearchCV (svm . LinearSVR ( ) , parameters , cv =5)
Reg . f i t ( Xscaled , Y)

Y_pred = Reg . predict ( Xscaled )
Residuals = np . abs (Y−Y_pred )

n = len (X)
v = len ( SmallColumn )

i f n == v :
f a c t o r = (n+v ) /(n−v+1)

else :
f a c t o r = (n+v ) /(n−v )

SmallError = f a c t o r * Residuals .mean( )
i f SmallError < Error :

Verbetering = True
Error = SmallError
BestColumn = column
BestReg = Reg
BestScaler = Scaler

i f Verbetering :
ColumnSet . append( BestColumn )

i f len ( ColumnSet ) == 0 :
ColumnSet = Continuous

s e l f . model = BestReg
s e l f . s c a l e r = BestScaler
s e l f . ColumnSet = ColumnSet

def Prune ( s e l f ) :
s e l f . prune = False
n = len ( s e l f . DataSet )
v = len ( s e l f . ColumnSet )
f a c t o r = (n+v ) /(n−v )

X = s e l f . s c a l e r . transform ( s e l f . DataSet [ s e l f . ColumnSet ] )
Y = s e l f . DataSet [YColumn]

Y_pred = s e l f . model . predict (X)

Residuals = np . abs ( ( Y − Y_pred ) /Y)

#Determine Error Factor L e f t Child
n _ l e f t = len ( s e l f . Left_chi ld . DataSet )
v _ l e f t = len ( s e l f . Left_chi ld . ColumnSet )
f a c t o r _ l e f t = ( n _ l e f t + v _ l e f t ) /( n_left−v _ l e f t )

# Predict f o r L e f t Child
X _ l e f t = s e l f . Left_chi ld . s c a l e r . transform ( s e l f . Left_chi ld . DataSet [ s e l f . Left_chi ld . ColumnSet ] )
Y _ l e f t = s e l f . Left_chi ld . DataSet [YColumn]
Y_predleft = s e l f . Left_chi ld . model . predict ( X _ l e f t )
R e s i d u a l s _ l e f t = np . abs ( ( Y _ l e f t − Y_predleft ) / Y _ l e f t )

#Determine Error Factor Right Child
n_right = len ( s e l f . Right_child . DataSet )
v_right = len ( s e l f . Right_child . ColumnSet )
f a c t o r _ r i g h t = ( n_right+v_right ) /( n_right−v_right )

# Predict f o r Right Child
X_right = s e l f . Right_child . s c a l e r . transform ( s e l f . Right_child . DataSet [ s e l f . Right_child . ColumnSet ] )
Y_right = s e l f . Right_child . DataSet [YColumn]
Y_predright = s e l f . Right_child . model . predict ( X_right )
Residuals_right = np . abs ( ( Y_right − Y_predright ) / Y_right )

#Determine whether i t should Prune
i f f a c t o r * Residuals .mean( ) < ( ( n _ l e f t /n) * f a c t o r _ l e f t * R e s i d u a l s _ l e f t .mean( ) + ( n_right /n) * f a c t o r _ r i g h t *

Residuals_right .mean( ) ) :
print ( ’Node ’ + s t r ( s e l f .Name) + ’ should be pruned ’ )
s e l f . Leaf = True
s e l f . Left_chi ld = None
s e l f . Right_child = None
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i f s e l f . Parent :
return TreeType . Pruning ( s e l f . Parent )

else :
return

#Define Tree Class
class RMT( ) :

def _ _ i n i t _ _ ( s e l f ) :
s e l f . root = None

#Construct Tree
def Constructor ( s e l f , NodeList ) :

i f s e l f . root == None : #Define Root of Tree
s e l f . root = Node( TrainSet , None, ’ Root ’ , 0)
AllNodes . append( s e l f . root )
s e l f . root . GreedySplit ( NodeList )

#Keep s p l i t t i n g unti l a l l leaves are determined
e l i f len ( NodeList ) > 0 :

cur_node = NodeList [ 0 ]
print ( ’− ’ *50)
print ( ’ Current node ’ + s t r ( cur_node .Name) )
print ( ’ Parent ’ + s t r ( cur_node . Parent .Name) )
NodeList . remove ( cur_node )
cur_node . GreedySplit ( NodeList )

else :
print ( ’ Building of Tree finished ’ )

#Search corresponding l e a f f o r predict ing a new value
def search ( s e l f , X) :

# print ( ’ Searching ’ )
i f s e l f . root != None :

return s e l f . _search (X , s e l f . root )
else :

print ( ’ Het i s de root ! ’ )
return False

def _search ( s e l f , X , cur_node ) :
i f cur_node . Leaf :

i f Smooth :
Y_pred = Tree . smooth(X , cur_node , 0 , 0)

else :
XSmall = X[ cur_node . ColumnSet ]
X_transform = cur_node . s c a l e r . transform ( XSmall )

Y_pred = cur_node . model . predict ( X_transform )
return Y_pred , cur_node .Name

else :
column = cur_node . PivotColumn
value = cur_node . PivotValue
i f X[ column ] . values <= value and cur_node . Left_chi ld !=None :

return s e l f . _search (X , cur_node . Left_chi ld )
e l i f X[ column ] . values > value and cur_node . Right_child !=None :

return s e l f . _search (X , cur_node . Right_child )

#Smooth prediction
def smooth( s e l f , X , cur_node , p , n) :

i f cur_node . Parent i s not None :
return s e l f . _smooth (X , cur_node , p , n)

else :
i f p == 0 :

XSmall = X[ cur_node . ColumnSet ]
X_transform = cur_node . s c a l e r . transform ( XSmall )
q = cur_node . model . predict ( X_transform )
return q

return p

def _smooth ( s e l f , X , cur_node , p , n) :
i f cur_node . Parent i s None :

XSmall = X[ cur_node . ColumnSet ]
X_transform = cur_node . s c a l e r . transform ( XSmall )
q = cur_node . model . predict ( X_transform )

# n = len ( cur_node . DataSet )
k = 15
p_acc = (n*p + k*q) / (n+k )
return p_acc

e l i f cur_node . Leaf :
XSmall = X[ cur_node . ColumnSet ]

X_transform = cur_node . s c a l e r . transform ( XSmall )

p_acc = cur_node . model . predict ( X_transform )
return s e l f . smooth(X , cur_node . Parent , p_acc , len ( cur_node . DataSet ) )



else :
XSmall = X[ cur_node . ColumnSet ]
X_transform = cur_node . s c a l e r . transform ( XSmall )

q = cur_node . model . predict ( X_transform )
# n = len ( cur_node . DataSet )

k = 15
p_acc = (n*p + k*q) / (n+k )
return s e l f . smooth(X , cur_node . Parent , p_acc , len ( cur_node . DataSet ) )

#Build a prediction model in each node of the t r e e
def InorderModel ( s e l f , cur_node , ModelType) :

print ( cur_node .Name)
ModelTijd = time . time ( )
cur_node . Model( ModelType )
i f not cur_node . Leaf :

s e l f . InorderModel ( cur_node . Left_child , ModelType )
s e l f . InorderModel ( cur_node . Right_child , ModelType)

ModelTijd = time . time ( ) − ModelTijd

return ModelTijd

def Pruning ( s e l f , cur_node ) :
i f cur_node . Left_chi ld i s not None :

i f cur_node . Left_chi ld . prune :
s e l f . Pruning ( cur_node . Left_chi ld )

i f cur_node . Right_child i s not None :
i f cur_node . Right_child . prune :

s e l f . Pruning ( cur_node . Right_child )
else :

i f cur_node .Name ! = ’ Root ’ :
cur_node . Prune ( )

return

# Print Final Tree
def TreePrinter ( s e l f , cur_node , s i z e ) :

s i z e . append( cur_node )
i f not cur_node . Leaf :

print ( cur_node .Name)
print ( cur_node . PivotColumn )
i f cur_node . PivotColumn in Spl i tVars :

Spl i tVars [ cur_node . PivotColumn ] += 1
else :

Spl i tVars [ cur_node . PivotColumn ] = 1
s e l f . TreePrinter ( cur_node . Left_child , s i z e )
s e l f . TreePrinter ( cur_node . Right_child , s i z e )

return s i z e

i f __name__ == ’ __main__ ’ :
global MinSize
global TrainSet
global Smooth
global Pruning
global Spl i tVars
global Steps
global AllColumns

#ResultsFrames
ResultsMLR = pd . DataFrame ( )
ResultsSVR = pd . DataFrame ( )
ResultsLMT = pd . DataFrame ( )
ResultsSVRMT = pd . DataFrame ( )

#Detere Models to evaluate
ModelTypes = [ ’RAWMLR’ , ’RAWSVR’ , ’TBR ’ , ’LMT’ , ’SVRMT’ ]

#Determine Output Variables
YColumns = [ ’ Assembly Time [h] ’ , ’Weld Time [h] ’ ]

#Determine Input Variables
AllColumns = [ ’ Weight [ kg ] ’ , ’ Length [mm] ’ , ’ WeldLength [mm] ’ , ’No. Parts ’ , ’No. Welds ’ , ’No. Holes ’ , ’H’ , ’K ’ , ’P ’ ,

’U’ ]
Continuous = [ ’ Weight [ kg ] ’ , ’ Length [mm] ’ , ’ WeldLength [mm] ’ , ’No. Parts ’ , ’No. Welds ’ , ’No. Holes ’ ]

A l l T e s t s = [ ’ T o t a l A l l F i n a l ’ ]

Seeds = [1494 , 2051549 , 5498497 , 2484 , 1814 , 105487 , 20234234 , 234 ,345345345 , 3456789 , 5117] #Random s p l i t seeds
Models = [ ]
Test = pd . DataFrame ( )
TestPruning = pd . DataFrame ( )
MinSizes = [ ]
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Steps = 100
S p l i t = ’ 194003 ’
Runs = 1
Scenario = 1

Smooth = True
Pruning = True

for Test in A l l T e s t s :
print ( S p l i t )
path = ’C: \ \ Users \\ l . vanderplas \\Documents\\ Afstuderen Leon\\ Validation \\ Results \\ ’

# Set up Result Excel Sheets
writerResultatenMLR = ExcelWriter ( path + ’ Scenario ’ + s t r ( Scenario ) + ’− ’ + S p l i t + ’MLR. x l s x ’ )
writerResultatenSVR = ExcelWriter ( path + ’ Scenario ’ + s t r ( Scenario ) + ’− ’ + S p l i t + ’SVR . x l s x ’ )
writerResultatenLMT = ExcelWriter ( path + ’ Scenario ’ + s t r ( Scenario ) + ’− ’ + S p l i t + ’LMT. x l s x ’ )
writerResultatenSVRMT = ExcelWriter ( path + ’ Scenario ’ + s t r ( Scenario ) + ’− ’ + S p l i t + ’SVRMT. x l s x ’ )
writerResultatenTBR = ExcelWriter ( path + ’ Scenario ’ + s t r ( Scenario ) + ’− ’ + S p l i t + ’TBR. x l s x ’ )

writerDataMLR = ExcelWriter ( path + ’ Scenario ’ + s t r ( Scenario ) + ’− ’ + S p l i t + ’ RawResults ’ + ’MLR. x l s x ’ )
writerDataSVR = ExcelWriter ( path + ’ Scenario ’ + s t r ( Scenario ) + ’− ’ + S p l i t + ’ RawResults ’ + ’SVR . x l s x ’ )
writerDataLMT = ExcelWriter ( path + ’ Scenario ’ + s t r ( Scenario ) + ’− ’ + S p l i t + ’ RawResults ’ + ’LMT. x l s x ’ )
writerDataSVRMT = ExcelWriter ( path + ’ Scenario ’ + s t r ( Scenario ) + ’− ’ + S p l i t + ’ RawResults ’ + ’SVRMT. x l s x ’ )
writerDataTBR = ExcelWriter ( path + ’ Scenario ’ + s t r ( Scenario ) + ’− ’ + S p l i t + ’ RawResults ’ + ’TBR. x l s x ’ )

for YColumn in YColumns :
Spl i tVars = { }
TotalData = pd . read_excel ( ’C: \ \ Users \\ l . vanderplas \\Documents\\ Afstuderen Leon\\Data\\ TotalData \\ ’+Test+ ’ .

x l s x ’ , index_col =0)
TotalData = TotalData . loc [ TotalData [YColumn] > 0 . 5 ]
MinSizes = [ len ( Continuous ) ]

for MinSize in MinSizes :
ResultsMLR = pd . DataFrame ( )
ResultsSVR = pd . DataFrame ( )
ResultsLMT = pd . DataFrame ( )
ResultsSVRMT = pd . DataFrame ( )
ResultsTBR = pd . DataFrame ( )

DataMLR = pd . DataFrame ( )
DataSVR = pd . DataFrame ( )
DataLMT = pd . DataFrame ( )
DataSVRMT = pd . DataFrame ( )
DataTBR = pd . DataFrame ( )

for i in range ( 1 , Runs+1) :
print ( Test )
print (YColumn)
print ( MinSize )
print ( i )
i f type ( S p l i t ) == f l o a t :

TrainSet , TestSet = t r a i n _ t e s t _ s p l i t ( TotalData , t e s t _ s i z e = S p l i t , random_state=Seeds [ i ] )

else :
i f Scenario == 1 :

TrainSet = TotalData . loc [ TotalData [ ’ Project ’ ] != int ( S p l i t ) ]
TestSet = TotalData . loc [ TotalData [ ’ Project ’ ] == int ( S p l i t ) ]

e l i f Scenario == 2 :
TotalData = TotalData [ TotalData . index . s t r . contains ( S p l i t ) ]
TrainSet , TestSet = t r a i n _ t e s t _ s p l i t ( TotalData , t e s t _ s i z e =0.3 , random_state=Seeds [ i ] )

e l i f Scenario == 3 :
TestSet = TotalData . loc [ TotalData . index . s t r . contains ( S p l i t ) ]
TrainSet , DummySet = t r a i n _ t e s t _ s p l i t ( TotalData , t e s t _ s i z e =0.3 , random_state=Seeds [ i ] )
DummySet, TestSet = t r a i n _ t e s t _ s p l i t ( TestSet , t e s t _ s i z e =0.3 , random_state=Seeds [ i ] )

#Construct Model Tree
i f any ( c in ModelTypes for c in ( ’LMT’ , ’SVRMT’ ) ) :

StartTime = time . time ( )
NodeList = [ ]
AllNodes = [ ]
Tree = RMT( )
ConstructionTijd = time . time ( )
Tree . Constructor ( NodeList )
TreeTime = time . time ( ) − StartTime

for Model in ModelTypes :
#RAWMLR Code
i f Model == ’RAWMLR’ :

StartTime = time . time ( )
SmallResults = RAWMLR( TrainSet , TestSet )
Runtime = time . time ( ) − StartTime
SmallMetrics = Metrics ( SmallResults , Runtime , i )



DataMLR = DataMLR . append( SmallResults )
ResultsMLR = ResultsMLR . append( SmallMetrics )

#RAWSVR Code
e l i f Model == ’RAWSVR’ :

StartTime = time . time ( )
SmallResults = RAWSVR( TrainSet , TestSet )
Runtime = time . time ( ) − StartTime

SmallMetrics = Metrics ( SmallResults , Runtime , i )
DataSVR = DataSVR . append( SmallResults )

ResultsSVR = ResultsSVR . append( SmallMetrics )

#TBR Code
e l i f Model == ’TBR ’ :

StartTime = time . time ( )
regr_1 = DecisionTreeRegressor ( max_depth=10) . f i t ( TrainSet [ AllColumns ] , TrainSet [YColumn ] )
Ypred = regr_1 . predict ( TestSet [ AllColumns ] )
Runtime = time . time ( ) − StartTime

SmallResults = Resultaten ( TestSet [ AllColumns ] , TestSet [YColumn] , Ypred )
SmallMetrics = Metrics ( SmallResults , Runtime , i )

DataTBR = DataTBR . append( SmallResults )
ResultsTBR = ResultsTBR . append( SmallMetrics )

#LMT code
e l i f Model == ’LMT’ :

StartTime = time . time ( )

Type = ’MLR’
TreeType = copy . deepcopy ( Tree )
ModelTijd = TreeType . InorderModel ( TreeType . root , Type )
i f Pruning :

TreeType . Pruning ( TreeType . root )

Runtime = time . time ( ) − StartTime + TreeTime

SmallResults = ResultatenZoeker ( i , TestSet , TreeType )
SmallMetrics = Metrics ( SmallResults , Runtime , i )
DataLMT = DataLMT . append( SmallResults )
ResultsLMT = ResultsLMT . append( SmallMetrics )

#SVRMT code
e l i f Model == ’SVRMT’ :

StartTime = time . time ( )

Type = ’SVR ’
TreeType = copy . deepcopy ( Tree )
ModelTijd = TreeType . InorderModel ( TreeType . root , Type )
i f Pruning :

TreeType . Pruning ( TreeType . root )
s i z e = [ ]
s i z e = TreeType . TreePrinter ( TreeType . root , s i z e )
Runtime = time . time ( ) − StartTime + TreeTime

SmallResults = ResultatenZoeker ( i , TestSet , TreeType )
SmallMetrics = Metrics ( SmallResults , Runtime , i )
SmallMetrics . at [ i , ’ Size ’ ] = len ( s i z e )
DataSVRMT = DataSVRMT . append( SmallResults )
ResultsSVRMT = ResultsSVRMT . append( SmallMetrics )

#Write Results to Excel s h e e t s
ResultsMLR . to_excel ( writerResultatenMLR , s t r (YColumn . s p l i t ( ) [ 0 ] ) + ’− ’ + s t r ( MinSize ) , index=True )
ResultsSVR . to_excel ( writerResultatenSVR , s t r (YColumn . s p l i t ( ) [ 0 ] ) + ’− ’ + s t r ( MinSize ) , index=True )
ResultsLMT . to_excel ( writerResultatenLMT , s t r (YColumn . s p l i t ( ) [ 0 ] ) + ’− ’ + s t r ( MinSize ) , index=True )
ResultsSVRMT . to_excel ( writerResultatenSVRMT , s t r (YColumn . s p l i t ( ) [ 0 ] ) + ’− ’ + s t r ( MinSize ) , index=True

)
ResultsTBR . to_excel ( writerResultatenTBR , s t r (YColumn . s p l i t ( ) [ 0 ] ) + ’− ’ + s t r ( MinSize ) , index=True )

DataMLR . to_excel ( writerDataMLR , s t r (YColumn . s p l i t ( ) [ 0 ] ) + s t r ( MinSize ) , index=True )
DataSVR . to_excel ( writerDataSVR , s t r (YColumn . s p l i t ( ) [ 0 ] ) + s t r ( MinSize ) , index=True )
DataLMT . to_excel ( writerDataLMT , s t r (YColumn . s p l i t ( ) [ 0 ] ) + s t r ( MinSize ) , index=True )
DataSVRMT . to_excel ( writerDataSVRMT , s t r (YColumn . s p l i t ( ) [ 0 ] ) + s t r ( MinSize ) , index=True )
DataTBR . to_excel ( writerDataTBR , s t r (YColumn . s p l i t ( ) [ 0 ] ) + s t r ( MinSize ) , index=True )

Parameters = pd . Series ( { ’ Pruning ’ : Pruning , ’Smooth ’ : Smooth , ’ Influence ’ : Influence , ’ StandardSplit ’ : Standard , ’
Steps ’ : Steps , ’ S p l i t ’ : S p l i t , ’Runs ’ : Runs , ’ Seeds ’ : Seeds } )

#Write available Input Variables and used parameters to r e s u l t s sheet
A l l P r e d i c t o r = pd . Series ( AllColumns )



D. Python Code

for writer in [ writerResultatenMLR , writerResultatenSVR , writerResultatenLMT , writerResultatenSVRMT ,
writerResultatenTBR ] :

A l l P r e d i c t o r . to_excel ( writer , ’ Predictors ’ , index=True )
Parameters . to_excel ( writer , ’ Parameters ’ , index=True )

#Save Excel Sheets
writerResultatenMLR . save ( )
writerResultatenSVR . save ( )
writerResultatenLMT . save ( )
writerResultatenSVRMT . save ( )
writerResultatenTBR . save ( )

writerDataMLR . save ( )
writerDataSVR . save ( )
writerDataLMT . save ( )
writerDataSVRMT . save ( )
writerDataTBR . save ( )
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